Science.gov

Sample records for agronomically important trait

  1. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.)

    PubMed Central

    Jaiswal, Vandana; Gahlaut, Vijay; Meher, Prabina Kumar; Mir, Reyazul Rouf; Jaiswal, Jai Prakash; Rao, Atmakuri Ramakrishna; Balyan, Harindra Singh; Gupta, Pushpendra Kumar

    2016-01-01

    Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST) approach, and two recent approaches viz. multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910–2006 for commercial cultivation in different agro-climatic regions in India). Three years phenotypic data for 14 traits and genotyping data for 250 SSR markers (distributed across all the 21 wheat chromosomes) was utilized for GWAS. Using SLST, as many as 213 MTAs (p ≤ 0.05, 129 SSRs) were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs) qualified FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic regions were coincident with the genomic regions that were already known to harbor QTLs for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and markers were identified; 22 MTAs (19 QTLs, 21 markers) using MLMM, and 58 MTAs (29 QTLs, 40 markers) using MTMM were identified. In addition, 63 epistatic QTLs were also identified for 13 of the 14 traits, flag leaf length (FLL) being the only exception. Clearly, the power of association mapping improved due to MLMM and MTMM analyses. The epistatic interactions detected during the present study also provided better insight into genetic architecture of the 14 traits that were examined during the present study. Following eight wheat genotypes carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati Sonora, A90, HW1085, HYB11, and DWR39 (Pragati). These genotypes and the markers associated with important QTLs for major traits can be used in wheat improvement programs either using marker-assisted recurrent selection (MARS) or pseudo-backcrossing method. PMID:27441835

  2. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.).

    PubMed

    Jaiswal, Vandana; Gahlaut, Vijay; Meher, Prabina Kumar; Mir, Reyazul Rouf; Jaiswal, Jai Prakash; Rao, Atmakuri Ramakrishna; Balyan, Harindra Singh; Gupta, Pushpendra Kumar

    2016-01-01

    Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST) approach, and two recent approaches viz. multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910-2006 for commercial cultivation in different agro-climatic regions in India). Three years phenotypic data for 14 traits and genotyping data for 250 SSR markers (distributed across all the 21 wheat chromosomes) was utilized for GWAS. Using SLST, as many as 213 MTAs (p ≤ 0.05, 129 SSRs) were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs) qualified FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic regions were coincident with the genomic regions that were already known to harbor QTLs for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and markers were identified; 22 MTAs (19 QTLs, 21 markers) using MLMM, and 58 MTAs (29 QTLs, 40 markers) using MTMM were identified. In addition, 63 epistatic QTLs were also identified for 13 of the 14 traits, flag leaf length (FLL) being the only exception. Clearly, the power of association mapping improved due to MLMM and MTMM analyses. The epistatic interactions detected during the present study also provided better insight into genetic architecture of the 14 traits that were examined during the present study. Following eight wheat genotypes carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati Sonora, A90, HW1085, HYB11, and DWR39 (Pragati). These genotypes and the markers associated with important QTLs for major traits can be used in wheat improvement programs either using marker-assisted recurrent selection (MARS) or pseudo-backcrossing method. PMID:27441835

  3. Association Mapping for Important Agronomic Traits in Core Collection of Rice (Oryza sativa L.) with SSR Markers

    PubMed Central

    Zhang, Peng; Liu, Xiangdong; Tong, Hanhua; Lu, Yonggen; Li, Jinquan

    2014-01-01

    Mining elite genes within rice landraces is of importance for the improvement of cultivated rice. An association mapping for 12 agronomic traits was carried out using a core collection of rice consisting of 150 landraces (Panel 1) with 274 simple sequence repeat (SSR) markers, and the mapping results were further verified using a Chinese national rice micro-core collection (Panel 2) and a collection from a global molecular breeding program (Panel 3). Our results showed that (1) 76 significant (P<0.05) trait-marker associations were detected using mixed linear model (MLM) within Panel 1 in two years, among which 32% were identical with previously mapped QTLs, and 11 significant associations had >10% explained ratio of genetic variation; (2) A total of seven aforementioned trait-marker associations were verified within Panel 2 and 3 when using a general linear model (GLM) and 55 SSR markers of the 76 significant trait-marker associations. However, no significant trait-marker association was found to be identical within three panels when using the MLM model; (3) several desirable alleles of the loci which showed significant trait-marker associations were identified. The research provided important information for further mining these elite genes within rice landraces and using them for rice breeding. PMID:25360796

  4. Genome Wide Association Study for Drought, Aflatoxin Resistance, and Important Agronomic Traits of Maize Hybrids in the Sub-Tropics

    PubMed Central

    Farfan, Ivan D. Barrero; De La Fuente, Gerald N.; Murray, Seth C.; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L.; Kolomiets, Mike

    2015-01-01

    The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370

  5. Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics.

    PubMed

    Farfan, Ivan D Barrero; De La Fuente, Gerald N; Murray, Seth C; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L; Kolomiets, Mike

    2015-01-01

    The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5-10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370

  6. Association Mapping in Turkish Olive Cultivars Revealed Significant Markers Related to Some Important Agronomic Traits.

    PubMed

    Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya Sozer; Sahin, Mustafa; Sefer, Filiz; Tanyolac, Bahattin

    2016-08-01

    Olive (Olea europaea L.) is one of the most important fruit trees especially in the Mediterranean countries due to high consumption of table olive and olive oil. In olive breeding, the phenotypic traits associated to fruit are the key factors that determine productivity. Association mapping has been used in some tree species and a lot of crop plant species, and here, we perform an initial effort to detect marker-trait associations in olive tree. In the current study, a total of 96 olive genotypes, including both oil and table olive genotypes from Turkish Olive GenBank Resources, were used to examine marker-trait associations. For olive genotyping, SNP, AFLP, and SSR marker data were selected from previously published study and association analysis was performed between these markers and 5 yield-related traits. Three different approaches were used to check for false-positive results in association tests, and association results obtained from these models were compared. Using the model utilizing both population structure and relative kinship, eleven associations were significant with FDR ≤ 0.05. The largest number of significant associations was detected for fruit weight and stone weight. Our results suggested that association mapping could be an effective approach for identifying marker-trait associations in olive genotypes, without the development of mapping populations. This study shows for the first time the use of association mapping for identifying molecular markers linked to important traits in olive tree. PMID:27209034

  7. Quantitative trait loci affecting oil content, oil composition, and other agronomically important traits in Oat (Avena sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groat oil content and composition are important determinants of oat quality. We investigated these traits in a population of 146 recombinant inbred lines from a cross between 'Dal' (high oil) and 'Exeter' (low oil). A linkage map consisting of 475 DArT markers spanning 1271.8 cM across 40 linkage gr...

  8. Determining the Most Important Physiological and Agronomic Traits Contributing to Maize Grain Yield through Machine Learning Algorithms: A New Avenue in Intelligent Agriculture

    PubMed Central

    Shekoofa, Avat; Emam, Yahya; Shekoufa, Navid; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-01-01

    Prediction is an attempt to accurately forecast the outcome of a specific situation while using input information obtained from a set of variables that potentially describe the situation. They can be used to project physiological and agronomic processes; regarding this fact, agronomic traits such as yield can be affected by a large number of variables. In this study, we analyzed a large number of physiological and agronomic traits by screening, clustering, and decision tree models to select the most relevant factors for the prospect of accurately increasing maize grain yield. Decision tree models (with nearly the same performance evaluation) were the most useful tools in understanding the underlying relationships in physiological and agronomic features for selecting the most important and relevant traits (sowing date-location, kernel number per ear, maximum water content, kernel weight, and season duration) corresponding to the maize grain yield. In particular, decision tree generated by C&RT algorithm was the best model for yield prediction based on physiological and agronomical traits which can be extensively employed in future breeding programs. No significant differences in the decision tree models were found when feature selection filtering on data were used, but positive feature selection effect observed in clustering models. Finally, the results showed that the proposed model techniques are useful tools for crop physiologists to search through large datasets seeking patterns for the physiological and agronomic factors, and may assist the selection of the most important traits for the individual site and field. In particular, decision tree models are method of choice with the capability of illustrating different pathways of yield increase in breeding programs, governed by their hierarchy structure of feature ranking as well as pattern discovery via various combinations of features. PMID:24830330

  9. Metabolic prediction of important agronomic traits in hybrid rice (Oryza sativa L.)

    PubMed Central

    Dan, Zhiwu; Hu, Jun; Zhou, Wei; Yao, Guoxin; Zhu, Renshan; Zhu, Yingguo; Huang, Wenchao

    2016-01-01

    Hybrid crops have contributed greatly to improvements in global food and fodder production over the past several decades. Nevertheless, the growing population and changing climate have produced food crises and energy shortages. Breeding new elite hybrid varieties is currently an urgent task, but present breeding procedures are time-consuming and labour-intensive. In this study, parental metabolic information was utilized to predict three polygenic traits in hybrid rice. A complete diallel cross population consisting of eighteen rice inbred lines was constructed, and the hybrids’ plant height, heading date and grain yield per plant were predicted using 525 metabolites. Metabolic prediction models were built using the partial least square regression method, with predictive abilities ranging from 0.858 to 0.977 for the hybrid phenotypes, relative heterosis, and specific combining ability. Only slight changes in predictive ability were observed between hybrid populations, and nearly no changes were detected between reciprocal hybrids. The outcomes of prediction of the three highly polygenic traits demonstrated that metabolic prediction was an accurate (high predictive abilities) and efficient (unaffected by population genetic structures) strategy for screening promising superior hybrid rice. Exploitation of this pre-hybridization strategy may contribute to rice production improvement and accelerate breeding programs. PMID:26907211

  10. Metabolic prediction of important agronomic traits in hybrid rice (Oryza sativa L.).

    PubMed

    Dan, Zhiwu; Hu, Jun; Zhou, Wei; Yao, Guoxin; Zhu, Renshan; Zhu, Yingguo; Huang, Wenchao

    2016-01-01

    Hybrid crops have contributed greatly to improvements in global food and fodder production over the past several decades. Nevertheless, the growing population and changing climate have produced food crises and energy shortages. Breeding new elite hybrid varieties is currently an urgent task, but present breeding procedures are time-consuming and labour-intensive. In this study, parental metabolic information was utilized to predict three polygenic traits in hybrid rice. A complete diallel cross population consisting of eighteen rice inbred lines was constructed, and the hybrids' plant height, heading date and grain yield per plant were predicted using 525 metabolites. Metabolic prediction models were built using the partial least square regression method, with predictive abilities ranging from 0.858 to 0.977 for the hybrid phenotypes, relative heterosis, and specific combining ability. Only slight changes in predictive ability were observed between hybrid populations, and nearly no changes were detected between reciprocal hybrids. The outcomes of prediction of the three highly polygenic traits demonstrated that metabolic prediction was an accurate (high predictive abilities) and efficient (unaffected by population genetic structures) strategy for screening promising superior hybrid rice. Exploitation of this pre-hybridization strategy may contribute to rice production improvement and accelerate breeding programs. PMID:26907211

  11. Genetic mapping of quantitative trait loci associated with important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ by ‘Penawawa’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the genetic factors underlying agronomic traits in common wheat (Triticum aestivum L.) is essential to making gains from selection during the breeding process. A set of 188 recombinant inbred lines from a ‘Louise’ by ‘Penawawa’ mapping population was grown in two crop years at two loc...

  12. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii.

    PubMed

    Im, Chak Han; Park, Young-Hoon; Hammel, Kenneth E; Park, Bokyung; Kwon, Soon Wook; Ryu, Hojin; Ryu, Jae-San

    2016-07-01

    Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type factors, and 28 insertion/deletion (InDel) markers were mapped. The map consisted of 12 linkage groups (LGs) spanning 1047.8cM, with an average interval length of 4.09cM. Four independent populations (Pd3, Pd8, Pd14, and Pd15) derived from crossing between four monokaryons from KNR2532 as a tester strain and 98 monokaryons from KNR2312 were used to characterize quantitative trait loci (QTL) for nine traits such as yield, quality, cap color, and earliness. Using composite interval mapping (CIM), 71 QTLs explaining between 5.82% and 33.17% of the phenotypic variations were identified. Clusters of more than five QTLs for various traits were identified in three genomic regions, on LGs 1, 7 and 9. Regardless of the population, 6 of the 9 traits studied and 18 of the 71 QTLs found in this study were identified in the largest cluster, LG1, in the range from 65.4 to 110.4cM. The candidate genes for yield encoding transcription factor, signal transduction, mycelial growth and hydrolase are suggested by using manual and computational analysis of genome sequence corresponding to QTL region with the highest likelihood odds (LOD) for yield. The genetic map and the QTLs established in this study will help breeders and geneticists to develop selection markers for agronomically important characteristics of mushrooms and to identify the corresponding genes. PMID:27166667

  13. Whole genome association study for drought, aflatoxin resistance, and important agronomic traits in maize in a sub-tropical environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary maize (Zea mays L.) production areas are in temperate regions throughout the world, where most maize breeding is focused. Important but lower yielding maize growing regions, such as the sub-tropics, experience unique challenges the greatest of which are drought stress and aflatoxin conta...

  14. Repeatability of agronomic traits in Panicum maximum (Jacq.) hybrids.

    PubMed

    Braz, T G S; Fonseca, D M; Jank, L; Cruz, C D; Martuscello, J A

    2015-01-01

    When evaluating plants, in particular perennial species, it is common to obtain repeated measures of a given trait from the same individual to evaluate the traits' repeatability in successive harvests. The degree of correlation among these measures defines the coefficient of repeatability, which has been widely utilized in the study of forage traits of interest for breeding. The objective of the present study was to evaluate the repeatability of agronomic traits in Panicum maximum hybrids. Hybrids from three progenies totaling 320 hybrids were evaluated in an incomplete-block design, with consideration of production and morpho-agronomic traits. Of the production traits, total dry matter and leaf dry matter showed the highest repeatability and varied from 0.540 to 0.769, whereas stem dry matter had lower coefficients (0.265-0.632). Among the morpho-agronomic traits, plant height and incidence of Bipolaris maydis had higher coefficients (0.118-0.460). The repeatability values of the agronomic traits were low-to-moderate, and six evaluations were sufficient to provide accuracy in the selection of hybrids regarding total dry matter, leaf dry matter, plant height, and incidence of B. maydis, whereas the other traits require more repeated measures to increase reliability in the prediction of their response. PMID:26782581

  15. Agronomic and Seed Quality Traits Dissected by Genome-Wide Association Mapping in Brassica napus.

    PubMed

    Körber, Niklas; Bus, Anja; Li, Jinquan; Parkin, Isobel A P; Wittkop, Benjamin; Snowdon, Rod J; Stich, Benjamin

    2016-01-01

    In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i) genome regions associated with the examined agronomic and seed quality traits, (ii) the interrelationship of population structure and the detected associations, and (iii) candidate genes for the revealed associations. The diversity set used in this study consisted of 405 B. napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP) array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P < 1.28e-05 (Bonferroni correction of α = 0.05) for the inbreds of the spring and winter trial. For the seed quality traits, a single SNP-sulfur concentration in seeds (SUL) association explained up to 67.3% of the phenotypic variance, whereas for the agronomic traits, a single SNP-blossom color (BLC) association explained up to 30.2% of the phenotypic variance. In a basic local alignment search tool (BLAST) search within a distance of 2.5 Mbp around these SNP-trait associations, 62 hits of potential candidate genes with a BLAST-score of ≥100 and a sequence identity of ≥70% to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations. PMID:27066036

  16. Agronomic and Seed Quality Traits Dissected by Genome-Wide Association Mapping in Brassica napus

    PubMed Central

    Körber, Niklas; Bus, Anja; Li, Jinquan; Parkin, Isobel A. P.; Wittkop, Benjamin; Snowdon, Rod J.; Stich, Benjamin

    2016-01-01

    In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i) genome regions associated with the examined agronomic and seed quality traits, (ii) the interrelationship of population structure and the detected associations, and (iii) candidate genes for the revealed associations. The diversity set used in this study consisted of 405 B. napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP) array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P < 1.28e-05 (Bonferroni correction of α = 0.05) for the inbreds of the spring and winter trial. For the seed quality traits, a single SNP-sulfur concentration in seeds (SUL) association explained up to 67.3% of the phenotypic variance, whereas for the agronomic traits, a single SNP-blossom color (BLC) association explained up to 30.2% of the phenotypic variance. In a basic local alignment search tool (BLAST) search within a distance of 2.5 Mbp around these SNP-trait associations, 62 hits of potential candidate genes with a BLAST-score of ≥100 and a sequence identity of ≥70% to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations. PMID:27066036

  17. Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor.

    PubMed

    Mohammed, Riyazaddin; Are, Ashok K; Bhavanasi, Ramaiah; Munghate, Rajendra S; Kavi Kishor, Polavarapu B; Sharma, Hari C

    2015-01-01

    The productivity in sorghum is low, owing to various biotic and abiotic constraints. Combining insect resistance with desirable agronomic and morphological traits is important to increase sorghum productivity. Therefore, it is important to understand the variability for various agronomic traits, their heritabilities and nature of gene action to develop appropriate strategies for crop improvement. Therefore, a full diallel set of 10 parents and their 90 crosses including reciprocals were evaluated in replicated trials during the 2013-14 rainy and postrainy seasons. The crosses between the parents with early- and late-flowering flowered early, indicating dominance of earliness for anthesis in the test material used. Association between the shoot fly resistance, morphological, and agronomic traits suggested complex interactions between shoot fly resistance and morphological traits. Significance of the mean sum of squares for GCA (general combining ability) and SCA (specific combining ability) of all the studied traits suggested the importance of both additive and non-additive components in inheritance of these traits. The GCA/SCA, and the predictability ratios indicated predominance of additive gene effects for majority of the traits studied. High broad-sense and narrow-sense heritability estimates were observed for most of the morphological and agronomic traits. The significance of reciprocal combining ability effects for days to 50% flowering, plant height and 100 seed weight, suggested maternal effects for inheritance of these traits. Plant height and grain yield across seasons, days to 50% flowering, inflorescence exsertion, and panicle shape in the postrainy season showed greater specific combining ability variance, indicating the predominance of non-additive type of gene action/epistatic interactions in controlling the expression of these traits. Additive gene action in the rainy season, and dominance in the postrainy season for days to 50% flowering and plant

  18. Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor

    PubMed Central

    Mohammed, Riyazaddin; Are, Ashok K.; Bhavanasi, Ramaiah; Munghate, Rajendra S.; Kavi Kishor, Polavarapu B.; Sharma, Hari C.

    2015-01-01

    The productivity in sorghum is low, owing to various biotic and abiotic constraints. Combining insect resistance with desirable agronomic and morphological traits is important to increase sorghum productivity. Therefore, it is important to understand the variability for various agronomic traits, their heritabilities and nature of gene action to develop appropriate strategies for crop improvement. Therefore, a full diallel set of 10 parents and their 90 crosses including reciprocals were evaluated in replicated trials during the 2013–14 rainy and postrainy seasons. The crosses between the parents with early- and late-flowering flowered early, indicating dominance of earliness for anthesis in the test material used. Association between the shoot fly resistance, morphological, and agronomic traits suggested complex interactions between shoot fly resistance and morphological traits. Significance of the mean sum of squares for GCA (general combining ability) and SCA (specific combining ability) of all the studied traits suggested the importance of both additive and non-additive components in inheritance of these traits. The GCA/SCA, and the predictability ratios indicated predominance of additive gene effects for majority of the traits studied. High broad-sense and narrow-sense heritability estimates were observed for most of the morphological and agronomic traits. The significance of reciprocal combining ability effects for days to 50% flowering, plant height and 100 seed weight, suggested maternal effects for inheritance of these traits. Plant height and grain yield across seasons, days to 50% flowering, inflorescence exsertion, and panicle shape in the postrainy season showed greater specific combining ability variance, indicating the predominance of non-additive type of gene action/epistatic interactions in controlling the expression of these traits. Additive gene action in the rainy season, and dominance in the postrainy season for days to 50% flowering and plant

  19. Sugarcane Functional Genomics: Gene Discovery for Agronomic Trait Development

    PubMed Central

    Menossi, M.; Silva-Filho, M. C.; Vincentz, M.; Van-Sluys, M.-A.; Souza, G. M.

    2008-01-01

    Sugarcane is a highly productive crop used for centuries as the main source of sugar and recently to produce ethanol, a renewable bio-fuel energy source. There is increased interest in this crop due to the impending need to decrease fossil fuel usage. Sugarcane has a highly polyploid genome. Expressed sequence tag (EST) sequencing has significantly contributed to gene discovery and expression studies used to associate function with sugarcane genes. A significant amount of data exists on regulatory events controlling responses to herbivory, drought, and phosphate deficiency, which cause important constraints on yield and on endophytic bacteria, which are highly beneficial. The means to reduce drought, phosphate deficiency, and herbivory by the sugarcane borer have a negative impact on the environment. Improved tolerance for these constraints is being sought. Sugarcane's ability to accumulate sucrose up to 16% of its culm dry weight is a challenge for genetic manipulation. Genome-based technology such as cDNA microarray data indicates genes associated with sugar content that may be used to develop new varieties improved for sucrose content or for traits that restrict the expansion of the cultivated land. The genes can also be used as molecular markers of agronomic traits in traditional breeding programs. PMID:18273390

  20. Genetic dissection of agronomic traits in Capsicum baccatum var. pendulum.

    PubMed

    Moulin, M M; Rodrigues, R; Bento, C S; Gonçalves, L S A; Santos, J O; Sudré, C P; Viana, A P

    2015-01-01

    Genetic mapping is very useful for dissecting complex agronomic traits. Genetic mapping allows for identification of quantitative trait loci (QTL), provide knowledge on a gene position and its adjacent region, and enable prediction of evolutionary mechanisms, in addition to contributing to synteny studies. The aim of this study was to predict genetic values associated with different agronomic traits evaluated in an F2 population of Capsicum baccatum var. pendulum. Previously, a reference genetic map for C. baccatum was constructed, which included 183 markers (42 microsatellite, 85 inter-simple sequence repeat, and 56 random amplification of polymorphic DNA) arranged in 16 linkage groups. The map was used to identify QTL associated with 11 agronomic traits, including plant height, crown diameter, number of days to flowering, days to fruiting, number of fruits per plant, average fruit weight, fruit length, fruit diameter, fruit pulp thickness, soluble solids, and fruit dry weight. QTL mapping was performed by standard interval mapping. The number of small QTL effects ranged from 3-11, with a total of 61 QTL detected in 9 linkage groups. This is the first report involving QTL analysis for C. baccatum species. PMID:25867359

  1. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice.

    PubMed

    Yano, Kenji; Yamamoto, Eiji; Aya, Koichiro; Takeuchi, Hideyuki; Lo, Pei-Ching; Hu, Li; Yamasaki, Masanori; Yoshida, Shinya; Kitano, Hidemi; Hirano, Ko; Matsuoka, Makoto

    2016-08-01

    A genome-wide association study (GWAS) can be a powerful tool for the identification of genes associated with agronomic traits in crop species, but it is often hindered by population structure and the large extent of linkage disequilibrium. In this study, we identified agronomically important genes in rice using GWAS based on whole-genome sequencing, followed by the screening of candidate genes based on the estimated effect of nucleotide polymorphisms. Using this approach, we identified four new genes associated with agronomic traits. Some genes were undetectable by standard SNP analysis, but we detected them using gene-based association analysis. This study provides fundamental insights relevant to the rapid identification of genes associated with agronomic traits using GWAS and will accelerate future efforts aimed at crop improvement. PMID:27322545

  2. Genetic variability in agronomic traits of a germplasm collection of hulless barley.

    PubMed

    Zeng, X Q

    2015-01-01

    Germplasm collections represent an important genetic source for crop improvements. In this study, 220 accessions of hulless barley were collected worldwide and their genetic diversity was investigated. Sixteen agronomic traits, including yield and yield components, grain morphology, leaf size, plant height, and lodging resistance, were assessed under field conditions. All studied traits exhibited large variation. Thousand seed weight determined yield, and was strongly affected by spike length and spike number. Four varieties, Gaoyuan Zao 1, Fu 8-4, Zang 0331, and Harry (WDM00618), showed high resistance to lodging. Significant correlations among the traits were observed, indicating trait interactions. Life cycle had the smallest coefficient of variation (CV) among native, foreign, and improved varieties, whereas the CV of cellulose content was more or less balanced. Among the accessions from domestic and foreign germplasm, the CV for life cycle remained the lowest, whereas those for carbon/nitrogen and spike number per plant were the highest. Interestingly, higher genetic diversity was observed in domestic than in foreign accessions. Together, our findings demonstrate that there is abundant diversity in worldwide hulless barley germplasm collections, which would be useful when introducing their desirable traits into cultivars of hulless barley to improve yield and other agronomic traits. PMID:26782483

  3. Multi-trait BLUP model indicates sorghum hybrids with genetic potential for agronomic and nutritional traits.

    PubMed

    Almeida Filho, J E; Tardin, F D; Guimarães, J F R; Resende, M D V; Silva, F F; Simeone, M L; Menezes, C B; Queiroz, V A V

    2016-01-01

    The breeding of sorghum, Sorghum bicolor (L.) Moench, aimed at improving its nutritional quality, is of great interest, since it can be used as a highly nutritive alternative food source and can possibly be cultivated in regions with low rainfall. The objective of the present study was to evaluate the potential and genetic diversity of grain-sorghum hybrids for traits of agronomic and nutritional interest. To this end, the traits grain yield and flowering, and concentrations of protein, potassium, calcium, magnesium, sulfur, iron, manganese, and zinc in the grain were evaluated in 25 grain-sorghum hybrids, comprising 18 experimental hybrids of Embrapa Milho e Sorgo and seven commercial hybrids. The genetic potential was analyzed by a multi-trait best linear unbiased prediction (BLUP) model, and cluster analysis was accomplished by squared Mahalanobis distance using the predicted genotypic values. Hybrids 0306037 and 0306034 stood out in the agronomic evaluation. The hybrids with agronomic prominence, however, did not stand out for the traits related to the nutritional quality of the grain. Three clusters were formed from the dendrogram obtained with the unweighted pair group method with arithmetic mean method. From the results of the genotypic BLUP and the analysis of the dendrogram, hybrids 0577337, 0441347, 0307651, and 0306037 were identified as having the potential to establish a population that can aggregate alleles for all the evaluated traits of interest. PMID:26985915

  4. QTL Mapping of Combining Ability and Heterosis of Agronomic Traits in Rice Backcross Recombinant Inbred Lines and Hybrid Crosses

    PubMed Central

    Luo, Junyuan; Wang, Peng; Yu, Sibin; Mou, Tongmin; Zheng, Xingfei; Hu, Zhongli

    2012-01-01

    Background Combining ability effects are very effective genetic parameters in deciding the next phase of breeding programs. Although some breeding strategies on the basis of evaluating combining ability have been utilized extensively in hybrid breeding, little is known about the genetic basis of combining ability. Combining ability is a complex trait that is controlled by polygenes. With the advent and development of molecular markers, it is feasible to evaluate the genetic bases of combining ability and heterosis of elite rice hybrids through QTL analysis. Methodology/Principal Findings In the present study, we first developed a QTL-mapping method for dissecting combining ability and heterosis of agronomic traits. With three testcross populations and a BCRIL population in rice, biometric and QTL analyses were conducted for ten agronomic traits. The significance of general combining ability and special combining ability for most of the traits indicated the importance of both additive and non-additive effects on expression levels. A large number of additive effect QTLs associated with performance per se of BCRIL and general combining ability, and dominant effect QTLs associated with special combining ability and heterosis were identified for the ten traits. Conclusions/Significance The combining ability of agronomic traits could be analyzed by the QTL mapping method. The characteristics revealed by the QTLs for combining ability of agronomic traits were similar with those by multitudinous QTLs for agronomic traits with performance per se of BCRIL. Several QTLs (1–6 in this study) were identified for each trait for combining ability. It demonstrated that some of the QTLs were pleiotropic or linked tightly with each other. The identification of QTLs responsible for combining ability and heterosis in the present study provides valuable information for dissecting genetic basis of combining ability. PMID:22291881

  5. Whole-Genome Mapping Reveals Novel QTL Clusters Associated with Main Agronomic Traits of Cabbage (Brassica oleracea var. capitata L.).

    PubMed

    Lv, Honghao; Wang, Qingbiao; Liu, Xing; Han, Fengqing; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Liu, Yumei; Li, Zhansheng; Zhang, Yangyong

    2016-01-01

    We describe a comprehensive quantitative trait locus (QTL) analysis for 24 main agronomic traits of cabbage. Field experiments were performed using a 196-line double haploid population in three seasons in 2011 and 2012 to evaluate important agronomic traits related to plant type, leaf, and head traits. In total, 144 QTLs with LOD threshold >3.0 were detected for the 24 agronomic traits: 25 for four plant-type-related traits, 64 for 10 leaf-related traits, and 55 for 10 head-related traits; each QTL explained 6.0-55.7% of phenotype variation. Of the QTLs, 95 had contribution rates higher than 10%, and 51 could be detected in more than one season. Major QTLs included Ph 3.1 (max R (2) = 55.7, max LOD = 28.2) for plant height, Ll 3.2 (max R (2) = 31.7, max LOD = 13.95) for leaf length, and Htd 3.2 (max R (2) = 28.5, max LOD = 9.49) for head transverse diameter; these could all be detected in more than one season. Twelve QTL clusters were detected on eight chromosomes, and the most significant four included Indel481-scaffold18376 (3.20 Mb), with five QTLs for five traits; Indel64-scaffold35418 (2.22 Mb), six QTLs for six traits; scaffold39782-Indel84 (1.78 Mb), 11 QTLs for 11 traits; and Indel353-Indel245 (9.89 Mb), seven QTLs for six traits. Besides, most traits clustered within the same region were significantly correlated with each other. The candidate genes at these regions were also discussed. Robust QTLs and their clusters obtained in this study should prove useful for marker-assisted selection (MAS) in cabbage breeding and in furthering our understanding of the genetic control of these traits. PMID:27458471

  6. Whole-Genome Mapping Reveals Novel QTL Clusters Associated with Main Agronomic Traits of Cabbage (Brassica oleracea var. capitata L.)

    PubMed Central

    Lv, Honghao; Wang, Qingbiao; Liu, Xing; Han, Fengqing; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Liu, Yumei; Li, Zhansheng; Zhang, Yangyong

    2016-01-01

    We describe a comprehensive quantitative trait locus (QTL) analysis for 24 main agronomic traits of cabbage. Field experiments were performed using a 196-line double haploid population in three seasons in 2011 and 2012 to evaluate important agronomic traits related to plant type, leaf, and head traits. In total, 144 QTLs with LOD threshold >3.0 were detected for the 24 agronomic traits: 25 for four plant-type-related traits, 64 for 10 leaf-related traits, and 55 for 10 head-related traits; each QTL explained 6.0–55.7% of phenotype variation. Of the QTLs, 95 had contribution rates higher than 10%, and 51 could be detected in more than one season. Major QTLs included Ph 3.1 (max R2 = 55.7, max LOD = 28.2) for plant height, Ll 3.2 (max R2 = 31.7, max LOD = 13.95) for leaf length, and Htd 3.2 (max R2 = 28.5, max LOD = 9.49) for head transverse diameter; these could all be detected in more than one season. Twelve QTL clusters were detected on eight chromosomes, and the most significant four included Indel481–scaffold18376 (3.20 Mb), with five QTLs for five traits; Indel64–scaffold35418 (2.22 Mb), six QTLs for six traits; scaffold39782–Indel84 (1.78 Mb), 11 QTLs for 11 traits; and Indel353–Indel245 (9.89 Mb), seven QTLs for six traits. Besides, most traits clustered within the same region were significantly correlated with each other. The candidate genes at these regions were also discussed. Robust QTLs and their clusters obtained in this study should prove useful for marker-assisted selection (MAS) in cabbage breeding and in furthering our understanding of the genetic control of these traits. PMID:27458471

  7. Heritability of Oleic Acid Seed Content in Soybean Oil and its Genetic Correlation with Fatty Acid and Agronomic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid seed content is an important determinant of the nutritional value and the oxidative stability of soybean oil. Breeding for higher oleate content mandates the estimation of the heritability and the genetic correlations between oleate and fatty acid traits and between oleate and agronomic t...

  8. Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inheritance of traits is important for developing effective breeding schemes for improving desired traits. The aims of this study were to estimate the heritabilities (h2) of drought resistance traits and the genotypic (rG) and phenotypic (rP) correlations between drought resistance traits under str...

  9. Genes associated with agronomic traits in non-heading Chinese cabbage identified by expression profiling

    PubMed Central

    2014-01-01

    Background The genomes of non-heading Chinese cabbage (Brassica rapa ssp. chinensis), heading Chinese cabbage (Brassica rapa ssp. pekinensis) and their close relative Arabidopsis thaliana have provided important resources for studying the evolution and genetic improvement of cruciferous plants. Natural growing conditions present these plants with a variety of physiological challenges for which they have a repertoire of genes that ensure adaptability and normal growth. We investigated the differential expressions of genes that control adaptability and development in plants growing in the natural environment to study underlying mechanisms of their expression. Results Using digital gene expression tag profiling, we constructed an expression profile to identify genes related to important agronomic traits under natural growing conditions. Among three non-heading Chinese cabbage cultivars, we found thousands of genes that exhibited significant differences in expression levels at five developmental stages. Through comparative analysis and previous reports, we identified several candidate genes associated with late flowering, cold tolerance, self-incompatibility, and leaf color. Two genes related to cold tolerance were verified using quantitative real-time PCR. Conclusions We identified a large number of genes associated with important agronomic traits of non-heading Chinese cabbage. This analysis will provide a wealth of resources for molecular-assisted breeding of cabbage. The raw data and detailed results of this analysis are available at the website http://nhccdata.njau.edu.cn. PMID:24655567

  10. QTL mapping of agronomic traits in tef [Eragrostis tef (Zucc) Trotter

    PubMed Central

    Yu, Ju-Kyung; Graznak, Elizabeth; Breseghello, Flavio; Tefera, Hailu; Sorrells, Mark E

    2007-01-01

    Background Tef [Eragrostis tef (Zucc.) Trotter] is the major cereal crop in Ethiopia. Tef is an allotetraploid with a base chromosome number of 10 (2n = 4× = 40) and a genome size of 730 Mbp. The goal of this study was to identify agronomically important quantitative trait loci (QTL) using recombinant inbred lines (RIL) derived from an inter-specific cross between E. tef and E. pilosa (30-5). Results Twenty-two yield-related and morphological traits were assessed across eight different locations in Ethiopia during the growing seasons of 1999 and 2000. Using composite interval mapping and a linkage map incorporating 192 loci, 99 QTLs were identified on 15 of the 21 linkage groups for 19 traits. Twelve QTLs on nine linkage groups were identified for grain yield. Clusters of more than five QTLs for various traits were identified on seven linkage groups. The largest cluster (10 QTLs) was identified on linkage group 8; eight of these QTLs were for yield or yield components, suggesting linkage or pleotrophic effects of loci. There were 15 two-way interactions of loci to detect potential epistasis identified and 75% of the interactions were derived from yield and shoot biomass. Thirty-one percent of the QTLs were observed in multiple environments; two yield QTLs were consistent across all agro-ecology zones. For 29.3% of the QTLs, the alleles from E. pilosa (30-5) had a beneficial effect. Conclusion The extensive QTL data generated for tef in this study will provide a basis for initiating molecular breeding to improve agronomic traits in this staple food crop for the people of Ethiopia. PMID:17565675

  11. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench].

    PubMed

    Nagaraja Reddy, R; Madhusudhana, R; Murali Mohan, S; Chakravarthi, D V N; Mehtre, S P; Seetharama, N; Patil, J V

    2013-08-01

    Sorghum, a cereal of economic importance ensures food and fodder security for millions of rural families in the semi-arid tropics. The objective of the present study was to identify and validate quantitative trait loci (QTL) for grain yield and other agronomic traits using replicated phenotypic data sets from three post-rainy dry sorghum crop seasons involving a mapping population with 245 F9 recombinant inbred lines derived from a cross of M35-1 × B35. A genetic linkage map was constructed with 237 markers consisting of 174 genomic, 60 genic and 3 morphological markers. The QTL analysis for 11 traits following composite interval mapping identified 91 QTL with 5-12 QTL for each trait. QTL detected in the population individually explained phenotypic variation between 2.5 and 30.3 % for a given trait and six major genomic regions with QTL effect on multiple traits were identified. Stable QTL across seasons were identified. Of the 60 genic markers mapped, 21 were found at QTL peak or tightly linked with QTL. A gene-based marker XnhsbSFCILP67 (Sb03g028240) on SBI-03, encoding indole-3-acetic acid-amido synthetase GH3.5, was found to be involved in QTL for seven traits. The QTL-linked markers identified for 11 agronomic traits may assist in fine mapping, map-based gene isolation and also for improving post-rainy sorghum through marker-assisted breeding. PMID:23649648

  12. Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology.

    PubMed

    Hill, Camilla B; Taylor, Julian D; Edwards, James; Mather, Diane; Langridge, Peter; Bacic, Antony; Roessner, Ute

    2015-04-01

    Mapping of quantitative trait loci associated with levels of individual metabolites (mQTL) was combined with the mapping of agronomic traits to investigate the genetic basis of variation and co-variation in metabolites, agronomic traits, and plant phenology in a field-grown bread wheat population. Metabolome analysis was performed using liquid chromatography-mass spectrometry resulting in identification of mainly polar compounds, including secondary metabolites. A total of 558 metabolic features were obtained from the flag leaves of 179 doubled haploid lines, of which 197 features were putatively identified, mostly as alkaloids, flavonoids and phenylpropanoids. Coordinated genetic control was observed for several groups of metabolites, such as organic acids influenced by two loci on chromosome 7A. Five major phenology-related loci, which were introduced as cofactors in the analyses, differed in their impact upon metabolic and agronomic traits with QZad-aww-7A having more impact on the expression of both metabolite and agronomic QTL than Ppd-B1, Vrn-A1, Eps, and QZad-aww-7D. This QTL study validates the utility of combining agronomic and metabolomic traits as an approach to identify potential trait enhancement targets for breeding selection and reinforces previous results that demonstrate the importance of including plant phenology in the assessment of useful traits in this wheat mapping population. PMID:25711822

  13. Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms).

    PubMed

    Gao, Wei; Baars, Johan J P; Maliepaard, Chris; Visser, Richard G F; Zhang, Jinxia; Sonnenberg, Anton S M

    2016-12-01

    The demand for button mushrooms of high quality is increasing. Superior button mushroom varieties require the combination of multiple traits to maximize productivity and quality. Very often these traits are correlated and should, therefore, be evaluated together rather than as single traits. In order to unravel the genetic architecture of multiple traits of Agaricus bisporus and the genetic correlations among traits, we have investigated a total of six agronomic and quality traits through multi-trait QTL analyses in a mixed-model. Traits were evaluated in three heterokaryon sets. Significant phenotypic correlations were observed among traits. For instance, earliness (ER) correlated to firmness (FM), cap color, and compost colonization, and FM correlated to scales (SC). QTLs of different traits located on the same chromosomes genetically explains the phenotypic correlations. QTL detected on chromosome 10 mainly affects three traits, i.e., ER, FM and SC. It explained 31.4 % phenotypic variation of SC on mushroom cap (heterokaryon Set 1), 14.9 % that of the FM (heterokaryon Set 3), and 14.2 % that of ER (heterokaryon Set 3). High value alleles from the wild parental line showed beneficial effects for several traits, suggesting that the wild germplasm is a valuable donor in terms of those traits. Due to the limitations of recombination pattern, we only made a start at understanding the genetic base for several agronomic and quality traits in button mushrooms. PMID:27620731

  14. Breakthrough in chloroplast genetic engineering of agronomically important crops

    PubMed Central

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2012-01-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001

  15. Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Chen, Liang; Sun, Xiaoyan; Yang, Yong; Liu, Hongmei; Xu, Qingguo

    2015-01-01

    associated with SW; five single-associated markers were associated with SC; seven single-associated markers were associated with SCP; three single-associated markers were associated with SL. Especially, we observed that the genetic variation of SW was explained 11.6 % by M37 marker. It is interesting to observe that nine markers (M1, M2, M35, M54 marker was associated with both BCS and SC; M3, M4 markers were associated with BCS, SW, and SC; M19 marker was associated with both pH and PD, M40 marker was associated with both SCP and SW; and M193 marker was associated with both PH and SL) were associated with more than two agronomic traits. Notably, Branch count per spike (BCS) was explained by four markers (M1, M2, M3, and M4) exceeding 10 %. These identified marker alleles associated with agronomic traits could provide important information and markers for molecular-assisted breeding that facilitate the breeding process in tall fescue. PMID:26186338

  16. Association Analysis of Simple Sequence Repeat (SSR) Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb.).

    PubMed

    Lou, Yanhong; Hu, Longxing; Chen, Liang; Sun, Xiaoyan; Yang, Yong; Liu, Hongmei; Xu, Qingguo

    2015-01-01

    associated with SW; five single-associated markers were associated with SC; seven single-associated markers were associated with SCP; three single-associated markers were associated with SL. Especially, we observed that the genetic variation of SW was explained 11.6 % by M37 marker. It is interesting to observe that nine markers (M1, M2, M35, M54 marker was associated with both BCS and SC; M3, M4 markers were associated with BCS, SW, and SC; M19 marker was associated with both pH and PD, M40 marker was associated with both SCP and SW; and M193 marker was associated with both PH and SL) were associated with more than two agronomic traits. Notably, Branch count per spike (BCS) was explained by four markers (M1, M2, M3, and M4) exceeding 10 %. These identified marker alleles associated with agronomic traits could provide important information and markers for molecular-assisted breeding that facilitate the breeding process in tall fescue. PMID:26186338

  17. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication

    PubMed Central

    Vigouroux, Y.; McMullen, M.; Hittinger, C. T.; Houchins, K.; Schulz, L.; Kresovich, S.; Matsuoka, Y.; Doebley, J.

    2002-01-01

    Crop species experienced strong selective pressure directed at genes controlling traits of agronomic importance during their domestication and subsequent episodes of selective breeding. Consequently, these genes are expected to exhibit the signature of selection. We screened 501 maize genes for the signature of selection using microsatellites or simple sequence repeats (SSRs). We applied the Ewens–Watterson test, which can reveal deviations from a neutral-equilibrium model, as well as two nonequilibrium tests that incorporate the domestication bottleneck. We investigated two classes of SSRs: those known to be polymorphic in maize (Class I) and those previously classified as monomorphic in maize (Class II). Fifteen SSRs exhibited some evidence for selection in maize and 10 showed evidence under stringent criteria. The genes containing nonneutral SSRs are candidates for agronomically important genes. Because demographic factors can bias our tests, further independent tests of these candidates are necessary. We applied such an additional test to one candidate, which encodes a MADS box transcriptional regulator, and confirmed that this gene experienced a selective sweep during maize domestication. Genomic scans for the signature of selection offer a means of identifying new genes of agronomic importance even when gene function and the phenotype of interest are unknown. PMID:12105270

  18. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 23 commercially available peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2014 for agronomic traits (crop value, yield, seed grade, and characteristics) and resistance to soilborne diseases. Among the 16 runner entries evaluated, Tamrun OL11...

  19. Association mapping of agronomic and quality traits in USDA pea single-plant collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Association mapping is an efficient approach for the identification of the molecular basis of agronomic traits in crop plants. For this purpose in pea (Pisum sativum L.), we genotyped and phenotyped individual lines of the single-plant derived core collection of the USDA pea single-plant (PSP) colle...

  20. Genome-wide association study of agronomic traits in common bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genome-wide association study (GWAS) using a global Andean diversity panel (ADP) of 237 genotypes of common bean, Phaseolus vulgaris was conducted to gain insight into the genetic architecture of several agronomic traits controlling phenology, biomass, yield components and seed yield. The panel wa...

  1. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 21 peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2013 for agronomic traits (crop value, yield, seed grade, and characteristics) and resistance to diseases (Sclerotinia blight, southern blight, and Pythium and Rhizoctonia pod rot). Among th...

  2. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 20 commercially available peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2015 for agronomic traits (crop value, yield, seed grade, and characteristics). Environmental conditions in 2015 were not favorable for Sclerotinia blight, southern bl...

  3. Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers.

    PubMed

    Figueiredo, A S T; Resende, J T V; Faria, M V; Da-Silva, P R; Fagundes, B S; Morales, R G F

    2016-01-01

    Heterosis is a highly relevant phenomenon in plant breeding. This condition is usually established in hybrids derived from crosses of highly divergent parents. The success of a breeder in obtaining heterosis is directly related to the correct identification of genetically contrasting parents. Currently, the diallel cross is the most commonly used methodology to detect contrasting parents; however, it is a time- and cost-consuming procedure. Therefore, new tools capable of performing this task quickly and accurately are required. Thus, the purpose of this study was to estimate the genetic divergence in industrial tomato lines, based on agronomic traits, and to compare with estimates obtained using inter-simple sequence repeat (ISSR) molecular markers. The genetic divergence among 10 industrial tomato lines, based on nine morphological characters and 12 ISSR primers was analyzed. For data analysis, Pearson and Spearman correlation coefficients were calculated between the genetic dissimilarity measures estimated by Mahalanobis distance and Jaccard's coefficient of genetic dissimilarity from the heterosis estimates, combining ability, and means of important traits of industrial tomato. The ISSR markers efficiently detected contrasting parents for hybrid production in tomato. Parent RVTD-08 was indicated as the most divergent, both by molecular and morphological markers, that positively contributed to increased heterosis and by the specific combining ability in the crosses in which it participated. The genetic dissimilarity estimated by ISSR molecular markers aided the identification of the best hybrids of the experiment in terms of total fruit yield, pulp yield, and soluble solids content. PMID:27323023

  4. Effects of Delaying Transplanting on Agronomic Traits and Grain Yield of Rice under Mechanical Transplantation Pattern

    PubMed Central

    Liu, Qihua; Wu, Xiu; Ma, Jiaqing; Chen, Bocong; Xin, Caiyun

    2015-01-01

    A delay in the mechanical transplantation (MT) of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT). The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT. PMID:25875607

  5. Genomic regions underlying agronomic traits in linseed (Linum usitatissimum L.) as revealed by association mapping.

    PubMed

    Soto-Cerda, Braulio J; Duguid, Scott; Booker, Helen; Rowland, Gordon; Diederichsen, Axel; Cloutier, Sylvie

    2014-01-01

    The extreme climate of the Canadian Prairies poses a major challenge to improve yield. Although it is possible to breed for yield per se, focusing on yield-related traits could be advantageous because of their simpler genetic architecture. The Canadian flax core collection of 390 accessions was genotyped with 464 simple sequence repeat markers, and phenotypic data for nine agronomic traits including yield, bolls per area, 1,000 seed weight, seeds per boll, start of flowering, end of flowering, plant height, plant branching, and lodging collected from up to eight environments was used for association mapping. Based on a mixed model (principal component analysis (PCA) + kinship matrix (K)), 12 significant marker-trait associations for six agronomic traits were identified. Most of the associations were stable across environments as revealed by multivariate analyses. Statistical simulation for five markers associated with 1000 seed weight indicated that the favorable alleles have additive effects. None of the modern cultivars carried the five favorable alleles and the maximum number of four observed in any accessions was mostly in breeding lines. Our results confirmed the complex genetic architecture of yield-related traits and the inherent difficulties associated with their identification while illustrating the potential for improvement through marker-assisted selection. PMID:24138336

  6. Retention of agronomically important variation in germplasm core collections: implications for allele mining

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary targets of allele mining efforts are loci of agronomic importance. Agronomic loci typically exhibit patterns of allelic diversity consistent with a history of natural or artificial selection. Natural or artificial selection causes the distribution of genetic diversity at such loci to d...

  7. Genetic diversity, population structure, and association mapping of agronomic traits in waxy and normal maize inbred lines.

    PubMed

    Sa, K J; Park, J Y; Choi, S H; Kim, B W; Park, K J; Lee, J K

    2015-01-01

    Understanding genetic diversity, population structure, and linkage disequilibrium is a prerequisite for the association mapping of complex traits in a target population. In this study, the genetic diversity and population structure of 40 waxy and 40 normal inbred maize lines were investigated using 10 morphological traits and 200 simple sequence repeat (SSR) markers. Based on a population structure analysis, the 80 maize inbred lines were divided into three groups: I, II, and admixed. Significant marker-trait associations were identified between the markers and the 10 morphological traits, which were studied according to the model used to confirm the association. Using a general linear model, the lowest R(2) value (9.03) was detected in umc1139, which was associated with ear number, and the highest (43.97) was in umc1858, which was associated with plant height. Using a mixed linear model, the lowest R(2) value (18.74) was in umc1279, which was associated with ear weight; the highest (27.66) was in umc1858, which was associated with 100-kernel weight. The SSR markers identified in the present study may serve as useful molecular markers for selecting important yield and agronomic traits. These results will be useful for marker-assisted selection in maize breeding programs, to help breeders choose parental lines and markers for crosses. PMID:26214429

  8. Association of Agronomic Traits with SNP Markers in Durum Wheat (Triticum turgidum L. durum (Desf.))

    PubMed Central

    Hu, Xin; Ren, Jing; Ren, Xifeng; Huang, Sisi; Sabiel, Salih A. I.; Luo, Mingcheng; Nevo, Eviatar; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2015-01-01

    Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection. PMID:26110423

  9. Quantitative trait loci and underlying candidate genes controlling agronomical and fruit quality traits in octoploid strawberry (Fragaria × ananassa).

    PubMed

    Zorrilla-Fontanesi, Yasmín; Cabeza, Amalia; Domínguez, Pedro; Medina, Juan Jesús; Valpuesta, Victoriano; Denoyes-Rothan, Beatrice; Sánchez-Sevilla, José F; Amaya, Iraida

    2011-09-01

    Breeding for fruit quality traits in strawberry (Fragaria × ananassa, 2n = 8x = 56) is complex due to the polygenic nature of these traits and the octoploid constitution of this species. In order to improve the efficiency of genotype selection, the identification of quantitative trait loci (QTL) and associated molecular markers will constitute a valuable tool for breeding programs. However, the implementation of these markers in breeding programs depends upon the complexity and stability of QTLs across different environments. In this work, the genetic control of 17 agronomical and fruit quality traits was investigated in strawberry using a F(1) population derived from an intraspecific cross between two contrasting selection lines, '232' and '1392'. QTL analyses were performed over three successive years based on the separate parental linkage maps and a pseudo-testcross strategy. The integrated strawberry genetic map consists of 338 molecular markers covering 37 linkage groups, thus exceeding the 28 chromosomes. 33 QTLs were identified for 14 of the 17 studied traits and approximately 37% of them were stable over time. For each trait, 1-5 QTLs were identified with individual effects ranging between 9.2 and 30.5% of the phenotypic variation, indicating that all analysed traits are complex and quantitatively inherited. Many QTLs controlling correlated traits were co-located in homoeology group V, indicating linkage or pleiotropic effects of loci. Candidate genes for several QTLs controlling yield, anthocyanins, firmness and L-ascorbic acid are proposed based on both their co-localization and predicted function. We also report conserved QTLs among strawberry and other Rosaceae based on their syntenic location. PMID:21667037

  10. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits.

    PubMed

    Li, Ying-hui; Zhou, Guangyu; Ma, Jianxin; Jiang, Wenkai; Jin, Long-guo; Zhang, Zhouhao; Guo, Yong; Zhang, Jinbo; Sui, Yi; Zheng, Liangtao; Zhang, Shan-shan; Zuo, Qiyang; Shi, Xue-hui; Li, Yan-fei; Zhang, Wan-ke; Hu, Yiyao; Kong, Guanyi; Hong, Hui-long; Tan, Bing; Song, Jian; Liu, Zhang-xiong; Wang, Yaoshen; Ruan, Hang; Yeung, Carol K L; Liu, Jian; Wang, Hailong; Zhang, Li-juan; Guan, Rong-xia; Wang, Ke-jing; Li, Wen-bin; Chen, Shou-yi; Chang, Ru-zhen; Jiang, Zhi; Jackson, Scott A; Li, Ruiqiang; Qiu, Li-juan

    2014-10-01

    Wild relatives of crops are an important source of genetic diversity for agriculture, but their gene repertoire remains largely unexplored. We report the establishment and analysis of a pan-genome of Glycine soja, the wild relative of cultivated soybean Glycine max, by sequencing and de novo assembly of seven phylogenetically and geographically representative accessions. Intergenomic comparisons identified lineage-specific genes and genes with copy number variation or large-effect mutations, some of which show evidence of positive selection and may contribute to variation of agronomic traits such as biotic resistance, seed composition, flowering and maturity time, organ size and final biomass. Approximately 80% of the pan-genome was present in all seven accessions (core), whereas the rest was dispensable and exhibited greater variation than the core genome, perhaps reflecting a role in adaptation to diverse environments. This work will facilitate the harnessing of untapped genetic diversity from wild soybean for enhancement of elite cultivars. PMID:25218520

  11. Genetic analyses of agronomic traits in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.)

    PubMed Central

    Li, Chunhua; Kobayashi, Kiwa; Yoshida, Yasuko; Ohsawa, Ryo

    2012-01-01

    The consumption of products made from Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) has increased in recent years in Japan. Increased consumer demand has led to recognition of the need for early varieties of this crop with high and stable yields. In order to accomplish this, more information is needed on the genetic mechanisms affecting earliness and yield. We conducted genetic analysis of 3 agronomic traits (days to flowering, plant height and total seed weight per plant) to segregate F2 and F3 populations derived from a cross between Tartary buckwheat cultivars ‘Hokuriku No. 4’ and ‘Ishisoba’. Broad-sense heritability estimates for days to flowering, plant height and total seed weight were 0.70, 0.62 and 0.75, respectively, in F3 population. Narrow-sense heritability for total seed weight (0.51) was highest, followed by heritability for days to flowering (0.37), with heritability for plant height (0.26) lowest. Later flowering was associated with increased plant height and higher yields. From the F4 generation, we identified twelve candidate plants with earlier maturity and reduced plant height compared to ‘Hokuriku No. 4’, but almost the same total seed weight. These results suggest that hybridization breeding using the single seed descent (SSD) method is an effective approach for improving agronomic characteristics of Tartary buckwheat. PMID:23341743

  12. No Correlation of Morpho-Agronomic Traits of Phaseolus vulgaris (Fabaceae) Genotypes and Resistance to Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae).

    PubMed

    Guzzo, E C; Vendramim, J D; Chiorato, A F; Lourenção, A L; Carbonell, S A M; Corrêa, O M B

    2015-12-01

    Resistance of common bean (Phaseolus vulgaris) varieties is an important tool to control Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae: Bruchinae) worldwide. However, bioassays to characterize the resistance of a genotype can be difficult to perform. Therefore, the current study sought to correlate the morpho-agronomic traits of P. vulgaris genotypes with their resistance to A. obtectus and Z. subfasciatus to facilitate genotype characterization. Bean samples of each genotype were infested with newly emerged insect couples, and the number of adults obtained in each genotype was quantified (value used as a resistance parameter). The resistance index was calculated by dividing the number of adults obtained in each genotype by the one obtained in the cultivar Bolinha, used as the standard for susceptibility. Fifty genotypes were evaluated for A. obtectus and 202 for Z. subfasciatus. All genotypes were characterized according to their resistance to each insect and 18 other morpho-agronomic traits, for a total of 19 descriptors. Principal component analyses did not show any correlation between insect resistance and the morpho-agronomic traits of the genotypes. Further, the thousand seeds weight (TSW), which is indicative of the genotype center of origin was tested considering genotypes from Mesoamerican with low TSW, while those from Andean with high TSW. Thus, the lack of correlation between genotype resistance and TSW indicates that resistance to A. obtectus and Z. subfasciatus in P. vulgaris is not related to the host center of origin. PMID:26253545

  13. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this present study, we evaluated a RI population including 188 RI lines developed from 94 F2-derived families and their two parental lines, ‘HS 46’ and MARCABUCAG8US-1-88 (Gossypium hirsutum L.), at Mississippi State, MS, for two years. Fourteen agronomic and fiber traits were measured. One hundr...

  14. Genome-wide association analysis for non agronomic traits in maize under well-watered and water-stressed conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is the most serious environmental stress facing maize production, and strongly threatens crop yields. Changes in agronomic traits in response to this stress have been extensively studied using biparental mapping populations and inbred lines, but little is known about the related genes and un...

  15. Correlations and path analysis among agronomic and technological traits of upland cotton.

    PubMed

    Farias, F J C; Carvalho, L P; Silva Filho, J L; Teodoro, P E

    2016-01-01

    To date, path analysis has been used with the aim of breeding different cultures. However, for cotton, there have been few studies using this analysis, and all of these have used fiber productivity as the primary dependent variable. Therefore, the aim of the present study was to identify agronomic and technological properties that can be used as criteria for direct and indirect phenotypes in selecting cotton genotypes with better fibers. We evaluated 16 upland cotton genotypes in eight trials conducted during the harvest 2008/2009 in the State of Mato Grosso, using a randomized block design with four replicates. The evaluated traits were: plant height, average boll weight, percentage of fiber, cotton seed yield, fiber length, uniformity of fiber, short fiber index, fiber strength, elongation, maturity of the fibers, micronaire, reflectance, and the degree of yellowing. Phenotypic correlations between the traits and cotton fiber yield (main dependent variable) were unfolded in direct and indirect effects through path analysis. Fiber strength, uniformity of fiber, and reflectance were found to influence fiber length, and therefore, these traits are recommended for both direct and indirect selection of cotton genotypes. PMID:27525939

  16. Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait Loci in bread wheat grown in a water-limited environment.

    PubMed

    Hill, Camilla B; Taylor, Julian D; Edwards, James; Mather, Diane; Bacic, Antony; Langridge, Peter; Roessner, Ute

    2013-07-01

    Drought is a major environmental constraint responsible for grain yield losses of bread wheat (Triticum aestivum) in many parts of the world. Progress in breeding to improve complex multigene traits, such as drought stress tolerance, has been limited by high sensitivity to environmental factors, low trait heritability, and the complexity and size of the hexaploid wheat genome. In order to obtain further insight into genetic factors that affect yield under drought, we measured the abundance of 205 metabolites in flag leaf tissue sampled from plants of 179 cv Excalibur/Kukri F1-derived doubled haploid lines of wheat grown in a field experiment that experienced terminal drought stress. Additionally, data on 29 agronomic traits that had been assessed in the same field experiment were used. A linear mixed model was used to partition and account for nongenetic and genetic sources of variation, and quantitative trait locus analysis was used to estimate the genomic positions and effects of individual quantitative trait loci. Comparison of the agronomic and metabolic trait variation uncovered novel correlations between some agronomic traits and the levels of certain primary metabolites, including metabolites with either positive or negative associations with plant maturity-related or grain yield-related traits. Our analyses demonstrate that specific regions of the wheat genome that affect agronomic traits also have distinct effects on specific combinations of metabolites. This approach proved valuable for identifying novel biomarkers for the performance of wheat under drought and could facilitate the identification of candidate genes involved in drought-related responses in bread wheat. PMID:23660834

  17. Agronomic Competencies: A Comparison of Their Use and Perceived Importance.

    ERIC Educational Resources Information Center

    Scanlon, D. C.; Pennock, R., Jr.

    1987-01-01

    Reported is a survey designed to assess the relationship between essential competencies as perceived by faculty, and job needs as perceived by graduates of the agronomy department at Pennyslvania State University. Results indicated that while various competencies were valued differently, raters did not disagree on what were important competencies.…

  18. Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa).

    PubMed

    Gehringer, A; Friedt, W; Lühs, W; Snowdon, R J

    2006-12-01

    The crucifer oilseed plant false flax (Camelina sativa subsp. sativa) possesses numerous valuable agronomic attributes that make it attractive as an alternative spring-sown crop for tight crop rotations. The oil of false flax is particularly rich in polyunsaturated C18-fatty acids, making it a valuable renewable feedstock for the oleochemical industry. Because of the minimal interest in the crop throughout the 20th century, breeding efforts have been limited. In this study, a genetic map for C. sativa was constructed, using amplified fragment length polymorphism (AFLP) markers, in a population of recombinant inbred lines that were developed, through single-seed descent, from a cross between 'Lindo' and 'Licalla', 2 phenotypically distinct parental varieties. Three Brassica simple sequence repeat (SSR) markers were also integrated into the map, and 1 of these shows linkage to oil-content loci in both C. sativa and Brassica napus. Fifty-five other SSR primer combinations showed monomorphic amplification products, indicating partial genome homoeology with the Brassica species. Using data from field trials with different fertilization treatments (0 and 80 kg N/ha) at multiple locations over 3 years, the map was used to localize quantitative trait loci (QTLs) for seed yield, oil content, 1000-seed mass, and plant height. Some yield QTLs were found only with the N0 treatment, and might represent loci contributing to the competitiveness of false flax in low-nutrient soils. The results represent a starting point for future marker-assisted breeding. PMID:17426770

  19. Genetic analysis of agronomic and fiber traits using four interspecific chromosome substitution lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two of the primary impeding forces in the genetic improvement of cotton are: 1) the lack of information about genes that control important traits and 2) lack of an easy way to use diverse germplasm. Chromosome substitution lines can be useful resources to provide comprehensive genomic information o...

  20. Agronomic Weeds.

    ERIC Educational Resources Information Center

    Hartwig, Nathan L.

    This agriculture extension service publication from Pennsylvania State University examines agronomic weed problems and control. Contents include a listing of the characteristics of weeds, a section on herbicides, and a section on the important weeds of agronomic crops in Pennsylvania. The herbicide section discusses systemic herbicides, contact…

  1. A Chromosome Segment Substitution Library of Weedy Rice for Genetic Dissection of Complex Agronomic and Domestication Traits

    PubMed Central

    Subudhi, Prasanta K.; De Leon, Teresa; Singh, Pradeep K.; Parco, Arnold; Cohn, Marc A.; Sasaki, Takuji

    2015-01-01

    Chromosome segment substitution lines (CSSLs) are a powerful alternative for locating quantitative trait loci (QTL), analyzing gene interactions, and providing starting materials for map-based cloning projects. We report the development and characterization of a CSSL library of a U.S. weedy rice accession ‘PSRR-1’ with genome-wide coverage in an adapted rice cultivar ‘Bengal’ background. The majority of the CSSLs carried a single defined weedy rice segment with an average introgression segment of 2.8 % of the donor genome. QTL mapping results for several agronomic and domestication traits from the CSSL population were compared with those obtained from two recombinant inbred line (RIL) populations involving the same weedy rice accession. There was congruence of major effect QTLs between both types of populations, but new and additional QTLs were detected in the CSSL population. Although, three major effect QTLs for plant height were detected on chromosomes 1, 4, and 8 in the CSSL population, the latter two escaped detection in both RIL populations. Since this was observed for many traits, epistasis may play a major role for the phenotypic variation observed in weedy rice. High levels of shattering and seed dormancy in weedy rice might result from an accumulation of many small effect QTLs. Several CSSLs with desirable agronomic traits (e.g. longer panicles, longer grains, and higher seed weight) identified in this study could be useful for rice breeding. Since weedy rice is a reservoir of genes for many weedy and agronomic attributes, the CSSL library will serve as a valuable resource to discover latent genetic diversity for improving crop productivity and understanding the plant domestication process through cloning and characterization of the underlying genes. PMID:26086245

  2. Glucose, stem dry weight variation, principal component and cluster analysis for some agronomic traits among 16 regenerated Crotalaria juncea accessions for potential cellulosic ethanol.

    PubMed

    Morris, J Bradley; Antonious, George F

    2013-01-01

    The objectives of this research were to identify candidate sunn hemp accessions having high concentrations of cellulose for use as parents in breeding for cellulose and to determine variability for glucose content and some important agronomic traits among sunn hemp accessions. Since sunn hemp is an under-utilized species, glucose content and agronomic trait variation is essential for the identification of superior sunn hemp accessions for use as potential ethanol for biofuel. Sixteen sunn hemp accessions including the following plant introductions (expressed as glucose concentration) and stem dry weights were studied. "Sixteen sunn hemp accessions including the following plant introductions (expressed as glucose concentration) and stem dry weights were studied." In addition, to verify variability, these traits plus morphological, phenological, and seed reproductive traits were analyzed using multivariate and cluster analysis. The accessions, PI 250487, PI 337080, and PI 219717 produced the highest glucose concentrations (859, 809, and 770 mg g(-1) stem dry weight, respectively), however PI 468956 produced the highest stem dry weight (258 g). Branching significantly correlated with foliage (r(2) = 0.67**) and relative maturity (r(2) = 0.60*), while maturity had a significantly negative correlation with seed number (r(2) = -0.67**) and plant width (r(2) = -0.53*) as well. Seed number significantly correlated with plant width (r(2) = 0.57*). Average linkage cluster analysis grouped the 16 sunn hemp accessions into well-defined phenotypes with four distinct seed-producing groups and one outlier. Based on multivariate and cluster analysis, sufficient variation among these16 sunn hemp accessions exists to support the development of cellulosic ethanol producing cultivars with improved architecture, early maturity, seed yield, glucose concentrations, and stem dry weights. PMID:23356343

  3. Photo-biotechnology as a tool to improve agronomic traits in crops.

    PubMed

    Gururani, Mayank Anand; Ganesan, Markkandan; Song, Pill-Soon

    2015-01-01

    Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties. PMID:25532679

  4. Genomewide association studies for 50 agronomic traits in peanut using the 'reference set' comprising 300 genotypes from 48 countries of the semi-arid tropics of the world.

    PubMed

    Pandey, Manish K; Upadhyaya, Hari D; Rathore, Abhishek; Vadez, Vincent; Sheshshayee, M S; Sriswathi, Manda; Govil, Mansee; Kumar, Ashish; Gowda, M V C; Sharma, Shivali; Hamidou, Falalou; Kumar, V Anil; Khera, Pawan; Bhat, Ramesh S; Khan, Aamir W; Singh, Sube; Li, Hongjie; Monyo, Emmanuel; Nadaf, H L; Mukri, Ganapati; Jackson, Scott A; Guo, Baozhu; Liang, Xuanqiang; Varshney, Rajeev K

    2014-01-01

    Peanut is an important and nutritious agricultural commodity and a livelihood of many small-holder farmers in the semi-arid tropics (SAT) of world which are facing serious production threats. Integration of genomics tools with on-going genetic improvement approaches is expected to facilitate accelerated development of improved cultivars. Therefore, high-resolution genotyping and multiple season phenotyping data for 50 important agronomic, disease and quality traits were generated on the 'reference set' of peanut. This study reports comprehensive analyses of allelic diversity, population structure, linkage disequilibrium (LD) decay and marker-trait association (MTA) in peanut. Distinctness of all the genotypes can be established by using either an unique allele detected by a single SSR or a combination of unique alleles by two or more than two SSR markers. As expected, DArT features (2.0 alleles/locus, 0.125 PIC) showed lower allele frequency and polymorphic information content (PIC) than SSRs (22.21 alleles /locus, 0.715 PIC). Both marker types clearly differentiated the genotypes of diploids from tetraploids. Multi-allelic SSRs identified three sub-groups (K = 3) while the LD simulation trend line based on squared-allele frequency correlations (r2) predicted LD decay of 15-20 cM in peanut genome. Detailed analysis identified a total of 524 highly significant MTAs (p value > 2.1 × 10-6) with wide phenotypic variance (PV) range (5.81-90.09%) for 36 traits. These MTAs after validation may be deployed in improving biotic resistance, oil/ seed/ nutritional quality, drought tolerance related traits, and yield/ yield components. PMID:25140620

  5. Whole-Genome Mapping of Agronomic and Metabolic Traits to Identify Novel Quantitative Trait Loci in Bread Wheat Grown in a Water-Limited Environment1[W][OA

    PubMed Central

    Hill, Camilla B.; Taylor, Julian D.; Edwards, James; Mather, Diane; Bacic, Antony; Langridge, Peter; Roessner, Ute

    2013-01-01

    Drought is a major environmental constraint responsible for grain yield losses of bread wheat (Triticum aestivum) in many parts of the world. Progress in breeding to improve complex multigene traits, such as drought stress tolerance, has been limited by high sensitivity to environmental factors, low trait heritability, and the complexity and size of the hexaploid wheat genome. In order to obtain further insight into genetic factors that affect yield under drought, we measured the abundance of 205 metabolites in flag leaf tissue sampled from plants of 179 cv Excalibur/Kukri F1-derived doubled haploid lines of wheat grown in a field experiment that experienced terminal drought stress. Additionally, data on 29 agronomic traits that had been assessed in the same field experiment were used. A linear mixed model was used to partition and account for nongenetic and genetic sources of variation, and quantitative trait locus analysis was used to estimate the genomic positions and effects of individual quantitative trait loci. Comparison of the agronomic and metabolic trait variation uncovered novel correlations between some agronomic traits and the levels of certain primary metabolites, including metabolites with either positive or negative associations with plant maturity-related or grain yield-related traits. Our analyses demonstrate that specific regions of the wheat genome that affect agronomic traits also have distinct effects on specific combinations of metabolites. This approach proved valuable for identifying novel biomarkers for the performance of wheat under drought and could facilitate the identification of candidate genes involved in drought-related responses in bread wheat. PMID:23660834

  6. Inheritance of the physiological traits for drought reistance under terminal drought conditions and genotypic correlations with agronomic traits in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding for terminal drought resistance in peanut can increase their productivity in drought-prone environments and reduce aflatoxin contamination. To improve selection efficiency for superior drought-resistant genotypes, a study of inheritance of traits is worthy, and provides useful information ...

  7. Agronomic and Kernel Compositional Traits of Blue Maize Landraces from the Southwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple races of maize have been cultivated for centuries in the southwestern USA and northern Mexico. These landraces, used primarily for human food consumption, display considerable genetic variation for traits such as kernel color and texture. Traditional cultivation of these landraces has decli...

  8. Genetic diversity of Capsicum chinensis (Solanaceae) accessions based on molecular markers and morphological and agronomic traits.

    PubMed

    Finger, F L; Lannes, S D; Schuelter, A R; Doege, J; Comerlato, A P; Gonçalves, L S A; Ferreira, F R A; Clovis, L R; Scapim, C A

    2010-01-01

    We estimated the genetic diversity of 49 accessions of the hot pepper species Capsicum chinensis through analyses of 12 physicochemical traits of the fruit, eight multi-categorical variables, and with 32 RAPD primers. Data from the physicochemical traits were submitted to analysis of variance to estimate the genetic parameters, and their means were clustered by the Scott-Knott test. The matrices from the individual and combined distance were estimated by multivariate analyses before applying Tocher's optimization method. All physicochemical traits were examined for genetic variability by analysis of variance. The responses of these traits showed more contribution from genetic than from environmental factors, except the percentage of dry biomass, content of soluble solids and vitamin C level. Total capsaicin had the greatest genetic divergence. Nine clusters were formed from the quantitative data based on the generalized distance of Mahalanobis, using Tocher's method; four were formed from the multi-categorical data using the Cole-Rodgers coefficient, and eight were formed from the molecular data using the Nei and Li coefficient. The accessions were distributed into 14 groups using Tocher's method, and no significant correlation between pungency and origin was detected. Uni- and multivariate analyses permitted the identification of marked genetic diversity and fruit attributes capable of being improved through breeding programs. PMID:20882481

  9. Evaluation of cotton populations for agronomic and fiber traits after different cycles of random mating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Random mating, as one of several breeding approaches, has been used to successfully break genetic linkage blocks in crops for multiple-trait improvements. In this study, 11 cotton (Gossypium hirsutum L.) lines from diverse breeding programs were used as parents to make 55 F2 populations and 55 corre...

  10. Combining Ability of Different Agronomic Traits and Yield Components in Hybrid Barley

    PubMed Central

    Lv, Chao; Guo, Baojian; Xu, Rugen

    2015-01-01

    Selection of parents based on their combining ability is an effective approach in hybrid breeding. In this study, eight maintainer lines and nine restorer lines were used to obtain 72 crosses for analyzing the general combining ability (GCA) and special combining ability (SCA) for seven agronomic and yield characters including plant height (PH), spike length excluding awns (SL), inter-node length (IL), spikes per plant (SP), thousand kernel weight (TKW), kernel weight per plant (KWP) and dry matter weight per plant (DWP). The results showed that GCA was significantly different among parents and SCA was also significantly different among crosses. The performance of hybrid was significantly correlated with the sum of female and male GCA (TGCA), SCA and heterosis. Hu1154 A, Mian684 A, 86F098 A, 8036 R and 8041 R were excellent parents with greater general combining ability. Five crosses, Hu1154 A×8032 R, Humai10 A×8040 R, Mian684 A×8037 R, Mian684 A×8041 R and 86F098 A×8037 R, showed superior heterosis for most characters. PMID:26061000

  11. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits.

    PubMed

    Gutierrez-Gonzalez, Juan Jose; Wu, Xiaolei; Zhang, Juan; Lee, Jeong-Dong; Ellersieck, Mark; Shannon, J Grover; Yu, Oliver; Nguyen, Henry T; Sleper, David A

    2009-10-01

    A major objective for geneticists is to decipher genetic architecture of traits associated with agronomic importance. However, a majority of such traits are complex, and their genetic dissection has been traditionally hampered not only by the number of minor-effect quantitative trait loci (QTL) but also by genome-wide interacting loci with little or no individual effect. Soybean (Glycine max [L.] Merr.) seed isoflavonoids display a broad range of variation, even in genetically stabilized lines that grow in a fixed environment, because their synthesis and accumulation are affected by many biotic and abiotic factors. Due to this complexity, isoflavone QTL mapping has often produced conflicting results especially with variable growing conditions. Herein, we comparatively mapped soybean seed isoflavones genistein, daidzein, and glycitein by using several of the most commonly used mapping approaches: interval mapping, composite interval mapping, multiple interval mapping and a mixed-model based composite interval mapping. In total, 26 QTLs, including many novel regions, were found bearing additive main effects in a population of RILs derived from the cross between Essex and PI 437654. Our comparative approach demonstrates that statistical mapping methodologies are crucial for QTL discovery in complex traits. Despite a previous understanding of the influence of additive QTL on isoflavone production, the role of epistasis is not well established. Results indicate that epistasis, although largely dependent on the environment, is a very important genetic component underlying seed isoflavone content, and suggest epistasis as a key factor causing the observed phenotypic variability of these traits in diverse environments. PMID:19626310

  12. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L

    NASA Astrophysics Data System (ADS)

    Abdurakhmonov, Ibrokhim Y.; Buriev, Zabardast T.; Saha, Sukumar; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2014-01-01

    Simultaneous improvement of fibre quality, early-flowering, early-maturity and productivity in Upland cotton (G. hirsutum) is a challenging task for conventional breeding. The influence of red/far-red light ratio on the fibre length prompted us to examine the phenotypic effects of RNA interference (RNAi) of the cotton PHYA1 gene. Here we show a suppression of up to ~70% for the PHYA1 transcript, and compensatory overexpression of up to ~20-fold in the remaining phytochromes in somatically regenerated PHYA1 RNAi cotton plants. Two independent transformants of three generations exhibited vigorous root and vegetative growth, early-flowering, significantly improved upper half mean fibre length and an improvement in other major fibre characteristics. Small decreases in lint traits were observed but seed cotton yield was increased an average 10-17% compared with controls. RNAi-associated phenotypes were heritable and transferable via sexual hybridization. These results should aid in the development of early-maturing and productive Upland cultivars with superior fibre quality.

  13. Confirmation of Molecular Markers and Agronomic Traits Associated with Seed Phytate Content in Two Soybean RIL Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration of phytate is an important consideration when analyzing grain for livestock feed rations. Simple sequence repeat (SSR) markers Satt237 and Satt561 were recently found to be linked to quantitative trait loci (QTL) for phytate concentration in soybean [Glycine max (L.) Merr.]. The ...

  14. Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small heat shock protein 17.8 (HSP17.8) is produced abundantly in plant cells under heat and other stress conditions and may play an important role in plant tolerance to stress environments. However, HSP17.8 may be differentially expressed in different accessions of a crop species exposed to identic...

  15. Linkage mapping and QTL analysis of agronomic traits in tetraploid potato (Solanum tuberosum subsp. tuberosum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L) is one of the world’s most important food crops. Using a tetraploid population, we developed a linkage map using AFLP and SSR markers, and searched for QTL via interval mapping and single-marker ANOVA. QTL were detected for flower color, foliage maturity, tuber skin te...

  16. Genome-Wide Association Mapping for Yield and Other Agronomic Traits in an Elite Breeding Population of Tropical Rice (Oryza sativa)

    PubMed Central

    Lalusin, Antonio; Borromeo, Teresita; Gregorio, Glenn; Hernandez, Jose; Virk, Parminder; Collard, Bertrand; McCouch, Susan R.

    2015-01-01

    Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models. PMID:25785447

  17. Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice

    PubMed Central

    Hori, Kiyosumi; Kataoka, Tomomori; Miura, Kiyoyuki; Yamaguchi, Masayuki; Saka, Norikuni; Nakahara, Takahiro; Sunohara, Yoshihiro; Ebana, Kaworu; Yano, Masahiro

    2012-01-01

    To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars. PMID:23226082

  18. Genome Wide Association Studies Using a New Nonparametric Model Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged Maize Association Panel

    PubMed Central

    Yang, Xiaohong; Huang, Juan; Zhou, Yang; Ali, Farhan; Wen, Weiwei; Liu, Jie; Li, Jiansheng; Yan, Jianbing

    2014-01-01

    Association mapping is a powerful approach for dissecting the genetic architecture of complex quantitative traits using high-density SNP markers in maize. Here, we expanded our association panel size from 368 to 513 inbred lines with 0.5 million high quality SNPs using a two-step data-imputation method which combines identity by descent (IBD) based projection and k-nearest neighbor (KNN) algorithm. Genome-wide association studies (GWAS) were carried out for 17 agronomic traits with a panel of 513 inbred lines applying both mixed linear model (MLM) and a new method, the Anderson-Darling (A-D) test. Ten loci for five traits were identified using the MLM method at the Bonferroni-corrected threshold −log10 (P) >5.74 (α = 1). Many loci ranging from one to 34 loci (107 loci for plant height) were identified for 17 traits using the A-D test at the Bonferroni-corrected threshold −log10 (P) >7.05 (α = 0.05) using 556809 SNPs. Many known loci and new candidate loci were only observed by the A-D test, a few of which were also detected in independent linkage analysis. This study indicates that combining IBD based projection and KNN algorithm is an efficient imputation method for inferring large missing genotype segments. In addition, we showed that the A-D test is a useful complement for GWAS analysis of complex quantitative traits. Especially for traits with abnormal phenotype distribution, controlled by moderate effect loci or rare variations, the A-D test balances false positives and statistical power. The candidate SNPs and associated genes also provide a rich resource for maize genetics and breeding. PMID:25211220

  19. Perceived importance of employees' traits in the service industry.

    PubMed

    Lange, Rense; Houran, James

    2009-04-01

    Selection assessments are common practice to help reduce employee turnover in the service industry, but as too little is known about employees' characteristics, which are valued most highly by human resources professionals, a sample of 108 managers and human resources professionals rated the perceived importance of 31 performance traits for Line, Middle, and Senior employees. Rasch scaling analyses indicated strong consensus among the respondents. Nonsocial skills, abilities, and traits such as Ethical Awareness, Self-motivation, Writing Skills, Verbal Ability, Creativity, and Problem Solving were rated as more important for higher level employees. By contrast, traits which directly affect the interaction with customers and coworkers (Service Orientation, Communication Style, Agreeableness, Sense of Humor, Sensitivity to Diversity, Group Process, and Team Building) were rated as more important for lower level employees. Respondents' age and sex did not substantially alter these findings. Results are discussed in terms of improving industry professionals' perceived ecological and external validities of generic and customized assessments of employee. PMID:19610487

  20. The Genetic Basis of Heterosis: Multiparental Quantitative Trait Loci Mapping Reveals Contrasted Levels of Apparent Overdominance Among Traits of Agronomical Interest in Maize (Zea mays L.)

    PubMed Central

    Larièpe, A.; Mangin, B.; Jasson, S.; Combes, V.; Dumas, F.; Jamin, P.; Lariagon, C.; Jolivot, D.; Madur, D.; Fiévet, J.; Gallais, A.; Dubreuil, P.; Charcosset, A.; Moreau, L.

    2012-01-01

    Understanding the genetic bases underlying heterosis is a major issue in maize (Zea mays L.). We extended the North Carolina design III (NCIII) by using three populations of recombinant inbred lines derived from three parental lines belonging to different heterotic pools, crossed with each parental line to obtain nine families of hybrids. A total of 1253 hybrids were evaluated for grain moisture, silking date, plant height, and grain yield. Quantitative trait loci (QTL) mapping was carried out on the six families obtained from crosses to parental lines following the “classical” NCIII method and with a multiparental connected model on the global design, adding the three families obtained from crosses to the nonparental line. Results of the QTL detection highlighted that most of the QTL detected for grain yield displayed apparent overdominance effects and limited differences between heterozygous genotypes, whereas for grain moisture predominance of additive effects was observed. For plant height and silking date results were intermediate. Except for grain yield, most of the QTL identified showed significant additive-by-additive epistatic interactions. High correlation observed between heterosis and the heterozygosity of hybrids at markers confirms the complex genetic basis and the role of dominance in heterosis. An important proportion of QTL detected were located close to the centromeres. We hypothesized that the lower recombination in these regions favors the detection of (i) linked QTL in repulsion phase, leading to apparent overdominance for heterotic traits and (ii) linked QTL in coupling phase, reinforcing apparent additive effects of linked QTL for the other traits. PMID:22135356

  1. Genomewide Association Studies for 50 Agronomic Traits in Peanut Using the ‘Reference Set’ Comprising 300 Genotypes from 48 Countries of the Semi-Arid Tropics of the World

    PubMed Central

    Pandey, Manish K.; Upadhyaya, Hari D.; Rathore, Abhishek; Vadez, Vincent; Sheshshayee, M. S.; Sriswathi, Manda; Govil, Mansee; Kumar, Ashish; Gowda, M. V. C.; Sharma, Shivali; Hamidou, Falalou; Kumar, V. Anil; Khera, Pawan; Bhat, Ramesh S.; Khan, Aamir W.; Singh, Sube; Li, Hongjie; Monyo, Emmanuel; Nadaf, H. L.; Mukri, Ganapati; Jackson, Scott A.; Guo, Baozhu; Liang, Xuanqiang; Varshney, Rajeev K.

    2014-01-01

    Peanut is an important and nutritious agricultural commodity and a livelihood of many small-holder farmers in the semi-arid tropics (SAT) of world which are facing serious production threats. Integration of genomics tools with on-going genetic improvement approaches is expected to facilitate accelerated development of improved cultivars. Therefore, high-resolution genotyping and multiple season phenotyping data for 50 important agronomic, disease and quality traits were generated on the ‘reference set’ of peanut. This study reports comprehensive analyses of allelic diversity, population structure, linkage disequilibrium (LD) decay and marker-trait association (MTA) in peanut. Distinctness of all the genotypes can be established by using either an unique allele detected by a single SSR or a combination of unique alleles by two or more than two SSR markers. As expected, DArT features (2.0 alleles/locus, 0.125 PIC) showed lower allele frequency and polymorphic information content (PIC) than SSRs (22.21 alleles /locus, 0.715 PIC). Both marker types clearly differentiated the genotypes of diploids from tetraploids. Multi-allelic SSRs identified three sub-groups (K = 3) while the LD simulation trend line based on squared-allele frequency correlations (r2) predicted LD decay of 15–20 cM in peanut genome. Detailed analysis identified a total of 524 highly significant MTAs (pvalue >2.1×10–6) with wide phenotypic variance (PV) range (5.81–90.09%) for 36 traits. These MTAs after validation may be deployed in improving biotic resistance, oil/ seed/ nutritional quality, drought tolerance related traits, and yield/ yield components. PMID:25140620

  2. Heritability and correlations among agronomic traits associated with reduced stink-bug damage in an F2:3 soybean population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Brazil, the most important insect pest causing economic damage to soybean are stink bugs. The objective of the current research was to evaluate genetic parameters and correlations among different traits associated with plant development and yield traits, in an F2:3 soybean population. A populatio...

  3. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.).

    PubMed

    Fowler, D B; N'Diaye, A; Laudencia-Chingcuanco, D; Pozniak, C J

    2016-01-01

    Plants must respond to environmental cues and schedule their development in order to react to periods of abiotic stress and commit fully to growth and reproduction under favorable conditions. This study was initiated to identify SNP markers for characters expressed from the seedling stage to plant maturity in spring and winter wheat (Triticum aestivum L.) genotypes adapted to western Canada. Three doubled haploid populations with the winter cultivar 'Norstar' as a common parent were developed and genotyped with a 90K Illumina iSelect SNP assay and a 2,998.9 cM consensus map with 17,541 markers constructed. High heritability's reflected large differences among the parents and relatively low genotype by environment interactions for all characters considered. Significant QTL were detected for the 15 traits examined. However, different QTL for days to heading in controlled environments and the field provided a strong reminder that growth and development are being orchestrated by environmental cues and caution should be exercised when extrapolating conclusions from different experiments. A QTL on chromosome 6A for minimum final leaf number, which determines the rate of phenological development in the seedling stage, was closely linked to QTL for low-temperature tolerance, grain quality, and agronomic characters expressed up to the time of maturity. This suggests phenological development plays a critical role in programming subsequent outcomes for many traits. Transgressive segregation was observed for the lines in each population and QTL with additive effects were identified suggesting that genes for desirable traits could be stacked using Marker Assisted Selection. QTL were identified for characters that could be transferred between the largely isolated western Canadian spring and winter wheat gene pools demonstrating the opportunities offered by Marker Assisted Selection to act as bridges in the identification and transfer of useful genes among related genetic islands

  4. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.)

    PubMed Central

    Fowler, D. B.; N'Diaye, A.; Laudencia-Chingcuanco, D.; Pozniak, C. J.

    2016-01-01

    Plants must respond to environmental cues and schedule their development in order to react to periods of abiotic stress and commit fully to growth and reproduction under favorable conditions. This study was initiated to identify SNP markers for characters expressed from the seedling stage to plant maturity in spring and winter wheat (Triticum aestivum L.) genotypes adapted to western Canada. Three doubled haploid populations with the winter cultivar ‘Norstar’ as a common parent were developed and genotyped with a 90K Illumina iSelect SNP assay and a 2,998.9 cM consensus map with 17,541 markers constructed. High heritability’s reflected large differences among the parents and relatively low genotype by environment interactions for all characters considered. Significant QTL were detected for the 15 traits examined. However, different QTL for days to heading in controlled environments and the field provided a strong reminder that growth and development are being orchestrated by environmental cues and caution should be exercised when extrapolating conclusions from different experiments. A QTL on chromosome 6A for minimum final leaf number, which determines the rate of phenological development in the seedling stage, was closely linked to QTL for low-temperature tolerance, grain quality, and agronomic characters expressed up to the time of maturity. This suggests phenological development plays a critical role in programming subsequent outcomes for many traits. Transgressive segregation was observed for the lines in each population and QTL with additive effects were identified suggesting that genes for desirable traits could be stacked using Marker Assisted Selection. QTL were identified for characters that could be transferred between the largely isolated western Canadian spring and winter wheat gene pools demonstrating the opportunities offered by Marker Assisted Selection to act as bridges in the identification and transfer of useful genes among related genetic

  5. Selection of parents for crossing based on genotyping and phenotyping for stripe rust (Puccinia striiformis) resistance and agronomic traits in bread wheat breeding.

    PubMed

    Khan, Muhammad Irfaq; Khan, Mir Ajab; Khan, Abdul Jabbar; Khattak, Gul Sanat Shah; Mohammad, Tila; Ahmad, Mushtaq

    2011-01-01

    Bread wheat (Triticum aestivum L.) germplasm consisting of 45 genotypes were clustered phenotypically using ten morphological traits and Area Under Disease Progress Curve (AUDPC) as measure of stripe rust resistance. The clustering was ratified by using twenty three molecular markers (SSR, EST and STS) linked to stripe rust (Puccinia striiformis f. sp. tritici) resistant QTLs. The aim was to asses the extent of genetic variability among the genotypes in order to select the parents for crossing between the resistant and susceptible genotypes with respect to stripe rust. The Euclidian dissimilarity values resulted from phenotypic data regarding morphological traits and AUDPC were used to construct a dendrogram for clustering the accessions. Using un-weighted pair group method with arithmetic means, another dendrogram resulted from the similarity coefficient values was used to distinguish the genotypes with respect to stripe rust. Clustering based on phenotypic data produced two major groups and five clusters (with Euclidian dissimilarity ranging from 244 to 16.16) whereas genotypic data yielded two major groups and four clusters (with percent similarity coefficient values ranging from 0.1 to 46.0) to separate the gene pool into highly resistant, resistant, moderately resistant, moderately susceptible and susceptible genotypes. With few exceptions, the outcome of both type of clustering was almost similar and resistant as well as susceptible genotypes came in the same clusters of molecular genotyping as yielded by phenotypic clustering. As a result seven genotypes (Bakhtawar-92, Frontana, Saleem 2000, Tatara, Inqilab-91, Fakhre Sarhad and Karwan) of diverse genetic background were selected for pyramiding stripe rust resistant genes as well as some other agronomic traits after hybridization. PMID:22329159

  6. USE OF PRIMITIVE DERIVED COTTON ACCESSIONS FOR AGRONOMIC AND FIBER TRAITS IMPROVEMENT: VARIANCE COMPONENTS AND GENETIC EFFECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upland cotton (Gossypium hirsutum L.) is cultivated in warmer climates throughout the world. The genetic base of modern upland cultivars is narrow. As yield and fiber quality traits are improved the genetic base should be extended by the incorporation of new germplasm into cultivars. In this stud...

  7. Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Pacific Northwest (PNW) is a major winter wheat mega-environment characterized by a high latitude and a Mediterranean-like climate. Wheat production is predominantly rain-fed and often subject to low soil moisture. As result, discovery and introgression of drought-adaptive traits in modern cu...

  8. Genetics of ginning efficiency and its genotypic and phenotypic correlations with agronomic and fiber traits in upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information regarding genetic variability and correlations of desirable traits provide a reliable basis for cotton (Gossypium hirsutum L.) improvement. The objective of this research was to study the genetics of ginning efficiency and estimate genotypic correlations of ginning energy requirements an...

  9. Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variation for wheat (Triticum aestivum L.) grain yield and its component traits was documented in a ‘Cheyenne’ x Cheyenne (‘Wichita’ 3A) recombinant inbred chromosome line population. In the present study, a population of 223 Cheyenne (Wichita 3A) recombinant inbred chromosome lines was used to map ...

  10. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    PubMed Central

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. Results In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Conclusion Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. PMID:20078869

  11. Analysis of genetic variation in sorghum (Sorghum bicolor (L.) Moench) genotypes with various agronomical traits using SPAR methods.

    PubMed

    Satish, Lakkakula; Shilpha, Jayabalan; Pandian, Subramani; Rency, Arockiam Sagina; Rathinapriya, Periyasamy; Ceasar, Stanislaus Antony; Largia, Muthiah Joe Virgin; Kumar, Are Ashok; Ramesh, Manikandan

    2016-01-15

    Genetic variation among 45 genotypes of sorghum (Sorghum bicolor L.) representing seven subpopulations was assessed using three single primer amplification reaction (SPAR) methods viz., inter-simple sequence repeat (ISSR), random amplified polymorphic DNA (RAPD) and directed amplification of minisatellite-region DNA (DAMD). Totally 15 ISSR, 8 RAPD and 7 DAMD primers generated 263 amplification products, accounting for 84.6% polymorphism across all the genotypes. The Mantel's test of correlation revealed the best correlation between ISSR and cumulative data with a correlation coefficient (r) of 0.84. Assessment of population diversity indicated that the maximum intra population genetic diversity was recorded among high FeZn lines (HFL) having maximum values of Nei's genetic diversity (h) (0.244), Shannon information index (I) (0.368) and the percentage of polymorphic loci (Pp) (72.65%) while the corresponding lowest values of 0.074, 0.109 and 17.95% respectively were observed among the members of MDT subpopulation. The mean coefficient of gene differentiation (GST) and the gene flow (Nm) between populations were observed to be 0.396 and 0.7680 respectively. The analysis of molecular variance (AMOVA) suggested that maximum genetic variation exists within populations (95%) than among populations (5%). Thus the information obtained from this study could be utilized in sorghum breeding programmes for the development of varieties with improved nutrition and agronomic values in future. PMID:26515517

  12. Assessing molecular and morpho-agronomical diversity and identification of ISSR markers associated with fruit traits in quince (Cydonia oblonga).

    PubMed

    Ganopoulos, I; Merkouropoulos, G; Pantazis, S; Tsipouridis, C; Tsaftaris, A

    2011-01-01

    Quince is a deciduous tree known to the countries around the Mediterranean since antiquity. Nowadays, quince is used as an ornamental plant, and as a rootstock for pear trees, with its fruit being appreciated mainly for production of jam and sweets rather than for raw consumption. Quince leaves contain compounds with antioxidant, antimicrobial and anticancerous properties that have been the focus of recent research on pharmaceutical and medical uses as well as for food preservatives. An orchard has been established in Greece, composed of quince varieties (Cydonia oblonga, N = 49) collected from different sites of the country (mainly from home gardens), constituting a unique quince gene bank collection for southeast Europe. We made a phenotypic analysis using 26 morphological plus seven agronomical descriptors coupled with molecular techniques in order to examine the genetic diversity within the collection. Principal component analysis using the 33 descriptors identified 10 components explaining the existence of more than 70% of the total variation. Subsequent cluster analysis classified most of the previously identified productive varieties of the quince orchard in the same clade of a dendrogram. Molecular analysis generated by 13 inter-simple sequence repeat primers amplified 139 bands, including 109 polymorphic bands, indicating a level of polymorphism of 79%; mean gene diversity was calculated to be 0.309. Using stepwise multiple regression analysis, a number of markers significantly associated with fire blight susceptibility, yield, mean fruit weight, citric acid content, soluble solid content, and fruit drop were identified. Hence, data extracted by multiple regression analysis could be useful in marker-assisted breeding programs, especially when no previous genetic information is available. PMID:22095599

  13. EcoTILLING-Based Association Mapping Efficiently Delineates Functionally Relevant Natural Allelic Variants of Candidate Genes Governing Agronomic Traits in Chickpea

    PubMed Central

    Bajaj, Deepak; Srivastava, Rishi; Nath, Manoj; Tripathi, Shailesh; Bharadwaj, Chellapilla; Upadhyaya, Hari D.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2016-01-01

    The large-scale mining and high-throughput genotyping of novel gene-based allelic variants in natural mapping population are essential for association mapping to identify functionally relevant molecular tags governing useful agronomic traits in chickpea. The present study employs an alternative time-saving, non-laborious and economical pool-based EcoTILLING approach coupled with agarose gel detection assay to discover 1133 novel SNP allelic variants from diverse coding and regulatory sequence components of 1133 transcription factor (TF) genes by genotyping in 192 diverse desi and kabuli chickpea accessions constituting a seed weight association panel. Integrating these SNP genotyping data with seed weight field phenotypic information of 192 structured association panel identified eight SNP alleles in the eight TF genes regulating seed weight of chickpea. The associated individual and combination of all SNPs explained 10–15 and 31% phenotypic variation for seed weight, respectively. The EcoTILLING-based large-scale allele mining and genotyping strategy implemented for association mapping is found much effective for a diploid genome crop species like chickpea with narrow genetic base and low genetic polymorphism. This optimized approach thus can be deployed for various genomics-assisted breeding applications with optimal expense of resources in domesticated chickpea. The seed weight-associated natural allelic variants and candidate TF genes delineated have potential to accelerate marker-assisted genetic improvement of chickpea. PMID:27148286

  14. EcoTILLING-Based Association Mapping Efficiently Delineates Functionally Relevant Natural Allelic Variants of Candidate Genes Governing Agronomic Traits in Chickpea.

    PubMed

    Bajaj, Deepak; Srivastava, Rishi; Nath, Manoj; Tripathi, Shailesh; Bharadwaj, Chellapilla; Upadhyaya, Hari D; Tyagi, Akhilesh K; Parida, Swarup K

    2016-01-01

    The large-scale mining and high-throughput genotyping of novel gene-based allelic variants in natural mapping population are essential for association mapping to identify functionally relevant molecular tags governing useful agronomic traits in chickpea. The present study employs an alternative time-saving, non-laborious and economical pool-based EcoTILLING approach coupled with agarose gel detection assay to discover 1133 novel SNP allelic variants from diverse coding and regulatory sequence components of 1133 transcription factor (TF) genes by genotyping in 192 diverse desi and kabuli chickpea accessions constituting a seed weight association panel. Integrating these SNP genotyping data with seed weight field phenotypic information of 192 structured association panel identified eight SNP alleles in the eight TF genes regulating seed weight of chickpea. The associated individual and combination of all SNPs explained 10-15 and 31% phenotypic variation for seed weight, respectively. The EcoTILLING-based large-scale allele mining and genotyping strategy implemented for association mapping is found much effective for a diploid genome crop species like chickpea with narrow genetic base and low genetic polymorphism. This optimized approach thus can be deployed for various genomics-assisted breeding applications with optimal expense of resources in domesticated chickpea. The seed weight-associated natural allelic variants and candidate TF genes delineated have potential to accelerate marker-assisted genetic improvement of chickpea. PMID:27148286

  15. QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers.

    PubMed

    Perez-Lara, Enid; Semagn, Kassa; Chen, Hua; Iqbal, Muhammad; N'Diaye, Amidou; Kamran, Atif; Navabi, Alireza; Pozniak, Curtis; Spaner, Dean

    2016-01-01

    We recently reported three earliness per se quantitative trait loci (QTL) associated with flowering and maturity in a recombinant inbred lines (RILs) population derived from a cross between the spring wheat (Triticum aestivum L.) cultivars 'Cutler' and 'AC Barrie' using 488 microsatellite and diversity arrays technology (DArT) markers. Here, we present QTLs associated with flowering time, maturity, plant height, and grain yield using high density single nucleotide polymorphic (SNP) markers in the same population. A mapping population of 158 RILs and the two parents were evaluated at five environments for flowering, maturity, plant height and grain yield under field conditions, at two greenhouse environments for flowering, and genotyped with a subset of 1809 SNPs out of the 90K SNP array and 2 functional markers (Ppd-D1 and Rht-D1). Using composite interval mapping on the combined phenotype data across all environments, we identified a total of 19 QTLs associated with flowering time in greenhouse (5), and field (6) conditions, maturity (5), grain yield (2) and plant height (1). We mapped these QTLs on 8 chromosomes and they individually explained between 6.3 and 37.8% of the phenotypic variation. Four of the 19 QTLs were associated with multiple traits, including a QTL on 2D associated with flowering, maturity and grain yield; two QTLs on 4A and 7A associated with flowering and maturity, and another QTL on 4D associated with maturity and plant height. However, only the QTLs on both 2D and 4D had major effects, and they mapped adjacent to well-known photoperiod response Ppd-D1 and height reducing Rht-D1 genes, respectively. The QTL on 2D reduced flowering and maturity time up to 5 days with a yield penalty of 436 kg ha-1, while the QTL on 4D reduced plant height by 13 cm, but increased maturity by 2 days. The high density SNPs allowed us to map eight moderate effect, two major effect, and nine minor effect QTLs that were not identified in our previous study using

  16. QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers

    PubMed Central

    Perez-Lara, Enid; Semagn, Kassa; Chen, Hua; Iqbal, Muhammad; N’Diaye, Amidou; Kamran, Atif; Navabi, Alireza; Pozniak, Curtis; Spaner, Dean

    2016-01-01

    We recently reported three earliness per se quantitative trait loci (QTL) associated with flowering and maturity in a recombinant inbred lines (RILs) population derived from a cross between the spring wheat (Triticum aestivum L.) cultivars ‘Cutler’ and ‘AC Barrie’ using 488 microsatellite and diversity arrays technology (DArT) markers. Here, we present QTLs associated with flowering time, maturity, plant height, and grain yield using high density single nucleotide polymorphic (SNP) markers in the same population. A mapping population of 158 RILs and the two parents were evaluated at five environments for flowering, maturity, plant height and grain yield under field conditions, at two greenhouse environments for flowering, and genotyped with a subset of 1809 SNPs out of the 90K SNP array and 2 functional markers (Ppd-D1 and Rht-D1). Using composite interval mapping on the combined phenotype data across all environments, we identified a total of 19 QTLs associated with flowering time in greenhouse (5), and field (6) conditions, maturity (5), grain yield (2) and plant height (1). We mapped these QTLs on 8 chromosomes and they individually explained between 6.3 and 37.8% of the phenotypic variation. Four of the 19 QTLs were associated with multiple traits, including a QTL on 2D associated with flowering, maturity and grain yield; two QTLs on 4A and 7A associated with flowering and maturity, and another QTL on 4D associated with maturity and plant height. However, only the QTLs on both 2D and 4D had major effects, and they mapped adjacent to well-known photoperiod response Ppd-D1 and height reducing Rht-D1 genes, respectively. The QTL on 2D reduced flowering and maturity time up to 5 days with a yield penalty of 436 kg ha-1, while the QTL on 4D reduced plant height by 13 cm, but increased maturity by 2 days. The high density SNPs allowed us to map eight moderate effect, two major effect, and nine minor effect QTLs that were not identified in our previous study

  17. Use of Genomics in Economically Important Traits in Ovine Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to summarize relevant results from the use of genomics in sheep. Genomics has been used to identify genes associated with production, reproduction, carcass traits, and disease-related traits in sheep. A brief discussion on the concept of genomics is included. Genome-w...

  18. Important behavioral traits for predicting guide dog qualification.

    PubMed

    Arata, Sayaka; Momozawa, Yukihide; Takeuchi, Yukari; Mori, Yuji

    2010-05-01

    Guide dogs for the blind help blind people physically and mentally in their daily lives. Their qualifications are based on health, working performance and temperament; approximately 70% of dogs that fail to qualify are disqualified for behavioral reasons. In order to achieve early prediction of qualification, it would be essential as the first step to identify important temperament traits for guide dogs. Therefore, we administered a questionnaire consisting of 22 temperament items to experienced trainers to assess candidate dogs at the Japan Guide Dog Association after three months of training, which was at least three months prior to the final success (qualified as a guide dog) or failure (disqualified for behavioral reasons) judgment. Factor analyses of question items stably extracted three factors with high internal consistency, Distraction, Sensitivity and Docility. When we compared factor points between successful dogs and failed dogs, the successful dogs showed significantly and consistently lower Distraction points and higher Docility points. Additionally, Distraction points could predict qualification with 80.6% accuracy and detect 28.2% of the failed dogs that had higher Distraction points than any of the successful dogs. Of the nine question items not included in the three factors, two items (;Aggression' and ;Animal interest') were consistently associated with qualification. These results suggest that Distraction is stably assessable and has the strongest impact on success or failure judgment; therefore, it will be the first target to establish a behavioral test that may lead to early prediction of guide dog qualification. PMID:20009419

  19. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops.

    PubMed

    Couzigou, Jean-Malo; Magne, Kevin; Mondy, Samuel; Cosson, Viviane; Clements, Jonathan; Ratet, Pascal

    2016-01-01

    Plants are able to lose organs selectively through a process called abscission. This process relies on the differentiation of specialized territories at the junction between organs and the plant body that are called abscission zones (AZ). Several genes control the formation or functioning of these AZ. We have characterized BLADE-ON-PETIOLE (BOP) orthologues from several legume plants and studied their roles in the abscission process using a mutant approach. Here, we show that the Medicago truncatula NODULE ROOT (NOOT), the Pisum sativum COCHLEATA (COCH) and their orthologue in Lotus japonicus are strictly necessary for the abscission of not only petals, but also leaflets, leaves and fruits. We also showed that the expression pattern of the M. truncatula pNOOT::GUS fusion is associated with functional and vestigial AZs when expressed in Arabidopsis. In addition, we show that the stip mutant from Lupinus angustifolius, defective in stipule formation and leaf abscission, is mutated in a BOP orthologue. In conclusion, this study shows that this clade of proteins plays an important conserved role in promoting abscission of all aerial organs studied so far. PMID:26390061

  20. The 'PUCE CAFE' Project: the First 15K Coffee Microarray, a New Tool for Discovering Candidate Genes correlated to Agronomic and Quality Traits

    PubMed Central

    2011-01-01

    Background Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. Conclusion We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Génoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research. PMID:21208403

  1. Development of introgression lines and advanced backcross QTL analysis for disease resistance, oil quality and yield component traits in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ploidy difference between wild Arachis species and cultivated genotypes hinder transfer of useful alleles for agronomically important traits. To overcome this genetic barrier, several synthetics have been developed at ICRISAT. Furthermore, two synthetic amphidiploids viz., ISATGR 1212 (A. duranensis...

  2. Testing the lexical hypothesis: are socially important traits more densely reflected in the English lexicon?

    PubMed

    Wood, Dustin

    2015-02-01

    Using a set of 498 English words identified by Saucier (1997) as common person-descriptor adjectives or trait terms, I tested 3 instantiations of the lexical hypothesis, which posit that more socially important person descriptors show greater density in the lexicon. Specifically, I explored whether trait terms that have greater relational impact (i.e., more greatly influence how others respond to a person) have more synonyms, are more frequently used, and are more strongly correlated with other trait terms. I found little evidence to suggest that trait terms rated as having greater relational impact were more frequently used or had more synonyms. However, these terms correlated more strongly with other trait terms in the set. Conversely, a trait term's loadings on structural factors (e.g., the Big Five, HEXACO) were extremely good predictors of the term's relational impact. The findings suggest that the lexical hypothesis may not be strongly supported in some ways it is commonly understood but is supported in the manner most important to investigations of trait structure. Specifically, trait terms with greater relational impact tend to more strongly correlate with other terms in lexical sets and thus have a greater role in driving the location of factors in analyses of trait structure. Implications for understanding the meaning of lexical factors such as the Big Five are discussed. PMID:25603378

  3. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation

    PubMed Central

    Yamaguchi, Miki; Fujimoto, Haruka; Hirano, Ko; Araki-Nakamura, Satoko; Ohmae-Shinohara, Kozue; Fujii, Akihiro; Tsunashima, Masako; Song, Xian Jun; Ito, Yusuke; Nagae, Rie; Wu, Jianzhong; Mizuno, Hiroshi; Yonemaru, Jun-ichi; Matsumoto, Takashi; Kitano, Hidemi; Matsuoka, Makoto; Kasuga, Shigemitsu; Sazuka, Takashi

    2016-01-01

    Semi-dwarfing genes have contributed to enhanced lodging resistance, resulting in increased crop productivity. In the history of grain sorghum breeding, the spontaneous mutation, dw1 found in Memphis in 1905, was the first widely used semi-dwarfing gene. Here, we report the identification and characterization of Dw1. We performed quantitative trait locus (QTL) analysis and cloning, and revealed that Dw1 encodes a novel uncharacterized protein. Knockdown or T-DNA insertion lines of orthologous genes in rice and Arabidopsis also showed semi-dwarfism similar to that of a nearly isogenic line (NIL) carrying dw1 (NIL-dw1) of sorghum. A histological analysis of the NIL-dw1 revealed that the longitudinal parenchymal cell lengths of the internode were almost the same between NIL-dw1 and wildtype, while the number of cells per internode was significantly reduced in NIL-dw1. NIL-dw1dw3, carrying both dw1 and dw3 (involved in auxin transport), showed a synergistic phenotype. These observations demonstrate that the dw1 reduced the cell proliferation activity in the internodes, and the synergistic effect of dw1 and dw3 contributes to improved lodging resistance and mechanical harvesting. PMID:27329702

  4. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation.

    PubMed

    Yamaguchi, Miki; Fujimoto, Haruka; Hirano, Ko; Araki-Nakamura, Satoko; Ohmae-Shinohara, Kozue; Fujii, Akihiro; Tsunashima, Masako; Song, Xian Jun; Ito, Yusuke; Nagae, Rie; Wu, Jianzhong; Mizuno, Hiroshi; Yonemaru, Jun-Ichi; Matsumoto, Takashi; Kitano, Hidemi; Matsuoka, Makoto; Kasuga, Shigemitsu; Sazuka, Takashi

    2016-01-01

    Semi-dwarfing genes have contributed to enhanced lodging resistance, resulting in increased crop productivity. In the history of grain sorghum breeding, the spontaneous mutation, dw1 found in Memphis in 1905, was the first widely used semi-dwarfing gene. Here, we report the identification and characterization of Dw1. We performed quantitative trait locus (QTL) analysis and cloning, and revealed that Dw1 encodes a novel uncharacterized protein. Knockdown or T-DNA insertion lines of orthologous genes in rice and Arabidopsis also showed semi-dwarfism similar to that of a nearly isogenic line (NIL) carrying dw1 (NIL-dw1) of sorghum. A histological analysis of the NIL-dw1 revealed that the longitudinal parenchymal cell lengths of the internode were almost the same between NIL-dw1 and wildtype, while the number of cells per internode was significantly reduced in NIL-dw1. NIL-dw1dw3, carrying both dw1 and dw3 (involved in auxin transport), showed a synergistic phenotype. These observations demonstrate that the dw1 reduced the cell proliferation activity in the internodes, and the synergistic effect of dw1 and dw3 contributes to improved lodging resistance and mechanical harvesting. PMID:27329702

  5. The Importance of Juvenile Root Traits for Crop Yields

    NASA Astrophysics Data System (ADS)

    White, Philip; Adu, Michael; Broadley, Martin; Brown, Lawrie; Dupuy, Lionel; George, Timothy; Graham, Neil; Hammond, John; Hayden, Rory; Neugebauer, Konrad; Nightingale, Mark; Ramsay, Gavin; Thomas, Catherine; Thompson, Jacqueline; Wishart, Jane; Wright, Gladys

    2014-05-01

    Genetic variation in root system architecture (RSA) is an under-exploited breeding resource. This is partly a consequence of difficulties in the rapid and accurate assessment of subterranean root systems. However, although the characterisation of root systems of large plants in the field are both time-consuming and labour-intensive, high-throughput (HTP) screens of root systems of juvenile plants can be performed in the field, glasshouse or laboratory. It is hypothesised that improving the root systems of juvenile plants can accelerate access to water and essential mineral elements, leading to rapid crop establishment and, consequently, greater yields. This presentation will illustrate how aspects of the juvenile root systems of potato (Solanum tuberosum L.) and oilseed rape (OSR; Brassica napus L.) correlate with crop yields and examine the reasons for such correlations. It will first describe the significant positive relationships between early root system development, phosphorus acquisition, canopy establishment and eventual yield among potato genotypes. It will report the development of a glasshouse assay for root system architecture (RSA) of juvenile potato plants, the correlations between root system architectures measured in the glasshouse and field, and the relationships between aspects of the juvenile root system and crop yields under drought conditions. It will then describe the development of HTP systems for assaying RSA of OSR seedlings, the identification of genetic loci affecting RSA in OSR, the development of mathematical models describing resource acquisition by OSR, and the correlations between root traits recorded in the HTP systems and yields of OSR in the field.

  6. The importance of retaining a phylogenetic perspective in traits-based community analyses

    SciTech Connect

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    2015-04-08

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineages had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.

  7. The importance of retaining a phylogenetic perspective in traits-based community analyses

    DOE PAGESBeta

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    2015-04-08

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less

  8. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation

    PubMed Central

    Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747

  9. Evaluating Functional Diversity: Missing Trait Data and the Importance of Species Abundance Structure and Data Transformation.

    PubMed

    Májeková, Maria; Paal, Taavi; Plowman, Nichola S; Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R; Luke, Sarah H; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco

    2016-01-01

    Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data. PMID:26881747

  10. The soil microbial community predicts the importance of plant traits in plant-soil feedback.

    PubMed

    Ke, Po-Ju; Miki, Takeshi; Ding, Tzung-Su

    2015-04-01

    Reciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits. However, this separation neglects the complex indirect interactions between the two mechanisms. We developed a model coupling litter- and microbial-mediated PSFs to identify the relative importance of traits in controlling PSF strength, and its dependency on the composition of root-associated microbes (i.e. pathogens and/or mycorrhizal fungi). Results showed that although plant carbon: nitrogen (C : N) ratio and microbial nutrient acquisition traits were consistently important, the importance of litter decomposability varied. Litter decomposability was not a major PSF determinant when pathogens are present. However, its importance increased with the relative abundance of mycorrhizal fungi as nutrient released from the mycorrhizal-enhanced litter production to the nutrient-depleted soils result in synergistic increase of soil nutrient and mycorrhizal abundance. Data compiled from empirical studies also supported our predictions. We propose that the importance of litter decomposability depends on the composition of root-associated microbes. Our results provide new perspectives in plant invasion and trait-based ecology. PMID:25521190

  11. Seed traits and genes important for translational biology – highlights from recent discoveries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds provide foods, feeds, and fuels. They are also an important delivery system of genetic information, which is essential for the survival of wild species in ecosystems and the production of agricultural species. In this review, seed traits important for agriculture are discussed with an emphasis...

  12. Genome-wide mapping of spike-related and agronomic traits in a common wheat population derived from a supernumerary parent and an elite parent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat (Triticum aestivum L), exotic genotypes express a broad range of spike-related traits and could be used as a source of new genes to enrich the germplasm for wheat breeding programs. In the present study, a population of 163 recombinant inbred lines derived from a cross between an elite line...

  13. Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular stacking via a single transgene enables multiple traits being engineered efficiently in crops. However, whether distinct plant promoters co-existed in the same transgene could, like their mammalian counterparts, mutually interact or interfere remains unknown. In this study, researchers d...

  14. Quantitative Genetic Dissection of Shoot Architecture Traits in Maize: Towards a Functional Genomics Approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) affecting the total number of leaves (TNOL) made prior to flowering and the number of leaves below the ear (NLBE) were mapped and characterized in order to dissect the genetic regulatory components of these agronomically important traits of corn. The full set of interm...

  15. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes

    PubMed Central

    Thoquet, Philippe; Ghérardi, Michele; Journet, Etienne-Pascal; Kereszt, Attila; Ané, Jean-Michel; Prosperi, Jean-Marie; Huguet, Thierry

    2002-01-01

    Background The legume Medicago truncatula has emerged as a model plant for the molecular and genetic dissection of various plant processes involved in rhizobial, mycorrhizal and pathogenic plant-microbe interactions. Aiming to develop essential tools for such genetic approaches, we have established the first genetic map of this species. Two parental homozygous lines were selected from the cultivar Jemalong and from the Algerian natural population (DZA315) on the basis of their molecular and phenotypic polymorphism. Results An F2 segregating population of 124 individuals between these two lines was obtained using an efficient manual crossing technique established for M. truncatula and was used to construct a genetic map. This map spans 1225 cM (average 470 kb/cM) and comprises 289 markers including RAPD, AFLP, known genes and isoenzymes arranged in 8 linkage groups (2n = 16). Markers are uniformly distributed throughout the map and segregation distortion is limited to only 3 linkage groups. By mapping a number of common markers, the eight linkage groups are shown to be homologous to those of diploid alfalfa (M. sativa), implying a good level of macrosynteny between the two genomes. Using this M. truncatula map and the derived F3 populations, we were able to map the Mtsym6 symbiotic gene on linkage group 8 and the SPC gene, responsible for the direction of pod coiling, on linkage group 7. Conclusions These results demonstrate that Medicago truncatula is amenable to diploid genetic analysis and they open the way to map-based cloning of symbiotic or other agronomically-important genes using this model plant. PMID:11825338

  16. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.)

    PubMed Central

    2013-01-01

    Background Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. Results A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. Conclusion We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different

  17. RNA-seq based SNPs in some agronomically important oleiferous lines of Brassica rapa and their use for genome-wide linkage mapping and specific-region fine mapping

    PubMed Central

    2013-01-01

    Background Brassica rapa (AA) contains very diverse forms which include oleiferous types and many vegetable types. Genome sequence of B. rapa line Chiifu (ssp. pekinensis), a leafy vegetable type, was published in 2011. Using this knowledge, it is important to develop genomic resources for the oleiferous types of B. rapa. This will allow more involved molecular mapping, in-depth study of molecular mechanisms underlying important agronomic traits and introgression of traits from B. rapa to major oilseed crops - B. juncea (AABB) and B. napus (AACC). The study explores the availability of SNPs in RNA-seq generated contigs of three oleiferous lines of B. rapa - Candle (ssp. oleifera, turnip rape), YSPB-24 and Tetra (ssp. trilocularis, Yellow sarson) and their use in genome-wide linkage mapping and specific-region fine mapping using a RIL population between Chiifu and Tetra. Results RNA-seq was carried out on the RNA isolated from young inflorescences containing unopened floral buds, floral axis and small leaves, using Illumina paired-end sequencing technology. Sequence assembly was carried out using the Velvet de-novo programme and the assembled contigs were organised against Chiifu gene models, available in the BRAD-CDS database. RNA-seq confirmed the presence of more than 17,000 single-copy gene models described in the BRAD database. The assembled contigs and the BRAD gene models were analyzed for the presence of SSRs and SNPs. While the number of SSRs was limited, more than 0.2 million SNPs were observed between Chiifu and the three oleiferous lines. Assays for SNPs were designed using KASPar technology and tested on a F7-RIL population derived from a Chiifu x Tetra cross. The design of the SNP assays were based on three considerations - the 50 bp flanking region of the SNPs should be strictly similar, the SNP should have a read-depth of ≥7 and no exon/intron junction should be present within the 101 bp target region. Using these criteria, a total of 640 markers

  18. Few crop traits accurately predict variables important to productivity of processing sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recovery, case production, and gross profit margin, hereafter called ‘processor variables’, are as important metrics to processing sweet corn as grain yield is to field corn production. However, crop traits such as ear number or ear mass alone are reported in sweet corn production research rather t...

  19. Male-female genotype interactions maintain variation in traits important for sexual interactions and reproductive isolation.

    PubMed

    Castillo, Dean M; Delph, Lynda F

    2016-07-01

    Prezygotic reproductive isolation can evolve quickly when sexual selection drives divergence in traits important for sexual interactions between populations. It has been hypothesized that standing variation for male/female traits and preferences facilitates this rapid evolution and that variation in these traits is maintained by male-female genotype interactions in which specific female genotypes prefer specific male traits. This hypothesis can also explain patterns of speciation when ecological divergence is lacking, but this remains untested because it requires information about sexual interactions in ancestral lineages. Using a set of ancestral genotypes that previously had been identified as evolving reproductive isolation, we specifically asked whether there is segregating variation in female preference and whether segregating variation in sexual interactions is a product of male-female genotype interactions. Our results provide evidence for segregating variation in female preference and further that male-female genotype interactions are important for maintaining variation that selection can act on and that can lead to reproductive isolation. PMID:27271732

  20. The Importance of Species Traits for Species Distribution on Oceanic Islands

    PubMed Central

    Vazačová, Kristýna; Münzbergová, Zuzana

    2014-01-01

    Understanding species' ability to colonize new habitats is a key knowledge allowing us to predict species' survival in the changing landscapes. However, most studies exploring this topic observe distribution of species in landscapes which are under strong human influence being fragmented only recently and ignore the fact that the species distribution in these landscapes is far from equilibrium. Oceanic islands seem more appropriate systems for studying the relationship between species traits and its distribution as they are fragmented without human contribution and as they remained unchanged for a long evolutionary time. In our study we compared the values of dispersal as well as persistence traits among 18 species pairs from the Canary Islands differing in their distribution within the archipelago. The data were analyzed both with and without phylogenetic correction. The results demonstrate that no dispersal trait alone can explain the distribution of the species in the system. They, however, also suggest that species with better dispersal compared to their close relatives are better colonizers. Similarly, abundance of species in the archipelago seems to be an important predictor of species colonization ability only when comparing closely related species. This implies that analyses including phylogenetic correction may provide different insights than analyses without such a correction and both types of analyses should be combined to understand the importance of various plant traits for species colonization ability. PMID:25003737

  1. Integrated translational genomics for analysis of complex traits in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We will report on the integration of sequencing and genotype data from natural variation (by whole genome resequencing [wgs] or genotype by sequencing [gbs]), transcriptome (RNA-seq) and mutant analysis (also by wgs) with the goal of identifying genes controlling important agronomic traits and tran...

  2. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions.

    PubMed

    Armada, Elisabeth; Azcón, Rosario; López-Castillo, Olga M; Calvo-Polanco, Mónica; Ruiz-Lozano, Juan Manuel

    2015-05-01

    Studies have shown that some microorganisms autochthonous from stressful environments are beneficial when used with autochthonous plants, but these microorganisms rarely have been tested with allochthonous plants of agronomic interest. This study investigates the effectiveness of drought-adapted autochthonous microorganisms [Bacillus thuringiensis (Bt) and a consortium of arbuscular mycorrhizal (AM) fungi] from a degraded Mediterranean area to improve plant growth and physiology in Zea mays under drought stress. Maize plants were inoculated or not with B. thuringiensis, a consortium of AM fungi or a combination of both microorganisms. Plants were cultivated under well-watered conditions or subjected to drought stress. Several physiological parameters were measured, including among others, plant growth, photosynthetic efficiency, nutrients content, oxidative damage to lipids, accumulation of proline and antioxidant compounds, root hydraulic conductivity and the expression of plant aquaporin genes. Under drought conditions, the inoculation of Bt increased significantly the accumulation of nutrients. The combined inoculation of both microorganisms decreased the oxidative damage to lipids and accumulation of proline induced by drought. Several maize aquaporins able to transport water, CO2 and other compounds were regulated by the microbial inoculants. The impact of these microorganisms on plant drought tolerance was complementary, since Bt increased mainly plant nutrition and AM fungi were more active improving stress tolerance/homeostatic mechanisms, including regulation of plant aquaporins with several putative physiological functions. Thus, the use of autochthonous beneficial microorganisms from a degraded Mediterranean area is useful to protect not only native plants against drought, but also an agronomically important plant such as maize. PMID:25813343

  3. QTL mapping for economically important traits of common carp (Cyprinus carpio L.).

    PubMed

    Laghari, Muhammad Younis; Lashari, Punhal; Zhang, Xiaofeng; Xu, Peng; Narejo, Naeem Tariq; Xin, Baoping; Zhang, Yan; Sun, Xiaowen

    2015-02-01

    Quantitative trait loci (QTL) were analyzed for three economically important traits, i.e., body weight (BW), body length (BL), and body thickness (BT), in an F1 family of common carp holding the 190 progeny. A genetic linkage map spanning 3,301 cM in 50 linkage groups with 627 markers and an average distance of 5.6 cM was utilized for QTL mapping. Sixteen QTLs associated with all three growth-related traits were scattered across ten linkage groups, LG6, LG10, LG17, LG19, LG25, LG27, LG28, LG29, LG30, and LG39. Six QTLs for BW and five each for BL and BT explained phenotypic variance in the range 17.0-32.1%. All the nearest markers of QTLs were found to be significantly (p ≤ 0.05) related with the trait. Among these QTLs, a total of four, two (qBW30 and qBW39) related with BW, one (qBL39) associated with BL, and one (qBT29) related to BT, were found to be the major QTLs with a phenotypic variance of >20%. qBW30 and qBW39 with the nearest markers HLJ1691 and HLJ1843, respectively, show significant values of 0.0038 and 0.0031, correspondingly. QTLs qBL39 and qBT29 were found to have significant values of 0.0047 and 0.0015, respectively. Three QTLs (qBW27, qBW30, qBW39) of BW, two for BL (qBL19, qBL39), and two for BT (qBT6, qBT25) found in this study were similar to populations with different genetic backgrounds. In this study, the genomic region controlling economically important traits were located. These genomic regions will be the major sources for the discovery of important genes and pathways associated with growth-related traits in common carp. PMID:25078056

  4. The Relative Importance of Psychopathy-Related Traits in Predicting Impersonal Sex and Hostile Masculinity

    PubMed Central

    LeBreton, James M.; Baysinger, Michael; Abbey, Antonia; Jacques-Tiura, Angela J.

    2013-01-01

    This paper reports the relative contributions of several facets of subclinical psychopathy (i.e., callous affect, erratic lifestyle, interpersonal manipulation), subclinical narcissism (i.e., entitlement, exploitation), and trait aggression (i.e., anger) to the prediction of four enduring attitudes towards women and sexual assault (i.e., hostility towards women, negative attitudes regarding women, sexual dominance, impersonal sex) and a behavioral indicator of an impersonal sexual behavior (i.e., number of one-night stands). Survey data were collected from 470 single men living in the Detroit Metropolitan area. The importance of personality traits varied as a function of the outcome with anger most predictive of hostility toward women; erratic lifestyle most predictive of impersonal sexual attitudes and behavior, and entitlement most predictive of sexual dominance and negative attitudes toward women. These outcome-specific findings are interpreted and directions for future research are discussed. PMID:26082565

  5. Comprehensive association analysis for 50 agronomic traits in peanut using the "reference set" comprising 300 genotypes from 48 countries of the semi-arid tropics of the world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut is an important source of nutrition and supports livelihood for millions of small-holder farmers in the semi-arid tropics (SAT) of world. Newly developed peanut cultivars could not yield to its original potential due to several biotic and abiotic stress factors. Under such circumstances, the ...

  6. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.).

    PubMed

    Massa, Alicia N; Manrique-Carpintero, Norma C; Coombs, Joseph J; Zarka, Daniel G; Boone, Anne E; Kirk, William W; Hackett, Christine A; Bryan, Glenn J; Douches, David S

    2015-11-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  7. Associated effects of copy number variants on economically important traits in Spanish Holstein dairy cattle.

    PubMed

    Ben Sassi, Neila; González-Recio, Óscar; de Paz-Del Río, Raquel; Rodríguez-Ramilo, Silvia T; Fernández, Ana I

    2016-08-01

    Copy number variants (CNV) are structural variants consisting of duplications or deletions of genomic fragments longer than 1 kb that present variability in the population and are heritable. The objective of this study was to identify CNV regions (CNVR) associated with 7 economically important traits (production, functional, and type traits) in Holstein cattle: fat yield, protein yield, somatic cell count, days open, stature, foot angle, and udder depth. Copy number variants were detected by using deep-sequencing data from 10 sequenced bulls and the Bovine SNP chip array hybridization signals. To reduce the number of false-positive calls, only CNV identified by both sequencing and Bovine SNP chip assays were kept in the final data set. This resulted in 823 CNVR. After filtering by minor allele frequency >0.01, a total of 90 CNVR appeared segregating in the bulls that had phenotypic data. Linear and quadratic CNVR effects were estimated using Bayesian approaches. A total of 15 CNVR were associated with the traits included in the analysis. One CNVR was associated with fat and protein yield, another 1 with fat yield, 3 with stature, 1 with foot angle, 7 with udder depth, and only 1 with days open. Among the genes located within these regions, highlighted were the MTHFSD gene that belongs to the folate metabolism genes, which play critical roles in regulating milk protein synthesis; the SNRPE gene that is related to several morphological pathologies; and the NF1 gene, which is associated with potential effects on fertility traits. The results obtained in the current study revealed that these CNVR segregate in the Holstein population, and therefore some potential exists to increase the frequencies of the favorable alleles in the population after independent validation of results in this study. However, genetic variance explained by the variants reported in this study was small. PMID:27209136

  8. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.)

    PubMed Central

    Massa, Alicia N.; Manrique-Carpintero, Norma C.; Coombs, Joseph J.; Zarka, Daniel G.; Boone, Anne E.; Kirk, William W.; Hackett, Christine A.; Bryan, Glenn J.; Douches, David S.

    2015-01-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  9. AFLP-Based Analysis of Genetic Diversity, Population Structure, and Relationships with Agronomic Traits in Rice Germplasm from North Region of Iran and World Core Germplasm Set.

    PubMed

    Sorkheh, Karim; Masaeli, Mohammad; Chaleshtori, Maryam Hosseini; Adugna, Asfaw; Ercisli, Sezai

    2016-04-01

    Analysis of the genetic diversity and population structure of crops is very important for use in breeding programs and for genetic resources conservation. We analyzed the genetic diversity and population structure of 47 rice genotypes from diverse origins using amplified fragment length polymorphism (AFLP) markers and morphological characters. The 47 genotypes, which were composed of four populations: Iranian native varieties, Iranian improved varieties, International Rice Research Institute (IRRI) rice varieties, and world rice collections, were analyzed using ten primer combinations. A total of 221 scorable bands were produced with an average of 22.1 alleles per pair of primers, of which 120 (54.30%) were polymorphic. The polymorphism information content (PIC) values varied from 0.32 to 0.41 with an average of 0.35. The high percentage of polymorphic bands (%PB) was found to be 64.71 and the resolving power (R p) collections were 63.36. UPGMA clustering based on numerical data from AFLP patterns clustered all 47 genotypes into three large groups. The genetic similarity between individuals ranged from 0.54 to 0.94 with an average of 0.74. Population genetic tree showed that Iranian native cultivars formed far distant cluster from the other populations, which may indicate that these varieties had minimal genetic change over time. Analysis of molecular variance (AMOVA) revealed that the largest proportion of the variation (84%) to be within populations showing the inbreeding nature of rice. Therefore, Iranian native varieties (landraces) may have unique genes, which can be used for future breeding programs and there is a need to conserve this unique diversity. Furthermore, crossing of Iranian genotypes with the genetically distant genotypes in the other three populations may result in useful combinations, which can be used as varieties and/or lines for future rice breeding programs. PMID:26762294

  10. Localization of quantitative trait loci for diapause and other photoperiodically regulated life history traits important in adaptation to seasonally varying environments.

    PubMed

    Tyukmaeva, Venera I; Veltsos, Paris; Slate, Jon; Gregson, Emma; Kauranen, Hannele; Kankare, Maaria; Ritchie, Michael G; Butlin, Roger K; Hoikkala, Anneli

    2015-06-01

    Seasonally changing environments at high latitudes present great challenges for the reproduction and survival of insects, and photoperiodic cues play an important role in helping them to synchronize their life cycle with prevalent and forthcoming conditions. We have mapped quantitative trait loci (QTL) responsible for the photoperiodic regulation of four life history traits, female reproductive diapause, cold tolerance, egg-to-eclosion development time and juvenile body weight in Drosophila montana strains from different latitudes in Canada and Finland. The F2 progeny of the cross was reared under a single photoperiod (LD cycle 16:8), which the flies from the Canadian population interpret as early summer and the flies from the Finnish population as late summer. The analysis revealed a unique QTL for diapause induction on the X chromosome and several QTL for this and the other measured traits on the 4th chromosome. Flies' cold tolerance, egg-to-eclosion development time and juvenile body weight had several QTL also on the 2nd, 3rd and 5th chromosome, some of the peaks overlapping with each other. These results suggest that while the downstream output of females' photoperiodic diapause response is partly under a different genetic control from that of the other traits in the given day length, all traits also share some QTL, possibly involving genes with pleiotropic effects and/or multiple tightly linked genes. Nonoverlapping QTL detected for some of the traits also suggest that the traits are potentially capable of independent evolution, even though this may be restricted by epistatic interactions and/or correlations and trade-offs between the traits. PMID:25877951

  11. Habitat effects on the relative importance of trait- and density-mediated indirect interactions.

    PubMed

    Trussell, Geoffrey C; Ewanchuk, Patrick J; Matassa, Catherine M

    2006-11-01

    Classical views of trophic cascades emphasize the primacy of consumptive predator effects on prey populations to the transmission of indirect effects [density-mediated indirect interactions (DMIIs)]. However, trophic cascades can also emerge without changes in the density of interacting species because of non-consumptive predator effects on prey traits such as foraging behaviour [trait-mediated indirect interactions (TMIIs)]. Although ecologists appreciate this point, measurements of the relative importance of each indirect predator effect are rare. Experiments with a three-level, rocky shore food chain containing an invasive predatory crab (Carcinus maenas), an intermediate consumer (the snail, Nucella lapillus) and a basal resource (the barnacle, Semibalanus balanoides) revealed that the strength of TMIIs is comparable with, or exceeds, that of DMIIs. Moreover, the sign and strength of each indirect predator effect depends on whether it is measured in risky or refuge habitats. Because habitat shifts are often responsible for the emergence of TMIIs, attention to the sign and strength of these interactions in both habitats will improve our understanding of the link between individual behaviour and community dynamics. PMID:17040327

  12. The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework.

    PubMed

    Godoy, Oscar; Valladares, Fernando; Castro-Díez, Pilar

    2012-09-01

    Functional traits, their plasticity and their integration in a phenotype have profound impacts on plant performance. We developed structural equation models (SEMs) to evaluate their relative contribution to promote invasiveness in plants along resource gradients. We compared 20 invasive-native phylogenetically and ecologically related pairs. SEMs included one morphological (root-to-shoot ratio (R/S)) and one physiological (photosynthesis nitrogen-use efficiency (PNUE)) trait, their plasticities in response to nutrient and light variation, and phenotypic integration among 31 traits. Additionally, these components were related to two fitness estimators, biomass and survival. The relative contributions of traits, plasticity and integration were similar in invasive and native species. Trait means were more important than plasticity and integration for fitness. Invasive species showed higher fitness than natives because: they had lower R/S and higher PNUE values across gradients; their higher PNUE plasticity positively influenced biomass and thus survival; and they offset more the cases where plasticity and integration had a negative direct effect on fitness. Our results suggest that invasiveness is promoted by higher values in the fitness hierarchy--trait means are more important than trait plasticity, and plasticity is similar to integration--rather than by a specific combination of the three components of the functional strategy. PMID:22709277

  13. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China?

    PubMed Central

    Li, Feng-Lan; Zan, Qi-Jie; Hu, Zheng-Yu; Shin, Paul-K. S.; Cheung, Siu-Gin; Wong, Yuk-Shan; Tam, Nora Fung-Yee; Lei, An-Ping

    2016-01-01

    A higher photosynthesis and lower energetic cost are recognized as important characteristics for invasive species, but whether these traits are also important for the ability of alien mangrove species to become invasive has seldom been reported. A microcosm study was conducted to compare the photosynthetic characteristics, energetic cost indices and other growth traits between two alien species (Sonneratia apetala and S. caseolaris) and four native mangrove species over four seasons in a subtropical mangrove nature reserve in Shenzhen, South China. The aim of the study was to evaluate the invasive potential of Sonneratia based on these physiological responses. The annual average net photosynthetic rate (Pn), stomatal conductance (Gs) and total carbon assimilation per unit leaf area (Atotal) of the two alien Sonneratia species were significantly higher than the values of the native mangroves. In contrast, the opposite results were obtained for the leaf construction cost (CC) per unit dry mass (CCM) and CC per unit area (CCA) values. The higher Atotal and lower CC values resulted in a 72% higher photosynthetic energy-use efficiency (PEUE) for Sonneratia compared to native mangroves, leading to a higher relative growth rate (RGR) of the biomass and height of Sonneratia with the respective values being 51% and 119% higher than those of the native species. Higher photosynthetic indices for Sonneratia compared to native species were found in all seasons except winter, whereas lower CC values were found in all four seasons. The present findings reveal that alien Sonneratia species may adapt well and become invasive in subtropical mangrove wetlands in Shenzhen due to their higher photosynthetic characteristics coupled with lower costs in energy use, leading to a higher PEUE. The comparison of these physiological responses between S. apetala and S. caseolaris reveal that the former species is more invasive than the latter one, thus requiring more attention in future. PMID

  14. Neonatal piglet traits of importance for survival in crates and indoor pens.

    PubMed

    Pedersen, L J; Berg, P; Jørgensen, G; Andersen, I L

    2011-04-01

    ,1050) = 18, P < 0.0001). In both CT and PN, the birth weight, body temperature 2 h after birth, and birth process were important traits related to crushing, starvation, and disease. Neither housing nor breeding value influenced mortality or traits of importance for the inborn viability of piglets. The results emphasize that the microclimate in the PN for newborn piglets and its heat-preserving properties are more important for survival than whether the sow is crated or penned. PMID:21148785

  15. Selection index based on the relative importance of traits and possibilities in breeding popcorn.

    PubMed

    Vieira, R A; Rocha, R; Scapim, C A; Amaral Júnior, A T; Vivas, M

    2016-01-01

    One of the major difficulties faced by popcorn breeders is the negative correlation between popping expansion (PE) and grain yield (GY). It is necessary to overcome this difficulty to obtain promising genotypes. One helpful tool in this process is a selection index because it allows multiple features of interest to be selected. Thus, the present study proposes a new and comprehensive selection index applied in 169 half-sib families in UEM-Co1 and UEM-Co2 composites during two cycles of recurrent selection. An experiment was conducted in a 13 x 13 lattice square in the 2004/2005 and 2006/2007 crop years in Maringá, Paraná State, and PE and GY were evaluated. To calculate Fi statistics, the following relative importance (RI) assignments were used: 0.5 for both PE and GY, and 0.70 and 0.30 for PE and GY, respectively. Families were classified according to Fi values such that Fi = 0 indicated that genotypes met the average of those selected by direct selection, Fi < 0 indicated that genotypes fell below the average of those selected, and Fi > 0 indicated that genotypes exceeded the average of those selected. Thus, desirable values of Fi were positive, indicating that the selected families were higher than those families that would be selected by direct selection for both traits. Therefore, we concluded that the novel Fi statistic was satisfactory for family selection because simultaneous and higher gains for both traits in both composites were obtained. PMID:27173260

  16. Assessing the Importance of Intraspecific Variability in Dung Beetle Functional Traits

    PubMed Central

    Griffiths, Hannah M.; Louzada, Julio; Bardgett, Richard D.; Barlow, Jos

    2016-01-01

    Functional diversity indices are used to facilitate a mechanistic understanding of many theoretical and applied questions in current ecological research. The use of mean trait values in functional indices assumes that traits are robust, in that greater variability exists between than within species. While the assertion of robust traits has been explored in plants, there exists little information on the source and extent of variability in the functional traits of higher trophic level organisms. Here we investigated variability in two functionally relevant dung beetle traits, measured from individuals collected from three primary forest sites containing distinct beetle communities: body mass and back leg length. In doing so we too addressed the following questions: (i) what is the contribution of intra vs. interspecific differences in trait values; (ii) what sample size is needed to provide representative species mean trait values; and (iii) what impact does omission of intraspecific trait information have on the calculation of functional diversity (FD) indices from naturally assembled communities? At the population level, interspecific differences explained the majority of variability in measured traits (between 94% and 96%). In accordance with this, the error associated with calculating FD without inclusion of intraspecific variability was low, less than 20% in all cases. This suggests that complete sampling to capture intraspecific variance in traits is not necessary even when investigating the FD of small and/or naturally formed communities. To gain an accurate estimation of species mean trait values we encourage the measurement of 30–60 individuals and, where possible, these should be taken from specimens collected from the site of study. PMID:26939121

  17. Discovery of novel genetic networks associated with 19 economically important traits in beef cattle.

    PubMed

    Jiang, Zhihua; Michal, Jennifer J; Chen, Jie; Daniels, Tyler F; Kunej, Tanja; Garcia, Matthew D; Gaskins, Charles T; Busboom, Jan R; Alexander, Leeson J; Wright, Raymond W; Macneil, Michael D

    2009-01-01

    Quantitative or complex traits are determined by the combined effects of many loci, and are affected by genetic networks or molecular pathways. In the present study, we genotyped a total of 138 mutations, mainly single nucleotide polymorphisms derived from 71 functional genes on a Wagyu x Limousin reference population. Two hundred forty six F(2) animals were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. A total of 2,280 single marker-trait association runs with 120 tagged mutations selected based on the HAPLOVIEW analysis revealed 144 significant associations (P < 0.05), but 50 of them were removed from the analysis due to the small number of animals (< or = 9) in one genotype group or absence of one genotype among three genotypes. The remaining 94 single-trait associations were then placed into three groups of quantitative trait modes (QTMs) with additive, dominant and overdominant effects. All significant markers and their QTMs associated with each of these 19 traits were involved in a linear regression model analysis, which confirmed single-gene associations for 4 traits, but revealed two-gene networks for 8 traits and three-gene networks for 5 traits. Such genetic networks involving both genotypes and QTMs resulted in high correlations between predicted and actual values of performance, thus providing evidence that the classical Mendelian principles of inheritance can be applied in understanding genetic complexity of complex phenotypes. Our present study also indicated that carcass, eating quality and fatty acid composition traits rarely share genetic networks. Therefore, marker-assisted selection for improvement of one category of these traits would not interfere with improvement of another. PMID:19727437

  18. Identification of Major and Minor QTL for Ecologically Important Morphological Traits in Three-Spined Sticklebacks (Gasterosteus aculeatus)

    PubMed Central

    Liu, Jun; Shikano, Takahito; Leinonen, Tuomas; Cano, José Manuel; Li, Meng-Hua; Merilä, Juha

    2014-01-01

    Quantitative trait locus (QTL) mapping studies of Pacific three-spined sticklebacks (Gasterosteus aculeatus) have uncovered several genomic regions controlling variability in different morphological traits, but QTL studies of Atlantic sticklebacks are lacking. We mapped QTL for 40 morphological traits, including body size, body shape, and body armor, in a F2 full-sib cross between northern European marine and freshwater three-spined sticklebacks. A total of 52 significant QTL were identified at the 5% genome-wide level. One major QTL explaining 74.4% of the total variance in lateral plate number was detected on LG4, whereas several major QTL for centroid size (a proxy for body size), and the lengths of two dorsal spines, pelvic spine, and pelvic girdle were mapped on LG21 with the explained variance ranging from 27.9% to 57.6%. Major QTL for landmark coordinates defining body shape variation also were identified on LG21, with each explaining ≥15% of variance in body shape. Multiple QTL for different traits mapped on LG21 overlapped each other, implying pleiotropy and/or tight linkage. Thus, apart from providing confirmatory data to support conclusions born out of earlier QTL studies of Pacific sticklebacks, this study also describes several novel QTL of both major and smaller effect for ecologically important traits. The finding that many major QTL mapped on LG21 suggests that this linkage group might be a hotspot for genetic determinants of ecologically important morphological traits in three-spined sticklebacks. PMID:24531726

  19. Association mapping of four important traits using the USDA rice mini-core collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical quantitative trait loci (QTL) mapping in diploids reveals only a slice of the genetic architecture for a trait because only two alleles that differ between the two parental lines segregate. Association mapping provides an effective method to identify QTL that have effects across a broad sp...

  20. Research review: the importance of callous-unemotional traits for developmental models of aggressive and antisocial behavior.

    PubMed

    Frick, Paul J; White, Stuart F

    2008-04-01

    The current paper reviews research suggesting that the presence of a callous and unemotional interpersonal style designates an important subgroup of antisocial and aggressive youth. Specifically, callous-unemotional (CU) traits (e.g., lack of guilt, absence of empathy, callous use of others) seem to be relatively stable across childhood and adolescence and they designate a group of youth with a particularly severe, aggressive, and stable pattern of antisocial behavior. Further, antisocial youth with CU traits show a number of distinct emotional, cognitive, and personality characteristics compared to other antisocial youth. These characteristics of youth with CU traits have important implications for causal models of antisocial and aggressive behavior, for methods used to study antisocial youth, and for assessing and treating antisocial and aggressive behavior in children and adolescents. PMID:18221345

  1. The relative importance of trait vs. genetic differentiation for the outcome of interactions among plant genotypes.

    PubMed

    Abbott, Jessica M; Stachowicz, John J

    2016-01-01

    Functional trait differences and genetic distance are increasingly used as metrics to predict the. outcome of species interactions and the maintenance of diversity. We apply these ideas to intraspecific diversity for the seagrass Zostera marina (eelgrass), by explicitly testing the influence of trait distance and genetic relatedness on the outcome of pairwise interactions among eelgrass genotypes. Increasing trait distance (but not relatedness) between eelgrass genotypes decreased the likelihood that both would persist over a year-long field experiment, contrary to our expectations based on niche partitioning. In plots in which one genotype excluded another, the biomass and growth of the remaining genotype increased with the trait distance and genetic relatedness of the initial pair, presumably due to a legacy of past interactions. Together these results suggest that sustained competition among functionally similar genotypes did not produce a clear winner, but rapid exclusion occurred among genotypes with distinct trait combinations. Borrowing from coexistence theory, we argue that fitness differences between genotypes with distinct traits overwhelmed any stabilizing effects of niche differentiation. Previously observed effects of eelgrass genetic diversity on performance may rely on nonadditive interactions among multiple genotypes or sufficient environmental heterogeneity to increase stabilizing forces and/or interactions. PMID:27008778

  2. An Exploratory Study of the Effect of Professional Internships on Students' Perception of the Importance of Employment Traits

    ERIC Educational Resources Information Center

    Green, Brian Patrick; Graybeal, Patricia; Madison, Roland L.

    2011-01-01

    The authors measured the effects of a formal internship on students' perceptions of the importance of traits employees consider during the hiring process. Prior studies have reported that accounting firms perceive students with internship experience as better entry-level accountants. This perception may be related to changes in student beliefs…

  3. Research Review: The Importance of Callous-Unemotional Traits for Developmental Models of Aggressive and Antisocial Behavior

    ERIC Educational Resources Information Center

    Frick, Paul J.; White, Stuart F.

    2008-01-01

    The current paper reviews research suggesting that the presence of a callous and unemotional interpersonal style designates an important subgroup of antisocial and aggressive youth. Specifically, callous-unemotional (CU) traits (e.g., lack of guilt, absence of empathy, callous use of others) seem to be relatively stable across childhood and…

  4. The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits

    PubMed Central

    van Geem, Moniek; Gols, Rieta; van Dam, Nicole M.; van der Putten, Wim H.; Fortuna, Taiadjana; Harvey, Jeffrey A.

    2013-01-01

    Over the past two decades a growing body of empirical research has shown that many ecological processes are mediated by a complex array of indirect interactions occurring between rhizosphere-inhabiting organisms and those found on aboveground plant parts. Aboveground–belowground studies have thus far focused on elucidating processes and underlying mechanisms that mediate the behavior and performance of invertebrates in opposite ecosystem compartments. Less is known about genetic variation in plant traits such as defense as that may be driven by above- and belowground trophic interactions. For instance, although our understanding of genetic variation in aboveground plant traits and its effects on community-level interactions is well developed, little is known about the importance of aboveground–belowground interactions in driving this variation. Plant traits may have evolved in response to selection pressures from above- and below-ground interactions from antagonists and mutualists. Here, we discuss gaps in our understanding of genetic variation in plant-related traits as they relate to aboveground and belowground multitrophic interactions. When metabolic resources are limiting, multiple attacks by antagonists in both domains may lead to trade-offs. In nature, these trade-offs may critically depend upon their effects on plant fitness. Natural enemies of herbivores may also influence selection for different traits via top–down control. At larger scales these interactions may generate evolutionary “hotspots” where the expression of various plant traits is the result of strong reciprocal selection via direct and indirect interactions. The role of abiotic factors in driving genetic variation in plant traits is also discussed. PMID:24348484

  5. Salt effects on functional traits in model and in economically important Lotus species.

    PubMed

    Uchiya, P; Escaray, F J; Bilenca, D; Pieckenstain, F; Ruiz, O A; Menéndez, A B

    2016-07-01

    A common stress on plants is NaCl-derived soil salinity. Genus Lotus comprises model and economically important species, which have been studied regarding physiological responses to salinity. Leaf area ratio (LAR), root length ratio (RLR) and their components, specific leaf area (SLA) and leaf mass fraction (LMF) and specific root length (SRL) and root mass fraction (RMF) might be affected by high soil salinity. We characterised L. tenuis, L. corniculatus, L. filicaulis, L. creticus, L. burtii and L. japonicus grown under different salt concentrations (0, 50, 100 and 150 mm NaCl) on the basis of SLA, LMF, SRL and RMF using PCA. We also assessed effects of different salt concentrations on LAR and RLR in each species, and explored whether changes in these traits provide fitness benefit. Salinity (150 mm NaCl) increased LAR in L. burtii and L. corniculatus, but not in the remaining species. The highest salt concentration caused a decrease of RLR in L. japonicus Gifu, but not in the remaining species. Changes in LAR and RLR would not be adaptive, according to adaptiveness analysis, with the exception of SLA changes in L. corniculatus. PCA revealed that under favourable conditions plants optimise surfaces for light and nutrient acquisition (SLA and SRL), whereas at higher salt concentrations they favour carbon allocation to leaves and roots (LMF and RMF) in detriment to their surfaces. PCA also showed that L. creticus subjected to saline treatment was distinguished from the remaining Lotus species. We suggest that augmented carbon partitioning to leaves and roots could constitute a salt-alleviating mechanism through toxic ion dilution. PMID:27007305

  6. Development of high density SNP-based linkage map and tagging leaf spot resistance trait in pearl millet using GBS markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pearl millet is an important forage and grain crop in many parts of the world. Genome mapping studies are a prerequisite for tagging agronomically important traits. Genotyping-by-Sequencing (GBS) markers can be used to build high density linkage maps even in species lacking a reference genome. A re...

  7. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    PubMed Central

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in

  8. Discovery of novel genetic networks associated with 19 economically important traits in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative or complex traits are determined by the combined effects of many loci, and are affected by gene-gene interactions, genetic networks or molecular pathways. In the present study, we genotyped a total of 138 mutations, mainly single nucleotide polymorphisms derived from 71 functional gene...

  9. Global value of GM rice: a review of expected agronomic and consumer benefits.

    PubMed

    Demont, Matty; Stein, Alexander J

    2013-06-25

    Unlike the other major crops, no genetically modified (GM) varieties of rice have been commercialized at a large scale. Within the next 2-3 years new transgenic rice varieties could be ready for regulatory approval and subsequent commercialization, though. Given the importance of rice as staple crop for many of the world's poorest people, this will have implications for the alleviation of poverty, hunger and malnutrition. Thus, policy-makers need to be aware of the potential benefits of GM rice. We provide an overview of the literature and discuss the evidence on expected agronomic and consumer benefits of genetically engineered rice. We find that while GM rice with improved agronomic traits could deliver benefits similar to already commercialized biotechnology crops, expected benefits of consumer traits could be higher by an order of magnitude. By aggregating the expected annual benefits, we estimate the global value of GM rice to be US$64 billion per year. This is only an indicative value, as more GM varieties will become available in future. Nevertheless, such a figure can help guide policy-makers when deciding on the approval or funding of biotechnology crops and it may also raise awareness among consumers about what is at stake for their societies. PMID:23628812

  10. Big Five personality traits: are they really important for the subjective well-being of Indians?

    PubMed

    Tanksale, Deepa

    2015-02-01

    This study empirically examined the relationship between the Big Five personality traits and subjective well-being (SWB) in India. SWB variables used were life satisfaction, positive affect and negative affect. A total of 183 participants in the age range 30-40 years from Pune, India, completed the personality and SWB measures. Backward stepwise regression analysis showed that the Big Five traits accounted for 17% of the variance in life satisfaction, 35% variance in positive affect and 28% variance in negative affect. Conscientiousness emerged as the strongest predictor of life satisfaction. In line with the earlier research findings, neuroticism and extraversion were found to predict negative affect and positive affect, respectively. Neither openness to experience nor agreeableness contributed to SWB. The research emphasises the need to revisit the association between personality and SWB across different cultures, especially non-western cultures. PMID:25611929

  11. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines

    PubMed Central

    Wang, Gongwei; Schmalenbach, Inga; von Korff, Maria; Léon, Jens; Kilian, Benjamin; Rode, Jeannette

    2010-01-01

    The control of flowering time has important impacts on crop yield. The variation in response to day length (photoperiod) and low temperature (vernalization) has been selected in barley to provide adaptation to different environments and farming practices. As a further step towards unraveling the genetic mechanisms underlying flowering time control in barley, we investigated the allelic variation of ten known or putative photoperiod and vernalization pathway genes between two genotypes, the spring barley elite cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare) and the wild barley accession ‘ISR42-8’ (Hordeum vulgare ssp. spontaneum). The genes studied are Ppd-H1, VRN-H1, VRN-H2, VRN-H3, HvCO1, HvCO2, HvGI, HvFT2, HvFT3 and HvFT4. ‘Scarlett’ and ‘ISR42-8’ are the parents of the BC2DH advanced backcross population S42 and a set of wild barley introgression lines (S42ILs). The latter are derived from S42 after backcrossing and marker-assisted selection. The genotypes and phenotypes in S42 and S42ILs were utilized to determine the genetic map location of the candidate genes and to test if these genes may exert quantitative trait locus (QTL) effects on flowering time, yield and yield-related traits in the two populations studied. By sequencing the characteristic regions of the genes and genotyping with diagnostic markers, the contrasting allelic constitutions of four known flowering regulation genes were identified as ppd-H1, Vrn-H1, vrn-H2 and vrn-H3 in ‘Scarlett’ and as Ppd-H1, vrn-H1, Vrn-H2 and a novel allele of VRN-H3 in ‘ISR42-8’. All candidate genes could be placed on a barley simple sequence repeat (SSR) map. Seven candidate genes (Ppd-H1, VRN-H2, VRN-H3, HvGI, HvFT2, HvFT3 and HvFT4) were associated with flowering time QTLs in population S42. Four exotic alleles (Ppd-H1, Vrn-H2, vrn-H3 and HvCO1) possibly exhibited significant effects on flowering time in S42ILs. In both populations, the QTL showing the strongest effect corresponded to

  12. An application of belief-importance theory with reference to trait emotional intelligence, mood, and somatic complaints.

    PubMed

    Petrides, K V

    2011-04-01

    This article describes the basic principles of belief-importance (belimp) theory and tests them in two empirical studies. Belimp theory hypothesizes that personality traits confer a propensity to perceive convergences and divergences between our belief that we can attain goals and the importance that we place on these goals. Belief and importance are conceptualized as two coordinates, together defining the belimp plane. Four distinct quadrants can be identified within the belimp plane (Hubris, Motivation, Depression and Apathy), broadly corresponding to the personality dimensions of trait emotional intelligence, conscientiousness, neuroticism and introversion. Study 1 (N=365) defines the four quadrants in relation to goals about financial security and shows that they score differently on trait emotional intelligence, mood and somatic complaints. Study 2 (N=230) defines the quadrants in relation to goals about appearance and, separately, in relation to goals about popularity, and replicates the findings of the first study. Strategies and requirements for testing belimp theory are presented, as are a number of theoretical and practical advantages that it can potentially offer. PMID:20602738

  13. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat.

    PubMed

    Tomar, Ram Sewak Singh; Tiwari, Sushma; Vinod; Naik, Bhojaraja K; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S M S

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010-11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  14. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat

    PubMed Central

    Vinod; Naik, Bhojaraja K.; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S. M. S.

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010–11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  15. Association Mapping in Scandinavian Winter Wheat for Yield, Plant Height, and Traits Important for Second-Generation Bioethanol Production.

    PubMed

    Bellucci, Andrea; Torp, Anna Maria; Bruun, Sander; Magid, Jakob; Andersen, Sven B; Rasmussen, Søren K

    2015-01-01

    A collection of 100 wheat varieties representing more than 100 years of wheat-breeding history in Scandinavia was established in order to identify marker-trait associations for plant height (PH), grain yield (GY), and biomass potential for bioethanol production. The field-grown material showed variations in PH from 54 to 122 cm and in GY from 2 to 6.61 t ha(-1). The release of monomeric sugars was determined by high-throughput enzymatic treatment of ligno-cellulosic material and varied between 0.169 and 0.312 g/g dm for glucose (GLU) and 0.146 and 0.283 g/g dm for xylose (XYL). As expected, PH and GY showed to be highly influenced by genetic factors with repeatability (R) equal to 0.75 and 0.53, respectively, while this was reduced for GLU and XYL (R = 0.09 for both). The study of trait correlations showed how old, low-yielding, tall varieties released higher amounts of monomeric sugars after straw enzymatic hydrolysis, showing reduced recalcitrance to bioconversion compared to modern varieties. Ninety-three lines from the collection were genotyped with the DArTseq(®) genotypic platform and 5525 markers were used for genome-wide association mapping. Six quantitative trait loci (QTLs) for GY, PH, and GLU released from straw were mapped. One QTL for PH was previously reported, while the remaining QTLs constituted new genomic regions linked to trait variation. This paper is one of the first studies in wheat to identify QTLs that are important for bioethanol production based on a genome-wide association approach. PMID:26635859

  16. Association Mapping in Scandinavian Winter Wheat for Yield, Plant Height, and Traits Important for Second-Generation Bioethanol Production

    PubMed Central

    Bellucci, Andrea; Torp, Anna Maria; Bruun, Sander; Magid, Jakob; Andersen, Sven B.; Rasmussen, Søren K.

    2015-01-01

    A collection of 100 wheat varieties representing more than 100 years of wheat-breeding history in Scandinavia was established in order to identify marker-trait associations for plant height (PH), grain yield (GY), and biomass potential for bioethanol production. The field-grown material showed variations in PH from 54 to 122 cm and in GY from 2 to 6.61 t ha-1. The release of monomeric sugars was determined by high-throughput enzymatic treatment of ligno-cellulosic material and varied between 0.169 and 0.312 g/g dm for glucose (GLU) and 0.146 and 0.283 g/g dm for xylose (XYL). As expected, PH and GY showed to be highly influenced by genetic factors with repeatability (R) equal to 0.75 and 0.53, respectively, while this was reduced for GLU and XYL (R = 0.09 for both). The study of trait correlations showed how old, low-yielding, tall varieties released higher amounts of monomeric sugars after straw enzymatic hydrolysis, showing reduced recalcitrance to bioconversion compared to modern varieties. Ninety-three lines from the collection were genotyped with the DArTseq® genotypic platform and 5525 markers were used for genome-wide association mapping. Six quantitative trait loci (QTLs) for GY, PH, and GLU released from straw were mapped. One QTL for PH was previously reported, while the remaining QTLs constituted new genomic regions linked to trait variation. This paper is one of the first studies in wheat to identify QTLs that are important for bioethanol production based on a genome-wide association approach. PMID:26635859

  17. Quantitative genetic parameters for yield, plant growth and cone chemical traits in hop (Humulus lupulus L.)

    PubMed Central

    2014-01-01

    Background Most traits targeted in the genetic improvement of hop are quantitative in nature. Improvement based on selection of these traits requires a comprehensive understanding of their inheritance. This study estimated quantitative genetic parameters for 20 traits related to three key objectives for the genetic improvement of hop: cone chemistry, cone yield and agronomic characteristics. Results Significant heritable genetic variation was identified for α-acid and β-acid, as well as their components and relative proportions. Estimates of narrow-sense heritability for these traits (h 2  = 0.15 to 0.29) were lower than those reported in previous hop studies, but were based on a broader suite of families (108 from European, North American and hybrid origins). Narrow-sense heritabilities are reported for hop growth traits for the first time (h 2  = 0.04 to 0.20), relating to important agronomic characteristics such as emergence, height and lateral morphology. Cone chemistry and growth traits were significantly genetically correlated, such that families with more vigorous vegetative growth were associated with lower α-acid and β-acid levels. This trend may reflect the underlying population structure of founder genotypes (European and North American origins) as well as past selection in the Australian environment. Although male and female hop plants are thought to be indistinguishable until flowering, sex was found to influence variation in many growth traits, with male and female plants displaying differences in vegetative morphology from emergence to cone maturity. Conclusions This study reveals important insights into the genetic control of quantitative hop traits. The information gained will provide hop breeders with a greater understanding of the additive genetic factors which affect selection of cone chemistry, yield and agronomic characteristics in hop, aiding in the future development of improved cultivars. PMID:24524684

  18. Genomic signatures reveal new evidences for selection of important traits in domestic cattle.

    PubMed

    Xu, Lingyang; Bickhart, Derek M; Cole, John B; Schroeder, Steven G; Song, Jiuzhou; Tassell, Curtis P Van; Sonstegard, Tad S; Liu, George E

    2015-03-01

    We investigated diverse genomic selections using high-density single nucleotide polymorphism data of five distinct cattle breeds. Based on allele frequency differences, we detected hundreds of candidate regions under positive selection across Holstein, Angus, Charolais, Brahman, and N'Dama. In addition to well-known genes such as KIT, MC1R, ASIP, GHR, LCORL, NCAPG, WIF1, and ABCA12, we found evidence for a variety of novel and less-known genes under selection in cattle, such as LAP3, SAR1B, LRIG3, FGF5, and NUDCD3. Selective sweeps near LAP3 were then validated by next-generation sequencing. Genome-wide association analysis involving 26,362 Holsteins confirmed that LAP3 and SAR1B were related to milk production traits, suggesting that our candidate regions were likely functional. In addition, haplotype network analyses further revealed distinct selective pressures and evolution patterns across these five cattle breeds. Our results provided a glimpse into diverse genomic selection during cattle domestication, breed formation, and recent genetic improvement. These findings will facilitate genome-assisted breeding to improve animal production and health. PMID:25431480

  19. Genomic Signatures Reveal New Evidences for Selection of Important Traits in Domestic Cattle

    PubMed Central

    Xu, Lingyang; Bickhart, Derek M.; Cole, John B.; Schroeder, Steven G.; Song, Jiuzhou; Tassell, Curtis P. Van; Sonstegard, Tad S.; Liu, George E.

    2015-01-01

    We investigated diverse genomic selections using high-density single nucleotide polymorphism data of five distinct cattle breeds. Based on allele frequency differences, we detected hundreds of candidate regions under positive selection across Holstein, Angus, Charolais, Brahman, and N'Dama. In addition to well-known genes such as KIT, MC1R, ASIP, GHR, LCORL, NCAPG, WIF1, and ABCA12, we found evidence for a variety of novel and less-known genes under selection in cattle, such as LAP3, SAR1B, LRIG3, FGF5, and NUDCD3. Selective sweeps near LAP3 were then validated by next-generation sequencing. Genome-wide association analysis involving 26,362 Holsteins confirmed that LAP3 and SAR1B were related to milk production traits, suggesting that our candidate regions were likely functional. In addition, haplotype network analyses further revealed distinct selective pressures and evolution patterns across these five cattle breeds. Our results provided a glimpse into diverse genomic selection during cattle domestication, breed formation, and recent genetic improvement. These findings will facilitate genome-assisted breeding to improve animal production and health. PMID:25431480

  20. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    SciTech Connect

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  1. Fine-tuning tomato agronomic properties by computational genome redesign.

    PubMed

    Carrera, Javier; Fernández Del Carmen, Asun; Fernández-Muñoz, Rafael; Rambla, Jose Luis; Pons, Clara; Jaramillo, Alfonso; Elena, Santiago F; Granell, Antonio

    2012-01-01

    Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites. PMID:22685389

  2. Identification of quantitative trait loci(QTL) controlling important fatty acids in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids play important role in controlling oil quality of peanut. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80%, there are several minor fatty acids accounting for about 20% in peanut oil, such as palmitic acid (PA, C16:0), stearic (S...

  3. Important trait and application of time-frequency to traceable source link

    NASA Astrophysics Data System (ADS)

    Ni, Guang-Ren; Xu, Lu-Ping; He, Kang-Yuan

    2006-03-01

    Taking the traceable source link system of the time-frequency as the typical one from the National Intelligence Standard Research Institute (NIST) of the United States, the article provides its block-diagram and technical indicators reviews its aim and its task. The article also gives the important characters of the traceable source link of the time-frequency, which includes: having the high-accuracy cesium fountain primitive frequency benchmark (accuracy and steady degrees all reach to 1×E-15), keeping ahead in the aspect of time-frequency transform method technology research and development, then reaching the advanced level in the frequency measurement and the analytical system of long-range calibration (FMAS), so as in the quality of the high integration, automatization, intelligent, lightweight of top-level equipment in the traceabel source link system. At last, the article describes the importance and the key technical indicator achieved at present to the high-accuracy synchronous time-frequency system in the field of the astronomy measurement, the guided missile launch, navigation and orientation, etc.

  4. Genome-wide analysis reveals selection for important traits in domestic horse breeds.

    PubMed

    Petersen, Jessica L; Mickelson, James R; Rendahl, Aaron K; Valberg, Stephanie J; Andersson, Lisa S; Axelsson, Jeanette; Bailey, Ernie; Bannasch, Danika; Binns, Matthew M; Borges, Alexandre S; Brama, Pieter; da Câmara Machado, Artur; Capomaccio, Stefano; Cappelli, Katia; Cothran, E Gus; Distl, Ottmar; Fox-Clipsham, Laura; Graves, Kathryn T; Guérin, Gérard; Haase, Bianca; Hasegawa, Telhisa; Hemmann, Karin; Hill, Emmeline W; Leeb, Tosso; Lindgren, Gabriella; Lohi, Hannes; Lopes, Maria Susana; McGivney, Beatrice A; Mikko, Sofia; Orr, Nicholas; Penedo, M Cecilia T; Piercy, Richard J; Raekallio, Marja; Rieder, Stefan; Røed, Knut H; Swinburne, June; Tozaki, Teruaki; Vaudin, Mark; Wade, Claire M; McCue, Molly E

    2013-01-01

    Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse. PMID:23349635

  5. Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds

    PubMed Central

    Petersen, Jessica L.; Mickelson, James R.; Rendahl, Aaron K.; Valberg, Stephanie J.; Andersson, Lisa S.; Axelsson, Jeanette; Bailey, Ernie; Bannasch, Danika; Binns, Matthew M.; Borges, Alexandre S.; Brama, Pieter; da Câmara Machado, Artur; Capomaccio, Stefano; Cappelli, Katia; Cothran, E. Gus; Distl, Ottmar; Fox-Clipsham, Laura; Graves, Kathryn T.; Guérin, Gérard; Haase, Bianca; Hasegawa, Telhisa; Hemmann, Karin; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Lohi, Hannes; Lopes, Maria Susana; McGivney, Beatrice A.; Mikko, Sofia; Orr, Nicholas; Penedo, M. Cecilia T.; Piercy, Richard J.; Raekallio, Marja; Rieder, Stefan; Røed, Knut H.; Swinburne, June; Tozaki, Teruaki; Vaudin, Mark; Wade, Claire M.; McCue, Molly E.

    2013-01-01

    Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse. PMID:23349635

  6. The more things change, the more they stay the same? When is trait variability important for stability of ecosystem function in a changing environment.

    PubMed

    Wright, Justin P; Ames, Gregory M; Mitchell, Rachel M

    2016-05-19

    The importance of intraspecific trait variability for community dynamics and ecosystem functioning has been underappreciated. There are theoretical reasons for predicting that species that differ in intraspecific trait variability will also differ in their effects on ecosystem functioning, particularly in variable environments. We discuss whether species with greater trait variability are likely to exhibit greater temporal stability in their population dynamics, and under which conditions this might lead to stability in ecosystem functioning. Resolving this requires us to consider several questions. First, are species with high levels of variation for one trait equally variable in others? In particular, is variability in response and effects traits typically correlated? Second, what is the relative contribution of local adaptation and phenotypic plasticity to trait variability? If local adaptation dominates, then stability in function requires one of two conditions: (i) individuals of appropriate phenotypes present in the environment at high enough frequencies to allow for populations to respond rapidly to the changing environment, and (ii) high levels of dispersal and gene flow. While we currently lack sufficient information on the causes and distribution of variability in functional traits, filling in these key data gaps should increase our ability to predict how changing biodiversity will alter ecosystem functioning. PMID:27114574

  7. Construct validity of adolescents' self-reported big five personality traits: importance of conceptual breadth and initial validation of a short measure.

    PubMed

    Morizot, Julien

    2014-10-01

    While there are a number of short personality trait measures that have been validated for use with adults, few are specifically validated for use with adolescents. To trust such measures, it must be demonstrated that they have adequate construct validity. According to the view of construct validity as a unifying form of validity requiring the integration of different complementary sources of information, this article reports the evaluation of content, factor, convergent, and criterion validities as well as reliability of adolescents' self-reported personality traits. Moreover, this study sought to address an inherent potential limitation of short personality trait measures, namely their limited conceptual breadth. In this study, starting with items from a known measure, after the language-level was adjusted for use with adolescents, items tapping fundamental primary traits were added to determine the impact of added conceptual breadth on the psychometric properties of the scales. The resulting new measure was named the Big Five Personality Trait Short Questionnaire (BFPTSQ). A group of expert judges considered the items to have adequate content validity. Using data from a community sample of early adolescents, the results confirmed the factor validity of the Big Five structure in adolescence as well as its measurement invariance across genders. More important, the added items did improve the convergent and criterion validities of the scales, but did not negatively affect their reliability. This study supports the construct validity of adolescents' self-reported personality traits and points to the importance of conceptual breadth in short personality measures. PMID:24619971

  8. Survival in macaroni penguins and the relative importance of different drivers: individual traits, predation pressure and environmental variability.

    PubMed

    Horswill, Catharine; Matthiopoulos, Jason; Green, Jonathan A; Meredith, Michael P; Forcada, Jaume; Peat, Helen; Preston, Mark; Trathan, Phil N; Ratcliffe, Norman

    2014-09-01

    Understanding the demographic response of free-living animal populations to different drivers is the first step towards reliable prediction of population trends. Penguins have exhibited dramatic declines in population size, and many studies have linked this to bottom-up processes altering the abundance of prey species. The effects of individual traits have been considered to a lesser extent, and top-down regulation through predation has been largely overlooked due to the difficulties in empirically measuring this at sea where it usually occurs. For 10 years (2003-2012), macaroni penguins (Eudyptes chrysolophus) were marked with subcutaneous electronic transponder tags and re-encountered using an automated gateway system fitted at the entrance to the colony. We used multistate mark-recapture modelling to identify the different drivers influencing survival rates and a sensitivity analysis to assess their relative importance across different life stages. Survival rates were low and variable during the fledging year (mean = 0·33), increasing to much higher levels from age 1 onwards (mean = 0·89). We show that survival of macaroni penguins is driven by a combination of individual quality, top-down predation pressure and bottom-up environmental forces. The relative importance of these covariates was age specific. During the fledging year, survival rates were most sensitive to top-down predation pressure, followed by individual fledging mass, and finally bottom-up environmental effects. In contrast, birds older than 1 year showed a similar response to bottom-up environmental effects and top-down predation pressure. We infer from our results that macaroni penguins will most likely be negatively impacted by an increase in the local population size of giant petrels. Furthermore, this population is, at least in the short term, likely to be positively influenced by local warming. More broadly, our results highlight the importance of considering multiple causal effects across

  9. Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle.

    PubMed

    Kim, H; Lee, S K; Hong, M W; Park, S R; Lee, Y S; Kim, J W; Lee, H K; Jeong, D K; Song, Y H; Lee, S J

    2013-12-01

    The akirin 2 gene, located on chromosome 9 in cattle, was previously reported to be associated with nuclear factor-kappa B (NF-κB), involved in immune reactions and marbling of meat. To determine whether a single nucleotide polymorphism (SNP) in akirin 2 is associated with economically important traits of Korean native cattle, the c.*188G>A SNP DNA marker in the 3'-UTR region of akirin 2 was analyzed for its association with carcass weight, longissimus muscle area and marbling. The c.*188G>A SNP was genotyped by polymerase chain reaction restriction fragment length polymorphism, and the frequency of the AA, AG, and GG genotypes were 6.82%, 71.29% and 21.88% respectively. This SNP was significantly associated with longissimus muscle area (Bonferroni corrected P < 0.05), and marbling score (Bonferroni corrected P < 0.01). These results suggest that the c.*188G>A SNP of akirin 2 might be useful as a DNA marker for longissimus muscle area and marbling scores in Korean native cattle. PMID:23718263

  10. A Large-Scale Screen for Artificial Selection in Maize Identifies Candidate Agronomic Loci for Domestication and Crop ImprovementW⃞

    PubMed Central

    Yamasaki, Masanori; Tenaillon, Maud I.; Vroh Bi, Irie; Schroeder, Steve G.; Sanchez-Villeda, Hector; Doebley, John F.; Gaut, Brandon S.; McMullen, Michael D.

    2005-01-01

    Maize (Zea mays subsp mays) was domesticated from teosinte (Z. mays subsp parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties, which were spread throughout the Americas by Native Americans and adapted to a wide range of environmental conditions. Starting with landraces, 20th century plant breeders selected inbred lines of maize for use in hybrid maize production. Both domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. Here, we sequenced 1095 maize genes from a sample of 14 inbred lines and chose 35 genes with zero sequence diversity as potential targets of selection. These 35 genes were then sequenced in a sample of diverse maize landraces and teosintes and tested for selection. Using two statistical tests, we identified eight candidate genes. Extended gene sequencing of these eight candidate loci confirmed that six were selected throughout the gene, and the remaining two exhibited evidence of selection in the 3′ portion of each gene. The selected genes have functions consistent with agronomic selection for nutritional quality, maturity, and productivity. Our large-scale screen for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown. PMID:16227451

  11. Identification of Species, Quantitative Trait Loci (QTLs), and Hybrids Important for Low-Input Biomass Production and Hetersis in Semiarid Cold-Growing Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interspecific hybrids of tall caespitose Leymus cinereus (Scribn. & Merr.) A. Love and strongly rhizomatous Leymus triticoides (Buckley) Pilg. display a heterotic combination of traits important for perennial grass biomass production. The objectives of this study were to: 1) compare seasonal biomas...

  12. Variability analysis of 'Persian' acid lime tree selections using agronomic and molecular markers.

    PubMed

    Santos, M G; Passos, O S; Soares Filho, W S; Girardi, E A; Gesteira, A S; Ferreira, C F

    2013-01-01

    'Persian' acid lime (PAL) is the most important triploid commercial citrus crop planted in the world. Little is known about the genetic variability of the selections used in Brazil. Therefore, 25 genotypes originating from the PAL, and three control species, Citrus sunki, C. limon, and C. aurantiifolia, were assessed using inter-simple sequence repeat (ISSR) and inter-retrotransposon amplified polymorphism (IRAP) molecular markers and agronomic traits of the fruit. The dendrograms were designed using the mean Euclidean distance for the physicochemical attributes of the fruit (weight, length, diameter, peel color, peel thickness, number of seeds, juice yield, titratable acidity, soluble solids, and ratio) and the Jaccard distances using the data from the ISSR and IRAP molecular markers. In the physicochemical analysis, the genotypes were grouped according to species. The trait that contributed most to the diversity among accessions was the number of seeds. The 17 ISSR primers produced 69 polymorphic bands in the molecular analysis, and the seven IRAP primers generated 30 polymorphic bands. The markers detected polymorphisms within and among the PALs; two groups were formed within the PALs. PMID:24222236

  13. Survival in macaroni penguins and the relative importance of different drivers: individual traits, predation pressure and environmental variability

    PubMed Central

    Horswill, Catharine; Matthiopoulos, Jason; Green, Jonathan A; Meredith, Michael P; Forcada, Jaume; Peat, Helen; Preston, Mark; Trathan, Phil N; Ratcliffe, Norman

    2014-01-01

    Understanding the demographic response of free-living animal populations to different drivers is the first step towards reliable prediction of population trends. Penguins have exhibited dramatic declines in population size, and many studies have linked this to bottom-up processes altering the abundance of prey species. The effects of individual traits have been considered to a lesser extent, and top-down regulation through predation has been largely overlooked due to the difficulties in empirically measuring this at sea where it usually occurs. For 10 years (2003–2012), macaroni penguins (Eudyptes chrysolophus) were marked with subcutaneous electronic transponder tags and re-encountered using an automated gateway system fitted at the entrance to the colony. We used multistate mark–recapture modelling to identify the different drivers influencing survival rates and a sensitivity analysis to assess their relative importance across different life stages. Survival rates were low and variable during the fledging year (mean = 0·33), increasing to much higher levels from age 1 onwards (mean = 0·89). We show that survival of macaroni penguins is driven by a combination of individual quality, top-down predation pressure and bottom-up environmental forces. The relative importance of these covariates was age specific. During the fledging year, survival rates were most sensitive to top-down predation pressure, followed by individual fledging mass, and finally bottom-up environmental effects. In contrast, birds older than 1 year showed a similar response to bottom-up environmental effects and top-down predation pressure. We infer from our results that macaroni penguins will most likely be negatively impacted by an increase in the local population size of giant petrels. Furthermore, this population is, at least in the short term, likely to be positively influenced by local warming. More broadly, our results highlight the importance of considering multiple causal

  14. Evolutionary outcomes should inform plant breeding and transgenic approaches to drought tolerance in crop species: the importance of xylem traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic-assisted breeding and transgenic approaches to crop improvement are presently targeting phenotypic traits that allegedly confer drought tolerance. A news feature published in Nature Biotechnology last year suggests that these efforts may not be proceeding with sufficient haste, considering t...

  15. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production.

    PubMed

    Basarab, J A; Beauchemin, K A; Baron, V S; Ominski, K H; Guan, L L; Miller, S P; Crowley, J J

    2013-06-01

    Genetic selection for residual feed intake (RFI) is an indirect approach for reducing enteric methane (CH4) emissions in beef and dairy cattle. RFI is moderately heritable (0.26 to 0.43), moderately repeatable across diets (0.33 to 0.67) and independent of body size and production, and when adjusted for off-test ultrasound backfat thickness (RFI fat) is also independent of body fatness in growing animals. It is highly dependent on accurate measurement of individual animal feed intake. Within-animal repeatability of feed intake is moderate (0.29 to 0.49) with distinctive diurnal patterns associated with cattle type, diet and genotype, necessitating the recording of feed intake for at least 35 days. In addition, direct measurement of enteric CH4 production will likely be more variable and expensive than measuring feed intake and if conducted should be expressed as CH4 production (g/animal per day) adjusted for body size, growth, body composition and dry matter intake (DMI) or as residual CH4 production. A further disadvantage of a direct CH4 phenotype is that the relationships of enteric CH4 production on other economically important traits are largely unknown. Selection for low RFI fat (efficient, -RFI fat) will result in cattle that consume less dry matter (DMI) and have an improved feed conversion ratio (FCR) compared with high RFI fat cattle (inefficient; +RFI fat). Few antagonistic effects have been reported for the relationships of RFI fat on carcass and meat quality, fertility, cow lifetime productivity and adaptability to stress or extensive grazing conditions. Low RFI fat cattle also produce 15% to 25% less enteric CH4 than +RFI fat cattle, since DMI is positively related to enteric methane (CH4) production. In addition, lower DMI and feeding duration and frequency, and a different rumen bacterial profile that improves rumen fermentation in -RFI fat cattle may favor a 1% to 2% improvement in dry matter and CP digestibility compared with +RFI fat cattle. Rate

  16. Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding.

    PubMed

    Valarmathi, P; Kumar, G; Robin, S; Manonmani, S; Dasgupta, I; Rabindran, R

    2016-08-01

    Severe losses of rice yield in south and southeast Asia are caused by Rice tungro disease (RTD) induced by mixed infection of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). In order to develop transgene-based resistance against RTBV, one of its genes, ORF IV, was used to generate transgenic resistance based on RNA-interference in the easily transformed rice variety Pusa Basmati-1, and the transgene was subsequently introgressed to rice variety ASD 16, a variety popular in southern India, using transgene marker-assisted selection. Here, we report the evaluation of BC3F4 and BC3F5 generation rice plants for resistance to RTBV as well as for agronomic traits under glasshouse conditions. The BC3F4 and BC3F5 generation rice plants tested showed variable levels of resistance, which was manifested by an average of twofold amelioration in height reduction, 1.5-fold decrease in the reduction in chlorophyll content, and 100- to 10,000-fold reduction in the titers of RTBV, but no reduction of RTSV titers, in three backcrossed lines when compared with the ASD 16 parent. Agronomic traits of some of the backcrossed lines recorded substantial improvements when compared with the ASD 16 parental line after inoculation by RTBV and RTSV. This work represents an important step in transferring RTD resistance to a susceptible popular rice variety, hence enhancing its yield in areas threatened by the disease. PMID:26983604

  17. Marker-trait associations in Virginia Tech winter barley identified using genome-wide mapping.

    PubMed

    Berger, Gregory L; Liu, Shuyu; Hall, Marla D; Brooks, Wynse S; Chao, Shiaoman; Muehlbauer, Gary J; Baik, B-K; Steffenson, Brian; Griffey, Carl A

    2013-03-01

    Genome-wide association studies (GWAS) provide an opportunity to examine the genetic architecture of quantitatively inherited traits in breeding populations. The objectives of this study were to use GWAS to identify chromosome regions governing traits of importance in six-rowed winter barley (Hordeum vulgare L.) germplasm and to identify single-nucleotide polymorphisms (SNPs) markers that can be implemented in a marker-assisted breeding program. Advanced hulled and hulless lines (329 total) were screened using 3,072 SNPs as a part of the US. Barley Coordinated Agricultural Project (CAP). Phenotypic data collected over 4 years for agronomic and food quality traits and resistance to leaf rust (caused by Puccinia hordei G. Otth), powdery mildew [caused by Blumeria graminis (DC.) E.O. Speer f. sp. hordei Em. Marchal], net blotch (caused by Pyrenophora teres), and spot blotch [caused by Cochliobolus sativus (Ito and Kuribayashi) Drechsler ex Dastur] were analyzed with SNP genotypic data in a GWAS to determine marker-trait associations. Significant SNPs associated with previously described quantitative trait loci (QTL) or genes were identified for heading date on chromosome 3H, test weight on 2H, yield on 7H, grain protein on 5H, polyphenol oxidase activity on 2H and resistance to leaf rust on 2H and 3H, powdery mildew on 1H, 2H and 4H, net blotch on 5H, and spot blotch on 7H. Novel QTL also were identified for agronomic, quality, and disease resistance traits. These SNP-trait associations provide the opportunity to directly select for QTL contributing to multiple traits in breeding programs. PMID:23139143

  18. Agronomic and Quality Characteristics of Two New Sets of Langdon Durum – wWld Emmer Wheat Chromosome Substitution Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild emmer (Triticum turgidum L. var. dicoccoides) has been a useful source of genes for high grain protein content (GPC) in durum wheat (T. turgidum L. var. durum). Prior studies have found other useful genes for agronomic and quality traits in Langdon durum - T. dicoccoides (LDN-DIC) disomic sub...

  19. Laser spectrofluorometry of agronomic plants in vivo

    NASA Astrophysics Data System (ADS)

    Posudin, Yuri I.

    1997-05-01

    Laser spectrofluorometry of agronomic plants in vivo at the single leaf level permits to investigate the effects of the growth phase, part, nodal position and age of the leaf, agrochemical treatment, external physical factors and plant diseases on the chlorophyll fluorescence. Such a spectroscopic approach can give the possibility to monitoring the development and health status of agronomic plants during ontogenesis and under different stresses. The relevant spectral wavelengths and criteria which correlate with status of the plant were determined.

  20. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice ( Oryza sativa) using microsatellite markers.

    PubMed

    Brondani, C.; Rangel, N.; Brondani, V.; Ferreira, E.

    2002-05-01

    Rice ( Oryza sativa) cultivar development currently faces the task of overcoming yield plateaus, which is difficult due to the narrow genetic base of breeding programs. Oryza glumaepatula is a diploid wild relative of cultivated rice, native to Central and South America, and is therefore a potential source of alleles of agronomic importance to rice breeding programs. We studied 11 agronomic traits in BC(2)F(2) families of the interspecific cross Oryza sativa x O. glumaepatula. Transgressive lines which are almost isogenic to the elite recurrent O. sativa parent were identified for most of these traits. Quantitative trait locus (QTL) analysis was performed by single-point and interval mapping using a molecular map based on 157 microsatellite and STS markers. Marker regions accounting for 14.5 to 72.9% of a phenotypic variation trait were identified in 9 of the 12 rice chromosomes. Positive QTL effects from O. glumaepatula were observed in chromosomal regions associated with tillering and panicle-number traits. PMID:12582630

  1. The Influence of Organized Physical Activity (including Gymnastics) on Young Adult Skeletal Traits: Is Maturity Phase Important?

    PubMed Central

    Bernardoni, Brittney; Scerpella, Tamara A.; Rosenbaum, Paula F.; Kanaley, Jill A.; Raab, Lindsay N.; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N.

    2015-01-01

    We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semi-annual records of anthropometry, maturity and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year pre-menarche [predictor] and ~5 years post-menarche [dependent variable]). Regression analysis evaluated total adolescent inter-scan PA and PA over 3 maturity sub-phases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry and strength indices at non-dominant distal radius and femoral neck; 2) sub-head BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or post-menarche), baseline bone status, adult body size and inter-scan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p<0.07). Pre-menarcheal bone traits were strong predictors of most adult outcomes (semi-partial r2 = 0.21-0.59, p≤0.001). Adult 1/3 radius and sub-head BMC were predicted by both total PA and PA 1-3 years post-menarche (p<0.03). PA 3-5 years post-menarche predicted femoral narrow neck width, endosteal diameter and buckling ratio (p<0.05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females. PMID:25386845

  2. The Influence of Organized Physical Activity (Including Gymnastics) on Young Adult Skeletal Traits: Is Maturity Phase Important?

    PubMed

    Bernardoni, Brittney; Scerpella, Tamara A; Rosenbaum, Paula F; Kanaley, Jill A; Raab, Lindsay N; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N

    2015-05-01

    We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semiannual records of anthropometry, maturity, and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year premenarche [predictor] and ~5 years postmenarche [dependent variable]). Regression analysis evaluated total adolescent interscan PA and PA over 3 maturity subphases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry, and strength indices at nondominant distal radius and femoral neck; 2) subhead BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or postmenarche), baseline bone status, adult body size and interscan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p > .07). Premenarcheal bone traits were strong predictors of most adult outcomes (semipartial r2 = .21-0.59, p ≤ .001). Adult 1/3 radius and subhead BMC were predicted by both total PA and PA 1-3 years postmenarche (p < .03). PA 3-5 years postmenarche predicted femoral narrow neck width, endosteal diameter, and buckling ratio (p < .05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females. PMID:25386845

  3. Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers.

    PubMed

    Ghariani, S; Elazreg, H; Chtourou-Ghorbel, N; Chakroun, M; Trifi-Farah, N

    2015-01-01

    Tunisia is rich in diverse forage and pasture species including perennial ryegrass. In order to enhance forage production and improve agronomic performance of this local germplasm, a molecular analysis was undertaken. Random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and morpho-agronomical traits markers were used for genetic diversity estimation of ryegrass germplasm after screening 20 spontaneous accessions, including a local and an introduced cultivars. Same mean polymorphism information content values were obtained (0.37) for RAPD and ISSR suggesting that both marker systems were equally effective in determining polymorphisms. The average pairwise genetic distance values were 0.57 (morpho-agronomical traits), 0.68 (RAPD), and 0.51 (ISSR) markers data sets. A higher Shannon diversity index was obtained with ISSR marker (0.57) than for RAPD (0.54) and morpho-agronomical traits (0.36). The Mantel test based on genetic distances of a combination of molecular markers and morpho-agronomical data exhibited a significant correlation between RAPD and ISSR data, suggesting that the use of a combination of molecular techniques was a highly efficient method of estimating genetic variability levels among Tunisian ryegrass germplasm. In summary, results showed that combining molecular and morpho-agronomical markers is an efficient way in assessing the genetic variability among Tunisian ryegrass genotypes. In addition, the combined analysis provided an exhaustive coverage for the analyzed diversity and helped us to identify suitable accessions showed by Beja and Jendouba localities, which present large similarities with cultivated forms and can be exploited for designing breeding programmes, conservation of germplasm and management of ryegrass genetic resources. PMID:26782500

  4. Genetic Variability and Selection Criteria in Rice Mutant Lines as Revealed by Quantitative Traits

    PubMed Central

    Oladosu, Yusuff; Rafii, M. Y.; Abdullah, Norhani; Abdul Malek, Mohammad; Rahim, H. A.; Hussin, Ghazali; Abdul Latif, Mohammad; Kareem, Isiaka

    2014-01-01

    Genetic based knowledge of different vegetative and yield traits play a major role in varietal improvement of rice. Genetic variation gives room for recombinants which are essential for the development of a new variety in any crop. Based on this background, this work was carried out to evaluate genetic diversity of derived mutant lines and establish relationships between their yield and yield components using multivariate analysis. To achieve this objective, two field trials were carried out on 45 mutant rice genotypes to evaluate their growth and yield traits. Data were taken on vegetative traits and yield and its components, while genotypic and phenotypic coefficients, variance components, expected genetic advance, and heritability were calculated. All the genotypes showed variations for vegetative traits and yield and its components. Also, there was positive relationship between the quantitative traits and the final yield with the exception of number of tillers. Finally, the evaluated genotypes were grouped into five major clusters based on the assessed traits with the aid of UPGMA dendrogram. So hybridization of group I with group V or group VI could be used to attain higher heterosis or vigour among the genotypes. Also, this evaluation could be useful in developing reliable selection indices for important agronomic traits in rice. PMID:25431777

  5. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes

    PubMed Central

    Yasui, Yasuo; Hirakawa, Hideki; Ueno, Mariko; Matsui, Katsuhiro; Katsube-Tanaka, Tomoyuki; Yang, Soo Jung; Aii, Jotaro; Sato, Shingo; Mori, Masashi

    2016-01-01

    Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits. PMID:27037832

  6. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes.

    PubMed

    Yasui, Yasuo; Hirakawa, Hideki; Ueno, Mariko; Matsui, Katsuhiro; Katsube-Tanaka, Tomoyuki; Yang, Soo Jung; Aii, Jotaro; Sato, Shingo; Mori, Masashi

    2016-06-01

    Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits. PMID:27037832

  7. Predicting the impacts of climate change on animal distributions: the importance of local adaptation and species' traits

    SciTech Connect

    HELLMANN, J. J.; LOBO, N. F.

    2011-12-20

    response of species to climate change, but our experiments suggest that other processes may act in some species that reduce the likelihood of geographic range change. In the first part of our DOE grant (ending 2008) we argued that the process of local adaptation of populations within a species range, followed by climatic changes that occur too quickly for adaptive evolution, is an underappreciated mechanism by which climate change could affect biodiversity. When this process acts, species ranges may not shift readily toward the poles, slowing the rate of species and biome change. To test this claim, we performed an experiment comparing core and peripheral populations in a series of field observations, translocation experiments, and genetic analyses. The papers in Appendix A were generated from 2005-2008 funding. In the second part of the DOE grant (ending 2011) we studied which traits promote population differentiation and local adaptation by building genomic resources for our study species and using these resources to reveal differences in gene expression in peripheral and core populations. The papers in Appendix B were generated from 2008-2011 funding. This work was pursued with two butterfly species that have contrasting life history traits (body size and resource specialization) and occupy a common ecosystem and a latitudinal range. These species enabled us to test the following hypotheses using a single phylogenetic group.

  8. Integrated Physiological, Biochemical, and Molecular Analysis Identifies Important Traits and Mechanisms Associated with Differential Response of Rice Genotypes to Elevated Temperature

    PubMed Central

    Sailaja, Boghireddy; Subrahmanyam, Desiraju; Neelamraju, Sarla; Vishnukiran, Turaga; Rao, Yadavalli Venkateswara; Vijayalakshmi, Pujarula; Voleti, Sitapati R.; Bhadana, Vijai P.; Mangrauthia, Satendra K.

    2015-01-01

    In changing climatic conditions, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical, and molecular levels is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in 11 popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS), antioxidants, and photosynthesis were studied at vegetative and reproductive phases, which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified, which will be an important resource to develop high temperature-tolerant rice cultivars. Interestingly, Nagina22 emerged as the best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activities, lesser reduction in net photosynthetic rate (PN), high transpiration rate (E), and other photosynthetic/fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Furthermore, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant) and Vandana (susceptible) at flowering phase, strengthening the fact that N22 performed better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes that are needed to be characterized to address the challenges of extreme conditions of future climate. PMID:26640473

  9. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits.

    PubMed

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-01-01

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato-three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production. PMID:26286222

  10. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits

    PubMed Central

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-01-01

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato—three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production. PMID:26286222

  11. Whole Trait Theory

    PubMed Central

    Fleeson, William; Jayawickreme, Eranda

    2014-01-01

    Personality researchers should modify models of traits to include mechanisms of differential reaction to situations. Whole Trait Theory does so via five main points. First, the descriptive side of traits should be conceptualized as density distributions of states. Second, it is important to provide an explanatory account of the Big 5 traits. Third, adding an explanatory account to the Big 5 creates two parts to traits, an explanatory part and a descriptive part, and these two parts should be recognized as separate entities that are joined into whole traits. Fourth, Whole Trait Theory proposes that the explanatory side of traits consists of social-cognitive mechanisms. Fifth, social-cognitive mechanisms that produce Big-5 states should be identified. PMID:26097268

  12. Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon *

    PubMed Central

    Xie, Jian-kun; Kong, Xiang-li; Chen, Jie; Hu, Biao-lin; Wen, Piao; Zhuang, Jie-yun; Bao, Jin-song

    2011-01-01

    Rice straw is always regarded as a by-product of rice production, but it could be a significant energy source for ruminant animals. Knowledge of the genetic variation and genetic architecture of cell wall traits will facilitate rice breeders by improving relevant traits through selective breeding and genetic engineering. The common wild rice, Oryza rufipogon Griff., which is considered to be the progenitor of Oryza sativa, has been widely utilized for the identification of genes of agronomic importance for rice genetic improvement. In the present study, the mapping of quantitative trait loci (QTLs) for acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), and ADL/NDF ratio was carried out in two environments using a backcrossed inbred line (BIL) population derived from a cross between the recurrent parent Xieqingzao B (XB) and an accession of Dongxiang wild rice (DWR). The results indicated that all four traits tested were continuously distributed among the BILs, but many BILs showed transgressive segregation. A total of 16 QTLs were identified for the four traits, but no QTLs were in common in two environments, suggesting that environment has dramatic effects on fiber and lignin syntheses. Compared to the QTL positions for grain yield-related traits, there were no unfavorable correlations between grain yield components and cell wall traits in this population. The QTLs identified in this study are useful for the development of dual-purpose rice varieties that are high in grain yield and are also high in straw quality. PMID:21726058

  13. Predicting dangerousness with two Millon Adolescent Clinical Inventory psychopathy scales: the importance of egocentric and callous traits.

    PubMed

    Salekin, Randall T; Ziegler, Tracey A; Larrea, Maria A; Anthony, Virginia Lee; Bennett, Allyson D

    2003-04-01

    Psychopathy in youth has received increased recognition as a critical clinical construct for the evaluation and management of adolescents who have come into contact with the law (e.g., Forth, Hare, & Hart, 1990; Frick, 1998; Lynam, 1996, 1998). Although considerable attention has been devoted to the adult construct of psychopathy and its relation to recidivism, psychopathy in adolescents has been less thoroughly researched. Recently, a psychopathy scale (Murrie and Cornell Psychopathy Scale; Murrie & Cornell, 2000) was developed from items of the Millon Adolescent Clinical Inventory (MACI; Millon, 1993). This scale was found to be highly related to the Psychopathy Checklist-Revised (Hare, 1991) and was judged to have demonstrated good criterion validity. A necessary step in the validation process of any psychopathy scale is establishing its predictive validity. With this in mind, we investigated the ability of the MACI Psychopathy Scale to predict recidivism with 55 adolescent offenders 2 years after they had been evaluated at a juvenile court evaluation unit. In addition, we devised a psychopathy scale from MACI items that aligned more closely with Cooke and Michie (2001) and Frick, Bodin, and Barry's (2001) recommendations for the refinement of psychopathy and tested its predictive validity. Results indicate that both scales had predictive utility. Interpersonal and affective components of the revised scale were particularly important in the prediction of both general and violent reoffending. PMID:12700018

  14. Effects of Agronomic and Conservation Management Practices On Organic Matter and Associated Properties in Claypan Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter plays several important roles in the biogeochemistry of soil and impacts the sustainability and profitability of agroecosystems. Retention and transformation of soil organic matter (SOM) are affected by agronomic and conservation management practices. The primary objective of this stu...

  15. Importance of ATM gene as a susceptible trait: predisposition role of D1853N polymorphism in breast cancer.

    PubMed

    Mehdipour, Parvin; Mahdavi, Marzieh; Mohammadi-Asl, Javad; Atri, Morteza

    2011-09-01

    The involvement of ATM gene and specifically, the important role of D1853N polymorphism, as a three-hit hypothesis has been previously reported in an Iranian proband affected with brain tumor and this polymorphism could be screened in her relatives as well. The aim of present study was to investigate the involvement of D1853N polymorphism as a predisposition factor in 129 Iranian patients affected with primary breast cancer and 248 sex- and age-matched healthy controls. Mutant allele-specific PCR amplification (MASA) assay was performed to analyze the D1853N polymorphism in the ATM gene. The frequency of D1853N polymorphism in cases, internal and external controls was 31.0% (40/129), 26.9% (28/104) and 12.5% (18/144), respectively. The frequency of D1853N in total control groups, including normal external control and pedigree internal control, was 18.6% (46/248). The odds ratio was calculated with the logistic regression test, with an estimated relative risk of 2.579 (P=0.005). The significant difference was observed between the patient-carriers of this alteration and external controls (P=0.001). The number of controls harboring D1853N polymorphism was higher in internal control compared to external controls, and the difference was statistically significant (P=0.004). The significant difference was observed between the patient-carriers and external controls and could be considered as a predisposing and diagnostic marker in the population and specifically in the cancer-prone pedigrees. PMID:20396981

  16. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    PubMed Central

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    significant anthocyanin content, exhibited increased photoprotection mechanisms under water deficit conditions. Water deficit increased ABA, proline, sugar and anthocyanin concentrations in Cabernet Sauvignon, but not Chardonnay berries, consistent with the hypothesis that ABA enhanced accumulation of these compounds. Water deficit increased the transcript abundance of lipoxygenase and hydroperoxide lyase in fatty metabolism, a pathway known to affect berry and wine aromas. These changes in metabolism have important impacts on berry flavor and quality characteristics. Several of these metabolites are known to contribute to increased human-health benefits. PMID:19426499

  17. A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny.

    PubMed

    Yang, Qin; Zhang, Dongfeng; Xu, Mingliang

    2012-04-01

    A thorough understanding of the quantitative trait loci (QTLs) that underlie agronomically important traits in crops would greatly increase agricultural productivity. Although advances have been made in QTL cloning, the majority of QTLs remain unknown because of their low heritability and minor contributions to phenotypic performance. Here we summarize the key advantages and disadvantages of current QTL fine-mapping methodologies, and then introduce a sequential QTL fine-mapping strategy based on both genotypes and phenotypes of progeny derived from recombinants. With this mapping strategy, experimental errors could be dramatically diminished so as to reveal the authentic genetic effect of target QTLs. The number of progeny required to detect QTLs at various R2 values was calculated, and the backcross generation suitable to start QTL fine-mapping was also estimated. This mapping strategy has proved to be very powerful in narrowing down QTL regions, particularly minor-effect QTLs, as revealed by fine-mapping of various resistance QTLs in maize. Application of this sequential QTL mapping strategy should accelerate cloning of agronomically important QTLs, which is currently a substantial challenge in crops. PMID:22348858

  18. Haplotype hitchhiking promotes trait coselection in Brassica napus.

    PubMed

    Qian, Lunwen; Qian, Wei; Snowdon, Rod J

    2016-07-01

    Local haplotype patterns surrounding densely spaced DNA markers with significant trait associations can reveal information on selective sweeps and genome diversity associated with important crop traits. Relationships between haplotype and phenotype diversity, coupled with analysis of gene content in conserved haplotype blocks, can provide insight into coselection for nonrelated traits. We performed genome-wide analysis of haplotypes associated with the important physiological and agronomic traits leaf chlorophyll and seed glucosinolate content, respectively, in the major oilseed crop species Brassica napus. A locus on chromosome A01 showed opposite effects on leaf chlorophyll content and seed glucosinolate content, attributed to strong linkage disequilibrium (LD) between orthologues of the chlorophyll biosynthesis genes EARLY LIGHT-INDUCED PROTEIN and CHLOROPHYLL SYNTHASE, and the glucosinolate synthesis gene ATP SULFURYLASE 1. Another conserved haplotype block, on chromosome A02, contained a number of chlorophyll-related genes in LD with orthologues of the key glucosinolate biosynthesis genes METHYLTHIOALKYMALATE SYNTHASE-LIKE 1 and 3. Multigene haplogroups were found to have a significantly greater contribution to variation for chlorophyll content than haplotypes for any single gene, suggesting positive effects of additive locus accumulation. Detailed reanalysis of population substructure revealed a clade of ten related accessions exhibiting high leaf chlorophyll and low seed glucosinolate content. These accessions each carried one of the above-mentioned haplotypes from A01 or A02, generally in combination with further chlorophyll-associated haplotypes from chromosomes A05 and/or C05. The phenotypic rather than pleiotropic correlations between leaf chlorophyll content index and seed GSL suggest that LD may have led to inadvertent coselection for these two traits. PMID:26800855

  19. Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.)

    PubMed Central

    2012-01-01

    Background In crop species, QTL analysis is commonly used for identification of factors contributing to variation of agronomically important traits. As an important pasture species, a large number of QTLs have been reported for perennial ryegrass based on analysis of biparental mapping populations. Further characterisation of those QTLs is, however, essential for utilisation in varietal improvement programs. Results A bibliographic survey of perennial ryegrass trait-dissection studies identified a total of 560 QTLs from previously published papers, of which 189, 270 and 101 were classified as morphology-, physiology- and resistance/tolerance-related loci, respectively. The collected dataset permitted a subsequent meta-QTL study and implementation of a cross-species candidate gene identification approach. A meta-QTL analysis based on use of the BioMercator software was performed to identify two consensus regions for pathogen resistance traits. Genes that are candidates for causal polymorphism underpinning perennial ryegrass QTLs were identified through in silico comparative mapping using rice databases, and 7 genes were assigned to the p150/112 reference map. Markers linked to the LpDGL1, LpPh1 and LpPIPK1 genes were located close to plant size, leaf extension time and heading date-related QTLs, respectively, suggesting that these genes may be functionally associated with important agronomic traits in perennial ryegrass. Conclusions Functional markers are valuable for QTL meta-analysis and comparative genomics. Enrichment of such genetic markers may permit further detailed characterisation of QTLs. The outcomes of QTL meta-analysis and comparative genomics studies may be useful for accelerated development of novel perennial ryegrass cultivars with desirable traits. PMID:23137269

  20. The acrylamide problem: a plant and agronomic science issue.

    PubMed

    Halford, Nigel G; Curtis, Tanya Y; Muttucumaru, Nira; Postles, Jennifer; Elmore, J Stephen; Mottram, Donald S

    2012-05-01

    Acrylamide, a chemical that is probably carcinogenic in humans and has neurological and reproductive effects, forms from free asparagine and reducing sugars during high-temperature cooking and processing of common foods. Potato and cereal products are major contributors to dietary exposure to acrylamide and while the food industry reacted rapidly to the discovery of acrylamide in some of the most popular foods, the issue remains a difficult one for many sectors. Efforts to reduce acrylamide formation would be greatly facilitated by the development of crop varieties with lower concentrations of free asparagine and/or reducing sugars, and of best agronomic practice to ensure that concentrations are kept as low as possible. This review describes how acrylamide is formed, the factors affecting free asparagine and sugar concentrations in crop plants, and the sometimes complex relationship between precursor concentration and acrylamide-forming potential. It covers some of the strategies being used to reduce free asparagine and sugar concentrations through genetic modification and other genetic techniques, such as the identification of quantitative trait loci. The link between acrylamide formation, flavour, and colour is discussed, as well as the difficulty of balancing the unknown risk of exposure to acrylamide in the levels that are present in foods with the well-established health benefits of some of the foods concerned. PMID:22345642

  1. Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.)

    PubMed Central

    2012-01-01

    Background Pigeonpea is an important grain legume of the semi-arid tropics and sub-tropical regions where it plays a crucial role in the food and nutritional security of the people. The average productivity of pigeonpea has remained very low and stagnant for over five decades due to lack of genomic information and intensive breeding efforts. Previous SSR-based linkage maps of pigeonpea used inter-specific crosses due to low inter-varietal polymorphism. Here our aim was to construct a high density intra-specific linkage map using genic-SNP markers for mapping of major quantitative trait loci (QTLs) for key agronomic traits, including plant height, number of primary and secondary branches, number of pods, days to flowering and days to maturity in pigeonpea. Results A population of 186 F2:3 lines derived from an intra-specific cross between inbred lines ‘Pusa Dwarf’ and ‘HDM04-1’ was used to construct a dense molecular linkage map of 296 genic SNP and SSR markers covering a total adjusted map length of 1520.22 cM for the 11 chromosomes of the pigeonpea genome. This is the first dense intra-specific linkage map of pigeonpea with the highest genome length coverage. Phenotypic data from the F2:3 families were used to identify thirteen QTLs for the six agronomic traits. The proportion of phenotypic variance explained by the individual QTLs ranged from 3.18% to 51.4%. Ten of these QTLs were clustered in just two genomic regions, indicating pleiotropic effects or close genetic linkage. In addition to the main effects, significant epistatic interaction effects were detected between the QTLs for number of pods per plant. Conclusions A large amount of information on transcript sequences, SSR markers and draft genome sequence is now available for pigeonpea. However, there is need to develop high density linkage maps and identify genes/QTLs for important agronomic traits for practical breeding applications. This is the first report on identification of QTLs for plant

  2. Do Callous-Unemotional Traits Moderate the Relative Importance of Parental Coercion versus Warmth in Child Conduct Problems? An Observational Study

    ERIC Educational Resources Information Center

    Pasalich, Dave S.; Dadds, Mark R.; Hawes, David J.; Brennan, John

    2011-01-01

    Background: Research suggests that parenting has little influence on the development of antisocial behavior in children with callous-unemotional (CU) traits. We aimed to extend and improve on prior studies examining the moderating role of CU traits on associations between parenting and conduct problems, by using independent observations of two key…

  3. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies

    PubMed Central

    Jain, Meha; Flynn, Dan FB; Prager, Case M; Hart, Georgia M; DeVan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes MH; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning. PMID:24455165

  4. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies.

    PubMed

    Jain, Meha; Flynn, Dan Fb; Prager, Case M; Hart, Georgia M; Devan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes Mh; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning. PMID:24455165

  5. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research

    PubMed Central

    Shi, Yeyin; Thomasson, J. Alex; Murray, Seth C.; Pugh, N. Ace; Rooney, William L.; Shafian, Sanaz; Rajan, Nithya; Rouze, Gregory; Morgan, Cristine L. S.; Neely, Haly L.; Rana, Aman; Bagavathiannan, Muthu V.; Henrickson, James; Bowden, Ezekiel; Valasek, John; Olsenholler, Jeff; Bishop, Michael P.; Sheridan, Ryan; Putman, Eric B.; Popescu, Sorin; Burks, Travis; Cope, Dale; Ibrahim, Amir; McCutchen, Billy F.; Baltensperger, David D.; Avant, Robert V.; Vidrine, Misty; Yang, Chenghai

    2016-01-01

    Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1—the summer 2015 and winter 2016 growing seasons–of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project’s goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first

  6. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research.

    PubMed

    Shi, Yeyin; Thomasson, J Alex; Murray, Seth C; Pugh, N Ace; Rooney, William L; Shafian, Sanaz; Rajan, Nithya; Rouze, Gregory; Morgan, Cristine L S; Neely, Haly L; Rana, Aman; Bagavathiannan, Muthu V; Henrickson, James; Bowden, Ezekiel; Valasek, John; Olsenholler, Jeff; Bishop, Michael P; Sheridan, Ryan; Putman, Eric B; Popescu, Sorin; Burks, Travis; Cope, Dale; Ibrahim, Amir; McCutchen, Billy F; Baltensperger, David D; Avant, Robert V; Vidrine, Misty; Yang, Chenghai

    2016-01-01

    Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1-the summer 2015 and winter 2016 growing seasons-of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project's goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and

  7. Engineering Value-Added Traits in Cereal Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops – chiefly wheat, rice, maize, sorghum, and pearl millet – are the main food source for more than two-thirds of the world population. Conventional breeding is mainly responsible for the genetic improvement of cereal crops and has resulted in cultivars with superior agronomic traits. Ho...

  8. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  9. Production of transgenic rice with agronomically useful genes: an assessment.

    PubMed

    Giri, C C; Vijaya Laxmi, G

    2000-12-01

    Rice is the most important food crop in tropical and subtropical regions of the world. Yield enhancement to increase rice production is one of the essential strategies to meet the demand for food of the growing population. Both abiotic and biotic features limit adversely the productivity of rice growing areas. Conventional breeding has been an effective means for developing high yielding varieties, however; it is associated with its own limitations. It is envisaged that recent trends in biotechnology can contribute to the agronomic improvement of rice in terms of yield and nutritional quality as a supplement to traditional breeding methods. Genetic transformation of rice has demonstrated numerous important opportunities resulting in the genetic improvement of existing elite rice varieties and production of new plant types. Significant advances have been made in the genetic engineering of rice since the first transgenic rice plant production in the late 1980s. Several gene transfer protocols have been employed successfully for the introduction of foreign genes to rice. In more than 60 rice cultivars belonging to indica, japonica, javanica, and elite African cultivars, the protocol has been standardized for transgenic rice production. Selection and use of appropriate promoters, selectable markers, and reporter genes has been helpful for development of efficient protocols for transgenic rice in a number of rice cultivars. The present review is an attempt to assess the current state of development in transgenic rice for the transfer of agronomically useful genes, emphasizing the application and future prospects of transgenic rice production for the genetic improvement of this food crop. PMID:14538093

  10. Know your community - Biochar: agronomic and environmental uses community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The “Biochar: Agronomic and Environmental Uses” Community was formed in November 2010 (https://www.agronomy.org/membership/communities/biochar-agronomic-and-environmental-uses). The community’s initial function has been providing a forum at the tri-society’s national meetings to fill the need for a ...

  11. The Importance of the Regional Species Pool, Ecological Species Traits and Local Habitat Conditions for the Colonization of Restored River Reaches by Fish

    PubMed Central

    Stoll, Stefan; Kail, Jochem; Lorenz, Armin W.; Sundermann, Andrea; Haase, Peter

    2014-01-01

    It is commonly assumed that the colonization of restored river reaches by fish depends on the regional species pools; however, quantifications of the relationship between the composition of the regional species pool and restoration outcome are lacking. We analyzed data from 18 German river restoration projects and adjacent river reaches constituting the regional species pools of the restored reaches. We found that the ability of statistical models to describe the fish assemblages established in the restored reaches was greater when these models were based on ‘biotic’ variables relating to the regional species pool and the ecological traits of species rather than on ‘abiotic’ variables relating to the hydromorphological habitat structure of the restored habitats and descriptors of the restoration projects. For species presence in restored reaches, ‘biotic’ variables explained 34% of variability, with the occurrence rate of a species in the regional species pool being the most important variable, while ’abiotic’ variables explained only the negligible amount of 2% of variability. For fish density in restored reaches, about twice the amount of variability was explained by ‘biotic’ (38%) compared to ‘abiotic’ (21%) variables, with species density in the regional species pool being most important. These results indicate that the colonization of restored river reaches by fish is largely determined by the assemblages in the surrounding species pool. Knowledge of species presence and abundance in the regional species pool can be used to estimate the likelihood of fish species becoming established in restored reaches. PMID:24404187

  12. Quantitative trait locus mapping of yield-related components and oligogenic control of the cap color of the button mushroom, Agaricus bisporus.

    PubMed

    Foulongne-Oriol, Marie; Rodier, Anne; Rousseau, Thierry; Savoie, Jean-Michel

    2012-04-01

    As in other crops, yield is an important trait to be selected for in edible mushrooms, but its inheritance is poorly understood. Therefore, we have investigated the complex genetic architecture of yield-related traits in Agaricus bisporus through the mapping of quantitative trait loci (QTL), using second-generation hybrid progeny derived from a cross between a wild strain and a commercial cultivar. Yield, average weight per mushroom, number of fruiting bodies per m(2), earliness, and cap color were evaluated in two independent experiments. A total of 23 QTL were detected for 7 yield-related traits. These QTL together explained between 21% (two-flushes yield) and 59% (earliness) of the phenotypic variation. Fifteen QTL (65%) were consistent between the two experiments. Four regions underlying significant QTL controlling yield, average weight, and number were detected on linkage groups II, III, IV, and X, suggesting a pleiotropic effect or tight linkage. Up to six QTL were identified for earliness. The PPC1 locus, together with two additional genomic regions, explained up to 90% of the phenotypic variation of the cap color. Alleles from the wild parent showed beneficial effects for some yield traits, suggesting that the wild germ plasm is a valuable source of variation for several agronomic traits. Our results constitute a key step toward marker-assisted selection and provide a solid foundation to go further into the biological mechanisms controlling productive traits in the button mushroom. PMID:22267676

  13. Quantitative Trait Locus Mapping of Yield-Related Components and Oligogenic Control of the Cap Color of the Button Mushroom, Agaricus bisporus

    PubMed Central

    Rodier, Anne; Rousseau, Thierry; Savoie, Jean-Michel

    2012-01-01

    As in other crops, yield is an important trait to be selected for in edible mushrooms, but its inheritance is poorly understood. Therefore, we have investigated the complex genetic architecture of yield-related traits in Agaricus bisporus through the mapping of quantitative trait loci (QTL), using second-generation hybrid progeny derived from a cross between a wild strain and a commercial cultivar. Yield, average weight per mushroom, number of fruiting bodies per m2, earliness, and cap color were evaluated in two independent experiments. A total of 23 QTL were detected for 7 yield-related traits. These QTL together explained between 21% (two-flushes yield) and 59% (earliness) of the phenotypic variation. Fifteen QTL (65%) were consistent between the two experiments. Four regions underlying significant QTL controlling yield, average weight, and number were detected on linkage groups II, III, IV, and X, suggesting a pleiotropic effect or tight linkage. Up to six QTL were identified for earliness. The PPC1 locus, together with two additional genomic regions, explained up to 90% of the phenotypic variation of the cap color. Alleles from the wild parent showed beneficial effects for some yield traits, suggesting that the wild germ plasm is a valuable source of variation for several agronomic traits. Our results constitute a key step toward marker-assisted selection and provide a solid foundation to go further into the biological mechanisms controlling productive traits in the button mushroom. PMID:22267676

  14. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench.

    PubMed

    Shiringani, Amukelani Lacrecia; Frisch, Matthias; Friedt, Wolfgang

    2010-07-01

    The productivity of sorghum is mainly determined by quantitative traits such as grain yield and stem sugar-related characteristics. Substantial crop improvement has been achieved by breeding in the last decades. Today, genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement. We have investigated QTL associated with the sugar components (Brix, glucose, sucrose, and total sugar content) and sugar-related agronomic traits (flowering date, plant height, stem diameter, tiller number per plant, fresh panicle weight, and estimated juice weight) in four different environments (two locations) using a population of 188 recombinant inbred lines (RILs) from a cross between grain (M71) and sweet sorghum (SS79). A genetic map with 157 AFLP, SSR, and EST-SSR markers was constructed, and several QTLs were detected using composite interval mapping (CIM). Further, additive x additive interaction and QTL x environmental interaction were estimated. CIM identified more than five additive QTLs in most traits explaining a range of 6.0-26.1% of the phenotypic variation. A total of 24 digenic epistatic locus pairs were identified in seven traits, supporting the hypothesis that QTL analysis without considering epistasis can result in biased estimates. QTLs showing multiple effects were identified, where the major QTL on SBI-06 was significantly associated with most of the traits, i.e., flowering date, plant height, Brix, sucrose, and sugar content. Four out of ten traits studied showed a significant QTL x environmental interaction. Our results are an important step toward marker-assisted selection for sugar-related traits and biofuel yield in sorghum. PMID:20229249

  15. Estimation of Wheat Agronomic Parameters using New Spectral Indices

    PubMed Central

    Jin, Xiu-liang; Diao, Wan-ying; Xiao, Chun-hua; Wang, Fang-yong; Chen, Bing; Wang, Ke-ru; Li, Shao-kun

    2013-01-01

    Crop agronomic parameters (leaf area index (LAI), nitrogen (N) uptake, total chlorophyll (Chl) content ) are very important for the prediction of crop growth. The objective of this experiment was to investigate whether the wheat LAI, N uptake, and total Chl content could be accurately predicted using spectral indices collected at different stages of wheat growth. Firstly, the product of the optimized soil-adjusted vegetation index and wheat biomass dry weight (OSAVI×BDW) were used to estimate LAI, N uptake, and total Chl content; secondly, BDW was replaced by spectral indices to establish new spectral indices (OSAVI×OSAVI, OSAVI×SIPI, OSAVI×CIred edge, OSAVI×CIgreen mode and OSAVI×EVI2); finally, we used the new spectral indices for estimating LAI, N uptake, and total Chl content. The results showed that the new spectral indices could be used to accurately estimate LAI, N uptake, and total Chl content. The highest R2 and the lowest RMSEs were 0.711 and 0.78 (OSAVI×EVI2), 0.785 and 3.98 g/m2 (OSAVI×CIred edge) and 0.846 and 0.65 g/m2 (OSAVI×CIred edge) for LAI, nitrogen uptake and total Chl content, respectively. The new spectral indices performed better than the OSAVI alone, and the problems of a lack of sensitivity at earlier growth stages and saturation at later growth stages, which are typically associated with the OSAVI, were improved. The overall results indicated that this new spectral indices provided the best approximation for the estimation of agronomic indices for all growth stages of wheat. PMID:24023639

  16. [Effects of stereoscopic cultivation on soil microorganism, enzyme activity and the agronomic characters of Panax notoginseng].

    PubMed

    Liao, Pei-ran; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Liu, Da-hui; Yang, Ye

    2015-08-01

    Compartments of soil microorganism and enzymes between stereoscopic cultivation (three storeys) and field cultivation (CK) of Panax notoginseng were carried out, and the effects on P. notoginseng agronomic characters were also studied. Results show that concentration of soil microorganism of stereoscopic cultivation was lower than field cultivation; the activity of soil urea enzyme, saccharase and neutral phosphatase increased from lower storey to upper storey; the activity of soil urea enzyme and saccharase of lower and upper storeys were significantly lower than CK; agronomic characters of stereoscopic cultivated P. notoginsengin were inferior to field cultivation, the middle storey with the best agronomic characters among the three storeys. The correlation analysis showed that fungi, actinomycetes and neutral phosphatase were significantly correlated with P. notoginseng agronomic characters; concentration of soil fungi and bacteria were significantly correlated with the soil relative water content; actinomycete and neutral phosphatase were significantly correlated with soil pH and relative water content, respectively; the activities of soil urea enzyme and saccharase were significantly correlated with the soil daily maximum temperature difference. Inconclusion, The current research shows that the imbalance of soil microorganism and the acutely changing of soil enzyme activity were the main reasons that caused the agronomic characters of stereoscopic cultivated P. notoginseng were worse than field cultivation. Thus improves the concentration of soil microorganism and enzyme activity near to field soil by improving the structure of stereoscopic cultivation is very important. And it was the direction which we are endeavoring that built better soil ecological environment for P. notoginseng of stereoscopic cultivation. PMID:26677687

  17. Effect of agronomical practices on carpology, fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.).

    PubMed

    Rosati, Adolfo; Cafiero, Caterina; Paoletti, Andrea; Alfei, Barbara; Caporali, Silvia; Casciani, Lorena; Valentini, Massimiliano

    2014-09-15

    We examined whether some agronomical practices (i.e. organic vs. conventional) affect olive fruit and oil composition, and oil sensory properties. Fruit characteristics (i.e. fresh and dry weight of pulp and pit, oil content on a fresh and dry weight basis) did not differ. Oil chemical traits did not differ except for increased content of polyphenols in the organic treatments, and some changes in the acidic composition. Sensory analysis revealed increased bitterness (both cultivars) and pungency (Frantoio) and decreased sweetness (Frantoio) in the organic treatment. Fruit metabolomic analysis with HRMAS-NMR indicated significant changes in some compounds including glycocholate, fatty acids, NADPH, NADP+, some amino acids, thymidine, trigonelline, nicotinic acid, 5,6-dihydrouracil, hesanal, cis-olefin, β-D-glucose, propanal and some unassigned species. The results suggest that agronomical practices may have effects on fruit composition that may be difficult to detect unless a broad-spectrum analysis is used. PMID:24767050

  18. Critical Thinking: Developing Intellectual Traits.

    ERIC Educational Resources Information Center

    Elder, Linda; Paul, Richard

    1998-01-01

    Stresses that critical thinking is more than a set of skills; it also involves intellectual traits that should be cultivated. These traits include intellectual humility, courage, empathy, integrity, and perseverance; faith in reason; and fair-mindedness. Self-questioning is an important means of developing these traits. (SL)

  19. Integrating Agronomic Principles with Management Experience in Introductory Agronomy.

    ERIC Educational Resources Information Center

    Vorst, J. J.

    1989-01-01

    Explains the use of a cropping systems project to teach agronomic principles and crop management techniques, and to enhance communication skills. Provides a sample progress report instructions sheet which was used for the project. (Author/RT)

  20. A Survey of Fertilizer Dealers: I. Sources of Agronomic Training.

    ERIC Educational Resources Information Center

    Schmitt, M. A.

    1988-01-01

    Reports on a survey of fertilizer dealers which was conducted to: assess where and from whom local fertilizer dealers obtain agronomic training; evaluate the effectiveness of various dealer training; and determine the needs and objectives of future training programs. (TW)

  1. A Survey of Fertilizer Dealers: II. Sources of Agronomic Information.

    ERIC Educational Resources Information Center

    Schmitt, M. A.

    1988-01-01

    Reports on a survey of fertilizer dealers that was conducted to assess how the dealers were obtaining their agronomic information, aside from formal training sessions, and determine if these sources of information were satisfactory in fulfilling the dealers' needs. (TW)

  2. Transgenic strawberry: state of the art for improved traits.

    PubMed

    Qin, Yonghua; Teixeira da Silva, Jaime A; Zhang, Lingxiao; Zhang, Shanglong

    2008-01-01

    Strawberry (Fragaria x ananassa Duch.), a member of the Rosaceae family, is one of the most important fruit crops cultivated worldwide. Strawberry is unique within the Rosaceae because it is a rapidly growing herbaceous perennial with a small genome, short reproductive cycle, and facile vegetative and generative propagation for genetic transformation. For these reasons, strawberry has been recognized as excellent germplasm for genetic and molecular studies for the Rosaceae family. Although traditional breeding methods have achieved steady improvement in agronomic traits, the lack of useful economic characters still remains a major challenge. Genetic transformation has opened a new era for greater creativity in strawberry breeding and germplasm by offering an effective method for creating new varieties that selectively targets a specific interested gene or a few heterologous traits. Enormous advances have been made in strawberry genetic transformation since the first transgenic strawberry plant was obtained in 1990. This paper reviews recent progress in genetic transformation of strawberry on increasing resistance to viruses, fungi, insects, herbicides, stress, and achieving better quality. Problems and prospects for future applications of genetic transformation in strawberry are also discussed. PMID:18280082

  3. AGRONOMIC EVALUATION OF PARENTAL GERMPLASM - 2001

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent breeding efforts focus on combining disease resistance attributes of traditional germplasm releases with the smooth-root traits that the more recent releases and breeding lines have. Thirteen entries from crosses among these types, as well as two commercial checks, and seven historically impo...

  4. Agronomic use of biotechnologically processed grape wastes.

    PubMed

    Ferrer, J; Páez, G; Mármol, Z; Ramones, E; Chandler, C; Marín, M; Ferrer, A

    2001-01-01

    Grape waste was composted by biodegradation and subsequently used as an organic fertilizer for 20 day-corn. Combinations of recently compressed grape waste and hen droppings (10% w/w) were prepared to study the activating effect of hen droppings and the effect of aeration on the composting process. The final hydrogen potential (pH), %C, %N and C/N ratio, indicated an adequate development of the bioprocess. Satisfactory results were observed when the products were applied at several doses (1,000-4,000 kg/ ha) as a soil conditioner for corn seed germination in greenhouses. Only the addition of hen droppings had a significant effect (P < 0.05) on corn dry matter (14% increase). A dose of 3000 kg/ha was considered as optimal and was used supplemented with triple superphosphate (TSP) in agronomic trials. All the treatments produced greater corn dry matter (P < 0.05) than the chemical industrial fertilizer used as a control (0.52-0.71 g/pot for the organic fertilizers vs 0.45 g/pot for the control). Anaerobic conditions and hen droppings addition significantly produced (P < 0.05) higher corn dry matter. PMID:11315808

  5. Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desirable agronomic traits are similar for common hexaploid (6X) bread wheat (Triticum aestivum, 2n = 6x = 42, genome, AABBDD) and tetraploid (4X) durum wheat (Triticum turgidum durum, 2n = 4x = 28, genome, AABB). However, they are genetically isolated from each other due to an unequal number of ge...

  6. Exploring Potential of Pearl Millet Germplasm Association Panel for Association Mapping of Drought Tolerance Traits

    PubMed Central

    Sehgal, Deepmala; Skot, Leif; Singh, Richa; Srivastava, Rakesh Kumar; Das, Sankar Prasad; Taunk, Jyoti; Sharma, Parbodh C.; Pal, Ram; Raj, Bhasker; Hash, Charles T.; Yadav, Rattan S.

    2015-01-01

    A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with ‘stay green’ phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet

  7. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits.

    PubMed

    Sehgal, Deepmala; Skot, Leif; Singh, Richa; Srivastava, Rakesh Kumar; Das, Sankar Prasad; Taunk, Jyoti; Sharma, Parbodh C; Pal, Ram; Raj, Bhasker; Hash, Charles T; Yadav, Rattan S

    2015-01-01

    A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with 'stay green' phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet

  8. Agronomic characteristics of five different urban waste digestates.

    PubMed

    Tampio, Elina; Salo, Tapio; Rintala, Jukka

    2016-03-15

    The use of digestate in agriculture is an efficient way to recycle materials and to decrease the use of mineral fertilizers. The agronomic characteristics of the digestates can promote plant growth and soil properties after digestate fertilization but also harmful effects can arise due to digestate quality, e.g. pH, organic matter and heavy metal content. The objective of this study was to evaluate the differences and similarities in agronomic characteristics and the value of five urban waste digestates from different biogas plants treating either food waste, organic fraction of organic solid waste or a mixture of waste-activated sludge and vegetable waste. The digestate agronomic characteristics were studied with chemical analyses and the availability of nutrients was also assessed with growth experiments and soil mineralization tests. All studied urban digestates produced 5-30% higher ryegrass yields compared to a control mineral fertilizer with a similar inorganic nitrogen concentration, while the feedstock source affected the agronomic value. Food waste and organic fraction of municipal solid waste digestates were characterized by high agronomic value due to the availability of nutrients and low heavy metal load. Waste-activated sludge as part of the feedstock mixture, however, increased the heavy metal content and reduced nitrogen availability to the plant, thus reducing the fertilizer value of the digestate. PMID:26773433

  9. Pattern of Variation of Fruit Traits and Phenol Content in Olive Fruits from Six Different Cultivars.

    PubMed

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2015-12-01

    In the present study, olive fruits from six cultivars grown under similar agronomical and environmental conditions were collected at four different times during fruit ripening. Some agronomical traits were determined, and general increases in the size of the fruit and oil contents were recorded for all cultivars. The phenolic fraction in fruits was also identified and quantified during the same period using high-performance liquid chromatography-diode array detection-time-of-flight-mass spectrometry. Thus, a total of 57 phenolic compounds were determined, and qualitative and quantitative differences among cultivars and also among sampling times were observed. In contrast to the agronomical traits, a general decrease of total phenolic compounds was observed, characterized by a domination of secoiridoids at the beginning of ripening and by a domination of simple phenols and flavonoids in the end. This is the first time that four of the six cultivars have been studied regarding phenolic compounds evolution during ripening. PMID:26509962

  10. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses.

    PubMed

    Ramakrishnan, M; Antony Ceasar, S; Duraipandiyan, V; Vinod, K K; Kalpana, Krishnan; Al-Dhabi, N A; Ignacimuthu, S

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal

  11. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses

    PubMed Central

    Ramakrishnan, M.; Antony Ceasar, S.; Duraipandiyan, V.; Vinod, K. K.; Kalpana, Krishnan; Al-Dhabi, N. A.; Ignacimuthu, S.

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal

  12. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation

    PubMed Central

    Jin, Minliang; Liu, Haijun; He, Cheng; Fu, Junjie; Xiao, Yingjie; Wang, Yuebin; Xie, Weibo; Wang, Guoying; Yan, Jianbing

    2016-01-01

    Gene expression variation largely contributes to phenotypic diversity and constructing pan-transcriptome is considered necessary for species with complex genomes. However, the regulation mechanisms and functional consequences of pan-transcriptome is unexplored systematically. By analyzing RNA-seq data from 368 maize diverse inbred lines, we identified almost one-third nuclear genes under expression presence and absence variation, which tend to play regulatory roles and are likely regulated by distant eQTLs. The ePAV was directly used as “genotype” to perform GWAS for 15 agronomic phenotypes and 526 metabolic traits to efficiently explore the associations between transcriptomic and phenomic variations. Through a modified assembly strategy, 2,355 high-confidence novel sequences with total 1.9 Mb lengths were found absent within reference genome. Ten randomly selected novel sequences were fully validated with genomic PCR, including another two NBS_LRR candidates potentially affect flavonoids and disease-resistance. A simulation analysis suggested that the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes, and through developing two test-cross populations and surveying several most important yield traits, the dispensable genes were shown to contribute to heterosis. Novel perspectives and resources to discover maize quantitative trait variations were provided to better understand the kernel regulation networks and to enhance maize breeding. PMID:26729541

  13. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation.

    PubMed

    Jin, Minliang; Liu, Haijun; He, Cheng; Fu, Junjie; Xiao, Yingjie; Wang, Yuebin; Xie, Weibo; Wang, Guoying; Yan, Jianbing

    2016-01-01

    Gene expression variation largely contributes to phenotypic diversity and constructing pan-transcriptome is considered necessary for species with complex genomes. However, the regulation mechanisms and functional consequences of pan-transcriptome is unexplored systematically. By analyzing RNA-seq data from 368 maize diverse inbred lines, we identified almost one-third nuclear genes under expression presence and absence variation, which tend to play regulatory roles and are likely regulated by distant eQTLs. The ePAV was directly used as "genotype" to perform GWAS for 15 agronomic phenotypes and 526 metabolic traits to efficiently explore the associations between transcriptomic and phenomic variations. Through a modified assembly strategy, 2,355 high-confidence novel sequences with total 1.9 Mb lengths were found absent within reference genome. Ten randomly selected novel sequences were fully validated with genomic PCR, including another two NBS_LRR candidates potentially affect flavonoids and disease-resistance. A simulation analysis suggested that the pan-transcriptome of the maize whole kernel is approaching a maximum value of 63,000 genes, and through developing two test-cross populations and surveying several most important yield traits, the dispensable genes were shown to contribute to heterosis. Novel perspectives and resources to discover maize quantitative trait variations were provided to better understand the kernel regulation networks and to enhance maize breeding. PMID:26729541

  14. Speed-Mapping Quantitative Trait Loci Using Microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the genetic architecture of complex traits is important for human health, agriculture, and understanding adaptive evolution, but is challenging because high resolution quantitative trait locus (QTL) mapping requires evaluation of thousands of recombinant individuals for the trait and clo...

  15. Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589).

    PubMed

    Doganlar, Sami; Frary, Anne; Ku, Hsin-Mei; Tanksley, Steven D

    2002-12-01

    Although tomato has been the subject of extensive quantitative trait loci (QTLs) mapping experiments, most of this work has been conducted on transient populations (e.g., F2 or backcross) and few homozygous, permanent mapping populations are available. To help remedy this situation, we have developed a set of inbred backcross lines (IBLs) from the interspecific cross between Lycopersicon esculentum cv. E6203 and L. pimpinellifolium (LA1589). A total of 170 BC2F1 plants were selfed for five generations to create a set of homozygous BC2F6 lines by single-seed descent. These lines were then genotyped for 127 marker loci covering the entire tomato genome. These IBLs were evaluated for 22 quantitative traits. In all, 71 significant QTLs were identified, 15% (11/71) of which mapped to the same chromosomal positions as QTLs identified in earlier studies using the same cross. For 48% (34/71) of the detected QTLs, the wild allele was associated with improved agronomic performance. A number of new QTLs were identified including several of significant agronomic importance for tomato production: fruit shape, firmness, fruit color, scar size, seed and flower number, leaf curliness, plant growth, fertility, and flowering time. To improve the utility of the IBL population, a subset of 100 lines giving the most uniform genome coverage and map resolution was selected using a randomized greedy algorithm as implemented in the software package MapPop (http://www.bio.unc.edu/faculty/vision/lab/ mappop/). The map, phenotypic data, and seeds for the IBL population are publicly available (http://soldb.cit.cornell.edu) and will provide tomato geneticists and breeders with a genetic resource for mapping, gene discovery, and breeding. PMID:12502266

  16. Biochar: A synthesis of its agronomic impact beyond carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar has been recently heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity and enter into future carbon trading markets. However, scientific and economic technicalities may limit the ability of biochar to consistently deliver o...

  17. Agronomic performance of five banana cultivars under protected cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana has been grown both in open-field and protected cultivation in Turkey. So far protected cultivation is very popular due to the high yield and quality. The objective of the study was to evaluate agronomic performance of five new banana cultivars under plastic greenhouse. ‘MA 13’, ‘Williams’, ‘...

  18. Agronomic and Environmental Implications of Enhanced s-Triazine Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. Herein we describe the potential agronomic and environmental ramifications of these bacterial adaptations. The genes responsible for s-triazine minera...

  19. Agronomic effectiveness of calcium phosphate recovered from liquid swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new manure treatment technology developed as an alternative to anaerobic lagoons on swine (Sus scrofa domesticus) farms includes solid-liquid separation and subsequent recovery of soluble phosphorus (P) as calcium phosphate from the wastewater. The objective was to determine the agronomic effectiv...

  20. AGRONOMIC EVALUATION OF SMOOTH ROOT RELEASES AND PROSPECTIVE RELEASES - 2001

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance evaluations for standard agronomic parameters as well as root suture prominence score were conducted on 10 experimental and two standard commercial hybrids. Recoverable White Sugar per Acre (RWSA) was the most useful yield measurement. It was apparent that gains have been made in increas...

  1. Data access and interchange in agronomic and natural resources management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges related to agriculture and natural resource management have never been greater. Comprehensive agronomic and natural resources data relevant to climate change, food security, bioenergy, and sustainable water supply are rare and in demand. Data used for policy development must be rigorous...

  2. Power and Autistic Traits

    PubMed Central

    Overskeid, Geir

    2016-01-01

    Autistic traits can help people gain and sustain power, and has probably done so throughout history, says the present paper. A number of testable claims follow from this assumption. First, the powerful should have more autistic traits than others – which they do appear to have. Among other things, powerful people, and those with many autistic traits, tend to prefer solitary activities and are often aloof. Moreover, they are often rigid and socially insensitive, low on empathy and with low scores on the trait of agreeableness – and as a rule they do not have many friends. Both groups are also more self-centered than others, more honest, less submissive, more sensitive to slights, and with a stronger tendency to engage in abstract thinking. They tend to behave in bossy or dominant ways, and their moral judgment is more based on rules than on feelings. In addition to experimental evidence, I cite biographies showing that a surprising number of presidents, prime ministers and other powerful people seem to have had traits like those in question – and interestingly, in animals, leaders are often rigid and insensitive to group members’ needs and feelings, mostly acting the way they are themselves inclined to, not responding much to others. Problem solving is important in leadership, and people with many autistic traits appear often to be better thinkers than typical subjects with similar IQs. However, these and other congruities could be coincidences. Hence the question of whether traits the two groups have in common also have a common cause constitutes a strong test of the paper’s thesis – and a common cause does appear to exist, in the form of testosterone’s effects on the central nervous system. Finally, there is evidence that, other things equal, powerful men have more reproductive success than others. If men wielding power do indeed have more autistic traits than those less powerful, this will lead to, other things equal, such traits becoming more

  3. Biochar: a synthesis of its agronomic impact beyond carbon sequestration.

    PubMed

    Spokas, Kurt A; Cantrell, Keri B; Novak, Jeffrey M; Archer, David W; Ippolito, James A; Collins, Harold P; Boateng, Akwasi A; Lima, Isabel M; Lamb, Marshall C; McAloon, Andrew J; Lentz, Rodrick D; Nichols, Kristine A

    2012-01-01

    Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits. PMID:22751040

  4. Agronomic Suitability of Bioenergy Crops in Mississippi

    SciTech Connect

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    ‚€Ã‚¢ How will these crops affect fertilizer use and water quality? • What kind of water management is needed to maintain a productive crop? The answers to these questions will help supporting institutions across the state to improve land assessment and agronomic management practices for biomass production. In the last decade, energy supply has become a worldwide problem. Bioenergy crops could supply energy in the future. Bioenergy crops are plants, usually perennial grasses and trees, that produce a lot of biomass that can be converted into energy. Bioenergy crops can be grown for two energy markets: power generation, such as heat and electricity, or liquid fuel, such as cellulosic ethanol. These resources could reduce petroleum dependency and greenhouse gas production. Woody plants and herbaceous warm-season grasses, such as switchgrass, giant miscanthus,energy cane, and high yielding sorghums, could be major sources of biomass in Mississippi.

  5. Using Next Generation Sequencing for Multiplexed Trait-Linked Markers in Wheat

    PubMed Central

    Bernardo, Amy; Wang, Shan; St. Amand, Paul; Bai, Guihua

    2015-01-01

    With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat (Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat. PMID:26625271

  6. Association of puppies' behavioral reaction at five months of age assessed by questionnaire with their later 'Distraction' at 15 months of age, an important behavioral trait for guide dog qualification.

    PubMed

    Kobayashi, Natsuko; Arata, Sayaka; Hattori, Ai; Kohara, Yui; Kiyokawa, Yasushi; Takeuchi, Yukari; Mori, Yuji

    2013-01-31

    Guide dogs help visually impaired persons both physically and psychologically. More than half of all candidate dogs do not qualify, mainly for behavioral reasons. Improved training efficacy is desirable, and earlier prediction of qualification-related traits would be beneficial. In a previous study, we identified 'Distraction', assessed during the training period, as an important behavioral trait for judging the qualification of guide dogs at the Japan Guide Dog Association. As a second step, we aimed to develop an index that can predict during the puppy period. In this study, candidate guide dogs, 5-month-old Labrador retrievers, were assessed by puppy raisers using a newly developed questionnaire that consisted of 20 items. The same dogs were assessed later, at 15 months, by trainers to determine 'Distraction'. In principal components analysis, nine items, including excitability toward strangers, initiative while out for a walk, and exploration, composed the first principal component (PC1). When we compared PC1 points with 'Distraction' points, the two categories were positively correlated (n=110, r(s)=0.31, P=0.0009). Although the accuracy of the questionnaire should be increased, the results of the present study suggest that it may be possible to assess and predict 'Distraction', which is associated with disqualification for guide dogs, early in the puppy-raising period. PMID:22971667

  7. A linkage map of cultivated cucumber (cucumis sativus l.) with 248 microsatellite marker loci and seven genes for horticulturally important traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marker assisted selection (MAS) is playing an increasingly important role in expedite and increase the efficiency of classical plant breeding. In cucumber, MAS is lagging behind as compared with other field crops. In the present study, a genetic map was developed with microsatellite (or simple seque...

  8. Ecological interactions drive evolutionary loss of traits.

    PubMed

    Ellers, Jacintha; Kiers, E Toby; Currie, Cameron R; McDonald, Bradon R; Visser, Bertanne

    2012-10-01

    Loss of traits can dramatically alter the fate of species. Evidence is rapidly accumulating that the prevalence of trait loss is grossly underestimated. New findings demonstrate that traits can be lost without affecting the external phenotype, provided the lost function is compensated for by species interactions. This is important because trait loss can tighten the ecological relationship between partners, affecting the maintenance of species interactions. Here, we develop a new perspective on so-called `compensated trait loss' and how this type of trait loss may affect the evolutionary dynamics between interacting organisms. We argue that: (1) the frequency of compensated trait loss is currently underestimated because it can go unnoticed as long as ecological interactions are maintained; (2) by analysing known cases of trait loss, specific factors promoting compensated trait loss can be identified and (3) genomic sequencing is a key way forwards in detecting compensated trait loss. We present a comprehensive literature survey showing that compensated trait loss is taxonomically widespread, can involve essential traits, and often occurs as replicated evolutionary events. Despite its hidden nature, compensated trait loss is important in directing evolutionary dynamics of ecological relationships and has the potential to change facultative ecological interactions into obligatory ones. PMID:22747703

  9. Variability, heritability and genetic advance in some agronomic and forage quality characters of spring triticale in western Canada.

    PubMed

    Aljarrah, Mazen; Oatway, Lori; Albers, Susan; Bergen, Colin

    2014-01-01

    genotypes evaluated under multiple locations and years to better understand the variance components and heritability in key agronomic and quality traits. PMID:26072570

  10. Evaluation of disease reaction and agronomic traits of selected peanut entries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our peanut improvement efforts are focused on enhancing yield, quality and disease resistance. Therefore, the major emphasis of this research project is to develop high oleic peanut cultivars possessing disease resistance, and high yield and grade. All the plot research reported here was performed...

  11. Linkage Map Construction and QTL Analysis of Agronomic and Fiber Quality Traits in Cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The superior fiber properties of Gossypium barbadense L. serve as a source of novel variation for improving fiber quality in Upland cotton (G. hirsutum L.), but introgression from G. barbadense has been largely unsuccessful due to hybrid breakdown and a lack of genetic and genomic resources. In an e...

  12. Genome-wide and fine resolution association studies of 14 agronomic traits in rice land races

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report genome sequences of 517 diverse rice land races and the identification of ~3.6 million single nucleotide polymorphisms. A high-density haplotype map of rice genome was constructed using a highly accurate imputation method developed for next-generation sequencing data. Initial genome-w...

  13. Disease evaluations and agronomic traits of advanced peanut breeding lines in 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 38 peanut cultivars and high-oleic advanced breeding lines were evaluated in small field plots in 2012 for yield, seed grade and size, and resistance to Sclerotinia minor and Sclerotium rolfsii. Among the 14 Spanish entries, the cultivar Tamnut 06 (3258 lbs/acre) and breeding line 140-1O...

  14. Yield and Agronomic Traits of Waxy Proso in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proso millet (Panicum miliaceum L.) is a summer annual grass that is capable of producing grain in 60 to 90 days. This characteristic, and its efficient use of water, makes it well suited short, and often hot and dry, growing season in the high plains of Kansas, Nebraska, Colorado, Wyoming, and the ...

  15. Assessment of anthocyanin and agronomic trait variation in some commonly used medicinal legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several legumes including Canavalia ensiformis, Desmodium adscendens, Indigofera suffruticosa, Senna covesii, and S. occidentalis are currently used as medicinal plants. These species contain anthocyanins as well with potential to be used in the pharmaceutical markets. The USDA, ARS, Plant Genetic R...

  16. Efect of tri-species chromosome shuffling on agronomic and fiber traits in Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gossypium barbadense (L.), G. tomentosum (Seem.), G. mustelinum (Watt.) and G. darwinii (Watt.) are in the primary gene pool of Upland cotton (G. hirsutum). They share a common chromosome number (2n=52), similar AD-genome architecture, and form reasonably fertile F1 hybrids. However, reduced transm...

  17. Genome-wide association studies of morphological and agronomical traits in cultivated tepary beans (Phaseolus acutifolius)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tepary bean (Phaseolus acutifolius A. Gray) is adapted to high temperature arid agroecological zones. In light of the ongoing and rapid changes in the world climate, the evaluation and development of alternate grain legume species that have similar nutritional and culinary characteristics as common ...

  18. Genomics tools available for unravelling mechanisms underlying agronomical traits in strawberry with more to come

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last few years, high-throughput genomics promised to bridge the gap between plant physiology and plant sciences. In addition, high-throughput genotyping technologies facilitate marker-based selection for better performing genotypes. In strawberry, Fragaria vesca was the first reference sequen...

  19. Genetic and agronomic assessment of cob traits in corn under low and normal nitrogen management conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With rising energy demands and costs for fossil fuels, alternative energy from renewable sources such as maize cobs will become competitive. Maize cobs have beneficial characteristics for utilization as feedstock including compact tissue, high cellulose content, and low ash and nitrogen content. Nit...

  20. Screening of lettuce germplasm for agronomic traits under low water conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After a preliminary screening of over 3,500 varieties, we selected 200 cultivars of butterhead, cos, crisphead, leaf, and stem lettuce (Lactuca sativa L.) and wild prickly lettuce (Lactuca serriola L.) to test under high water (150% ET) and low water (50% ET) conditions in the field, and tracked com...

  1. Path analysis of agro-industrial traits in sweet sorghum.

    PubMed

    Lombardi, G M R; Nunes, J A R; Parrella, R A C; Teixeira, D H L; Bruzi, A T; Durães, N N L; Fagundes, T G

    2015-01-01

    Sweet sorghum has considerable potential for ethanol production due to its succulent stalks that contain directly fermentable sugars. Since many traits need to be considered in the selection process to breed superior cultivars for ethanol production, then correlations between the traits might be of use to help the breeder define optimal improvement strategies. The aim of this study was to investigate the association between the principal agro-industrial traits in sweet sorghum, and to evaluate the direct and indirect effects of primary and secondary traits on ethanol production per hectare. In total, 45 sweet sorghum genotypes (lineage/hybrids) were evaluated in an experiment designed in an alpha lattice 5 x 9. The data were analyzed using a mixed model approach. A detailed study of simple correlations was accomplished using path analysis. The experimental precision was high, with an accuracy above 76%. The various genotypes showed genetic variation for all agronomic and industrial traits, except stalk diameter. Some agro-industrial traits showed significant simple correlations with ethanol production, but according to the path analysis, some of these traits did not show a significant direct or indirect effect on ethanol production. The results highlighted the primary and secondary traits with practical relevance to sweet sorghum breeding, since they showed director indirect effects on ethanol production. PMID:26662435

  2. Agronomic Performance of Low Phytic Acid Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low phytic acid (LPA) genotypes of wheat are one approach to improving the nutritional quality of wheat by reducing the concentration of phytic acid in the aleurone layer, thus reducing the chelation of nutritionally important minerals and improving the bioavailability of phosphorus. Field studies ...

  3. AGRONOMIC PERFORMANCE OF DALLISGRASS TISSUE CULTURE REGENERANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common dallisgrass, Paspalum dilatatum, is a pentaploid obligate apomict and efforts to improve this important forage grass have not been successful because of its asexual reproduction and irregular meiosis. An apomictic hexaploid biotype, known as Uruguayan dallisgrass, is a new source of genetic v...

  4. Geographic Variation in the Acoustic Traits of Greater Horseshoe Bats: Testing the Importance of Drift and Ecological Selection in Evolutionary Processes

    PubMed Central

    Sun, Keping; Luo, Li; Kimball, Rebecca T.; Wei, Xuewen; Jin, Longru; Jiang, Tinglei; Li, Guohong; Feng, Jiang

    2013-01-01

    Patterns of intraspecific geographic variation of signaling systems provide insight into the microevolutionary processes driving phenotypic divergence. The acoustic calls of bats are sensitive to diverse evolutionary forces, but processes that shape call variation are largely unexplored. In China, Rhinolophus ferrumequinum displays a diverse call frequency and inhabits a heterogeneous landscape, presenting an excellent opportunity for this kind of research. We quantified geographic variation in resting frequency (RF) of echolocation calls, estimated genetic structure and phylogeny of R. ferrumequinum populations, and combined this with climatic factors to test three hypotheses to explain acoustic variation: genetic drift, cultural drift, and local adaptation. Our results demonstrated significant regional divergence in frequency and phylogeny among the bat populations in China's northeast (NE), central-east (CE) and southwest (SW) regions. The CE region had higher frequencies than the NE and SW regions. Drivers of RF divergence were estimated in the entire range and just the CE/NE region (since these two regions form a clade). In both cases, RF divergence was not correlated with mtDNA or nDNA genetic distance, but was significantly correlated with geographic distance and mean annual temperature, indicating cultural drift and ecological selection pressures are likely important in shaping RF divergence among different regions in China. PMID:23950926

  5. Refuges, flower strips, biodiversity and agronomic interest.

    PubMed

    Roy, Grégory; Wateau, Karine; Legrand, Mickaël; Oste, Sandrine

    2008-01-01

    . Results showed that in France it was mainly syrphids that control aphid populations. The choice of flowers Families to include in flower strip is important. You have to avoid choosing the same plant family as the one of the crop you want to protect because you would risk to attract pests and diseases in the field. In fact, it's important to choose the optimal diversity of plant Family and not the greatest diversity. PMID:19226774

  6. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity.

    PubMed

    Brunetto, Gustavo; Bastos de Melo, George Wellington; Terzano, Roberto; Del Buono, Daniele; Astolfi, Stefania; Tomasi, Nicola; Pii, Youry; Mimmo, Tanja; Cesco, Stefano

    2016-11-01

    Viticulture represents an important agricultural practice in many countries worldwide. Yet, the continuous use of fungicides has caused copper (Cu) accumulation in soils, which represent a major environmental and toxicological concern. Despite being an important micronutrient, Cu can be a potential toxicant at high concentrations since it may cause morphological, anatomical and physiological changes in plants, decreasing both food productivity and quality. Rhizosphere processes can, however, actively control the uptake and translocation of Cu in plants. In particular, root exudates affecting the chemical, physical and biological characteristics of the rhizosphere, might reduce the availability of Cu in the soil and hence its absorption. In addition, this review will aim at discussing the advantages and disadvantages of agronomic practices, such as liming, the use of pesticides, the application of organic matter, biochar and coal fly ashes, the inoculation with bacteria and/or mycorrhizal fungi and the intercropping, in alleviating Cu toxicity symptoms. PMID:27513550

  7. Sickle Cell Trait

    MedlinePlus

    ... About Us Information For... Media Policy Makers Sickle Cell Trait Language: English Español (Spanish) Recommend on Facebook ... the trait on to their children. How Sickle Cell Trait is Inherited If both parents have SCT, ...

  8. Cytogenetic and molecular identification of small-segment chromosome translocation lines from wheat-rye substitution lines to create wheat germplasm with beneficial traits

    PubMed Central

    Song, Wei-Fu; Ding, Hai-Yan; Zhang, Xiao-Mei; Li, Ji-Lin; Xiao, Zhi-Min; Xin, Wen-Li; Song, Qing-Jie; Zhao, Hai-Bin; Zhang, Yan-Bin; Zhang, Chun-Li

    2014-01-01

    ABSTRACT Intergeneric crop plant hybrid lines with small-segment chromosome translocations are very useful in plant genetic research and breeding. In this study, to create small-segment chromosome translocations with beneficial agronomic characters, the progeny of wheat-rye substitution lines 5R/5A and 6R/6A were selected from generations F2 to F5 for rye-specific characteristics. A PCR primer and specific simple sequence repeat marker for rye were used in F5 populations to detect rye chromatin and to amplify a specific chromosome band in six translocation lines (06-6-5, 06-6-6, 06-6-9, 6-26-1, 7-23, and 7-33). Fragment pSc119.1 cloned from 7-33 had 99% homology with the big ear gene sequence (GenBank AF512607.1) in wheat. The six lines were further characterized via pollen mother cell meiosis analysis for genetic stability, and chromosome C-banding and genomic in situ hybridization for rye chromatin. The results show that line 7-33 was still within the 5R/5A substitution lines and possessed the big ear gene. The other lines all contained small-segment rye chromosome translocations. The results indicated that substitution line hybridization is an effective method for creating small-segment chromosome translocations with useful agronomic traits. Trials for these six wheat-rye translocation lines are justified because they possess many important stably-inherited agronomic characters, including disease resistance and improved yield. PMID:26019483

  9. Correlations between traits in soybean (Glycine max L.) naturally infected with Asian rust (Phakopsora pachyrhizi).

    PubMed

    Rodrigues, B; Serafim, F; Nogueira, A P O; Hamawaki, O T; de Sousa, L B; Hamawaki, R L

    2015-01-01

    Soybean (Glycine max L.)-breeding programs aim to develop cultivars with high grain yields and high tolerance to Asian soybean rust (Phakopsora pachyrhizi). Considering that the traits targeted for breeding are mainly quantitative in nature, knowledge of associations between traits allows the breeder to formulate indirect selection strategies. In this study, we investigated phenotypic, genotypic, and environmental correlations between the agronomic traits of soybean plants naturally infected with P. pachyrhizi, and identified agronomic traits that would be useful in indirectly selecting soybean genotypes for high yields. The study was conducted on the Capim Branco Farm, Uberlândia, Brazil, with 15 soybean genotypes, which were cultivated in a completely randomized block design with four replications. Fourteen phenotypic traits were evaluated using the GENES software. The phenotypic and genotypic correlations were positive and of a high magnitude between the total number of pods and the number of pods with two or three grains, indicating that the total number of pods is a useful trait for the indirect selection of soybean genotypes for high grain yields. Strong environmental correlations were found between plant height at blooming and maturity and grain yield and yield components. PMID:26782417

  10. Importance of Macrophyte Quality in Determining Life-History Traits of the Apple Snails Pomacea canaliculata: Implications for Bottom-Up Management of an Invasive Herbivorous Pest in Constructed Wetlands

    PubMed Central

    Yam, Rita S. W.; Fan, Yen-Tzu; Wang, Tzu-Ting

    2016-01-01

    Pomacea canaliculata (Ampullariidae) has extensively invaded most Asian constructed wetlands and its massive herbivory of macrophytes has become a major cause of ecosystem dysfunctioning of these restored habitats. We conducted non-choice laboratory feeding experiments of P. canaliculata using five common macrophyte species in constructed wetlands including Ipomoea aquatica, Commelina communis, Nymphoides coreana, Acorus calamus and Phragmites australis. Effects of macrophytes on snail feeding, growth and fecundity responses were evaluated. Results indicated that P. canaliculata reared on Ipomoea had the highest feeding and growth rates with highest reproductive output, but all individuals fed with Phragmites showed lowest feeding rates and little growth with poorest reproductive output. Plant N and P contents were important for enhancing palatability, supporting growth and offspring quantity of P. canaliculata, whilst toughness, cellulose and phenolics had critically deterrent effects on various life-history traits. Although snail offspring quality was generally consistent regardless of maternal feeding conditions, the reduced growth and offspring quantity of the poorly-fed snails in constructed wetlands dominated by the less-palatable macrophytes could limit the invasive success of P. canaliculata. Effective bottom-up control of P. canaliculata in constructed wetlands should involve selective planting strategy using macrophytes with low nutrient and high toughness, cellulose and phenolic contents. PMID:26927135

  11. Importance of Macrophyte Quality in Determining Life-History Traits of the Apple Snails Pomacea canaliculata: Implications for Bottom-Up Management of an Invasive Herbivorous Pest in Constructed Wetlands.

    PubMed

    Yam, Rita S W; Fan, Yen-Tzu; Wang, Tzu-Ting

    2016-03-01

    Pomacea canaliculata (Ampullariidae) has extensively invaded most Asian constructed wetlands and its massive herbivory of macrophytes has become a major cause of ecosystem dysfunctioning of these restored habitats. We conducted non-choice laboratory feeding experiments of P. canaliculata using five common macrophyte species in constructed wetlands including Ipomoea aquatica, Commelina communis, Nymphoides coreana, Acorus calamus and Phragmites australis. Effects of macrophytes on snail feeding, growth and fecundity responses were evaluated. Results indicated that P. canaliculata reared on Ipomoea had the highest feeding and growth rates with highest reproductive output, but all individuals fed with Phragmites showed lowest feeding rates and little growth with poorest reproductive output. Plant N and P contents were important for enhancing palatability, supporting growth and offspring quantity of P. canaliculata, whilst toughness, cellulose and phenolics had critically deterrent effects on various life-history traits. Although snail offspring quality was generally consistent regardless of maternal feeding conditions, the reduced growth and offspring quantity of the poorly-fed snails in constructed wetlands dominated by the less-palatable macrophytes could limit the invasive success of P. canaliculata. Effective bottom-up control of P. canaliculata in constructed wetlands should involve selective planting strategy using macrophytes with low nutrient and high toughness, cellulose and phenolic contents. PMID:26927135

  12. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm.

    PubMed

    Abdurakhmonov, Ibrokhim Y; Saha, Sukumar; Jenkins, Jonnie N; Buriev, Zabardast T; Shermatov, Shukhrat E; Scheffler, Brain E; Pepper, Alan E; Yu, John Z; Kohel, Russell J; Abdukarimov, Abdusattor

    2009-07-01

    Cotton is the world's leading cash crop, but it lags behind other major crops for marker-assisted breeding due to limited polymorphisms and a genetic bottleneck through historic domestication. This underlies a need for characterization, tagging, and utilization of existing natural polymorphisms in cotton germplasm collections. Here we report genetic diversity, population characteristics, the extent of linkage disequilibrium (LD), and association mapping of fiber quality traits using 202 microsatellite marker primer pairs in 335 G. hirsutum germplasm grown in two diverse environments, Uzbekistan and Mexico. At the significance threshold (r (2) >or= 0.1), a genome-wide average of LD extended up to genetic distance of 25 cM in assayed cotton variety accessions. Genome wide LD at r (2) >or= 0.2 was reduced to approximately 5-6 cM, providing evidence of the potential for association mapping of agronomically important traits in cotton. Results suggest linkage, selection, inbreeding, population stratification, and genetic drift as the potential LD-generating factors in cotton. In two environments, an average of ~20 SSR markers was associated with each main fiber quality traits using a unified mixed liner model (MLM) incorporating population structure and kinship. These MLM-derived significant associations were confirmed in general linear model and structured association test, accounting for population structure and permutation-based multiple testing. Several common markers, showing the significant associations in both Uzbekistan and Mexican environments, were determined. Between 7 and 43% of the MLM-derived significant associations were supported by a minimum Bayes factor at 'moderate to strong' and 'strong to very strong' evidence levels, suggesting their usefulness for marker-assisted breeding programs and overall effectiveness of association mapping using cotton germplasm resources. PMID:19067183

  13. Agronomic recycling of pig slurry and pig sewage

    NASA Astrophysics Data System (ADS)

    Gómez Garrido, Melisa; Sánchez García, Pablo; Faz Cano, Ángel; Büyükkılıç Yanardag, Asuman; Yanardag, Ibrahim; Kabas, Sebla; Ángeles Múñoz García, María; María Rosales Aranda, Rosa; Segura Ruíz, Juan Carlos

    2013-04-01

    Recycling pig slurry as organic fertilizer is a convenient and suitable way of waste elimination due to its low cost and high agronomic benefits. The objectives of this two year study are focused on improving and recycling pig slurry appropriately, and monitoring the soil-plant system at the same time. The evaluation of the agronomic effectiveness of different types of pig slurry (raw, solid, treated and depurated) in different doses (170 kg N ha-1 (legislated dose), 340 and 510 kg N ha-1) is innovative because the fertilizer value of each amendment can be balanced. Furthermore environmental issues such us volatilisation, leaching and salinisation have been considered for each treatment in order to set the viability of the study and to justify the treatments applied. Electrical conductivity, Kjeldhal nitrogen, sodium and potassium are the physico-chemical parameters most influenced in soils treated with doses 340 and 510 kg N ha-1. Additionally plant samples, especially halophyte, have shown the highest major and minor nutrients contents. Finally, pig slurry application in legislated doses could be considered a useful environmental practice; however, the development of the crop will be very influenced by the type of dose and amendment selected.

  14. The agronomic science of spatial and temporal water management:How much, when and where

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agronomic sciences are those that are applied to soil and water management and crop production, including soil, water and plant sciences and related disciplines. The science of spatial and temporal water management includes many agronomic science factors, including soil physics, biophysics, plan...

  15. POST-HARVEST STORAGE EFFECTS ON GUAYULE LATEX QUALITY FROM AGRONOMIC TRIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current guayule commercialization efforts are based upon the production of hypoallergenic latex. However, little is known about the optimal agronomic conditions for maximum latex production. A series of agronomic trials were carried out over four years to investigate latex yield and quality in diffe...

  16. Genetic variability in domesticated Capsicum spp as assessed by morphological and agronomic data in mixed statistical analysis.

    PubMed

    Sudré, C P; Gonçalves, L S A; Rodrigues, R; do Amaral Júnior, A T; Riva-Souza, E M; Bento, C Dos S

    2010-01-01

    Capsicum species are very important in Brazil because of economic, cultural and biological factors, and the country is considered to be a diversity center for this genus. Collection and maintenance of the genetic diversity in Capsicum are important to avoid genetic erosion. Besides the identification of species, the characterization and evaluation of accessions maintained in gene banks are of fundamental importance. For this purpose, multivariate methods have become an important tool in the classification of conserved genotypes. The objectives of this study were: i) to identify and characterize accessions of the Capsicum spp collection and draw conclusions about the potential use of certain accessions in different production sectors; ii) to estimate the genetic divergence among accessions using the Ward-MLM procedure, and iii) to evaluate the efficiency of the analysis of continuous and categorical data using the Ward-MLM procedure. Fifty-six Capsicum spp accessions were evaluated based on 25 descriptors, 14 of which were morphological and 11 agronomic. Based on the qualitative descriptors, it was possible to identify all species and, together with the agronomic descriptors, genotypes could be indicated with potential for use in various production sectors. Five was determined as the ideal number of groups by the criteria pseudo-F and pseudo-t2. The Ward-MLM procedure allowed the differentiation of the species C. annuum, C. frutescens, C. baccatum, and C. chinense in separate groups. The Ward-MLM procedure showed some level of efficiency in clustering Capsicum species analyzing morphological and agronomic data simultaneously. PMID:20198584

  17. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits

    PubMed Central

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  18. Biological Implications in Cassava for the Production of Amylose-Free Starch: Impact on Root Yield and Related Traits.

    PubMed

    Karlström, Amanda; Calle, Fernando; Salazar, Sandra; Morante, Nelson; Dufour, Dominique; Ceballos, Hernán

    2016-01-01

    Cassava (Manihot esculenta, Crantz) is an important food security crop, but it is becoming an important raw material for different industrial applications. Cassava is the second most important source of starch worldwide. Novel starch properties are of interest to the starch industry, and one them is the recently identified amylose-free (waxy) cassava starch. Waxy mutants have been found in different crops and have been often associated with a yield penalty. There are ongoing efforts to develop commercial cassava varieties with amylose-free starch. However, little information is available regarding the biological and agronomic implications of starch mutations in cassava, nor in other root and tuber crops. In this study, siblings from eight full-sib families, segregating for the waxy trait, were used to determine if the mutation has implications for yield, dry matter content (DMC) and harvest index in cassava. A total of 87 waxy and 87 wild-type starch genotypes from the eight families were used in the study. The only significant effect of starch type was on DMC (p < 0.01), with waxy clones having a 0.8% lower content than their wild type counterparts. There was no effect of starch type on fresh root yield (FRY), adjusted FRY and harvest index. It is not clear if lower DMC is a pleiotropic effect of the waxy starch mutation or else the result of linked genes introgressed along with the mutation. It is expected that commercial waxy cassava varieties will have competitive FRYs but special efforts will be required to attain adequate DMCs. This study contributes to the limited knowledge available of the impact of starch mutations on the agronomic performance of root and tuber crops. PMID:27242813

  19. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects.

    PubMed

    Melchinger, A E; Utz, H F; Schön, C C

    1998-05-01

    The efficiency of marker-assisted selection (MAS) depends on the power of quantitative trait locus (QTL) detection and unbiased estimation of QTL effects. Two independent samples N = 344 and 107 of F2 plants were genotyped for 89 RFLP markers. For each sample, testcross (TC) progenies of the corresponding F3 lines with two testers were evaluated in four environments. QTL for grain yield and other agronomically important traits were mapped in both samples. QTL effects were estimated from the same data as used for detection and mapping of QTL (calibration) and, based on QTL positions from calibration, from the second, independent sample (validation). For all traits and both testers we detected a total of 107 QTL with N = 344, and 39 QTL with N = 107, of which only 20 were in common. Consistency of QTL effects across testers was in agreement with corresponding genotypic correlations between the two TC series. Most QTL displayed no significant QTL x environment nor epistatic interactions. Estimates of the proportion of the phenotypic and genetic variance explained by QTL were considerably reduced when derived from the independent validation sample as opposed to estimates from the calibration sample. We conclude that, unless QTL effects are estimated from an independent sample, they can be inflated, resulting in an overly optimistic assessment of the efficiency of MAS. PMID:9584111

  20. Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton.

    PubMed

    Pauli, Duke; Andrade-Sanchez, Pedro; Carmo-Silva, A Elizabete; Gazave, Elodie; French, Andrew N; Heun, John; Hunsaker, Douglas J; Lipka, Alexander E; Setter, Tim L; Strand, Robert J; Thorp, Kelly R; Wang, Sam; White, Jeffrey W; Gore, Michael A

    2016-01-01

    The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010-2012. Canopy temperature, normalized difference vegetation index (NDVI), height, and leaf area index (LAI) displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL) expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars. PMID:26818078

  1. Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton

    PubMed Central

    Pauli, Duke; Andrade-Sanchez, Pedro; Carmo-Silva, A. Elizabete; Gazave, Elodie; French, Andrew N.; Heun, John; Hunsaker, Douglas J.; Lipka, Alexander E.; Setter, Tim L.; Strand, Robert J.; Thorp, Kelly R.; Wang, Sam; White, Jeffrey W.; Gore, Michael A.

    2016-01-01

    The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010–2012. Canopy temperature, normalized difference vegetation index (NDVI), height, and leaf area index (LAI) displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL) expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars. PMID:26818078

  2. Spectral-agronomic relationships of corn, soybean and wheat canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Vanderbilt, V. C.

    1981-01-01

    During the past six years several thousand reflectance spectra of corn, soybean, and wheat canopies were acquired and analyzed. The relationships of biophysical variables, including leaf area index, percent soil cover, chlorophyll and water content, to the visible and infrared reflectance of canopies are described. The effects on reflectance of cultural, environmental, and stress factors such as planting data, seeding rate, row spacing, cultivar, soil type and nitrogen fertilization are also examined. The conclusions are that several key agronomic variables including leaf area index, development stage and degree of stress are strongly related to spectral reflectance and that it should be possible to estimate these descriptions of crop condition from satellite acquired multispectral data.

  3. Agronomic conditions and crop evolution in ancient Near East agriculture.

    PubMed

    Araus, José L; Ferrio, Juan P; Voltas, Jordi; Aguilera, Mònica; Buxó, Ramón

    2014-01-01

    The appearance of agriculture in the Fertile Crescent propelled the development of Western civilization. Here we investigate the evolution of agronomic conditions in this region by reconstructing cereal kernel weight and using stable carbon and nitrogen isotope signatures of kernels and charcoal from a set of 11 Upper Mesopotamia archaeological sites, with chronologies spanning from the onset of agriculture to the turn of the era. We show that water availability for crops, inferred from carbon isotope discrimination (Δ(13)C), was two- to fourfold higher in the past than at present, with a maximum between 10,000 and 8,000 cal BP. Nitrogen isotope composition (δ(15)N) decreased over time, which suggests cultivation occurring under gradually less-fertile soil conditions. Domesticated cereals showed a progressive increase in kernel weight over several millennia following domestication. Our results provide a first comprehensive view of agricultural evolution in the Near East inferred directly from archaeobotanical remains. PMID:24853475

  4. Agronomic conditions and crop evolution in ancient Near East agriculture

    PubMed Central

    Aguilera, Mònica; Buxó, Ramón

    2014-01-01

    The appearance of agriculture in the Fertile Crescent has propelled the development of Western civilization. Here we investigate the evolution of agronomic conditions in this region by reconstructing cereal kernel weight and using stable carbon and nitrogen isotope signatures of kernels and charcoal from a set of 11 Upper Mesopotamia archaeological sites, with chronologies spanning from the onset of agriculture to the turn of the era. We show that water availability for crops, inferred from carbon isotope discrimination (Δ13C), was two- to fourfold higher in the past than at present, with a maximum between 10,000 and 8,000 cal BP. Nitrogen isotope composition (δ15N) decreased over time, which suggests cultivation occurring under gradually less fertile soil conditions. Domesticated cereals showed a progressive increase in kernel weight over several millennia following domestication. Our results provide a first comprehensive view of agricultural evolution in the Near East inferred directly from archaeobotanical remains. PMID:24853475

  5. Uncertainty quantified trait predictions

    NASA Astrophysics Data System (ADS)

    Fazayeli, Farideh; Kattge, Jens; Banerjee, Arindam; Schrodt, Franziska; Reich, Peter

    2015-04-01

    Functional traits of organisms are key to understanding and predicting biodiversity and ecological change, which motivates continuous collection of traits and their integration into global databases. Such composite trait matrices are inherently sparse, severely limiting their usefulness for further analyses. On the other hand, traits are characterized by the phylogenetic trait signal, trait-trait correlations and environmental constraints, all of which provide information that could be used to statistically fill gaps. We propose the application of probabilistic models which, for the first time, utilize all three characteristics to fill gaps in trait databases and predict trait values at larger spatial scales. For this purpose we introduce BHPMF, a hierarchical Bayesian extension of Probabilistic Matrix Factorization (PMF). PMF is a machine learning technique which exploits the correlation structure of sparse matrices to impute missing entries. BHPMF additionally utilizes the taxonomic hierarchy for trait prediction. Implemented in the context of a Gibbs Sampler MCMC approach BHPMF provides uncertainty estimates for each trait prediction. We present comprehensive experimental results on the problem of plant trait prediction using the largest database of plant traits, where BHPMF shows strong empirical performance in uncertainty quantified trait prediction, outperforming the state-of-the-art based on point estimates. Further, we show that BHPMF is more accurate when it is confident, whereas the error is high when the uncertainty is high.

  6. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat

    PubMed Central

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J.; Carmo-Silva, Elizabete; Parry, Martin A. J.; Hu, Yin-Gang

    2015-01-01

    that TaER could be exploitable for manipulating important agronomical traits in wheat improvement. PMID:26047019

  7. Environmental risk assessments for transgenic crops producing output trait enzymes

    PubMed Central

    Tuttle, Ann; Shore, Scott; Stone, Terry

    2009-01-01

    The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the agronomic performance and nutritional quality of the crop made during product development, and information from the scientific literature on the mode-of-action, taxonomic distribution and environmental fate of the enzyme. Few, if any, specific ecotoxicology or environmental fate studies are needed. The effective use of existing data means that regulatory decision-making, to which an environmental risk assessment provides essential information, is not unnecessarily complicated by evaluation of large amounts of new data that provide negligible improvement in the characterization of risk, and that may delay environmental benefits offered by transgenic crops containing output trait enzymes. PMID:19924556

  8. Motivational Traits of Elite Young Soccer Players

    ERIC Educational Resources Information Center

    Stewart, Craig; Meyers, Michael C.

    2004-01-01

    Among the most overlooked aspects in the development of elite young soccer players is that of specific psychological traits. Of those traits, motivation has important implications for programs whose objectives are identification and cultivation of young, skilled performers. The growth in popularity of soccer by youth and the successes experienced…

  9. Root phenotyping: from component trait in the lab to breeding.

    PubMed

    Kuijken, René C P; van Eeuwijk, Fred A; Marcelis, Leo F M; Bouwmeester, Harro J

    2015-09-01

    In the last decade cheaper and faster sequencing methods have resulted in an enormous increase in genomic data. High throughput genotyping, genotyping by sequencing and genomic breeding are becoming a standard in plant breeding. As a result, the collection of phenotypic data is increasingly becoming a limiting factor in plant breeding. Genetic studies on root traits are being hampered by the complexity of these traits and the inaccessibility of the rhizosphere. With an increasing interest in phenotyping, breeders and scientists try to overcome these limitations, resulting in impressive developments in automated phenotyping platforms. Recently, many such platforms have been thoroughly described, yet their efficiency to increase genetic gain often remains undiscussed. This efficiency depends on the heritability of the phenotyped traits as well as the correlation of these traits with agronomically relevant breeding targets. This review provides an overview of the latest developments in root phenotyping and describes the environmental and genetic factors influencing root phenotype and heritability. It also intends to give direction to future phenotyping and breeding strategies for optimizing root system functioning. A quantitative framework to determine the efficiency of phenotyping platforms for genetic gain is described. By increasing heritability, managing effects caused by interactions between genotype and environment and by quantifying the genetic relation between traits phenotyped in platforms and ultimate breeding targets, phenotyping platforms can be utilized to their maximum potential. PMID:26071534

  10. Genome-Wide Identification of QTL for Seed Yield and Yield-Related Traits and Construction of a High-Density Consensus Map for QTL Comparison in Brassica napus

    PubMed Central

    Zhao, Weiguo; Wang, Xiaodong; Wang, Hao; Tian, Jianhua; Li, Baojun; Chen, Li; Chao, Hongbo; Long, Yan; Xiang, Jun; Gan, Jianping; Liang, Wusheng; Li, Maoteng

    2016-01-01

    Seed yield (SY) is the most important trait in rapeseed, is determined by multiple seed yield-related traits (SYRTs) and is also easily subject to environmental influence. Many quantitative trait loci (QTLs) for SY and SYRTs have been reported in Brassica napus; however, no studies have focused on seven agronomic traits simultaneously affecting SY. Genome-wide QTL analysis for SY and seven SYRTs in eight environments was conducted in a doubled haploid population containing 348 lines. Totally, 18 and 208 QTLs for SY and SYRTs were observed, respectively, and then these QTLs were integrated into 144 consensus QTLs using a meta-analysis. Three major QTLs for SY were observed, including cqSY-C6-2 and cqSY-C6-3 that were expressed stably in winter cultivation area for 3 years and cqSY-A2-2 only expressed in spring rapeseed area. Trait-by-trait meta-analysis revealed that the 144 consensus QTLs were integrated into 72 pleiotropic unique QTLs. Among them, all the unique QTLs affected SY, except for uq.A6-1, including uq.A2-3, uq.C1-2, uq.C1-3, uq.C6-1, uq.C6-5, and uq.C6-6 could also affect more than two SYRTs. According to the constructed high-density consensus map and QTL comparison from literatures, 36 QTLs from five populations were co-localized with QTLs identified in this study. In addition, 13 orthologous genes were observed, including five each gene for SY and thousand seed weight, and one gene each for biomass yield, branch height, and plant height. The genomic information of these QTLs will be valuable in hybrid cultivar breeding and in analyzing QTL expression in different environments. PMID:26858737

  11. A preliminary assessment of genetic relationships among agronomically important cultivars of black pepper

    PubMed Central

    Joy, Nisha; Abraham, Z; Soniya, EV

    2007-01-01

    Background The impact of diseases such as Phytophthora foot rot and the replacement of unproductive cultivars by high yielding ones has brought about the disappearance of varieties in Piper species, like any other crop. Black pepper (King of spices), is a major spice crop consumed throughout the world. It is widely cultivated across various parts of the world apart from India. The different cultivars may be genetically related and could be a source of valuable genes for disease resistance and an increase in quantity and quality. Even though Western Ghats in India is believed to be the site of origin of this crop, numerous accessions from the NBPGR have not yet been evaluated. Our study aims to investigate the genetic relatedness in major cultivars of black pepper using Amplified Fragment Length Polymorphism. Results Amplified Fragment Length Polymorphic (AFLP) DNA analysis was performed in thirty popular cultivars of black pepper from National Bureau of Plant Genetic Resources (NBPGR), India. Fingerprint profiles were generated initially with, five different primer combinations, from which three primer pair combinations (EAGC/MCAA, EAGG/MCTA and EAGC/MCTG) gave consistent and scorable banding patterns. From 173 scorable markers, 158(> 90%) were polymorphic which shows there is considerable variation in the available germplasm. The dendrogram derived by unweighted pair group method analysis (UPGMA) grouped the accessions into three major clusters and four diverse cultivars with only 30% similarity. Karimunda, a widely grown and popular cultivar was unique in the fingerprint profiles obtained. Conclusion There are currently few fingerprinting studies using the valuable spice crop black pepper. We found considerable genetic variability among cultivars of black pepper. Fingerprinting analysis with AFLP proved to be an ideal tool for cultivar identification and phylogenetic studies. It shows the high level of polymorphism and the unique characterization of the major cultivars. An extensive range of similarity value between the cultivars was noted (6.01 to 98.13). Further screening of more cultivars will provide valuable information for current breeding programmes. PMID:17603884

  12. Linkages Among Agronomic, Environmental and Weed Management Characteristics in North American Sweet Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance of weed management systems varies greatly across the landscape in both growers’ fields and in experimental trials conducted by agricultural scientists. Using agronomic, environmental, and weed management information from growers’ fields and experimental trials, we identified dominant ch...

  13. Statistical methods for texture analysis applied to agronomical images

    NASA Astrophysics Data System (ADS)

    Cointault, F.; Journaux, L.; Gouton, P.

    2008-02-01

    For activities of agronomical research institute, the land experimentations are essential and provide relevant information on crops such as disease rate, yield components, weed rate... Generally accurate, they are manually done and present numerous drawbacks, such as penibility, notably for wheat ear counting. In this case, the use of color and/or texture image processing to estimate the number of ears per square metre can be an improvement. Then, different image segmentation techniques based on feature extraction have been tested using textural information with first and higher order statistical methods. The Run Length method gives the best results closed to manual countings with an average error of 3%. Nevertheless, a fine justification of hypothesis made on the values of the classification and description parameters is necessary, especially for the number of classes and the size of analysis windows, through the estimation of a cluster validity index. The first results show that the mean number of classes in wheat image is of 11, which proves that our choice of 3 is not well adapted. To complete these results, we are currently analysing each of the class previously extracted to gather together all the classes characterizing the ears.

  14. Agronomic and environmental implications of enhanced s-triazine degradation

    USGS Publications Warehouse

    Krutz, L. J.; Dale L. Shaner; Mark A. Weaver; Webb, Richard M.; Zablotowicz, Robert M.; Reddy, Krishna N.; Huang, Y.; Thompson, S. J.

    2010-01-01

    Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted. 

  15. Organic complexed superphosphates (CSP): physicochemical characterization and agronomical properties.

    PubMed

    Erro, Javier; Urrutia, Oscar; Baigorri, Roberto; Aparicio-Tejo, Pedro; Irigoyen, Ignacio; Storino, Francesco; Torino, Francesco; Mandado, Marcos; Yvin, Jean Claude; Garcia-Mina, Jose M

    2012-02-29

    A new type of superphosphate (organic complexed superphosphate (CSP)) has been developed by the introduction of organic chelating agents, preferably a humic acid (HA), into the chemical reaction of single superphosphate (SSP) production. This modification yielded a product containing monocalcium phosphate complexed by the chelating organic agent through Ca bridges. Theoretically, the presence of these monocalcium-phosphate-humic complexes (MPHC) inhibits phosphate fixation in soil, thus increasing P fertilizer efficiency. This study investigateed the structural and functional features of CSP fertilizers produced employing diverse HA with different structural features. To this end were used complementary analytical techniques: solid-phase ³¹P NMR, ¹³C NMR, laser-confocal microscopy, X-ray diffraction, and molecular modeling. Finally, the agronomical efficiency of four CSP have been compared with that of SSP as P sources for wheat plants grown in both alkaline and acidic soils in greenhouse pot trials under controlled conditions. The results obtained from the diverse analytical studies showed the formation of MPHC in CSP. Plant-soil studies showed that CSP products were more efficient than SSP in providing available phosphate for wheat plants cultivated in various soils with different physicochemical features. This fact is probably associated with the ability of CSP complexes to inhibit phosphate fixation in soil. PMID:22300509

  16. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.

    PubMed

    Covarrubias-Pazaran, Giovanny

    2016-01-01

    Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R. PMID:27271781

  17. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer

    PubMed Central

    2016-01-01

    Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R. PMID:27271781

  18. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm.

    PubMed

    Abdurakhmonov, I Y; Kohel, R J; Yu, J Z; Pepper, A E; Abdullaev, A A; Kushanov, F N; Salakhutdinov, I B; Buriev, Z T; Saha, S; Scheffler, B E; Jenkins, J N; Abdukarimov, A

    2008-12-01

    The narrow genetic base of cultivated cotton germplasm is hindering the cotton productivity worldwide. Although potential genetic diversity exists in Gossypium genus, it is largely 'underutilized' due to photoperiodism and the lack of innovative tools to overcome such challenges. The application of linkage disequilibrium (LD)-based association mapping is an alternative powerful molecular tool to dissect and exploit the natural genetic diversity conserved within cotton germplasm collections, greatly accelerating still 'lagging' cotton marker-assisted selection (MAS) programs. However, the extent of genome-wide linkage disequilibrium (LD) has not been determined in cotton. We report the extent of genome-wide LD and association mapping of fiber quality traits by using a 95 core set of microsatellite markers in a total of 285 exotic Gossypium hirsutum accessions, comprising of 208 landrace stocks and 77 photoperiodic variety accessions. We demonstrated the existence of useful genetic diversity within exotic cotton germplasm. In this germplasm set, 11-12% of SSR loci pairs revealed a significant LD. At the significance threshold (r(2)>/=0.1), a genome-wide average of LD declines within the genetic distance at <10 cM in the landrace stocks germplasm and >30 cM in variety germplasm. Genome wide LD at r(2)>/=0.2 was reduced on average to approximately 1-2 cM in the landrace stock germplasm and 6-8 cM in variety germplasm, providing evidence of the potential for association mapping of agronomically important traits in cotton. We observed significant population structure and relatedness in assayed germplasm. Consequently, the application of the mixed liner model (MLM), considering both kinship (K) and population structure (Q) detected between 6% and 13% of SSR markers associated with the main fiber quality traits in cotton. Our results highlight for the first time the feasibility and potential of association mapping, with consideration of the population structure and

  19. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches.

    PubMed

    Poiroux-Gonord, Florine; Bidel, Luc P R; Fanciullino, Anne-Laure; Gautier, Hélène; Lauri-Lopez, Félicie; Urban, Laurent

    2010-12-01

    Fruits and vegetables (FAVs) are an important part of the human diet and a major source of biologically active substances such as vitamins and secondary metabolites. The consumption of FAVs remains globally insufficient, so it should be encouraged, and it may be useful to propose to consumers FAVs with enhanced concentrations in vitamins and secondary metabolites. There are basically two ways to reach this target: the genetic approach or the environmental approach. This paper provides a comprehensive review of the results that have been obtained so far through purely agronomic approaches and brings them into perspective by comparing them with the achievements of genetic approaches. Although agronomic approaches offer very good perspectives, the existence of variability of responses suggests that the current understanding of the way regulatory and metabolic pathways are controlled needs to be increased. For this purpose, more in-depth study of the interactions existing between factors (light and temperature, for instance, genetic factors × environmental factors), between processes (primary metabolism and ontogeny, for example), and between organs (as there is some evidence that photooxidative stress in leaves affects antioxidant metabolism in fruits) is proposed. PMID:21067179

  20. FishTraits Database

    USGS Publications Warehouse

    Angermeier, Paul L.; Frimpong, Emmanuel A.

    2009-01-01

    The need for integrated and widely accessible sources of species traits data to facilitate studies of ecology, conservation, and management has motivated development of traits databases for various taxa. In spite of the increasing number of traits-based analyses of freshwater fishes in the United States, no consolidated database of traits of this group exists publicly, and much useful information on these species is documented only in obscure sources. The largely inaccessible and unconsolidated traits information makes large-scale analysis involving many fishes and/or traits particularly challenging. FishTraits is a database of >100 traits for 809 (731 native and 78 exotic) fish species found in freshwaters of the conterminous United States, including 37 native families and 145 native genera. The database contains information on four major categories of traits: (1) trophic ecology, (2) body size and reproductive ecology (life history), (3) habitat associations, and (4) salinity and temperature tolerances. Information on geographic distribution and conservation status is also included. Together, we refer to the traits, distribution, and conservation status information as attributes. Descriptions of attributes are available here. Many sources were consulted to compile attributes, including state and regional species accounts and other databases.

  1. A functional trait perspective on plant invasion

    PubMed Central

    Drenovsky, Rebecca E.; Grewell, Brenda J.; D'Antonio, Carla M.; Funk, Jennifer L.; James, Jeremy J.; Molinari, Nicole; Parker, Ingrid M.; Richards, Christina L.

    2012-01-01

    Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels. PMID:22589328

  2. Relating Stomatal Conductance to Leaf Functional Traits

    PubMed Central

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-01-01

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES

  3. Landscape of genomic diversity and trait discovery in soybean

    PubMed Central

    Valliyodan, Babu; Dan Qiu; Patil, Gunvant; Zeng, Peng; Huang, Jiaying; Dai, Lu; Chen, Chengxuan; Li, Yanjun; Joshi, Trupti; Song, Li; Vuong, Tri D.; Musket, Theresa A.; Xu, Dong; Shannon, J. Grover; Shifeng, Cheng; Liu, Xin; Nguyen, Henry T.

    2016-01-01

    Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding. PMID:27029319

  4. Landscape of genomic diversity and trait discovery in soybean.

    PubMed

    Valliyodan, Babu; Dan Qiu; Patil, Gunvant; Zeng, Peng; Huang, Jiaying; Dai, Lu; Chen, Chengxuan; Li, Yanjun; Joshi, Trupti; Song, Li; Vuong, Tri D; Musket, Theresa A; Xu, Dong; Shannon, J Grover; Shifeng, Cheng; Liu, Xin; Nguyen, Henry T

    2016-01-01

    Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding. PMID:27029319

  5. Applied Mathematics for agronomical engineers in Spain at UPM

    NASA Astrophysics Data System (ADS)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Fabregat, J.; Sanchez, M. E.

    2009-04-01

    Mathematics, created or discovered, are a global human conceptual endowment, containing large systems of knowledge, and varied skills to use definite parts of them, in creation or discovery, or for applications, e.g. in Physics, or notably in engineering behaviour. When getting upper intellectual levels in the 19th century, the agronomical science and praxis was noticeably or mainly organised in Spain in agronomical engineering schools and also in institutes, together with technician schools, also with different lower lever centres, and they have evolved with progress and they are much changing at present to a EEES schema (Bolonia process). They work in different lines that need some basis or skills from mathematics. The vocation to start such careers, that have varied curriculums, contains only some mathematics, and the number of credits for mathematics is restrained because time is necessary for other initial sciences such as applied chemistry, biology, ecology and soil sciences, but some basis and skill of maths are needed, also with Physics, at least for electricity, machines, construction, economics at initial ground levels, and also for Statistics that are here considered part of Applied Mathematics. The ways of teaching mathematical basis and skills are especial, and are different from the practical ways needed e. g. for Soil Sciences, and they involve especial efforts from students, and especial controls or exams that guide much learning. The mathematics have a very large accepted content that uses mostly a standard logic, and that is remarkably stable and international, rather similar notation and expressions being used with different main languages. For engineering the logical basis is really often not taught, but the use of it is transferred, especially for calculus that requires both adapted somehow simplified schemas and the learning of a specific skill to use it, and also for linear algebra. The basic forms of differential calculus in several

  6. Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants

    PubMed Central

    Homrich, Milena Schenkel; Wiebke-Strohm, Beatriz; Weber, Ricardo Luís Mayer; Bodanese-Zanettini, Maria Helena

    2012-01-01

    Transgenic plants represent an invaluable tool for molecular, genetic, biochemical and physiological studies by gene overexpression or silencing, transposon-based mutagenesis, protein sub-cellular localization and/or promoter characterization as well as a breakthrough for breeding programs, allowing the production of novel and genetically diverse genotypes. However, the stable transformation of soybean cannot yet be considered to be routine because it depends on the ability to combine efficient transformation and regeneration techniques. Two methods have been used with relative success to produce completely and stably transformed plants: particle bombardment and the Agrobacterium tumefaciens system. In addition, transformation by Agrobacterium rhizogenes has been used as a powerful tool for functional studies. Most available information on gene function is based on heterologous expression systems. However, as the activity of many promoters or proteins frequently depends on specific interactions that only occur in homologous backgrounds, a final confirmation based on a homologous expression system is desirable. With respect to soybean biotech improvement, transgenic lines with agronomical, nutritional and pharmaceutical traits have been obtained, including herbicide-tolerant soybeans, which represented the principal biotech crop in 2011, occupying 47% of the global biotech area. PMID:23412849

  7. Bio-effectors from waste materials as growth promoters for tomato plants, an agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Abou Chehade, Lara; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2015-04-01

    In organic farming, where nutrient management is constrained and sustainability is claimed, bio-effectors pave their way. Considering selected bio-effectors, this study integrates metabolomics to agronomy in depicting induced relevant phenomena. Extracts of three agro-industrial wastes (Lemon processing residues, Fennel processing residues and Brewer's spent grain) are being investigated as sources of bio-effectors for the third trial consequently. Corresponding individual and mixture aqueous extracts are assessed for their synergistic and/or single agronomic and qualitative performances on soil-grown tomato, compared to both a control and humic acid treatments. A metabolomic profiling of tomato fruits via the Proton Nuclear Magnetic Resonance (NMR) spectroscopy, as holistic indicator of fruit quality and extract-induced responses, complements crop productivity and organoleptic/nutritional qualitative analyses. Results are expected to show mainly an enhancement of the fruit qualitative traits, and to confirm partly the previous results of better crop productivity and metabolism enhancement. Waste-derived bio-effectors could be, accordingly, demonstrated as potential candidates of plant-enhancing substances. Keywords: bio-effectors, organic farming, agro-industrial wastes, nuclear magnetic resonance (NMR), tomato.

  8. Carbon and water cycling in flooded and rainfed rice (Oryza Sativa) ecosystem: Disentangling agronomical and ecological aspects of water use efficiency

    NASA Astrophysics Data System (ADS)

    Nay-Htoon, Bhone; Xue, Wei; Dubbert, Maren; Lindner, Steve; Cuntz, Matthias; Ko, Jonghan; Tenhunen, John; Werner, Christiane

    2015-04-01

    Agricultural crops play an important role in the global carbon and water cycling process and there is intense research to understand and predict carbon and water fluxes, productivity and water use of cultivated crops under climate change. Mechanistic understanding of the trade of between ecosystem water use efficiency and agronomic water use efficiency to maintain higher crop yield and productive water loss is necessary for the ecosystem sustainability. . We compared water and carbon fluxes of paddy and rainfed rice by canopy scale gas exchange measurements, crop growth, and daily evapotranspiration, transpiration and carbon flux modeling. According to our findings, evaporation contributed strongly (maximum 100% to minimum 45%) to paddy rice evapotranspiration while transpiration of rainfed is almost 50 % of daily evapotranspiration. Water use efficiency (WUE) was higher in rainfed rice both from an agronomic (WUEagro, i.e. grain yield per evapotranspiration) and ecosystem (WUEeco, i.e. gross primary production per evapotranspiration) perspective. However, rainfed rice showed also high ecosystem respiration losses and a slightly lower crop yield, demonstrating that higher WUE in rainfed rice comes at the expense of higher respiration losses of assimilated carbon and lower plant production, compared to paddy rice. Our results highlighted the need to partition water and carbon fluxes to improve our mechanistic understanding of water use efficiency and environmental impact of different agricultural practices. Keywords: Rainfed rice, Paddy rice, water use efficiency, Transpiration/Evapotranspiration, ecosystem WUE, agronomic WUE, Evapotranspiration

  9. A High-Density Genetic Map with Array-Based Markers Facilitates Structural and Quantitative Trait Locus Analyses of the Common Wheat Genome

    PubMed Central

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-01-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. PMID:24972598

  10. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability.

    PubMed

    Kumar, Anil; Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-10-01

    In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  11. Separation of solids and disinfection for agronomical use of the effluent from a UASB reactor.

    PubMed

    Sundefeld Junior, G C; Piveli, R P; Cutolo, S A; Ferreira Filho, S S; Santos, J G

    2014-01-01

    The present work addresses the preparation of the effluent from a full-scale upflow anaerobic sludge blanket (UASB) reactor for drip irrigation of orange crops. The pilot plant included a lamella plate clarifier followed by a geo-textile blanket filter and a UV disinfection reactor. The clarifier operated with a surface load of 115 m(3)m(-2)d(-1), whereas the filter operated with 10 m(3)m(-2)d(-1). The UV reactor was an open-channel type and the effective dose was approximately 2.8 W h m(-3). The effluent of the UASB reactor received 0.5 mg L(-1) cationic polyelectrolyte before entering the high-rate clarifier. Suspended solids' concentrations and Escherichia coli and helminth egg's densities were monitored throughout the treatment system for 12 months. Results showed that the total suspended solids concentration in the filter effluent was lower than 7 mg L(-1) and helminth density was below 1.0 egg L(-1). The UV disinfection demonstrated the ability to produce a final effluent with E. coli density lower than 10(3)MPN/100 mL (MPN: most probable number) during the entire process. Thus, the World Health Organization standards for unrestricted crop use were met. Agronomic interest parameters were controlled and it was possible to identify the important contribution of treated sewage in terms of the main nutrients. PMID:24434964

  12. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae)

    PubMed Central

    Larranaga, Nerea; Hormaza, José I.

    2015-01-01

    The DNA barcode initiative aims to establish a universal protocol using short genetic sequences to discriminate among animal and plant species. Although many markers have been proposed to become the barcode of plants, the Consortium for the Barcode of Life (CBOL) Plant Working Group recommended using as a core the combination of two portions of plastid coding region, rbcL and matK. In this paper, specific markers based on matK sequences were developed for 7 closely related Annona species of agronomic interest (Annona cherimola, A. reticulata, A. squamosa, A. muricata, A. macroprophyllata, A. glabra, and A. purpurea) and the discrimination power of both rbcL and matK was tested using also sequences of the genus Annona available in the Barcode of Life Database (BOLD) data systems. The specific sequences developed allowed the discrimination among all those species tested. Moreover, the primers generated were validated in six additional species of the genus (A. liebmanniana, A. longiflora, A. montana, A. senegalensis, A. emarginata and A. neosalicifolia) and in an interspecific hybrid (A. cherimola x A. squamosa). The development of a fast, reliable and economic approach for species identification in these underutilized subtropical fruit crops in a very initial state of domestication is of great importance in order to optimize genetic resource management. PMID:26284104

  13. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae).

    PubMed

    Larranaga, Nerea; Hormaza, José I

    2015-01-01

    The DNA barcode initiative aims to establish a universal protocol using short genetic sequences to discriminate among animal and plant species. Although many markers have been proposed to become the barcode of plants, the Consortium for the Barcode of Life (CBOL) Plant Working Group recommended using as a core the combination of two portions of plastid coding region, rbcL and matK. In this paper, specific markers based on matK sequences were developed for 7 closely related Annona species of agronomic interest (Annona cherimola, A. reticulata, A. squamosa, A. muricata, A. macroprophyllata, A. glabra, and A. purpurea) and the discrimination power of both rbcL and matK was tested using also sequences of the genus Annona available in the Barcode of Life Database (BOLD) data systems. The specific sequences developed allowed the discrimination among all those species tested. Moreover, the primers generated were validated in six additional species of the genus (A. liebmanniana, A. longiflora, A. montana, A. senegalensis, A. emarginata and A. neosalicifolia) and in an interspecific hybrid (A. cherimola x A. squamosa). The development of a fast, reliable and economic approach for species identification in these underutilized subtropical fruit crops in a very initial state of domestication is of great importance in order to optimize genetic resource management. PMID:26284104

  14. Genetic analysis of carbon isotope discrimination and agronomic characters in a bread wheat cross.

    PubMed

    Ehdaie, B; Waines, J G

    1994-09-01

    Carbon isotope discrimination (Δ) has been suggested as a selection criterion to improve transpiration efficiency (W) in bread wheat (Triticum aestivum L.). Cultivars 'Chinese Spring' with low A (high W) and 'Yecora Rojo' with high Δ (low W) were crossed to develop F1, F2, BC1, and BC2 populations for genetic analysis of Δ and other agronomic characters under well-watered (wet) and water-stressed (dry) field conditions. Significant variation was observed among the generations for Δ only under the wet environment. Generation x irrigation interactions were not significant for Δ. Generation means analysis indicated that additive gene action is of primary importance in the expression of Δ under nonstress conditions. Dominance gene action was also detected for Δ, and the direction of dominance was toward higher values of Δ. The broad-sense and the narrow-sense heritabilities for Δ were 61 % and 57% under the wet conditions, but were 48% and 12% under the draughted conditions, respectively. The narrow-sense heritabilities for grain yield, above-ground dry matter, and harvest index were 36%, 39%, and 60% under the wet conditions and 21%, 44%, and 20% under dry conditions, respectively. The significant additive genetic variation and moderate estimate of the narrow-sense heritability observed for Δ indicated that selection under wet environments should be effective in changing Δ in spring bread wheat. PMID:24186257

  15. Relation of agronomic and multispectral reflectance characteristics of spring wheat canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Ahlrichs, J. S.

    1982-01-01

    The relationships between crop canopy variables such as leaf area index (LAI) and their multispectral reflectance properties were investigated along with the potential for estimating canopy variables from remotely sensed reflectance measurements. Reflectance spectra over the 0.4 to 2.5 micron wavelength range were acquired during each of the major development stages of spring wheat canopies at Williston, North Dakota, during three seasons. Treatments included planting date, N fertilization, cultivar, and soil moisture. Agronomic measurements included development stage, biomass, LAI, and percent soil cover. High correlations were found between reflectance and percent cover, LAI, and biomass. A near infrared wavelength band, 0.76 to 0.90 microns, was most important in explaining variation in LAI and percent cover, while a middle infrared band, 2.08 to 2.35 microns, explained the most variation in biomass and plant water content. Transformations, including the near infrared/red reflectance ratio and greenness index, were also highly correlated to canopy variables. The relationship of canopy variables to reflectance decreased as the crop began to ripen. the canopy variables could be accurately predicted using measurements from three to five wavelength bands. The wavelength bands proposed for the thematic mapper sensor were more strongly related to the canopy variables than the LANDSAT MSS bands.

  16. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea

    PubMed Central

    Das, Shouvik; Upadhyaya, Hari D.; Bajaj, Deepak; Kujur, Alice; Badoni, Saurabh; Laxmi; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the

  17. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops

    PubMed Central

    Milla, Rubén; Morente-López, Javier; Alonso-Rodrigo, J. Miguel; Martín-Robles, Nieves; Stuart Chapin, F.

    2014-01-01

    Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges. PMID:25185998

  18. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops.

    PubMed

    Milla, Rubén; Morente-López, Javier; Alonso-Rodrigo, J Miguel; Martín-Robles, Nieves; Chapin, F Stuart

    2014-10-22

    Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges. PMID:25185998

  19. Reinforcing loose foundation stones in trait-based plant ecology.

    PubMed

    Shipley, Bill; De Bello, Francesco; Cornelissen, J Hans C; Laliberté, Etienne; Laughlin, Daniel C; Reich, Peter B

    2016-04-01

    The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients. PMID:26796410

  20. Generalized Latent Trait Models.

    ERIC Educational Resources Information Center

    Moustaki, Irini; Knott, Martin

    2000-01-01

    Discusses a general model framework within which manifest variables with different distributions in the exponential family can be analyzed with a latent trait model. Presents a unified maximum likelihood method for estimating the parameters of the generalized latent trait model and discusses the scoring of individuals on the latent dimensions.…

  1. Potential for Production of Dryland Barley for Human Food: Quality and Agronomic Performance of Spring Habit Germplasm in Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain ß-glucan percentage is the most important attribute for barley (Hordeum vulgare L.) varieties destined for the human food market. This trait is important because of the cholesterol-reducing properties of ß-glucan. High levels of grain protein, test weight and seed size may also add value. Seed...

  2. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass.

    PubMed

    Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2016-10-01

    Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals

  3. Contrasting agronomic response of biochar amendment to a Mediterranean Cambisol: Incubation vs. field experiment

    NASA Astrophysics Data System (ADS)

    De la Rosa, José M.; Paneque, Marina; De Celis, Reyes; Miller, Ana Z.; Knicker, Heike

    2015-04-01

    The application of biochar to soil is being proposed as a novel approach to establish a significant long-term sink for atmospheric carbon dioxide in terrestrial ecosystems. In addition, biochars offer a simple, sustainable tool for managing organic wastes and to produce added value products. Numerous research studies pointed out that biochar can act as a soil conditioner enhancing plant growth by supplying and, more importantly, retaining nutrients and by providing other services such as improving soil physical and biological properties [1]. However, the effectiveness of biochar in enhancing plant fertility is a function of soil type, climate, and type of crop [2] but also of the biochar properties. The inherent variability of biochars due to different feedstock and production conditions implies a high variability of their effect on soil properties and productivity. Furthermore, due to the irreversibility of biochar application, it is necessary to perform detailed studies to achieve a high level of certainty that adding biochar to agricultural soils, for whatever reason, will not negatively affect soil health and productivity. The major goals of this research were: i) understanding how the properties of 5 different biochars produced by using different feedstock and pyrolysis conditions are related to their agronomic response, and ii) assessing the agronomic effect of biochar amendment under field conditions of a typical Mediterranean non-irrigated plantation. Four of the used biochars were produced by pyrolysis from wood (2), paper sludge (1) and sewage sludge (1), at temperatures up to 620 °C. The fifth biochar was produced from old grapevine wood by applying the traditional kiln method. Biochars were analysed for elemental composition (C, H, N), pH, WHC and ash contents. The H/C and O/C atomic ratios suggested high aromaticity of all biochars, which was confirmed by 13C solid-state NMR spectroscopy. The FT-IR spectra indicated the presence of lignin residues in

  4. AGRONOMICS1: A New Resource for Arabidopsis Transcriptome Profiling1[W][OA

    PubMed Central

    Rehrauer, Hubert; Aquino, Catharine; Gruissem, Wilhelm; Henz, Stefan R.; Hilson, Pierre; Laubinger, Sascha; Naouar, Naira; Patrignani, Andrea; Rombauts, Stephane; Shu, Huan; Van de Peer, Yves; Vuylsteke, Marnik; Weigel, Detlef; Zeller, Georg; Hennig, Lars

    2010-01-01

    Transcriptome profiling has become a routine tool in biology. For Arabidopsis (Arabidopsis thaliana), the Affymetrix ATH1 expression array is most commonly used, but it lacks about one-third of all annotated genes present in the reference strain. An alternative are tiling arrays, but previous designs have not allowed the simultaneous analysis of both strands on a single array. We introduce AGRONOMICS1, a new Affymetrix Arabidopsis microarray that contains the complete paths of both genome strands, with on average one 25mer probe per 35-bp genome sequence window. In addition, the new AGRONOMICS1 array contains all perfect match probes from the original ATH1 array, allowing for seamless integration of the very large existing ATH1 knowledge base. The AGRONOMICS1 array can be used for diverse functional genomics applications such as reliable expression profiling of more than 30,000 genes, detection of alternative splicing, and chromatin immunoprecipitation coupled to microarrays (ChIP-chip). Here, we describe the design of the array and compare its performance with that of the ATH1 array. We find results from both microarrays to be of similar quality, but AGRONOMICS1 arrays yield robust expression information for many more genes, as expected. Analysis of the ATH1 probes on AGRONOMICS1 arrays produces results that closely mirror those of ATH1 arrays. Finally, the AGRONOMICS1 array is shown to be useful for ChIP-chip experiments. We show that heterochromatic H3K9me2 is strongly confined to the gene body of target genes in euchromatic chromosome regions, suggesting that spreading of heterochromatin is limited outside of pericentromeric regions. PMID:20032078

  5. A farm-level analysis of economic and agronomic impacts of gradual climate warming

    SciTech Connect

    Kaiser, H.M.; Sampath, R.; Riha, S.J.; Wilks, D.S.; Rossiter, D.G.

    1993-05-01

    The potential economic and agronomic impacts of gradual climate warming are examined at the farm level. Three models of the relevant climatic, agronomic, and economic processes are developed and linked to address climate change impacts and agricultural adaptability. Several climate warming severity. The results indicate that grain farmers in southern Minnesota can effectively adapt to a gradually changing climate (warmer and either wetter or drier) by adopting later maturing cultivars, changing crop mix, and altering the timing of field operations to take advantage of a longer growing season resulting from climate warming.

  6. Correlations between palmitate content and agronomic traits in soybean populations segregating for the fap1, fapnc, and fan alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmitic acid (16:0) is the predominant saturated fatty acid in soybean oil, which typically contains 110 to 120 g kg-1 palmitic acid. To reduce the health risks of coronary diseases and breast, colon, and prostate cancers associated with the consumption of this fatty acid, breeders have developed ...

  7. Allelic variations of a light harvesting chlorophyll A/B protein gene (Lhcb1) associated with agronomic traits in Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Light-harvesting chlorophyll a/b-binding protein (LHCP) is one of the most abundant chloroplast proteins in plants. Its main function is to collect and transfer light energy to photosynthetic reaction centers. However, the roles of different LHCPs in light-harvesting antenna systems remain obscure. ...

  8. ND 803 spring wheat germplasm combining resistance to scab and leaf diseases with good agronomic and quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of adapted wheat germplasm is essential so that breeding programs can develop superior cultivars, which was the objective of this research. ND 803 is hard red spring wheat (HRSW; Triticum aestivum L.) line that was developed at North Dakota State University (NDSU) and released by the...

  9. Quantitative trait loci associated with phenological development, low temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants must respond to environmental cues and schedule their development in order to react to periods of abiotic stress and commit fully to growth and reproduction under favorable conditions. This study was initiated to identify SNP markers for characters expressed from the seedling stage to plant m...

  10. Registration of six soybean germplasm lines selected within the cultivar ‘Haskell’ differing in seed and agronomic traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six soybean [Glycine max (L.) Merr.] germplasm lines were developed by the Georgia Agricultural Experiment Stations and released in 2005: G95-Has339 (Reg. No. 344, PI 644054), G95-Has551 (Reg. No. 345, PI 644055), G95-Has1452 (Reg. No. 346, PI 644056), G95-Has1536 (Reg. No. 347, PI 644057), G95-Has2...

  11. Registration of seven soybean germplasm lines selected within the cultivar ‘Cook’ differing in seed and agronomic traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven soybean [Glycine max (L.) Merr.] germplasm lines were developed by the Georgia Agricultural Experiment Stations and released in 2005: G95-Cook319 (Reg. No. GP-337, PI 644047), G95-Cook1346 (Reg. No. GP-338, PI 644048), G95-Cook2014 (Reg. No. GP-339, PI 644049), G95-Cook2734 (Reg. No. GP-340, P...

  12. Genetic Dissection of Chromosome Substitution Lines of Cotton to Discover Novel Gossypium barbadense L. Alleles for Improvement of Agronomic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to combine the best features of high-yielding Upland cultivars of Gossypium hirsutum (2n=52) with the superior fiber characteristics of G. barbadense (2n=52) have generally fallen well short of desired goals. In this study, we have used hypoaneuploid-based chromosome substitution as a means ...

  13. Registration of five soybean germplasm lines selected within the cultivar ‘Benning’ differing in seed and agronomic traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five soybean [Glycine max (L.) Merr.] germplasm lines were developed by the Georgia Agricultural Experiment Stations and released in 2005: G95-Ben335 (Reg. No. GP-332, PI 644042), G95-Ben1818 (Reg. No. GP-333, PI 644043), G95-Ben2403 (Reg. No. GP-334, PI 644044), G95-Ben2448 (Reg. No. GP-335, PI 644...

  14. Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The untapped potential of the beneficial alleles from G. barbadense has not been well utilized in Upland (G. hirsutum) cotton breeding programs. This is primarily due to genomic incompatibility and technical challenges associated with conventional methods of interspecific introgression. In this st...

  15. Genetic variation for agronomic and fiber quality traits in a population derived from high-quality cotton germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic improvement of fiber quality is necessary to meet the requirements of processors and users of cotton fiber. To foster genetic improvement of cotton fiber quality, adequate genetic variation for the quantitatively inherited physical properties of cotton is required. Additionally, knowledge of...

  16. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm

    PubMed Central

    Singh, Rajinder; Tan, Soon G; Panandam, Jothi M; Rahman, Rahimah Abdul; Ooi, Leslie CL; Low, Eng-Ti L; Sharma, Mukesh; Jansen, Johannes; Cheah, Suan-Choo

    2009-01-01

    Background Marker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials. Results A map was constructed using AFLP, RFLP and SSR markers for an interspecific cross involving a Colombian Elaeis oleifera (UP1026) and a Nigerian E. guinneensis (T128). A framework map was generated for the male parent, T128, using Joinmap ver. 4.0. In the paternal (E. guineensis) map, 252 markers (199 AFLP, 38 RFLP and 15 SSR) could be ordered in 21 linkage groups (1815 cM). Interval mapping and multiple-QTL model (MQM) mapping (also known as composite interval mapping, CIM) were used to detect quantitative trait loci (QTLs) controlling oil quality (measured in terms of iodine value and fatty acid composition). At a 5% genome-wide significance threshold level, QTLs associated with iodine value (IV), myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2) content were detected. One genomic region on Group 1 appears to be influencing IV, C14:0, C16:0, C18:0 and C18:1 content. Significant QTL for C14:0, C16:1, C18:0 and C18:1 content was detected around the same locus on Group 15, thus revealing another major locus influencing fatty acid composition in oil palm. Additional QTL for C18:0 was detected on Group 3. A minor QTL

  17. A comparative study of alfalfa and Medicago truncatula stem traits: morphology, chemical composition, and ruminal digestibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa L.) is an agronomically important forage, but digestibility of stem cell wall material is low. Because the tetraploid genome of alfalfa complicates genetic dissection of complex pathways, Medicago truncatula (Gaertn.) could serve as a model for stem cell wall development in ...

  18. Multiple-interval mapping for quantitative trait loci controlling endosperm traits.

    PubMed Central

    Kao, Chen-Hung

    2004-01-01

    Endosperm traits are trisomic inheritant and are of great economic importance because they are usually directly related to grain quality. Mapping for quantitative trait loci (QTL) underlying endosperm traits can provide an efficient way to genetically improve grain quality. As the traditional QTL mapping methods (diploid methods) are usually designed for traits under diploid control, they are not the ideal approaches to map endosperm traits because they ignore the triploid nature of endosperm. In this article, a statistical method considering the triploid nature of endosperm (triploid method) is developed on the basis of multiple-interval mapping (MIM) to map for the underlying QTL. The proposed triploid MIM method is derived to broadly use the marker information either from only the maternal plants or from both the maternal plants and their embryos in the backcross and F2 populations for mapping endosperm traits. Due to the use of multiple intervals simultaneously to take multiple QTL into account, the triploid MIM method can provide better detection power and estimation precision, and as shown in this article it is capable of analyzing and searching for epistatic QTL directly as compared to the traditional diploid methods and current triploid methods using only one (or two) interval(s). Several important issues in endosperm trait mapping, such as the relation and differences between the diploid and triploid methods, variance components of genetic variation, and the problems if effects are present and ignored, are also addressed. Simulations are performed to further explore these issues, to investigate the relative efficiency of different experimental designs, and to evaluate the performance of the proposed and current methods in mapping endosperm traits. The MIM-based triploid method can provide a powerful tool to estimate the genetic architecture of endosperm traits and to assist the marker-assisted selection for the improvement of grain quality in crop science

  19. Maccoby's Head/Heart Traits: Marketing versus Accounting Students.

    ERIC Educational Resources Information Center

    Kochunny, C. M.; And Others

    1992-01-01

    Nineteen head/heart traits derived from Maccoby's business ethics work were rated on importance to future careers by 148 marketing and 178 accounting students. Both groups rated head traits as most important. Marketing majors are not as "games" oriented as social stereotypes would indicate. The apparent imbalance between head and heart traits…

  20. The Trait Psychology Controversy.

    ERIC Educational Resources Information Center

    Morgan, William P.

    1980-01-01

    Arguments associated with trait psychology are reviewed with an application in the field of sport psychology. The role of cognition and perception in sport and physical activities is also discussed. (CJ)

  1. A survey of the agronomic and end-use characteristics of low phytic acid soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With unique high protein and oil contents, soybean (Glycine max L. merr.) is one of the most widely grown agronomic crops in the United States. Around 98% of those soybeans are used in animal feeds ranging from swine and cattle to domestic animals and aquaculture. This chapter will introduce phytic ...

  2. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems.

    PubMed

    Turner, Neil C

    2004-11-01

    Yields of dryland (rainfed) wheat in Australia have increased steadily over the past century despite rainfall being unchanged, indicating that the rainfall-use efficiency has increased. Analyses suggest that at least half of the increase in rainfall-use efficiency can be attributed to improved agronomic management. Various methods of analysing the factors influencing dryland yields and rainfall-use efficiency, such as simple rules and more complex models, are presented and the agronomic factors influencing water use, water-use efficiency, and harvest index of crops are discussed. The adoption of agronomic procedures such as minimum tillage, appropriate fertilizer use, improved weed/disease/insect control, timely planting, and a range of rotation options, in conjunction with new cultivars, has the potential to increase the yields and rainfall-use efficiency of dryland crops. It is concluded that most of the agronomic options for improving rainfall-use efficiency in rainfed agricultural systems decrease water losses by soil evaporation, runoff, throughflow, deep drainage, and competing weeds, thereby making more water available for increased water use by the crop. PMID:15361527

  3. ANIMAL WASTE UTILIZATION ON CROPLAND AND PASTURELAND. A MANUAL FOR EVALUATING AGRONOMIC AND ENVIRONMENTAL EFFECTS

    EPA Science Inventory

    Engineering and agronomic techniques to predict and control the volume of nutrients and chemical oxygen demand leaving the application sites, caused by the application of animal wastes, are described. Methodology was developed to enable the user to identify the pollutant loads fo...

  4. Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Sugar Cane Yellow Leaf Virus (SCYLV) is widespread in Florida, and SCYLV resistance in the Canal Point (CP) sugarcane population is limited. The objectives of this study were to 1) evaluate the agronomic performance of two transgenic lines transformed for SCYLV resistance (6-1, 6-2) compared to ...

  5. Agronomic effects of mutations in two soybean Stearoyl-ACP-Desaturases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil normally contains 2-4% stearic acid. Oil with higher levels of stearic acid is desired for use in the baking industry, for both its chemical properties and human health benefits. Several lines with increased stearic acid have been identified; however, the agronom...

  6. Sebacina vermifera: a unique root symbiont with vast agronomic potential.

    PubMed

    Ray, Prasun; Craven, Kelly D

    2016-01-01

    The Sebacinales belong to a taxonomically, ecologically, and physiologically diverse group of fungi in the Basidiomycota. While historically recognized as orchid mycorrhizae, recent DNA studies have brought to light both their pandemic distribution and the broad spectrum of mycorrhizal types they form. Indeed, ecological studies using molecular-based methods of detection have found Sebacinales fungi in field specimens of bryophytes (moss), pteridophytes (fern) and all families of herbaceous angiosperms (flowering plants) from temperate, subtropical and tropical regions. These natural host plants include, among others, liverworts, wheat, maize and Arabidopsis thaliana, the model plant traditionally viewed as non-mycorrhizal. The orchid mycorrhizal fungus Sebacina vermifera (MAFF 305830) was first isolated from the Australian orchid Cyrtostylis reniformis. Research performed with this strain clearly indicates its plant growth promoting abilities in a variety of plants, while demonstrating a lack of specificity that rivals or even surpasses that of arbuscular mycorrhizae. Indeed, these traits thus far appear to characterize a majority of strains belonging to the so-called "clade B" within the Sebacinales (recently re-classified as the Serendipitaceae), raising numerous basic research questions regarding plant-microbe signaling and the evolution of mycorrhizal symbioses. Further, given their proven beneficial impact on plant growth and their apparent but cryptic ubiquity, sebacinoid fungi should be considered as a previously hidden, but amenable and effective microbial tool for enhancing plant productivity and stress tolerance. PMID:26715121

  7. Morpho-physiolological and qualitative traits of a bread wheat collection spanning a century of breeding in Italy

    PubMed Central

    Laino, Paolo; Limonta, Margherita; Gerna, Davide

    2015-01-01

    Abstract Evaluation and characterization are crucial steps in the exploitation of germplasm collections. The Sant’Angelo Lodigiano unit of the Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) maintains a broad collection of Triticum spp, including more than 4000 genotypes of T. aestivum. Such collection represents a wide source of genetic variability for many agronomic and qualitative traits, extremely useful in modern breeding programs. The collection size, however, makes very difficult its management as a whole. A reduced subset, representing the process of wheat breeding in Italy during the last hundred years, was hence identified for an in-depth characterization. The lines were cropped in two locations over two growing seasons, and analyzed using 16 morpho-agronomic and qualitative descriptors. Most of the analysed characters showed a broad variation throughout the collection, allowing to follow the plant ideotype changes across the breeding progress in Italy during the 20th century. PMID:26379457

  8. Morpho-physiolological and qualitative traits of a bread wheat collection spanning a century of breeding in Italy.

    PubMed

    Laino, Paolo; Limonta, Margherita; Gerna, Davide; Vaccino, Patrizia

    2015-01-01

    Evaluation and characterization are crucial steps in the exploitation of germplasm collections. The Sant'Angelo Lodigiano unit of the Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) maintains a broad collection of Triticum spp, including more than 4000 genotypes of T. aestivum. Such collection represents a wide source of genetic variability for many agronomic and qualitative traits, extremely useful in modern breeding programs. The collection size, however, makes very difficult its management as a whole. A reduced subset, representing the process of wheat breeding in Italy during the last hundred years, was hence identified for an in-depth characterization. The lines were cropped in two locations over two growing seasons, and analyzed using 16 morpho-agronomic and qualitative descriptors. Most of the analysed characters showed a broad variation throughout the collection, allowing to follow the plant ideotype changes across the breeding progress in Italy during the 20th century. PMID:26379457

  9. Fates beyond traits: ecological consequences of human-induced trait change

    PubMed Central

    Palkovacs, Eric P; Kinnison, Michael T; Correa, Cristian; Dalton, Christopher M; Hendry, Andrew P

    2012-01-01

    Human-induced trait change has been documented in freshwater, marine, and terrestrial ecosystems worldwide. These trait changes are driven by phenotypic plasticity and contemporary evolution. While efforts to manage human-induced trait change are beginning to receive some attention, managing its ecological consequences has received virtually none. Recent work suggests that contemporary trait change can have important effects on the dynamics of populations, communities, and ecosystems. Therefore, trait changes caused by human activity may be shaping ecological dynamics on a global scale. We present evidence for important ecological effects associated with human-induced trait change in a variety of study systems. These effects can occur over large spatial scales and impact system-wide processes such as trophic cascades. Importantly, the magnitude of these effects can be on par with those of traditional ecological drivers such as species presence. However, phenotypic change is not always an agent of ecological change; it can also buffer ecosystems against change. Determining the conditions under which phenotypic change may promote vs prevent ecological change should be a top research priority. PMID:25568040

  10. How do traits vary across ecological scales? A case for trait-based ecology.

    PubMed

    Messier, Julie; McGill, Brian J; Lechowicz, Martin J

    2010-07-01

    Despite the increasing importance of functional traits for the study of plant ecology, we do not know how variation in a given trait changes across ecological scales, which prevents us from assessing potential scale-dependent aspects of trait variation. To address this deficiency, we partitioned the variance in two key functional traits (leaf mass area and leaf dry matter content) across six nested ecological scales (site, plot, species, tree, strata and leaf) in lowland tropical rainforests. In both traits, the plot level shows virtually no variance despite high species turnover among plots and the size of within-species variation (leaf + strata + tree) is comparable with that of species level variation. The lack of variance at the plot level brings substantial support to the idea that trait-based environmental filtering plays a central role in plant community assembly. These results and the finding that the amount of within-species variation is comparable with interspecific variation support a shift of focus from species-based to trait-based ecology. PMID:20482582

  11. Evaluation of insertion-deletion markers suitable for genetic diversity studies and marker-trait correlation analyses in cultivated peanut (Arachis hypogaea L.).

    PubMed

    Meng, S; Yang, X L; Dang, P M; Cui, S L; Mu, G J; Chen, C Y; Liu, L F

    2016-01-01

    Peanut is one of the most important oil crops worldwide. We used insertion-deletion (InDel) markers to assess the genetic diversity and population structure in cultivated peanut. Fifty-four accessions from North China were genotyped using 48 InDel markers. The markers amplified 61 polymorphic loci with 1 to 8 alleles and an average of 2.6 alleles per marker. The polymorphism information content values ranged from 0.0364 to 0.9030, with an average of 0.5038. Population structure and neighbor-joining (NJ) tree analyses suggested that all accessions could be divided into four clusters (A1-A4), using the NJ method. Likewise, four subpopulations (G1-G4) were identified using STRUCTURE analysis. A principal component analysis was also used and results concordant with the other analysis methods were found. A multi-linear stepwise regression analysis revealed that 13 InDel markers correlated with five measured agronomical traits. Our results will provide important information for future peanut molecular breeding and genetic research. PMID:27525935

  12. First impressions: gait cues drive reliable trait judgements.

    PubMed

    Thoresen, John C; Vuong, Quoc C; Atkinson, Anthony P

    2012-09-01

    Personality trait attribution can underpin important social decisions and yet requires little effort; even a brief exposure to a photograph can generate lasting impressions. Body movement is a channel readily available to observers and allows judgements to be made when facial and body appearances are less visible; e.g., from great distances. Across three studies, we assessed the reliability of trait judgements of point-light walkers and identified motion-related visual cues driving observers' judgements. The findings confirm that observers make reliable, albeit inaccurate, trait judgements, and these were linked to a small number of motion components derived from a Principal Component Analysis of the motion data. Parametric manipulation of the motion components linearly affected trait ratings, providing strong evidence that the visual cues captured by these components drive observers' trait judgements. Subsequent analyses suggest that reliability of trait ratings was driven by impressions of emotion, attractiveness and masculinity. PMID:22717166

  13. Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits.

    PubMed

    Ipek, M; Seker, M; Ipek, A; Gul, M K

    2015-01-01

    The purpose of this study was to characterize olive core collection with amplified fragment length polymorphism (AFLP) markers and fruit traits and to determine AFLP markers significantly associated with these fruit characters in olive. A total of 168 polymorphic AFLP markers generated by five primer combinations and nine fruit traits were used to characterize relationships between 18 olive cultivars. Although all olive cultivars were discriminated from each other by either AFLP markers (<0.75 similarity level) or fruit traits, clustering based on the AFLP markers and fruit traits was not significantly correlated (r = 0.13). Partial clustering of olive cultivars by AFLP markers according to their geographical origin was observed. Associations of AFLP markers with fruits were determined using a multiple-regression analysis with stepwise addition of AFLP markers. Significant associations between eight AFLP markers and fruit traits were identified. While five AFLP markers demonstrated significant negative correlation with fruit and stone weight, width and length and total polyphenols (P < 0.05), three AFLP markers displayed significant positive correlation with α-tocopherol and γ-tocopherol (P < 0.01). This is the first report on the association of molecular markers with fruit traits in olive. Molecular markers associated with morphological and agronomic traits could be utilized for the breeding of olive cultivars. However, the association power of these markers needs to be confirmed in larger populations, and highly correlated markers should then be converted to PCR-based DNA markers such as sequence-characterized amplified region markers for better utilization. PMID:25867425

  14. Origins of Metastatic Traits

    PubMed Central

    Vanharanta, Sakari; Massagué, Joan

    2014-01-01

    How cancer cells acquire the competence to colonize distant organs remains a central question in cancer biology. Tumors can release large numbers of cancer cells into the circulation, but only a small proportion of these cells survive on infiltrating distant organs and even fewer form clinically meaningful metastases. During the past decade, many predictive gene signatures and specific mediators of metastasis have been identified, yet how cancer cells acquire these traits has remained obscure. Recent experimental work and high-resolution sequencing of human tissues have started to reveal the molecular and tumor evolutionary principles that underlie the emergence of metastatic traits. PMID:24135279

  15. Estimation of genetic parameters for reproductive traits in alpacas.

    PubMed

    Cruz, A; Cervantes, I; Burgos, A; Morante, R; Gutiérrez, J P

    2015-12-01

    One of the main deficiencies affecting animal breeding programs in Peruvian alpacas is the low reproductive performance leading to low number of animals available to select from, decreasing strongly the selection intensity. Some reproductive traits could be improved by artificial selection, but very few information about genetic parameters exists for these traits in this specie. The aim of this study was to estimate genetic parameters for six reproductive traits in alpacas both in Suri (SU) and Huacaya (HU) ecotypes, as well as their genetic relationship with fiber and morphological traits. Dataset belonging to Pacomarca experimental farm collected between 2000 and 2014 was used. Number of records for age at first service (AFS), age at first calving (AFC), copulation time (CT), pregnancy diagnosis (PD), gestation length (GL), and calving interval (CI) were, respectively, 1704, 854, 19,770, 5874, 4290 and 934. Pedigree consisted of 7742 animals. Regarding reproductive traits, model of analysis included additive and residual random effects for all traits, and also permanent environmental effect for CT, PD, GL and CI traits, with color and year of recording as fixed effects for all the reproductive traits and also age at mating and sex of calf for GL trait. Estimated heritabilities, respectively for HU and SU were 0.19 and 0.09 for AFS, 0.45 and 0.59 for AFC, 0.04 and 0.05 for CT, 0.07 and 0.05 for PD, 0.12 and 0.20 for GL, and 0.14 and 0.09 for CI. Genetic correlations between them ranged from -0.96 to 0.70. No important genetic correlations were found between reproductive traits and fiber or morphological traits in HU. However, some moderate favorable genetic correlations were found between reproductive and either fiber and morphological traits in SU. According to estimated genetic correlations, some reproductive traits might be included as additional selection criteria in HU. PMID:26490188

  16. Bayesian Quantitative Trait Loci Mapping for Multiple Traits

    PubMed Central

    Banerjee, Samprit; Yandell, Brian S.; Yi, Nengjun

    2008-01-01

    Most quantitative trait loci (QTL) mapping experiments typically collect phenotypic data on multiple correlated complex traits. However, there is a lack of a comprehensive genomewide mapping strategy for correlated traits in the literature. We develop Bayesian multiple-QTL mapping methods for correlated continuous traits using two multivariate models: one that assumes the same genetic model for all traits, the traditional multivariate model, and the other known as the seemingly unrelated regression (SUR) model that allows different genetic models for different traits. We develop computationally efficient Markov chain Monte Carlo (MCMC) algorithms for performing joint analysis. We conduct extensive simulation studies to assess the performance of the proposed methods and to compare with the conventional single-trait model. Our methods have been implemented in the freely available package R/qtlbim (http://www.qtlbim.org), which greatly facilitates the general usage of the Bayesian methodology for unraveling the genetic architecture of complex traits. PMID:18689903

  17. Association analysis of candidate SNPs on reproductive traits in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Being able to identify young females with superior reproduction traits would have a large financial impact on commercial swine producers. Previous studies have discovered SNPs associated with economically important traits such as litter size, growth rate, fat deposition, and feed intake. The objecti...

  18. Environmental drivers of trait changes in Photorhabdus luminescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control agents have become increasingly important in integrated pest management programs. However, certain traits of these agents that are needed for efficient biocontrol often decrease or are lost during in vitro rearing. Trait deterioration can result from genetic or environmental cause...

  19. Children's Reasoning about Norms and Traits as Motives for Behavior

    ERIC Educational Resources Information Center

    Kalish, Charles W.; Shiverick, Sean M.

    2004-01-01

    Two important sources of information for social judgments are personality dispositions (traits) and social norms. Existing research suggests that young children do not find traits salient. To what extent might they rely on a different source of information? Two experiments explored how information about preferences (what someone likes) and rules…

  20. Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits

    SciTech Connect

    Schork, N.J.; Boehnke, M. ); Terwilliger, J.D.; Ott, J. )

    1993-11-01

    Nearly all diseases mapped to date follow clear Mendelian, single-locus segregation patterns. In contrast, many common familial diseases such as diabetes, psoriasis, several forms of cancer, and schizophrenia are familial and appear to have a genetic component but do not exhibit simple Mendelian transmission. More complex models are required to explain the genetics of these important diseases. In this paper, the authors explore two-trait-locus, two-marker-locus linkage analysis in which two trait loci are mapped simultaneously to separate genetic markers. The authors compare the utility of this approach to standard one-trait-locus, one-marker-locus linkage analysis with and without allowance for heterogeneity. The authors also compare the utility of the two-trait-locus, two-marker-locus analysis to two-trait-locus, one-marker-locus linkage analysis. For common diseases, pedigrees are often bilineal, with disease genes entering via two or more unrelated pedigree members. Since such pedigrees often are avoided in linkage studies, the authors also investigate the relative information content of unilineal and bilineal pedigrees. For the dominant-or-recessive and threshold models that the authors consider, the authors find that two-trait-locus, two-marker-locus linkage analysis can provide substantially more linkage information, as measured by expected maximum lod score, than standard one-trait-locus, one-marker-locus methods, even allowing for heterogeneity, while, for a dominant-or-dominant generating model, one-locus models that allow for heterogeneity extract essentially as much information as the two-trait-locus methods. For these three models, the authors also find that bilineal pedigrees provide sufficient linkage information to warrant their inclusion in such studies. The authors discuss strategies for assessing the significance of the two linkages assumed in two-trait-locus, two-marker-locus models. 37 refs., 1 fig., 4 tabs.

  1. Variance Component Quantitative Trait Locus Analysis for Body Weight Traits in Purebred Korean Native Chicken

    PubMed Central

    Cahyadi, Muhammad; Park, Hee-Bok; Seo, Dong-Won; Jin, Shil; Choi, Nuri; Heo, Kang-Nyeong; Kang, Bo-Seok; Jo, Cheorun; Lee, Jun-Heon

    2016-01-01

    Quantitative trait locus (QTL) is a particular region of the genome containing one or more genes associated with economically important quantitative traits. This study was conducted to identify QTL regions for body weight and growth traits in purebred Korean native chicken (KNC). F1 samples (n = 595) were genotyped using 127 microsatellite markers and 8 single nucleotide polymorphisms that covered 2,616.1 centi Morgan (cM) of map length for 26 autosomal linkage groups. Body weight traits were measured every 2 weeks from hatch to 20 weeks of age. Weight of half carcass was also collected together with growth rate. A multipoint variance component linkage approach was used to identify QTLs for the body weight traits. Two significant QTLs for growth were identified on chicken chromosome 3 (GGA3) for growth 16 to18 weeks (logarithm of the odds [LOD] = 3.24, Nominal p value = 0.0001) and GGA4 for growth 6 to 8 weeks (LOD = 2.88, Nominal p value = 0.0003). Additionally, one significant QTL and three suggestive QTLs were detected for body weight traits in KNC; significant QTL for body weight at 4 weeks (LOD = 2.52, nominal p value = 0.0007) and suggestive QTL for 8 weeks (LOD = 1.96, Nominal p value = 0.0027) were detected on GGA4; QTLs were also detected for two different body weight traits: body weight at 16 weeks on GGA3 and body weight at 18 weeks on GGA19. Additionally, two suggestive QTLs for carcass weight were detected at 0 and 70 cM on GGA19. In conclusion, the current study identified several significant and suggestive QTLs that affect growth related traits in a unique resource pedigree in purebred KNC. This information will contribute to improving the body weight traits in native chicken breeds, especially for the Asian native chicken breeds. PMID:26732327

  2. Trait emotional intelligence influences on academic achievement and school behaviour.

    PubMed

    Mavroveli, Stella; Sánchez-Ruiz, María José

    2011-03-01

    BACKGROUND. Trait emotional intelligence (trait EI or trait emotional self-efficacy) refers to individuals' emotion-related self-perceptions (Petrides, Furnham, & Mavroveli, 2007). The children's trait EI sampling domain provides comprehensive coverage of their affective personality. Preliminary evidence shows that the construct has important implications for children's psychological and behavioural adjustment. AIMS. This study investigates the associations between trait EI and school outcomes, such as performance in reading, writing, and maths, peer-rated behaviour and social competence, and self-reported bullying behaviours in a sample of primary school children. It also examines whether trait EI scores differentiate between children with and without special educational needs (SEN). SAMPLE. The sample comprised 565 children (274 boys and 286 girls) between the ages of 7 and 12 (M((age)) = 9.12 years, SD= 1.27 years) attending three English state primary schools. METHOD. Pupils completed the Trait Emotional Intelligence Questionnaire-Child Form (TEIQue-CF), the Guess Who peer assessment, the Peer-Victimization Scale, and the Bullying Behaviour Scale. Additional data on achievement and SEN were collected from the school archives. RESULTS. As predicted by trait EI theory, associations between trait EI and academic achievement were modest and limited to Year 3 children. Higher trait EI scores were related to more nominations from peers for prosocial behaviours and fewer nominations for antisocial behaviour as well as lower scores on self-reported bulling behaviours. Furthermore, SEN students scored lower on trait EI compared to students without SEN. CONCLUSIONS. Trait EI holds important and multifaceted implications for the socialization of primary schoolchildren. PMID:21199490

  3. AEPAT: SOFTWARE FOR ASSESSING AGRONOMIC AND ENVIRONMENTAL PERFORMANCE OF MANAGEMENT PRACTICES IN LONG-TERM AGROECOSYSTEM EXPERIMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approaches to assess the effects of management practices on agroecosystem functions are needed to determine the relative sustainability of agricultural management systems. This paper describes a computer program designed to assess the relative sustainability of management practices using agronomic ...

  4. Evolving Trait Concepts.

    ERIC Educational Resources Information Center

    Anastasi, Anne

    1983-01-01

    Redefines intelligence as a useful, comprehensive, and flexible construct that allows its modifiability as a function of age and culture. Reviews theories on two-factor, multiple-factor, facet, and hierarchical models of trait formation based on research in developmental, cross-cultural, learning, and cognitive psychology. (Author/AOS)

  5. Birth Order Positions and Personality Traits.

    ERIC Educational Resources Information Center

    Tharbe, Ida Hartini Ahmad; Harun, Lily Mastura Hj.

    The growing concern for the development of teenagers has brought up issues regarding the role of the family system in shaping the personality traits of children. Alfred Adler (1870-1937), an Austrian psychiatrist who introduced the psychological/therapeutic model, "Individual Psychology," highlighted the importance of birth order positions in…

  6. Effect of agronomics on production and conversion quality of Napiergrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Napiergrass (Pennisetum purpureum (L) Schum) is being developed as a bioenergy crop for production in the southeastern United States. An important criterion for selecting a crop is establishing a consistent and dependable source of feedstock. In this study, we considered the effects of fertilizer ap...

  7. Affective Traits in Schizophrenia and Schizotypy

    PubMed Central

    Horan, William P.; Blanchard, Jack J.; Clark, Lee Anna; Green, Michael F.

    2008-01-01

    This article reviews empirical studies of affective traits in individuals with schizophrenia spectrum disorders, population-based investigations of vulnerability to psychosis, and genetic and psychometric high-risk samples. The review focuses on studies that use self-report trait questionnaires to assess Negative Affectivity (NA) and Positive Affectivity (PA), which are conceptualized in contemporary models of personality as broad, temperamentally-based dispositions to experience corresponding emotional states. Individuals with schizophrenia report a pattern of stably elevated NA and low PA throughout the illness course. Among affected individuals, these traits are associated with variability in several clinically important features, including functional outcome, quality of life, and stress reactivity. Furthermore, evidence that elevated NA and low PA (particularly the facet of anhedonia) predict the development of psychosis and are detectable in high-risk samples suggests that these traits play a role in vulnerability to schizophrenia, though they are implicated in other forms of psychopathology as well. Results are discussed in terms of their implications for treatment, etiological models, and future research to advance the study of affective traits in schizophrenia and schizotypy. PMID:18667393

  8. Systems genetics approaches to understand complex traits

    PubMed Central

    Civelek, Mete; Lusis, Aldons J.

    2014-01-01

    Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease. PMID:24296534

  9. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment

    PubMed Central

    del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A.; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L.

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ13C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha−1 under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ13C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470

  10. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment.

    PubMed

    Del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470

  11. Trait emotional intelligence and the dark triad traits of personality.

    PubMed

    Petrides, K V; Vernon, Philip A; Schermer, Julie Aitken; Veselka, Livia

    2011-02-01

    This study presents the first behavioral genetic investigation of the relationships between trait emotional intelligence (trait EI or trait emotional self-efficacy) and the Dark Triad traits of narcissism, Machiavellianism, and psychopathy. In line with trait EI theory, the construct correlated positively with narcissism, but negatively with the other two traits. Generally, the correlations were consistent across the 4 factors and 15 facets of the construct. Cholesky decomposition analysis revealed that the phenotypic associations were primarily due to correlated genetic factors and secondarily due to correlated nonshared environmental factors, with shared environmental factors being nonsignificant in all cases. Results are discussed from the perspective of trait EI theory with particular reference to the issue of adaptive value. PMID:21314254

  12. Quantifying hummingbird preference for floral trait combinations: The role of selection on trait interactions in the evolution of pollination syndromes.

    PubMed

    Fenster, Charles B; Reynolds, Richard J; Williams, Christopher W; Makowsky, Robert; Dudash, Michele R

    2015-05-01

    Darwin recognized the flower's importance for the study of adaptation and emphasized that the flower's functionality reflects the coordinated action of multiple traits. Here we use a multitrait manipulative approach to quantify the potential role of selection acting on floral trait combinations underlying the divergence and maintenance of three related North American species of Silene (Caryophyllaceae). We artificially generated 48 plant phenotypes corresponding to all combinations of key attractive traits differing among the three Silene species (color, height, inflorescence architecture, flower orientation, and corolla-tube width). We quantified main and interaction effects of trait manipulation on hummingbird visitation preference using experimental arrays. The main effects of floral display height and floral orientation strongly influenced hummingbird visitation, with hummingbirds preferring flowers held high above the ground and vertically to the sky. Hummingbirds also prefer traits in a nonadditive manner as multiple two-way and higher order interaction effects were important predictors of hummingbird visitation. Contemporary trait combinations found in hummingbird pollinated S. virginica are mostly preferred. Our study demonstrates the likelihood of pollination syndromes evolving due to selection on trait combinations and highlights the importance of trait interactions in understanding the evolution of complex adaptations. PMID:25765062

  13. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices

    PubMed Central

    Singh, Y.P.; Mishra, V.K.; Singh, Sudhanshu; Sharma, D.K.; Singh, D.; Singh, U.S.; Singh, R.K.; Haefele, S.M.; Ismail, A.M.

    2016-01-01

    Regaining the agricultural potential of sodic soils in the Indo-Gangetic plains necessitates the development of suitable salt tolerant rice varieties to provide an entry for other affordable agronomic and soil manipulation measures. Thus selection of high yielding rice varieties across a range of sodic soils is central. Evaluation of breeding lines through on-station and on-farm farmers’ participatory varietal selection (FPVS) resulted in the identification of a short duration (110–115 days), high yielding and disease resistant salt-tolerant rice genotype ‘CSR-89IR-8’, which was later released as ‘CSR43’ in 2011. Several agronomic traits coupled with good grain quality and market value contributed to commercialization and quick adoption of this variety in the sodic areas of the Indo-Gangetic plains of eastern India. Management practices required for rice production in salt affected soils are evidently different from those in normal soils and practices for a short duration salt tolerant variety differ from those for medium to long duration varieties. Experiments were conducted at the Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station, Lucknow, Uttar Pradesh, India during 2011 and 2013 wet seasons, to test the hypothesis that combining matching management practices (Mmp) with an improved genotype would enhance productivity and profitability of rice in sodic soils. Mmp were developed on-station by optimizing existing best management practices (Bmp) recommended for the region to match the requirements of CSR43. The results revealed that transplanting 4 seedlings hill−1 at a spacing of 15 × 20 cm produced significantly higher yield over other treatments. The highest additional net gain was US$ 3.3 at 90 kg ha−1 N, and the lowest was US$ 0.4 at 150 kg ha−1 N. Above 150 kg ha−1, the additional net gain became negative, indicating decreasing returns from additional N

  14. Investigation of the effect of genotype and agronomic conditions on metabolomic profiles of selected strawberry cultivars with different sensitivity to environmental stress.

    PubMed

    Akhatou, Ikram; González-Domínguez, Raúl; Fernández-Recamales, Ángeles

    2016-04-01

    Strawberry is one of the most economically important and widely cultivated fruit crops across the world, so that there is a growing need to develop new analytical methodologies for the authentication of variety and origin, as well as the assessment of agricultural and processing practices. In this work, an untargeted metabolomic strategy based on gas chromatography mass spectrometry (GC-MS) combined with multivariate statistical techniques was used for the first time to characterize the primary metabolome of different strawberry cultivars and to study metabolite alterations in response to multiple agronomic conditions. For this purpose, we investigated three varieties of strawberries with different sensitivity to environmental stress (Camarosa, Festival and Palomar), cultivated in soilless systems using various electrical conductivities, types of coverage and substrates. Metabolomic analysis revealed significant alterations in primary metabolites between the three strawberry cultivars grown under different crop conditions, including sugars (fructose, glucose), organic acids (malic acid, citric acid) and amino acids (alanine, threonine, aspartic acid), among others. Therefore, it could be concluded that GC-MS based metabolomics is a suitable tool to differentiate strawberry cultivars and characterize metabolomic changes associated with environmental and agronomic conditions. PMID:26841267

  15. Inversion of vegetation canopy reflectance models for estimating agronomic variables. II - Use of angle transforms and error analysis as illustrated by Suits' model

    NASA Technical Reports Server (NTRS)

    Goel, N. S.; Thompson, R. L.; Strebel, D. E.

    1984-01-01

    The technique for inverting a vegetation canopy reflectance model described earlier (Goel and Strebel, 1983) is investigated further. The novel concept of an 'angle transform' is introduced. This concept allows the formation of functions of reflectances at different view zenith and azimuth angles, which are either sensitive or insensitive to a certain agronomic parameter. A proper combination of these functions can allow determination of all the important agronomic and spectral parameters from measured canopy reflectance data. The technique is demonstrated using Suits' (1972) model for homogeneous canopies. It is shown that leaf area index, leaf reflectance and transmittance, and average leaf angle all can be determined from the canopy reflectance at a set of selected view zenith and azimuth angles. A sensitivity analysis of the calculated values to the errors in the data is also carried out. Guidelines are formulated for the number and types of observations required to obtain the values of a particular canopy variable to within a given degree of accuracy for a given level of error in the measurement of canopy reflectance.

  16. Farmyard manures: the major agronomic sources of heavy metals in the Philippi Horticultural Area in the Western Cape Province of South Africa.

    PubMed

    Malan, Marÿke; Müller, Francuois; Raitt, Lincoln; Aalbers, Johannes; Cyster, Lilburne; Brendonck, Luc

    2015-11-01

    Heavy metal toxicity in agro-ecosystems is a global problem. Recently, it has been indicated that the soils used for agriculture and the fresh produce grown on these soils in the Philippi Horticultural Area (PHA) contains heavy metals exceeding the maximum permissible concentrations thereof in South Africa. This study was therefore aimed at evaluating the concentrations of heavy metals in the soils and vegetables produced in the PHA, as well as to determine the major agronomic sources of these metals in this area. Cu, Pb, and Zn concentrations in the soils exceeded the maximum permissible concentrations of 6.6, 6.6, and 46 mg/kg, respectively. Cd, Pb, and Zn concentrations in the vegetables also exceeded the maximum permissible concentrations of 0.1, 0.5, and 40 mg/kg, respectively. The biggest agronomic contributors of these heavy metals to the soils in the PHA were found to be the farmyard manures. Knowing what the major sources of these heavy metals are, it is important to determine ways to mitigate the inputs thereof, as well as to remove existing concentrations from the soils without contaminating the groundwater resources in the area. PMID:26508018

  17. Interpersonal Problems Associated with Multidimensional Personality Questionnaire Traits in Women during the Transition to Adulthood

    ERIC Educational Resources Information Center

    Hopwood, Christopher J.; Burt, S. Alexandra; Keel, Pamela K.; Neale, Michael C.; Boker, Steven M.; Klump, Kelly L.

    2013-01-01

    Personality traits are known to be associated with a host of important life outcomes, including interpersonal dysfunction. The interpersonal circumplex offers a comprehensive system for articulating the kinds of interpersonal problems associated with personality traits. In the current study, traits as measured by the Multidimensional Personality…

  18. The Coral Trait Database, a curated database of trait information for coral species from the global oceans.

    PubMed

    Madin, Joshua S; Anderson, Kristen D; Andreasen, Magnus Heide; Bridge, Tom C L; Cairns, Stephen D; Connolly, Sean R; Darling, Emily S; Diaz, Marcela; Falster, Daniel S; Franklin, Erik C; Gates, Ruth D; Hoogenboom, Mia O; Huang, Danwei; Keith, Sally A; Kosnik, Matthew A; Kuo, Chao-Yang; Lough, Janice M; Lovelock, Catherine E; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M; Pochon, Xavier; Pratchett, Morgan S; Putnam, Hollie M; Roberts, T Edward; Stat, Michael; Wallace, Carden C; Widman, Elizabeth; Baird, Andrew H

    2016-01-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research. PMID:27023900

  19. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    PubMed Central

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C.L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-01-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research. PMID:27023900

  20. Trait Emotional Intelligence and Personality

    PubMed Central

    Furnham, Adrian; Petrides, K. V.

    2015-01-01

    This study investigated if the linkages between trait emotional intelligence (trait EI) and the Five-Factor Model of personality were invariant between men and women. Five English-speaking samples (N = 307-685) of mostly undergraduate students each completed a different measure of the Big Five personality traits and either the full form or short form of the Trait Emotional Intelligence Questionnaire (TEIQue). Across samples, models predicting global TEIQue scores from the Big Five were invariant between genders, with Neuroticism and Extraversion being the strongest trait EI correlates, followed by Conscientiousness, Agreeableness, and Openness. However, there was some evidence indicating that the gender-specific contributions of the Big Five to trait EI vary depending on the personality measure used, being more consistent for women. Discussion focuses on the validity of the TEIQue as a measure of trait EI and its psychometric properties, more generally. PMID:25866439

  1. Toward knowledge support for analysis and interpretation of complex traits

    PubMed Central

    2013-01-01

    The systematic description of complex traits, from the organism to the cellular level, is important for hypothesis generation about underlying disease mechanisms. We discuss how intelligent algorithms might provide support, leading to faster throughput. PMID:24079802

  2. EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...

  3. Agronomic and molecular characterization of introgression lines from the interspecific cross Oryza sativa (BG90-2) x Oryza glumaepatula (RS-16).

    PubMed

    Rangel, P N; Brondani, R P V; Rangel, P H N; Brondani, C

    2008-01-01

    The reduced genetic variability of modern rice varieties (Oryza sativa) is of concern because it reduces the possibilities of genetic gain in breeding programs. Introgression lines (ILs) containing genomic fragments from wild rice can be used to obtain new improved cultivars. The objective of the present study was to perform the agronomic and molecular characterizations of 35 BC2F8 ILs from the cross O. glumaepatula x O. sativa, aiming to select high-yielding ILs to be used in rice-breeding programs. All 35 ILs were field evaluated in the season 2002/2003 in three locations and the 15 best performing ones were evaluated in the season 2003/2004 in five locations. In 2003/2004, six ILs (CNAi 9934, CNAi 9931, CNAi 9930, CNAi 9935, CNAi 9936, and CNAi 9937) showed the highest yield means and were statistically superior to the controls Metica 1 and IRGA 417. Molecular characterization of the 35 ILs was performed with 92 microsatellite markers distributed on the 12 rice chromosomes and a simple regression quantitative trait locus analysis was performed using the phenotypic data from 2002/2003. The six high-yielding ILs showed a low proportion of wild fragment introgressions. A total of 14 molecular markers were associated with quantitative trait loci in the three locations. The six high-yielding ILs were incorporated in the Embrapa breeding program, and the line CNAi 9930 is recommended for cultivation due to additional advantages of good grain cooking and milling qualities and high yield stability. The O. glumaepatula-derived ILs proved to be a source of new alleles for the development of high-yielding rice cultivars. PMID:18393222

  4. Bacteriocin Production: a Probiotic Trait?

    PubMed Central

    Dobson, Alleson; Cotter, Paul D.; Hill, Colin

    2012-01-01

    Bacteriocins are an abundant and diverse group of ribosomally synthesized antimicrobial peptides produced by bacteria and archaea. Traditionally, bacteriocin production has been considered an important trait in the selection of probiotic strains, but until recently, few studies have definitively demonstrated the impact of bacteriocin production on the ability of a strain to compete within complex microbial communities and/or positively influence the health of the host. Although research in this area is still in its infancy, there is intriguing evidence to suggest that bacteriocins may function in a number of ways within the gastrointestinal tract. Bacteriocins may facilitate the introduction of a producer into an established niche, directly inhibit the invasion of competing strains or pathogens, or modulate the composition of the microbiota and influence the host immune system. Here we review the role of bacteriocin production in complex microbial communities and their potential to enhance human health. PMID:22038602

  5. Predictive modelling of complex agronomic and biological systems.

    PubMed

    Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J

    2013-09-01

    Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. PMID:23777295

  6. Quantitative trait locus mapping and functional genomics of an organophosphate resistance trait in the western corn rootworm, Diabrotica virgifera virgifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The western corn rootworm (WCR), Diabrotica virgifera virgifera, is an insect pest of corn, and population suppression with chemical insecticides is an important management tool. Traits conferring organophosphate insecticide resistance have increased in frequency among WCR populations, resulting in...

  7. Designing an accompanying ecosystem to foster entrepreneurship among agronomic and forestry engineering students. Opinion and commitment of university lecturers

    NASA Astrophysics Data System (ADS)

    Ortiz-Medina, L.; Fernández-Ahumada, E.; Lara-Vélez, P.; Taguas, E. V.; Gallardo-Cobos, R.; del Campillo, M. C.; Guerrero-Ginel, J. E.

    2016-07-01

    In the Higher School of Agronomic and Forestry Engineering of the University of Cordoba, a collective project conceived as an 'ecosystem to support and accompany entrepreneurs' has been proposed. The approach aims to spread and consolidate the entrepreneurial spirit and to respond to the demands of possible stakeholders involved in the whole process of training, as well as the subsequent integration of graduates into the labour market. Putting into practice this initiative, which involves multiple actors, is a complex and difficult task. For this reason, prior to its implementation, the authors considered it necessary to listen to main stakeholders' opinions and evaluate their degree of commitment and the requirements they consider important for the viability and sustainability of the initiative. This paper focuses on the faculty's opinions, gathered by means of a survey conducted with the entire faculty (N = 128, response rate = 45%) and semi-structured interviews held with 20 members of the School board. The results suggest that there is a general consensus on the suitability of this collective project and that there is a core of teachers willing to get involved. Evidently, guidelines need to be produced to facilitate taking on such tasks. However, the main drawbacks are related with the conflict between formal requirements of professor professional profile and the steps needed to establish the ecosystem.

  8. A novel transcriptomic approach to identify candidate genes for grain quality traits in wheat.

    PubMed

    Wan, Yongfang; Underwood, Claudia; Toole, Geraldine; Skeggs, Peter; Zhu, Tong; Leverington, Michelle; Griffiths, Simon; Wheeler, Tim; Gooding, Mike; Poole, Rebecca; Edwards, Keith J; Gezan, Salvador; Welham, Sue; Snape, John; Mills, E N Clare; Mitchell, Rowan A C; Shewry, Peter R

    2009-06-01

    A novel methodology is described in which transcriptomics is combined with the measurement of bread-making quality and other agronomic traits for wheat genotypes grown in different environments (wet and cool or hot and dry conditions) to identify transcripts associated with these traits. Seven doubled haploid lines from the Spark x Rialto mapping population were selected to be matched for development and known alleles affecting quality. These were grown in polytunnels with different environments applied 14 days post-anthesis, and the whole experiment was repeated over 2 years. Transcriptomics using the wheat Affymetrix chip was carried out on whole caryopsis samples at two stages during grain filling. Transcript abundance was correlated with the traits for approximately 400 transcripts. About 30 of these were selected as being of most interest, and markers were derived from them and mapped using the population. Expression was identified as being under cis control for 11 of these and under trans control for 18. These transcripts are candidates for involvement in the biological processes which underlie genotypic variation in these traits. PMID:19490503

  9. Identifying the critical climatic time window that affects trait expression.

    PubMed

    van de Pol, Martijn; Cockburn, Andrew

    2011-05-01

    Identifying the critical time window during which climatic drivers affect the expression of phenological, behavioral, and demographic traits is crucial for predicting the impact of climate change on trait and population dynamics. Two widely used associative methods exist to identify critical climatic periods: sliding-window models and recursive operators in which the memory of past weather fades over time. Both approaches have different strong points, which we combine here into a single method. Our method uses flexible functions to differentially weight past weather, which can reflect competing hypotheses about time lags and the relative importance of recent and past weather for trait expression. Using a 22-year data set, we illustrate that the climatic window identified by our new method explains more of the phenological variation in a sexually selected trait than existing approaches. Our new method thus helps to better identify the critical time window and the causes of trait response to environmental variability. PMID:21508615

  10. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services. PMID:25599106

  11. Relevance of personality traits to adjustment in group living situations.

    PubMed

    Carp, F M

    1985-09-01

    The study replicates and extends recent work on personality determinants of adjustment. Personality traits and adjustment criteria were selected for relevance to one type of real-life setting (public housing for the elderly that includes a senior center). Personality traits were measured by observer ratings; criteria, by self-report of respondents and perceptions of them by other residents and staff. In concurrent and longitudinal analyses controlling effects of competence and social status, personality traits accounted for significant and meaningful variance in all criteria, and the salience of particular traits varied across criteria. The results are consistent with earlier studies regarding the importance of extraversion and neuroticism to subjective well-being and suggest that they are relevant also to adjustment as perceived by others. The additional traits of congeniality, culture, and nosiness/gossip were related to both inner and outer adjustment measures in the type of situations studied. PMID:4031402

  12. Contrasting agronomic response of biochar amendment to a Mediterranean Cambisol: Incubation vs. field experiment

    NASA Astrophysics Data System (ADS)

    De la Rosa, José M.; Paneque, Marina; De Celis, Reyes; Miller, Ana Z.; Knicker, Heike

    2015-04-01

    The application of biochar to soil is being proposed as a novel approach to establish a significant long-term sink for atmospheric carbon dioxide in terrestrial ecosystems. In addition, biochars offer a simple, sustainable tool for managing organic wastes and to produce added value products. Numerous research studies pointed out that biochar can act as a soil conditioner enhancing plant growth by supplying and, more importantly, retaining nutrients and by providing other services such as improving soil physical and biological properties [1]. However, the effectiveness of biochar in enhancing plant fertility is a function of soil type, climate, and type of crop [2] but also of the biochar properties. The inherent variability of biochars due to different feedstock and production conditions implies a high variability of their effect on soil properties and productivity. Furthermore, due to the irreversibility of biochar application, it is necessary to perform detailed studies to achieve a high level of certainty that adding biochar to agricultural soils, for whatever reason, will not negatively affect soil health and productivity. The major goals of this research were: i) understanding how the properties of 5 different biochars produced by using different feedstock and pyrolysis conditions are related to their agronomic response, and ii) assessing the agronomic effect of biochar amendment under field conditions of a typical Mediterranean non-irrigated plantation. Four of the used biochars were produced by pyrolysis from wood (2), paper sludge (1) and sewage sludge (1), at temperatures up to 620 °C. The fifth biochar was produced from old grapevine wood by applying the traditional kiln method. Biochars were analysed for elemental composition (C, H, N), pH, WHC and ash contents. The H/C and O/C atomic ratios suggested high aromaticity of all biochars, which was confirmed by 13C solid-state NMR spectroscopy. The FT-IR spectra indicated the presence of lignin residues in

  13. Brain structure links trait creativity to openness to experience

    PubMed Central

    Huang, Lijie; Kong, Xiangzhen; Yang, Wenjing; Wei, Dongtao; Li, Jingguang; Cheng, Hongsheng; Zhang, Qinglin

    2015-01-01

    Creativity is crucial to the progression of human civilization and has led to important scientific discoveries. Especially, individuals are more likely to have scientific discoveries if they possess certain personality traits of creativity (trait creativity), including imagination, curiosity, challenge and risk-taking. This study used voxel-based morphometry to identify the brain regions underlying individual differences in trait creativity, as measured by the Williams creativity aptitude test, in a large sample (n = 246). We found that creative individuals had higher gray matter volume in the right posterior middle temporal gyrus (pMTG), which might be related to semantic processing during novelty seeking (e.g. novel association, conceptual integration and metaphor understanding). More importantly, although basic personality factors such as openness to experience, extroversion, conscientiousness and agreeableness (as measured by the NEO Personality Inventory) all contributed to trait creativity, only openness to experience mediated the association between the right pMTG volume and trait creativity. Taken together, our results suggest that the basic personality trait of openness might play an important role in shaping an individual’s trait creativity. PMID:24603022

  14. Callous-unemotional traits and adolescents' role in group crime.

    PubMed

    Thornton, Laura C; Frick, Paul J; Shulman, Elizabeth P; Ray, James V; Steinberg, Laurence; Cauffman, Elizabeth

    2015-08-01

    The current study examined the association of callous-unemotional (CU) traits with group offending (i.e., committing a crime with others; gang involvement) and with the role that the offender may play in a group offense (e.g., being the leader). This analysis was conducted in an ethnically and racially diverse sample (N = 1,216) of justice-involved adolescents (ages 13 to 17) from 3 different sites. CU traits were associated with a greater likelihood of the adolescent offending in groups and being in a gang. Importantly, both associations remained significant after controlling for the adolescent's age, level of intelligence, race and ethnicity, and level of impulse control. The association of CU traits with gang membership also remained significant after controlling for the adolescent's history of delinquent behavior. Further, CU traits were associated with several measures of taking a leadership role in group crimes. CU traits were also associated with greater levels of planning in the group offense for which the adolescent was arrested, although this was moderated by the adolescent's race and was not found in Black youth. These results highlight the importance of CU traits for understanding the group process involved in delinquent acts committed by adolescents. They also underscore the importance of enhancing the effectiveness of treatments for these traits in order to reduce juvenile delinquency. PMID:25689410

  15. Brain structure links trait creativity to openness to experience.

    PubMed

    Li, Wenfu; Li, Xueting; Huang, Lijie; Kong, Xiangzhen; Yang, Wenjing; Wei, Dongtao; Li, Jingguang; Cheng, Hongsheng; Zhang, Qinglin; Qiu, Jiang; Liu, Jia

    2015-02-01

    Creativity is crucial to the progression of human civilization and has led to important scientific discoveries. Especially, individuals are more likely to have scientific discoveries if they possess certain personality traits of creativity (trait creativity), including imagination, curiosity, challenge and risk-taking. This study used voxel-based morphometry to identify the brain regions underlying individual differences in trait creativity, as measured by the Williams creativity aptitude test, in a large sample (n = 246). We found that creative individuals had higher gray matter volume in the right posterior middle temporal gyrus (pMTG), which might be related to semantic processing during novelty seeking (e.g. novel association, conceptual integration and metaphor understanding). More importantly, although basic personality factors such as openness to experience, extroversion, conscientiousness and agreeableness (as measured by the NEO Personality Inventory) all contributed to trait creativity, only openness to experience mediated the association between the right pMTG volume and trait creativity. Taken together, our results suggest that the basic personality trait of openness might play an important role in shaping an individual's trait creativity. PMID:24603022

  16. Traits and Trade-Offs Are an Important Tier

    ERIC Educational Resources Information Center

    Nettle, Daniel

    2007-01-01

    Replies to comments by K. M. Sheldon et al on the author's original article on evolution and personality variation. Sheldon et al concurred with the thrust of that article that the way natural selection shapes or gives rise to interindividual variation is a worthy topic for evolutionary psychologists to consider, so at a broad level Sheldon et al…

  17. Common Ancestry Is a Poor Predictor of Competitive Traits in Freshwater Green Algae.

    PubMed

    Narwani, Anita; Alexandrou, Markos A; Herrin, James; Vouaux, Alaina; Zhou, Charles; Oakley, Todd H; Cardinale, Bradley J

    2015-01-01

    Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related to competition in freshwater green phytoplankton. We measured 17 traits related to competition and tested whether they displayed a phylogenetic signal across a molecular phylogeny of 59 species of green algae. We also assessed the fit of five models of trait evolution to trait variation across the phylogeny. There was no significant phylogenetic signal for 13 out of 17 ecological traits. For 7 traits, a non-phylogenetic model provided the best fit. For another 7 traits, a phylogenetic model was selected, but parameter values indicated that trait variation evolved recently, diminishing the importance of common ancestry. This study suggests that traits related to competition in freshwater green algae are not generally well-predicted by patterns of common ancestry. We discuss the mechanisms by which the link between phylogenetic distance and phenotypic differentiation may be broken. PMID:26348482

  18. Common Ancestry Is a Poor Predictor of Competitive Traits in Freshwater Green Algae

    PubMed Central

    Narwani, Anita; Alexandrou, Markos A.; Herrin, James; Vouaux, Alaina; Zhou, Charles; Oakley, Todd H.; Cardinale, Bradley J.

    2015-01-01

    Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related to competition in freshwater green phytoplankton. We measured 17 traits related to competition and tested whether they displayed a phylogenetic signal across a molecular phylogeny of 59 species of green algae. We also assessed the fit of five models of trait evolution to trait variation across the phylogeny. There was no significant phylogenetic signal for 13 out of 17 ecological traits. For 7 traits, a non-phylogenetic model provided the best fit. For another 7 traits, a phylogenetic model was selected, but parameter values indicated that trait variation evolved recently, diminishing the importance of common ancestry. This study suggests that traits related to competition in freshwater green algae are not generally well-predicted by patterns of common ancestry. We discuss the mechanisms by which the link between phylogenetic distance and phenotypic differentiation may be broken. PMID:26348482

  19. A highly concentrated diet increases biogas production and the agronomic value of young bull's manure.

    PubMed

    Mendonça Costa, Mônica Sarolli Silva de; Lucas, Jorge de; Mendonça Costa, Luiz Antonio de; Orrico, Ana Carolina Amorim

    2016-02-01

    The increasing demand for animal protein has driven significant changes in cattle breeding systems, mainly in feedlots, with the use of young bulls fed on diets richer in concentrate (C) than in forage (F). These changes are likely to affect animal manure, demanding re-evaluation of the biogas production per kg of TS and VS added, as well as of its agronomic value as a biofertilizer, after anaerobic digestion. Here, we determined the biogas production and agronomic value (i.e., the macronutrient concentration in the final biofertilizer) of the manure of young bulls fed on diets with more (80% C+20% F; 'HighC' diet) or less (65% C+35% F; 'LowC' diet) concentrate, evaluating the effects of temperature (25, 35, and 40°C) and the use of an inoculum, during anaerobic digestion. A total of 24 benchtop reactors were used, operating in a semi-continuous system, with a 40-day hydraulic retention time (HRT). The manure from animals given the HighC diet had the greatest potential for biogas production, when digested with the use of an inoculum and at 35 or 40°C (0.6326 and 0.6207m(3)biogas/kg volatile solids, or VS, respectively). We observed the highest levels of the macronutrients N, P, and K in the biofertilizer from the manure of animals given HighC. Our results show that the manure of young bulls achieves its highest potential for biogas production and agronomic value when animals are fed diets richer in concentrate, and that biogas production increases if digestion is performed at higher temperatures, and with the use of an inoculum. PMID:26452426

  20. An agronomic field-scale sensor network for monitoring soil water and temperature variation

    NASA Astrophysics Data System (ADS)

    Brown, D. J.; Gasch, C.; Brooks, E. S.; Huggins, D. R.; Campbell, C. S.; Cobos, D. R.

    2014-12-01

    Environmental sensor networks have been deployed in a variety of contexts to monitor plant, air, water and soil properties. To date, there have been relatively few such networks deployed to monitor dynamic soil properties in cropped fields. Here we report on experience with a distributed soil sensor network that has been deployed for seven years in a research farm with ongoing agronomic field operations. The Washington State University R. J. Cook Agronomy Farm (CAF), Pullman, WA, USA has recently been designated a United States Department of Agriculture (USDA) Long-Term Agro-Ecosystem Research (LTAR) site. In 2007, 12 geo-referenced locations at CAF were instrumented, then in 2009 this network was expended to 42 locations distributed across the 37-ha farm. At each of this locations, Decagon 5TE probes (Decagon Devices Inc., Pullman, WA, USA) were installed at five depths (30, 60, 90, 120, and 150 cm), with temperature and volumetric soil moisture content recorded hourly. Initially, data loggers were wirelessly connected to a data station that could be accessed through a cell connection, but due to the logistics of agronomic field operations, we later buried the dataloggers at each site and now periodically download data via local radio transmission. In this presentation, we share our experience with the installation, maintenance, calibration and data processing associated with an agronomic soil monitoring network. We also present highlights of data derived from this network, including seasonal fluctuations of soil temperature and volumetric water content at each depth, and how these measurements are influenced by crop type, soil properties, landscape position, and precipitation events.

  1. Molecular diversity and genome-wide linkage disequilibrium patterns in a worldwide collection of Oryza sativa and its wild relatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marker-trait association mapping techniques were first developed by computational biologists to analyze the genotypes of individual people in human populations and subsequently identify DNA markers associated with important traits, especially diseases. If populations of agronomically important crop...

  2. Agronomic characterization of the Argentina Indicator Region. [U.S. corn belt and Argentine pampas

    NASA Technical Reports Server (NTRS)

    Hicks, D. R. (Principal Investigator)

    1982-01-01

    An overview of the Argentina indicator region including information on topography, climate, soils and vegetation is presented followed by a regionalization of crop livestock land use. Corn/soybean production and exports as well as agricultural practices are discussed. Similarities and differences in the physical agronomic scene, crop livestock land use and agricultural practices between the U.S. corn belt and the Argentine pampa are considered. The Argentine agricultural economy is described. Crop calendars for the Argentina indicator region, an accompanying description, notes on crop-livestock zones, wheat production, field size, and agricultural problems and practices are included.

  3. Causes of male sexual trait divergence in introduced populations of guppies.

    PubMed

    Lindholm, A K; Head, M L; Brooks, R C; Rollins, L A; Ingleby, F C; Zajitschek, S R K

    2014-02-01

    Males from different populations of the same species often differ in their sexually selected traits. Variation in sexually selected traits can be attributed to sexual selection if phenotypic divergence matches the direction of sexual selection gradients among populations. However, phenotypic divergence of sexually selected traits may also be influenced by other factors, such as natural selection and genetic constraints. Here, we document differences in male sexual traits among six introduced Australian populations of guppies and untangle the forces driving divergence in these sexually selected traits. Using an experimental approach, we found that male size, area of orange coloration, number of sperm per ejaculate and linear sexual selection gradients for male traits differed among populations. Within populations, a large mismatch between the direction of selection and male traits suggests that constraints may be important in preventing male traits from evolving in the direction of selection. Among populations, however, variation in sexual selection explained more than half of the differences in trait variation, suggesting that, despite within-population constraints, sexual selection has contributed to population divergence of male traits. Differences in sexual traits were also associated with predation risk and neutral genetic distance. Our study highlights the importance of sexual selection in trait divergence in introduced populations, despite the presence of constraining factors such as predation risk and evolutionary history. PMID:24456226

  4. DETECTION OF QUANTITATIAVE TRAIT LOCI AFFECTING GROWTH AND REPRODUCTIVE TRAITS IN BOS INDICUS BEEF CATTLE (NELLORE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to identify quantitative trait loci of economic importance in purebred Bos indicus beef cattle breed (Nellore). Two half-sib families constituted of 187 (family 1) and 189 (family 2) female sisters, daughters from two distinct bulls, where used. Each parent (F0) was ...

  5. Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    PubMed Central

    Kröber, Wenzel; Böhnke, Martin; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2012-01-01

    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most

  6. Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population.

    PubMed

    Trijatmiko, Kurniawan R; Supriyanta; Prasetiyono, Joko; Thomson, Michael J; Vera Cruz, Casiana M; Moeljopawiro, Sugiono; Pereira, Andy

    2014-01-01

    A recombinant inbred population developed from a cross between high-yielding lowland rice (Oryza sativa L.) subspecies indica cv. IR64 and upland tropical rice subspecies japonica cv. Cabacu was used to identify quantitative trait loci (QTLs) for grain yield (GY) and component traits under reproductive-stage drought stress. One hundred fifty-four lines were grown in field trials in Indonesia under aerobic conditions by giving surface irrigation to field capacity every 4 days. Water stress was imposed for a period of 15 days during pre-flowering by withholding irrigation at 65 days after seeding. Leaf rolling was scored at the end of the stress period and eight agronomic traits were evaluated after recovery. The population was also evaluated for root pulling force, and a total of 201 single nucleotide polymorphism markers were used to construct the molecular genetic linkage map and QTL mapping. A QTL for GY under drought stress was identified in a region close to the sd1 locus on chromosome 1. QTL meta-analysis across diverse populations showed that this QTL was conserved across genetic backgrounds and co-localized with QTLs for leaf rolling and osmotic adjustment (OA). A QTL for percent seed set and grains per panicle under drought stress was identified on chromosome 8 in the same region as a QTL for OA previously identified in three different populations. PMID:25076836

  7. Functional traits and root morphology of alpine plants

    PubMed Central

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-01-01

    Background and Aims Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. Methods In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Key Results Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. Conclusions The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level. PMID:21795278

  8. Personality traits and life satisfaction among online game players.

    PubMed

    Chen, Lily Shui-Lien; Tu, Hill Hung-Jen; Wang, Edward Shih-Tse

    2008-04-01

    The DFC Intelligence predicts worldwide online game revenues will reach $9.8 billion by 2009, making online gaming a mainstream recreational activity. Understanding online game player personality traits is therefore important. This study researches the relationship between personality traits and life satisfaction in online game players. Taipei, Taiwan, is the study location, with questionnaire surveys conducted in cyber cafe shops. Multiple regression analysis studies the causal relationship between personality traits and life satisfaction in online game players. The result shows that neuroticism has significant negative influence on life satisfaction. Both openness and conscientiousness have significant positive influence on life satisfaction. Finally, implications for leisure practice and further research are discussed. PMID:18422405

  9. Variability of Root Traits in Spring Wheat Germplasm

    PubMed Central

    Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara

    2014-01-01

    Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438

  10. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  11. Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils.

    PubMed

    Kidd, Petra; Mench, Michel; Álvarez-López, Vanessa; Bert, Valérie; Dimitriou, Ioannis; Friesl-Hanl, Wolfgang; Herzig, Rolf; Janssen, Jolien Olga; Kolbas, Aliaksandr; Müller, Ingo; Neu, Silke; Renella, Giancarlo; Ruttens, Ann; Vangronsveld, Jaco; Puschenreiter, Markus

    2015-01-01

    The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization ("inactivation") and plant-based (generally termed "phytoremediation") options. For trace element (TE)-contaminated sites, GRO aim to either decrease their labile pool and/or total content in the soil, thereby reducing related pollutant linkages. Much research has been dedicated to the screening and selection of TE-tolerant plant species and genotypes for application in GRO. However, the number of field trials demonstrating successful GRO remains well below the number of studies carried out at a greenhouse level. The move from greenhouse to field conditions requires incorporating agronomical knowledge into the remediation process and the ecological restoration of ecosystem services. This review summarizes agronomic practices against their demonstrated or potential positive effect on GRO performance, including plant selection, soil management practices, crop rotation, short rotation coppice, intercropping/row cropping, planting methods and plant densities, harvest and fertilization management, pest and weed control and irrigation management. Potentially negative effects of GRO, e.g., the introduction of potentially invasive species, are also discussed. Lessons learnt from long-term European field case sites are given for aiding the choice of appropriate management practices and plant species. PMID:25581041

  12. Integration of Agronomic Practices with Herbicides for Sustainable Weed Management in Aerobic Rice

    PubMed Central

    Anwar, M. P.; Juraimi, A. S.; Mohamed, M. T. M.; Uddin, M. K.; Samedani, B.; Puteh, A.; Man, Azmi

    2013-01-01

    Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point. PMID:24223513

  13. Waterfowl foraging in winter-flooded ricefields: Any agronomic benefits for farmers?

    PubMed

    Brogi, Anne; Pernollet, Claire A; Gauthier-Clerc, Michel; Guillemain, Matthieu

    2015-12-01

    Winter-flooding of ricefields provides foraging habitat to waterfowl, which in return may bring agronomic benefits to farmers. Our study experimentally tested the effect of mallards (Anas platyrhynchos) on the standing stalks and weed seed bank in the Camargue (France), both of which present major challenges for farmers. Three duck densities were tested: (D1) 5 ducks ha(-1) (historical nocturnal density), (D2) 23 ducks ha(-1) (present nocturnal density), and (D3) 300 ducks ha(-1) (Asian rice-duck farming density). The ducks reduced the stalks significantly: -27 % (D1), -52 % (D2), and -91 % (D3). Conversely, they decreased the number of seeds by only 3 % (D3) and the seed mass by about 21 % (D1 and D3), which was not significant. Besides they had no effect on seed species richness. This study clearly demonstrates that the winter-flooding effect on straw decomposition can be enhanced by waterfowl foraging, hence showing an agronomic benefit from ducks to farmers. However, there was no clear effect in terms of seed bank reduction. PMID:26121948

  14. Species identity influences belowground arthropod assemblages via functional traits

    PubMed Central

    Gorman, Courtney E.; Read, Quentin D.; Van Nuland, Michael E.; Bryant, Jessica A. M.; Welch, Jessica N.; Altobelli, Joseph T.; Douglas, Morgan J.; Genung, Mark A.; Haag, Elliot N.; Jones, Devin N.; Long, Hannah E.; Wilburn, Adam D.; Schweitzer, Jennifer A.; Bailey, Joseph K.

    2013-01-01

    Plant species influence belowground communities in a variety of ways, ultimately impacting nutrient cycling. Functional plant traits provide a means whereby species identity can influence belowground community interactions, but little work has examined whether species identity influences belowground community processes when correcting for evolutionary history. Specifically, we hypothesized that closely related species would exhibit (i) more similar leaf and root functional traits than more distantly related species, and (ii) more similar associated soil arthropod communities. We found that after correcting for evolutionary history, tree species identity influenced belowground arthropod communities through plant functional traits. These data suggest that plant species structure may be an important predictor in shaping associated soil arthropod communities and further suggest the importance of better understanding the extended consequences of evolutionary history on ecological processes, as similarity in traits may not always reflect similar ecology.

  15. Anxiety: States, Traits--Situations?

    ERIC Educational Resources Information Center

    Kendall, Philip C.

    1978-01-01

    Investigated the utility of situational assessments of trait anxiety in predicting state anxiety reactions. Results indicated that the STAI-A-Trait and the S-R GTA Evaluation measures correlated significantly higher with each other than either did with the S-R GTA Physical Danger measure. Both stresses produced significant increases in state…

  16. Quantitative trait loci analysis of egg and meat production traits in a red junglefowlxWhite Leghorn cross.

    PubMed

    Wright, D; Kerje, S; Lundström, K; Babol, J; Schütz, K; Jensen, P; Andersson, L

    2006-12-01

    Egg and production traits are of considerable economic importance in chickens. Using a White Leghorn x red junglefowl F(2) intercross, standard production measures of liver weight and colour, egg size, eggshell thickness, egg taste and meat quality were taken. A total of 160 markers covering 29 autosomes and the Z chromosome were genotyped on 175-243 individuals, depending on the trait under consideration. A total of nine significant quantitative trait loci (QTL) and three suggestive QTL were found on chicken chromosomes 1, 2, 4, 5, 7, 8, 10, 12, E47W24 and E22C19W28. PMID:17121597

  17. QuickBird Satellite and Ground-based Multispectral Data Correlations with Agronomic Parameters of Irrigated Maize Grown in Small Plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite remote sensing has not been practical for agronomic research conducted in small plots due to spatial resolution issues. Objectives were to determine (1) the potential use of QuickBird high resolution digital images for estimating agronomic parameters of irrigated maize (Zea mays L.) grown...

  18. Exaggerated trait growth in insects.

    PubMed

    Lavine, Laura; Gotoh, Hiroki; Brent, Colin S; Dworkin, Ian; Emlen, Douglas J

    2015-01-01

    Animal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait. PMID:25341090

  19. Functional traits as indicators of fodder provision over a short time scale in species-rich grasslands

    PubMed Central

    Ansquer, Pauline; Duru, Michel; Theau, Jean Pierre; Cruz, Pablo

    2009-01-01

    Background and Aims Fodder provision in species-rich grasslands, i.e. herbage growth, proportion of leaf, and leaf and stem digestibility, is difficult to predict for short periods of time, such as between two defoliations or less. The value of two methods based on plant traits for evaluating these agronomic properties was examined. Methods One method is based on plant trait measurements on the plant community (leaf dry matter content, plant height, flowering date); the other is on vegetation composition expressed as plant functional types (acquisitive versus conservative PFTs) established by measuring leaf dry matter content on pure grass stands. The experiment consisted of 18 fields with three different defoliation regimes (combinations of cutting and grazing) and two levels of fertilization. To establish a growth curve over the first growth cycle, herbage was sampled about 10 times in spring. Key Results Coefficients of correlation between agronomic properties of the vegetation and its functional composition were higher when the latter was assessed through PFT and an indicator of the plant nutrient status (Ni) instead of measured plant traits. The date at which the ceiling yield occurred for the standing herbage mass or only the leaf component, which varied by up to 500 degree-days between treatments, and the leaf proportion, depended entirely on the PFT, and largely so for the leaf digestibility. The standing herbage mass at the time of ceiling yield depended only on Ni, or mainly so in the case of the daily herbage growth rate. Similar plant digestibility between plant communities was found at flowering time, although there were big differences in PFT composition. The shape of the growth curve was flatter when there was great functional diversity in the plant community. Conclusions The PFT composition and the Ni were more reliable than the plant functional traits measured in the field for evaluating herbage growth pattern and digestibility in spring. PMID

  20. Assessing callous-unemotional traits in adolescent offenders: validation of the Inventory of Callous-Unemotional Traits.

    PubMed

    Kimonis, Eva R; Frick, Paul J; Skeem, Jennifer L; Marsee, Monica A; Cruise, Keith; Munoz, Luna C; Aucoin, Katherine J; Morris, Amanda S

    2008-01-01

    The presence of callous-unemotional (CU) traits designates an important subgroup of antisocial youth. To improve upon existing measures, the Inventory of Callous-Unemotional Traits (ICU) was developed to provide an efficient, reliable, and valid assessment of CU traits in samples of youth. The current study tests the factor structure and correlates of the ICU scale in a sample (n=248) of juvenile offenders (188 boys, 60 girls) between the ages of 12 and 20 (M=15.47, SD=1.37). Confirmatory factor analyses are consistent with the presence of three independent factors (i.e., Uncaring, Callousness, and Unemotional) that relate to a higher-order callous-unemotional dimension. Also, CU traits overall showed associations with aggression, delinquency, and both psychophysiological and self-report indices of emotional reactivity. There were some important differences across the three facets of the ICU in their associations with these key external criteria. PMID:18514315

  1. Bayesian Shrinkage Analysis of Quantitative Trait Loci for Dynamic Traits

    PubMed Central

    Yang, Runqing; Xu, Shizhong

    2007-01-01

    Many quantitative traits are measured repeatedly during the life of an organism. Such traits are called dynamic traits. The pattern of the changes of a dynamic trait is called the growth trajectory. Studying the growth trajectory may enhance our understanding of the genetic architecture of the growth trajectory. Recently, we developed an interval-mapping procedure to map QTL for dynamic traits under the maximum-likelihood framework. We fit the growth trajectory by Legendre polynomials. The method intended to map one QTL at a time and the entire QTL analysis involved scanning the entire genome by fitting multiple single-QTL models. In this study, we propose a Bayesian shrinkage analysis for estimating and mapping multiple QTL in a single model. The method is a combination between the shrinkage mapping for individual quantitative traits and the Legendre polynomial analysis for dynamic traits. The multiple-QTL model is implemented in two ways: (1) a fixed-interval approach where a QTL is placed in each marker interval and (2) a moving-interval approach where the position of a QTL can be searched in a range that covers many marker intervals. Simulation study shows that the Bayesian shrinkage method generates much better signals for QTL than the interval-mapping approach. We propose several alternative methods to present the results of the Bayesian shrinkage analysis. In particular, we found that the Wald test-statistic profile can serve as a mechanism to test the significance of a putative QTL. PMID:17435239

  2. QTL Mapping of Agronomic Waterlogging Tolerance Using Recombinant Inbred Lines Derived from Tropical Maize (Zea mays L) Germplasm

    PubMed Central

    Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman

    2015-01-01

    Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate

  3. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm.

    PubMed

    Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman

    2015-01-01

    Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate

  4. Linking Tropical Forest Function to Hydraulic Traits in a Size-Structured and Trait-Based Model

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Gloor, M.; Fauset, S.; Fyllas, N.; Galbraith, D.; Baker, T. R.; Rowland, L.; Fisher, R.; Binks, O.; Sevanto, S.; Xu, C.; Jansen, S.; Choat, B.; Mencuccini, M.; McDowell, N. G.; Meir, P.

    2015-12-01

    A major weakness of forest ecosystem models is their inability to capture the diversity of responses to changes in water availability, severely hampering efforts to predict the fate of tropical forests under climate change. Such models often prescribe moisture sensitivity using heuristic response functions that are uniform across all individuals and lack important knowledge about trade-offs in hydraulic traits. We address this weakness by implementing a process representation of plant hydraulics into an individual- and trait-based model (Trait Forest Simulator; TFS) intended for application at discrete sites where community-level distributions of stem and leaf trait spectra (wood density, leaf mass per area, leaf nitrogen and phosphorus content) are known. The model represents a trade-off in the safety and efficiency of water conduction in xylem tissue through hydraulic traits, while accounting for the counteracting effects of increasing hydraulic path length and xylem conduit taper on whole-plant hydraulic resistance with increasing tree size. Using existing trait databases and additional meta-analyses from the rich literature on tropical tree ecophysiology, we obtained all necessary hydraulic parameters associated with xylem conductivity, vulnerability curves, pressure-volume curves, and hydraulic architecture (e.g., leaf-to-sapwood area ratios) as a function of the aforementioned traits and tree size. Incorporating these relationships in the model greatly improved the diversity of tree response to seasonal changes in water availability as well as in response to drought, as determined by comparison with field observations and experiments. Importantly, this individual- and trait-based framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Dynamic Global Vegetation Models, which will lead to reduced uncertainty in the future state of tropical forests.

  5. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits

    PubMed Central

    Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-01-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI’s Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes. PMID:27104857

  6. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes. PMID:27104857

  7. Polytraits: A database on biological traits of marine polychaetes

    PubMed Central

    2014-01-01

    Abstract The study of ecosystem functioning – the role which organisms play in an ecosystem – is becoming increasingly important in marine ecological research. The functional structure of a community can be represented by a set of functional traits assigned to behavioural, reproductive and morphological characteristics. The collection of these traits from the literature is however a laborious and time-consuming process, and gaps of knowledge and restricted availability of literature are a common problem. Trait data are not yet readily being shared by research communities, and even if they are, a lack of trait data repositories and standards for data formats leads to the publication of trait information in forms which cannot be processed by computers. This paper describes Polytraits (http://polytraits.lifewatchgreece.eu), a database on biological traits of marine polychaetes (bristle worms, Polychaeta: Annelida). At present, the database contains almost 20,000 records on morphological, behavioural and reproductive characteristics of more than 1,000 marine polychaete species, all referenced by literature sources. All data can be freely accessed through the project website in different ways and formats, both human-readable and machine-readable, and have been submitted to the Encyclopedia of Life for archival and integration with trait information from other sources. PMID:24855436

  8. Model Adequacy and the Macroevolution of Angiosperm Functional Traits.

    PubMed

    Pennell, Matthew W; FitzJohn, Richard G; Cornwell, William K; Harmon, Luke J

    2015-08-01

    Making meaningful inferences from phylogenetic comparative data requires a meaningful model of trait evolution. It is thus important to determine whether the model is appropriate for the data and the question being addressed. One way to assess this is to ask whether the model provides a good statistical explanation for the variation in the data. To date, researchers have focused primarily on the explanatory power of a model relative to alternative models. Methods have been developed to assess the adequacy, or absolute explanatory power, of phylogenetic trait models, but these have been restricted to specific models or questions. Here we present a general statistical framework for assessing the adequacy of phylogenetic trait models. We use our approach to evaluate the statistical performance of commonly used trait models on 337 comparative data sets covering three key angiosperm functional traits. In general, the models we tested often provided poor statistical explanations for the evolution of these traits. This was true for many different groups and at many different scales. Whether such statistical inadequacy will qualitatively alter inferences drawn from comparative data sets will depend on the context. Regardless, assessing model adequacy can provide interesting biological insights-how and why a model fails to describe variation in a data set give us clues about what evolutionary processes may have driven trait evolution across time. PMID:26655160

  9. Polytraits: A database on biological traits of marine polychaetes.

    PubMed

    Faulwetter, Sarah; Markantonatou, Vasiliki; Pavloudi, Christina; Papageorgiou, Nafsika; Keklikoglou, Kleoniki; Chatzinikolaou, Eva; Pafilis, Evangelos; Chatzigeorgiou, Georgios; Vasileiadou, Katerina; Dailianis, Thanos; Fanini, Lucia; Koulouri, Panayota; Arvanitidis, Christos

    2014-01-01

    The study of ecosystem functioning - the role which organisms play in an ecosystem - is becoming increasingly important in marine ecological research. The functional structure of a community can be represented by a set of functional traits assigned to behavioural, reproductive and morphological characteristics. The collection of these traits from the literature is however a laborious and time-consuming process, and gaps of knowledge and restricted availability of literature are a common problem. Trait data are not yet readily being shared by research communities, and even if they are, a lack of trait data repositories and standards for data formats leads to the publication of trait information in forms which cannot be processed by computers. This paper describes Polytraits (http://polytraits.lifewatchgreece.eu), a database on biological traits of marine polychaetes (bristle worms, Polychaeta: Annelida). At present, the database contains almost 20,000 records on morphological, behavioural and reproductive characteristics of more than 1,000 marine polychaete species, all referenced by literature sources. All data can be freely accessed through the project website in different ways and formats, both human-readable and machine-readable, and have been submitted to the Encyclopedia of Life for archival and integration with trait information from other sources. PMID:24855436

  10. Genome sequencing and analysis of the whitefly (Bemisia tabaci) MEAM1, one of the most important vectors for plant viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among whiteflies, the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex is particularly important because of its ability to transmit hundreds of plant viruses, resulting in the loss of billions of U.S. dollars on agronomically important crops such as tomato, cucurbits, cassava, and cotton worl...

  11. Multi-taxa trait and functional responses to physical disturbance.

    PubMed

    Pedley, Scott M; Dolman, Paul M

    2014-11-01

    Examining assemblage trait responses to environmental stressors extends our understanding beyond patterns of taxonomic diversity and composition, with results potentially transferable among bioregions. But the degree to which trait responses may be generalized across taxonomic groups remains incompletely understood. We compared trait responses among carabids, spiders and plants to an experimentally manipulated gradient of physical disturbance, replicated in open habitats within a forested landscape. Recolonization of recently disturbed habitats is expected to favour species with traits that promote greater dispersal ability, independent of taxa. We specifically predicted that physical disturbance would increase the representation of carabids with smaller body size, wings or wing dimorphism, spiders able to disperse aerially, and plants with therophyte life-history and wind-dispersed seed. We sampled 197 arthropod species (14,738 individuals) and 164 species of plant. The strength of association between each trait and the disturbance intensity was quantified by correlating matrices of species by traits, species abundance by sites and sites by environment, with significance assessed by comparison with a null model. Responses of biological traits varied among taxa but could be consistently interpreted in terms of dispersal ability. Trait shifts for carabid and plant assemblages were as predicted and correspond to those observed in other disturbance regimes. Assemblages after disturbance comprised smaller and winged carabids, and smaller plants with wind-dispersed seed, consistent with selection for species with better dispersal ability. In contrast, aerial dispersal did not appear important in spider recolonization, instead terrestrial dispersal ability was suggested by the increased abundance of larger-bodied and cursorial species. However, larger spider body size was also associated with an active-hunting strategy, also favoured in the post-disturbance environment

  12. Quantitative Trait Loci for Morphological Traits and their Association with Functional Genes in Raphanus sativus

    PubMed Central

    Yu, Xiaona; Choi, Su Ryun; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Pang, Wenxing; Lee, Ji-Young; Lim, Yong Pyo

    2016-01-01

    Identification of quantitative trait loci (QTLs) governing morphologically important traits enables to comprehend their potential genetic mechanisms in the genetic breeding program. In this study, we used 210 F2 populations derived from a cross between two radish inbred lines (Raphanus sativus) “835” and “B2,” including 258 SSR markers were used to detect QTLs for 11 morphological traits that related to whole plant, leaf, and root yield in 3 years of replicated field test. Total 55 QTLs were detected which were distributed on each linkage group of the Raphanus genome. Individual QTLs accounted for 2.69–12.6 of the LOD value, and 0.82–16.25% of phenotypic variation. Several genomic regions have multiple traits that clustered together, suggested the existence of pleiotropy linkage. Synteny analysis of the QTL regions with A. thaliana genome selected orthologous genes in radish. InDels and SNPs in the parental lines were detected in those regions by Illumina genome sequence. Five identified candidate gene-based markers were validated by co-mapping with underlying QTLs affecting different traits. Semi-quantitative reverse transcriptase PCR analysis showed the different expression levels of these five genes in parental lines. In addition, comparative QTL analysis with B. rapa revealed six common QTL regions and four key major evolutionarily conserved crucifer blocks (J, U, R, and W) harboring QTL for morphological traits. The QTL positions identified in this study will provide a valuable resource for identifying more functional genes when whole radish genome sequence is released. Candidate genes identified in this study that co-localized in QTL regions are expected to facilitate in radish breeding programs. PMID:26973691

  13. Quantitative Trait Loci for Morphological Traits and their Association with Functional Genes in Raphanus sativus.

    PubMed

    Yu, Xiaona; Choi, Su Ryun; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Pang, Wenxing; Lee, Ji-Young; Lim, Yong Pyo

    2016-01-01

    Identification of quantitative trait loci (QTLs) governing morphologically important traits enables to comprehend their potential genetic mechanisms in the genetic breeding program. In this study, we used 210 F2 populations derived from a cross between two radish inbred lines (Raphanus sativus) "835" and "B2," including 258 SSR markers were used to detect QTLs for 11 morphological traits that related to whole plant, leaf, and root yield in 3 years of replicated field test. Total 55 QTLs were detected which were distributed on each linkage group of the Raphanus genome. Individual QTLs accounted for 2.69-12.6 of the LOD value, and 0.82-16.25% of phenotypic variation. Several genomic regions have multiple traits that clustered together, suggested the existence of pleiotropy linkage. Synteny analysis of the QTL regions with A. thaliana genome selected orthologous genes in radish. InDels and SNPs in the parental lines were detected in those regions by Illumina genome sequence. Five identified candidate gene-based markers were validated by co-mapping with underlying QTLs affecting different traits. Semi-quantitative reverse transcriptase PCR analysis showed the different expression levels of these five genes in parental lines. In addition, comparative QTL analysis with B. rapa revealed six common QTL regions and four key major evolutionarily conserved crucifer blocks (J, U, R, and W) harboring QTL for morphological traits. The QTL positions identified in this study will provide a valuable resource for identifying more functional genes when whole radish genome sequence is released. Candidate genes identified in this study that co-localized in QTL regions are expected to facilitate in radish breeding programs. PMID:26973691

  14. Consumer trait variation influences tritrophic interactions in salt marsh communities

    PubMed Central

    Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A

    2015-01-01

    The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait

  15. Consumer trait variation influences tritrophic interactions in salt marsh communities.

    PubMed

    Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A

    2015-07-01

    The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait

  16. Functional Traits in Parallel Evolutionary Radiations and Trait-Environment Associations in the Cape Floristic Region of South Africa.

    PubMed

    Mitchell, Nora; Moore, Timothy E; Mollmann, Hayley Kilroy; Carlson, Jane E; Mocko, Kerri; Martinez-Cabrera, Hugo; Adams, Christopher; Silander, John A; Jones, Cynthia S; Schlichting, Carl D; Holsinger, Kent E

    2015-04-01

    Evolutionary radiations with extreme levels of diversity present a unique opportunity to study the role of the environment in plant evolution. If environmental adaptation played an important role in such radiations, we expect to find associations between functional traits and key climatic variables. Similar trait-environment associations across clades may reflect common responses, while contradictory associations may suggest lineage-specific adaptations. Here, we explore trait-environment relationships in two evolutionary radiations in the fynbos biome of the highly biodiverse Cape Floristic Region (CFR) of South Africa. Protea and Pelargonium are morphologically and evolutionarily diverse genera that typify the CFR yet are substantially different in growth form and morphology. Our analytical approach employs a Bayesian multiple-response generalized linear mixed-effects model, taking into account covariation among traits and controlling for phylogenetic relationships. Of the pairwise trait-environment associations tested, 6 out of 24 were in the same direction and 2 out of 24 were in opposite directions, with the latter apparently reflecting alternative life-history strategies. These findings demonstrate that trait diversity within two plant lineages may reflect both parallel and idiosyncratic responses to the environment, rather than all taxa conforming to a global-scale pattern. Such insights are essential for understanding how trait-environment associations arise and how they influence species diversification. PMID:25811086

  17. Designing an accompanying ecosystem for entrepreneurship students of agronomic and forestry engineering. Opinion and commitment of the faculty

    NASA Astrophysics Data System (ADS)

    Ortiz, Leovigilda; Fernández-Ahumada, Elvira; Lara-Vélez, Pablo; Taguas, Encarnación V.; Gallardo-Cobos, Rosa; Campillo, M. Carmen; Guerrero-Ginel, José E.

    2014-05-01

    The current context has called attention to the need of training engineers with new skills beyond the purely technical. Among others, fostering the entrepreneurial spirit has gained special prominence. In the Higher School of Agronomic and Forestry Engineering of the University of Cordoba, a 12-year-experience of an entrepreneurship program for undergraduate students concluded that, for an adequate consolidation and evolution of the program, is important to establish a robust network with active participation of all actors involved. With this antecedent, a collective project conceived as an "ecosystem of support and accompaniment for entrepreneurs" is the approach proposed. The objective is to perform an evaluation of this model in terms of viability, usefulness, actions to be taken and degree of commitment. The key actors identified (undergraduate students, faculty, alumni, local and regional entrepreneurs, enterprises, public administration) have been involved in the evaluation process. This study focuses on the academic staff. For that aim, a survey to the entire faculty (N=128, response rate = 45%) and semi-structured interviews to 20 members have been performed. Data have been treated by means of univariate and multivariate analysis. Results suggest that there exists an agreement concerning the appropriateness of a collective project; there is a critical mass of teachers willing to be engaged; guidelines need to be incorporated in order to facilitate taking on tasks; main restrictions concern the existing asymmetry between formal requirements and those necessary for establishing the ecosystem. ACKNOWLEDGMENT: This research work has been developed in the framework of the ALFA III programme financed by the European Union.

  18. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings.

    PubMed

    Umaña, María Natalia; Zhang, Caicai; Cao, Min; Lin, Luxiang; Swenson, Nathan G

    2015-12-01

    One of the few rules in ecology is that communities are composed of many rare and few common species. Trait-based investigations of abundance distributions have generally focused on species-mean trait values with mixed success. Here, using large tropical tree seedling datasets in China and Puerto Rico, we take an alternative approach that considers the magnitude of intraspecific variation in traits and growth as it relates to species abundance. We find that common species are less variable in their traits and growth. Common species also occupy core positions within community trait space indicating that they are finely tuned for the available conditions. Rare species are functionally peripheral and are likely transients struggling for success in the given environment. The work highlights the importance of considering intraspecific variation in trait-based ecology and demonstrates asymmetry in the magnitude of intraspecific variation among species is critical for understanding of how traits are related to abundance. PMID:26415689

  19. Quality and agronomic effects of three high-molecular-weight glutenin subunit transgenic events in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality and agronomic effects of three transgenic high-molecular-weight glutenin subunit (HMWGS) events were characterized in advanced-generation breeding lines of hard winter wheat (Triticum aestivum L.) in three Nebraska (U.S.A.) crop years. Two of the transgenic events studied, Dy10-E and B52a-6...

  20. EVALUATING THE ROLE OF HABITAT QUALITY ON ESTABLISHMENT OF GM AGROSTIS STOLONIFERA PLANTS IN NON-AGRONOMIC SETTINGS

    EPA Science Inventory

    We compared soil chemistry and plant community data at non-agronomic mesic locations that either did or did not contain genetically modified (GM) Agrostis stolonifera. The best two-variable logistic regression model included soil Mn content and A. stolonifera cover and explained...

  1. Enhanced efficiency fertilizers: A multi-site comparison of the effects on nitrous oxide emissions and agronomic performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need to understand the effects of enhanced efficiency fertilizers (EEF) for their effect on nitrous oxide emissions and agronomic performance was the motivation underpinning this multi-location study across North America. Research locations participating in this study included Ames, IA; Auburn, ...

  2. Designing an Accompanying Ecosystem to Foster Entrepreneurship among Agronomic and Forestry Engineering Students. Opinion and Commitment of University Lecturers

    ERIC Educational Resources Information Center

    Ortiz-Medina, L.; Fernández-Ahumada, E.; Lara-Vélez, P.; Taguas, E. V.; Gallardo-Cobos, R.; del Campillo, M. C.; Guerrero-Ginel, J. E.

    2016-01-01

    In the Higher School of Agronomic and Forestry Engineering of the University of Cordoba, a collective project conceived as an 'ecosystem to support and accompany entrepreneurs' has been proposed. The approach aims to spread and consolidate the entrepreneurial spirit and to respond to the demands of possible stakeholders involved in the whole…

  3. A database of lotic invertebrate traits for North America

    USGS Publications Warehouse

    Vieira, Nicole K.M.; Poff, N. LeRoy; Carlisle, Daren M.; Moulton, Stephen R., II; Koski, Marci L.; Kondratieff, Boris C.

    2006-01-01

    The assessment and study of stream communities may be enhanced if functional characteristics such as life-history, habitat preference, and reproductive strategy were more widely available for specific taxa. Species traits can be used to develop these functional indicators because many traits directly link functional roles of organisms with controlling environmental factors (for example, flow, substratum, temperature). In addition, some functional traits may not be constrained by taxonomy and are thus applicable at multiple spatial scales. Unfortunately, a comprehensive summary of traits for North American invertebrate taxa does not exist. Consequently, the U.S. Geological Survey's National Water-Quality Assessment Program in cooperation with Colorado State University compiled a database of traits for North American invertebrates. A total of 14,127 records for over 2,200 species, 1,165 genera, and 249 families have been entered into the database from 967 publications, texts and reports. Quality-assurance procedures indicated error rates of less than 3 percent in the data entry process. Species trait information was most complete for insect taxa. Traits describing resource acquisition and habitat preferences were most frequently reported, whereas those describing physiological tolerances and reproductive biology were the least frequently reported in the literature. The database is not exhaustive of the literature for North American invertebrates and is biased towards aquatic insects, but it represents a first attempt to compile traits in a web-accessible database. This report describes the database and discusses important decisions necessary for identifying ecologically relevant, environmentally sensitive, non-redundant, and statistically tractable traits for use in bioassessment programs.

  4. Effect of Habitat Conditions and Plant Traits on Leaf Damage in the Carduoideae Subfamily

    PubMed Central

    Münzbergová, Zuzana; Skuhrovec, Jiří

    2013-01-01

    Plant traits are the key factors that determine herbivore foraging selection. The traits serving as defense traits against herbivores represent a wide range of traits, such as chemical, physiological, morphological and life-history traits. While many studies considered plant defense traits at the within-species scale, much less is known from comparisons of a wide range of closely related species. The aim of this study was to identify factors responsible for the intensity of leaf damage in the Carduoideae subfamily of Asteraceae, which hosts many invasive species and thus is potential candidate plant species that could be controlled by biological control. Specifically, we wanted to see the relative importance of habitat characteristics, plant size and plants traits in determining the degree of folivory. The study identified several defense traits able to explain differences in herbivory between species after accounting for differences in the habitats in which the species occur and the plant size. Specifically, the most important traits were traits related to the quality of the leaf tissue expressed as the content of phosphorus, water and specific leaf area, which suggests that the leaf quality had a more important effect on the degree of herbivory than the presence of specific defense mechanisms such as spines and hair. Leaf quality is thus a candidate factor that drives herbivore choice when selecting which plant to feed on and should be considered when assessing the danger that a herbivore will switch hosts when introduced to a new range. PMID:23717643

  5. Clinical and personality traits in emotional disorders: Evidence of a common framework.

    PubMed

    Mahaffey, Brittain L; Watson, David; Clark, Lee Anna; Kotov, Roman

    2016-08-01

    Certain clinical traits (e.g., ruminative response style, self-criticism, perfectionism, anxiety sensitivity, fear of negative evaluation, and thought suppression) increase the risk for and chronicity of emotional disorders. Similar to traditional personality traits, they are considered dispositional and typically show high temporal stability. Because the personality and clinical-traits literatures evolved largely independently, connections between them are not fully understood. We sought to map the interface between a widely studied set of clinical and personality traits. Two samples (N = 385 undergraduates; N = 188 psychiatric outpatients) completed measures of personality traits, clinical traits, and an interview-based assessment of emotional-disorder symptoms. First, the joint factor structure of these traits was examined in each sample. Second, structural equation modeling was used to clarify the effects of clinical traits in the prediction of clinical symptoms beyond negative temperament. Third, the incremental validity of clinical traits beyond a more comprehensive set of higher-order and lower-order personality traits was examined using hierarchical regression. Clinical and personality traits were highly correlated and jointly defined a 3-factor structure-Negative Temperament, Positive Temperament, and Disinhibition-in both samples, with all clinical traits loading on the Negative Temperament factor. Clinical traits showed modest but significant incremental validity in explaining symptoms after accounting for personality traits. These data indicate that clinical traits relevant to emotional disorders fit well within the traditional personality framework and offer some unique contributions to the prediction of psychopathology, but it is important to distinguish their effects from negative temperament/neuroticism. (PsycINFO Database Record PMID:27505406

  6. Personality traits and developmental experiences as antecedents of childbearing motivation.

    PubMed

    Miller, W B

    1992-05-01

    Childbearing motivation may be conceptualized as based upon psychological traits and shaped by experiences during childhood, adolescence, and early adult life. This paper explores what those traits and developmental experiences are. Two measures of childbearing motivation, one positive and the other negative, are described. Using a sample of 362 married men and 354 married women, the paper systematically examines the factors associated with these measures. In addition to a set of basic personality traits, these factors include parental characteristics, teenage experiences, and a number of variables from young adult behavior domains such as marriage, education, work, religion, and parental relationships. Stepwise multiple regression analyses lead to two final constrained, simultaneous-equation regression models. These models indicate the importance of both personality traits and diverse life-cycle experiences in the development of childbearing motivation, the differential gender distribution of predictors, and the different experiential antecedents of positive and negative motivation. PMID:1607052

  7. Agronomic, metabolomic and lipidomic characterisation of Sicilian Origanum vulgare (L.) ecotypes.

    PubMed

    Tuttolomondo, Teresa; Martinelli, Federico; Mariotti, Lorenzo; Leto, Claudio; Maggio, Antonella; La Bella, Salvatore

    2016-01-01

    Although Origanum vulgare (L.) has been deeply analysed at phytochemical level, poor knowledge is available regarding non-volatile compounds such as lipids. The aim of this work was to characterise five wild Sicilian Origanum ecotypes from an agronomic, metabolomic and lipidomic perspective. Serradifalco presented higher dry weight and inflorescences/plant than the others while Favara had a significantly higher number of branches per plant and more extensive flowered stratum. Metabolomic analysis, performed with LC-MS-TOF, allowed a preliminary characterisation of the non-volatile metabolome of the five oregano ecotypes Origanum vulgare ssp. hirtum. Twenty-five metabolites were identified belonging to organic acids, amino acids, lysophosphatidylcholines, carnithines, nucleic bases and lysophosphatidylethanolamines. Lipidomic analysis identified 115 polar plant membrane glycerolipid species. Thirteen of them were differentially present in the two chosen ecotypes. The role of these metabolites in plant physiology from a qualitative and pharmacological point of view was discussed. PMID:26540480

  8. Sewage sludge hydrochars: properties and agronomic impact as related to different production conditions

    NASA Astrophysics Data System (ADS)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Conte, Pellegrino; Knicker, Heike

    2015-04-01

    The huge amount of sewage sludge (SS) generated in wastewater treatment plants all over the world represents an environmental problem. Due to the high concentration of phosphorus and nitrogen in SS as well as other macro and micro nutrients it has been considered a suitable soil amendment. However, before being applied to soil a complete sterilization and elimination of pollutants should be carried out [1]. In this context, thermal treatments appear as a convenient methodology for producing SS byproducts useful for agronomic purposes. Hydrothermal carbonization (HTC) is a kind of pyrolysis characterized by the heating of the biomass in presence of water. This process shows an advantage compared to other thermal treatments for wet residues since dryness of the biomass prior to the thermal transformation is not necessary. The solid product which results from HTC is called hydrochar and it has been suggested to increase soil productivity [2]. However, the agronomic potential of hydrochars depends on the feedstock and production conditions. Additionally, possible toxic and risks have to be carefully evaluated. Thus, SS hydrochars appear as a potential soil amendment but further scientific research is needed to find its real capacity, optimal production conditions as well as possible environmental harmful effects. The aim of this study was to evaluate which are the most suitable production conditions, to transform SS into hydrochar. An additional goal of this work was to relate the hydrochars properties to its agronomic response. Therefore, hydrochars were produced from SS collected from the Experimental Wastewater Treatment plant of CENTA (http://www.centa.es/), located in Carrion de los Cespedes (Seville), under two different temperatures (200 and 260˚C) and residence times (30 min and 1h). With the hydrochars obtained, a greenhouse pot incubation study was carried out for 80 days. The pots contained 250 g of a Calcic Cambisol (IUSS Working Group WRB, 2007) and an

  9. Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agromorphological traits have immense importance in breeding lentils for higher yield and stability. We studied the genetics and identified map positions of some important agro-morphological traits including days to 50% flowering, plant height, seed diameter, 100 seed weight, cotyledon color, and gr...

  10. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    PubMed

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan; Tröger, Josephine; Muñoz, Katherine; Frör, Oliver; Schaumann, Gabriele Ellen

    2016-04-15

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  11. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants.

    PubMed

    Zinniel, Denise K; Lambrecht, Pat; Harris, N Beth; Feng, Zhengyu; Kuczmarski, Daniel; Higley, Phyllis; Ishimaru, Carol A; Arunakumari, Alahari; Barletta, Raúl G; Vidaver, Anne K

    2002-05-01

    Endophytic bacteria reside within plant hosts without causing disease symptoms. In this study, 853 endophytic strains were isolated from aerial tissues of four agronomic crop species and 27 prairie plant species. We determined several phenotypic properties and found approximately equal numbers of gram-negative and gram-positive isolates. In a greenhouse study, 28 of 86 prairie plant endophytes were found to colonize their original hosts at 42 days postinoculation at levels of 3.5 to 7.7 log(10) CFU/g (fresh weight). More comprehensive colonization studies were conducted with 373 corn and sorghum endophytes. In growth room studies, none of the isolates displayed pathogenicity, and 69 of the strains were recovered from corn or sorghum seedlings at levels of 8.3 log(10) CFU/plant or higher. Host range greenhouse studies demonstrated that 26 of 29 endophytes were recoverable from at least one host other than corn and sorghum at levels of up to 5.8 log(10) CFU/g (fresh weight). Long-range dent corn greenhouse studies and field trials with 17 wild-type strains and 14 antibiotic-resistant mutants demonstrated bacterial persistence at significant average colonization levels ranging between 3.4 and 6.1 log(10) CFU/g (fresh weight) up to 78 days postinoculation. Three prairie and three agronomic endophytes exhibiting the most promising levels of colonization and an ability to persist were identified as Cellulomonas, Clavibacter, Curtobacterium, and Microbacterium isolates by 16S rRNA gene sequence, fatty acid, and carbon source utilization analyses. This study defines for the first time the endophytic nature of Microbacterium testaceum. These microorganisms may be useful for biocontrol and other applications. PMID:11976089

  12. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    PubMed

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983-1999 and 2000-2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming. PMID:26336098

  13. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China

    PubMed Central

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983–1999 and 2000–2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6–11.0% and 19.5–92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming. PMID:26336098

  14. Authoritarian Personality Traits Among Students

    ERIC Educational Resources Information Center

    Dunham, J.

    1973-01-01

    The results are reported of an investigation into the social attitudes of the total population (800) of one English university using Adorno's F scale to measure authoritarian personality traits. (Author)

  15. An Evaluation of Arabidopsis thaliana Hybrid Traits and Their Genetic Control.

    PubMed

    Moore, Siobhan; Lukens, Lewis

    2011-12-01

    Heterosis is an important phenomenon in agriculture. However, heterosis often greatly varies among hybrids and among traits. To investigate heterosis across a large number of traits and numerous genotypes, we evaluated 12 life history traits on parents and hybrids derived from five Arabidopsis thaliana ecotypes (Col, Ler-0, Cvi, Ws, and C24) by using a complete diallel analysis containing 20 hybrids. Parental contributions to heterosis were hybrid and trait specific with a few reciprocal differences. Most notably, C24 generated hybrids with flowering time, biomass, and reproductive traits that often exceeded high-parent values. However, reproductive traits of C24 and Col hybrids and flowering time traits of C24 and Ler hybrids had no heterosis. We investigated whether allelic variation at flowering time genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) could explain the genotype- and trait-specific contribution of C24 to hybrid traits. We evaluated both Col and Ler lines introgressed with various FRI and FLC alleles and hybrids between these lines and C24. Hybrids with functional FLC differed from hybrids with nonfunctional FLC for 21 of the 24 hybrid-trait combinations. In most crosses, heterosis was fully or partially explained by FRI and FLC. Our results describe the genetic diversity for heterosis within a sample of A. thaliana ecotypes and show that FRI and FLC are major factors that contribute to heterosis in a genotype and trait specific fashion. PMID:22384368

  16. Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions.

    PubMed

    Giorio, Giovanni; Stigliani, Adriana Lucia; D'Ambrosio, Caterina

    2007-02-01

    Genetic manipulation of carotenoid biosynthesis in higher plants has been the objective of a number of biotechnology programs, e.g. the Golden Rice Program. However, tomato (Solanum lycopersicum L.), which naturally accumulates lycopene in fruits, has attracted the attention of many groups who have manipulated it to increase or diversify carotenoid accumulation. One of the most significant achievements was "HighCaro (HC)," a transgenic tomato plant constitutively expressing the tomato lycopene beta-cyclase (tLcy-b), that produces orange fruits due to the complete conversion of lycopene to beta-carotene. In this article we report the results of a field trial conducted in Metaponto (Italy) on HC and on two control genotypes to evaluate the stability of the transgenic trait and their yield performances. Transcriptional regulation of eight genes involved in carotenogenesis was assayed by quantitative real-time PCR (qRT-PCR) analysis on fruits collected at four distinct development stages. Statistical analysis results demonstrated that in field conditions the transgene maintained its ability to induce the conversion of lycopene to beta-carotene. Moreover, agronomic performances and fruit quality in the transgenic line were not impaired by this metabolic disturbance. Results of qRT-PCR analysis suggested that transcription of PSY-1, PDS and ZDS genes were developmentally regulated in both genotypes. Unexpectedly, Lcy-b expression in transgenic fruits was also developmentally regulated, despite the fact that the gene was driven by a constitutive promoter. Our data provide evidence that in photosynthetic cells a strict and aspecific mechanism controls the level of transcripts until the onset of chromoplasts differentiation, at which point a gene-specific control on transcription takes place. PMID:17096211

  17. Personality traits and obesity: a systematic review.

    PubMed

    Gerlach, G; Herpertz, S; Loeber, S

    2015-01-01

    Based on a bio-social-ecological systems model of the development and maintenance of obesity, there has been in the last few years a growing research interest in the association of obesity and personality traits. The aim of the present review was a comprehensive and critical evaluation of the existing literature taking into account the methodological quality of studies to enhance our understanding of personality traits associated with body weight, the development of overweight and obesity as well as the effectiveness of weight loss interventions including bariatric surgery. Personality traits play an important role both as risk as well as protective factors in the development of overweight and obesity. While thus in particular 'neuroticism', 'impulsivity' and 'sensitivity to reward' appear as risk factors, 'conscientiousness' and 'self-control' have been shown to have a protective function in relation to weight gain. Conscientiousness is a measure of regulation of internal urges and self-discipline, and may thus provide a potential source of control over impulsive reward-oriented behaviour. The results of the present review suggest that, within the context of therapeutic weight reduction measures, it is meaningful to identify subgroups of patients for whom specific treatment options need to be developed, such as measures for strengthening self-control skills. PMID:25470329

  18. Mapping quantitative trait loci for five forage quality traits in a sorghum-sudangrass hybrid.

    PubMed

    Li, J Q; Wang, L H; Zhan, Q W; Liu, Y L; Zhang, Q; Li, J F; Fan, F F

    2015-01-01

    The identification of quantitative trait loci (QTLs) affecting forage quality traits enables an understanding of the genetic mechanism of these loci. The aim of the present study was to detect QTLs for the whole-plant protein content (WP), whole-plant fat content (WF), neutral detergent fiber (NDF), acid detergent fiber (ADF), and whole-plant ash content (WA) using a population of 184 F2 individuals from a cross between sorghum Tx623A and sudangrass Sa. Correlation analysis was performed between the five forage quality traits. WP was found to be positively correlated with WF, NDF, and ADF. Furthermore, NDF was positively correlated with ADF but negatively correlated with WA. A genetic map with 124 SSR markers was constructed for QTL mapping. A total of 12 QTLs associated with the five forage quality traits were detected. Of these QTLs, qNDF3, qNDF8, and qADF8 explained more than 10% of the phenotypic variation. Additionally, although all of the QTLs exhibited additive and dominant effects, they mainly exhibited dominant effects. Our results provide important information for marker-assisted selection breeding of sorghum-sudangrass hybrids. PMID:26535640

  19. Transposable elements play an important role during cotton genome evolution and fiber cell development.

    PubMed

    Wang, Kun; Huang, Gai; Zhu, Yuxian

    2016-02-01

    Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities. PMID:26687725

  20. Genetic dissection of bioenerrgy traits in sorghum

    SciTech Connect

    Vermerris, Wilfred; Kresovich, Stephen; Murray, Seth; Pedersen, Jeffery; Rooney, William; Sattler, Scott.

    2012-06-15

    these lines is in progress. Objective 2 The experiments from this objective have been completed and the data were published in the journal Crop Science by Felderhoff et al. (2012). A second publication by Felderhoff et al. is in progress (see publication list for full details). The experiments were based on a mapping population derived from the sweet sorghum 'Rio' and the dry-stalk grain sorghum BTx3197. The main findings were: 1) The apparent juiciness of the sorghum stalk, based on the appearance of a cut stem surface (moist vs. pithy), is not representative of the moisture content of the stalk. This was surprising, as pithy stalks have been associated with low moisture content. This means that in order to assess 'juiciness', a different evaluation needs to be used, for example by removing juice with a roller press or by measuring the difference in mass between a fresh and dried stalk segment. 2) A total of five QTLs associated with juice volume (corrected for height) or moisture content were identified, but not all QTLs were detected in all environments, providing evidence for genotype x environment interactions. This finding complicates breeding for juice volume using marker-assisted selection. 3) The QTL for sugar concentration identified on chromosome 3, and the subject of Objective 1, was confirmed in this mapping population, but unlike in previous studies (Murray et al., 2008), the presence of this QTL was associated with negative impacts on agronomic performance (fresh and dry biomass yield, juice yield). Consequently, introgression of the Brix QTL from Rio as part of a commercial breeding program will require monitoring of the precise impacts of this QTL on agronomic performance. 4) The absence of dominance effects for the Brix trait (= sugar concentration) indicated that Brix must be high in both parents to produce high Brix in hybrids. This means an extra constraint on the development of hybrid parents. With the results from Objective 1, the selection of

  1. Linking Tropical Forest Function to Hydraulic Traits in a Size-Structured and Trait-Based Model

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Gloor, E. U.; Fauset, S.; Fyllas, N.; Galbraith, D.; Baker, T. R.; Rowland, L.; Fisher, R.; Binks, O.; Mencuccini, M.; Malhi, Y.; Stahl, C.; Wagner, F. H.; Bonal, D.; da Costa, A. C. L.; Ferreira, L.; Meir, P.

    2014-12-01

    A major weakness of forest ecosystem models applied to Amazonia is their inability to capture the diversity of responses to changes in water availability commonly observed within and across forest communities, severely hampering efforts to predict the fate of Amazon forests under climate change. Such models often prescribe moisture sensitivity using heuristic response functions which are uniform across all individuals and lack important knowledge about trade-offs in hydraulic traits. We address this weakness by implementing a process representation of plant hydraulics into an individual- and trait-based model (Trait Forest Simulator; TFS) intended for application at discrete sites across Amazonia. The model represents a trade-off in the safety and efficiency of water conduction in xylem tissue through hydraulic traits, which then lead to variation in plant water use and growth dynamics. The model accounts for the buffering effects of leaf and stem capacitance on leaf water potential at short time scales, and cavitation-induced reductions in whole-plant conductance over longer periods of water stress. We explore multiple possible links between this hydraulic trait spectrum and other whole-plant traits, such as maximum photosynthetic capacity and wood density. The model is shown to greatly improve the diversity of tree response to seasonal changes in water availability as well as response to drought, as determined by comparison with sap flux and stem dendrometry measurements. Importantly, this individual- and trait-based framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Dynamic Global Vegetation Models, which will lead to reduced uncertainty in the future state of Amazon tropical forests.

  2. Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring

    PubMed Central

    Gao, Fengmei; Wen, Weie; Liu, Jindong; Rasheed, Awais; Yin, Guihong; Xia, Xianchun; Wu, Xiaoxia; He, Zhonghu

    2015-01-01

    Identification of genes for yield components, plant height (PH), and yield-related physiological traits and tightly linked molecular markers is of great importance in marker-assisted selection (MAS) in wheat breeding. In the present study, 246 F8 RILs derived from the cross of Zhou 8425B/Chinese Spring were genotyped using the high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay. Field trials were conducted at Zhengzhou and Zhoukou of Henan Province, during the 2012–2013 and 2013–2014 cropping season under irrigated conditions, providing data for four environments. Analysis of variance (ANOVA) of agronomic and physiological traits revealed significant differences (P < 0.01) among RILs, environments, and RILs × environments interactions. Broad-sense heritabilities of all traits including thousand kernel weight (TKW), PH, spike length (SL), kernel number per spike (KNS), spike number/m2 (SN), normalized difference in vegetation index at anthesis (NDVI-A) and at 10 days post-anthesis (NDVI-10), SPAD value of chlorophyll content at anthesis (Chl-A) and at 10 days post-anthesis (Chl-10) ranged between 0.65 and 0.94. A linkage map spanning 3609.4 cM was constructed using 5636 polymorphic SNP markers, with an average chromosome length of 171.9 cM and marker density of 0.64 cM/marker. A total of 866 SNP markers were newly mapped to the hexaploid wheat linkage map. Eighty-six QTL for yield components, PH, and yield-related physiological traits were detected on 18 chromosomes except 1D, 5D, and 6D, explaining 2.3–33.2% of the phenotypic variance. Ten stable QTL were identified across four environments, viz. QTKW.caas-6A.1, QTKW.caas-7AL, QKNS.caas-4AL, QSN.caas-1AL.1, QPH.caas-4BS.2, QPH.caas-4DS.1, QSL.caas-4AS, QSL.caas-4AL.1, QChl-A.caas-5AL, and QChl-10.caas-5BL. Meanwhile, 10 QTL-rich regions were found on chromosome 1BS, 2AL (2), 3AL, 4AL (2), 4BS, 4DS, 5BL, and 7AL exhibiting pleiotropic effects. These QTL or QTL clusters are tightly

  3. Genome-Wide Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring.

    PubMed

    Gao, Fengmei; Wen, Weie; Liu, Jindong; Rasheed, Awais; Yin, Guihong; Xia, Xianchun; Wu, Xiaoxia; He, Zhonghu

    2015-01-01

    Identification of genes for yield components, plant height (PH), and yield-related physiological traits and tightly linked molecular markers is of great importance in marker-assisted selection (MAS) in wheat breeding. In the present study, 246 F8 RILs derived from the cross of Zhou 8425B/Chinese Spring were genotyped using the high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay. Field trials were conducted at Zhengzhou and Zhoukou of Henan Province, during the 2012-2013 and 2013-2014 cropping season under irrigated conditions, providing data for four environments. Analysis of variance (ANOVA) of agronomic and physiological traits revealed significant differences (P < 0.01) among RILs, environments, and RILs × environments interactions. Broad-sense heritabilities of all traits including thousand kernel weight (TKW), PH, spike length (SL), kernel number per spike (KNS), spike number/m(2) (SN), normalized difference in vegetation index at anthesis (NDVI-A) and at 10 days post-anthesis (NDVI-10), SPAD value of chlorophyll content at anthesis (Chl-A) and at 10 days post-anthesis (Chl-10) ranged between 0.65 and 0.94. A linkage map spanning 3609.4 cM was constructed using 5636 polymorphic SNP markers, with an average chromosome length of 171.9 cM and marker density of 0.64 cM/marker. A total of 866 SNP markers were newly mapped to the hexaploid wheat linkage map. Eighty-six QTL for yield components, PH, and yield-related physiological traits were detected on 18 chromosomes except 1D, 5D, and 6D, explaining 2.3-33.2% of the phenotypic variance. Ten stable QTL were identified across four environments, viz. QTKW.caas-6A.1, QTKW.caas-7AL, QKNS.caas-4AL, QSN.caas-1AL.1, QPH.caas-4BS.2, QPH.caas-4DS.1, QSL.caas-4AS, QSL.caas-4AL.1, QChl-A.caas-5AL, and QChl-10.caas-5BL. Meanwhile, 10 QTL-rich regions were found on chromosome 1BS, 2AL (2), 3AL, 4AL (2), 4BS, 4DS, 5BL, and 7AL exhibiting pleiotropic effects. These QTL or QTL clusters are tightly linked

  4. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture

    PubMed Central

    Topp, Christopher N.; Iyer-Pascuzzi, Anjali S.; Anderson, Jill T.; Lee, Cheng-Ruei; Zurek, Paul R.; Symonova, Olga; Zheng, Ying; Bucksch, Alexander; Mileyko, Yuriy; Galkovskyi, Taras; Moore, Brad T.; Harer, John; Edelsbrunner, Herbert; Mitchell-Olds, Thomas; Weitz, Joshua S.; Benfey, Philip N.

    2013-01-01

    Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci (r2 = 24–37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops. PMID:23580618

  5. Quantitative trait loci for biofortification traits in maize grain.

    PubMed

    Simić, Domagoj; Mladenović Drinić, Snezana; Zdunić, Zvonimir; Jambrović, Antun; Ledencan, Tatjana; Brkić, Josip; Brkić, Andrija; Brkić, Ivan

    2012-01-01

    Detecting genes that influence biofortification traits in cereal grain could help increase the concentrations of bioavailable mineral elements in crops to solve the global mineral malnutrition problem. The aims of this study were to detect the quantitative trait loci (QTLs) for phosphorus (P), iron (Fe), zinc (Zn), and magnesium (Mg) concentrations in maize grain in a mapping population, as well as QTLs for bioavailable Fe, Zn, and Mg, by precalculating their respective ratios with P. Elemental analysis of grain samples was done by coupled plasma-optical emission spectrometry in 294 F(4) lines of a biparental population taken from field trials of over 3 years. The population was mapped using sets of 121 polymorphic markers. QTL analysis revealed 32 significant QTLs detected for 7 traits, of which some were colocalized. The Additive-dominant model revealed highly significant additive effects, suggesting that biofortification traits in maize are generally controlled by numerous small-effect QTLs. Three QTLs for Fe/P, Zn/P, and Mg/P were colocalized on chromosome 3, coinciding with simple sequence repeats marker bnlg1456, which resides in close proximity to previously identified phytase genes (ZM phys1 and phys2). Thus, we recommend the ratios as bioavailability traits in biofortification research. PMID:22071312

  6. Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.

    PubMed

    Fujita, Yuki; van Bodegom, Peter M; Witte, Jan-Philip M

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  7. Relationships between Nutrient-Related Plant Traits and Combinations of Soil N and P Fertility Measures

    PubMed Central

    Fujita, Yuki; van Bodegom, Peter M.; Witte, Jan-Philip M.

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility–trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility–trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  8. Searching for adaptive traits in genetic resources - phenology based approach

    NASA Astrophysics Data System (ADS)

    Bari, Abdallah

    2015-04-01

    Searching for adaptive traits in genetic resources - phenology based approach Abdallah Bari, Kenneth Street, Eddy De Pauw, Jalal Eddin Omari, and Chandra M. Biradar International Center for Agricultural Research in the Dry Areas, Rabat Institutes, Rabat, Morocco Phenology is an important plant trait not only for assessing and forecasting food production but also for searching in genebanks for adaptive traits. Among the phenological parameters we have been considering to search for such adaptive and rare traits are the onset (sowing period) and the seasonality (growing period). Currently an application is being developed as part of the focused identification of germplasm strategy (FIGS) approach to use climatic data in order to identify crop growing seasons and characterize them in terms of onset and duration. These approximations of growing period characteristics can then be used to estimate flowering and maturity dates for dryland crops, such as wheat, barley, faba bean, lentils and chickpea, and assess, among others, phenology-related traits such as days to heading [dhe] and grain filling period [gfp]. The approach followed here is based on first calculating long term average daily temperatures by fitting a curve to the monthly data over days from beginning of the year. Prior to the identification of these phenological stages the onset is extracted first from onset integer raster GIS layers developed based on a model of the growing period that considers both moisture and temperature limitations. The paper presents some examples of real applications of the approach to search for rare and adaptive traits.

  9. Complications associated with sickle cell trait: a brief narrative review.

    PubMed

    Tsaras, Geoffrey; Owusu-Ansah, Amma; Boateng, Freda Owusua; Amoateng-Adjepong, Yaw

    2009-06-01

    Sickle cell trait occurs in approximately 300 million people worldwide, with the highest prevalence of approximately 30% to 40% in sub-Saharan Africa. Long considered a benign carrier state with relative protection against severe malaria, sickle cell trait occasionally can be associated with significant morbidity and mortality. Sickle cell trait is exclusively associated with rare but often fatal renal medullary cancer. Current cumulative evidence is convincing for associations with hematuria, renal papillary necrosis, hyposthenuria, splenic infarction, exertional rhabdomyolysis, and exercise-related sudden death. Sickle cell trait is probably associated with complicated hyphema, venous thromboembolic events, fetal loss, neonatal deaths, and preeclampsia, and possibly associated with acute chest syndrome, asymptomatic bacteriuria, and anemia in pregnancy. There is insufficient evidence to suggest an independent association with retinopathy, cholelithiasis, priapism, leg ulcers, liver necrosis, avascular necrosis of the femoral head, and stroke. Despite these associations, the average life span of individuals with sickle cell trait is similar to that of the general population. Nonetheless, given the large number of people with sickle cell trait, it is important that physicians be aware of these associations. PMID:19393983

  10. Generality of leaf trait relationships: A test across six biomes

    SciTech Connect

    Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. |

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  11. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat.

    PubMed

    Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin

    2015-01-01

    Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha(-1)), and economic benefit (3,408 USD ha(-1)). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating

  12. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat

    PubMed Central

    Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin

    2015-01-01

    Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating

  13. Root traits for infertile soils

    PubMed Central

    White, Philip J.; George, Timothy S.; Dupuy, Lionel X.; Karley, Alison J.; Valentine, Tracy A.; Wiesel, Lea; Wishart, Jane

    2013-01-01

    Crop production is often restricted by the availability of essential mineral elements. For example, the availability of N, P, K, and S limits low-input agriculture, the phytoavailability of Fe, Zn, and Cu limits crop production on alkaline and calcareous soils, and P, Mo, Mg, Ca, and K deficiencies, together with proton, Al and Mn toxicities, limit crop production on acid soils. Since essential mineral elements are acquired by the root system, the development of crop genotypes with root traits increasing their acquisition should increase yields on infertile soils. This paper examines root traits likely to improve the acquisition of these elements and observes that, although the efficient acquisition of a particular element requires a specific set of root traits, suites of traits can be identified that benefit the acquisition of a group of mineral elements. Elements can be divided into three Groups based on common trait requirements. Group 1 comprises N, S, K, B, and P. Group 2 comprises Fe, Zn, Cu, Mn, and Ni. Group 3 contains mineral elements that rarely affect crop production. It is argued that breeding for a limited number of distinct root ideotypes, addressing particular combinations of mineral imbalances, should be pursued. PMID:23781228

  14. Field performance of transgenic citrus trees: Assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics

    PubMed Central

    2012-01-01

    selectable marker genes that are most commonly used in citrus transformation were substantially equivalent to the non-transformed controls with regard to their overall agronomic performance, as based on the use of robust and powerful assessment techniques. Therefore, future studies of the possible pleiotropic effects induced by the integration and expression of transgenes in field-grown GM citrus may focus on the newly inserted trait(s) of biotechnological interest. PMID:22794278

  15. Bio-effectors from waste materials as growth promoters, an agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Alwanney, Deaa; Chami, Ziad Al; Angelica De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2014-05-01

    Nowadays, improving plant performance by providing growth promoters is a main concern of the organic agriculture. As a consequence of increased food demands, more efficient and alternatives of the current plant nutrition strategies are becoming urgent. Recently, a novel concept "bio-effectors" raised on to describe a group of products that are able to improve plant performance and do not belong to fertilizers or pesticides. Agro-Food processing residues are promising materials as bio-effector. Three plant-derived materials: brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as bio-effector candidates. Plant-derived materials were characterized in term of total macro and micronutrients content. Green extraction methodology and solvent choice (aqueous; ethanol; and aqueous: ethanol mixture 1:1) was based on the extraction yield as main factor. Optimum extracts, to be used on the tomato test plant, were determined using phytotoxicity test (seed germination test) as main constraint. Thereafter, selected extracts were characterized and secondary metabolites profiling were detected by NMR technique. Selected extracts were applied on tomato in a growth chamber at different doses in comparison to humic-like substances as positive control (Ctrl+) and to a Hoagland solution as negative control (Ctrl-). At the end of the experiment, agronomical parameters were determined and NMR-metabolomic profiling were conducted on tomato seedlings. Results are summarized as follow: (i) raw showed an interesting content, either at nutritional or biological level; (ii) aqueous extraction resulted higher yield than other used solvent; (iii) at high extraction ratio (1:25 for BSG; 1:100 for FPR; and 1:200 for LPR) aqueous extracts were not phytotoxic on the tomato test plant; (iv) all aqueous extract are differently rich in nutrients, aminoacids, sugars and low molecular weight molecules; (v) all extract exhibited a growth promotion at

  16. Neutral and selection-driven decay of sexual traits in asexual stick insects

    PubMed Central

    Schwander, Tanja; Crespi, Bernard J.; Gries, Regine; Gries, Gerhard

    2013-01-01

    Environmental shifts and lifestyle changes may result in formerly adaptive traits becoming non-functional or maladaptive. The subsequent decay of such traits highlights the importance of natural selection for adaptations, yet its causes have rarely been investigated. To study the fate of formerly adaptive traits after lifestyle changes, we evaluated sexual traits in five independently derived asexual lineages, including traits that are specific to males and therefore not exposed to selection. At least four of the asexual lineages retained the capacity to produce males that display normal courtship behaviours and are able to fertilize eggs of females from related sexual species. The maintenance of male traits may stem from pleiotropy, or from these traits only regressing via drift, which may require millions of years to generate phenotypic effects. By contrast, we found parallel decay of sexual traits in females. Asexual females produced altered airborne and contact signals, had modified sperm storage organs, and lost the ability to fertilize their eggs, impeding reversals to sexual reproduction. Female sexual traits were decayed even in recently derived asexuals, suggesting that trait changes following the evolution of asexuality, when they occur, proceed rapidly and are driven by selective processes rather than drift. PMID:23782880

  17. Personal traits, cohabitation, and marriage.

    PubMed

    French, Michael T; Popovici, Ioana; Robins, Philip K; Homer, Jenny F

    2014-05-01

    This study examines how personal traits affect the likelihood of entering into a cohabitating or marital relationship using a competing risk survival model with cohabitation and marriage as competing outcomes. The data are from Waves 1, 3, and 4 of the National Longitudinal Study of Adolescent Health, a rich dataset with a large sample of young adults (N=9835). A personal traits index is constructed from interviewer-assessed scores on the respondents' physical attractiveness, personality, and grooming. Having a higher score on the personal traits index is associated with a greater hazard of entering into a marital relationship for men and women, but the score does not have a significant influence on entering into a cohabitating relationship. Numerous sensitivity tests support the core findings. PMID:24576635

  18. Development of methods based on double Hough transform or Gabor filtering to discriminate between crop and weed in agronomic images

    NASA Astrophysics Data System (ADS)

    Bossu, Jérémie; Gée, Christelle; Guillemin, Jean-Philippe; Truchetet, Frédéric

    2006-02-01

    This paper presents two spatial methods to discriminate between crop and weeds. The application is related to agronomic image with perspective crop rows. The first method uses a double Hough Transform permitting a detection of crop rows and a classification between crop and weeds. The second method is based on Gabor filtering, a band pass filter. The parameters of this filter are detected from a Fast Fourier Transform of the image. For each method, a weed infestation rate is obtained. The two methods are compared and a discussion concludes about the abilities of these methods to detect the crop rows in agronomic images. Finally, we discuss this method regarding the capability of the spatial approach for classifying weeds from crop.

  19. Interrelationships among life-history traits in three California oaks.

    PubMed

    Barringer, Brian C; Koenig, Walter D; Knops, Johannes M H

    2013-01-01

    Life-history traits interact in important ways. Relatively few studies, however, have explored the relationships between life-history traits in long-lived taxa such as trees. We examined patterns of energy allocation to components of reproduction and growth in three species of California oaks (Quercus spp.) using a combination of annual acorn censuses, dendrometer bands to measure radial increment, and litterfall traps. Our results are generally consistent with the hypothesis that energy invested in reproduction detracts from the amount of energy available for growth in these long-lived taxa; i.e., there are trade-offs between these traits. The relationships between reproduction and growth varied substantially among specific trait combinations and tree species, however, and in some cases were in the direction opposite that expected based on the assumption of trade-offs between them. This latter finding appears to be a consequence of the pattern of resource use across years in these long-lived trees contrasting with the expected partitioning of resource use within years in short-lived taxa. Thus, the existence and magnitude of putative trade-offs varied depending on whether the time scale considered was within or across years. Collectively, our results indicate that negative relationships between fundamental life-history traits can be important at multiple levels of modular organization and that energy invested in reproduction can have measurable consequences in terms of the amount of energy available for future reproduction and both current and future growth. PMID:22707038

  20. Differential accuracy in person perception across traits: examination of a functional hypothesis.

    PubMed

    Gangestad, S W; Simpson, J A; DiGeronimo, K; Biek, M

    1992-04-01

    Although strangers can assess certain traits of unacquainted others with moderate validity, overall validity is low. Differential validity across traits may be due to (a) the extent to which targets display valid cues or (b) the extent to which perceivers validly use cues. A functionalist perspective suggests that valid cue utilization should vary with how important the consequences of accurate trait assessment are. It was predicted from this perspective that perceivers would judge strangers' sociosexuality more accurately than 3 other traits--social potency, social closeness, and stress reaction. Perceivers viewed 1-min videotaped segments of targets being interviewed and rated them on the 4 traits. Ratings were correlated with target-reported trait measures. As predicted, perceivers' ratings of male sociosexuality agreed relatively well with self-reports. This effect was moderated by sex of target and sex of perceiver. PMID:1583592

  1. Software for quantitative trait analysis

    PubMed Central

    2005-01-01

    This paper provides a brief overview of software currently available for the genetic analysis of quantitative traits in humans. Programs that implement variance components, Markov Chain Monte Carlo (MCMC), Haseman-Elston (H-E) and penetrance model-based linkage analyses are discussed, as are programs for measured genotype association analyses and quantitative trait transmission disequilibrium tests. The software compared includes LINKAGE, FASTLINK, PAP, SOLAR, SEGPATH, ACT, Mx, MERLIN, GENEHUNTER, Loki, Mendel, SAGE, QTDT and FBAT. Where possible, the paper provides URLs for acquiring these programs through the internet, details of the platforms for which the software is available and the types of analyses performed. PMID:16197737

  2. Genetics of reproductive traits: Antagonisms with production traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal breeding and reproductive physiology have been closely related throughout the history of animal production science, because artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. The addition of genetic techn...

  3. TraitBank: An Open Digital Repository for Organism Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TraitBank currently serves over 11 million measurements and facts for more than 1.7 million taxa. These data are mobilized from major biodiversity information systems (e.g., International Union for Conservation of Nature, Ocean Biogeographic Information System, Paleobiology Database), literature sup...

  4. Variation analysis for fiber quality traits among different positions in eight Upland cotton cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equivalency of fiber quality within a plant of upland cotton, Gossypium hirsutum L., is very important. There are several traits within a plant that can be used to measure fiber quality and five of those traits will be investigated. Eight representative upland cultivars were grown at the Plant Scien...

  5. Fine phenotyping of pod and seed traits in Arachis germplasm accessions using digital image analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reliable and objective phenotyping of peanut pod and seed traits is important for cultivar selection and genetic mapping of yield components. To develop useful and efficient methods to quantitatively define peanut pod and seed traits, a group of peanut germplasm with high levels of phenotypic varia...

  6. An evaluation of U.S. strawberry producers trait prioritization—evidence from audience clicker surveys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies evaluating the relative importance of strawberry traits to U.S. strawberry producers are limited. The strawberry traits included in this study were fruit skin color, fruit size, fruit flavor, fruit firmness, shelf life at retail, open plant canopy, productivity, extended harvest season, roo...

  7. Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. In wine grapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are thus important traits in selecting new hybrid wine grape cultivars. Given the high ...

  8. RNA-Seq identifies SNP markers for growth traits in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improveme...

  9. Differences in Offending Patterns between Adolescent Sex Offenders High or Low in Callous--Unemotional Traits

    ERIC Educational Resources Information Center

    Lawing, Kathryn; Frick, Paul J.; Cruise, Keith R.

    2010-01-01

    In the present study, the authors investigated whether callous and unemotional (CU) traits designated a distinct and important group of adolescent sex offender. A sample of 150 detained adolescents (mean age = 15.89, SD = 1.53) with a current sexual offense disposition was assessed with a self-report measure of CU traits and through extensive…

  10. How well do plant hydraulic traits predict species’ distributions across the world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate–trait associations are becoming ever-more important as plant breeding and gene modification efforts enable the targeting of specific traits and specific genes. It is well-understood that climate represents a constraint to the evolution of plant species. Although this statement is intuitive...

  11. The complex tale of the high oleic acid trait in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid composition of oil extracted from peanut (Arachis hypogaea L.) seed is an important quality trait. In particular, a high ratio of oleic (C18:1) relative to linoleic (C18:2) fatty acid (O/L = 10) results in a longer shelf life. Previous reports suggest that the high oleic (~80%) trait wa...

  12. Identity Processes and Personality Traits and Types in Adolescence: Directionality of Effects and Developmental Trajectories

    ERIC Educational Resources Information Center

    Luyckx, Koen; Teppers, Eveline; Klimstra, Theo A.; Rassart, Jessica

    2014-01-01

    Personality traits are hypothesized to be among the most important factors contributing to individual differences in identity development. However, longitudinal studies linking Big Five personality traits to contemporary identity models (in which multiple exploration and commitment processes are distinguished) are largely lacking. To gain more…

  13. pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications.

    PubMed

    Silber, A; Levkovitch, I; Graber, E R

    2010-12-15

    Surface charge and pH-dependent nutrient release properties of cornstraw biochar were examined to elucidate its potential agronomic benefits. Kinetics of element release was characterized by rapid H(+) consumption and rapid, pH-dependent P, Ca, and Mg release, followed by zero-order H(+) consumption and mineral dissolution reactions. Initial K release was not pH-dependent, nor was it followed by a zero-order reaction at any pH. Rapid and constant rate P releases were significant, having the potential to substitute substantial proportions of P fertilizer. K releases were also significant and may replace conventional K fertilizers, however, not long-term plant demand. The cation exchange capacity (CEC) of the biochar leached with a mild acidic solution increased linearly from 179 to 888 mmol(c) (kg C)(-1) over a pH range of 4-8, while the anion exchange capacity of 154 mmol(c) (kg C)(-1) was constant over the same pH range. Since native soil organic constituents have much higher CEC values (average 2800 mmol(c) (kg C)(-1) at pH 7), improved soil fertility as a result of enhanced cation retention by the biochar probably will be favorable only in sandy and low organic matter soils, unless surface oxidation during aging significantly increases its CEC. PMID:21090742

  14. Agronomical and chemical characterisation of Thymbra capitata (L.) Cav. biotypes from Sicily, Italy.

    PubMed

    Tuttolomondo, Teresa; Dugo, Giacomo; Leto, Claudio; Cicero, Nicola; Tropea, Alessia; Virga, Giuseppe; Leone, Raffaele; Licata, Mario; La Bella, Salvatore

    2015-01-01

    In this study, the agronomical and chemical characterisation of 13 Sicilian biotypes of Thymbra capitata (L.) Cav., grown under the same agricultural and environmental condition, are reported. The main morpho-productive parameters and quali-quantitative profile of essential oils (EOs) were determined. The EOs were analysed by gas chromatography-flame ionisation detector and gas chromatography-mass spectrometry. Hierarchical cluster analysis and principal component analysis statistical methods were used to group biotypes according to the EOs chemical composition. The EO yield ranged between 4.6 and 8.1 (v/w). A total of 38 EO compounds have been identified. The compounds mostly represented were α-pinene, myrcene, α-terpinene, p-cymene, γ-terpinene, borneol, carvacrol and β-caryophyllene. In all biotypes, the carvacrol (67.4-79.5%) was the main compound, confirming that T. capitata is a carvacrol chemotype. The results showed that all Sicilian Thymbra biotypes have a good adaptation to the climatic conditions of the test environment. PMID:25600887

  15. Evaluation of potential herbaceous biomass crops on marginal crop lands: 1, Agronomic potential

    SciTech Connect

    Cherney, J.H.; Johnson, K.D.; Volenec, J.J.; Kladivko, E.J.; Greene, D.K. . Dept. of Agronomy)

    1990-07-01

    Management of herbaceous biomass crops must be investigated concurrently with the development of cost-effective conversion processes. Our objective was to evaluate the agronomic feasibility of several combinations of species and management systems for producing herbaceous biomass on sites ranging from good to marginal cropland. Soil organic matter and aggregate stability were not adversely affected by any of the management options. Of the perennial grasses and legumes investigated, switchgrass showed the most potential as a biomass candidate. It has minimum fertilizer inputs, is very persistent, and is effective in reducing soil erosion. Sorghum double-cropped with winter annual rye was very productive, but required more inputs than switchgrass. Interseeding sorghum into perennial grasses was not a viable option, due to its great dependence on environmental variables. Photoperiod-sensitive and hybrid sorghums able to utilize an entire growing season were very productive, with yields up to 39 Mg ha{sup {minus}1}. Two harvest per season resulted in low yields, such that lodging resistance must be incorporated into desirable genotypes through breeding, instead of using multiple harvests to prevent lodging. Plant composition was greatly affected by species, with a wide range in composition across sorghum genotypes. Of all species evaluated, switchgrass and sorghum have the greatest biomass potential, and both of these species can be improved to produce higher yields of a more desirable chemical composition through plant breeding. 13 refs., 11 figs., 8 tabs.

  16. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice

    PubMed Central

    Rahman, Motior M.; Islam, Aminul M.; Azirun, Sofian M.; Boyce, Amru N.

    2014-01-01

    Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility. PMID:24971378

  17. Reduction of the movement and persistence of pesticides in soil through common agronomic practices.

    PubMed

    Fenoll, José; Ruiz, Encarnación; Flores, Pilar; Hellín, Pilar; Navarro, Simón

    2011-11-01

    Laboratory and field studies were conducted in order to determine the leaching potential of eight pesticides commonly used during pepper cultivation by use of disturbed soil columns and field lysimeters, respectively. Two soils with different organic matter content (soils A and B) were used. Additionally, soil B was amended with compost (sheep manure). The tested compounds were cypermethrin, chlorpyrifos-methyl, bifenthrin, chlorpyrifos, cyfluthrin, endosulfan, malathion and tolclofos-methyl. In soil B (lower organic matter content), only endosulfan sulphate, malathion and tolclofos-methyl were found in leachates. For the soil A (higher organic matter content) and amended soil B, pesticide residues were not found in the leachates. In addition, this paper reports on the use of common agronomic practices (solarization and biosolarization) to enhance degradation of these pesticides from polluted soil A. The results showed that both solarization and biosolarization enhanced the degradation rates of endosulfan, bifenthrin and tolclofos-methyl compared with the control. Most of the studied pesticides showed similar behavior under solarization and biosolarization conditions. However, chlorpyrifos was degraded to a greater extent in the solarization than in biosolarization treatment. The results obtained point to the interest in the use of organic amendment in reducing the pollution of groundwater by pesticide drainage and in the use of solarization and biosolarization in reducing the persistence of pesticides in soil. PMID:21872905

  18. Ferti-irrigational effect of paper mill effluent on agronomical characteristics of Abelmoschus esculentus L. (Okra).

    PubMed

    Kumar, Vinod; Chopra, A K

    2013-11-15

    The ferti-irrigational effect of an agro-based paper mill effluent on Abelmoschus esculentus (var. IHR-31) was investigated. Different doses of paper mill effluent viz. 5, 10, 25, 50, 75 and 100% were used for fertigation ofA. esculentus along with bore well water (control). The study revealed that paper mill effluent had significant (p < 0.05) effect on EC, pH, OC, Na+, K+, Ca2+, Mg2+, Fe2+, TKN, PO4(3-), SO4(2-), Cd, Cr, Cu, Mn and Zn of the soil in both seasons. Insignificant (p > 0.05) changes in WHC and bulk density of the soil were observed after irrigation with paper mill effluent. The agronomical performance of A. esculentus was increased from 5 to 25% and decreased from 50 to 100% concentration of paper mill effluent as compared to control in both seasons. The heavy metals concentration was increased in A. esculentus from 5 to 100% concentrations of paper mill effluent in both seasons. Biochemical components like crude proteins, crude fiber and crude carbohydrates were found maximum with 25% paper mill effluent in both seasons. The order of Contamination Factor (Cf) of various heavy metals was Cr > Cd > Mn > Zn > Cu for soil and Zn > Mn > Cu > Cr > Cd for A. esculentus plants after fertigation with paper mill effluent. Therefore, paper mill effluent can be used as a biofertigant after appropriate dilution to improve yield of A. esculentus. PMID:24511684

  19. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    PubMed

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P < 0.05) in the incubated soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was < 10.0 mg kg(-1) following by-product application, as compared to 24 mg kg(-1) for plants growing in unamended soil. PMID:23947715

  20. Cereal grass pulvini: agronomically significant models for studying gravitropism signaling and tissue polarity.

    PubMed

    Clore, Amy M

    2013-01-01

    Cereal grass pulvini have emerged as model systems that are not only valuable for the study of gravitropism, but are also of agricultural and economic significance. The pulvini are regions of tissue that are apical to each node and collectively return a reoriented stem to a more vertical position. They have proven to be useful for the study of gravisensing and response and are also providing clues about the establishment of polarity across tissues. This review will first highlight the agronomic significance of these stem regions and their benefits for use as model systems and provide a brief historical overview. A detailed discussion of the literature focusing on cell signaling and early changes in gene expression will follow, culminating in a temporal framework outlining events in the signaling and early growth phases of gravitropism in this tissue. Changes in cell wall composition and gene expression that occur well into the growth phase will be touched upon briefly. Finally, some ongoing research involving both maize and wheat pulvini will be introduced along with prospects for future investigations. PMID:23125431