Science.gov

Sample records for agronomy crop science

  1. AGRONOMY AND PHYSIOLOGY OF TROPICAL COVER CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are important components of a sustainable crop production system. They can be planted with plantation crops such as cacao, coffee, banana, rubber and oil palm or in rotation with cash crops. Their use in a cropping system is mainly beneficial for soil and water conservation, recycling of...

  2. NOTES. A Course Relating Agronomy and Science to Society.

    ERIC Educational Resources Information Center

    McIntosh, Marla S.

    1993-01-01

    Describes a course designed to teach the relationship between science, agronomy, and society. Includes course and class description, course content, and evaluation of the course. (11 references) (MCO)

  3. Growing the science of agronomy by growing the profession: a Message from the President of the American Society of Agronomy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We often refer to the American Society of Agronomy (ASA) as being both a scientific and professional society. Membership within the organization includes a wide range of people from diverse regions and cultures of the world working with complex and diverse cropping systems. Yet members are unified...

  4. Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book “Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America” summarizes published research in soil science and agronomy from various field experiments conducted in the soil-climatic/agro-ecological regions of the Northern Great Plains of North America....

  5. Survey of Mathematics and Science Requirements for Production-Oriented Agronomy Majors.

    ERIC Educational Resources Information Center

    Aide, Michael; Terry, Danny

    1996-01-01

    Analyzes course requirements to determine the amount of required mathematics and science for production-oriented agronomy majors. Reports that mathematics requirements center around college algebra and statistics; science requirements generally include chemistry, biology, plant physiology, and genetics; and land-grant institutions have a…

  6. Introduction to Agronomy, Grain Crops, Weeds and Controls. A Learning Activity Pac in Agricultural Education Courses in Wisconsin.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Instructional Services.

    This learning activity pac contains information to help the teachers of high school vocational agriculture in the instructional area of agronomy. Each of the two main sections, grain crops and weeds and controls, includes teacher and student units for the section lessons. Teacher units include special instructions--equipment needed (film…

  7. Scale and scaling in agronomy and environmental sciences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scale is of paramount importance in environmental studies, engineering, and design. The unique course covers the following topics: scale and scaling, methods and theories, scaling in soils and other porous media, scaling in plants and crops; scaling in landscapes and watersheds, and scaling in agro...

  8. Agronomy Journal Turns One Hundred

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2008 we celebrate the centennial anniversary of Agronomy Journal. Many people have certainly been influenced in some way by the vast amount of science published during the 100-year existence of the journal. Within the 100 volumes of Agronomy Journal there are more than 29,087 authors who publ...

  9. Field research on the spectral properties of crops and soils, volume 1. [Purdue Agronomy Farm

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Biehl, L. L.; Robinson, B. F.

    1980-01-01

    The experiment design, data acquisition and preprocessing, data base management, analysis results and development of instrumentation for the AgRISTARS Supporting Research Project, Field Research task are described. Results of several investigations on the spectral reflectance of corn and soybean canopies as influenced by cultural practices, development stage and nitrogen nutrition are reported as well as results of analyses of the spectral properties of crop canopies as a function of canopy geometry, row orientation, sensor view angle and solar illumination angle are presented. The objectives, experiment designs and data acquired in 1980 for field research experiments are described. The development and performance characteristics of a prototype multiband radiometer, data logger, and aerial tower for field research are discussed.

  10. [Using ecology thinking reconstructing traditional agronomy: role of production ecology].

    PubMed

    Wang, Song-Liang

    2012-08-01

    Traditional agronomy, as a discipline or specialty, is originated from the reductionism thinking of neoteric experimental sciences and motivated by the great success of industrialized revolution, but loses the ensemble grasp of the relationships between agricultural organisms and their resources and environment, i.e., agroecosystem mechanism. Moreover, due to the excessively relying on exogenous fossil energy input and the monoculture with a few highly productive crop cultivars, the agricultural interior sustainability has unceasingly lost, making our mankind facing the double crises of grain security and food safety. Therefore, it is imperative to reconstruct the traditional agronomy and its educational system. In this paper, the author proposed to link traditional agronomy with ecology, establishing agroecology as the core subject and agroecosystem management as the core applied system, and in particular, establishing 'production ecology' to fill up the wide gap between the crop cultivation and farming system and the crop genetics and breeding, the two second grade disciplines under agronomy. Ideologically and methodologically, this proposal could provide disciplinary, scientific, and educational bases to authentically implement the strategy of sustainable development of agriculture. PMID:23189675

  11. Grand challenges for crop science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  12. Agronomy Students at Southern Land-Grant Universities.

    ERIC Educational Resources Information Center

    Dunkelberger, John E.; Molnar, Joseph J.

    The background characteristics, occupational goals, and attitudes of agriculture students enrolled in 1890 and 1862 land grant universities in 1977 were examined by questionnaire, to construct a profile of agronomy majors as compared to animal science majors and to agriculture majors as a whole. Females comprised 38.2% of animal science majors but…

  13. Agriculture & Agronomy: A Dissertation Bibliography.

    ERIC Educational Resources Information Center

    1978

    This bibliography presents a compilation of Agriculture and Agronomy doctoral research for the years 1973-1976. Each of the 3,386 doctoral dissertations cited herein has been accepted by accredited degree-granting universities in North America and published by University Microfilms International (UMI). Dissertations are arranged alphabetically in…

  14. Sweetclover Production and Agronomy

    PubMed Central

    Goplen, B. P.

    1980-01-01

    Sweetclover has a notorious reputation for causing “sweetclover disease” when improperly cured. In spite of this, however, sweetclover remains a useful forage legume with valuable agronomic traits. It is drought-resistant and well adapted to Western Canada. Sweetclover is the highest yielding legume forage in this region and is valuable in soil improvement, silage, hay and pasture production and a prized crop for the honey producer. It is the most saline-tolerant of the legumes and is particularly useful on saline “white alkali” soils where cereals and other crops cannot grow. Special precautions are necessary to avoid spoilage and concomitant dicoumarol formation in preserving sweetclover hay and silage. Feeding recommendations are suggested for the safe utilization of spoiled forage. Low coumarin cultivars of sweetclover are completely safe and will not result in sweetclover disease despite spoilage. The breeding program at Saskatoon is expected to produce a new low coumarin (yellow flowered) sweetclover cultivar within the next two years. PMID:7427838

  15. Crop Registration: The Pathway to Public Access of Plant Genetic Materials to Build Crops for the Future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starting as Crop Science Registrations in the American Journal of the Society of Agronomy in 1926, and continuing 80+ years later in the Journal of Plant Registrations, 11,241 plant cultivars, germplasm, parental lines, genetic stocks and mapping populations have been registered as of December 31, 2...

  16. Comparison between teacher grading and student self-grading in different modules of agronomy

    NASA Astrophysics Data System (ADS)

    Méndez, A.; Paz-Ferreiro, J.; Guerrero, F.; Gascó, J. M.; Saá, A.; Tarquis, A. M.; Gascó, G.

    2012-04-01

    The adaptation of the Universities to European Higher Education Area (EHEA) involves changes in the learning system. Students must obtain specific capabilities in the different degrees or masters. For example, in the degree of Agronomy at the Universidad Politécnica de Madrid (Spain), they must command mathematics, English informatics or crop production. Moreover, students must attain personal skills such as leadership, team work, a critical spirit and a social, environmental and ethical commitment with the environment and the society. A way to evaluate the critical spirit of the students is to compare the grade obtained in a specific module with the grade that the students think he should get. The aim of this work is to evaluate the differences between teacher and student grading in different subjects related to soil science in different degrees and masters courses at the Universidad Politécnica de Madrid.

  17. Ten Years of Plant Pathology Research at the Cook Agronomy Farm: What Have We Learned?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cook Agronomy Farm has provided important information for understanding root diseases under directseeded conditions in the higher rainfall annual cropping zones of the Palouse, at a landscape scale. This farm has served as an important outdoor laboratory to test disease management techniques suc...

  18. Crop scientists break down barriers at Ames meeting

    SciTech Connect

    Moffat, A.S.

    1992-09-04

    For years, crop science has been balkanized, with specialists in rice, corn, and soy beans, for example, working on their commodities and attending their own meetings. But at the First International Crop Science Congress, held in July in Ames, Iowa-an 8-day event 3 years in the making-the discipline displayed a new found hybrid vigor. More than 1000 researchers of various persuasions, including plant molecular biology, classical plant breeding, agronomy, and soil science, representing 85 countries, shared their expertise in basic and applied studies. Here are a couple of proposals for expanding world food production and another that shows the diverse roles crops can play.

  19. Incorporating Primary Literature in Undergraduate Crop Science Courses

    ERIC Educational Resources Information Center

    Scott, Lori K.; Simmons, Steve R.

    2006-01-01

    Primary literature is an underutilized learning resource for undergraduate courses in crop science. Reading assignments from scientific journals were utilized in an undergraduate University of Minnesota crop physiology course at Southwest Minnesota State University from 2002 to 2004. The subjects of the articles corresponded to the lecture topics.…

  20. An "Environmental Issues in Agronomy" Course.

    ERIC Educational Resources Information Center

    Barbarick, K. A.

    1992-01-01

    Describes and evaluates the format and grading procedure of an Environmental Agronomy course offered at Colorado State University. Teaching methods include videotape use, field trips, and lectures addressing topics such as integrated pest management, land application of sewage sludge, pesticide degradation, and organic farming. Standard course…

  1. Soil, Plant, and Crop Science. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This package contains an instructor's manual, an instructor's resource package, and a student workbook for a course in agricultural production and management as it relates to crop production. The module contains 17 units of instruction, each of which contains some or all of the following components: objective sheet, instructor's guide, information…

  2. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    ERIC Educational Resources Information Center

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  3. The scientific grand challenges of the 21st century for the Crop Science Society of America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop science is a highly integrative science field employing expertise from multiple disciplines to broaden our understanding of agronomic, turf, and forage crops. A major goal of crop science is to ensure an adequate and sustainable production of food, feed, fuel, and fiber for our world’s growing ...

  4. Marketing and Branding the Agronomy Major at Iowa State University

    ERIC Educational Resources Information Center

    Miller, Bradley A.

    2011-01-01

    The decline of enrollments in agronomy programs across the United States has been a concern for more than a decade. In an effort to reverse this trend, the Agronomy Department at Iowa State University (ISU) launched the "I'm An Agronomist" marketing campaign in 2006. This article reports on these efforts and the change in the undergraduate…

  5. Crop Science. Instructor Guide [and] Student Reference. Volume 24, Numbers 5 and 6.

    ERIC Educational Resources Information Center

    Humphrey, John Kevin

    This document consists of two separately published guides for a course on crop science: an instructor's guide and a student's reference manual. Each part contains nine lessons on the following topics: (1) economic importance of crops; (2) crop uses (products and byproducts); (3) plant and seed identification; (4) certified seed and variety…

  6. Developing a Foundation for Constructing New Curricula in Soil, Crop, and Turfgrass Sciences

    ERIC Educational Resources Information Center

    Jarvis, Holly D.; Collett, Ryan; Wingenbach, Gary; Heilman, James L.; Fowler, Debra

    2012-01-01

    Some soil and crop science university programs undergo curricula revision to maintain relevancy with their profession and/or to attract the best students to such programs. The Department of Soil and Crop Sciences at Texas A&M University completed a thorough data gathering process as part of its revision of the undergraduate curriculum and degree…

  7. Legume crops phylogeny and genetic diversity for science and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal ...

  8. Field Crop Nutrition--Applied Science Concepts. Student Manual.

    ERIC Educational Resources Information Center

    Miller, Charles R.

    This manual is designed to help agricultural education students to determine and provide the proper kinds and amounts of nutrients for the field crops they produce. The manual provides many learning situations regarding field crops--for example, determining nutrient needs, diagnosing nutrient shortages, and selecting and applying fertilizer and…

  9. Use of a Laboratory Field Project in an Introductory Crop Science Course.

    ERIC Educational Resources Information Center

    Lane, Robert A.

    1986-01-01

    Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…

  10. Response to the Letter to the Editor of Crop Science from Donald R. Davis regarding our research article published in Crop Science (2011: 51:2721-2727)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This letter serves as a response to the Letter to the Editor submitted by Donald R. Davis regarding our research article entitled “Mineral Concentration of Broccoli Florets in Relation to Year of Cultivar Release” published in Crop Science (2011, 51:2721-2727). In our manuscript, we clearly stated ...

  11. NASA Earth Science Research Results for Improved Regional Crop Yield Prediction

    NASA Astrophysics Data System (ADS)

    Mali, P.; O'Hara, C. G.; Shrestha, B.; Sinclair, T. R.; G de Goncalves, L. G.; Salado Navarro, L. R.

    2007-12-01

    National agencies such as USDA Foreign Agricultural Service (FAS), Production Estimation and Crop Assessment Division (PECAD) work specifically to analyze and generate timely crop yield estimates that help define national as well as global food policies. The USDA/FAS/PECAD utilizes a Decision Support System (DSS) called CADRE (Crop Condition and Data Retrieval Evaluation) mainly through an automated database management system that integrates various meteorological datasets, crop and soil models, and remote sensing data; providing significant contribution to the national and international crop production estimates. The "Sinclair" soybean growth model has been used inside CADRE DSS as one of the crop models. This project uses Sinclair model (a semi-mechanistic crop growth model) for its potential to be effectively used in a geo-processing environment with remote-sensing-based inputs. The main objective of this proposed work is to verify, validate and benchmark current and future NASA earth science research results for the benefit in the operational decision making process of the PECAD/CADRE DSS. For this purpose, the NASA South American Land Data Assimilation System (SALDAS) meteorological dataset is tested for its applicability as a surrogate meteorological input in the Sinclair model meteorological input requirements. Similarly, NASA sensor MODIS products is tested for its applicability in the improvement of the crop yield prediction through improving precision of planting date estimation, plant vigor and growth monitoring. The project also analyzes simulated Visible/Infrared Imager/Radiometer Suite (VIIRS, a future NASA sensor) vegetation product for its applicability in crop growth prediction to accelerate the process of transition of VIIRS research results for the operational use of USDA/FAS/PECAD DSS. The research results will help in providing improved decision making capacity to the USDA/FAS/PECAD DSS through improved vegetation growth monitoring from high

  12. The Cook Agronomy Farm LTAR: Knowledge Intensive Precision Agro-ecology

    NASA Astrophysics Data System (ADS)

    Huggins, D. R.

    2015-12-01

    Drowning in data and starving for knowledge, agricultural decision makers require evidence-based information to enlighten sustainable intensification. The agro-ecological footprint of the Cook Agronomy Farm (CAF) Long-Term Agro-ecosystem Research (LTAR) site is embedded within 9.4 million ha of diverse land uses primarily cropland (2.9 million ha) and rangeland (5.3 million ha) that span a wide annual precipitation gradient (150 mm through 1400 mm) with diverse social and natural capital (see Figure). Sustainable intensification hinges on the development and adoption of precision agro-ecological practices that rely on meaningful spatio-temporal data relevant to land use decisions at within-field to regional scales. Specifically, the CAF LTAR will provide the scientific foundation (socio-economical and bio-physical) for enhancing decision support for precision and conservation agriculture and synergistic cropping system intensification and diversification. Long- and short-term perspectives that recognize and assess trade-offs in ecosystem services inherent in any land use decision will be considered so as to promote the development of more sustainable agricultural systems. Presented will be current and future CAF LTAR research efforts required for the development of sustainable agricultural systems including cropping system cycles and flows of nutrients, water, carbon, greenhouse gases and other biotic and abiotic factors. Evaluation criteria and metrics associated with long-term agro-ecosystem provisioning, supporting, and regulating services will be emphasized.

  13. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    ERIC Educational Resources Information Center

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  14. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  15. What Is Soil? Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the first of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil management. Upon completing the two day lesson, the student will be able to define "soil", list the soil forming agencies, define and use soil terminology, and discuss soil formation and what makes…

  16. Physical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the second of six modules in advanced crop and soil science and introduces the agriculture student to the subject of physical features of the soil. Upon completing the two day lesson, the student will be able to determine the texture and structural types of soil, list the structural classes of the soil and where they…

  17. Biological Features of the Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the third of six modules in advanced crop and soil science and introduces the agriculture student to biological features of soil. Upon completing the two day lesson, the student will: (1) realize the vast amount of life present in the soil, (2) be able to list representative animal and plant life in the soil by size,…

  18. Effect of Using Separate Laboratory and Lecture Courses for Introductory Crop Science on Student Performance.

    ERIC Educational Resources Information Center

    Wiebold, W. J.; Slaughter, Leon

    1986-01-01

    Reviews a study that examined the effects of laboratories on the grade performance of undergraduates in an introductory crop science course. Results indicated that students enrolled in lecture and laboratory concurrently did not receive higher lecture grades than students enrolled solely in lecture, but did have higher laboratory grades. (ML)

  19. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  20. The policy chicken and the science egg. Has applied ecology failed the transgenic crops debate?

    PubMed

    Gray, A J

    2014-12-01

    Ecology has a long history of research relevant to and impacting on real-world issues. Nonetheless problems of communication remain between policy-makers and scientists because they tend to work at different levels of generality (policy deals with broad issues, science prefers specific questions), and complexity (policy-makers want simple answers, ecologists tend to offer multi-factorial solutions) and to different timescales (policy-makers want answers tomorrow, ecologists always seem to want more time). These differences are not unique to the debate about the cultivation of transgenic crops. Research on gene flow is used to illustrate how science and policy are intimately bound together in a value-laden, iterative and messy process unlike that characterised by the 'encounter problem-do science-make policy' model. It also demonstrates how the gap between science and policy is often characterised by value-laden language. Scientists involved in ERA for transgenic crops may find their engagement with policy- and decision-makers clouded by misunderstanding about what one should expect from the other. Not the least of these, that science can define harm, is explored in a discussion of the U.K. Farm Scale Evaluations of herbicide-tolerant GM crops. The varied responses to these extensive trials highlight the problems of linking specific scientific experiments with broad policy objectives. The problems of applied ecology in the transgenic crops debate are not unique but may differ from other areas of environmental policy in the intense politicisation of the debate, the emphasis on assessment of risk and the particularly broad policy objectives. PMID:24150917

  1. Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem

    NASA Astrophysics Data System (ADS)

    Li, Zhenhai; Nie, Chenwei; Yang, Guijun; Xu, Xingang; Jin, Xiuliang; Gu, Xiaohe

    2014-10-01

    Leaf area index (LAI) and LCC, as the two most important crop growth variables, are major considerations in management decisions, agricultural planning and policy making. Estimation of canopy biophysical variables from remote sensing data was investigated using a radiative transfer model. However, the ill-posed problem is unavoidable for the unique solution of the inverse problem and the uncertainty of measurements and model assumptions. This study focused on the use of agronomy mechanism knowledge to restrict and remove the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (NAMK) and linked with agronomic mechanism knowledge (AMK) were compared. The results showed that AMK did not significantly improve the accuracy of LAI inversion. LAI was estimated with high accuracy, and there was no significant improvement after considering AMK. The validation results of the determination coefficient (R2) and the corresponding root mean square error (RMSE) between measured LAI and estimated LAI were 0.635 and 1.022 for NAMK, and 0.637 and 0.999 for AMK, respectively. LCC estimation was significantly improved with agronomy mechanism knowledge; the R2 and RMSE values were 0.377 and 14.495 μg cm-2 for NAMK, and 0.503 and 10.661 μg cm-2 for AMK, respectively. Results of the comparison demonstrated the need for agronomy mechanism knowledge in radiative transfer model inversion.

  2. Chemical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fifth of six modules in advanced crop and soil science and introduces the agriculture student to chemical features of the soil. Upon completing the four day lesson, the student will be able to: (1) list macro- and micro-nutrients, (2) define pH and its effect on plants, (3) outline Cation Exchange of the soil,…

  3. A Pretest for Introductory Crops Students.

    ERIC Educational Resources Information Center

    Elkins, Donald M.

    1987-01-01

    Discusses the advantages of using a pretest in introductory agronomy courses. Provides a pretest that has been developed for use in an introductory crops course taught at Southern Illinois University. Includes 25 definitions, 17 true-false and multiple choice questions, and 6 short answer questions. (TW)

  4. Integrating Agronomic Principles with Management Experience in Introductory Agronomy.

    ERIC Educational Resources Information Center

    Vorst, J. J.

    1989-01-01

    Explains the use of a cropping systems project to teach agronomic principles and crop management techniques, and to enhance communication skills. Provides a sample progress report instructions sheet which was used for the project. (Author/RT)

  5. 76 FR 63278 - Bayer CropScience LP; Determination of Nonregulated Status for Cotton Genetically Engineered for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...We are advising the public of our determination that a genetically engineered cotton developed by Bayer CropScience LP, designated as TwinLinkTM cotton (events T304-40 and GHB119), which has been genetically engineered to be tolerant to the herbicide glufosinate and resistant to several lepidopteran pests, is no longer considered a regulated article under our regulations governing......

  6. Relationships among Learning Styles and Motivation with Computer-Aided Instruction in an Agronomy Course

    ERIC Educational Resources Information Center

    McAndrews, Gina M.; Mullen, Russell E.; Chadwick, Scott A.

    2005-01-01

    Multi-media learning tools were developed to enhance student learning for an introductory agronomy course at Iowa State University. During fall 2002, the new interactive computer program, called Computer Interactive Multimedia Program for Learning Enhancement (CIMPLE) was incorporated into the teaching, learning, and assessment processes of the…

  7. Using Alumni Input as a Reality Check of Agronomy Teaching and Advising

    ERIC Educational Resources Information Center

    Graveel, John G.; Vorst, James J.

    2007-01-01

    As part of a systematic review of the undergraduate curricula and courses, the perceptions of Purdue agronomy alumni who graduated between 1960 and 2003 were obtained. A survey was administered to assess outcomes, identify gaps in the curriculum, measure how well the program addresses current and future needs, and provide a direction for change.…

  8. PRE-COLLEGE EXPERIENCES AS PREPARATION FOR COLLEGE COURSES IN AGRONOMY.

    ERIC Educational Resources Information Center

    BEEKS, JOHN C.

    TO DETERMINE THE KNOWLEDGE OF AGRONOMY POSSESSED BY ENTERING FRESHMEN IN THE COLLEGE OF AGRICULTURE AT THE UNIVERSITY OF MISSOURI, STUDENTS ENROLLED IN THE REQUIRED COURSE AGRICULTURE IN THE ECONOMY DURING THE YEARS 1962 AND 1963 RESPONDED TO A 100-ITEM MULTIPLE CHOICE INSTRUMENT. A TOTAL OF 310 USABLE ANSWER SHEETS FURNISHED DATA ON STUDENTS--(1)…

  9. Connecting Science and Stakeholders for Improved Drought and Crop Productivity Assessments in East Africa: Early Lessons

    NASA Astrophysics Data System (ADS)

    Granger, S. L.; Macharia, D.; Andreadis, K.; Das, N. N.

    2014-12-01

    Agriculture is the 'backbone' of the economies in East Africa and is dominated by smallholder farms that are mainly rain-fed and highly vulnerable to climate change, variability, and drought. However the region lacks access to developed, reliable, and effective data and analysis to guide planning for agriculture and drought mitigation. Advances in remote sensing technologies and associated tools enable the collection and quantitative analysis of observations over large geographic regions. As such, data from remote sensing platforms have become a critical tool in developed countries for climate adaptation, water resources management, drought planning and mitigation, and agriculture. Yet barriers remain in Africa due to cost (even as costs decline), issues of sustainability, and lack of capacity and expertise. A shift must be facilitated at the policy maker and practitioner level to adopt or incorporate remote sensing observations and analysis to make better, more informed decisions for drought and agricultural management and planning. Based on an on-going NASA-USAID SERVIR East Africa Drought and Crop Productivity project, recent experience is presented to illustrate best practices and lessons learned in transitioning NASA Earth Science research results to decision making in Kenya through capacity building.

  10. A National Crop Progress Monitoring and Decision Support System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    di, L.; Yang, Z.

    2009-12-01

    Timely and accurate information on weekly crop progress and development is essential to a dynamic agricultural industry in the U. S. and the world. By law, the National Agricultural Statistics Service (NASS) of the U. S. Department of Agriculture’s (USDA) is responsible for monitoring and assessing U.S. agricultural production. Currently NASS compiles and issues weekly state and national crop progress and development reports based on reports from knowledgeable state and county agricultural officials and farmers. Such survey-based reports are subjectively estimated for an entire county, lack spatial coverage, and are labor intensive. There has been limited use of remote sensing data to assess crop conditions. NASS produces weekly 1-km resolution un-calibrated AVHRR-based NDVI static images to represent national vegetation conditions but there is no quantitative crop progress information. This presentation discusses the early result for developing a National Crop Progress Monitoring and Decision Support System. The system will overcome the shortcomings of the existing systems by integrating NASA satellite and model-based land surface and weather products, NASS’ wealth of internal crop progress and condition data and Cropland Data Layers (CDL), and the Farm Service Agency’s (FSA) Common Land Units (CLU). The system, using service-oriented architecture and web service technologies, will automatically produce and disseminate quantitative national crop progress maps and associated decision support data at 250-m resolution, as well as summary reports to support NASS and worldwide users in their decision-making. It will provide overall and specific crop progress for individual crops from the state level down to CLU field level to meet different users’ needs on all known croplands. This will greatly enhance the effectiveness and accuracy of the NASS aggregated crop condition data and charts of and provides objective and scientific evidence and guidance for the

  11. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China.

    PubMed

    Fan, Mingsheng; Shen, Jianbo; Yuan, Lixing; Jiang, Rongfeng; Chen, Xinping; Davies, William J; Zhang, Fusuo

    2012-01-01

    In recent years, agricultural growth in China has accelerated remarkably, but most of this growth has been driven by increased yield per unit area rather than by expansion of the cultivated area. Looking towards 2030, to meet the demand for grain and to feed a growing population on the available arable land, it is suggested that annual crop production should be increased to around 580 Mt and that yield should increase by at least 2% annually. Crop production will become more difficult with climate change, resource scarcity (e.g. land, water, energy, and nutrients) and environmental degradation (e.g. declining soil quality, increased greenhouse gas emissions, and surface water eutrophication). To pursue the fastest and most practical route to improved yield, the near-term strategy is application and extension of existing agricultural technologies. This would lead to substantial improvement in crop and soil management practices, which are currently suboptimal. Two pivotal components are required if we are to follow new trajectories. First, the disciplines of soil management and agronomy need to be given increased emphasis in research and teaching, as part of a grand food security challenge. Second, continued genetic improvement in crop varieties will be vital. However, our view is that the biggest gains from improved technology will come most immediately from combinations of improved crops and improved agronomical practices. The objectives of this paper are to summarize the historical trend of crop production in China and to examine the main constraints to the further increase of crop productivity. The paper provides a perspective on the challenge faced by science and technology in agriculture which must be met both in terms of increased crop productivity but also in increased resource use efficiency and the protection of environmental quality. PMID:21963614

  12. Identifying candidate sites for crop biofortification in Latin America: case studies in Colombia, Nicaragua and Bolivia

    PubMed Central

    Zapata-Caldas, Emmanuel; Hyman, Glenn; Pachón, Helena; Monserrate, Fredy Alexander; Varela, Liliana Vesga

    2009-01-01

    Background Agricultural science can address a population's vitamin, amino acid and mineral malnutrition through biofortification - agronomy, plant breeding and biotechnology to develop crops with high nutrient contents. Biofortified crop varieties should be grown in areas with populations at risk of nutrient deficiency and in areas where the same crop is already grown and consumed. Information on the population at risk of nutrient deficiency is rarely available for sub-national administrative units, such as provinces, districts, and municipalities. Nor is this type of information commonly analyzed with data on agricultural production. This project developed a method to identify populations at risk of nutrient deficiency in zones with high crop production, places where biofortification interventions could be targeted. Results Nutrient deficiency risk data were combined with crop production and socioeconomic data to assess the suitability of establishing an intervention. Our analysis developed maps of candidate sites for biofortification interventions for nine countries in Latin America and the Caribbean. Results for Colombia, Nicaragua, and Bolivia are presented in this paper. Interventions in northern Colombia appear promising for all crops, while sites for bean biofortification are widely scattered throughout the country. The most promising sites in Nicaragua are found in the center-north region. Candidate sites for biofortification in Bolivia are found in the central part of the country, in the Andes Mountains. The availability and resolution of data limits the analysis. Some areas show opportunities for biofortification of several crops, taking advantage of their spatial coincidence. Results from this analysis should be confirmed by experts or through field visits. Conclusion This study demonstrates a method for identifying candidate sites for biofortification interventions. The method evaluates populations at risk of nutrient deficiencies for sub

  13. Caveats to quantifying ecosystem services: fruit abortion blurs benefits from crop pollination.

    PubMed

    Bos, Merijn M; Veddeler, Dorthe; Bogdanski, Anne K; Klein, Alexandra-Maria; Tscharntke, Teja; Steffan-Dewenter, Ingolf; Tylianakis, Jason M

    2007-09-01

    The recent trend to place monetary values on ecosystem services has led to studies on the economic importance of pollinators for agricultural crops. Several recent studies indicate regional, long-term pollinator declines, and economic consequences have been derived from declining pollination efficiencies. However, use of pollinator services as economic incentives for conservation must consider environmental factors such as drought, pests, and diseases, which can also limit yields. Moreover, "flower excess" is a well-known reproductive strategy of plants as insurance against unpredictable, external factors that limit reproduction. With three case studies on the importance of pollination levels for amounts of harvested fruits of three tropical crops (passion fruit in Brazil, coffee in Ecuador, and cacao in Indonesia) we illustrate how reproductive strategies and environmental stress can obscure initial benefits from improved pollination. By interpreting these results with findings from evolutionary sciences, agronomy, and studies on wild-plant populations, we argue that studies on economic benefits from pollinators should include the total of ecosystem processes that (1) lead to successful pollination and (2) mobilize nutrients and improve plant quality to the extent that crop yields indeed benefit from enhanced pollinator services. Conservation incentives that use quantifications of nature's services to human welfare will benefit from approaches at the ecosystem level that take into account the broad spectrum of biological processes that limit or deliver the service. PMID:17913145

  14. Advising Undergraduates in a Department of Soil Science and/or Agronomy.

    ERIC Educational Resources Information Center

    Lee, Gerhard B.

    1987-01-01

    Offers suggestions to advisers of undergraduate students in agriculture. Recommends that advisers be competent, concerned, compassionate, and provide an open-door attitude toward their advisees. Suggests that students be guided toward good study habits and participation in intern programs. (TW)

  15. A Survey of Beginning Crop Science Courses at 49 U.S. Universities. I. Lecture Format, Teaching Methods, and Topical Content.

    ERIC Educational Resources Information Center

    Karnok, Keith J.; Connors, Krista L.

    1986-01-01

    This paper is the first of a two-part series which discusses the findings related to lecture information in beginning crop science courses offered in Land Grant institutions. Survey results revealed considerable differences regarding course organization and teaching methods, but similarities in overall goals and topic areas. (ML)

  16. A Survey of Beginning Crop Science Courses at 49 U.S. Universities. II. Laboratory Format, Teaching Methods, and Topical Content.

    ERIC Educational Resources Information Center

    Connors, Krista L.; Karnok, Keith J.

    1986-01-01

    This paper is the second of a two-part series which discusses the findings related to laboratory segments in the beginning crop science courses offered in Land Grant institutions. Survey results reveal that laboratories are used but employ traditional teaching rather than individualized or auto-tutorial techniques. (ML)

  17. Progress and Opportunities for Women in Agricultural Sciences.

    ERIC Educational Resources Information Center

    Kuehl, R. J.; And Others

    1987-01-01

    Reviews the numerical gains that women have made in employment in the agricultural sciences in the last five years, and the career opportunities that currently exist. Discusses trends in recruiting women into the agricultural sciences, the increase in doctoral degrees conferred upon women, and the need for more women in agronomy and soil science.…

  18. Soil Science as a Field Discipline - Experiences in Iowa, USA

    NASA Astrophysics Data System (ADS)

    Burras, C. Lee

    2015-04-01

    Effective field understanding of soils is crucial. This is true everywhere but especially so in Iowa, a 15 million hectare state in the central USA's "corn belt." Iowa is intensely farmed and almost exclusively privately owned. Many regions of Iowa have had over 90% of their land area in row crops for the past 60 years. In these regions two very common land management strategies are tile drainage (1.5 million km total) and high rates of fertilization (e.g., 200 kg N/ha-yr for cropland) Iowa also has problematic environmental issues including high rates of erosion, excessive sediment and nutrient pollution in water bodies and episodic catastrophic floods. Given the preceding the Agronomy, Environmental Science and Sustainable Agriculture programs at Iowa State University (ISU) offer a strong suite of soil science classes - undergraduate through graduate. The objective of this presentation is to review selected field based soil science courses offered by those programs. This review includes contrasting and comparing campus-based and immersion classes. Immersion classes include ones offered at Iowa Lakeside Laboratory, as "soil judging" and internationally. Findings over the past 20 years are consistent. Students at all levels gain soil science knowledge, competency and confidence proportional to the amount of time spent in field activities. Furthermore their professional skepticism is sharpened. They are also preferentially hired even in career postings that do not require fieldwork. In other words, field learning results in better soil science professionals who have highly functional and sought after knowledge.

  19. Sustainable harvest: managing plasticity for resilient crops

    PubMed Central

    Bloomfield, Justin A; Rose, Terry J; King, Graham J

    2014-01-01

    Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding. PMID:24891039

  20. Ethanol from sugar crops: a critical review

    SciTech Connect

    Lipinsky, E.S.; Allen, B.R.; Bose, A.; Kresovich, S.

    1981-01-01

    Due to the hardships resulting from rising oil prices and periodic production shortfalls, many developing countries, especially those with warm humid climates, have explored ethanol production from sugar crops. This critical review offers information on ethanol production for development planners. Two sugar crop-based ethanol systems, raw sugar facility retrofit and conventional juice extraction, are first examined. The agronomy of sugar crops (cane, beet, sorghum) is then described, as are the steps in crop processing (extraction, fermentation, distillation, stillage disposal). The costs of producing ethanol from a typical sugarcane processing plant and from a state-of-the-art molasses processing facility are presented, and the trade-offs between producing ethanol or raw sugar from sugarcane weighed. Finally, the properties of ethanol in automotive fuels are outlined, along with important storage, handling, and safety considerations. Three major problems are cited in ethanol production from sugar crops: adverse environmental effects (10 gallons of waste to 1 gallon of ethanol); the high cost of conventional milling equipment; and the loss of potential revenue from raw sugar sales. A future possibility of producing ethanol from fibrous residues (bagasse) is noted. Included are a 64-item bibliography (1936-1980) and 31 tables.

  1. Data Sharing Interviews with Crop Sciences Faculty: Why They Share Data and How the Library Can Help

    ERIC Educational Resources Information Center

    Williams, Sarah C.

    2013-01-01

    This study was designed to generate a deeper understanding of data sharing by targeting faculty members who had already made data publicly available. During interviews, crop scientists at the University of Illinois at Urbana-Champaign were asked why they decided to share data, why they chose a data sharing method (e. g., supplementary file,…

  2. Adapting and improving crops: the endless task

    PubMed Central

    Evans, L. T.

    1997-01-01

    The Malthusian prognosis has been undermined by an exponential increase in world food supply since 1960, even in the absence of any extension of the arable area. The requisite increases in yield of the cereal staples have come partly from agronomic intensification, especially of nitrogenous fertilizer use made possible by the dwarfing of wheat and rice, in turn made feasible by herbicide development. Cereal dwarfing also contributed to a marked rise in harvest index and yield potential.
    Although there is still scope for some further improvement in harvest index and environmental adaptation, it is not apparent how a doubling of yield potential can be achieved unless crop photosynthesis can be substantially enhanced by genetic engineering. Empirical selection for yield has not enhanced photosynthetic capacity to date, but nitrogenous and other fertilizers have done so, and there is still scope for agronomic increases in yield and for new synergisms between agronomy and plant breeding.

  3. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study.

    PubMed

    Bani, Aida; Echevarria, Guillaume; Sulçe, Sulejman; Morel, Jean Louis

    2015-01-01

    Large ultramafic areas exist in Albania, which could be suitable for phytomining with native Alyssum murale. We undertook a five-year field experiment on an ultramafic Vertisol, aimed at optimizing a low-cost Ni-phytoextraction crop of A. murale which is adapted to the Balkans. The following aspects were studied on 18-m2 plots in natural conditions: the effect of (i) plant phenology and element distribution, (ii) plant nutrition and fertilization, (iii) plant cover and weed control and (iv), planting technique (natural cover vs. sown crop). The optimal harvest time was set at the mid-flowering stage when Ni concentration and biomass yield were highest. The application of N, P, and K fertilizers, and especially a split 100-kg ha(-1) N application, increased the density of A. murale against all other species. It significantly increased shoot yield, without reducing Ni concentration. In natural stands, the control of graminaceous weeds required the use of an anti-monocots herbicide. However, after the optimization of fertilization and harvest time, weed control procured little benefit. Finally, cropping sown A. murale was more efficient than enhancing native stands and gave higher biomass and phytoextraction yields; biomass yields progressively improved from 0.3 to 9.0 t ha(-1) and phytoextracted Ni increased from 1.7 to 105 kg ha(-1). PMID:25237722

  4. Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course

    ERIC Educational Resources Information Center

    Munn, D. A.

    2004-01-01

    Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…

  5. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  6. Generating crop calendars with Web search data

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; See, Linda; Fritz, Steffen; Verheijen, Frank G. A.; Khabarov, Nikolay; Obersteiner, Michael

    2012-06-01

    This paper demonstrates the potential of using Web search volumes for generating crop specific planting and harvesting dates in the USA integrating climatic, social and technological factors affecting crop calendars. Using Google Insights for Search, clear peaks in volume occur at times of planting and harvest at the national level, which were used to derive corn specific planting and harvesting dates at a weekly resolution. Disaggregated to state level, search volumes for corn planting generally are in agreement with planting dates from a global crop calendar dataset. However, harvest dates were less discriminatory at the state level, indicating that peaks in search volume may be blurred by broader searches on harvest as a time of cultural events. The timing of other agricultural activities such as purchase of seed and response to weed and pest infestation was also investigated. These results highlight the future potential of using Web search data to derive planting dates in countries where the data are sparse or unreliable, once sufficient search volumes are realized, as well as the potential for monitoring in real time the response of farmers to climate change over the coming decades. Other potential applications of search volume data of relevance to agronomy are also discussed.

  7. Increasing Engagement in Science through an Authentic Crop Protection Experiment for Year 9 School Students Working with Scientists

    ERIC Educational Resources Information Center

    Oliver, Richard; Rybak, Kasia; Gruber, Cornelia; Nicholls, Graeme; Roberts, Graeme; Mengler, Janet; Oliver, Mary

    2011-01-01

    Practical work is often considered to be a highlight of science classes for students. However, there are few opportunities for students to engage in an investigation which is situated in a real world problem and students are required to contribute their own ideas to the design and conduct of an experiment. This paper reports on a Scientists in…

  8. Historical Highlights From 75 Years of the Soil Science Society of America

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.

    2012-04-01

    From its official founding on November 18, 1936 to the present day, the Soil Science Society of America (SSSA) has developed a rich and diverse history. SSSA began with 190 members grouped into six sections: 1) physics, 2) chemistry, 3) microbiology, 4) fertility, 5) morphology, and 6) technology. Today SSSA has over 6,000 members who can choose from any of 11 divisions, S1 Soil Physics, S2 Soil Chemistry, S3 Soil Biology and Biochemistry, S4 Soil Fertility and Plant Nutrition, S5 Pedology, S6 Soil and Water Management and Conservation, S7 Forest, Range, and Wildland Soils, S8 Nutrient Management and Soil and Plant Analysis, S9 Soil Mineralogy, S10 Wetland Soils, and S11 Soils and Environmental Quality to represent their primary area(s) of interest. The Society has also gone from being largely agriculturally focused to an eclectic mix of individuals with interests in agriculture, the environment, earth sciences, human interactions, and other diverse areas. At its founding, SSSA sponsored one publication, the Soil Science Society of America Proceedings. Today, SSSA sponsors its descendent, the Soil Science Society of America Journal, as well as Vadose Zone Journal, the Journal of Environmental Quality, Soil Survey Horizons, and the Journal of Natural Resources and Life Science Education. In short, SSSA's history has been one of continued growth over the last 75 years. The future holds many challenges for SSSA and the field of soil science. There are increasing calls to meet with groups other than or in addition to the American Society of Agronomy and the Crop Science Society of America, groups like the Geological Society of America and the Ecological Society of America. Members in SSSA now work in university departments, government agencies, and businesses representing the fields of biology, geology, geography, and archeology, among others, in addition to the traditional agricultural sector. How SSSA handles this diversification of the field and its membership will

  9. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  10. Crop Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  11. Crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

  12. Manipulating Crop Density to Optimize Nitrogen and Water Use: An Application of Precision Agroecology

    NASA Astrophysics Data System (ADS)

    Brown, T. T.; Huggins, D. R.; Smith, J. L.; Keller, C. K.; Kruger, C.

    2011-12-01

    Rising levels of reactive nitrogen (Nr) in the environment coupled with increasing population positions agriculture as a major contributor for supplying food and ecosystem services to the world. The concept of Precision Agroecology (PA) explicitly recognizes the importance of time and place by combining the principles of precision farming with ecology creating a framework that can lead to improvements in Nr use efficiency. In the Palouse region of the Pacific Northwest, USA, relationships between productivity, N dynamics and cycling, water availability, and environmental impacts result from intricate spatial and temporal variations in soil, ecosystem processes, and socioeconomic factors. Our research goal is to investigate N use efficiency (NUE) in the context of factors that regulate site-specific environmental and economic conditions and to develop the concept of PA for use in sustainable agroecosystems and science-based Nr policy. Nitrogen and plant density field trials with winter wheat (Triticum aestivum L.) were conducted at the Washington State University Cook Agronomy Farm near Pullman, WA under long-term no-tillage management in 2010 and 2011. Treatments were imposed across environmentally heterogeneous field conditions to assess soil, crop and environmental interactions. Microplots with a split N application using 15N-labeled fertilizer were established in 2011 to examine the impact of N timing on uptake of fertilizer and soil N throughout the growing season for two plant density treatments. Preliminary data show that plant density manipulation combined with precision N applications regulated water and N use and resulted in greater wheat yield with less seed and N inputs. These findings indicate that improvements to NUE and agroecosystem sustainability should consider landscape-scale patterns driving productivity (e.g., spatial and temporal dynamics of water availability and N transformations) and would benefit from policy incentives that promote a PA

  13. Genetically engineered crops: from idea to product.

    PubMed

    Prado, Jose Rafael; Segers, Gerrit; Voelker, Toni; Carson, Dave; Dobert, Raymond; Phillips, Jonathan; Cook, Kevin; Cornejo, Camilo; Monken, Josh; Grapes, Laura; Reynolds, Tracey; Martino-Catt, Susan

    2014-01-01

    Genetically engineered crops were first commercialized in 1994 and since then have been rapidly adopted, enabling growers to more effectively manage pests and increase crop productivity while ensuring food, feed, and environmental safety. The development of these crops is complex and based on rigorous science that must be well coordinated to create a plant with desired beneficial phenotypes. This article describes the general process by which a genetically engineered crop is developed from an initial concept to a commercialized product. PMID:24579994

  14. Assessing pesticide risks to threatened and endangered species using population models: Findings and recommendations from a CropLife America Science Forum.

    PubMed

    Forbes, V E; Brain, R; Edwards, D; Galic, N; Hall, T; Honegger, J; Meyer, C; Moore, D R J; Nacci, D; Pastorok, R; Preuss, T G; Railsback, S F; Salice, C; Sibly, R M; Tenhumberg, B; Thorbek, P; Wang, M

    2015-07-01

    This brief communication reports on the main findings and recommendations from the 2014 Science Forum organized by CropLife America. The aim of the Forum was to gain a better understanding of the current status of population models and how they could be used in ecological risk assessments for threatened and endangered species potentially exposed to pesticides in the United States. The Forum panelists' recommendations are intended to assist the relevant government agencies with implementation of population modeling in future endangered species risk assessments for pesticides. The Forum included keynote presentations that provided an overview of current practices, highlighted the findings of a recent National Academy of Sciences report and its implications, reviewed the main categories of existing population models and the types of risk expressions that can be produced as model outputs, and provided examples of how population models are currently being used in different legislative contexts. The panel concluded that models developed for listed species assessments should provide quantitative risk estimates, incorporate realistic variability in environmental and demographic factors, integrate complex patterns of exposure and effects, and use baseline conditions that include present factors that have caused the species to be listed (e.g., habitat loss, invasive species) or have resulted in positive management action. Furthermore, the panel advocates for the formation of a multipartite advisory committee to provide best available knowledge and guidance related to model implementation and use, to address such needs as more systematic collection, digitization, and dissemination of data for listed species; consideration of the newest developments in good modeling practice; comprehensive review of existing population models and their applicability for listed species assessments; and development of case studies using a few well-tested models for particular species to

  15. Possible changes to arable crop yields by 2050.

    PubMed

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations. PMID:20713388

  16. Possible changes to arable crop yields by 2050

    PubMed Central

    Jaggard, Keith W.; Qi, Aiming; Ober, Eric S.

    2010-01-01

    By 2050, the world population is likely to be 9.1 billion, the CO2 concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2°C. In these conditions, what contribution can increased crop yield make to feeding the world? CO2 enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO2-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations. PMID:20713388

  17. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  18. Crop Rotation in Row Crop Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation is a system of growing different kinds of crops in recurrent succession on the same land. Thus, in the strictest sense, crop rotation is more than just changing crops from year to year based on current economic situations. Rather, it is a long-term plan for soil and farm management. Cr...

  19. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa.

    PubMed

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T; Mafongoya, Paramu

    2015-06-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  20. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    PubMed Central

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  1. Science.

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science instruction and technology: "A 3-D Journey in Space: A New Visual Cognitive Adventure" (Yoav Yair, Rachel Mintz, and Shai Litvak); "Using Collaborative Inquiry and Interactive Technologies in an Environmental Science Project for Middle School Teachers: A Description and Analysis" (Patricia…

  2. Simulating Stochastic Crop Management in Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  3. The Role of Crop Systems Simulation in Agriculture and Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  4. Epi-fingerprinting and epi-interventions for improved crop production and food quality

    PubMed Central

    Rodríguez López, Carlos M.; Wilkinson, Mike J.

    2015-01-01

    Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimize environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype × Environment interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting) could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality. PMID:26097484

  5. The state of genetically modified crop regulation in Canada.

    PubMed

    Smyth, Stuart J

    2014-07-01

    Genetically modified (GM) crops were first commercialized in Canada in 1995 and the 2014 crop represents the 20th year of successful production. Prior to the first commercialization of GM crops, Canada reviewed its existing science-based regulatory framework and adapted the existing framework to allow for risk assessments on the new technology to be undertaken in a timely and efficient manner. The result has been the rapid and widespread adoption of GM varieties of canola, corn and soybeans. The first decade of GM crop production precipitated 2 landmark legal cases relating to patent infringement and economic liability, while the second decade witnessed increased political efforts to have GM crops labeled in Canada as well as significant challenges from the low level comingling of GM crops with non-GM commodities. This article reviews the 20 y of GM crop production in Canada from a social science perspective that includes intellectual property, consumer acceptance and low level presence. PMID:25437238

  6. [Review of transgenic crop breeding in China].

    PubMed

    Huang, Dafang

    2015-06-01

    The development history and fundamental experience of transgenic crops (Genetically modified crops) breeding in China for near 30 years were reviewed. It was illustrated that a scientific research, development and industrialization system of transgenic crops including gene discovery, transformation, variety breeding, commercialization, application and biosafety assessment has been initially established which was few in number in the world. The research innovative capacity of transgenic cotton, rice and corn has been lifted. The research features as well as relative advantages have been initially formed. The problems and challenges of transgenic crop development were discussed. In addition, three suggestions of promoting commercialization, speeding up implementation of the Major National Project of GM Crops, and enhancing science communication were made. PMID:26672365

  7. Crop synergism can help dryland crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply is a major constraint for crop production in dryland agriculture across the world, and extensive research has been conducted to improve water use. In the grass steppe of the United States, water use has improved through a series of management advancements, such as preservation of crop ...

  8. Wind Turbines Benefit Crops

    SciTech Connect

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  9. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  10. Sorghums as energy crops

    SciTech Connect

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  11. Cucurbitaceae (Vine Crops)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cucurbitaceae or vine crop family is a distinct family without any close relatives. The Cucurbitaceae or vine crop family includes many important vegetables collectively referred to as cucurbits. Cucumber, melon, and watermelon are major crop species originally from the Old World (cucumber fro...

  12. Cover crops for Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  13. Cover Crop Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential benefits of cover crops in vegetable production systems depend on the type of cover crop that is used and how it is managed from planting to termination date. This chapter focuses on management practices that are applicable to a broad range cover crops and vegetable production systems ...

  14. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-03-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUEPAR) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security.

  15. Biofuels, Bioenergy, and bioproducts from sustainable agricultural and forest crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most conferences about short rotation crops have primarily focused on either agricultural or forest crops, resulting in less integration and slower advancement of common underlying science and application. The goal of this conference was to initiate and provide opportunities for an international for...

  16. The use of cover crops to increase soil organic carbon in Mediterranean vineyards

    NASA Astrophysics Data System (ADS)

    García-Díaz, Andrés; Bienes Allas, Ramón; Sastre Rodriguez, Blanca

    2016-04-01

    In Central Spain the vineyards are commonly managed with conventional tillage (CT) to remove water and nutrient competition between the spontaneous vegetation and the vine plants. The continuous tillage promotes high mineralization rates resulting in soils with low organic matter content and prone to erosion. Consequently the increase of soil organic carbon (SOC) in Mediterranean soils has been a main concern in the last years. It is necessary to carry out different soil managements to enhance soil fertility and reduce erosion through the increase of SOC. The aim of this study was to assess the capacity of cover crops (CC) to increase SOC in vineyards in Mediterranean climate. The experiment consisted in four vineyards in four different locations (different type of soil and microclimate), in the same region, to analyze the influence of CC on different conditions. A seeded CC (Brachypodium distachyon L. P. Beauv) and spontaneous vegetation were performed to compare to CT. The Brachypodium distachyon cover was seeded in December, 2012. We analyzed the organic carbon content and bulk density after three agronomy seasons. The samples were taken in the summer of 2015 at the depth of 0-5 cm. The bulk density of Brachypodium distachyon was 1.42 t•m-3, which was statistically significant comparing to both CT (1.33 t•m-3) and spontaneous vegetation (1.34 t•m-3). The SOC percentage of CT, Brachypodium distachyon and spontaneous vegetation was 0.82, 0.96 and 1.10 respectively. Only spontaneous vegetation showed statistically significant differences compared to CT. The results were highly variable depending on the vineyard. The spontaneous vegetation was the most effective CC increasing SOC with an average of 2 t•ha-1 more than CT in three agronomy seasons. These results point out the different efficiency of CC and the high influence of local conditions on SOC increase.

  17. Applied Science in Cuba.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1986-01-01

    Discusses various topics and issues related to the scientific enterprise in Cuba. Notes that Cuban science is emphasizing biotechnology and research on the island's chief crop (sugarcane), although hampered by limited personnel and lack of modern laboratory equipment. (JN)

  18. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  19. Determination of crop coefficients (Kc) for irrigation management of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weighing lysimeters are used to measure crop water use during the growing season. By relating the water use of a specific crop to a well-watered reference crop such as grass, crop coefficients (Kc) can be developed to assist in predicting crop needs using meteorological data available from weather ...

  20. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  1. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  2. Success with cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an important tool for producers interested in improving soil and crop productivity. They help control erosion, improve soil quality, improve soil properties that impact water infiltration and conservation, provide habitat and food for beneficial insects, and provide food for wildlif...

  3. Waves and Crops

    ERIC Educational Resources Information Center

    Bennett, J.

    1973-01-01

    Discusses wave patterns on the surfaces of ripening wheat and barley crops when the wind is moderately strong. Examines the structure of the turbulence over such natural surfaces and conditions under which the crop may be damaged by the wind. (JR)

  4. OVERVIEW OF CROP BIOTECHNOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  5. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century

    NASA Astrophysics Data System (ADS)

    Gabaldón, Clara; Lorite, Ignacio J.; Inés Mínguez, M.; Dosio, Alessandro; Sánchez-Sánchez, Enrique; Ruiz-Ramos, Margarita

    2013-04-01

    grain filling period with the consequent reduction in yield (Ruiz-Ramos et al., 2011) and with the supraoptimal temperatures in pollination. Finally, results of simulated impacts and adaptations were compared to previous studies done without bias correction of climatic projections, at low resolution and with previous versions of crop models (Mínguez et al., 2007). This study will contribute to MACSUR knowledge Hub within the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE - JPI) of EU and is financed by MULCLIVAR project (CGL2012-38923-C02-02) and IFAPA project AGR6126 from Junta de Andalucía, Spain. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116, D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, Volume 117, D17, doi: 0.1029/2012JD017968 Jones, C.A., and J.R. Kiniry. 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station. Mínguez, M.I., M. Ruiz-ramos, C.H. Díaz-Ambrona, and M. Quemada. 2007. First-order impacts on winter and summer crops assessed with various high-resolution climate models in the Iberian Peninsula. Climatic Change 81: 343-355. Ruiz-Ramos, M., E. Sanchez, C. Galllardo, and M.I. Minguez. 2011. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. Natural Hazards and Earth System Science 11: 3275-3291. Stockle, C.O., M. Donatelli, and R. Nelson. 2003. CropSyst , a cropping systems simulation model. European Journal of Agronomy18: 289-307.

  6. Advancing environmental risk assessment for transgenic biofeedstock crops

    PubMed Central

    Wolt, Jeffrey D

    2009-01-01

    Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release. For currently envisioned biofeedstock crops, particular emphasis in risk assessment will be given to characterization of altered metabolic profiles and their implications relative to non-target environmental effects and food safety; weediness and invasiveness when plants are modified for abiotic stress tolerance or are domesticated; and aggregate risk when plants are platforms for multi-product production. Robust risk assessments for transgenic biofeedstock crops are case-specific, initiated through problem formulation, and use tiered approaches for risk characterization. PMID:19883509

  7. Crop Sequence Economics in Dynamic Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till production systems allow more intensified and diversified production in the northern Great Plains; however, this has increased the need for information on improving economic returns through crop sequence selection. Field research was conducted 6 km southwest of Mandan ND to determine the inf...

  8. Capturing field-scale variability in crop performance across a regional-scale climosequence

    NASA Astrophysics Data System (ADS)

    Brooks, E. S.; Poggio, M.; Anderson, T. R.; Gasch, C.; Yourek, M. A.; Ward, N. K.; Magney, T. S.; Brown, D. J.; Huggins, D. R.

    2014-12-01

    With the increasing availability of variable rate technology for applying fertilizers and other agrichemicals in dryland agricultural production systems there is a growing need to better capture and understand the processes driving field scale variability in crop yield and soil water. This need for a better understanding of field scale variability has led to the recent designation of the R. J. Cook Agronomy Farm (CAF) (Pullman, WA, USA) as a United States Department of Agriculture Long-Term Agro-Ecosystem Research (LTAR) site. Field scale variability at the CAF is closely monitored using extensive environmental sensor networks and intensive hand sampling. As investigating land-soil-water dynamics at CAF is essential for improving precision agriculture, transferring this knowledge across the regional-scale climosequence is challenging. In this study we describe the hydropedologic functioning of the CAF in relation to five extensively instrumented field sites located within 50 km in the same climatic region. The formation of restrictive argillic soil horizons in the wetter, cooler eastern edge of the region results in the development of extensive perched water tables, surface saturation, and surface runoff, whereas excess water is not an issue in the warmer, drier, western edge of the region. Similarly, crop and tillage management varies across the region as well. We discuss the implications of these regional differences on field scale management decisions and demonstrate how we are using proximal soil sensing and remote sensing imagery to better understand and capture field scale variability at a particular field site.

  9. Crop improvement using life cycle datasets acquired under field conditions

    PubMed Central

    Mochida, Keiichi; Saisho, Daisuke; Hirayama, Takashi

    2015-01-01

    Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer “designed crops” to prevent yield shortfalls because of environmental fluctuations due to future climate change. PMID:26442053

  10. Using cover crops and cropping systems for nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  11. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  12. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  13. Science and Public Policy

    SciTech Connect

    Handler, Thomas

    2012-11-28

    The United States faces many issues that involve science. Issues ranging from climate change to nano-technology, from human genomics to modified food crops. What is the role that science plays in determining what the public policy for these issues should be? How as scientists should we respond to requests for advice?

  14. Radioactivity in food crops

    SciTech Connect

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  15. Cover crops and N credits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops often provide many short- and long-term benefits to cropping systems. Legume cover crops can significantly reduce the N fertilizer requirement of non-legume cash crops that follow. The objectives of this presentation were to: I) educate stakeholders about the potential benefits of cover ...

  16. Cover crops and vegetable rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers have long known that winter cover crops can decrease soil erosion, increase soil organic matter and fertility, and provide a beneficial impact on the following crop, but it is not always known which cover crop will provide the best results for a specific region and cropping system. Research...

  17. Biotechnology: herbicide-resistant crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  18. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... March 30, 2010 (75 FR 15778-15891). Need for Correction As published, the final regulation contained... Insurance Corporation 7 CFR Part 457 RIN 0563-AB96 Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance...

  19. Crop Coefficients of Some Selected Crops of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Reddy, K. Chandrasekhar; Arunajyothy, S.; Mallikarjuna, P.

    2015-06-01

    Precise information on crop coefficients for estimating crop evapotranspiration (ETc) for regional scale irrigation planning is a major impediment in many regions. Crop coefficients suggested based on lysimeter data by earlier investigators have to be locally calibrated to account for the differences in the crop canopy under given climatic conditions. In the present study crop coefficients were derived based on reference crop evapotranspiration (ET0) estimated from Penman-Monteith equation and lysimeter measured ETc for groundnut, paddy, tobacco, sugarcane and castor crops at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar centers of Andhra Pradesh respectively. Crop coefficients derived were compared with those recommended by FAO-56. The mean crop coefficients at different stages of growth were significantly different from those of FAO-56 curve though a similar trend was observed. A third order polynomial crop coefficient model has therefore been developed as a function of time (days after sowing the crop) for deriving suitable crop coefficients. The crop coefficient models suggested may be adopted to estimate crop evapotranspiration in the study area with reasonable degree of accuracy.

  20. 75 FR 15777 - Common Crop Insurance Regulations, Basic Provisions; and Various Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Basic Provisions, Small Grains Crop Insurance Provisions, Cotton Crop Insurance Provisions, Sunflower Seed Crop Insurance Provisions, Coarse Grains Crop Insurance Provisions, Malting Barley Crop Insurance Provisions, Rice Crop Insurance Provisions, and Canola and Rapeseed Crop Insurance Provisions to......

  1. Multi-scale indicators in CropWatch

    NASA Astrophysics Data System (ADS)

    Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zhang, N.; Zou, W.; Chang, S.; Liu, G.

    2013-12-01

    CropWatch is a crop monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information, mostly for Chinese users. In its 15th year of operation, CropWatch uses remote sensing data combined with selected field data to determine key crop descriptors: acreage, yield and production, condition, cropping intensity, planting proportion, total food availability, and the status and severity of droughts. Currently, CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite 3 (FY-3A) and geostationary meteorological satellites (FY-2). The new indicators can be assigned to three different scales: (1) global, (2) regional/Agro-ecological Zone (AEZ), and (3) National/sub-national level. At the global scale, CropWatch focuses on the growing environment including precipitation (R), soil moisture (SM), land surface temperature accumulation (LSTA) and photosynthetically active radiation (PAR). National values of these four descriptors of the current season and their departure from long term average (LTA) will be determined by spatial average weighted by the production potential. At regional/AEZ scale, CropWatch will use three indicators (biomass, fallow land ratio and cropping intensity) to represent crop condition. At the national/sub-national scale, CropWatch will focus on 30 countries plus China, covering 80% of exports and 80% of production, plus some additional countries. Indicators at global and AEZ scale will also be used for the 30 countries plus China but at a high resolution. Normalized difference vegetation index (NDVI) as well as Evapotranspiration (ET) will be incorporated to determine the crop condition and water stress. All these national/sub-national indicators will be analyzed by irrigated and rain-fed areas

  2. CROP-RESIDUE MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our agricultural production system is under increasing pressure to provide low cost, high quality food, fiber and biofuels while maintaining and preserving the environment. Increased interest in crop residues for production system sustainability is related to the recognition that the soil, water and...

  3. Future generation energy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although cropping systems in the Midwest that emphasize corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) are some of the most highly productive in the US, the growing lack of agricultural diversity in this region threatens to jeopardize long-term sustainability. Added to this co...

  4. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops. PMID:26798073

  5. Nitrogen catch crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High costs of nitrogen (N) fertilizer and the potential for N losses to ground and surface water have resulted in increased interest in using catch crops to recover this N. Research on potatoes has shown that the amount of N lost to leaching can be as much as the amount of N removed from the field ...

  6. Major Cucurbit Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbit is a general term to denote all species within the Cucurbitaceae family, which includes approximately 800 species in 130 genera. Cucurbits are mostly annual, herbaceous, tendril-bearing and frost sensitive vines and are among the economically most important vegetable crops worldwide. Cucurb...

  7. Global crop forecasting

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Hall, F. G.

    1980-01-01

    The needs for and remote sensing means of global crop forecasting are discussed, and key results of the Large Area Crop Inventory Experiment (LACIE) are presented. Current crop production estimates provided by foreign countries are shown often to be inadequate, and the basic elements of crop production forecasts are reviewed. The LACIE project is introduced as a proof-of-concept experiment designed to assimilate remote sensing technology, monitor global wheat production, evaluate key technical problems, modify the technique accordingly and demonstrate the feasibility of a global agricultural monitoring system. The global meteorological data, sampling and aggregation techniques, Landsat data analysis procedures and yield forecast procedures used in the experiment are outlined. Accuracy assessment procedures employed to evaluate LACIE technology performance are presented, and improvements in system efficiency and capacity during the three years of operation are pointed out. Results of LACIE estimates of Soviet, U.S. and Canadian wheat production are presented which demonstrate the feasibility and accuracy of the remote-sensing approach for global food and fiber monitoring.

  8. Crop Dusting Using GPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global Positioning System (GPS) receivers and GPS-based swath guidance systems are used on agricultural aircraft for remote sensing, airplane guidance, and to support variable-rate aerial application of crop inputs such as insecticides, cotton growth regulators, and defoliants. Agricultural aircraf...

  9. Ethanol from Sugar Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The world-wide impetus to produce alternatives to petroleum-based fuels and relatively low profit for sugar are putting pressure on the sugar industry to diversify for sustainability. Sugar crops, mainly sugarcane, sugar beet, and sweet sorghum, fit well into the emerging concept of a renewable car...

  10. Dynamic crop sequencing in Western Australian cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last decade in Western Australia crop sequences have become increasingly dominated by wheat. Wheat may now be grown in sequence with a wide range of crops and pastures that may influence the yield of the subsequent wheat crop by suppressing weeds, disease, or increasing the supply of nitroge...

  11. Crop synergism: a natural benefit to improve crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems in the Great Plains are changing because of no-till. Rotations now include a diversity of crops in contrast with rotations in tilled systems that grow only one or two crops. This change in rotation design has enabled producers to develop population-based weed management and reduce...

  12. Composition of Cereal Crop Residue in Dryland Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and cultivars vary in their composition, and also in their decomposition and contribution to soil organic matter. Large quantities of cereal crop residue that decompose slowly present an obstacle to the adoption of minimum till or no-till seeding, conversely lower quantities of crop re...

  13. The role of ROS signaling in cross-tolerance: from model to crop.

    PubMed

    Perez, Ilse Barrios; Brown, Patrick J

    2014-01-01

    Reactive oxygen species (ROS) are key signaling molecules produced in response to biotic and abiotic stresses that trigger a variety of plant defense responses. Cross-tolerance, the enhanced ability of a plant to tolerate multiple stresses, has been suggested to result partly from overlap between ROS signaling mechanisms. Cross-tolerance can manifest itself both as a positive genetic correlation between tolerance to different stresses (inherent cross-tolerance), and as the priming of systemic plant tolerance through previous exposure to another type of stress (induced cross-tolerance). Research in model organisms suggests that cross-tolerance could be used to benefit the agronomy and breeding of crop plants. However, research under field conditions has been scarce and critical issues including the timing, duration, and intensity of a stressor, as well as its interactions with other biotic and abiotic factors, remain to be addressed. Potential applications include the use of chemical stressors to screen for stress-resistant genotypes in breeding programs and the agronomic use of chemical inducers of plant defense for plant protection. Success of these applications will rely on improving our understanding of how ROS signals travel systemically and persist over time, and of how genetic correlations between resistance to ROS, biotic, and abiotic stresses are shaped by cooperative and antagonistic interactions within the underlying signaling pathways. PMID:25566313

  14. The role of ROS signaling in cross-tolerance: from model to crop

    PubMed Central

    Perez, Ilse Barrios; Brown, Patrick J.

    2014-01-01

    Reactive oxygen species (ROS) are key signaling molecules produced in response to biotic and abiotic stresses that trigger a variety of plant defense responses. Cross-tolerance, the enhanced ability of a plant to tolerate multiple stresses, has been suggested to result partly from overlap between ROS signaling mechanisms. Cross-tolerance can manifest itself both as a positive genetic correlation between tolerance to different stresses (inherent cross-tolerance), and as the priming of systemic plant tolerance through previous exposure to another type of stress (induced cross-tolerance). Research in model organisms suggests that cross-tolerance could be used to benefit the agronomy and breeding of crop plants. However, research under field conditions has been scarce and critical issues including the timing, duration, and intensity of a stressor, as well as its interactions with other biotic and abiotic factors, remain to be addressed. Potential applications include the use of chemical stressors to screen for stress-resistant genotypes in breeding programs and the agronomic use of chemical inducers of plant defense for plant protection. Success of these applications will rely on improving our understanding of how ROS signals travel systemically and persist over time, and of how genetic correlations between resistance to ROS, biotic, and abiotic stresses are shaped by cooperative and antagonistic interactions within the underlying signaling pathways. PMID:25566313

  15. WATER USE IN CROP PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a review of the book "Water Use in Crop Production", which comprises sixteen chapters on the state of research on water use in crop production. The first three chapters are reviews of water conservation principles and practices, crop water use response to carbon dioxide and temperature, and ...

  16. Sugar crops for fuel alcohol

    SciTech Connect

    Irvine, J.E.

    1980-01-01

    The use of alcohol rather than petroleum as a fuel source would require a large amount of land and suitable crops. Acerage now in use for food crops and animal production in the USA is given. The author presents alternatives to present land use in order to free acreage for energy crops such as sorghum, sugar beets, and sugar cane. (DC)

  17. Crop Sequence Calculator, v. 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers need to know how to sequence crops to develop sustainable dynamic cropping systems that take advantage of inherent internal resources, such as crop synergism, nutrient cycling, and soil water, and capitalize on external resources, such as weather, markets, and government programs. Version ...

  18. 75 FR 15603 - Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions to convert the Florida avocado pilot crop insurance program to a permanent insurance program for the 2011 and succeeding crop...

  19. Weighing Lysimeters for Developing Crop Coefficients and Efficient Irrigation Practices for Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large weighing lysimeters are expensive but invaluable tools for measuring crop evapotranspiration and developing crop coefficients for horticultural crops. Crop coefficients are used by both growers and researchers to estimate crop water use and accurately schedule irrigations. Two lysimeters of ...

  20. A Brief History of the Soil Science Society of America

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    The Soil Science Society of America (SSSA) was officially born on November 18, 1936 at the Mayflower Hotel in Washington, D.C. with Richard Bradfield as the first President. SSSA was created from the merger of the American Soil Survey Association and the Soils Section of American Society of Agronomy (ASA). Six sections were established: 1) physics, 2) chemistry, 3) microbiology, 4) fertility, 5) morphology, and 6) technology, and total membership was less than 200. The first issue of SSSA Journal, then called SSSA Proceedings, published 87 items totaling 526 pages. The first recorded bank balance for SSSA was at the end of the 1937-38 fiscal year, and showed the Society to be worth 1,300.03. The Soils Section of ASA became the official American section of the International Society of Soil Science in 1934, and the new SSSA inherited that distinction which it retains to this day. SSSA has grown significantly since those early days. The original six sections have grown to 11 divisions, and some of those divisions have changed their names to reflect changes occurring within soil science. For example, the original section 5, morphology, is now Division S05 - Pedology after spending many years under other names such as Division V - Soil Classification and Division S-5 - Soil Genesis, Morphology, and Classification. SSSA was incorporated in the State of Wisconsin, USA on 22 January, 1952. Several awards have been developed to recognize achievement in the field of soil science, including the SSSA Presidential Award, Don and Betty Kirkham Soil Physics Award, Emil Truog Soil Science Award, International Soil Science Award, Irrometer Professional Certification Service Award, L.R. Ahuja Ag Systems Modeling Award, Marion L. and Chrystie M. Jackson Soil Science Award, Soil Science Applied Research Award, Soil Science Distinguished Service Award, Soil Science Education Award, Soil Science Industry and Professional Leadership Award, Soil Science Research Award, and SSSA Early

  1. Oilseed crop with promise

    SciTech Connect

    Senft, D.

    1986-02-01

    Cuphea, a relatively unknown plant outside the scientific community, might someday provide valuable oils for manufacturing soaps, detergents, surfactants, and lubricants, and may have medical, nutritional and dietetic applications as well. Unique properties of oils found in its seed make cuphea a potentially valuable new crop for the USA. Its seeds contain large quantities of medium-chain fatty acids such as lauric acid, which is used in manufacturing soaps and detergents. Other medium-chain fatty acids in cuphea can be used for clinical treatment of rare human ailments associated with fat absorption. New uses for the fatty acids in the seed may be developed and economic conditions may change, making the crop more or less valuable.

  2. Weather based risks and insurances for crop production in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    change will stress this further and impacts on crop growth are expected to be twofold, owing to the sensitive stages occurring earlier during the growing season and to the changes in return period of extreme weather events. Though average yields have risen continuously due to technological advances, there is no evidence that relative tolerance to adverse weather events has improved. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  3. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  4. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  5. Crop Farm Employee. Agricultural Cooperative Training. Vocational Agriculture. Revised.

    ERIC Educational Resources Information Center

    Boyd, Chester; And Others

    Designed for students enrolled in the Vocational Agricultural Cooperative Part-Time Training Program, this course of study contains 13 units for crop farm employees. Units include (examples of unit topics in parentheses): introduction (opportunities in farming, farming as a science, and farming in the United States), farm records (keeping farm…

  6. High Resolution Modelling of Crop Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Mirmasoudi, S. S.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Crop production is one of the most vulnerable sectors to climatic variability and change. Increasing atmospheric CO2 concentration and other greenhouse gases are causing increases in global temperature. In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. Increasing temperatures may create heat stress for some crops regardless of soil water supply, and increasing surface O3 and other pollutants may damage crops and ecosystems. CO2 fertilization may or may not be an advantage in future. This work is part of a larger study that will address a series of questions based on a range of future climate scenarios for several watersheds in western North America. The key questions are: (1) how will snowmelt and rainfall runoff vary in future; (2) how will seasonal and inter-annual soil water supply vary, and how might that impacts food supplies; (3) how might heat stress impact (some) crops even with adequate soil water; (4) will CO2 fertilization alter crop yields; and (5) will pollution loads, particularly O3, cause meaningful changes to crop yields? The Generate Earth Systems Science (GENESYS) Spatial Hydrometeorological Model is an innovative, efficient, high-resolution model designed to assess climate driven changes in mountain snowpack derived water supplies. We will link GENESYS to the CROPWAT crop model system to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios. Literature bases studies will be utilised to develop approximate crop response functions for heat stress, CO2 fertilization and for O3 damages. The overall objective is to create modeling systems that allows meaningful assessment of agricultural productivity at a watershed scale under a

  7. Space Data for Crop Management

    NASA Technical Reports Server (NTRS)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  8. Genetic perspectives on crop domestication

    PubMed Central

    Gross, Briana L.; Olsen, Kenneth M.

    2010-01-01

    The process of crop domestication has long been a topic of active research for biologists, anthropologists and others. Genetic data have proved a powerful resource for drawing inferences on questions regarding the geographical origins of crops, the numbers of independent domestication events for a given crop species, the specific molecular changes underlying domestication traits, and the nature of artificial selection during domestication and subsequent crop improvement. We would argue that these genetic inferences are fundamentally compatible with recent archaeological data that support a view of domestication as a geographically diffuse, gradual process. In this review, we summarize methodologies ranging from QTL mapping to resequencing used in genetic analyses of crop evolution. We also highlight recent major insights regarding the timing and spatial patterning of crop domestication and the distinct genetic underpinnings of domestication, diversification, and improvement traits. PMID:20541451

  9. Crop responses to climatic variation

    PubMed Central

    Porter, John R; Semenov, Mikhail A

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal resolution. This paper demonstrates the impacts of climate variability for crop production in a number of crops. Increasing temperature and precipitation variability increases the risks to yield, as shown via computer simulation and experimental studies. The issue of food quality has not been given sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency. PMID:16433091

  10. Crop dusting or composting?

    PubMed

    Nemec, Patricia B

    2013-09-01

    In the education and training realm of psychiatric rehabilitation, this article uses a composting/crop-dusting metaphor to describe a competency-based framework of staff development. The crop-dusting, or "fly over," approach to training is likened to an aerial dump of information that may have some positive effect on growth if it's done at the right time and in the right place. The composting approach to training makes use of assessment, preparation, delivery, and follow-up. These four phases are linked to the specific training content and individualized to both the organization and the learners. A thorough training assessment examines existing competencies, how the content will be applied on the job, and whether current job expectations and responsibilities will support the use of the new knowledge and skill. Preparation is important in designing the training activities that are so critical to meeting the needs of adult learners and to ensuring their ability to understand and apply the training content. Delivery of the training must include practice opportunities with feedback and opportunities for trainees to work with the new knowledge or skills in a way that will preview, enhance, and clarify using them on the job. Follow-up should be designed from the beginning and is determined by the purpose of the training. Finally, observation and evaluation bring the process full circle by beginning the assessment for the next round of training. PMID:24059634

  11. Crop diversity sequencing can improve crop tolerance to weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The corn-soybean rotation in eastern South Dakota has led to a weed community comprised of species with similar life cycles to the crops; subsequently, weed management is a major input cost for producers. We are exploring crop diversity in this rotation to determine if producers can reduce the need...

  12. 605 Salad crops: Root, bulb, and tuber Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root and tuber crops (potato, cassava, sweet potato, and yams) comprise 4 of the 10 major food staples of the world and serve as a major source of energy for the poor of developing nations. Minimal strain placed on agro ecosystems by root and tuber crops highlight their welcomed contribution to the ...

  13. Genetically modified crops: Brazilian law and overview.

    PubMed

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; dos Santos, O J A P; Alves, D P; Brasileiro, B P; Peternelli, L A

    2014-01-01

    In Brazil, the first genetically modified (GM) crop was released in 1998, and it is estimated that 84, 78, and 50% of crop areas containing soybean, corn, and cotton, respectively, were transgenic in 2012. This intense and rapid adoption rate confirms that the choice to use technology has been the main factor in developing national agriculture. Thus, this review focuses on understanding these dynamics in the context of farmers, trade relations, and legislation. To accomplish this goal, a survey was conducted using the database of the National Cultivar Registry and the National Service for Plant Variety Protection of the Ministry of Agriculture, Livestock and Supply [Ministério da Agricultura, Pecuária e Abastecimento (MAPA)] between 1998 and October 13, 2013. To date, 36 events have been released: five for soybeans, 18 for corn, 12 for cotton, and one for beans. From these events, 1395 cultivars have been developed and registered: 582 for soybean, 783 for corn and 30 for cotton. Monsanto owns 73.05% of the technologies used to develop these cultivars, while the Dow AgroScience - DuPont partnership and Syngenta have 16.34 and 4.37% ownership, respectively. Thus, the provision of transgenic seeds by these companies is an oligopoly supported by legislation. Moreover, there has been a rapid replacement of conventional crops by GM crops, whose technologies belong almost exclusively to four multinational companies, with the major ownership by Monsanto. These results reflect a warning to the government of the increased dependence on multinational corporations for key agricultural commodities. PMID:25061747

  14. Cover Crop Basics for Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an under-utilized tool in Mid-Atlantic agriculture. Among their many benefits, cover crops supply N for the next crop and/or conserve residual N, and have great potential to improve soil quality. Before using cover crops, growers must identify niches within their cropping system an...

  15. Irrigation modeling with AquaCrop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AquaCrop is a crop water productivity model developed by the Land and Water Division of UN-FAO. It simulates yield response to water of herbaceous crops, and is suited to address conditions where water is a key limiting factor in crop production. AquaCrop attempts to balance accuracy, simplicity, an...

  16. Seed vigour and crop establishment: extending performance beyond adaptation.

    PubMed

    Finch-Savage, W E; Bassel, G W

    2016-02-01

    Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production. PMID:26585226

  17. Regulatory options for genetically modified crops in India.

    PubMed

    Choudhary, Bhagirath; Gheysen, Godelieve; Buysse, Jeroen; van der Meer, Piet; Burssens, Sylvia

    2014-02-01

    The introduction of semi-dwarfing, high-yielding and nutrients-responsive crop varieties in the 1960s and 1970s alleviated the suffering of low crop yield, food shortages and epidemics of famine in India and other parts of the Asian continent. Two semi-dwarfing genes, Rht in wheat and Sd-1 in rice heralded the green revolution for which Dr. Norman Borlaug was awarded the Nobel Peace Prize in 1970. In contrast, the revolutionary new genetics of crop improvement shamble over formidable obstacles of regulatory delays, political interferences and public misconceptions. India benefited immensely from the green revolution and is now grappling to deal with the nuances of GM crops. The development of GM mustard discontinued prematurely in 2001 and insect-resistant Bt cotton varieties were successfully approved for commercial cultivation in 2002 in an evolving nature of regulatory system. However, the moratorium on Bt brinjal by MOEF in 2010 meant a considerable detour from an objective, science-based, rigorous institutional process of regulatory approval to a more subjective, nonscience-driven, political decision-making process. This study examines what ails the regulatory system of GM crops in India and the steps that led to the regulatory logjam. Responding to the growing challenges and impediments of existing biosafety regulation, it suggests options that are critical for GM crops to take roots for a multiplier harvest. PMID:24460889

  18. [Effect of the same amount of faba bean fresh straw returning with different ratios of chemi- cal fertilizer on single cropping late rice].

    PubMed

    Wang, Jian-hong; Zhang, Xian; Cao, Kai; Hua, Jin-wei

    2015-05-01

    A field experiment was conducted on paddy soil derived from alluvial materials at Bihu Town, Lishui City, Zhejiang Province, China to explore the effects of combined application of faba bean fresh straw and different-rate chemical fertilizer on nutrient uptake, nutrient use efficiencies, and yields of single cropping late rice and to determine the optimal rate of chemical fertilizer under the condition of application of faba bean fresh straw at the rate of 15 t · hm(-2) (GM15) in 2012, April to December. The experiments consisted of 7 treatments: CK (no fertilizers) , CF (conventional chemical fertilizer rate) , and combined application of 15 t · hm(-2) of faba bean fresh straw and 0%, 20%, 40%, 60% and 80% of the conventional chemical fertilizer rate. The results showed that the highest total uptake amounts of N, P and K by the aboveground part were obtained from the treatments of GM15 + 60%CF and GM15 + 80% CF, but the highest nutrient agronomy use efficiencies of N, P and K in rice grains were obtained from the treatments of GM15 + 60% CF and GM15 + 40% CF. The agronomy use efficiencies and physiological use efficiencies of N, P, and K were significantly correlated with rice grain yields, thus they could be used for accurate comprehensive evaluation of fertilizer efficiencies of N, P, and K. Compared with no fertilizer treatment, the treatments of 100% CF and combined application of faba bean fresh straw and different-rate chemical fertilizer increased rice gain yields by 25.0% and 6.1%-29.2%, respectively. In the cropping system of faba bean-single cropping late rice, returning of 15 t · hm2 faba bean fresh straw to the paddy field did not result in the runt seedling of rice. From the point of improving fertilizer use efficiency and reducing environmental risk perspective, the optimum rate of chemical fertilizer was 60% of the conventional chemical fertilizer rate when 15 t · h(-2) of faba bean fresh straw was applied. PMID:26571653

  19. Double- and relay-cropping oilseed and biomass crops for sustainable energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically and environmentally sustainable bioenergy production requires strategic integration of biofuel crops into modern cropping systems. Double- and relay-cropping can offer a means of increasing production efficiency to boost profits and provide environmental benefits through crop diversific...

  20. Biosolarization in garlic crop

    NASA Astrophysics Data System (ADS)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  1. Midwest Cover Crops Field Guide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers who want to prevent soil erosion, improve nutrient cycling, sustain their soils, and protect/maintain the environment have been returning to a very old practice: planting cover crops. Cover crops are effective tools for reducing soil erosion and increasing nutrient recycling on farmlands, ...

  2. Crop Residue and Soil Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  3. Alternative cropping systems for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Research was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impac...

  4. Cryopreservation of Temperate Berry Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preservation of clonal fruit crops requires vegetative propagation. Cryopreservation in liquid nitrogen is considered an ideal method for long-term germplasm storage. Most of the existing cryopreservation techniques are effective for temperate berry crops. The availability of many techniques provi...

  5. Transgenic Crops for Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  6. High plains cover crop research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. Those stated benefits have included greatly reduced water use, enhanced soil microbiological activity, increased biomass productivity, and enhanced wa...

  7. Transgenic horticultural crops in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...

  8. Cell wall proteomics of crops

    PubMed Central

    Komatsu, Setsuko; Yanagawa, Yuki

    2012-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improving crop productivity, particularly under unfavorable environmental conditions. To better understand the mechanisms underlying stress response in crops, cell wall proteomic analyses are being increasingly utilized. In this review, the methods of purification and purity assays of cell wall protein fractions from crops are described, and the results of protein identification using gel-based and gel-free proteomic techniques are presented. Furthermore, protein composition of the cell walls of rice, wheat, maize, and soybean are compared, and the role of cell wall proteins in crops under flooding and drought stress is discussed. This review will be useful for clarifying the role of the cell wall of crops in response to environmental stresses. PMID:23403621

  9. Genetic Engineering and Crop Production.

    ERIC Educational Resources Information Center

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  10. Drought stress responses in crops.

    PubMed

    Shanker, Arun K; Maheswari, M; Yadav, S K; Desai, S; Bhanu, Divya; Attal, Neha Bajaj; Venkateswarlu, B

    2014-03-01

    Among the effects of impending climate change, drought will have a profound impact on crop productivity in the future. Response to drought stress has been studied widely, and the model plant Arabidopsis has guided the studies on crop plants with genome sequence information viz., rice, wheat, maize and sorghum. Since the value of functions of genes, dynamics of pathways and interaction of networks for drought tolerance in plants can only be judged by evidence from field performance, this mini-review provides a research update focussing on the current developments on the response to drought in crop plants. Studies in Arabidopsis provide the basis for interpreting the available information in a systems biology perspective. In particular, the elucidation of the mechanism of drought stress response in crops is considered from evidence-based outputs emerging from recent omic studies in crops. PMID:24408129

  11. VegScape: U.S. Crop Condition Monitoring Service

    NASA Astrophysics Data System (ADS)

    mueller, R.; Yang, Z.; Di, L.

    2013-12-01

    Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government

  12. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Proposed... amend the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to... statement into the Crop Provisions, and to make the Extra Long Staple Cotton Crop Insurance...

  13. Design of a Soil Science practical exercise to understand the soil carbon sequestration after biochar addition

    NASA Astrophysics Data System (ADS)

    Gascó, Gabriel; Cely, Paola; Saa-Requejo, Antonio; Mendez, Ana; Antón, Jose Manuel; Sánchez, Elena; Moratiel, Ruben; Tarquis, Ana M.

    2014-05-01

    The adaptation of the Universities to European Higher Education Area (EHEA) involves changes in the learning system. Students must obtain specific capabilities in the different degrees or masters. For example, in the degree of Agronomy at the Universidad Politécnica de Madrid (UPM, Spain), they must command Soil science, Mathematics or English. Sometimes, There is not a good communication between teachers and it causes that students do not understand the importance of the different subjects of a career. For this reason, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the role of soil on the carbon sequestration. The objective of this paper is to explain the followed steps to the design of the practice. Acknowledgement to Universidad Politécnica de Madrid for the Projects in Education Innovation IE12_13-02009 and IE12_13-02012.

  14. Design of a Soil Science practical exercise to understand the carbon sequestration in soil after biochar application

    NASA Astrophysics Data System (ADS)

    Gascó, Gabriel; Méndez, Ana; Antón, José Manuel; Grau, Juan; Sánchez, María Elena; Moratiel, Rubén; María Tarquis, Ana

    2013-04-01

    The adaptation of the Universities to European Higher Education Area (EHEA) involves changes in the learning system. Students must obtain specific capabilities in the different degrees or masters. For example, in the degree of Agronomy at the Universidad Politécnica de Madrid (UPM,Spain), they must command Soil science, Mathematics or English. Sometimes, There is not a good communication between teachers and it causes that students do not understand the importance of the different subjects of a career. For this reason, teachers of the Soil Science and Mathematics Departments of the UPM designed a common practice to teach to the students the importance of Soil Science and Mathematics in the study of carbon sequestration in a soil treated by biochar. The objective of this paper is to explain the followed steps to the design of the practice.

  15. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  16. Recycling crop residues for use in recirculating hydroponic crop production.

    PubMed

    Mackowiak, C L; Garland, J L; Sager, J C

    1996-12-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented. PMID:11541570

  17. Rice: The First Crop Genome.

    PubMed

    Jackson, Scott A

    2016-12-01

    Rice was the first sequenced crop genome, paving the way for the sequencing of additional and more complicated crop genomes. The impact that the genome sequence made on rice genetics and breeding research was immediate, as evidence by citations and DNA marker use. The impact on other crop genomes was evident too, particularly for those within the grass family. As we celebrate 10 years since the completion of the rice genome sequence, we look forward to new empowering tool sets that will further revolutionize research in rice genetics and breeding and result in varieties that will continue to feed a growing population. PMID:27003180

  18. Energy Crops and their Implications on Soil Carbon Sequestration, Surface Energy and Water Balance

    NASA Astrophysics Data System (ADS)

    Song, Y.; Barman, R.; Jain, A. K.

    2011-12-01

    The quest to meet growing energy demand with low greenhouse gas emissions has increased attention on the potential of existing and advanced biomass energy crops. Potential energy crops include row crops such as corn, and perennial grasses such as switchgrass. However, a massive expansion of bioenergy crops raises many questions such as: how and where to grow energy crops; and what will be the impacts of growing large scale biofuel crops on the terrestrial hydrological cycle, the surface energy budget, soil carbon sequestration and the concurrent effects on the climate system. An integrated modeling system is being developed with in the framework of a land surface model, the Integrated Science Assessment Model (ISAM), and being applied to address these questions.This framework accounts for the biophysical, physiological and biogeochemical systems governing important processes that regulate crop growth including water, energy and nutrient cycles within the soil-plant-atmosphere system. One row crop (Corn) and two energy crops (Switchgrass and Miscanthus) are studied in current framework. Dynamic phenology processes and parameters for simulating each crop have been developed using observed data from a north to south gradient of field trial sites. This study will specifically focus on the agricultural regions in the US and in Europe. The potential productivity of these three crops will be assessed in terms of carbon sequestration, surface energy and water balance and their spatial variability. This study will help to quantify the importance of various environmental aspects towards modeling bioenergy crops and to better understand the spatial and temporal dynamics of bioenergy crop yields.

  19. Biotechnology of oil seed crops

    SciTech Connect

    James, A.T.

    1985-02-01

    A general summary of possibilities and limitation application of biotechnology processes to processing and/or production of fats and oils is presented. Enzymatic processes, cloning of premium perennial oil crops and genetic manipulation of oil seed compositions are discussed.

  20. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  1. Envirotyping for deciphering environmental impacts on crop plants.

    PubMed

    Xu, Yunbi

    2016-04-01

    Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts. PMID:26932121

  2. METHODS FOR DETERMINING EXPOSURE TO AND POTENTIAL ECOLOGICAL EFFECTS OF GENE FLOW FROM GENETICALLY MODIFIED CROPS TO COMPATIBLE RELATIVES

    EPA Science Inventory

    SCIENCE QUESTIONS:

    -Does gene flow occur from genetically modified (GM) crop plants to compatible plants?

    -How can it be measured?

    -Are there ecological consequences of GM crop gene flow to plant communities?



    RESEARCH:

    The objectives ...

  3. Crop rotation principles for the northern Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop selection and sequencing serve as a cornerstone of sustainable cropping systems. Among the many options available to select and sequence crops, a fixed-sequence system, whereby crops are sequenced in a consistent, unchanging pattern, is the most simple. Fixed-sequence systems, however, can co...

  4. Integrating multiple satellite data for crop monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...

  5. Chayanov and Social Agronomy in Russia (1918).

    ERIC Educational Resources Information Center

    Sanchez de Puerta, F.

    1994-01-01

    Chayanov's ideas on rural development (farmer participation in agricultural evolution, increasing the scope and differentiation of extension activities, and using methods adapted to farmers' characteristics) could be usefully applied today in reforming Russian agriculture. (SK)

  6. The past, present and future of crop genetic modification.

    PubMed

    Fedoroff, Nina V

    2010-11-30

    The introduction of science and technology into agriculture over the past two centuries has markedly increased agricultural productivity and decreased its labor-intensiveness. Chemical fertilization, mechanization, plant breeding and molecular genetic modification (GM) have contributed to unparalleled productivity increases. Future increases are far from assured because of underinvestment in agricultural research, growing population pressure, decreasing fresh water availability, increasing temperatures and societal rejection of GM crops in many countries. PMID:20074679

  7. Developing trap cropping systems for effective organic management of key insect pests of cucurbit crops (IPM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trap cropping is a behaviorally-based pest management approach that functions by planting highly attractive plants next to a higher value crop so as to attract the pest to the trap crop plants, thus preventing or making less likely the arrival of the pest to the main crop (= cash crop). In 2012, a s...

  8. Biotechnology in biomass crop production

    SciTech Connect

    Harry, D.E.; Sederoff, R.R. . Dept. of Forestry; North Carolina State Univ., Raleigh, NC . Dept. of Forestry)

    1989-12-01

    There is great potential for the application of plant genetic engineering to production of biomass crops. Two factors largely determine the feasibility of crop improvement using genetic engineering: (1) the status of technology for the transfer and expression of foreign genetic material in plants, and (2) the level of understanding about genetic factors involved in the process or trait to be manipulated. Although information and technology for exploiting the potential of genetic engineering is in an early developmental phase, new research initiatives can now be taken to make significant advances. In this report we evaluate the nature and status of information and technology relating to specific problems of interest for production of biomass crops. In our discussions, we emphasize woody crops because our expertise is stronger in this area, but we have included information on herbaceous crops as appropriate. Plant genetic engineering has the potential to improve plantation or stand establishment, biomass production, and structural or chemical properties for efficient biomass utilization by either direct combustion or by conversion. Such research programs must be highly interdisciplinary, involving new technologies in laboratory research, in addition to traditional field testing. 119 refs.

  9. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  10. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  11. Field spectroscopy of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Daughtry, C. S. T.; Biehl, L. L.; Kanemasu, E. T.; Hall, F. G.

    1986-01-01

    The development of the full potential of multispectral data acquired from satellites, requires quantitative knowledge, and physical models of the spectral properties of specific earth surface features. Knowledge of the relationships between spectral-radiometric characteristics and important biophysical parameters of agricultural crops and soils can best be obtained by carefully controlled studies of fields or plots. It is important to select plots where data describing the agronomic-biophysical properties of the crop canopies and soil background are attainable, taking into account also the feasibility of frequent timely calibrated spectral measurements. The term 'field spectroscopy' is employed for this research. The present paper is concerned with field research which was sponsored by NASA as part of the AgRISTARS Supporting Research Project. Attention is given to field research objectives, field research instrumentation, measurement procedures, spectral-temporal profile modeling, and the effects of cultural and environmental factors on crop reflectance.

  12. Crop identification using ERTS imagery

    NASA Technical Reports Server (NTRS)

    Horton, M. L.; Heilman, J. L.

    1973-01-01

    Digital analysis of August 15 ERTS-I imagery for southeastern South Dakota was performed to determine the feasibility of conducting crop surveys from satellites. Selected areas of bands 4, 5, 6, and 7 positive transparencies were converted to digital form utilizing Signal Analysis and Dissemination Equipment (SADE). The optical transmission values were printed out in a spatial format. Visual analysis of the printouts indicated that cultivated areas were readily distinguished from non-cultivated areas in all four bands. Bare soil was easily recognized in all four bands. Corn and soybeans, the two major crops in the area, were treated as separate classes rather than as a single class called row crops. Bands 6 and 7 provided good results in distinguishing between corn and soybeans.

  13. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  14. Can crops tolerate acid rain

    SciTech Connect

    Kaplan, J.K.

    1989-11-01

    This brief article describes work by scientists at the ARS Air Quality-Plant Growth and Development Laboratory in Raleigh, North Carolina, that indicates little damage to crops as a result of acid rain. In studies with simulated acid rain and 216 exposed varieties of 18 crops, there were no significant injuries nor was there reduced growth in most species. Results of chronic and acute exposures were correlated in sensitive tomato and soybean plants and in tolerant winter wheat and lettuce plants. These results suggest that 1-hour exposures could be used in the future to screen varieties for sensitivity to acid rain.

  15. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  16. Connecting Groundwater, Crop Price, and Crop Production Variability in India

    NASA Astrophysics Data System (ADS)

    Pollack, A.; Lobell, D. B.; Jain, M.

    2015-12-01

    Farmers in India rely on groundwater resources for irrigation and production of staple crops that provide over half of the calories consumed domestically each year. While this has been a productive strategy in increasing agricultural production and maintaining high yields, groundwater resources are depleting at a quicker rate than natural resources can replace. This issue gains relevance as climate variability concurrently adds to yearly fluctuations in farmer demand for irrigation each year, which can create high risk for farmers that depend on consistent yields, but do not have access to dwindling water resources. This study investigates variability in groundwater levels from 2005 to 2013 in relation to crop prices and production by analyzing district-level datasets made available through India's government. Through this analysis, we show the impact of groundwater variability on price variability, crop yield, and production during these years. By examining this nine-year timescale, we extend our analysis to forthcoming years to demonstrate the increasing importance of groundwater resources in irrigation, and suggest strategies to reduce the impact of groundwater shortages on crop production and prices.

  17. Science in Science Fiction.

    ERIC Educational Resources Information Center

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  18. Bringing science to the people

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is an opinion editorial piece about the International Society for Horticultural Science (ISHS). It describes the active role that the ISHS takes in bringing scientific information to people throughout the world. The society holds periodic symposia on 10 different crops and 14 different cross-co...

  19. Economic impacts of glyphosate-resistant crops.

    PubMed

    Gianessi, Leonard P

    2008-04-01

    Glyphosate-resistant crops have been widely planted since their introduction in 1996. Growers have numerous choices for herbicide treatments and have chosen to plant glyphosate-resistant crops on the basis of economic factors. The economic effects of the widespread planting of glyphosate-resistant crops have included reductions in herbicide expenses, increases in seed costs, increased yield and changes in the relative profitability of crops that has resulted in changes in which crops are planted. In addition, non-pecuniary benefits have accrued as a result of the simplicity of weed management in the glyphosate-resistant crop systems. PMID:18181242

  20. The Significance of Science

    NASA Astrophysics Data System (ADS)

    Pielke, R.

    2002-05-01

    Whether global warming, terrestrial carbon sinks, ecosystem functioning, genetically modified organisms, cloning, vaccination or chemicals in the environment, science is increasingly the battlefield on which political advocates, not least lawyers and commercial interests, manipulate `facts' to their preferred direction, which fosters the politicization of science. Debate putatively over science increasingly relies on tactics such as ad hominem attacks and criticism of process (for example, peer review or sources of funding), through paid advertisements, press releases and other publicity campaigns. As political battles are waged through `science', many scientists are willing to adopt tactics of demagoguery and character assassination as well as, or even instead of, reasoned argument, as in aspects of debate over genetically modified crops or global warming. Science is becoming yet another playing field for power politics, complete with the trappings of media spin and a win-at-all-costs attitude. Sadly, much of what science can offer policymakers, and hence society, is lost. This talk will use cases from the atmospheric sciences as points of departure to explore the politicization of science from several perspectives and address questions such as: Is it a problem? For whom and what outcomes? What are the alternatives to business-as-usual?

  1. CROP GENOME DATABASES -- CRITICAL ISSUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genome databases, see www.agron.missouri.edu/bioservers.html of the past decade have had designed and implemented (1) models and schema for the genome and related domains; (2) methodologies for input of data by expert biologists and high-throughput projects; and (3) various text, graphical, and...

  2. Sustainability of Switchgrass Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is native to the eastern two thirds of temperate North America. It has been used for conservation purposes and as a pasture grass since the 1940’s. It is currently being developed as a cellulosic biomass energy crop because it can produ...

  3. Risk Management of GM Crops

    EPA Science Inventory

    Driven by biofuel demand, a significant increase in GM corn acreage is anticipated for the 2007 growing season with future planted GM corn acreage approaching 80% of the corn crop by 2009. As demand increases, grower non-compliance with mandated planting requirements is likely to...

  4. Nutrient biofortification of food crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, b...

  5. Natural Rubber from Domestic Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States is wholly dependent upon imports of natural rubber from tropical countries and is the world’s largest consumer of this strategic raw material. Development of domestic rubber crops will create supply security for this strategic raw material, enhance rural development, and create bio...

  6. Crop stubble needs and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in Australia and elsewhere around the world are being offered opportunities to market their crop residues as a bioenergy feedstock, but many are not aware of how that could affect their soil resources. This report shares information from the USDA-ARS Renewable Energy Assessment Project (REAP...

  7. Vegetable Crop Pests. MEP 311.

    ERIC Educational Resources Information Center

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds, and diseases.…

  8. Fruit Crop Pests. MEP 312.

    ERIC Educational Resources Information Center

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds, and diseases. Also in…

  9. Bioenergy Potential of Forage Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass generally refers to the organic matter from plants and, in terms of energy production, includes herbaceous and woody crops along with their residues. Biofuels derived from this organic matter include alcohols, ethers, esters, and other chemicals. The term biofuels often is used interchangeab...

  10. SIMULATED ACID RAIN ON CROPS

    EPA Science Inventory

    In 1981, simulated H2SO4 acid rain was applied to alfalfa and tall fescue and a 2:1 ratio of H2SO4:HNO3 acid rain was applied to alfalfa, tall fescue, barley, wheat, potato, tomato, radish, and corn crops growing in the open field at Corvallis, Oregon. Careful attention was given...

  11. Papaya: environment and crop physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papaya (Carica papaya L.) is a principal horticultural crop of tropical and subtropical regions. Knowledge of how papaya responds to environmental factors provides a scientific basis for the development of management strategies to optimize fruit yield and quality. A better understanding of genotyp...

  12. IN SEASON CROP N MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional nitrogen (N) management schemes for corn production in the USA have resulted in low N use efficiency (NUE), environmental contamination, and considerable public debate regarding use of N fertilizers in crop production. Hence, development of alternative schemes that improve NUE and minimi...

  13. The limits of crop productivity

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce; Monje, Oscar

    1992-01-01

    The component processes that govern yield limits in food crops are reviewed and how each process can be individually measured is described. The processes considered include absorption of photosynthetic radiation by green tissue, carbon-fixation efficiency in photosynthesis, carbon use efficiency in respiration, biomass allocation to edible products, and efficiency of photosynthesis and respiration. The factors limiting yields in optimal environments are considered.

  14. Biodiversity: Building blocks for crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increasing global population will require more efficient food production. By year 2025, we will need 20-24% increases in yields of crops to meet the projected increase in food, fiber, and bioenergy demand from the global population. The competition to use limited land and sometimes compromised ...

  15. Natural Products in Crop Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The success of modern agricultural practices is due in part to discovery and adoption of chemicals for pest control. Indeed, the tremendous increase in crop yields associated with the ‘green’ revolution would not have been achieved without the contribution of these synthetic compounds. The abundance...

  16. Precision Fertigation for Specialty Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in micro irrigation have facilitated greater adoption of fertigation for specialty crops. Fertigation improves nutrient uptake efficiency, minimize leaching of NO3-N below the root zone, and increases the yield and quality as compared to those with dry fertilizer broadcast. This paper is ba...

  17. Monitoring crop biochemical concentrations by high spectral remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Yan, Jing; Chen, Yonghua; Niu, Zheng; Wang, Changyao

    1999-12-01

    High spectral remote sensing is a hopeful technology in diagnosing crop nutrition background. With surface spectral measurement and laboratory biochemical analysis, the relationship between crop properties and spectral remote sensing data has been established. Seven chemical components - total chlorophyll, water crude protein, soluble sugar, N, P, K - were analyzed by laboratory chemical analyzing instrument. Foliar spectral property was detected outdoors by surface spectrometer. Chemical concentrations have been related to foliar spectral properties through stepwise multiple regression. The statistical equations between the chemical concentrations and reflectance as well as its several transformations were established. They underscored good estimation performance for chlorophyll, water crude protein, N and K with high squared multiple correlation coefficients (R2) values and high believable level. Especially R2 value of the equation between crude protein concentration and the first derivative of reflectance is 0.9564, which is the best result in the study of the fresh leave biochemistry up to now. On the basis of field experiment, an airborne remote sensing for crop nutrition monitoring was conducted in Shunyi County, Beijing, PR China. The sensor, made by Chinese Academy of Sciences, is in visible and near IR band. By image processing, the crop biochemistry map is obtained.

  18. AN APPROACH TO TRANSGENIC CROP MONITORING

    EPA Science Inventory

    Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...

  19. Nutritionally enhanced food crops; progress and perspectives.

    PubMed

    Hefferon, Kathleen L

    2015-01-01

    Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world's poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops. PMID:25679450

  20. Nutritionally Enhanced Food Crops; Progress and Perspectives

    PubMed Central

    Hefferon, Kathleen L.

    2015-01-01

    Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops. PMID:25679450

  1. Crop Genetics: The Seeds of Revolution.

    ERIC Educational Resources Information Center

    DeYoung, H. Garrett

    1983-01-01

    Current research in plant genetics is described. Benefits of this research (which includes genetic engineering applications) will include reduction/elimination of crop diseases, assurance of genetic stability, and the creation of new crop varieties. (JN)

  2. A Systematic Review of Perennial Staple Crops Literature Using Topic Modeling and Bibliometric Analysis

    PubMed Central

    2016-01-01

    Research on perennial staple crops has increased in the past ten years due to their potential to improve ecosystem services in agricultural systems. However, multiple past breeding efforts as well as research on traditional ratoon systems mean there is already a broad body of literature on perennial crops. In this review, we compare the development of research on perennial staple crops, including wheat, rice, rye, sorghum, and pigeon pea. We utilized the advanced search capabilities of Web of Science, Scopus, ScienceDirect, and Agricola to gather a library of 914 articles published from 1930 to the present. We analyzed the metadata in the entire library and in collections of literature on each crop to understand trends in research and publishing. In addition, we applied topic modeling to the article abstracts, a type of text analysis that identifies frequently co-occurring terms and latent topics. We found: 1.) Research on perennials is increasing overall, but individual crops have each seen periods of heightened interest and research activity; 2.) Specialist journals play an important role in supporting early research efforts. Research often begins within communities of specialists or breeders for the individual crop before transitioning to a more general scientific audience; 3.) Existing perennial agricultural systems and their domesticated crop material, such as ratoon rice systems, can provide a useful foundation for breeding efforts, accelerating the development of truly perennial crops and farming systems; 4.) Primary research is lacking for crops that are produced on a smaller scale globally, such as pigeon pea and sorghum, and on the ecosystem service benefits of perennial agricultural systems. PMID:27213283

  3. A Systematic Review of Perennial Staple Crops Literature Using Topic Modeling and Bibliometric Analysis.

    PubMed

    Kane, Daniel A; Rogé, Paul; Snapp, Sieglinde S

    2016-01-01

    Research on perennial staple crops has increased in the past ten years due to their potential to improve ecosystem services in agricultural systems. However, multiple past breeding efforts as well as research on traditional ratoon systems mean there is already a broad body of literature on perennial crops. In this review, we compare the development of research on perennial staple crops, including wheat, rice, rye, sorghum, and pigeon pea. We utilized the advanced search capabilities of Web of Science, Scopus, ScienceDirect, and Agricola to gather a library of 914 articles published from 1930 to the present. We analyzed the metadata in the entire library and in collections of literature on each crop to understand trends in research and publishing. In addition, we applied topic modeling to the article abstracts, a type of text analysis that identifies frequently co-occurring terms and latent topics. We found: 1.) Research on perennials is increasing overall, but individual crops have each seen periods of heightened interest and research activity; 2.) Specialist journals play an important role in supporting early research efforts. Research often begins within communities of specialists or breeders for the individual crop before transitioning to a more general scientific audience; 3.) Existing perennial agricultural systems and their domesticated crop material, such as ratoon rice systems, can provide a useful foundation for breeding efforts, accelerating the development of truly perennial crops and farming systems; 4.) Primary research is lacking for crops that are produced on a smaller scale globally, such as pigeon pea and sorghum, and on the ecosystem service benefits of perennial agricultural systems. PMID:27213283

  4. Life sciences.

    PubMed

    Schmidt, Gregory K

    2002-12-01

    Space life sciences research activities are reviewed for the year. Highlights of animal studies were the first long-term flight of an animal enclosure module and an avian development facility on STS-108. Plant research efforts focused on a biomass production system for eventual use on the International Space Station (ISS), the PESTO experiment on ISS, and screening of several salad crop varieties for potential use in space. Health-related studies included the Martian Radiation Environment Experiment (MARIE) on the Mars Odyssey mission, presentation of results from NASA's Biomolecular Physics and Chemistry Program, and research related to human liver cell function in space through an agreement with StelSys. In industry and academia, a memorandum of understanding was signed between NASA and the biotechnology industry to enhance communication between NASA and the industry, expand commercial biotechnology space research and development, and expand formal and informal education of industry and the public regarding biotechnology and space research. NASA selected Purdue University to lead an NSCORT for advanced life support research to develop technologies to enable long-duration planetary mission and sustain human space colonies. PMID:12506925

  5. Looking forward to genetically edited fruit crops.

    PubMed

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed. PMID:25129425

  6. Economics of Rainfed Cropping Systems: Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Johnson, Sam H., III; Charoenwatana, Terd

    1981-06-01

    Using a computer model to simulate effective rainfall, it is shown that a flexible rainfed cropping system based on a legume crop planted before rice has a greater expected return than present subsistent rainfed cropping systems. Combining a legume crop intercropped with cassava or kenaf further increases the expected returns yet maintains the stability of the new system. Further research is required to bring the farmer's yields up to match experiment station results and to facilitate effective transfer policies.

  7. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems.

    PubMed

    Anten, Niels P R; Vermeulen, Peter J

    2016-06-01

    Plant communities with traits that would maximize community performance can be invaded by plants that invest extra in acquiring resources at the expense of others, lowering the overall community performance, a so-called tragedy of the commons (TOC). By contrast, maximum community performance is usually the objective in agriculture. We first give an overview of the occurrence of TOCs in plants, and explore the extent to which past crop breeding has led to trait values that go against an unwanted TOC. We then show how linking evolutionary game theory (EGT) with mechanistic knowledge of the physiological processes that drive trait expression and the ecological aspects of biotic interactions in agro-ecosystems might contribute to increasing crop yields and resource-use efficiency. PMID:27012675

  8. Control of crop diseases, third edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The authors in the Control of Crop Diseases cover a wide range of topics from crop diseases and their diagnosis and eradication to a primer on fungicides and legislation. This wide range of topics, all critical to the topic of crop diseases, thus appeals to a wide audience from molecular biologists,...

  9. Evaluating Decision Rules for Dryland Crop Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till dryland cropping systems in the central Great Plains have more water available for crop production than the traditional conventionally tilled winter wheat (Triticum aestium L.)-fallow systems because of greater precipitation storage efficiency. That water is used most efficiently when a crop...

  10. Possible future directions in crop yield forecasting

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.

    1979-01-01

    This paper examines present and future possible applications of remote sensing to crop yield forecasting. It is concluded that there are ways in which Landsat data could be used to assist in crop yield forecasting using present technology. A framework for global crop yield forecasting which uses remote sensing, meteorological, field and ancillary data, as available, is proposed for the future.

  11. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 993.20 Section 993.20 Agriculture... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year....

  12. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  13. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Crop year. 1221.6 Section 1221.6 Agriculture... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year... calendar year in which sorghum is normally harvested....

  14. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations... Definitions § 930.4 Crop year. Crop year means the 12-month period beginning on July 1 of any year and ending on June 30 of the following year, or such other period as the Board, with the approval of...

  15. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12-month period beginning October 1 of each year and ending September 30 of the following year....

  16. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 989.21 Section 989.21 Agriculture... CALIFORNIA Order Regulating Handling Definitions § 989.21 Crop year. Crop year means the 12-month period beginning with August 1 of any year and ending with July 31 of the following year....

  17. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Crop year. 1221.6 Section 1221.6 Agriculture... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year... calendar year in which sorghum is normally harvested....

  18. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  19. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  20. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  1. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year means the time period by which the USDA reports crop production for sorghum and is indicated by...

  2. 7 CFR 1437.12 - Crop definition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Crop definition. 1437.12 Section 1437.12 Agriculture... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM General Provisions § 1437.12 Crop definition. (a) For the purpose of providing benefits under this part, CCC will,...

  3. Timely precipitation drives cover crop outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  4. Collection of sugarcane crop residue for energy

    SciTech Connect

    Eiland, B.R.; Clayton, J.E.

    1982-12-01

    Crop residue left after sugarcane harvesting was recovered using a forage harvester and a large round baler. The quantity, bulk density and moisture content of the crop residue was determined in four fields. Crop residue from 7 ha was burned in boilers at a sugar mill. Samples of this residue were tested by a laboratory and compared to sugarcane bagasse.

  5. Roadmap to increased cover crop adoption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are increasingly utilized by farmers and promoted by agronomists for the multiple benefits they contribute to soil and crop management systems. Yet, only a small percentage of cropland is planted to cover crops. In June of 2012, the National Wildlife Federation brought together 36 of the...

  6. Water usage in southeastern bioenergy crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southeastern United States with its long growing season and mild winter temperatures has long been able to produce a variety of food, forage, and fiber crops. In addition to these crops, the Southeast is capable of producing a plethora of lignoceullosic-based bioenergy crops for conversion into ...

  7. Nutrient management studies in biofuel cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on biofuel crop production, and to evaluate long term effects of biofuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on biofuel crop production were esta...

  8. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 993.20 Section 993.20 Agriculture... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year....

  9. 7 CFR 1208.3 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Crop year. 1208.3 Section 1208.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... § 1208.3 Crop year. Crop year means the 12-month period from April 1 to March 31 or such other...

  10. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations... Definitions § 930.4 Crop year. Crop year means the 12-month period beginning on July 1 of any year and ending on June 30 of the following year, or such other period as the Board, with the approval of...

  11. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12-month period beginning October 1 of each year and ending September 30 of the following year....

  12. 7 CFR 1208.3 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Crop year. 1208.3 Section 1208.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... § 1208.3 Crop year. Crop year means the 12-month period from April 1 to March 31 or such other...

  13. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12-month period beginning October 1 of each year and ending September 30 of the following year....

  14. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 993.20 Section 993.20 Agriculture... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year....

  15. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12-month period beginning October 1 of each year and ending September 30 of the following year....

  16. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  17. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 993.20 Section 993.20 Agriculture... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year....

  18. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  19. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following...

  20. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

    DOE PAGESBeta

    Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; Chen, Guangsheng; Li, Yong; Zhang, Caixia

    2015-06-05

    Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.

  1. 78 FR 47214 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation... the Common Crop Insurance Regulations, Extra Long Staple (ELS) Cotton Crop Insurance Provisions to... 48 FR 29115, June 24, 1983. Executive Order 12988 This proposed rule has been reviewed in...

  2. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Corporation 7 CFR Part 457 RIN 0563-AC27 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop... Insurance Corporation (FCIC) finalizes amendments made to the Common Crop Insurance Regulations, Extra Long... incorporate a current Special Provisions statement into the Crop Provisions, and to make the Extra Long...

  3. 77 FR 27658 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...The Federal Crop Insurance Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Processing Sweet Corn Crop Insurance Provisions. The intended effect of this action is to provide policy changes that better meet the needs of insured producers. The proposed changes will be effective for the 2013 and succeeding crop...

  4. Cover crop effects on soil carbon and nitrogen under bioenergy sorghum crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can increase soil C and N storage and reduce the potential for N leaching under agronomic crops, but information on their benefits under bioenergy crops is scanty due to the removal of aboveground biomass. The objective of the study was to evaluate the effect of cover crops on soil organ...

  5. Use Of Crop Canopy Size To Estimate Water Requirements Of Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting time, plant density, variety, and cultural practices vary widely for horticultural crops. It is difficult to estimate crop water requirements for crops with these variations. Canopy size, or factional ground cover, as an indicator of intercepted sunlight, is related to crop water use. We...

  6. 76 FR 43606 - Common Crop Insurance Regulations; Onion Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    .... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24, 1983... Insurance Regulations; Onion Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA... Common Crop Insurance Regulations, Onion Crop Insurance Provisions. The intended effect of this action...

  7. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  8. Estimating Crop Water use From Remotely Sensed NDVI, Crop Models and Reference ET

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop water use can be estimated from reference evapotranspiration, ETo, calculated from weather station data, and estimated crop coefficients, Kc. However, because Kc varies with crop growth rate, planting density, and management practices, generic Kc curves often don’t match actual crop water use....

  9. Science and Science Fiction

    ScienceCinema

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2009-09-01

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  10. Ammonia volatilization from crop residues and frozen green manure crops

    NASA Astrophysics Data System (ADS)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  11. The science of integrated crop-livestock systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the USA and other industrialized countries of the world has become increasingly specialized in response to political, regulatory, and economic pressures to meet market demands of an ever-larger food and fiber processing sector. However, there is a growing concern with specialized agr...

  12. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  13. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  14. Ancestors of modern plant crops.

    PubMed

    Salse, Jérôme

    2016-04-01

    Recent accumulation of plant genomic resources offers the opportunity to compare modern genomes and model their evolutionary history from their reconstructed Most Recent Common Ancestors (MRCAs) that can be used as a guide to unveil the forces driving the evolutionary success of angiosperms and ultimately to perform applied translational research from models to crops. This article reviews the current state of art of recent structural comparative genomics studies through ancestral genome reconstruction, that is, the field of in silico paleogenomics. PMID:26985732

  15. MODELING WORLD BIOENERGY CROP POTENTIAL

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kensuke; Hanasaki, Naota; Kanae, Shinjiro

    Bioenergy is regarded as clean energy due to its characteristics and expected to be a new support of world energy de¬mand, but there are few integrated assessments of the potential of bioenergy considering sustainable land use. We esti¬mated the global bioenergy potential with an integrated global water resources model, the H08. It can simulate the crop yields on global-scale at a spatial resolution of 0.50.5. Seven major crops in the world were considered; namely, maize, sugar beet, sugar cane, soybean, rapeseed, rice, and wheat, of which the first 5 are commonly used to produce biofuel now. Three different land-cover types were chosen as potential area for cultivation of biofuel-producing crop: fallow land, grassland, and portion of forests (excluding areas sensitive for biodiversity such as frontier forest). We attempted to estimate the maximum global bioenergy potential and it was estimated to be 1120EJ. Bioenergy potential depends on land-use limitations for the protection of bio-diversity and security of food. In another condition which assumed more land-use limitations, bioenergy potential was estimated to be 70-233EJ.

  16. Androgenesis in recalcitrant solanaceous crops.

    PubMed

    Seguí-Simarro, José M; Corral-Martínez, Patricia; Parra-Vega, Verónica; González-García, Beatriz

    2011-05-01

    Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations. PMID:21191595

  17. Extreme weather events and global crop production

    NASA Astrophysics Data System (ADS)

    Ray, D. K.; Gerber, J. S.; West, P. C.

    2014-12-01

    Extreme weather events can lead to significant loss in crop production and even trigger global price spikes. However it is still not clear where exactly and what types of extreme events have resulted in sharp declines in crop production. Neither is it clear how frequently such extreme events have resulted in extreme crop production losses. Using extreme event metrics with a newly developed high resolution and long time series of crop statistics database we identify the frequency and type of extreme event driven crop production losses globally at high resolutions. In this presentation we will present our results as global maps identifying the frequency and type of extreme weather events that resulted in extreme crop production losses and quantify the losses. Understanding how extreme events affects crop production is critical for managing risk in the global food system

  18. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop

  19. Crop growth stress and yield reduction as detected from spectral data

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana

    airborne data. The valuable outputs of the approach are threefold: - crop state assessment (retrieved growth variables) at different development stages; - alarm and risk warning (crop stress detection); - yield predictions. The present study was supported by National Science Fund of Bulgaria (NSFB) under Contracts NZ-1410/04 and INI-12/05 and RAS-BAS project "Development of New Technologies in Aerospace Remote Sensing of the Earth Surface".

  20. Science in science fiction

    NASA Astrophysics Data System (ADS)

    Allday, Jonathan

    2003-01-01

    Science fiction, from Star Trek to Star Wars, is hugely popular and pupils will surely have encountered good and bad physics there, but do they really notice? Discussing the science implied in books and movies, such as in the use of transporters, can be a good way of getting students interested in physics.

  1. Handling Procedures of Vegetable Crops

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  2. Safe composition levels of transgenic crops assessed via a clinical medicine model

    PubMed Central

    Herman, Rod A; Scherer, Peter N; Phillips, Amy M; Storer, Nicholas P; Krieger, Mark

    2010-01-01

    Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. Substantial equivalence has become established as a foundation concept in the safety evaluation of transgenic crops. In the case of a food and feed crop, no single variety is considered the standard for safety or nutrition, so the substantial equivalence of transgenic crops is investigated relative to the array of commercial crop varieties with a history of safe consumption. Although used extensively in clinical medicine to compare new generic drugs with brand-name drugs, equivalence limits are shown to be a poor model for comparing transgenic crops with an array of reference crop varieties. We suggest an alternate model, also analogous to that used in clinical medicine, where reference intervals are constructed for a healthy heterogeneous population. Specifically, we advocate the use of distribution-free tolerance intervals calculated across a large amount of publicly available compositional data such as is found in the International Life Sciences Institute Crop Composition Database. PMID:20084639

  3. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  4. The UK Crop Plant Bioinformatics Network (UK CropNet)

    PubMed Central

    May, Sean

    2000-01-01

    UK CropNet currently provides a range of databases (and database-mining tools) to the plant community that are all freely accessible through our website (http://ukcrop.net/). Recent upgrades have meant that we can now expand the range of available facilities (e.g. addition of new databases) whilst also strengthening and improving access to existing services (e.g. providing a BLAST search facility against sequences in our databases). This article will briefly outline these and other new developments in our service. PMID:11119312

  5. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  6. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  7. USDA-ARS-SPA Wheat, Peanut and Other Field Crops Research Unit annual report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Report on the research activities of the Small Grains and other Crops Research Unit of the USDA-ARS, Plant Science Research Laboratory in Stillwater, Oklahoma, was compiled for WERA-066 Meeting that was held in Ft. Collins, Colorado, September 2010. Research summaries included predicting the impa...

  8. USDA-ARS-SPA Wheat, Peanut and Other Field Crops Research Unit Annual Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Report on the research activities of the Small Grains and other Crops Research Unit of the USDA-ARS, Plant Science Research Laboratory in Stillwater, Oklahoma, was compiled for WERA-066 Meeting that was held in Stillwater, Oklahoma, February 24-26, 2009. Research summaries included predicting the...

  9. Herbicide-Resistance in Crops and Weeds: A Historical and Current Perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicides are the principal economic means of weed management on >90% of U.S. farmland. Herbicide-resistant crop cultivars have been used widely since 1995. Pest disciplines and other life sciences have various definitions of resistance that share commonalities. Development of herbicide resistant w...

  10. A REVIEW ON THE DEVELOPMENT OF CROP MODELING AND ITS APPLICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the development of system and computer sciences, crop modeling was born in the 1960's and developed faster and faster afterwards, covering a series of stages from infancy to maturity, from empirical description to process analysis, and from theoretical research to practical application. Genera...

  11. The Effects of Different Concentrations of Lead Salts on a Variety of Crop Plants

    ERIC Educational Resources Information Center

    Whiteley, Liz; Gibbon, Jamie; Hofgartner, Jon; Mason, Craig; Willmetts, Helen

    2003-01-01

    An investigation is described that would be suitable for A-level or first year degree Biology or Environmental Science students. Crop plants were grown in different concentrations of lead chloride and lead nitrate. French beans, carrots and Brussels sprouts were all inhibited at concentrations over 0.01 mol dm[superscript -3] showing stunted root…

  12. USDA-ARS Wheat, Peanut and Other Field Crops Research Unit Annual Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Report on the research activities of the Small Grains and other Crops Research Unit of the USDA-ARS, Plant Science Research Laboratory in Stillwater, Oklahoma, was compiled for WERA-066 Meeting that was held in Manhattan, Kansas, September 18 - 20, 2006. Research summaries included predicting the...

  13. Metabolomics of Genetically Modified Crops

    PubMed Central

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  14. Metabolomics of genetically modified crops.

    PubMed

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  15. Cellulosic energy cropping systems – Chapter 5: Sugarcane and energy cane, and Napiergrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Energy Independence and Security Act of 2007 mandates that 16 billion of the targeted 36 billion gallons of biofuels must be derived from cellulosic sources. Sugarcane (Saccharum sp.) as a biofuel feedstock has the tremendous potential as a source of this biofuel. Sugarcane is a major agronomi...

  16. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  17. Linking Drought Information to Crop Yield

    NASA Astrophysics Data System (ADS)

    Madadgar, S.; Farahmand, A.; Li, L.; Aghakouchak, A.

    2015-12-01

    Droughts have detrimental impacts on agricultural yields all over the world every year. This study analyzes the relationship between three drought indicators including Standardized Precipitation Index (SPI); Standardized Soil Moisture Index (SSI), Multivariate Standardized Drought Index (MSDI) and the yields of five largest rain-fed crops in Australia (wheat, broad beans, canola, lupins and barley). Variation of the five chosen crop yields is overall in agreement with the three drought indicators SPI, SSI, and MSDI during the analysis period of 1980-2012. This study develops a bivariate copula model to investigate the statistical dependence of drought and crop yield. Copula functions are used to establish the existing connections between climate variables and crop yields during the Millennium drought in Australia. The proposed model estimates the likelihood of crop yields given the observed or predicted drought indicators SPI, SSI or MSDI. The results are also useful to estimate crop yields associated with different thresholds of precipitation or soil moisture.

  18. The agronomic science of spatial and temporal water management:How much, when and where

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agronomic sciences are those that are applied to soil and water management and crop production, including soil, water and plant sciences and related disciplines. The science of spatial and temporal water management includes many agronomic science factors, including soil physics, biophysics, plan...

  19. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  20. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  1. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  2. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  3. Diversifying crops: the Nicaraguan experiment.

    PubMed

    Meyrat, A

    1992-01-01

    Over 1/2 of Nicaragua's population lives in the Pacific Plains where cotton has been grown intensively for 40 years. This single-crop economy has led to massive deforestation, wind and water erosion has affected the soil, and extensive use of pesticides has deposited excessive amounts of DDT in the breast milk of nursing mothers. After the downfall of the Somoza dictatorship the subsequent agrarian reform has been hampered by lack of information and training on sustainable methods of farming. The Pikin Guerrero project is a sustainable development experiment involving 2200 peasant families jointly run by the Nicaraguan Institute for Natural Resources and the Environment (IRENA) and the World Conservation Union (IUCN). The farmers grow corn and beans while exhausting the area's natural resources through forest clearing with the result of spreading erosion of fragile soils. 400 farmers have reshaped their production systems with the help of experts. Annual crops have become more diverse: yucca, 10 varieties of bean, 3 of pineapple, and 4 of corn, plus coffee, mango, bananas, and avocado. Soil conservation practices have been introduced, and farmers have built terraces. The initial pilot project comprised 5000 hectares, it is being expanded to cover another 10,000 hectares. The introduction of family planning to the local people is the next undertaking. PMID:12317702

  4. Short rotation Wood Crops Program

    SciTech Connect

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  5. Science, technique, technology: passages between matter and knowledge in imperial Chinese agriculture.

    PubMed

    Bray, Francesca

    2008-09-01

    Many historians today prefer to speak of knowledge and practice rather than science and technology. Here I argue for the value of reinstating the terms science, techniques and technology as tools for a more precise analysis of governmentality and the workings of power. My tactic is to use these three categories and their articulations to highlight flows between matter and ideas in the production and reproduction of knowledge. In any society, agriculture offers a wonderfully rich case of how ideas, material goods and social relations interweave. In China agronomy was a science of state, the basis of legitimate rule. I compare different genres of agronomic treatise to highlight what officials, landowners and peasants respectively contributed to, and expected from, this charged natural knowledge. I ask how new forms of textual and graphic inscription for encoding agronomic knowledge facilitated its dissemination and ask how successful this knowledge proved when rematerialized and tested as concrete artefacts or techniques. I highlight forms of innovation in response to crisis, and outline the overlapping interpretative frameworks within which the material applications of Chinese agricultural science confirmed and extended its truth across space and time. PMID:19244848

  6. Origins of food crops connect countries worldwide

    PubMed Central

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  7. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  8. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  9. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  10. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  11. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year....

  12. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  13. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  14. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  15. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  16. 7 CFR 1219.5 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.5 Crop...

  17. Crop emergence date determination from spectral data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1980-01-01

    Estimating the emergence of a given crop, such as wheat or barley, is proposed using an analytic method which relies on the hypothesis that in the region (lambda = 0.70-1.35 microns) a given crop, after emergence, has a unique spectral profile in time. If the crop emerges early or late, relative to a reference standard determined for a given segment, the profile is displaced but has the same shape. Therefore, given the crop specific constants of the reference profile and a sufficient number of Landsat observations of reflectivity at specific times, the emergence date of a field can be determined.

  18. Large area crop inventory experiment crop assessment subsystem software requirements document

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The functional data processing requirements are described for the Crop Assessment Subsystem of the Large Area Crop Inventory Experiment. These requirements are used as a guide for software development and implementation.

  19. An Assessment of Bio-Energy Crops Use in Illinois

    NASA Astrophysics Data System (ADS)

    Jain, A.; Khanna, M.; Barman, R.; Yang, X.; Dhungana, B.; Chen, X.

    2007-12-01

    Growing concern about climate change and energy security has led to increasing interest in developing domestically available renewable energy sources for meeting the electricity, heating and fuel needs in the United States. Illinois has a significant potential to grow perennial grasses that can provide bio-energy. Two perennial grasses, Switchgrass and Miscanthus, have been identified as among the best choices for low input bio-energy production in the US and Europe. The purpose of this talk is two fold. First, we will examine the optimal areas in Illinois to locate perennial grasses as feedstocks. These areas will be determined based on biophysical conditions (such as heterogeneity in soil quality and climatic factors) and costs of production and costs of land that differ across locations. Second, we will determine the CO2 mitigation benefits to be provided by bioenergy crops, both in the form of soil carbon sequestration and displacement of carbon emissions from gasoline. This analysis will be undertaken using detailed GIS data on soil quality, climate and land use for 0.1deg by 0.1deg grid cells in Illinois. This data will be used together with the Integrated Science Assessment Model (ISAM), a terrestrial ecosystem model, to estimate the yields of Switchgrass and Miscanthus as well as their potential to sequester carbon in the soil. Yield for row crops will be based on historical data and will be used to determine the opportunity cost of converting land currently under corn and soybean production to perennial grasses. Costs of production for the alternative crops here include expenses incurred by farmers on fertilizer inputs, machinery, harvesting and transportation and will be used to determine the profitability of alternative land uses in each grid cell. The framework developed here will be used to examine the optimal locations to grow bio-energy crops to achieve various carbon mitigation targets cost-effectively.

  20. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    SciTech Connect

    Tolbert, V.R.; Schiller, A.

    1995-12-31

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable feedstock resources. The Department of Energy is supporting research to address how these crops can provide environmental benefits to soil, water and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soil conservation and water quality improvements in crop settings. Replacement of traditional erosive row crops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different biomass crops for selected wildlife species is also under study. To date, these studies have shown that in comparison with row crops biomass plantings of both grass and tree crops increased biodiversity of birds; however, the habitat value of tree plantations is not equivalent to natural forests. The effects on native wildlife of establishing multiple plantations across a landscape are being studied. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing biomass feedstocks. Data from site-specific environmental studies can provide input for evaluation of the probable effects of large-scale plantings at both landscape and regional levels of resolution.

  1. A Centralized Regional Database for Winter Cover Crops in Annual Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce erosion, minimize losses of nitrogen and phosphorus, and increase soil carbon in annual cropping systems in the Midwest. Public support, however, for incentives to farmers to adopt cover crops is minimal. Therefore, development of location-specific rec...

  2. Crop Canopy and Residue Rainfall Interception Effects on Water and Crop Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop canopies and residues have been shown to intercept a significant amount of rainfall. However, rainfall or irrigation interception by crops and residues has often been overlooked in hydrologic modelling. Crop canopy interception is controlled by canopy density and rainfall intensity and durati...

  3. Nitrogen, Tillage, and Crop Rotation Effects on Nitrous Oxide Emissions from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of irrigated crop management practices on nitrous oxide (N2O) emissions. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha-1 during the 2005 and 2006 growing seasons. Cropping systems includ...

  4. Soil and crop nitrogen as influenced by tillage, cover crops, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and crop management practices may influence soil mineral N, crop N uptake, and N leaching. We evaluated the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)],...

  5. 77 FR 59045 - Common Crop Insurance Regulations; Prune Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Prune Crop Insurance Provisions. The intended effect of this action is to provide policy changes and clarify existing policy provisions to better meet the needs of insured producers, and to reduce vulnerability to program fraud, waste, and abuse. The changes will apply for the 2013 and succeeding......

  6. Mixed cropping has the potential to enhance flood tolerance of drought-adapted grain crops.

    PubMed

    Iijima, Morio; Awala, Simon K; Watanabe, Yoshinori; Kawato, Yoshimasa; Fujioka, Yuichiro; Yamane, Koji; Wada, Kaede C

    2016-03-15

    Recently, the occurrences of extreme flooding and drought, often in the same areas, have increased due to climate change. Wetland plant species are known to oxygenate their rhizospheres by releasing oxygen (O2) from their roots. We tested the hypothesis that wetland species could help upland species under flood conditions; that is, O2 released from the wetland crop roots would ameliorate rhizosphere O2-deficient stress and hence facilitate upland crop root function. Flooding tolerance of upland-adapted staple crops-pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) mix-cropped with rice (Oryza spp.) was investigated in glasshouse and laboratory. We found a phenomenon that strengthens the flood tolerance of upland crops when two species-one wetland and one drought tolerant-were grown using the mixed cropping technique that results in close tangling of their root systems. This technique improved the photosynthetic and transpiration rates of upland crops subjected to flood stress (O2-deficient nutrient culture). Shoot relative growth rates during the flooding period (24 days) tended to be higher under mixed cropping compared with single cropping. Radial oxygen loss from the wetland crop roots might be contributed to the phenomenon observed. Mixed cropping of wet and dryland crops is a new concept that has the potential to overcome flood stress under variable environmental conditions. PMID:26803216

  7. 78 FR 22411 - Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Florida Citrus Fruit Crop Insurance Provisions that published on Friday, December 21, 2012, (74 FR 75509... Corporation 7 CFR Part 457 RIN 0563-AC39 Common Crop Insurance Regulations; Florida Citrus Fruit Crop... Friday, December 21, 2012. The regulation pertains to the insurance of Florida Citrus Fruit....

  8. Growth and yield of winter wheat as affected by preceding crop and crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers in eastern South Dakota are interested in adding winter wheat (Triticum aestivum L.) to the corn (Zea mays L.)-soybean (Glycine max Merrill) rotation to improve crop yield and pest management. Our study quantified winter wheat response to preceding crop and crop management. Preceding cro...

  9. Comparing cropping system productivity of fixed rotations and a flexible fallow system using Aqua-Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Central High Plains, the predominant crop rotation is winter wheat (Triticum aestivum L.)-fallow. Producers are looking to add diversity and intensity to their cropping systems and improve water use efficiency by adding summer crops, however, the elimination of summer fallow may increase the ...

  10. Planting dates for multiple cropping of biofuel feedstock and specialty crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is necessary to determine planting and harvesting windows in order to develop production systems for biofuel feedstock and specialty crops in rotation. The biodiesel feedstock crops Canola and Sunflower; and the bioethanol feedstock crops Sorghum and Sweet corn were established at various dates ...

  11. Cover cropping and no-tillage improve soil health in arid irrigated cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact on soil health of long-term no-tillage (NT) and cover cropping (CC) practices, alone and in combination, was measured and compared with standard tillage (ST) with and without cover crops (NO) in irrigated row crops after 15 years of management in the San Joaquin Valley, CA. Soil aggregat...

  12. Crop protection by seed coating.

    PubMed

    Ehsanfar, S; Modarres-Sanavy, S A M

    2005-01-01

    Providence of sufficient and healthy food for increasing human population clears the importance of notice to increasing crop production in company with environmental loss reduction. Growth and yield of every plant with sexual reproduction, depends on germination & emergence of sown seeds. Seed is a small alive plant that its biological function is protection and nutrition of embryo. Biological, chemical and physiological characteristics of seed, affect on plant performance & its resistance to undesirable environmental conditions, and even on its total yield. So attention to seed and try to increase its performance is so important. One of the factors that cause reduction in germination percentage and seedling establishment, is seed disease. It's possible to control these diseases by treating the seed before planting it. Coating the seed with pesticides, is one of the ways to gain this goal. Seed coating is a technique in which several material as fertilizers, nutritional elements, moisture attractive or repulsive agents, plant growth regulators, rhizobium inocolum, chemical & pesticide etc, add to seed by adhesive agents and cause to increase seed performance and germination. Seed coating, leads to increase benefits in seed industry, because seeds can use all of their genetic vigor. This technique is used for seeds of many garden plants, valuable crops (such as corn, sunflower, canola, alfalfa,...) and some of the grasses. In this technique that was first used in coating cereal seeds in 1930, a thin and permeable layer of pesticide is stuck on seed surface and prevent damage of seedborn pathogens. This layer is melted or splited after absorption of moisture and suitable temperature by seed, and let the radical to exit the seed. In this approach materials are used accurately with seed, evaporation & leakage of pesticide and also adverse effects of some pesticides on seeds are diminished, and these factors cause to increase the accuracy and performance of pesticide

  13. A comparison of crop and non-crop plants as sensitive indicator species for regulatory testing.

    PubMed

    McKelvey, Robert A; Wright, John P; Honegger, Joy L

    2002-12-01

    The effectiveness of regulatory non-target plant testing using crop species to predict the phytotoxicicity of herbicides to non-crop species was evaluated for eleven herbicides. These herbicides were representative of eight chemical classes and six modes of action. Data for non-crop plants from pre-emergence and post-emergence efficacy screening studies were compared with those for the most sensitive crop species defined by regulatory tests conducted to meet US EPA requirements. Testing under pre-emergence conditions for ten compounds indicated that for five of the compounds (K-815910, trifluralin, pyridyloxy A, pyridyloxy B and cyanazine), the most sensitive crop species was more sensitive than all the non-crop species evaluated. For metsulfuron-methyl, chlorimuron-ethyl, hexazinone and bromacil, only one of the non-crop species evaluated was more sensitive than the most sensitive crop species from regulatory tests. Data for the tenth compound, chloroacetamide, showed that four of 32 non-crop species tested in efficacy screens had at least one rate at which greater visual effects were observed than were observed for the most sensitive crop response in a regulatory test. The results of post-emergence exposure comparisons for five of the compounds (pyridyloxy A, cloransulam-methyl, chlorimuron-ethyl, cyanazine and hexazinone) indicated that the most sensitive crop species were more sensitive than all the non-crop species evaluated. Data for pyridyloxy B, metsulfuron-methyl and bromacil indicated that only one of the non-crop species evaluated was more sensitive than the most sensitive crop species. For trifluralin, three of the eight non-crop species were more sensitive than the most sensitive crop species. Data for K-815910 indicated that four of the fourteen non-crop species tested were marginally more sensitive than the most sensitive crop, but were within the same range of sensitivity. These results indicate that the current regulatory test batteries and methods

  14. A bioenergy feedstock/vegetable double-cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  15. Soil Quality and the Solar Corridor Crop System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  16. 7 CFR 457.110 - Fig crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fig crop insurance provisions. 457.110 Section 457.110..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.110 Fig crop insurance provisions. The Fig... Department of Agriculture Federal Crop Insurance Corporation Fig Crop Provisions If a conflict exists...

  17. 7 CFR 457.110 - Fig crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Fig crop insurance provisions. 457.110 Section 457.110..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.110 Fig crop insurance provisions. The Fig... Department of Agriculture Federal Crop Insurance Corporation Fig Crop Provisions If a conflict exists...

  18. 7 CFR 457.110 - Fig crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fig crop insurance provisions. 457.110 Section 457.110..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.110 Fig crop insurance provisions. The Fig... Department of Agriculture Federal Crop Insurance Corporation Fig Crop Provisions If a conflict exists...

  19. The Crop Growth Model in the Wind Erosion Prediction System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary purpose of the crop growth submodel (CROP) in the Wind Erosion Prediction System (WEPS) is to obtain realistic estimates of plant growth so that the influence of vegetative cover on wind erosion can be properly evaluated. Most crop growth models focus on estimating final crop yield. CROP...

  20. THE ECONOMICS OF COVER CROP BIOMASS FOR CORN AND COTTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inclusion of cover crops into cropping systems brings both direct and indirect costs and benefits to the farm. A myriad of studies have examined the economic benefits of cover crops in multiple cropping systems by comparing them to systems without cover crops. To date, economic research pertaini...

  1. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Green pea crop insurance provisions. 457.137 Section 457.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance provisions. The Green Pea Crop...

  2. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  3. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  4. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  5. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  6. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  7. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  8. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  9. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  10. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  11. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2004 and succeeding crop years are as...

  12. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  13. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  14. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  15. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  16. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  17. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Onion crop insurance provisions. 457.135 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop insurance provisions. The onion crop insurance provisions for the 2013 and succeeding crop years are as follows:...

  18. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Onion crop insurance provisions. 457.135 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop insurance provisions. The onion crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  19. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Peach crop insurance provisions. 457.153 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop insurance provisions. The Peach Crop Insurance Provisions for the 2001 and succeeding crop years are as follows:...

  20. The potential of climate change adjustment in crops: A synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter covers a study on various field crops like cereals, legumes, oil seeds, vegetables, cash crops, underutilized crops, and energy crops and their genetic adjustment to changing climates. More than 30 major field crops have been covered in different chapters of this book, which highlight h...

  1. Soil quality and the solar corridor crop system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  2. 7 CFR 457.111 - Pear crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Pear crop insurance provisions. 457.111 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.111 Pear crop insurance provisions. The Pear Crop Insurance Provisions for the 2011 and succeeding crop years are as follows:...

  3. 7 CFR 457.111 - Pear crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Pear crop insurance provisions. 457.111 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.111 Pear crop insurance provisions. The Pear Crop Insurance Provisions for the 2011 and succeeding crop years are as follows:...

  4. 7 CFR 457.111 - Pear crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Pear crop insurance provisions. 457.111 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.111 Pear crop insurance provisions. The Pear Crop Insurance Provisions for the 2011 and succeeding crop years are as follows:...

  5. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  6. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The Apple Crop Insurance Provisions for the 2005 and succeeding crop years are as follows:...

  7. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  8. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  9. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  10. Perennial Grain and Oilseed Crops.

    PubMed

    Kantar, Michael B; Tyl, Catrin E; Dorn, Kevin M; Zhang, Xiaofei; Jungers, Jacob M; Kaser, Joe M; Schendel, Rachel R; Eckberg, James O; Runck, Bryan C; Bunzel, Mirko; Jordan, Nick R; Stupar, Robert M; Marks, M David; Anderson, James A; Johnson, Gregg A; Sheaffer, Craig C; Schoenfuss, Tonya C; Ismail, Baraem; Heimpel, George E; Wyse, Donald L

    2016-04-29

    Historically, agroecosystems have been designed to produce food. Modern societies now demand more from food systems-not only food, fuel, and fiber, but also a variety of ecosystem services. And although today's farming practices are producing unprecedented yields, they are also contributing to ecosystem problems such as soil erosion, greenhouse gas emissions, and water pollution. This review highlights the potential benefits of perennial grains and oilseeds and discusses recent progress in their development. Because of perennials' extended growing season and deep root systems, they may require less fertilizer, help prevent runoff, and be more drought tolerant than annuals. Their production is expected to reduce tillage, which could positively affect biodiversity. End-use possibilities involve food, feed, fuel, and nonfood bioproducts. Fostering multidisciplinary collaborations will be essential for the successful integration of perennials into commercial cropping and food-processing systems. PMID:26789233

  11. Comparative genomics of Brassicaceae crops

    PubMed Central

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-01-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  12. Simulated acid rain on crops

    SciTech Connect

    Plocher, M.D.; Perrigan, S.C.; Hevel, R.J.; Cooper, R.M.; Moss, D.N.

    1985-10-01

    In 1981, simulated H/sub 2/SO/sub 4/ acid rain was applied to alfalfa and tall fescue and a 2:1 ratio of H/sub 2/SO/sub 4/:HNO/sub 3/ acid rain was applied to alfalfa, tall fescue, barley, wheat, potato, tomato, radish, and corn crops growing in the open field at Corvallis, Oregon. Careful attention was given to effects of the acid rain on the appearance of the foliage, and the effects on yield were measured. Because the effect of pH 4.0 rain on corn yield was the only significant effect noted in the 1981 studies, in 1982, more-extensive studies of the effect of simulated H/sub 2/SO/sub 4//HNO/sub 3/ rain on corn were conducted. No significant effects of acid rain were found on foliage appearance, or on yield of grain or stover in the 1982 studies.

  13. Comparative genomics of Brassicaceae crops.

    PubMed

    Sharma, Ashutosh; Li, Xiaonan; Lim, Yong Pyo

    2014-05-01

    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed. PMID:24987286

  14. Science Anxiety and Science Learning.

    ERIC Educational Resources Information Center

    Mallow, Jeffrey V.; Greenburg, Sharon L.

    1983-01-01

    Discusses origins and nature of science anxiety and describes the Science Anxiety Clinic, outlining techniques used at the clinic. Techniques include science skills training and psychological interventions. Comments on the connection between science anxiety and cognitive processes in science learning. (Author/JN)

  15. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  16. Crop Residues: The Rest of the Story

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent scientific publication stated that to remove CO2 from the atmosphere, the most permanent and rapid solution would be to sink crop residues to the ocean floor where they would be buried in deep ocean sediments. However, mitigating rising atmospheric CO2 concentrations by removing crop residu...

  17. Water Production Functions for High Plains Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water Production Functions for High Plains Crops Water consumptive use by a crop can be reduced through limited (deficit) irrigation. If the reduced consumptive use (CU) can be quantified, the saved water can be transferred to other users. If the value of the transferred water is greater than the fa...

  18. Radiation hybrid mapping in crop plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Map-based cloning and manipulation of genes controlling important traits for crop remains a great challenge due to the complex of crop genomes and lack of a high resolution of genetic and physical maps. In this review article, we compared the various mapping methods available for plant research and ...

  19. Alcohol co-production from tree crops

    SciTech Connect

    Seibert, M.; Folger, G.; Milne, T.

    1982-06-01

    A concept for the sustainable production of alcohol from fermentable substrates produced on an annual basis by the reproductive organs (pods, fruits, nuts, berries, etc.) of tree crops is presented. The advantages of tree-crop systems include suitability for use on marginal land, potential productivity equivalent to row crops, minimal maintenance and energy-input requirements, environmental compatibility, and the possibility of co-product production. Honeylocust, mesquite, and persimmon are examined as potential US tree-crop species. Other species not previously considered, including osage orange and breadfruit, are suggested as tree-crop candidates for North America and the tropical developing world, respectively. Fermentation of tree-crop organs and the economics of tree-crop systems are also discussed. Currently the greatest area of uncertainty lies in actual pod or fruit yields one can expect from large tree farms under real life conditions. However, ballpark ethanol yield estimates of from 880 to 3470 l hectare/sup -1/ (94 to 400 gal acre/sup -1/) justify further consideration of tree crop systems.

  20. Collecting crop wild relatives: an emerging priority

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild relatives of crop species (CWR) are an important resource to support the development of crops adapted to climate change. Historically, efforts to conserve agricultural biodiversity have relegated the collection of CWR species to the back burner. As a result, significant collecting gaps remain. ...

  1. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  2. Growing cover crops to improve carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different cover crops were grown and evaluated for improving carbon sequestration. The cover crops in the study include not only winter and summer types but also legumes and non-legumes, respectively. Winter legumes are white clover, bell beans, and purple vetch, and winter non-legumes are triticale...

  3. Crop Management Strategies for Low Water Availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The High Plains is a temperate semi-arid region with highly variable rainfall. Extended periods of drought are common. In general, crop management strategies attempt to maximize the total water available to the crop and to maximize transpiration by minimizing soil evaporation. Summer fallow, the pra...

  4. Improving selenium nutritional value of major crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  5. Origins of food crops connect countries worldwide.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genetic diversity is concentrated within specific geographic regions worldwide. While access to this diversity is critical to continued increases in agricultural productivity, the geopolitical significance of the geography of crop diversity has not been quantified. We assess the degree to which...

  6. Putting mechanisms into crop production models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop simulation models dynamically predict processes of carbon, nitrogen, and water balance on daily or hourly time-steps to the point of predicting yield and production at crop maturity. A brief history of these models is reviewed, and their level of mechanism for assimilation and respiration, ran...

  7. Fuel production potential of several agricultural crops

    SciTech Connect

    Mays, D.A.; Buchanan, W.; Bradford, B.N.

    1984-11-01

    Data collected on starch and sugar crops indicate that sweet potato and sweet sorghum have the best potential for alcohol production in the TVA area. Of the oil crops evaluated in this series of experiments only sunflower and okara appear to offer potential in the Tennessee Valley for oil production for fuel or other uses. 21 tabs.

  8. Drought and arthropod pests of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficit can make otherwise arable regions less, or nonarable, from lack of life-sustaining water and it can also affect the extent to which crops are afflicted by arthropod pests. The effects of drought on host plant availability and nutrititive value influence arthropod pests of crops in a v...

  9. Genomics reveals new landscapes for crop improvement

    PubMed Central

    2013-01-01

    The sequencing of large and complex genomes of crop species, facilitated by new sequencing technologies and bioinformatic approaches, has provided new opportunities for crop improvement. Current challenges include understanding how genetic variation translates into phenotypic performance in the field. PMID:23796126

  10. Tolerance of Soybean Crops to Soil Waterlogging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monoculture of irrigated paddy rice, common in the Mississippi delta of the United States and in Asia, diminishes soil nutrients, compacts soils, contaminates water supplies, and increases pest and diseases. While the addition of soybean crops to this cropping ecosystem can attenuate many of these p...

  11. Adapting Cropping Patterns to Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many studies on the potential impacts of climate change in agriculture have focused primarily on productivity of individual crops at specific locations rather than considering how cropping patterns may evolve adaptively. These adaptations likely would include both geographic and temporal changes. Th...

  12. Plums in temperate fruit crop breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is slanted towards molecular biologists working with fruit crops. The chapter on plums describes the characteristics and biology of European and Japanese type plums. Current status of molecular work on these crops is described. In general plums are amenable to regeneration and transform...

  13. Leaf wetness distribution within a potato crop

    NASA Astrophysics Data System (ADS)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  14. Energy crops for ethanol: a processing perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global production of bioethanol for fuel is over 13 billions gal per year. Continued expansion of ethanol production will necessitate developing lignocellulose as an alternative to today’s use of starch and sugar producing crops. Dedicated energy crops are one such option. In the U.S., it has bee...

  15. 7 CFR 1437.12 - Crop definition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... farming practice, as determined by CCC. (f) CCC may define forage as separate crops according to the intended method of harvest, either mechanical harvest or grazed. (g) Forage acreage intended to be grazed may be further defined as warm and cool season forage crops. (h) Forage acreage intended to...

  16. 7 CFR 1437.12 - Crop definition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... farming practice, as determined by CCC. (f) CCC may define forage as separate crops according to the intended method of harvest, either mechanical harvest or grazed. (g) Forage acreage intended to be grazed may be further defined as warm and cool season forage crops. (h) Forage acreage intended to...

  17. 75 FR 6263 - Biomass Crop Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ...The Commodity Credit Corporation (CCC) proposes regulations to implement the new Biomass Crop Assistance Program (BCAP) authorized by the Food, Conservation, and Energy Act of 2008 (the 2008 Farm Bill). BCAP is intended to assist agricultural and forest land owners and operators with the establishment and production of eligible crops including woody biomass in selected project areas for......

  18. 75 FR 66201 - Biomass Crop Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ...This rule implements the new Biomass Crop Assistance Program (BCAP) authorized by the Food, Conservation, and Energy Act of 2008 (the 2008 Farm Bill). BCAP is intended to assist agricultural and forest land owners and operators with the establishment and production of eligible crops in selected project areas for conversion to bioenergy, and the collection, harvest, storage, and transportation......

  19. Effects of Crop Diversity on Agroecosystem Productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the role of diversity in the functioning of ecosystems has important implications for agriculture. Previous agricultural research has shown that crop rotation and the use of cover crops can lead to increases in yield relative to monoculture; however, few studies have been performed wi...

  20. Sensing technologies for precision specialty crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the advances in electronic and information technologies, various sensing systems have been developed for specialty crop production around the world. Accurate information concerning the spatial variability within fields is very important for precision farming of specialty crops. However, this va...

  1. Cropping system effects on soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems can affect a range of soil properties depending on the specific crop rotation, nutrient amendments, and tillage practices employed. A soil quality index can be use to interpret changes in soil properties and assess improvement or degradation of soil quality. We evaluated a range of ...

  2. Risk Assessment and Stewardship of Bt Crops

    EPA Science Inventory

    Registration of Bt crops as part of the FIFRA requirements involves the assessment of environmental risk associated with the new crop variety. The assessment analysis stipulates that the seed producer provide clear and unambiguous information relating to certain risk categories a...

  3. Energy crops to combat climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The share of bioenergy produced from traditional and dedicated energy crops is expected to increase in the developing as well as the developed world. Dedicated energy crops, in particular, are expected to help offset greenhouse gas (GHG) emissions and contribute positively to global climate change (...

  4. Winter cover crops influence Amaranthus palmeri establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops were evaluated for their effect on Palmer amaranth (PA) suppression in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye...

  5. A review of crop canopy reflectance models

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Principal Investigator)

    1982-01-01

    Various models for calculating crop canopy reflectance, in the visible and infrared wavelengths, from the optical and geometrical properties of a canopy and its constituents are reviewed. The radiative transfer equation is discussed as well as both analytical and numerical crop reflectance models which are manifestations of the solution of this equation. Recommendations are made for further work in modeling of canopy reflectance.

  6. Simulating Crop Phenological Responses to Water Deficits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semi-arid crop production systems commonly are characterized by highly variable precipitation, both within and among years. Crop strategies to deal with water deficits are to either avoid or tolerate water stress, and many plant responses to water stress are involved. This chapter examines a fundame...

  7. RELAY-CROPPING TO IMPROVE N MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat was seeded as a cover crop shortly after seed corn harvest in an attempt to remove residual N from soil so that nitrate would be unavailable for leaching. Because the growing season in the Corn Belt is not long enough to accommodate harvesting full crops of wheat and soybean in the same...

  8. Crop residues: a resource for whom?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues represent an important on-farm resource, which are now being considered a harvestable commodity contributing to bio-fuel production. This review of literature looks at how crop residues contribute to soil properties and processes, water conservation and quality, on-farm forage availab...

  9. Sustainable production of grain crops for biofuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  10. Putting mechanisms into crop production models.

    PubMed

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. PMID:23600481

  11. Genetics and consequences of crop domestication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypic variation has been manipulated by humans during crop domestication, which occurred primarily between 3,000 and 10,000 years ago in the various centers of origin around the world. The process of domestication has profound consequences on crops, where the domesticate has moderately reduced ...

  12. ASSESSMENT OF CROP LOSS FROM OZONE

    EPA Science Inventory

    Past research has shown that ozone (O3) alone or in combination with sulfur dioxide (SO2), and nitrogen dioxide (NO2) is responsible for up to 90% of the crop losses in the U.S. caused by air pollution. The National Crop Loss Assessment Network (NCLAN) was set up to determine mor...

  13. Genomics Opportunities, New Crops and New Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes use of molecular markers and transgenics in development of new cultivars in a survey obtained from public and private sector breeders. It also reviews traits in Rosaceae crops for which markers are currently available for use in developing new crops. The surprising results a...

  14. Agricultural impacts: Mapping future crop geographies

    NASA Astrophysics Data System (ADS)

    Travis, William R.

    2016-06-01

    Modelled patterns of climate change impacts on sub-Saharan agriculture provide a detailed picture of the space- and timescales of change. They reveal hotspots where crop cultivation may disappear entirely, but also large areas where current or substitute crops will remain viable through this century.

  15. Synergism among crops can help weed management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till practices have improved soil health by increasing soil organic matter levels and enhancing microbial community diversity. An ancillary consequence of this change in soil functioning is some crops can synergistically improve resource-use-efficiency of following crops. This improved growth e...

  16. Smoking Behavior and the Tobacco Crop.

    ERIC Educational Resources Information Center

    Wilson, Richard W.; Higgins, C. Wayne

    1984-01-01

    The influence of the physical and economic presence of tobacco crops on smoking behavior and related attitudes of students in tobacco-raising regions was measured by a Tobacco Crop Intensity variable. Implications for government agricultural and educational policy are discussed. (Author/DF)

  17. Soapy Science. Teaching Science.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a science and math activity that involves bubbles, shapes, colors, and solid geometry. Students build geometric shapes with soda straws and submerge the shapes in soapy water, allowing them to review basic geometry concepts, test hypotheses, and learn about other concepts such as diffraction, interference colors, and evaporation. (TJQ)

  18. New nutrition science in practice.

    PubMed

    Wahlqvist, Mark L

    2008-01-01

    A number of imperatives require a re-think of science in general and of nutrition science in particular. Nutrition science has never been a body of knowledge in its own right and many other sciences have been nutritional in their orientation. At its best "nutrition science" has been integrative as well as reductionist. It has worked across disciplines. The IUNS, (International Union of Nutritional Sciences) undertook to re-examine nutrition science from a policy point of view and to do so with knowledge-makers in general and with the International Science Council. There is now a Sciences for Health and Wellbeing (SHWB) initiative involving all branches of science. It is expected that innovative, integrative, sustainable, and cost-effective approaches to human well-being and health will emerge. Some of the pressing needs for such collaboration have been in the areas of sustainable food systems, potable water, more nutritious crops, food and human behaviour, to reduce the burden of nutritionally-related disease (NRD) and make health care affordable. An IUNS Task Force met in Giessen in 2005. It concluded that nutrition science should develop on 3 fronts, the biomedical, societal and environmental. This will encourage new and more effective initiatives for nutrition and its partners to address local, regional and global concerns about planetary and personal health and well-being. Some important and critical areas already require collective attention. Unlike our predecessors in nutrition science, we will be unable to fulfil the expectations of us unless we progress this wider and less anthropocentric form of our science. PMID:18296290

  19. Crop height determination with UAS point clouds

    NASA Astrophysics Data System (ADS)

    Grenzdörffer, G. J.

    2014-11-01

    The accurate determination of the height of agricultural crops helps to predict yield, biomass etc. These relationships are of great importance not only for crop production but also in grassland management, because the available biomass and food quality are valuable information. However there is no cost efficient and automatic system for the determination of the crop height available. 3D-point clouds generated from high resolution UAS imagery offer a new alternative. Two different approaches for crop height determination are presented. The "difference method" were the canopy height is determined by taking the difference between a current UAS-surface model and an existing digital terrain model (DTM) is the most suited and most accurate method. In situ measurements, vegetation indices and yield observations correlate well with the determined UAS crop heights.

  20. Companion cropping to manage parasitic plants.

    PubMed

    Pickett, John A; Hamilton, Mary L; Hooper, Antony M; Khan, Zeyaur R; Midega, Charles A O

    2010-01-01

    Parasitic plants, through a range of infestation strategies, can attack crop plants and thereby require management. Because such problems often occur in resource-poor farming systems, companion cropping to manage parasitic plants is an appropriate approach. Many examples of companion cropping for this purpose have been reported, but the use of cattle forage legumes in the genus Desmodium as intercrops has been shown to be particularly successful in controlling the parasitic witchweeds (Striga spp.) that afflict approximately one quarter of sub-Saharan African cereal production. Through the use of this example, the development of effective companion crops is described, together with developments toward widespread adoption and understanding the underlying mechanisms, both for sustainability and ensuring food security, and also for exploitation beyond the cropping systems described here. PMID:20429664

  1. Promise and issues of genetically modified crops.

    PubMed

    Chen, Hao; Lin, Yongjun

    2013-05-01

    The growing area of genetically modified (GM) crops has substantially expanded since they were first commercialized in 1996. Correspondingly, the adoption of GM crops has brought huge economic and environmental benefits. All these achievements have been primarily supported by two simple traits of herbicide tolerance and insect resistance in the past 17 years. However, this situation will change soon. Recently, the advance of new products, technologies and safety assessment approaches has provided new opportunities for development of GM crops. In this review, we focus on the developmental trend in various aspects of GM crops including new products, technical innovation and risk assessment approaches, as well as potential challenges that GM crops are currently encountering. PMID:23571013

  2. Communicating Science

    NASA Astrophysics Data System (ADS)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  3. Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.

    PubMed

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-02-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank. PMID:25685189

  4. Water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  5. Embodied crop calories in animal products

    NASA Astrophysics Data System (ADS)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-12-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8-2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these

  6. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa.

    PubMed

    Akinbo, Olalekan; Hancock, James F; Makinde, Diran

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, center of origin, center of genetic diversity, proximity of wild relatives, inter-fertility, mode of pollen dispersal, length of pollen viability, mating system, invasiveness, weediness, mode of propagation, mode of seed dispersal, and length of seed dormancy. In this paper, we discuss the crops being genetic engineered in Africa and describe the crop biology of those with native relatives. PMID:26501055

  7. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. PMID:26836846

  8. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa

    PubMed Central

    Akinbo, Olalekan; Hancock, James F.; Makinde, Diran

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, center of origin, center of genetic diversity, proximity of wild relatives, inter-fertility, mode of pollen dispersal, length of pollen viability, mating system, invasiveness, weediness, mode of propagation, mode of seed dispersal, and length of seed dormancy. In this paper, we discuss the crops being genetic engineered in Africa and describe the crop biology of those with native relatives. PMID:26501055

  9. On risk and regulation: Bt crops in India.

    PubMed

    Herring, Ronald J

    2014-07-01

    Genetic engineering in agriculture raises contentious politics unknown in other applications of molecular technology. Controversy originated and persists for inter-related reasons; these are not primarily, as frequently assumed, differences over scientific findings, but rather about the relationship of science to 'risk.' First, there are inevitably differences in how to interpret 'risk' in situations in which there are no established findings of specific hazard; 'Knightian uncertainty' defines this condition. Science claims no method of resolution in such cases of uncertainty. Second, science has no claim about risk preferences in a normative sense. In genetic engineering, Knightian uncertainty is pervasive; declaring uncertainty to constitute 'risk' enables a precautionary politics in which no conceivable evidence from science can confirm absence of risk. This is the logic of the precautionary state. The logic of the developmental state is quite different: uncertainty is treated as an inevitable component of change, and therefore a logic of acceptable uncertainty, parallel to acceptable risk of the sort deployed in cost-benefit analysis in other spheres of behavior, dominates policy. India's official position on agricultural biotechnology has been promotional, as expected from a developmental state, but regulation of Bt crops has rested in a section of the state operating more on precautionary than developmental logic. As a result, notwithstanding the developmental success of Bt cotton, Bt brinjal [eggplant, aubergine] encountered a moratorium on deployment despite approval by the regulatory scientific body designated to assess biosafety. PMID:25437239

  10. COVER CROP EXTRACT EFFECTS ON RADISH RADICLE ELONGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation systems using cover crops offer many benefits, including enhanced weed suppression. Researchers have shown that some cover crops leach allelopathic chemicals that contribute to weed growth inhibition. Twelve cover crops were evaluated for allelopathic potential in two experiments usin...

  11. Crop and cattle production responses to tillage and cover crop management in an integrated crop-livestock system in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated crop-livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop-livestock systems with two typ...

  12. Global Science.

    ERIC Educational Resources Information Center

    Brophy, Michael

    1991-01-01

    Approaches taken by a school science department to implement a global science curriculum using a range of available resources are outlined. Problems with current curriculum approaches, alternatives to an ethnocentric curriculum, advantages of global science, and possible strategies for implementing a global science policy are discussed. (27…

  13. Food Science.

    ERIC Educational Resources Information Center

    Barkman, Susan J.

    1996-01-01

    Presents food science experiments designed for high school science classes that aim at getting students excited about science and providing them with real-life applications. Enables students to see the application of chemistry, microbiology, engineering, and other basic and applied sciences to the production, processing, preservation, evaluation,…

  14. Science Sacks

    ERIC Educational Resources Information Center

    Freudenberg, Kimberlee

    2012-01-01

    With the emphasis placed on standardized testing, science education has been squeezed out. As a physics teacher, the author knows the importance of building children's interest in science early in their school career and of providing practice in basic science skills and inquiry. In order to make more time for science at her sons' elementary…

  15. Science Matters

    ERIC Educational Resources Information Center

    Odell, Bill

    2005-01-01

    The spaces and structures used for undergraduate science often work against new teaching methods and fail to provide environments that attract the brightest students to science. The undergraduate science building often offers little to inspire the imaginations of young minds. The typical undergraduate science building also tends to work against…

  16. iPot: Improved potato monitoring in Belgium using remote sensing and crop growth modelling

    NASA Astrophysics Data System (ADS)

    Piccard, Isabelle; Gobin, Anne; Curnel, Yannick; Goffart, Jean-Pierre; Planchon, Viviane; Wellens, Joost; Tychon, Bernard; Cattoor, Nele; Cools, Romain

    2016-04-01

    Potato processors, traders and packers largely work with potato contracts. The close follow up of contracted parcels is important to improve the quantity and quality of the crop and reduce risks related to storage, packaging or processing. The use of geo-information by the sector is limited, notwithstanding the great benefits that this type of information may offer. At the same time, new sensor-based technologies continue to gain importance and farmers increasingly invest in these. The combination of geo-information and crop modelling might strengthen the competitiveness of the Belgian potato chain in a global market. The iPot project, financed by the Belgian Science Policy Office (Belspo), aims at providing the Belgian potato processing sector, represented by Belgapom, with near real time information on field condition (weather-soil), crop development and yield estimates, derived from a combination of satellite images and crop growth models. During the cropping season regular UAV flights (RGB, 3x3 cm) and high resolution satellite images (DMC/Deimos, 22m pixel size) were combined to elucidate crop phenology and performance at variety trials. UAV images were processed using a K-means clustering algorithm to classify the crop according to its greenness at 5m resolution. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) on the DMC images. Both DMC and UAV-based cover maps showed similar patterns, and helped detect different crop stages during the season. A wide spread field monitoring campaign with crop observations and measurements allowed for further calibration of the satellite image derived vegetation indices. Curve fitting techniques and phenological models were developed and compared with the vegetation indices during the season, both at trials and farmers' fields. Understanding and predicting crop phenology and canopy development is important for timely crop management and ultimately for yield estimates. An

  17. Crop physiology calibration in the CLM

    SciTech Connect

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  18. Crop physiology calibration in the CLM

    DOE PAGESBeta

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  19. Gene flow from glyphosate-resistant crops.

    PubMed

    Mallory-Smith, Carol; Zapiola, Maria

    2008-04-01

    Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health. PMID:18181145

  20. Functional molecular markers for crop improvement.

    PubMed

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered. PMID:26171816

  1. Crop physiology calibration in the CLM

    NASA Astrophysics Data System (ADS)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-01

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  2. 78 FR 48411 - Information Collection; Noninsured Crop Disaster Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    .... Additionally, NAP provides assistance for losses of floriculture, ornamental nursery, Christmas tree crops, turfgrass sod, seed crops, aquaculture (including ornamental fish), sea oats and sea grass, and...

  3. Short Rotation Crops in the United States

    SciTech Connect

    Wright, L L

    1998-06-04

    The report is based primarily on the results of survey questions sent to approximately 60 woody and 20 herbaceous crop researchers in the United States and on information from the U.S. Department of Energy's Bioenergy Feedstock Development Program. Responses were received from 13 individuals involved in woody crops research or industrial commercialization (with 5 of the responses coming from industry). Responses were received from 11 individuals involved in herbaceous crop research. Opinions on market incentives, technical and non-technical barriers, and highest priority research and development areas are summarized in the text. Details on research activities of the survey responders are provided as appendices to the paper. Woody crops grown as single-stem systems (primarily Populus and Eucalyptus species) are perceived to have strong pulp fiber and oriented strand board markets, and the survey responders anticipated that energy will comprise 25% or less of the utilization of single-stem short-rotation woody crops between now and 2010. The only exception was a response from California where a substantial biomass energy market does currently exist. Willows (Salix species) are only being developed for energy and only in one part of the United States at present. Responses from herbaceous crop researchers suggested frustration that markets (including biomass energy markets) do not currently exist for the crop, and it was the perception of many that federal incentives will be needed to create such markets. In all crops, responses indicate that a wide variety of research and development activities are needed to enhance the yields and profitability of the crops. Ongoing research activities funded by the U.S. Department of Energy's Bioenergy Feedstock Development Program are described in an appendix to the paper.

  4. Biopolitical science.

    PubMed

    Arnhart, Larry

    2010-03-01

    This article develops a theoretical framework for biopolitical science as a science of political animals. This science moves through three levels of deep political history: the universal political history of the species, the cultural political history of the group, and the individual political history of animals in the group. To illustrate the particular application of biopolitical science, this essay shows how this science would help us to understand Abraham Lincoln's Emancipation Proclamation of January 1, 1863. PMID:20812796

  5. Estimation of crop water requirements: extending the one-step approach to dual crop coefficients

    NASA Astrophysics Data System (ADS)

    Lhomme, J. P.; Boudhina, N.; Masmoudi, M. M.; Chehbouni, A.

    2015-07-01

    Crop water requirements are commonly estimated with the FAO-56 methodology based upon a two-step approach: first a reference evapotranspiration (ET0) is calculated from weather variables with the Penman-Monteith equation, then ET0 is multiplied by a tabulated crop-specific coefficient (Kc) to determine the water requirement (ETc) of a given crop under standard conditions. This method has been challenged to the benefit of a one-step approach, where crop evapotranspiration is directly calculated from a Penman-Monteith equation, its surface resistance replacing the crop coefficient. Whereas the transformation of the two-step approach into a one-step approach has been well documented when a single crop coefficient (Kc) is used, the case of dual crop coefficients (Kcb for the crop and Ke for the soil) has not been treated yet. The present paper examines this specific case. Using a full two-layer model as a reference, it is shown that the FAO-56 dual crop coefficient approach can be translated into a one-step approach based upon a modified combination equation. This equation has the basic form of the Penman-Monteith equation but its surface resistance is calculated as the parallel sum of a foliage resistance (replacing Kcb) and a soil surface resistance (replacing Ke). We also show that the foliage resistance, which depends on leaf stomatal resistance and leaf area, can be inferred from the basal crop coefficient (Kcb) in a way similar to the Matt-Shuttleworth method.

  6. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect

    2012-01-01

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  7. Modeling crop responses to environmental change

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia

    1993-01-01

    Potential biophysical responses of crops to climate change are studied focusing on the primary environmental variables which define the limits to agricultural crop growth and production, and the principal methods for predicting climate change impacts on crop geography and production. It is concluded that the principal uncertainties in the prediction of the impacts of climate change on agriculture reside in the contribution of the direct effects of increasing CO2, in potential changes inclimate variability, and the effects of adjustments mechanisms in the context of climatic changes.

  8. Spectral procedures for estimating crop biomass

    SciTech Connect

    Wanjura, D.F.; Hatfield, J.L.

    1985-05-01

    Spectral reflectance was measured semi-weekly and used to estimate leaf area and plant dry weight accumulation in cotton, soybeans, and sunflower. Integration of spectral crop growth cycle curves explained up to 95 and 91%, respectively, of the variation in cotton lint yield and dry weight. A theoretical relationship for dry weight accumulation, in which only intercepted radiation or intercepted radiation and solar energy to biomass conversion efficiency were spectrally estimated, explained 99 and 96%, respectively, of the observed plant dry weight variation of the three crops. These results demonstrate the feasibility of predicting crop biomass from spectral measurements collected frequently during the growing season. 15 references.

  9. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.; Pont, W.; Thelen, B.; Sellman, A.

    1981-01-01

    Accomplishments for a machine-oriented small grains labeler T&E, and for Argentina ground data collection are reported. Features of the small grains labeler include temporal-spectral profiles, which characterize continuous patterns of crop spectral development, and crop calendar shift estimation, which adjusts for planting date differences of fields within a crop type. Corn and soybean classification technology development for area estimation for foreign commodity production forecasting is reported. Presentations supporting quarterly project management reviews and a quarterly technical interchange meeting are also included.

  10. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes.

    PubMed

    Abbo, Shahal; Pinhasi van-Oss, Ruth; Gopher, Avi; Saranga, Yehoshua; Ofner, Itai; Peleg, Zvi

    2014-06-01

    'Domestication syndrome' (DS) denotes differences between domesticated plants and their wild progenitors. Crop plants are dynamic entities; hence, not all parameters distinguishing wild progenitors from cultigens resulted from domestication. In this opinion article, we refine the DS concept using agronomic, genetic, and archaeobotanical considerations by distinguishing crucial domestication traits from traits that probably evolved post-domestication in Near Eastern grain crops. We propose that only traits showing a clear domesticated-wild dimorphism represent the pristine domestication episode, whereas traits showing a phenotypic continuum between wild and domesticated gene pools mostly reflect post-domestication diversification. We propose that our approach may apply to other crop types and examine its implications for discussing the timeframe of plant domestication and for modern plant science and breeding. PMID:24398119

  11. Science Fiction and Science Education.

    ERIC Educational Resources Information Center

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  12. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  13. Biomass energy crop production versus food crop production in the Caribbean

    SciTech Connect

    Sammuels, G.

    1983-12-01

    The Caribbean countries have traditionally grown sugar cane, coffee and bananas as major agriculture export crops. Food crop production was sufficient in most cases for domestic consumption. In recent years powerful social and economic changes of increasing population, industrial development and higher living standards have placed pressure on local governments to provide food, clothing, shelter and energy. Energy that is mainly supplied by imported oil. Biomass, primarily as sugar cane, can provide a solution, either partial or total, to the problem. Unfortunately, the arable land area for the majority of the countries is limited. Food crop production is needed for local consumption and export. Possible energy crop production to provide local needs will place an increasing demand on arable land. The objective of this paper is to present the scope of food versus energy crop production and a suggested renewable energy crop program to help achieve a balance within the limited land resources of the Caribbean.

  14. Water Production Functions for Central Plains Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustaining irrigated agriculture with limited water supplies requires maximizing productivity per unit of water. Relationships between crop production and water consumed are basic information required to maximize productivity. This information can be used to determine if deficit irrigation is eco...

  15. Methanol and the productivity of tropical crops

    SciTech Connect

    Ferguson, T.U.

    1995-12-31

    Studies are being conducted in Trinidad and Tobago, St. Lucia and St. Kitts/Nevis to determine the effect of aqueous solutions of methanol on the growth and yield of a wide range of vegetable, field and perennial crops. The paper presents a summary of results to data for ten of the crops studied. Six of these crops, lettuce, sweet pepper, tomato, mango and breadfruit, have shown significant increases in growth or yield with methanol application, while others such as pigeon pea, rice, banana and cocoa have shown more limited responses. There appears to be some potential for the use of methanol in tropical crop production but further studies are required before this apparent potential can be harnessed.

  16. Soil carbon changes for bioenergy crops.

    SciTech Connect

    Andress, D.

    2004-04-22

    Bioenergy crops, which displace fossil fuels when used to produce ethanol, biobased products, and/or electricity, have the potential to further reduce atmospheric carbon levels by building up soil carbon levels, especially when planted on lands where these levels have been reduced by intensive tillage. The purpose of this study is to improve the characterization of the soil carbon (C) sequestration for bioenergy crops (switchgrass, poplars, and willows) in the Greenhouse gases, Regulated Emissions, and Energy Use in Transportation (GREET) model (Wang 1999) by using the latest results reported in the literature and by Oak Ridge National Laboratory (ORNL). Because soil carbon sequestration for bioenergy crops can play a significant role in reducing greenhouse gas (GHG) emissions for cellulosic ethanol, it is important to periodically update the estimates of soil carbon sequestration from bioenergy crops as new and better data become available. We used the three-step process described below to conduct our study.

  17. Innovation in Crop Protection: Trends in Research.

    PubMed

    Stetter; Lieb

    2000-05-15

    In the absence of the remarkable levels of growth in the yields of important crops, neither the rapid increase in living standards in industrialized countries nor the adequate standard of nutrition for the greater part of the world's population would have been possible. Alongside high-yielding varieties, improved agricultural techniques, and rapid mechanization, the chemical industry has also contributed substantially to progress in agriculture since roughly the middle of the nineteenth century. From the chemists "kitchens" came two "magic weapons": artificial fertilisers and chemical agents for crop protection. Today both have become indispensable to modern yield- and quality-orientated agriculture. This review spans the development of the crop-protection industry from its earliest beginnings to the present day and attempts to portray how the research-based crop-protection industry is prepared for current and future challenges. Considerable space is thus dedicated to the discussion of trends in research. PMID:10934351

  18. Carotenoid metabolism and regulation in horticultural crops.

    PubMed

    Yuan, Hui; Zhang, Junxiang; Nageswaran, Divyashree; Li, Li

    2015-01-01

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables. Not only do carotenoids give horticultural crops their visual appeal, they also enhance nutritional value and health benefits for humans. As a result, carotenoid research in horticultural crops has grown exponentially over the last decade. These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants. In this review, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables, fruits, and flowers. PMID:26504578

  19. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  20. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  1. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  2. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  3. 7 CFR 981.19 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order... the following July 31, inclusive. Any new crop almonds harvested or received prior to August 1 will...

  4. Carotenoid metabolism and regulation in horticultural crops

    PubMed Central

    Yuan, Hui; Zhang, Junxiang; Nageswaran, Divyashree; Li, Li

    2015-01-01

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors of many horticultural crops are attributed to the overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegetables. Not only do carotenoids give horticultural crops their visual appeal, they also enhance nutritional value and health benefits for humans. As a result, carotenoid research in horticultural crops has grown exponentially over the last decade. These investigations have advanced our fundamental understanding of carotenoid metabolism and regulation in plants. In this review, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in horticultural crops and highlight recent achievements in our understanding of carotenoid metabolic regulation in vegetables, fruits, and flowers. PMID:26504578

  5. Water Production Function For Central Plains Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustaining irrigated agriculture with limited water supplies requires maximizing productivity per unit of water. Relationships between crop production and water consumed are basic information required to maximize productivity. This information can be used to determine if deficit irrigation is econ...

  6. Sulfur dioxide and ozone effects on crops

    SciTech Connect

    Amundson, R.G. ); Kress, L. )

    1990-04-01

    In order to determine if exposure to O{sub 3} and SO{sub 2} in combination produce greater-than-additive effects on yields of economically important crops, corn, wheat, soybean, alfalfa, and a mixed forage crop of timothy and red clover were exposed to SO{sub 2} and O{sub 3} using open-top chambers in six separate experiments during three field seasons. In five of the six studies changes in physiology and/or growth were also assessed to help determine short-term responses of the plants to the exposures. Monitoring of several physiological responses of the crops provided a means of assessing short term effects of the SO{sub 2} exposures on the crops and helped in interpretation of the effects on yields. 4 refs., 46 figs., 49 tabs.

  7. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  8. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3—N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  9. End-crop box counter manual

    SciTech Connect

    Sprinkle, J.K. Jr.; Stephens, M.M.

    1983-06-01

    The end-crop box counter was designed at Los Alamos National Laboratory for assaying filled shipping boxes of end crops from the fuel-extrusion process used in fuel-rod fabrication at United Nuclear Corporation. This manual details the measurement technique and the hardware, software, and calibration. It also provides instructions for operation and troubleshooting. The section on operation can be used as a separate operations manual by the routine user.

  10. A database for coconut crop improvement

    PubMed Central

    Rajagopal, Velamoor; Manimekalai, Ramaswamy; Devakumar, Krishnamurthy; Rajesh; Karun, Anitha; Niral, Vittal; Gopal, Murali; Aziz, Shamina; Gunasekaran, Marimuthu; Kumar, Mundappurathe Ramesh; Chandrasekar, Arumugam

    2005-01-01

    Coconut crop improvement requires a number of biotechnology and bioinformatics tools. A database containing information on CG (coconut germplasm), CCI (coconut cultivar identification), CD (coconut disease), MIFSPC (microbial information systems in plantation crops) and VO (vegetable oils) is described. The database was developed using MySQL and PostgreSQL running in Linux operating system. The database interface is developed in PHP, HTML and JAVA. Availability http://www.bioinfcpcri.org PMID:17597858

  11. Introduction: food crops in a changing climate.

    PubMed

    Slingo, Julia M; Challinor, Andrew J; Hoskins, Brian J; Wheeler, Timothy R

    2005-11-29

    Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given. PMID:16433087

  12. Researchers fine-tune production of energy crops

    SciTech Connect

    Parish, D.J. )

    1990-04-01

    Renewable energy sources, plant materials that can be processed into liquid fuels, are becoming increasingly important as fossil fuel sources dwindle and environmental impacts of releasing fossilized carbon into the atmosphere become more evident. But which plant species provide the most material and can be grown on land not used to produce food, feed, and fiber Switchgrass exceeds all other herbaceous species we have tested in production of biomass on marginal sites in the Virginia Piedmont reports David J. Parrish, Virginia Tech (Blacksburg, VA) professor of crop and soil environmental sciences. In a study sponsored by the U.S. Department of Energy (DOE) at Virginia Tech, graduate student Steven Nagle, Parrish, professor Dale Wolf, and associate professor W.L. Daniels are comparing the biomass productivity of switchgrass, weeping lovegrass, and tall fescue. Since 1985, the crops - selected for their marginal crop value - have been grown on 12 sites in the Virginia Piedmont. Planting was done using no-till procedures that slice but do not turn the soil, because the sites are subject to erosion. The two warm-season grasses are harvested once a year, the fescue twice. Switchgrass has been the most productive on clay soils, and lovegrass on sandy soil. In a second DOE-sponsored study - this one by graduate student Preston Sullivan, Parish, Wolf, Daniels, and Nagle - the Virginia Tech researchers have begun to investigate planting winter-annual legumes in with switchgrass as a source of nitrogen to reduce cost of production, and as a means to increase biomass. In the fall of 1988, crimson clover, arrowleaf clover, and hairy vetch were planted into the switchgrass stubble. Other plots of switchgrass are being provided with various levels of nitrogen fertilizer to compare those yields with legume-planted plots. Crimson clover had provided the most fall growth, but by mid-May 1989, the hairy vetch had produced a dense webbing of biomass over the new switchgrass.

  13. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    SciTech Connect

    Tolbert, V.R.; Schiller, A.

    1996-10-01

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable resources. The DOE is supporting research to address how these crops can provide environmental benefits to soil, water, and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soils conservation and water quality improvements in crop settings. Replacement of traditional erosive row drops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different crops for wildlife species is also considered. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing feedstocks. Data from site-specific environmental studies can provide input for evaluation of the effects of large-scale plantings at both landscape and regional levels of resolution.

  14. Evaluation of spring wheat and barley crop calender models for the 1979 crop year

    NASA Technical Reports Server (NTRS)

    Nazare, C. V.; Carnes, J. G. (Principal Investigator)

    1981-01-01

    During the Large Area Crop Inventory Experiment, spring wheat planting date and crop development stage estimates based on historical normals were improved by the use of the Feyerherm planting date and Robertson spring wheat crop calendar models. The Supporting Research Crop Calendar Project element modified the Robertson model to reduce bias at cardinal growth stages within the growing season. These models were tested in 1980 along with a state-of-the-art barley model (Williams) against a ground-truth data set from 49 calendar year 1979 segments in the U.S. Great Plains spring wheat and barley region.

  15. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods.

    PubMed

    Nyochembeng, Leopold M; Beyl, Caula A; Pacumbaba, R P

    2008-09-01

    Long-term manned space flights to Mars require the development of an advanced life support (ALS) ecosystem including efficient food crop production, processing and recycling waste products thereof. Using edible white rot fungi (EWRF) to achieve effective biomass transformation in ALS requires optimal and rapid biodegradative activity on lignocellulosic wastes. We investigated the mycelial growth of Lentinula edodes and Pleurotus ostreatus on processed residues of various crops under various cropping patterns. In single cropping, mycelial growth and fruiting in all strains were significantly repressed on sweet potato and basil. However, growth of the strains was improved when sweet potato and basil residues were paired with rice or wheat straw. Oyster mushroom (Pleurotus) strains were better than shiitake (L. edodes) strains under single, paired, and mixed cropping patterns. Mixed cropping further eliminated the inherent inhibitory effect of sweet potato, basil, or lettuce on fungal growth. Co-cropping fungal species had a synergistic effect on rate of fungal growth, substrate colonization, and fruiting. Use of efficient cropping methods may enhance fungal growth, fruiting, biodegradation of crop residues, and efficiency of biomass recycling. PMID:18155518

  16. Separability of agricultural crops with airborne scatterometry

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1983-01-01

    Backscattering measurements were acquired with airborne scatterometers over a site in Cass County, North Dakota on four days in the 1981 crop growing season. Data were acquired at three frequencies (L-, C- and Ku-bands), two polarizations (like and cross) and ten incidence angles (5 degrees to 50 degrees in 5 degree steps). Crop separability is studied in an hierarchical fashion. A two-class separability measure is defined, which compares within-class to between-class variability, to determine crop separability. The scatterometer channels with the best potential for crop separability are determined, based on this separability measure. Higher frequencies are more useful for discriminating small grains, while lower frequencies tend to separate non-small grains better. Some crops are more separable when row direction is taken into account. The effect of pixel purity is to increase the separability between all crops while not changing the order of useful scatterometer channels. Crude estimates of separability errors are calculated based on these analyses. These results are useful in selecting the parameters of active microwave systems in agricultural remote sensing.

  17. Statistical genetics in traditionally cultivated crops.

    PubMed

    Artoisenet, Pierre; Minsart, Laure-Anne

    2014-11-01

    Traditional farming systems have attracted a lot of attention over the past decades as they have been recognized to supply an important component in the maintenance of the genetic diversity worldwide. A broad spectrum of traditionally managed crops has been studied to investigate how reproductive properties in combination with husbandry characteristics shape the genetic structure of the crops over time. However, traditional farms typically involve populations of small size whose genetic evolution is overwhelmed with statistic fluctuations inherent to the stochastic nature of the crossings. Hence there is generally no one-to-one mapping between crop properties and measured genotype data, and claims regarding crop properties on the basis of the observed genetic structure must be stated within a confidence level to be estimated by means of a dedicated statistical analysis. In this paper, we propose a comprehensive framework to carry out such statistical analyses. We illustrate the capabilities of our approach by applying it to crops of C. lanatus var. lanatus oleaginous type cultivated in Côte d׳Ivoire. While some properties such as the effective field size considerably evade the constraints from experimental data, others such as the mating system turn out to be characterized with a higher statistical significance. We discuss the importance of our approach for studies on traditionally cultivated crops in general. PMID:24992232

  18. Global conservation priorities for crop wild relatives.

    PubMed

    Castañeda-Álvarez, Nora P; Khoury, Colin K; Achicanoy, Harold A; Bernau, Vivian; Dempewolf, Hannes; Eastwood, Ruth J; Guarino, Luigi; Harker, Ruth H; Jarvis, Andy; Maxted, Nigel; Müller, Jonas V; Ramirez-Villegas, Julian; Sosa, Chrystian C; Struik, Paul C; Vincent, Holly; Toll, Jane

    2016-01-01

    The wild relatives of domesticated crops possess genetic diversity useful for developing more productive, nutritious and resilient crop varieties. However, their conservation status and availability for utilization are a concern, and have not been quantified globally. Here, we model the global distribution of 1,076 taxa related to 81 crops, using occurrence information collected from biodiversity, herbarium and gene bank databases. We compare the potential geographic and ecological diversity encompassed in these distributions with that currently accessible in gene banks, as a means to estimate the comprehensiveness of the conservation of genetic diversity. Our results indicate that the diversity of crop wild relatives is poorly represented in gene banks. For 313 (29.1% of total) taxa associated with 63 crops, no germplasm accessions exist, and a further 257 (23.9%) are represented by fewer than ten accessions. Over 70% of taxa are identified as high priority for further collecting in order to improve their representation in gene banks, and over 95% are insufficiently represented in regard to the full range of geographic and ecological variation in their native distributions. The most critical collecting gaps occur in the Mediterranean and the Near East, western and southern Europe, Southeast and East Asia, and South America. We conclude that a systematic effort is needed to improve the conservation and availability of crop wild relatives for use in plant breeding. PMID:27249561

  19. [Mechanism on biodiversity managing crop diseases].

    PubMed

    Yang, Jing; Shi, Zhu-Feng; Gao, Dong; Liu, Lin; Zhu, You-Yong; Li, Cheng-Yun

    2012-11-01

    Reasonable utilization of natural resource and protection of ecological environment is the foundation for implementing agricultural sustainable development. Biodiversity research and protection are becoming an important issue concerned commonly in the world. Crop disease is one of the important natural disasters for food production and safety, and is also one of the main reasons that confine sustainable development of agricultural production. Large-scale deployment of single highly resistant variety results in reduction of agro-biodiversity level. In this case, excessive loss of agro-biodiversity has become the main challenge in sustainable agriculture. Biodiversity can not only effectively alleviate disease incidence and loss of crop production, but also reduce pollution of agricultural ecological environment caused by excessive application of pesticides and fertilizers to the agricultural ecological environment. Discovery of the mechanism of biodiversity to control crop diseases can reasonably guide the rational deployment and rotation of different crops and establish optimization combinations of different crops. This review summarizes recent advances of research on molecular, physiological, and ecological mechanisms of biodiversity managing crop diseases, and proposes some research that needs to be strengthened in the future. PMID:23208136

  20. Sugar concentration in nectar: a quantitative metric of crop attractiveness for refined pollinator risk assessments.

    PubMed

    Knopper, Loren D; Dan, Tereza; Reisig, Dominic D; Johnson, Josephine D; Bowers, Lisa M

    2016-10-01

    Those involved with pollinator risk assessment know that agricultural crops vary in attractiveness to bees. Intuitively, this means that exposure to agricultural pesticides is likely greatest for attractive plants and lowest for unattractive plants. While crop attractiveness in the risk assessment process has been qualitatively remarked on by some authorities, absent is direction on how to refine the process with quantitative metrics of attractiveness. At a high level, attractiveness of crops to bees appears to depend on several key variables, including but not limited to: floral, olfactory, visual and tactile cues; seasonal availability; physical and behavioral characteristics of the bee; plant and nectar rewards. Notwithstanding the complexities and interactions among these variables, sugar content in nectar stands out as a suitable quantitative metric by which to refine pollinator risk assessments for attractiveness. Provided herein is a proposed way to use sugar nectar concentration to adjust the exposure parameter (with what is called a crop attractiveness factor) in the calculation of risk quotients in order to derive crop-specific tier I assessments. This Perspective is meant to invite discussion on incorporating such changes in the risk assessment process. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:27197566

  1. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1990

    1990-01-01

    Presented are 29 science activities for secondary school science instruction. Topic areas include botany, genetics, biochemistry, anatomy, entomology, molecular structure, spreadsheets, chemistry, mechanics, astronomy, relativity, aeronautics, instrumentation, electrostatics, quantum mechanics, and laboratory interfacing. (CW)

  2. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1990

    1990-01-01

    Presented are 27 science activities for secondary school science instruction. Topic areas include microbiology, botany, biochemistry, genetics, safety, earthquakes, problem solving, electricity, heat, solutions, mechanics, quantum mechanics, flame tests, and molecular structure. (CW)

  3. Science Scope.

    ERIC Educational Resources Information Center

    Stone, Richard, Ed.

    1995-01-01

    Discusses an education project launched by the National Academy of Sciences and the Pentagon to turn laid-off aerospace engineers into science teachers at Los Angeles middle schools and high schools. (MKR)

  4. Science Sleuths.

    ERIC Educational Resources Information Center

    Lilly, Sherril L.

    1989-01-01

    Describes a two-day forensic science course that is offered to eighth grade students enrolled in Science, Mathematics, and Technology Magnet Schools. Provides sample student activity sheets for the course. (Author/RT)

  5. Forensic Science

    ERIC Educational Resources Information Center

    Berry, Keith O.; Nigh, W. G.

    1973-01-01

    A course is described, which was given during an interim, with an enrollment of 41 students. The course involved an in-depth study of forensic science, involving students with the methodology of science. (DF)

  6. Asia’s Indigenous Horticultural Crops: An Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop diversity is an urgent issue today in horticulture, which is faced with an erosion of crop variability as monoculture systems dominate crop production throughout the world, particularly in Europe and North America. At the same time there is great interest in indigenous horticultural crops aroun...

  7. Predicting Crop Water Use from Ground Cover and Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheduling irrigations for horticultural crops with evapotranspiration calculations is difficult. Horticultural crops are grown under a wide range of cultural practices and conditions, making it difficult to select appropriate crop coefficients. A primary determinant of crop water use is light in...

  8. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Onion crop insurance provisions. 457.135 Section 457.135 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop...

  9. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  10. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  11. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  12. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  13. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  14. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  15. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  16. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  17. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  18. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  19. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  20. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...