Science.gov

Sample records for ags alternating gradient

  1. The AGS (alternating gradient synchrotron): Performance and potential

    SciTech Connect

    Ratner, L.G.

    1989-01-01

    This report discusses the following topics on the Brookhaven AGS: basic parameters, description of the accelerator complex and proton operation; operation with heavy ions and polarized protons; AGS upgrades and expanded potential. (LSP)

  2. Fibroma induction in rat skin following single or multiple doses of 1.0 GeV/nucleon 56Fe ions from the Brookhaven Alternating Gradient Synchrotron (AGS)

    NASA Technical Reports Server (NTRS)

    Burns, F. J.; Zhao, P.; Xu, G.; Roy, N.; Loomis, C.

    2001-01-01

    Rat skin was exposed to the plateau region of the 1.0 GeV/nucleon 56Fe beam at the Brookhaven AGS. Rats were irradiated or not with single of split doses of 56Fe or argon; some 56Fe-exposed rats were fed 250 ppm retinyl acetate continuously in the lab chow beginning 1 week before irradiation. All lesions were noted, photographed and identified for eventual histological diagnosis. The preponderance of the tumors so far are fibromas. The data show that single doses of 56Fe ions are 2 or 3 fold more effective than argon in producing tumors at 4.5 Gy but are about equally effective at 3.0 Gy and 9.0 Gy. The presence of 250 ppm retinyl acetate in the lab chow reduced the incidence of tumors by about 50-60% in comparison to groups exposed only to the radiation. These are preliminary findings based on only about one-fourth the eventual number of tumors expected.

  3. Fibroma induction in rat skin following single or multiple doses of 1.0 GeV/nucleon 56Fe ions from the Brookhaven Alternating Gradient Synchrotron (AGS).

    PubMed

    Burns, F J; Zhao, P; Xu, G; Roy, N; Loomis, C

    2001-01-01

    Rat skin was exposed to the plateau region of the 1.0 GeV/nucleon 56Fe beam at the Brookhaven AGS. Rats were irradiated or not with single of split doses of 56Fe or argon; some 56Fe-exposed rats were fed 250 ppm retinyl acetate continuously in the lab chow beginning 1 week before irradiation. All lesions were noted, photographed and identified for eventual histological diagnosis. The preponderance of the tumors so far are fibromas. The data show that single doses of 56Fe ions are 2 or 3 fold more effective than argon in producing tumors at 4.5 Gy but are about equally effective at 3.0 Gy and 9.0 Gy. The presence of 250 ppm retinyl acetate in the lab chow reduced the incidence of tumors by about 50-60% in comparison to groups exposed only to the radiation. These are preliminary findings based on only about one-fourth the eventual number of tumors expected.

  4. Chemotactic cell trapping in controlled alternating gradient fields

    PubMed Central

    Meier, Börn; Zielinski, Alejandro; Weber, Christoph; Arcizet, Delphine; Youssef, Simon; Franosch, Thomas; Rädler, Joachim O.; Heinrich, Doris

    2011-01-01

    Directed cell migration toward spatio-temporally varying chemotactic stimuli requires rapid cytoskeletal reorganization. Numerous studies provide evidence that actin reorganization is controlled by intracellular redistribution of signaling molecules, such as the PI4,5P2/PI3,4,5P3 gradient. However, exploring underlying mechanisms is difficult and requires careful spatio-temporal control of external chemotactic stimuli. We designed a microfluidic setup to generate alternating chemotactic gradient fields for simultaneous multicell exposure, greatly facilitating statistical analysis. For a quantitative description of intracellular response dynamics, we apply alternating time sequences of spatially homogeneous concentration gradients across 300 μm, reorienting on timescales down to a few seconds. Dictyostelium discoideum amoebae respond to gradient switching rates below 0.02 Hz by readapting their migration direction. For faster switching, cellular repolarization ceases and is completely stalled at 0.1 Hz. In this “chemotactically trapped” cell state, external stimuli alternate faster than intracellular feedback is capable to respond by onset of directed migration. To investigate intracellular actin cortex rearrangement during gradient switching, we correlate migratory cell response with actin repolymerization dynamics, quantified by a fluorescence distribution moment of the GFP fusion protein LimEΔcc. We find two fundamentally different cell polarization types and we could reveal the role of PI3-Kinase for cellular repolarization. In the early aggregation phase, PI3-Kinase enhances the capability of D. discoideum cells to readjust their polarity in response to spatially alternating gradient fields, whereas in aggregation competent cells the effect of PI3-Kinase perturbation becomes less relevant. PMID:21709255

  5. Optimizing the resolution of the alternating-gradient m/{mu} selector

    SciTech Connect

    Filsinger, Frank; Putzke, Stephan; Haak, Henrik; Meijer, Gerard; Kuepper, Jochen

    2010-11-15

    We study the focusing of large neutral molecules in a molecular beam using electric fields. Since all quantum states of these molecules are high-field seeking under the practical experimental conditions, alternating gradient (AG) focusing has to be applied. The optimal ac frequency that yields the highest transmission depends on m/{mu}, where {mu} is the dipole moment and m denotes the mass. Therefore, an AG focuser can be used to select species with different m/{mu} ratios, e.g., the conformers of neutral molecules [Phys. Rev. Lett. 100, 133003 (2008)]. Here we demonstrate both theoretically and experimentally how the resolution of such an m/{mu} selector can be optimized.

  6. A computer control system for the alternating gradient magnetometer

    NASA Technical Reports Server (NTRS)

    Garland, Michael M.

    1989-01-01

    An alternating gradient magnetometer was interfaced to a computer for the automation of data taking. Using a fast Fourier transform analysis system data can be acquired and processed in real time. Data are stored on disk and can be recalled for plotting and further analysis. With the addition of a simple liquid nitrogen cryostat, magnetization measurements can be performed in the range from 300 to 77 K. Results are reported on three different types of piezoelectric transducers.

  7. Amplitude-dependent orbital period in alternating gradient accelerators

    NASA Astrophysics Data System (ADS)

    Machida, S.; Kelliher, D. J.; Edmonds, C. S.; Kirkman, I. W.; Berg, J. S.; Jones, J. K.; Muratori, B. D.; Garland, J. M.

    2016-03-01

    Orbital period in a ring accelerator and time of flight in a linear accelerator depend on the amplitude of betatron oscillations. The variation is negligible in ordinary particle accelerators with relatively small beam emittance. In an accelerator for large emittance beams like muons and unstable nuclei, however, this effect cannot be ignored. We measured orbital period in a linear non-scaling fixed-field alternating-gradient accelerator, which is a candidate for muon acceleration, and compared it with the theoretical prediction. The good agreement between them gives important ground for the design of particle accelerators for a new generation of particle and nuclear physics experiments.

  8. Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries

    NASA Astrophysics Data System (ADS)

    Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; Prestemon, Soren; Gerbershagen, Alexander; Schippers, Jacobus Maarten; Robin, David

    2015-10-01

    We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.

  9. Combined alternating gradient force magnetometer and susceptometer system

    SciTech Connect

    Pérez, M.; Mendizábal Vázquez, I. de; Aroca, C.

    2015-01-15

    We report the design, fabrication, and characterization of a new system that combines the performances of two different types of magnetic characterization systems, Alternating Gradient Force Magnetometers (AGFM) and susceptometers. The flexibility of our system is demonstrated by its capability to be used as any of them, AGFM or susceptometer, without any modification in the experimental set-up because of the electronics we have developed. Our system has a limit of sensitivity lower than 5 × 10{sup −7} emu. Moreover, its main advantage is demonstrated by the possibility of measuring small quantities of materials under DC or AC magnetic fields that cannot properly be measured with a commercial vibrating sample magnetometers or AGFM.

  10. Combined alternating gradient force magnetometer and susceptometer system.

    PubMed

    Pérez, M; Ranchal, R; de Mendizábal Vázquez, I; Cobos, P; Aroca, C

    2015-01-01

    We report the design, fabrication, and characterization of a new system that combines the performances of two different types of magnetic characterization systems, Alternating Gradient Force Magnetometers (AGFM) and susceptometers. The flexibility of our system is demonstrated by its capability to be used as any of them, AGFM or susceptometer, without any modification in the experimental set-up because of the electronics we have developed. Our system has a limit of sensitivity lower than 5 × 10(-7) emu. Moreover, its main advantage is demonstrated by the possibility of measuring small quantities of materials under DC or AC magnetic fields that cannot properly be measured with a commercial vibrating sample magnetometers or AGFM.

  11. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  12. Polarized 3He+2 ions in the Alternate Gradient Synchrotron to RHIC transfer line

    NASA Astrophysics Data System (ADS)

    Tsoupas, N.; Huang, H.; Méot, F.; Ptitsyn, V.; Roser, T.; Trbojevic, D.

    2016-09-01

    The proposed electron-hadron collider (eRHIC) to be built at Brookhaven National Laboratory (BNL) will allow the collisions of 20 GeV polarized electrons with 250 GeV polarized protons, or 100 GeV /n polarized 3He+2 ions, or other unpolarized ion species. The large value of the anomalous magnetic moment of the 3He nucleus GHe=(g -2 )/2 =-4.184 (where g is the g -factor of the 3He nuclear spin) combined with the peculiar layout of the transfer line which transports the beam bunches from the Alternate Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) makes the transfer and injection of polarized 3He ions from AGS to RHIC (AtR) a special case as we explain in the paper. Specifically in this paper we calculate the stable spin direction of a polarized 3He beam at the exit of the AtR line which is also the injection point of RHIC, and we discuss a simple modifications of the AtR beam-transfer-line, to perfectly match the stable spin direction of the injected polarized 3He beam to that of the circulating beam, at the injection point of RHIC.

  13. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    NASA Astrophysics Data System (ADS)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  14. Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films.

    PubMed

    Sekine, R; Brunetti, G; Donner, E; Khaksar, M; Vasilev, K; Jämting, Å K; Scheckel, K G; Kappen, P; Zhang, H; Lombi, E

    2015-01-20

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-), and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed “nano” Diffusive Gradients in Thin Films (DGT) devices. These nano-DGT devices were designed specifically to avoid confounding effects when measuring element lability in the presence of nanoparticles. The aging profile and stabilities of the three nanoparticles and AgNO3 (ionic Ag) in soil were examined at three different soil pH values over a period of up to 7 months. Transformation of ionic Ag, Ag-NP and AgCl-NPs were dependent on pH. AgCl formation and persistence was observed under acidic conditions, whereas sulfur-bound forms of Ag dominated in neutral to alkaline soils. Ag2S-NPs were found to be very stable under all conditions tested and remained sulfur bound after 7 months of incubation. Ag lability was characteristically low in soils containing Ag2S-NPs. Other forms of Ag were linked to higher DGT-determined lability, and this varied as a function of aging and related speciation changes as determined by XAS. These results clearly indicate that Ag2S-NPs, which are the most environmentally relevant form of Ag that enter soils, are chemically stable and have profoundly low Ag lability over extended periods. This may minimize the long-term risks of Ag toxicity in the soil environment. PMID:25436975

  15. Reactive combinatorial synthesis and characterization of a gradient Ag-Ti oxide thin film with antibacterial properties.

    PubMed

    Unosson, Erik; Rodriguez, Daniel; Welch, Ken; Engqvist, Håkan

    2015-01-01

    The growing demand for orthopedic and dental implants has spurred researchers to develop multifunctional coatings, combining tissue integration with antibacterial features. A possible strategy to endow titanium (Ti) with antibacterial properties is by incorporating silver (Ag), but designing a structure with adequate Ag(+) release while maintaining biocompatibility has been shown difficult. To further explore the composition-structure-property relationships between Ag and Ti, and its effects against bacteria, this study utilized a combinatorial approach to manufacture and test a single sample containing a binary Ag-Ti oxide gradient. The sample, sputter-deposited in a reactive (O2) environment using a custom-built combinatorial physical vapor deposition system, was shown to be effective against Staphylococcus aureus with viability reductions ranging from 17 to above 99%, depending on the amount of Ag(+) released from its different parts. The Ag content along the gradient ranged from 35 to 62 wt.%, but it was found that structural properties such as varied porosity and degree of crystallinity, rather than the amount of incorporated Ag, governed the Ag(+) release and resulting antibacterial activity. The coating also demonstrated in vitro apatite-forming abilities, where structural variety along the sample was shown to alter the hydrophilic behavior, with the degree of hydroxyapatite deposition varying accordingly. By means of combinatorial synthesis, a single gradient sample was able to display intricate compositional and structural features affecting its biological response, which would otherwise require a series of coatings. The current findings suggest that future implant coatings incorporating Ag as an antibacterial agent could be structurally enhanced to better suit clinical requirements.

  16. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well

  17. AG*SAT: An International Distance Education Alternative.

    ERIC Educational Resources Information Center

    Bowen, Blannie E.; Thomson, Joan S.

    1995-01-01

    Responses from affiliates and nonaffiliates of AG*SAT, a consortium of land-grant universities, indicated a desire to deliver more instruction via satellite; satellite courses focus primarily on emerging topics for which there is presently limited capacity. Results suggest that distance education technologies may exceed the current land-grant…

  18. Detailed characterization of the 1087 MeV/nucleon iron-56 beam used for radiobiology at the alternating gradient synchrotron

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Heilbronn, L.; Miller, J.

    1998-01-01

    We report beam characterization and dosimetric measurements made using a 56Fe beam extracted from the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) with a kinetic energy of 1087 MeV/nucleon. The measurements reveal that the depth-dose distribution of this beam differs significantly from that obtained with a 600 MeV/nucleon iron beam used in several earlier radiobiology experiments at the Lawrence Berkeley National Laboratory's BEVALAC. We present detailed measurements of beam parameters relevant for radiobiology, including track- and dose-averaged linear energy transfer (LET), fragment composition and LET spectra measured behind sample holders used in irradiations of biological samples. We also report measurements of fluence behind three depths (1.94, 4.68 and 9.35 g cm(-2)) of polyethylene targets with the 1087 MeV/nucleon beam, and behind 1.94 g cm(-2) of polyethylene with a 610 MeV/nucleon beam delivered by the AGS. These results are compared to earlier measurements with the 600 MeV/nucleon beam at the BEVALAC.

  19. Alternative Approaches for Evaluating the Effects of Environmental Gradients on Stream Invertebrates

    NASA Astrophysics Data System (ADS)

    Pollard, A. I.; Yuan, L. L.

    2005-05-01

    Taxonomic optima, i.e., the environmental conditions at which peak abundance is expected, are widely used to analyze assemblage response to environmental gradients. Typically analyses consider how the mean optima for an assemblage change over a gradient. In this study we consider how other characteristics of the assemblage vary. We ask two questions. First, how does variability in assemblage optima change over an environmental gradient? Second, is there a trade-off between environmental generalists, i.e., genera having a wide range of occurrence, and specialists, i.e., genera having a narrow range of occurrence, over these gradients? We use data collected in the U.S. EPA Environmental Monitoring and Assessment Program for benthic invertebrate assemblage and stream characteristic information. Optima estimates for genera are derived from logistic regression models over environmental gradients in streams. Assemblage characteristics are based on the distribution of these optima for genera occurring at a site. These results suggest alternative approaches for evaluating the effects of environmental gradients on stream biota.

  20. Fractionation of Saprolegnia diclina (Oomycetes) satelite DNAs by AgNO3/Cs2SO4 density gradient centrifugation.

    PubMed

    Neish, G A; Green, B R

    1977-12-14

    Saprolegnia diclina DNA has been fractionated using preparative AgNO3/Cs2SO4 and CsCl density gradients. In addition to the previously identified major satellite DNA, there are two minor DNA components banding at 1.682 and 1.701 g - cm(-3) in CsCl. Purified major satellite DNA bands at 1.707 g - cm(-3) giving a base composition of 48% G + C in good agreement with 47% G + C calculated from its Tm value. The nuclear DNA base composition is 58% G + C by both methods. The base composition of the major satellite DNA suggests that it may represent ribosomal DNA cistrons.

  1. Two Alternate High Gradient Quadrupoles; An Upgraded Tevatron IR and A"Pipe" Design

    SciTech Connect

    McInturff, A.D.; Oort, J.M. van; Scanlan, R.M.

    1995-04-01

    With the U.S. cancellation of the SSC project, the only large approved hadron accelerator project is CERN's LHC. One of the more critical elements in the performance of a collider is the quadrupole lens at the beam collision points. These quadrupoles, usually referred to as the 'insertion quads' normally form a set of triplets around the interaction region. Their focal power directly affects the luminosity available at the crossing point In order to achieve as high a gradient as possible, the CERN design team has proposed a very efficient high gradient quadrupole which is based on a graded four-layer winding structure. At Fermilab's Tevatron, an upgraded two layer winding quadrupole has been in operation since 1989, and has provided a 50% higher gradient than its predecessor. The quadrupole was basically state of the art when it was designed in 1985. Since then however, improvements have been made in cabling, conductor perfonnance, etc. Naturally, operation of a modernized version of this .design can provide higher capabilities. This improved two layer design can serve as an alternative to the more intricate graded four layer design now envisioned for the LHC, provided it can obtain the proposed gradient. A high gradient quadrupole with a 'pipe' layout can be considered as a possible candidate for future large collider insertion regions. It is possible to fine-tune the design to obtain a good field-quality, the conductor is well cooled in case of a large radiation heat load, and the overall structure is smaller than a conventional quadrupole with a comparable field gradient.

  2. Adiabatic Formation of a Matched-beam Distribution for an Alternating-gradient Quadrupole Lattice

    SciTech Connect

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.; Qin, Hong

    2010-02-02

    The formation of a quasiequilibrium beam distribution matched to an alternating-gradient quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is studied numerically using particle-in-cell simulations. Quiescent beam propagation over several hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase advances describing the strength of the oscillating focusing field. Properties of the matched-beam distribution are investigated. In particular, self-similar evolution of the beam density profile is observed over a wide range of system parameters. The numerical simulations are performed using the WARP particle-in-cell code.

  3. Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery.

    PubMed

    Trócoli, R; Battistel, A; La Mantia, F

    2015-08-10

    Currently, Li is mainly produced through evaporation of Li-rich brines obtained from South American countries such as Bolivia, Chile, and Argentina. The most commonly used process, the lime-soda evaporation, requires a long time and several purification steps, which produces a considerable amount of chemical waste. Various electrochemical methods have been proposed as alternatives, but they use expensive metals such as Ag or Pt, thus rendering these methods economically unacceptable. In this work, we present KNiFe(CN)6 , an abundant and environmentally friendly material, as alternative to these expensive components. The Prussian blue derivate has a higher affinity toward cations (Na(+) or K(+) ) than for Li(+) . Additionally, the use of KNiFe(CN)6 permits the utilization of seawater or brine water as recovery solution, thus reducing the consumption of fresh water, which is typically a scarce element in Li production sites. PMID:26138094

  4. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    SciTech Connect

    Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  5. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    NASA Astrophysics Data System (ADS)

    Machida, S.; Barlow, R.; Berg, J. S.; Bliss, N.; Buckley, R. K.; Clarke, J. A.; Craddock, M. K.; D'Arcy, R.; Edgecock, R.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Johnstone, C.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Keil, E.; Kelliher, D. J.; Kirkman, I. W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Méot, F.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Owen, H. L.; Pasternak, J.; Peach, K. J.; Poole, M. W.; Rao, Y.-N.; Saveliev, Y.; Scott, D. J.; Sheehy, S. L.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P. H.; Wolski, A.; Yokoi, T.

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a `scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  6. Model based controls and the AGS booster controls system architecture

    SciTech Connect

    Casella, R.A.

    1987-08-18

    The Heavy Ion Transfer Line used to inject heavy ions created at the Tandem Van de Graaff into the Alternating Gradient Synchrotron (AGS) is briefly discussed, particularly as regards its control system. (LEW)

  7. Normal-conducting scaling fixed field alternating gradient accelerator for proton therapy

    NASA Astrophysics Data System (ADS)

    Garland, J. M.; Appleby, R. B.; Owen, H.; Tygier, S.

    2015-09-01

    In this paper we present a new lattice design for a 30-350 MeV scaling fixed-field alternating gradient accelerator for proton therapy and tomography—NORMA (NOrmal-conducting Racetrack Medical Accelerator). The energy range allows the realization of proton computed tomography and utilizes normal conducting magnets in both a conventional circular ring option and a novel racetrack configuration, both designed using advanced optimization algorithms we have developed in pyzgoubi. Both configurations consist of ten focusing-defocusing-focusing triplet cells and operate in the second stability region of Hills equation. The ring configuration has a circumference of 60 m, a peak magnetic field seen by the beam of <1.6 T , a maximum horizontal orbit excursion of 44 cm and a dynamic aperture of 68 mm mrad—determined using a novel dynamic aperture (DA) calculation technique. The racetrack alternative is realized by adding magnet-free drift space in between cells at two opposing points in the ring, to facilitate injection and extraction. Our racetrack design has a total magnet-free straight lengths of 4.9 m, a circumference of 71 m, a peak magnetic field seen by the beam of <1.74 T , a maximum horizontal orbit excursion of 50 cm and a DA of 58 mm mrad. A transverse magnet misalignment model is also presented for the ring and racetrack configurations where the DA remains above 40 mm mrad for randomly misaligned error distributions with a standard deviation up to 100 μ m .

  8. Beam transport line with scaling fixed field alternating gradient type magnets

    NASA Astrophysics Data System (ADS)

    Machida, Shinji; Fenning, Richard

    2010-08-01

    A scaling fixed field alternating gradient (FFAG) accelerator provides large momentum acceptance despite the fact that magnetic guiding fields are constant in time. Optical functions are identical over the large momentum range as well. We have designed a straight beam transport line (BTL) using a scaling FFAG type magnet which has a field profile of yk, where y is the horizontal coordinate and k is the magnetic field index. This FFAG-BTL has very large momentum acceptance and optical functions that, practically speaking, do not depend on momentum. We also designed a dispersion suppressor at the end of the line by combining unit cells with a different field index k so that the momentum dependence of orbit location should be eliminated at the exit. An obvious application of this design is the BTL after an FFAG accelerator to a patient in a hadron therapy facility or to a target in general. This could be an alternative to the conventional BTL with solenoids or quadrupoles because of the strong focusing nature of a quadrupole and the large momentum acceptance like a solenoid.

  9. Multiple Partial Siberian Snakes in the AGS

    SciTech Connect

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.; Hattori, T.; Lin, F.

    2007-06-13

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  10. Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity.

    PubMed

    Matson, Cole W; Bone, Audrey J; Auffan, Mélanie; Lindberg, T Ty; Arnold, Mariah C; Hsu-Kim, Heileen; Wiesner, Mark R; Di Giulio, Richard T

    2016-08-01

    The influence of salinity on Ag toxicity was investigated in Atlantic killifish (Fundulus heteroclitus) early life-stages. Embryo mortality was significantly reduced as salinity increased and Ag(+) was converted to AgCl(solid). However, as salinity continued to rise (>5 ‰), toxicity increased to a level at least as high as observed for Ag(+) in deionized water. Rather than correlating with Ag(+), Fundulus embryo toxicity was better explained (R(2) = 0.96) by total dissolved Ag (Ag(+), AgCl2 (-), AgCl3 (2-), AgCl4 (3-)). Complementary experiments were conducted with medaka (Oryzias latipes) embryos to determine if this pattern was consistent among evolutionarily divergent euryhaline species. Contrary to Fundulus data, medaka toxicity data were best explained by Ag(+) concentrations (R(2) = 0.94), suggesting that differing ionoregulatory physiology may drive observed differences. Fundulus larvae were also tested, and toxicity did increase at higher salinities, but did not track predicted silver speciation. Alternatively, toxicity began to increase only at salinities above the isosmotic point, suggesting that shifts in osmoregulatory strategy at higher salinities might be an important factor. Na(+) dysregulation was confirmed as the mechanism of toxicity in Ag-exposed Fundulus larvae at both low and high salinities. While Ag uptake was highest at low salinities for both Fundulus embryos and larvae, uptake was not predictive of toxicity. PMID:27170044

  11. Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator

    DOEpatents

    Johnstone, Carol J.

    2011-02-01

    A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.

  12. Myocardial fractional flow reserve: a biplane angiocardiographic alternative to the pressure gradient method

    NASA Astrophysics Data System (ADS)

    Schrijver, Marc; Slump, Cornelis H.; Storm, Corstiaan J.

    2001-05-01

    Pijls and De Bruyne (1993) developed a method employing intravascular blood pressure gradients to calculate the Myocardial Fractional Flow Reserve (FFR). This flow reserve is a better indication of the functional severity of a coronary stenosis than percentage diameter or luminal area reduction as provided by traditional Quantitative Coronary Angiography (QCA). However, to use this method, all of the relevant artery segments have to be select intra-operatively. After the procedure, only the segments for which a pressure reading is available can be graded. We previously introduced another way to assess the functional severity of stenosis using angiographic projections: the Relative Coronary Flow Reserve (RCFR). It is based on standard densitometric blood velocity and flow reserve methods, but without the need to estimate the geometry of the artery. This paper demonstrates that this RCFR method yields -- in theory -- the same results as the FFR, and can be given an almost identical interpretation. This provides the opportunity to use the RCFR retrospectively, when pressure gradients are not available for the segment(s) of interest.

  13. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  14. Overcoming an intrinsic depolarizing resonance with a partial snake at the Brookhaven AGS.

    SciTech Connect

    Huang, H.; Ahrens, L.; Bai, M.; Brown, K. A.; Glenn, W.; Luccio, A. U.; MacKay, W. W.; Montag, C.; Ptitsyn, V.; Roser, T.; Tsoupas, N.; Zeno, K.; Ranjbar, V.; Cadman, R. V.; Spinka, H.; Underwood, D.; High Energy Physics; BNL; Indiana Univ.

    2004-06-01

    An 11.4% partial Siberian snake was used to successfully accelerate polarized protons through a strong intrinsic depolarizing spin resonance in the Alternating Gradient Synchrotron (AGS). No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS or other medium energy proton synchrotrons to overcome all weak and strong depolarizing spin resonances.

  15. The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators

    NASA Astrophysics Data System (ADS)

    Tygier, S.; Appleby, R. B.; Garland, J. M.; Hock, K.; Owen, H.; Kelliher, D. J.; Sheehy, S. L.

    2015-03-01

    We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.

  16. Evaluation of an alternate method for sampling benthic macroinvertebrates in low-gradient streams sampled as part of the National Rivers and Streams Assessment.

    PubMed

    Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A

    2014-02-01

    Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams. PMID:24081815

  17. Evaluation of an alternate method for sampling benthic macroinvertebrates in low-gradient streams sampled as part of the National Rivers and Streams Assessment.

    PubMed

    Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A

    2014-02-01

    Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.

  18. Alternating gradient synchrotron

    SciTech Connect

    Lowenstein, D.I.

    1984-12-06

    With the start of a research and development effort directed towards the Superconducting Super Collider (SSC), it is essential that US industry become involved as soon as possible. For that reason, I describe what a conventional accelerator complex is like and therefore what the first stages of the SSC would entail.

  19. Adiabatic warm-fluid equilibrium theory of thermal charged-particle beams in alternating-gradient focusing fields

    SciTech Connect

    Samokhvalova, Ksenia R.; Chen Chiping; Zhou Jing

    2009-04-15

    An adiabatic warm-fluid equilibrium theory for a thermal charged-particle beam in an alternating-gradient focusing field is presented. Warm-fluid equilibrium equations are solved in the paraxial approximation. The theory predicts that the four-dimensional rms thermal emittance of the beam is conserved, but the two-dimensional rms thermal emittances are not constant. The rms beam envelope equations and the self-consistent Poisson equation, governing the beam density and potential distributions, are derived. Although the presented rms beam envelope equations have the same form as the previously known rms beam envelope equations, the evolution of the rms emittances in the present theory is given by analytical expressions. The density does not have the simplest elliptical symmetry, but the constant-density contours are ellipses, and the aspect ratio of the elliptical constant-density contours decreases as the density decreases along the transverse displacement from the beam axis. For high-intensity beams, the beam density profile is flat in the center of the beam and falls off rapidly within a few Debye lengths, and the rate at which the density falls is approximately isotropic in the transverse directions.

  20. Alternative Compression Garments

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  1. A Non-scaling Fixed Field Alternating Gradient Accelerator for the Final Acceleration Stage of the International Design Study of the Neutrino Factory.

    SciTech Connect

    Berg, J.S.; Aslaninejad, M.; Pasternak, J.; Witte, H.; Bliss, N. Cordwell M.; Jones, T.; Muir, A., Kelliher, D.; Machida, S.

    2011-09-04

    The International Design Study of the Neutrino Factory (IDS-NF) has recently completed its Interim Design Report (IDR), which presents our current baseline design of the neutrino factory. To increase the efficiency and reduce the cost of acceleration, the IDR design uses a linear non-scaling fixed field alternating gradient accelerator (FFAG) for its final acceleration stage. We present the current lattice design of that FFAG, including the main ring plus its injection and extraction systems. We describe parameters for the main ring magnets, kickers, and septa, as well as the power supplies for the kickers. We present a first pass at an engineering layout for the ring and its subsystems.

  2. Characterization techniques for fixed-field alternating gradient accelerators and beam studies using the KURRI 150 MeV proton FFAG

    NASA Astrophysics Data System (ADS)

    Sheehy, S. L.; Kelliher, D. J.; Machida, S.; Rogers, C.; Prior, C. R.; Volat, L.; Haj Tahar, M.; Ishi, Y.; Kuriyama, Y.; Sakamoto, M.; Uesugi, T.; Mori, Y.

    2016-07-01

    In this paper we describe the methods and tools used to characterize a 150 MeV proton scaling fixed field alternating gradient (FFAG) accelerator at Kyoto University Research Reactor Institute. Many of the techniques used are unique to this class of machine and are thus of relevance to any future FFAG accelerator. For the first time we detail systematic studies undertaken to improve the beam quality of the FFAG. The control of beam quality in this manner is crucial to demonstrating high power operation of FFAG accelerators in future.

  3. The influence of high thermal gradient casting, hot isostatic pressing and alternate heat treatment on the structure and properties of a single crystal nickel base superalloy

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1988-01-01

    A development program has been conducted to improve the cyclic properties of the PWA 1480 single-crystal superalloy by reducing or entirely eliminating casting porosity at fatigue-initiation sites, through the use of improved casting process parameters and HIPing; potential mechanical property improvements in a high-pressure hydrogen environment were also sought in alternatives to the standard coating and heat-treatment cycle. High thermal gradient casting was found to yield a reduction in overall casting porosity density and pore sizes. The most dramatic mechanical property improvement resulted from HIPing.

  4. Size effect and odd-even alternation in the melting of single and stacked AgSCn layers: synthesis and nanocalorimetry measurements.

    PubMed

    de la Rama, Lito P; Hu, Liang; Ye, Zichao; Efremov, Mikhail Y; Allen, Leslie H

    2013-09-25

    We report a systematic study of melting of layered lamella of silver alkanethiolates (AgSCn). A new synthesis method allows us to independently change the thickness of the crystal in two ways-by modulating chain length (n = 7-18) and by stacking these crystals to a specific layer number (m = 1-10). This method produces magic size lamella, having a well-spaced discrete melting point, Tm, distribution. Nanocalorimetry shows stepwise increases in Tm, as the lamella thickness increases by integer increments of chain length. The relationship between Tm and the inverse thickness follows the linear scaling law of Gibbs-Thomson effect. Layer stacking dramatically changes the degree and nature of size-effect melting. There is odd/even effect in stacked 2, 3, and 4 layers. Tm values of single-layer and multilayer samples do not show noticeable odd/even alternation. We develop a phenomenological model of size effect based on the cumulative excess free energy, G(excess), contributions of four spatially separate regions of the crystal: surface, Ag-S central plane, substrate interface, and interlayer interface. The selective appearance of the odd/even effect is due to the significant stabilization (1.4 kJ/mol) of interlamellae interfaces of odd-chain samples, possibly due to registration/packing. Stabilization occurs only for the mobile lamellae situated close to the free surface, and thus 2-layer samples show the highest degree of stabilization. X-ray diffraction shows that the chains are tilted 18° with respect to the basal plane normal but that the van der Waals gap is 0.3 Å smaller for crystals with odd chains.

  5. Modelling of the AGS using Zgoubi - Status

    SciTech Connect

    Meot F.; Ahrens, L.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Schoefer, V.; Tsoupas, N.

    2012-05-20

    This paper summarizes the progress achieved so far, and discusses various outcomes, regarding the development of a model of the Alternating Gradient Synchrotron at the RHIC collider. The model, based on stepwise ray-tracing methods, includes beam and polarization dynamics. This is an on-going work, and a follow-on of code developments and particle and spin dynamics simulations that have been subject to earlier publications at IPAC and PAC [1, 2, 3]. A companion paper [4] gives additional informations, regarding the use of the measured magnetic field maps of the AGS main magnets.

  6. Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-β and is ameliorated by the alternative supplementation of latent TGF-β.

    PubMed

    Albro, Michael B; Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Shim, Jay J; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-01-01

    Transforming growth factor beta (TGF-β) has become one of the most widely utilized mediators of engineered cartilage growth. It is typically exogenously supplemented in the culture medium in its active form, with the expectation that it will readily transport into tissue constructs through passive diffusion and influence cellular biosynthesis uniformly. The results of this investigation advance three novel concepts regarding the role of TGF-β in cartilage tissue engineering that have important implications for tissue development. First, through the experimental and computational analysis of TGF-β concentration distributions, we demonstrate that, contrary to conventional expectations, media-supplemented exogenous active TGF-β exhibits a pronounced concentration gradient in tissue constructs, resulting from a combination of high-affinity binding interactions and a high cellular internalization rate. These gradients are sustained throughout the entire culture duration, leading to highly heterogeneous tissue growth; biochemical and histological measurements support that while biochemical content is enhanced up to 4-fold at the construct periphery, enhancements are entirely absent beyond 1 mm from the construct surface. Second, construct-encapsulated chondrocytes continuously secrete large amounts of endogenous TGF-β in its latent form, a portion of which undergoes cell-mediated activation and enhances biosynthesis uniformly throughout the tissue. Finally, motivated by these prior insights, we demonstrate that the alternative supplementation of additional exogenous latent TGF-β enhances biosynthesis uniformly throughout tissue constructs, leading to enhanced but homogeneous tissue growth. This novel demonstration suggests that latent TGF-β supplementation may be utilized as an important tool for the translational engineering of large cartilage constructs that will be required to repair the large osteoarthritic defects observed clinically.

  7. Alternative respiratory path capacity in plant mitochondria: effect of growth temperature, the electrochemical gradient, and assay pH. [Zea mays L. , Vigna radiata L. , Symplocarpus foetidus L. , Sauromatum guttatum Schott

    SciTech Connect

    Elthon, T.E.; Stewart, C.R.; McCoy, C.A.; Bonner, W.D. Jr.

    1986-02-01

    Influence of growth temperature on the capacity of the mitochondrial alternative pathway of electron transport was investigated using etiolated corn (Zea mays L.) seedlings. These seedlings were grown to comparable size in either a warm (30/sup 0/C) or a cold (13/sup 0/C) temperature regime, and then their respiration rates were measured as O/sub 2/ uptake at 25/sup 0/C. The capacity of the alternative pathway (KCN-insensitive O/sub 2/ uptake) was found essentially to double in shoots of cold-grown seedlings. When mitochondria were isolated from the shoots a greater potential for flow through the alternative path was observed in mitochondria from the cold-grown seedlings with all substrates used (an average increase of 84%). Using exogenous NADH as the substrate, the effect of the electrochemical gradient on measurable capacities of the cytochrome and alternative pathways was investigated in mitochondria from both etiolated seedlings and thermogenic spadices. In corn shoot and mung bean (Vigna radiata L.) hypocotyl mitochondria increased flow through the cytochrome chain in the absence of the electrochemical gradient was found not to influence the potential for flow through the alternative path. However, in mitochondria from skunk cabbage (Symplocarpus foetidus L.) and voodoo lily (Sauromatum gutatum Schott) spadices increased flow through the cytochrome chain in the absence of the gradient occurred at the expense of flow through the alternative pathway. This experiment also revealed that the potential for respiratory control is largely dependent upon the assay pH.

  8. Commissioning the polarized beam in the AGS

    SciTech Connect

    Ratner, L.G.; Brown, H.; Chiang, I.H.; Courant, E.; Gardner, C.; Lazarus, D.; Lee, Y.Y.; Makdisi, Y.; Sidhu, S.; Skelly, J.

    1985-01-01

    After the successful operation of a high energy polarized proton beam at the Argonne Laboratory Zero Gradient Synchrotron (ZGS) was terminated, plans were made to commission such a beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). On February 23, 1984, 2 ..mu..A of polarized H/sup -/ was accelerated through the Linac to 200 MeV with a polarization of about 65%. 1 ..mu..A was injected into the AGS and acceleration attempts began. Several relatively short runs were then made during the next three months. Dedicated commissioning began in early June, and on June 26 the AGS polarized beam reached 13.8 GeV/c to exceed the previous ZGS peak momentum of 12.75 GeV/c. Commissioning continued to the point where 10/sup 10/ polarized protons were accelerated to 16.5 GeV/c with 40% polarization. Then, two experiments had a short polarized proton run. We plan to continue commissioning efforts in the fall of this year to reach higher energy, higher intensity, and higher polarization levels. We present a brief description of the facility and of the methods used for preserving the polarization of the accelerating beam.

  9. MINI-BUNCHED AND MICRO-BUNCHED SLOW EXTRACTED BEAMS FROM THE AGS.

    SciTech Connect

    BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.SIVERTZ,M.KOSCIELNIAK,S.R.

    2004-07-05

    Brookhaven National Laboratory's (BNLs) Alternating Gradient Synchrotron (AGS) has a long history of providing slow extracted proton beams to fixed target experiments. This program of providing high quality high intensity beams continues with two new experiments currently being designed for operation at the AGS. Both experiments require slow extracted beam, but with an added requirement that those beams be bunched. Bunched beam slow extraction techniques have been developed for both experiments and initial tests have been performed. In this report we describe the beam requirements for the two experiments, and present results of detailed simulations and initial beam tests.

  10. Experimental status of the AGS Relativistic Heavy Ion Program

    SciTech Connect

    Sangster, T.C.

    1994-10-01

    The universal motivation for colliding large nuclei at relativistic energies is the expectation that a small volume of the primordial quark soup, generally referred to as the Quark-Gluon Plasma (QGP), can be created and studied. The QGP is formed via a phase transition caused by either the extreme baryon densities and/or the extreme temperatures achieved in the overlap zone of the two colliding nuclei. Experiments at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) using a beam of Si nuclei at 14.6 GeV per nucleon on various nuclear targets have been completed. These same experiments are now actively searching for signatures of QGP formation using a beam of Au nuclei at 11.7 GeV per nucleon. This paper briefly summarizes some of the key results from the Si beam program and the current status of the experimental Au beam program at the AGS.

  11. The cardiovascular response to the AGS

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.

    1993-01-01

    This paper reports the preliminary results of experiments on human subjects conducted to study the cardiovascular response to various g-levels and exposure times using an artificial gravity simulator (AGS). The AGS is a short arm centrifuge consisting of a turntable, a traction system, a platform and four beds. Data collection hardware is part of the communication system. The AGS provides a steep acceleration gradient in subjects in the supine position.

  12. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  13. Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging

    NASA Astrophysics Data System (ADS)

    Su, Yu-Ping; Wu, Chun-Sen; Ouyang, Fan-Yi

    2016-01-01

    Three-dimensional integrated circuit technology has become a major trend in electronics packaging in the microelectronics industry. To effectively remove heat from stacked integrated circuitry, a temperature gradient must be established across the chips. Furthermore, because of the trend toward higher device current density, Joule heating is more serious and temperature gradients across soldered joints are expected to increase. In this study we used heat-sink and heat-source devices to establish a temperature gradient across SnAg microbumps to investigate the thermomigration behavior of Ag in SnAg solder. Compared with isothermal conditions, small Ag3Sn particles near the hot end were dissolved and redistributed toward the cold end under a temperature gradient. The results indicated that temperature gradient-induced movement of Ag atoms occurred from the hot side toward the cold side, and asymmetrical precipitation of Ag3Sn resulted. The mechanism of growth of the intermetallic compound (IMC) Ag3Sn, caused by thermomigration of Ag, is discussed. The rate of growth Ag3Sn IMC at the cold side was found to increase linearly with solid-aging time under a temperature gradient. To understand the force driving Ag diffusion under the temperature gradient, the molar heat of transport ( Q*) of Ag in Sn was calculated as +13.34 kJ/mole.

  14. Gradient networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.

    2008-04-01

    Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l < l_c = z , i.e., gradient networks become scale-free graphs up to a cut-off degree. This paper presents the detailed derivation of the results announced in Toroczkai and Bassler (2004 Nature 428 716).

  15. Evaluation of two new automated assays for hepatitis B virus surface antigen (HBsAg) detection: IMMULITE HBsAg and IMMULITE 2000 HBsAg.

    PubMed

    Weber, Bernard; Dengler, Thomas; Berger, Annemarie; Doerr, Hans Wilhelm; Rabenau, Holger

    2003-01-01

    In recent years the diagnostic industry has developed new automated immunoassays for the qualitative detection of hepatitis B virus (HBV) surface antigen (HBsAg) in serum and plasma samples that are performed on analyzers that permit a high-speed throughput, random access, and primary tube sampling. The aim of the present study was the evaluation of two new automated HBsAg screening assays, IMMULITE HBsAg and IMMULITE 2000 HBsAg, from Diagnostic Products Corporation. The new HBsAg assays were compared to well-established tests (Auszyme Monoclonal [overnight incubation, version B], IMx HBsAg, AxSYM HBsAg, and Prism HBsAg [all from Abbott] and Elecsys HBsAg [Roche Diagnostics]). In the evaluation were included seroconversion panels, sera from the acute and chronic phases of infection, dilution series of various HBsAg standards, HBV subtypes and S gene mutants. To challenge the specificity of the new assays, sera from HBsAg-negative blood donors, pregnant women, and dialysis and hospitalized patients and potentially cross-reactive samples were investigated. IMMULITE HBsAg and IMMULITE 2000 HBsAg, although not as sensitive as the Elecsys HBsAg assay, were equivalent to the AxSYM HBsAg assay and showed a higher sensitivity than the Auszyme Monoclonal B and IMx HBsAg systems for detection of acute infection in seroconversion panels. The specificities (100%) of both IMMULITE assays on unselected blood donors and potentially interfering samples were comparable to those of the alternative assays after repeated testing. In conclusion, the new IMMULITE HBsAg and IMMULITE 2000 HBsAg assays show a good sensitivity for HBsAg detection compared to other well-established tests. The specificity on repeatedly tested samples was equivalent to that of the alternative assays. The rapid turnaround time, primary tube sampling, and on-board dilution make it an interesting assay system for clinical laboratory diagnosis.

  16. AN UPGRADE OF MAGNET-FIELD-DRIVEN TIMING SYSTEMS AT THE AGS.

    SciTech Connect

    TIAN, Y.; OERTER, B.

    2005-10-10

    An upgrade of the main magnet-field-driven timing systems at Brookhaven National Laboratory's Alternating Gradient Synchrotron (AGS) and Booster accelerators will be described in this paper. A novel approach using content addressable memory (CAM) is applied to overcome a weakness in the previous systems, which required a reproducible dwell field for proper operation. Upgraded from a multibus-based system to a VME-based system, the new timing system also proves easier to maintain and to diagnose. Details of the system architecture, as well as its application in other timing systems will be discussed.

  17. OVERCOMING DEPOLARIZING RESONANCES IN THE AGS WITH TWO HELICAL PARTIAL SNAKES

    SciTech Connect

    HUANG,H.; AHRENS, L.; BAI, M.; BROWN, K.A.; GARDNER, C.J.; ET AL.

    2007-06-25

    Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.

  18. OVERVIEW OF THE AGS COLD SNAKE POWER SUPPLIES AND THE NEW RHIC SEXTUPOLE POWER SUPPLIES

    SciTech Connect

    BRUNO,D.; GANETIS, G.; SANDBERG, J.; LOUIE, W.

    2007-06-25

    The two rings in the Relativistic Heavy Ion Collider (RHIC) were originally constructed with 24 sextupole power supplies, 12 for each ring. Before the start of Run 7, 24 new sextupole power supplies were installed, 12 for each ring. Individual sextupole power supplies are now each connected to six sextupole magnets. A superconducting snake magnet and power supplies were installed in the Alternating Gradient Synchrotron (AGS) and commissioned during RHIC Run 5, and used operationally in RHIC Run 6. The power supply technology, connections, control systems and interfacing with the Quench Protection system for both these systems will be presented.

  19. Magnetostrictive Alternator

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger; Bruder, Geoffrey

    2013-01-01

    This innovation replaces the linear alternator presently used in Stirling engines with a continuous-gradient, impedance-matched, oscillating magnetostrictive transducer that eliminates all moving parts via compression, maintains high efficiency, costs less to manufacture, reduces mass, and eliminates the need for a bearing system. The key components of this new technology are the use of stacked magnetostrictive materials, such as Terfenol-D, under a biased magnetic and stress-induced compression, continuous-gradient impedance-matching material, coils, force-focusing metallic structure, and supports. The acoustic energy from the engine travels through an impedancematching layer that is physically connected to the magnetostrictive mass. Compression bolts keep the structure under compressive strain, allowing for the micron-scale compression of the magnetostrictive material and eliminating the need for bearings. The relatively large millimeter displacement of the pressure side of the impedance-matching material is reduced to micron motion, and undergoes stress amplification at the magnetostrictive interface. The alternating compression and expansion of the magnetostrictive material creates an alternating magnetic field that then induces an electric current in a coil that is wound around the stack. This produces electrical power from the acoustic pressure wave and, if the resonant frequency is tuned to match the engine, can replace the linear alternator that is commonly used.

  20. Construction of an alternating gradient magnetometer

    NASA Technical Reports Server (NTRS)

    Garland, Michael M.

    1988-01-01

    A magnetometer is described which was constructed to facilitate the study and characterization of the magnetic properties of high transition temperature superconductors. This instrument was used to measure the dc magnetic susceptibility of several superconducting compounds as a function of temperature. The construction of the magnetometer and the operating parameters are discussed in detail.

  1. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  2. Ag diffusion in cubic silicon carbide

    NASA Astrophysics Data System (ADS)

    Shrader, David; Khalil, Sarah M.; Gerczak, Tyler; Allen, Todd R.; Heim, Andrew J.; Szlufarska, Izabela; Morgan, Dane

    2011-01-01

    The diffusion of Ag impurities in bulk 3C-SiC is studied using ab initio methods based on density functional theory. This work is motivated by the desire to reduce transport of radioactive Ag isotopes through the SiC boundary layer in the Tristructural-Isotropic (TRISO) fuel pellet, which is a significant concern for the Very High Temperature Reactor (VHTR) nuclear reactor concept. The structure and stability of charged Ag and Ag-vacancy clusters in SiC are calculated. Relevant intrinsic SiC defect energies are also determined. The most stable state for the Ag impurity in SiC is found to be a Ag atom substituting on the Si sub-lattice and bound to a C vacancy. Bulk diffusion coefficients are estimated for different impurity states and values are all found to have very high activation energy. The impurity state with the lowest activation energy for diffusion is found to be the Ag interstitial, with an activation energy of approximately 7.9 eV. The high activation energies for Ag diffusion in bulk 3C-SiC cause Ag transport to be very slow in the bulk and suggests that observed Ag transport in this material is due to an alternative mechanism (e.g., grain boundary diffusion).

  3. Optimization of the AGS superconducting helical partial snake strength.

    SciTech Connect

    Lin,F.; Huang, H.; Luccio, A.U.; Roser, T.

    2008-06-23

    Two helical partial snakes, one super-conducting (a.k.a cold snake) and one normal conducting (a.k.a warm snake), have preserved the polarization of proton beam up to 65% in the Brookhaven Alternating Gradient Synchrotron (AGS) at the extraction energy from 85% at injection. In order to overcome spin resonances, stronger partial snakes would be required. However, the stronger the partial snake, the more the stable spin direction tilted producing a stronger horizontal intrinsic resonance. The balance between increasing the spin tune gap generated by the snakes and reducing the tilted stable spin direction has to be considered to maintain the polarization. Because the magnetic field of the warm snake has to be a constant, only the cold snake with a maximum 3T magnetic field can be varied to find out the optimum snake strength. This paper presents simulation results by spin tracking with different cold snake magnetic fields. Some experimental data are also analyzed.

  4. Mechanism of Action of Secreted Newt Anterior Gradient Protein

    PubMed Central

    Grassme, Kathrin S.; Garza-Garcia, Acely; Delgado, Jean-Paul; Godwin, James W.; Kumar, Anoop; Gates, Phillip B.; Brockes, Jeremy P.

    2016-01-01

    Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family. PMID:27100463

  5. Mechanism of Action of Secreted Newt Anterior Gradient Protein.

    PubMed

    Grassme, Kathrin S; Garza-Garcia, Acely; Delgado, Jean-Paul; Godwin, James W; Kumar, Anoop; Gates, Phillip B; Driscoll, Paul C; Brockes, Jeremy P

    2016-01-01

    Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family. PMID:27100463

  6. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R; Anaya, R M; Blackfield, D; Chen, Y -; Falabella, S; Hawkins, S; Holmes, C; Paul, A C; Sampayan, S; Sanders, D M; Watson, J A; Caporaso, G J; Krogh, M

    2006-11-15

    High voltage systems operated in vacuum require insulating materials to maintain spacing between conductors held at different potentials, and may be used to maintain a nonconductive vacuum boundary. Traditional vacuum insulators generally consist of a single material, but insulating structures composed of alternating layers of dielectric and metal can also be built. These ''High-Gradient Insulators'' have been experimentally shown to withstand higher voltage gradients than comparable conventional insulators. As a result, they have application to a wide range of high-voltage vacuum systems where compact size is important. This paper describes ongoing research on these structures, as well as the current theoretical understanding driving this work.

  7. On gradient field theories: gradient magnetostatics and gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2014-09-01

    In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.

  8. Modeling and Analysis of AGS (1998) Thermal Shock Experiments

    SciTech Connect

    Haines, J.R.; Kim, S.H.; Taleyarkhan, R.P.

    1999-11-14

    An overview is provided on modeling and analysis of thermal shock experiments conducted during 1998 with high-energy, short-pulse energy deposition in a mercury filled container in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). The simulation framework utilized along with the results of simulations for pressure and strain profiles are presented. While the magnitude of penk strain predictions versus data are in reasonable agreement, the temporal variations were found to differ significantly in selected cases, indicating lack of modeling of certain physical phenomena or due to uncertainties in the experimental data gathering techniques. Key thermal-shock related issues and uncertainties are highlighted. Specific experiments conducted at BNL's AGS facility during 1998 (the subject of this paper) involved high-energy (24 GeV) proton energy deposition in the mercury target over a time frame of - 0.1s. The target consisted of an - 1 m. long cylindrical stainless steel shell with a hemispherical dome at the leading edge. It was filled with mercury at room temperature and pressure. Several optical strain gages were attached to the surface of the steel target. Figure 1 shows a schematic representation of the test vessel along with the main dimensions and positions of three optical strain gages at which meaningful data were obtained. As

  9. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  10. Strange experiments at the AGS

    SciTech Connect

    Chrien, R.

    1990-01-01

    The purpose of this review is to report recent progress in nuclear experiments involving strangeness which have been carried out at the Brookhaven Alternating Gradient Synchrotron over the past three years. These recent developments are noted in three areas: few body systems and dibaryons; strange probes of the nucleus; and associated production of hypernuclei. 9 refs., 3 figs.

  11. DESIGN OF A THIN QUADRUPOLE TO BE USED IN THE AGS SYNCHROTRON

    SciTech Connect

    TSOUPAS,N.; AHRENS, L.; ALFORQUE, R.; BAI, M.; BROWN, K.; COURANT, E.; ET AL.

    2007-06-25

    The Alternating Gradient Synchrotron (AGS) employs two partial helical snakes[l] to preserve the polarization of the proton beam during acceleration. In order to compensate for the focusing effect of the partial helical snakes on the beam optics in the AGS during acceleration of the beam, we introduced eight quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection energies, the strength of each quad is set at a high value, and is ramped down to zero as the effect of the snakes diminishes by the square of beam's rigidity. Four of the eight compensation quadrupoles had to be placed in very short straight sections -30 cm in length, therefore the quadruples had be thin with an overall length of less than 30 cm. In this paper we will discus: (a) the mechanical and magnetic specifications of the ''thin'' quadrupole. (b) the method to minimize the strength of the dodecapole harmonic, (c) the method to optimize the thickness of the laminations that the magnet iron is made, (d) mechanical tolerances of the magnet, (e) comparison of the measured and calculated magnetic multipoles of the quadrupole.

  12. Ag(+)-mediated assembly of 5'-guanosine monophosphate.

    PubMed

    Loo, Kristine; Degtyareva, Natalya; Park, Jihae; Sengupta, Bidisha; Reddish, Michaeal; Rogers, Christopher C; Bryant, Andrea; Petty, Jeffrey T

    2010-04-01

    Polymorphic forms of nucleic acids provide platforms for new nanomaterials, and transition metal cations give access to alternative arrangements of nucleobases by coordinating with electron-rich functional groups. Interaction of Ag(+) with 5'-guanosine monophosphate (5'-GMP) is considered in this work. Ag(+) promotes nucleotide stacking and aggregation, as indicated by the increased viscosity of 5'-GMP solutions with Ag(+), magnification of the circular dichroism response of guanine by Ag(+), and exothermic reactions between Ag(+) and guanine derivatives. Isothermal titration calorimetry studies show that the reaction is favored starting at 10 microM 5'-GMP. Utilizing the exothermic heat change associated with reaction of Ag(+) with 5'-GMP, local structure within the aggregate was assessed. On the basis of the salt dependence of the reaction and comparison with the corresponding nucleoside, the dianionic phosphate of 5'-GMP is one binding site for Ag(+), although this electrostatic interaction is not a dominant contribution to the overall heat change. Another binding site is the N7 on the nucleobase, as determined via studies with 7-deazaguanosine. Besides this binding site, Ag(+) also associates with the O6, as earlier studies deduced from the shift in the carbonyl stretching frequency associated with adduct formation. With these two binding sites on the nucleobase, the empirical stoichiometry of approximately 1 Ag(+):nucleobase derived from the calorimetry studies indicates that Ag(+) coordinates two nucleobases. The proposed structural model is a Ag(+)-mediated guanine dimer within a base stacked aggregate. PMID:20205377

  13. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  14. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  15. DC CHARACTERIZATION OF HIGH GRADIENT MULTILAYER INSULATORS

    SciTech Connect

    Watson, J A; Caporaso, G J; Sampayan, S E; Sanders, D M; Krogh, M L

    2005-05-26

    We have developed a novel insulator concept that involves the use of alternating layers of conductors and insulators with periods less than 1 mm. We have demonstrated that these structures perform 2 to 5 times better than conventional insulators in long pulse, short pulse, and alternating polarity applications. We present new testing results showing exceptional behavior at DC, with gradients in excess of 110kV/cm in vacuum.

  16. Improving the accuracy of pulsed field gradient NMR diffusion experiments: Correction for gradient non-uniformity

    NASA Astrophysics Data System (ADS)

    Connell, Mark A.; Bowyer, Paul J.; Adam Bone, P.; Davis, Adrian L.; Swanson, Alistair G.; Nilsson, Mathias; Morris, Gareth A.

    2009-05-01

    Pulsed field gradient NMR is a well-established technique for the determination of self-diffusion coefficients. However, a significant source of systematic error exists in the spatial variation of the applied pulsed field gradient. Non-uniform pulsed field gradients cause the decay of peak amplitudes to deviate from the expected exponential dependence on gradient squared. This has two undesirable effects: the apparent diffusion coefficient will deviate from the true value to an extent determined by the choice of experimental parameters, and the error estimated by the nonlinear least squares fitting will contain a significant systematic contribution. In particular, the apparent diffusion coefficient determined by exponential fitting of the diffusional attenuation of NMR signals will depend both on the exact pulse widths used and on the range of gradient amplitudes chosen. These problems can be partially compensated for if experimental attenuation data are fitted to a function corrected for the measured spatial dependence of the gradient and signal strength. This study describes a general alternative to existing methods for the calibration of NMR diffusion measurements. The dominant longitudinal variation of the pulsed field gradient amplitude and the signal strength are mapped by measuring pulsed field gradient echoes in the presence of a weak read gradient. These data are then used to construct a predicted signal decay function for the whole sample, which is parameterised as the exponential of a power series. Results are presented which compare diffusion coefficients obtained using the new calibration method with previous literature values.

  17. Detection of Rifampin Resistance in Mycobacterium tuberculosis by Double Gradient-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Scarpellini, Paolo; Braglia, Sergio; Carrera, Paola; Cedri, Maura; Cichero, Paola; Colombo, Alessia; Crucianelli, Rosella; Gori, Andrea; Ferrari, Maurizio; Lazzarin, Adriano

    1999-01-01

    We applied double gradient-denaturing gradient gel electrophoresis (DG-DGGE) for the rapid detection of rifampin (RMP) resistance from rpoB PCR products of Mycobacterium tuberculosis isolates and clinical samples. The results of this method were fully concordant with those of DNA sequencing and susceptibility testing analyses. DG-DGGE is a valid alternative to the other methods of detecting mutations for predicting RMP resistance. PMID:10508043

  18. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  19. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  20. Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect

    ERIC Educational Resources Information Center

    Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.

    2004-01-01

    Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.

  1. Alternative security

    SciTech Connect

    Weston, B.H. )

    1990-01-01

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview.

  2. Ion beam mixing in Ag-Pd alloys

    NASA Astrophysics Data System (ADS)

    Klatt, J. L.; Averback, R. S.; Peak, David

    1989-09-01

    Ion beam mixing during 750 keV Kr+ irradiation at 80 K was measured on a series of Ag-Pd alloys using Au marker atoms. The mixing in pure Ag was the greatest and it decreased monotonically with increasing Pd content, being a factor of 10 higher in pure Ag than in pure Pd. This large difference in mixing cannot be explained by the difference in cohesion energy between Ag and Pd in the thermodynamic model of ion beam mixing proposed by Johnson et al. [W. L. Johnson, Y. T. Cheng, M. Van Rossum, and M-A. Nicolet, Nucl. Instrum. Methods B 7/8, 657 (1985)]. An alternative model based on local melting in the cascade is shown to account for the ion beam mixing results in Ag and Pd.

  3. Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor.

    PubMed

    Liao, Wei-Yin; Chou, Tse-Chuan

    2006-06-15

    This study features the fabrication of a planar-form, solid electrolyte modified, (PSEM) Ag/AgCl reference electrode using a screen-printing method. The PSEM Ag/AgCl reference electrode uses agar gel as the inner electrolyte and chloroprene rubber for the liquid junction and insulator. These common low-cost materials and the simple fabrication processes involved render the proposed reference electrode an ideal candidate for cost-efficient mass production. It is shown that the developed reference electrode is insensitive to most of the physiologically important ionic species, including Na+, K+, Li+, Ca2+, NH4+, and Cl-, under continuous measurement conditions. Moreover, as with conventional commercial reference electrodes, the proposed reference electrode exhibits a reversible response, which is maintained until the agar gel dries out. The PSEM Ag/AgCl reference electrode is integrated with an iridium oxide modified Pt-based pH indicator electrode to form a chip-type pH biosensor. The performance of this biosensor is consistent with that obtained from a pH meter based on a macroscopic commercial Ag/AgCl reference electrode. The experimental results confirm that the proposed biosensor is capable of providing precise pH measurements of various real samples. Accordingly, the PSEM Ag/AgCl reference electrode presented in this study provides a viable alternative to the macroscopic Ag/AgCl reference electrode used in many conventional chip-based pH sensors.

  4. Laser textured surface gradients

    NASA Astrophysics Data System (ADS)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-05-01

    This work demonstrates a novel technique for fabricating surfaces with roughness and wettability gradients and their subsequent applications for chemical sensors. Surface roughness gradients on brass sheets are obtained directly by nanosecond laser texturing. When these structured surfaces are exposed to air, their wettability decreases with time (up to 20 days) achieving both spatial and temporal wettability gradients. The surfaces are responsive to organic solvents. Contact angles of a series of dilute isopropanol solutions decay exponentially with concentration. In particular, a fall of 132° in contact angle is observed on a surface gradient, one order of magnitude higher than the 14° observed for the unprocessed surface, when the isopropanol concentration increased from 0 to 15.6 wt%. As the wettability changes gradually over the surface, contact angle also changes correspondingly. This effect offers multi-sensitivity at different zones on the surface and is useful for accurate measurement of chemical concentration.

  5. SEXAFS study of AgBr(111) and (100) surfaces and comparison to theoretical models

    NASA Astrophysics Data System (ADS)

    Tangyunyong, P.; Rhodin, T. N.; Tan, Y. T.; Lushington, K. J.

    1991-09-01

    Silver halide surfaces play a central role in the photographic process and the development of an improved understanding of these surfaces at an atomic level is important to further progress in photographic science. Extensive fluorescence SEXAFS measurements, using the total reflection geometry, were made at both the Br and Ag edges for both the AgBr(111) and AgBr(100) surfaces. For the AgBr(111) case, contractions of 0.02 ± 0.01, 0.03 ± 0.01 and 0.02 ± 0.01 Å, relative to the bulk, were observed for the nearest-neighbor Ag-Br distance and the next-nearest-neighbor Ag-Ag and Br-Br distances, respectively. These contractions are consistent with a surface reconstruction predicted by theoretical models. Comparison of the SEXAFS data with the simulations of several models for this reconstruction suggests that the Ag +-top alternate-row model provides the best agreement. No corresponding contractions in the Ag-Br, Br-Br, and Ag-Ag distances were observed from the AgBr(100) SEXAFS data. The observed distances in the AgBr(100) show essentially no changes from the bulk values. The lack of contraction in the nearest-neighbor distances is consistent with the "rumpling" model, which predicts no (100) surface reconstruction but rather a rumpling of the top surface ions.

  6. Reversibly phototunable TiO{sub 2} photonic crystal modulated by Ag nanoparticles' oxidation/reduction

    SciTech Connect

    Liu Jian; Zhou Jinming; Ye Changqing; Li Mingzhu; Wang Jingxia; Jiang Lei; Song Yanlin

    2011-01-10

    We report a reversibly phototunable photonic crystal system whose reflectance at the stop band position can be modulated by alternating UV/visible (UV/Vis) irradiation. The phototunable system consists of Ag nanoparticles and TiO{sub 2} photonic crystal. The stop bands intensity of Ag loaded TiO{sub 2} photonic crystals were found to be dependent on the redox states of Ag nanoparticles. The quasi 'on' and 'off' states of the stop band were reversibly modulated by the Ag nanoparticles' oxidation/reduction through alternating UV/Vis light irradiation.

  7. Isolation of Early and Late Endosomes by Density Gradient Centrifugation.

    PubMed

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-01

    Density gradient centrifugation is a common method for separating intracellular organelles. During centrifugation, organelles float or sediment until they reach their isopycnic position within the gradient. The density of an organelle depends on its content, size, shape, and the lipid:protein ratio. The degree of separation between different organelles will therefore be highly dependent on how different their isopycnic points are in a given buffer. Separation will also depend on the medium used to prepare the gradient, whether it is sucrose (the most common) or an alternative. Here we describe the use of both continuous and discontinuous (step) gradients to isolate endocytic organelles. PMID:26527762

  8. Impedance studies of the cell Ag/AgI/Ag beta alumina/AgI/Ag. Technical report No. 15, August 1987-August 1988

    SciTech Connect

    Breiter, M.W.; Drstak, H.; Maly-Schreiber, M.

    1988-07-01

    The construction of the cell Ag/AgI/Ag beta alumina/AgI/Ag is described. The impedance of this cell was measured between .001 and 10000 Hz at temperatures between 20 and 550 C. At temperatures below 100 C the cell impedance is determined to a large extent by the bulk resistance of the AgI layer and to a smaller extent by the impedance of the interface Ag/Agi. At temperatures between 160 and 350 C the impedance is controlled by the bulk resistance of the Ag beta alumina and an impedance due to contact problems between Ag and AgI. The bulk resistance of the beta' alumina becomes predominant between 350 and 550 C. A hindrance due to the transfer of silver ions from AgI to Ag beta' alumina was not observable in the whole temperature range.

  9. AGS experiments: 1984, 1985, 1986. Third edition

    SciTech Connect

    Depken, J.C.

    1986-02-01

    Brief summaries are given of 44 different experiments either running or scheduled to run at the Brookhaven National Laboratory Alternating Gradient Synchrotron, as well as the experiment schedules. The beam parameters and fluxes are tabulated. Illustrations are given of both the experimental area layouts and the apparatus for each experiment. (LEW)

  10. Solder joint reliability in alternator power diode assemblies

    SciTech Connect

    Pan, T.Y.; White, S.C.; Lutz, E.L.; Blair, H.D.; Nicholson, J.M.

    1999-11-01

    Power diodes in an alternator convert alternating current, generated by the spinning magnetic field, to direct current to be used by the battery and all the automotive electrical/electronic components. The diodes are press-fit into aluminum heatsinks to quickly and efficiently dissipate the heat from the silicon dies in the diode body. The diodes are soldered to a rectifier circuit board through the diode leads by a wave soldering process using a Pb-free, eutectic Sn-3.5Ag solder. A set of positive diodes reside on a different substrate than the set of negative diodes, resulting in differences in the lengths of the diode leads. The distance from the diode body to the solder joint on the leads of the positive diodes is 7 mm less than those of the negative diodes. Solderability, cross-section micrographs, and thermal-cycling fatigue reliability studies were compared between the positive and negative diodes and between diode designs from different suppliers. Wetting balance testing showed significant differences in solderability between positive and negative diodes and between the two different diode designs. Combining the diode body and lead together had a more drastic effect on the solderability than the lead alone. It was discovered that, although the nature of the diode design is to dissipate the heat away from the diode quickly and efficiently, there is a large temperature gradient along the lead immediately above the solder bath which can be as much as 100 C just 2 mm from the bath. This large temperature gradient caused some leads to be too cold to form good solder fillets. The solder fillets obtained in the laboratory wetting tests matched those observed in the actual alternators. The inadequate solder fillets resulted in a 250% difference in the thermal cycling fatigue reliability between the two diode designs.

  11. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  12. Convection driven generation of long-range material gradients

    PubMed Central

    Du, Yanan; Hancock, Matthew J.; He, Jiankang; Villa-Uribe, Jose; Wang, Ben; Cropek, Donald M.; Khademhosseini, Ali

    2009-01-01

    Natural materials exhibit anisotropy with variations in soluble factors, cell distribution, and matrix properties. The ability to recreate the heterogeneity of the natural materials is a major challenge for investigating cell-material interactions and for developing biomimetic materials. Here we present a generic fluidic approach using convection and alternating flow to rapidly generate multi-centimeter gradients of biomolecules, polymers, beads and cells and cross-gradients of two species in a microchannel. Accompanying theoretical estimates and simulations of gradient growth provide design criteria over a range of material properties. A poly(ethyleneglycol) hydrogel gradient, a porous collagen gradient and a composite material with a hyaluronic acid/gelatin cross-gradient were generated with continuous variations in material properties and in their ability to regulate cellular response. This simple yet generic fluidic platform should prove useful for creating anisotropic biomimetic materials and high-throughput platforms for investigating cell-microenvironment interaction. PMID:20035990

  13. Flow at Brookhaven AGS Energy (11.6 GeV/nucleon): A barometer for high density effects?

    SciTech Connect

    Kahana, D.E.; Shuryak, E.; Pang, Y.; Pang, Y.

    1997-07-01

    Preliminary data on transverse energy {open_quotes}flow{close_quotes} and event asymmetries reported by the E877(814) Collaborations are compared to ARC (a relativistic cascade) model calculations for Au+Au at full AGS Brookhaven (Alternating Gradient Synchroton) beam energy. ARC triple differential cross sections for protons and pions are presented. Proton flow is produced in ARC, with the maximum {l_angle}P{sub x}{r_angle}{approximately}120 MeV/c. For central events {l_angle}P{sub x}{r_angle} for the pions is near zero, consistent with experiment. The comparison with data provides a constraint on the size of flow at the highest energy available, to be put beside that at Bevalac energy. This sets the stage for examining flow at intermediate energies, now being measured by E895, for signs of baryon rich plasma. {copyright} {ital 1997} {ital The American Physical Society}

  14. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  15. Alternate Alternates: A Medley of Alternate Assessments.

    ERIC Educational Resources Information Center

    Burdette, Paula J.; Olsen, Ken

    This paper highlights eight states that have implemented alternate assessments for children with disabilities who cannot participate in their state and district-wide assessment programs. The alternate assessment systems in Delaware, Florida, Georgia, Indiana, Minnesota, North Dakota, Utah, and West Virginia are briefly described, along with their…

  16. Arterial Stiffness Gradient

    PubMed Central

    Fortier, Catherine; Agharazii, Mohsen

    2016-01-01

    Background Aortic stiffness is a strong predictor of cardiovascular mortality in various clinical conditions. The aim of this review is to focus on the arterial stiffness gradient, to discuss the integrated role of medium-sized muscular conduit arteries in the regulation of pulsatile pressure and organ perfusion and to provide a rationale for integrating their mechanical properties into risk prediction. Summary The physiological arterial stiffness gradient results from a higher degree of vascular stiffness as the distance from the heart increases, creating multiple reflective sites and attenuating the pulsatile nature of the forward pressure wave along the arterial tree down to the microcirculation. The stiffness gradient hypothesis simultaneously explains its physiological beneficial effects from both cardiac and peripheral microcirculatory points of view. The loss or reversal of stiffness gradient leads to the transmission of a highly pulsatile pressure wave into the microcirculation. This suggests that a higher degree of stiffness of medium-sized conduit arteries may play a role in protecting the microcirculation from a highly pulsatile forward pressure wave. Using the ratio of carotid-femoral pulse wave velocity (PWV) to carotid-radial PWV, referred to as PWV ratio, a recent study in a dialysis cohort has shown that the PWV ratio is a better predictor of mortality than the classical carotid-femoral PWV. Key Messages Theoretically, the use of the PWV ratio seems more logical for risk determination than aortic stiffness as it provides a better estimation of the loss of stiffness gradient, which is the unifying hypothesis that explains the impact of aortic stiffness both on the myocardium and on peripheral organs. PMID:27195235

  17. Alternative Therapies

    MedlinePlus

    ... Late Effects of Poliomyelitis for Physicians and Survivors © Alternative Therapies Alternative therapies, also called complementary, can support ... of motion, pain, and fatigue are often reported. Energy work includes acupuncture and acupressure, traditional Chinese medicine ...

  18. Near-net-shape fabrication of continuous Ag-Clad Bi-Based superconductors

    SciTech Connect

    Lanagan, M. T. et al.

    1998-04-01

    We have developed a near-net-shape process for Ag-clad Bi-2212 superconductors as an alternative to the powder-in-tube process. This new process offers the advantages of nearly continuous processing, minimization of processing steps, reasonable ability to control the Bi-2212/Ag ratio, and early development of favorable texture of the Bi-2212 grains. Superconducting properties are discussed.

  19. Managing the Grey Literature of a Discipline through Collaboration: AgEcon Search

    ERIC Educational Resources Information Center

    Kelly, Julia; Letnes, Louise

    2005-01-01

    AgEcon Search, http://www.agecon.lib.umn.edu, is an important and ground-breaking example of an alternative method of delivering current research results to many potential users. AgEcon Search, through a distributed model, collects and disseminates the grey literature of the fields of agricultural and resource economics. The development of this…

  20. Experimental and theoretical investigation of high gradient acceleration

    SciTech Connect

    Bekefi, G.; Chen, C.; Chen, S.; Danly, B.; Temkin, R.J.; Wurtele, J.S.

    1992-02-01

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-FG0291ER-40648. Experimental and Theoretical Investigations of High Gradient Acceleration.'' This grant supports three research tasks: Task A consists of the design and fabrication of a 17GHz of photocathode gun, Task B supports the testing of high gradient acceleration using a 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders. This report is organized as follows. The development of an rf gun design and research progress on the picosecond laser system is summarized in Sec. 2, the status of the studies of the LBL/Haimson high gradient structure, using a 50 MW free-electron laser is summarized in Sec. 3, and theoretical research progress is described in Sec. 4. Supporting material is contained in Appendices A-G.

  1. Stress-gradient plasticity

    PubMed Central

    Chakravarthy, Srinath S.; Curtin, W. A.

    2011-01-01

    A new model, stress-gradient plasticity, is presented that provides unique mechanistic insight into size-dependent phenomena in plasticity. This dislocation-based model predicts strengthening of materials when a gradient in stress acts over dislocation source–obstacle configurations. The model has a physical length scale, the spacing of dislocation obstacles, and is validated by several levels of discrete-dislocation simulations. When incorporated into a continuum viscoplastic model, predictions for bending and torsion in polycrystalline metals show excellent agreement with experiments in the initial strengthening and subsequent hardening as a function of both sample-size dependence and grain size, when the operative obstacle spacing is proportional to the grain size. PMID:21911403

  2. Alternative strategies: a better alternative.

    PubMed

    Doody, Dennis

    2010-05-01

    Alternatives can be defined as being any financial asset other than traditional stocks and bonds. They include marketable alternatives, private capital, and equity real estate. There are two primary reasons for investing in alternatives: the potential for greater return and the opportunity to diversify a portfolio. Although alternatives were challenged in the highly volatile environment that existed in 2008 and early 2009, they generally lived up to expectations.

  3. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola)

    PubMed Central

    Mendes, Luís André; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO3 was more toxic than AgNPs at the population level: reproduction EC20 and EC50 was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO3 and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag+ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  4. Ag Division States Philosophy

    ERIC Educational Resources Information Center

    American Vocational Journal, 1976

    1976-01-01

    The discussion which took place during the American Vocational Association's (AVA) Agriculture Division meeting at the 1975 AVA Convention is summarized, and the statement of vo-ag education philosophy (including 13 key concepts), which was passed during the convention, is presented. (AJ)

  5. Determine Minimum Silver Flake Addition to GCM for Iodine Loaded AgZ

    SciTech Connect

    Garino, Terry J.; Nenoff, Tina M.; Rodriguez, Mark A.

    2014-04-01

    The minimum amount of silver flake required to prevent loss of I{sub 2} during sintering in air for a SNL Glass Composite Material (GCM) Waste Form containing AgI-MOR (ORNL, 8.7 wt%) was determined to be 1.1 wt% Ag. The final GCM composition prior to sintering was 20 wt% AgI-MOR, 1.1 wt% Ag, and 80 wt% Bi-Si oxide glass. The amount of silver flake needed to suppress iodine loss was determined using thermo gravimetric analysis with mass spectroscopic off-gas analysis. These studies found that the ratio of silver to AgI-MOR required is lower in the presence of the glass than without it. Therefore an additional benefit of the GCM is that it serves to inhibit some iodine loss during processing. Alternatively, heating the AgI-MOR in inert atmosphere instead of air allowed for densified GCM formation without I{sub 2} loss, and no necessity for the addition of Ag. The cause of this behavior is found to be related to the oxidation of the metallic Ag to Ag{sup +} when heated to above ~300{degrees}C in air. Heating rate, iodine loading levels and atmosphere are the important variables that determine AgI migration and results suggest that AgI may be completely incorporated into the mordenite structure by the 550{degrees}C sintering temperature.

  6. Transportable charge in a periodic alternating gradient system

    SciTech Connect

    Lee, E.P.; Fessenden, T.J.; Laslett, L.J.

    1985-05-01

    A simple set of formulas is derived which relate emittance, line charge density, matched maximum and average envelope radii, occupancy factors, and the (space charge) depressed and vacuum values of tune. This formulation is an improvement on the smooth limit approximation; deviations from exact (numerically determined) relations are on the order of +-2%, while the smooth limit values are in error by up to +-30%. This transport formalism is used to determine the limits of transportable line charge density in an electrostatic quadrupole array, with specific application to the low energy portion of the High Temperature Experiment of Heavy Ion Fusion Accelerator Research. The line charge density limit is found to be essentially proportional to the voltage on the pole faces and the fraction of occupied aperture area. A finite injection energy (greater than or equal to 2 MeV) is required to realize this limit, independent of particle mass.

  7. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  8. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  9. Color gradient background oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Mier, Frank Austin; Hargather, Michael

    2015-11-01

    Background oriented schlieren (BOS) imaging is a method of visualizing refractive disturbances through the comparison of digital images. By comparing images with and without a refractive disturbance visualizations can be achieved via a range of image processing methods. Traditionally, backgrounds consist of random distributions of high contrast speckle patterns. To image a refractive disturbance, a digital image correlation algorithm is used to identify the location and magnitude of apparent pixel shifts in the background pattern. Here a novel method of using color gradient backgrounds is explored as an alternative. The gradient background eliminates the need to perform an image correlation between the two digital images, as simple image subtraction can be used to identify the location, magnitude, and direction of the image distortions. This allows for quicker processing. Two-dimensional gradient backgrounds using multiple colors are shown. The gradient backgrounds are demonstrated to provide quantitative data limited only by the camera's pixel resolution, whereas speckle backgrounds limit resolution to the size of the random pattern features and image correlation window size. Additional results include the use of a computer screen as a background.

  10. Color gradient background-oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Mier, Frank Austin; Hargather, Michael J.

    2016-06-01

    Background-oriented schlieren is a method of visualizing refractive disturbances by comparing digital images with and without a refractive disturbance distorting a background pattern. Traditionally, backgrounds consist of random distributions of high-contrast color transitions or speckle patterns. To image a refractive disturbance, a digital image correlation algorithm is used to identify the location and magnitude of apparent pixel shifts in the background pattern between the two images. Here, a novel method of using color gradient backgrounds is explored as an alternative that eliminates the need to perform a complex image correlation between the digital images. A simple image subtraction can be used instead to identify the location, magnitude, and direction of the image distortions. Gradient backgrounds are demonstrated to provide quantitative data only limited by the camera's pixel resolution, whereas speckle backgrounds limit resolution to the size of the random pattern features and image correlation window size. Quantitative measurement of density in a thermal boundary layer is presented. Two-dimensional gradient backgrounds using multiple colors are demonstrated to allow measurement of two-dimensional refractions. A computer screen is used as the background, which allows for rapid modification of the gradient to tune sensitivity for a particular application.

  11. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  12. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  13. Surface Degradation of Ag/W Circuit Breaker Contacts During Standardized UL Testing

    NASA Astrophysics Data System (ADS)

    Yu, Haibo; Sun, Yu; Kesim, M. Tumerkan; Harmon, Jason; Potter, Jonathan; Alpay, S. Pamir; Aindow, Mark

    2015-09-01

    The near-surface microstructure of Ag/W contacts from 120 V, 30 A commercial circuit breakers in the as-manufactured condition and after standardized UL overload/temperature-rise, endurance, and short-circuit testing have been investigated using a combination of x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, focused ion beam milling, and transmission electron microscopy. The as-manufactured contacts comprised three constituents: sintered Ag/W composite particles with fine-grained Ag and coarse-grained W, coarse-grained pockets of Ag infiltrate, and a nano-crystalline surface Ag layer. There are also WO3 and Ag2O phases at the surface. After UL overload/temperature-rise testing, there is Ag loss giving a porous W-rich layer at the contact surface. In addition to binary oxides, we observe the formation of Ag2WO4. After UL endurance testing, material is swept across the surface by the breaker action giving a W-rich eroded porous surface on one side and a build-up of mixed oxides on the other. After UL short-circuit testing, a W crust forms due to melting and re-solidification of W and vaporization of Ag, and mid-plane cracks form due to the severe thermal gradients. There is a strong correlation between the observed microstructural features and the contact resistance measurements obtained from these samples.

  14. Gradient echo MRI

    PubMed Central

    Copenhaver, B R.; Shin, J; Warach, S; Butman, J A.; Saver, J L.; Kidwell, C S.

    2009-01-01

    Background: Recent studies have demonstrated that gradient echo (GRE) MRI sequences are as accurate as CT for the detection of intracerebral hemorrhage (ICH) in the context of acute stroke. However, many physicians who currently read acute stroke imaging studies may be unfamiliar with interpretation of GRE images. Methods: An NIH Web-based training program was developed including a pretest, tutorial, and posttest. Physicians involved in the care of acute stroke patients were encouraged to participate. The tutorial covered acute, chronic, and mimic hemorrhages as they appear on CT, diffusion-weighted imaging, and GRE sequences. Ability of users to identify ICH presence, type, and age on GRE was compared from the pretest to posttest timepoint. Results: A total of 104 users completed the tutorial. Specialties represented included general radiology (42%), general neurology (16%), neuroradiology (15%), stroke neurology (14%), emergency medicine (1%), and other (12%). Median overall score improved pretest to posttest from 66.7% to 83.3%, p < 0.001. Improvement by category was as follows: acute ICH, 66.7%–100%, p < 0.001; chronic ICH, 33.3%–66.7%, p < 0.001; ICH negatives/mimics, 100%–100%, p = 0.787. Sensitivity for identification of acute hemorrhage improved from 68.2% to 96.4%. Conclusions: Physicians involved in acute stroke care achieved significant improvement in gradient echo (GRE) hemorrhage interpretation after completing the NIH GRE MRI tutorial. This indicates that a Web-based tutorial may be a viable option for the widespread education of physicians to achieve an acceptable level of diagnostic accuracy at reading GRE MRI, thus enabling confident acute stroke treatment decisions. GLOSSARY AHA/ASA = American Heart Association/American Stroke Association; CME = continuing medical education; DWI = diffusion-weighted imaging; GRE = gradient echo; ICH = intracerebral hemorrhage; tPA = tissue plasminogen activator. PMID:19414724

  15. Gradient equivalent crystal theory.

    PubMed

    Zypman, F R; Ferrante, J

    2006-07-01

    This paper presents an extension of the formalism of equivalent crystal theory (ECT) by introducing an electron density gradient term so that the total model density becomes a more accurate representation of the real local density. Specifically, we allow for the electron density around a lattice site to have directionality, in addition to an average value, as assumed in ECT. We propose that an atom senses its neighbouring density as a weighted sum-the weights given by the its own electronic probability. As a benchmark, the method is used to compute vacancy migration energy curves of iron. These energies are in good agreement with previously published results. PMID:21690822

  16. Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur

    SciTech Connect

    Shen, Mingmin; Russell, Selena M.; Liu, Da-Jiang; Thiel, Patricia A.

    2011-10-17

    Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS{sub 2} clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).

  17. Expressions of the fundamental equation of gradient elution and a numerical solution of these equations under any gradient profile.

    PubMed

    Nikitas, P; Pappa-Louisi, A

    2005-09-01

    The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes. PMID:16131080

  18. Energy in density gradient

    SciTech Connect

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  19. AGS preinjector improvement

    SciTech Connect

    Alessi, J.G.; Brennan, J.M.; Brown, H.N.; Brodowski, J.; Gough, R.; Kponou, A.; Prelec, K.; Staples, J.; Tanabe, J.; Witkover, R.

    1987-01-01

    In 1984, a polarized H/sup -/ source was installed to permit the acceleration of polarized protons in the AGS, using a low current, 750 keV RFQ Linear Accelerator as the preinjector. This RFQ was designed by LANL and has proved to be quite satisfactory and reliable. In order to improve the reliability and simplify maintenance of the overall AGS operations, it has been decided to replace one of the two 750 keV Cockcroft-Waltons (C-W) with an RFQ. The design of a new high current RFQ has been carried out by LBL and is also being constructed there. This paper describes the preinjector improvement project, centered around that RFQ, which is underway at BNL.

  20. "Smart" Ag Nanostructures for Plasmon-Enhanced Spectroscopies.

    PubMed

    Li, Chao-Yu; Meng, Meng; Huang, Sheng-Chao; Li, Lei; Huang, Shao-Rong; Chen, Shu; Meng, Ling-Yan; Panneerselvam, Rajapandiyan; Zhang, San-Jun; Ren, Bin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2015-11-01

    Silver is an ideal candidate for surface plasmon resonance (SPR)-based applications because of its great optical cross-section in the visible region. However, the uses of Ag in plasmon-enhanced spectroscopies have been limited due to their interference via direct contact with analytes, the poor chemical stability, and the Ag(+) release phenomenon. Herein, we report a facile chemical method to prepare shell-isolated Ag nanoparticle/tip. The as-prepared nanostructures exhibit an excellent chemical stability and plasmonic property in plasmon-enhanced spectroscopies for more than one year. It also features an alternative plasmon-mediated photocatalysis pathway by smartly blocking "hot" electrons. Astonishingly, the shell-isolated Ag nanoparticles (Ag SHINs), as "smart plasmonic dusts", reveal a ∼1000-fold ensemble enhancement of rhodamine isothiocyanate (RITC) on a quartz substrate in surface-enhanced fluorescence. The presented "smart" Ag nanostructures offer a unique way for the promotion of ultrahigh sensitivity and reliability in plasmon-enhanced spectroscopies.

  1. Non Linear Conjugate Gradient

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  2. Generalized conjugate gradient squared

    SciTech Connect

    Fokkema, D.R.; Sleijpen, G.L.G.

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  3. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola).

    PubMed

    Mendes, Luís André; Maria, Vera L; Scott-Fordsmand, Janeck J; Amorim, Mónica J B

    2015-10-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO₃ was more toxic than AgNPs at the population level: reproduction EC₂₀ and EC₅₀ was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO₃ and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag⁺ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  4. Alternative Schools.

    ERIC Educational Resources Information Center

    Pritchett, Stanley; Kimsey, Steve

    2002-01-01

    Describes the design of the DeKalb Alternative School in Atlanta, Georgia, located in a renovated shopping center. Purchasing commercial land and renovating the existing building saved the school system time and money. (EV)

  5. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  6. New Enzyme Immunoassay for Detection of Hepatitis B Virus Core Antigen (HBcAg) and Relation between Levels of HBcAg and HBV DNA

    PubMed Central

    Kimura, Tatsuji; Rokuhara, Akinori; Matsumoto, Akihiro; Yagi, Shintaro; Tanaka, Eiji; Kiyosawa, Kendo; Maki, Noboru

    2003-01-01

    A new enzyme immunoassay specific for hepatitis B virus (HBV) core antigen (HBcAg) was developed. In order to detect HBcAg, specimens were pretreated with detergents to release HBcAg from the HBV virion and disassemble it to dimers, and simultaneously, the treatment inactivated anti-HBc antibodies. HBcAg detected by the assay peaked with HBV DNA in density gradient fractions of HBV-positive sera. The assay showed a wide detection range from 2 to 100,000 pg/ml. We observed no interference from anti-HBc antibody or blood components, but the assay was inhibited by very high concentrations (>1 μg/ml; corresponding to 80 signal/cutoff) of HBeAg. When the cutoff value was tentatively set at 4 pg/ml, all healthy control (HBsAg and HBV DNA negative, n = 160) and anti-hepatitis C virus-positive (n = 55) sera were identified as negative. HBcAg concentrations correlated very closely with HBV DNA (r = 0.946, n = 145) in 216 samples from 72 hepatitis B patients. In seroconversion panels, HBcAg concentrations changed in parallel with HBV DNA levels. The assay, therefore, offers a simple method for monitoring hepatitis B patients. With a series of sera during lamivudine therapy, HBV DNA levels fell sharply and the HBcAg concentration also decreased, but the change in HBcAg was smaller and more gradual. The supposed mechanism of these changes and their clinical significance are discussed. PMID:12734224

  7. Reversible modulated mid-infrared absorption of Ag/TiO{sub 2} by photoinduced interfacial charge transfer

    SciTech Connect

    Xu, S. C. E-mail: ghli@issp.ac.cn; Li, L.; Pan, S. S.; Luo, Y. Y.; Zhang, Y. X.; Li, G. H. E-mail: ghli@issp.ac.cn

    2014-10-06

    An enhanced mid-infrared absorption in Ag nanoparticles-decorated TiO{sub 2} microflowers was reported. It was found that the mid-infrared absorption of the Ag/TiO{sub 2} complex depends strongly on the content and size of Ag nanoparticles, the higher the Ag nanoparticles content, the stronger the infrared absorption. The average reflectivity in the entire mid-infrared region of the microflowers drops from 57.6% to 10.5% after Ag nanoparticles decoration. Reversible modulated mid-infrared absorption properties were found in the Ag/TiO{sub 2} complexes upon alternative illumination of visible and UV light due to the photoinduced interfacial electron transfer between TiO{sub 2} semiconductor and Ag nanoparticles.

  8. Gradient boosting machines, a tutorial

    PubMed Central

    Natekin, Alexey; Knoll, Alois

    2013-01-01

    Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142

  9. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  10. Communication: Structure, formation, and equilibration of ensembles of Ag-S complexes on an Ag surface

    SciTech Connect

    Russell, Selena M.; Kim, Yousoo; Liu, Da-Jiang; Evans, J. W.; Thiel, P. A.

    2013-02-15

    We have utilized conditions of very low temperature (4.7 K) and very low sulfur coverage to isolate and identify Ag-S complexes that exist on the Ag(111) surface. The experimental conditions are such that the complexes form at temperatures above the temperature of observation. These complexes can be regarded as polymeric chains of varying length, with an Ag4S pyramid at the core of each monomeric unit. Steps may catalyze the formation of the chains and this mechanism may be reflected in the chain length distribution.

  11. Salamander-Derived, Human-Optimized nAG Protein Suppresses Collagen Synthesis and Increases Collagen Degradation in Primary Human Fibroblasts

    PubMed Central

    Al-Qattan, Mohammad M.; Shier, Medhat K.; Abd-AlWahed, Mervat M.; Mawlana, Ola H.; El-Wetidy, Mohammed S.; Bagayawa, Reginald S.; Ali, Hebatallah H.; Al-Nbaheen, May S.; Aldahmash, Abdullah M.

    2013-01-01

    Unlike humans, salamanders regrow their amputated limbs. Regeneration depends on the presence of regenerating axons which upregulate the expression of newt anterior gradient (nAG) protein. We had the hypothesis that nAG might have an inhibitory effect on collagen production since excessive collagen production results in scarring, which is a major enemy to regeneration. nAG gene was designed, synthesized, and cloned. The cloned vector was then transfected into primary human fibroblasts. The results showed that the expression of nAG protein in primary human fibroblast cells suppresses the expression of collagen I and III, with or without TGF-β1 stimulation. This suppression is due to a dual effect of nAG both by decreasing collagen synthesis and by increasing collagen degradation. Furthermore, nAG had an inhibitory effect on proliferation of transfected fibroblasts. It was concluded that nAG suppresses collagen through multiple effects. PMID:24288677

  12. [Alternative medicine].

    PubMed

    Mitello, L

    2001-01-01

    In a critical situation of world official medicine, we can find different alternatives therapies: natural therapy traditional and complementary, survival sometimes, of antique stiles and conditions of life. New sciences presented for them empiricism to the margin of official science. Doctors and sorcerer do the best to defeat the horrible virus that contribute to build symbols categories of sick. The alternatives put dangerously in game the scientific myth of experiment and exhume, if they got lost, antique remedy, almost preserved like cultural wreck very efficient where the medicine is impotent. Besides alternatives and complementary therapies, that are remedies not recognized conventional from official medicine, there are the homeopathic, phytotherapy, pranotherapy, nutritional therapy, the ayurveda, the yoga, ecc. Italians and internationals research show a composite picture of persons that apply that therapies. Object of this work is to understand and know the way that sick lighten their sufferings and role that have o that can assume the nurses to assist this sick. PMID:12146072

  13. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  14. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  15. Cosmic alternatives?

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  16. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  17. Empirical equation estimates geothermal gradients

    SciTech Connect

    Kutasov, I.M. )

    1995-01-02

    An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.

  18. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition

    PubMed Central

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-01-01

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices. PMID:20880853

  19. Intermediate-range chemical ordering of cations in molten RbCl-AgCl

    NASA Astrophysics Data System (ADS)

    Tahara, S.; Kawakita, Y.; Shimakura, H.; Ohara, K.; Fukami, T.; Takeda, S.

    2015-07-01

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag-Cl and ionic Rb-Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag-Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb-Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag-Ag and Rb-Rb correlations, SAgAg(Q) and SRbRb(Q), show a positive contribution to the FSDP, while SAgRb(Q) for the Ag-Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM.

  20. Intermediate-range chemical ordering of cations in molten RbCl-AgCl.

    PubMed

    Tahara, S; Kawakita, Y; Shimakura, H; Ohara, K; Fukami, T; Takeda, S

    2015-07-28

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag-Cl and ionic Rb-Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag-Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb-Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag-Ag and Rb-Rb correlations, SAgAg(Q) and SRbRb(Q), show a positive contribution to the FSDP, while SAgRb(Q) for the Ag-Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM.

  1. Gradient elution in capillary electrochromatography

    SciTech Connect

    Anex, D.; Rakestraw, D.J.; Yan, Chao; Dadoo, R.; Zare, R.N.

    1997-08-01

    In analogy to pressure-driven gradient techniques in high-performance liquid chromatography, a system has been developed for delivering electroosmotically-driven solvent gradients for capillary electrochromatography (CEC). Dynamic gradients with sub-mL/min flow rates are generated by merging two electroosmotic flows that are regulated by computer-controlled voltages. These flows are delivered by two fused-silica capillary arms attached to a T-connector, where they mix and then flow into a capillary column that has been electrokinetically packed with 3-mm reversed-phase particles. The inlet of one capillary arm is placed in a solution reservoir containing one mobile phase and the inlet of the other is placed in a second reservoir containing a second mobile phase. Two independent computer-controlled programmable high-voltage power supplies (0-50 kV)--one providing an increasing ramp and the other providing a decreasing ramp--are used to apply variable high-voltage potentials to the mobile phase reservoirs to regulate the electroosmotic flow in each arm. The ratio of the electroosmotic flow rates between the two arms is changed with time according to the computer-controlled voltages to deliver the required gradient profile to the separation column. Experiments were performed to confirm the composition of the mobile phase during a gradient run and to determine the change of the composition in response to the programmed voltage profile. To demonstrate the performance of electroosmotically-driven gradient elution in CEC, a mixture of 16 polycyclic aromatic hydrocarbons (PAHs) was separated in less than 90 minutes. This gradient technique is expected to be well-suited for generating not only solvent gradients in CEC, but also other types of gradients such as pH- and ionic-strength gradients in capillary electrokinetic separations and analyses.

  2. Alternative Conceptualizations.

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; O'Reilly, Patricia, Ed.

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains five articles devoted to the topic of "Alternative Conceptualizations" of the foundations of education. In "The Concept of Place in the New Sociology of Education," Paul Theobald examines the notion of place in educational theory and practice. Janice Jipson and Nicholas Paley, in…

  3. Alternative Thinking.

    ERIC Educational Resources Information Center

    Herman, Dan

    1999-01-01

    Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)

  4. Gradient zone boundary control in salt gradient solar ponds

    DOEpatents

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  5. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    SciTech Connect

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-15

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size

  6. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The

  7. The AGS-Booster lattice

    SciTech Connect

    Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.

    1987-01-01

    The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.

  8. Combining Step Gradients and Linear Gradients in Density.

    PubMed

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density. PMID:25978093

  9. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  10. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  11. Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors.

    PubMed

    Kuznetsov, A S; Tikhomirov, V K; Shestakov, M V; Moshchalkov, V V

    2013-11-01

    An ever growing demand for efficient energy conversion, for instance in luminescent lamps, flexible screens and solar cells, results in the current significant growth of research on functionalized nanomaterials for these applications. This paper reviews recent developments of a new class of optically active nanostructured materials based on glasses doped with luminescent Ag nanoclusters consisting of only a few Ag atoms, suitable for mercury-free white light generation and solar down-shifting. This new approach, based solely on Ag nanocluster doped glasses, is compared to other alternatives in the field of Ag and rare-earth ion co-doped materials.

  12. Tyrphostin AG 556 improves survival and reduces multiorgan failure in canine Escherichia coli peritonitis.

    PubMed Central

    Sevransky, J E; Shaked, G; Novogrodsky, A; Levitzki, A; Gazit, A; Hoffman, A; Elin, R J; Quezado, Z M; Freeman, B D; Eichacker, P Q; Danner, R L; Banks, S M; Bacher, J; Thomas, M L; Natanson, C

    1997-01-01

    Tyrosine kinase-dependent cell signaling is postulated to be a pivotal control point in inflammatory responses initiated by bacterial products and TNF. Using a canine model of gram-negative septic shock, we investigated the effect of tyrosine kinase inhibitors (tyrphostins) on survival. Animals were infected intraperitoneally with Escherichia coli 0111: B4, and then, in a randomized, blinded fashion, were treated immediately with one of two tyrphostins, AG 556 (n = 40) or AG 126 (n = 10), or with control (n = 50), and followed for 28 d or until death. All animals received supplemental oxygen, fluids, and antibiotics. Tyrphostin AG 556 improved survival times when compared to controls (P = 0.05). During the first 48 h after infection, AG 556 also improved mean arterial pressure, left ventricular ejection fraction, cardiac output, oxygen delivery, and alveolar-arterial oxygen gradient compared to controls (all P < or = 0.05). These improvements in organ injury were significantly predictive of survival. Treatment with AG 556 had no effect on clearance of endotoxin or bacteria from the blood (both P = NS); however, AG 556 did significantly lower serum TNF levels (P = 0.03). These data are consistent with the conclusion that AG 556 prevented cytokine-induced multiorgan failure and death during septic shock by inhibiting cell-signaling pathways without impairing host defenses as determined by clearance of bacteria and endotoxin. PMID:9109441

  13. A review of the salt-gradient solar pond technology

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H.

    1982-01-01

    The state of the salt-gradient solar pond technology is reviewed. Highlights of findings and experiences from existing ponds to data are presented, and the behavior, energy yield, operational features, and economics of solar ponds are examined. It is concluded that salt-gradient solar ponds represent a technically feasible, environmentally benign, and economically attractive energy producing alternative. In order to bring this emerging technology to maturity, however, much research and development effort remains to be undertaken. Specific R&D areas requiring the attention and action of technical workers and decision-makers are discussed, both from the perspectives of smaller, thermally-oriented ponds and larger, electricity generating ponds.

  14. Generalized gradient and contour program

    USGS Publications Warehouse

    Hellman, Marshall Strong

    1972-01-01

    This program computes estimates of gradients, prepares contour maps, and plots various sets of data provided by the user on the CalComp plotters. The gradients represent the maximum rates of change of a real variable Z=f(X,Y) with respect to the twodimensional rectangle on which the function is defined. The contours are lines of equal Z values. The program also plots special line data sets provided by the user.

  15. Low-gradient aortic stenosis.

    PubMed

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-01

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS.

  16. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  17. Alternative nanostructures for thermophones.

    PubMed

    Aliev, Ali E; Mayo, Nathanael K; Jung de Andrade, Monica; Robles, Raquel O; Fang, Shaoli; Baughman, Ray H; Zhang, Mei; Chen, Yongsheng; Lee, Jae Ah; Kim, Seon Jeong

    2015-05-26

    Thermophones are highly promising for applications such as high-power SONAR arrays, flexible loudspeakers, and noise cancellation devices. So far, freestanding carbon nanotube aerogel sheets provide the most attractive performance as a thermoacoustic heat source. However, the limited accessibility of large-size freestanding carbon nanotube aerogel sheets and other even more exotic materials recently investigated hampers the field. We describe alternative materials for a thermoacoustic heat source with high-energy conversion efficiency, additional functionalities, environmentally friendly, and cost-effective production technologies. We discuss the thermoacoustic performance of alternative nanostructured materials and compare their spectral and power dependencies of sound pressure in air. We demonstrate that the heat capacity of aerogel-like nanostructures can be extracted by a thorough analysis of the sound pressure spectra. The study presented here focuses on engineering thermal gradients in the vicinity of nanostructures and subsequent heat dissipation processes from the interior of encapsulated thermoacoustic projectors. Applications of thermoacoustic projectors for high-power SONAR arrays, sound cancellation, and optimal thermal design, regarding enhanced energy conversion efficiency, are discussed.

  18. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles.

    PubMed

    Gu, Haibin; Ciganda, Roberto; Castel, Patricia; Vax, Amélie; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Salmon, Lionel; Zhao, Pengxiang; Ruiz, Jaime; Hernández, Ricardo; Astruc, Didier

    2015-12-01

    We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way.

  19. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles.

    PubMed

    Gu, Haibin; Ciganda, Roberto; Castel, Patricia; Vax, Amélie; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Salmon, Lionel; Zhao, Pengxiang; Ruiz, Jaime; Hernández, Ricardo; Astruc, Didier

    2015-12-01

    We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way. PMID:26494439

  20. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... migration of the salinity gradient displacing the maximim sedimentation zone. This migration may...

  1. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... migration of the salinity gradient displacing the maximim sedimentation zone. This migration may...

  2. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.

    PubMed

    Liu, Bing; Ma, Zhanfang

    2011-06-01

    A simple synthetic route to prepare Ag(2) S-Ag nanoprisms consists of the facile addition of Na(2) S to a solution of triangular Ag nanoprisms. The resulting Ag(2) S-Ag nanoparticles are more stable in solution than the original Ag nanoprisms, and two surface plasmon resonance (SPR) bands of the original Ag nanoprisms still remain. In addition, the SPR bands of the Ag(2) S-Ag nanoprisms are tunable over a wide range. The Ag(2) S-Ag nanoprisms can be directly bioconjugated via well-established stable Ag(2) S surface chemistry with readily available sulfur coupling agents. The nanoprisms are used in the hybridization of functionalized oligonucleotides, and show promise as probes for future biosensing applications. PMID:21538868

  3. Electronic structure and photoelectrical properties of Ag2In2SiSe6 and Ag2In2GeSe6

    NASA Astrophysics Data System (ADS)

    Khyzhun, O. Y.; Myronchuk, G. L.; Zamuruyeva, O. V.; Parasyuk, O. V.

    2014-12-01

    High-quality Ag2In2SiSe6 and Ag2In2GeSe6 single crystals have been successfully grown by the vertical Bridgman-Stockbarger method and the horizontal gradient freeze technique, respectively. For pristine and Ar+ ion-irradiated surfaces of the single crystals under study, X-ray photoelectron core-level and valence-band spectra have been measured. Results of these studies allow for concluding that the Ag2In2SiSe6 and Ag2In2GeSe6 single crystal surfaces are sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ ion-bombardment with energy of 3.0 keV during 5 min at an ion current density of 14 μA/cm2 has induced some modification in top surface layers leading to an increase of content of In atoms in the layers. Comparison on a common energy scale of the X-ray emission Se Kβ2 bands representing energy distribution of the Se 4p states and the X-ray photoelectron valence-band spectra reveal that the main contribution of the valence Se p states occur in the upper portion of the valence band, with also their significant contributions in other valence band regions of the Ag2In2SiSe6 and Ag2In2GeSe6 single crystals. In addition, for the single crystals under consideration, temperature dependences of specific dark conductivity and spectral distributions of photoconductivity have been explored. It has been established that the Ag2In2SiSe6 and Ag2In2GeSe6 single crystals are high-resistance semiconductors with value of the specific electrical conductivity σ ≈ 1.67 × 10-9 Ω-1 сm-1 (at Т = 300 K). The both compounds are materials with p-type conductivity.

  4. Azimuthal anisotropy of charged hadrons from AGS to RHIC

    NASA Astrophysics Data System (ADS)

    Issah, Michael

    Azimuthal anisotropy, or collective flow, has been studied in heavy-ion collisions for two decades. It is one of the most important signals that gives insight into the early stages of the evolution of the matter created in such collisions. The E895 experiment at the Alternating Gradient Synchrotron (AGS) and PHENIX experiment at Relativistic Heavy Ion Collider (RHIC) explore different regions of the phase diagram of nuclear matter. Collective flow measurements from these two experiments are important in understanding the dynamics of the matter produced and constraining its equation of state. Directed and elliptic flow of charged hadrons at beam energies of 2, 4, 6 and 8 GeV/nucleon have been measured using the cumulant method of flow analysis. The directed flow of pions is observed to change from positive to negative as a function of centrality. At RHIC, there is much evidence that a deconfined system of quarks and gluons, called the Quark-Gluon Plasma (QGP), has been produced. The PHENIX Collaboration has collected data from Au+AU collisions at center-of-mass energies of 62.4, 130 and 200 GeV and Cu+Cu collisions at center-of-mass energies of 62.4 and 200 GeV. Elliptic flow has been studied in these systems as a function of transverse momentum, centrality, rapidity, beam energy and particle type. These measurements show that the magnitude of the elliptic flow is strikingly similar in the energy range 62.4--200 GeV, hinting at a softening of the equation of state of the matter at RHIC. An estimation of the speed of sound in the medium in the medium suggests a soft equation of state. The properties of the matter have been probed through the scaling characteristics of elliptic flow. Eccentricity scaling shows that the produced matter is highly thermalized. The elliptic flow of identified particles is found to scale with transverse kinetic energy up to ≈1 GeV, revealing the hydrodynamic nature of the expanding fluid. Constituent quark number scaling, predicted by

  5. High temperature phase equilibria studies in the Bi-Sr-Ca-Cu-O-Ag system

    SciTech Connect

    Margulies, Lawrence

    1999-11-08

    A variety of experimental techniques were utilized to examine the high temperature phase equilibria in the Bi-Sr-Ca-Cu-O-Ag system. Quenching studies were used to determine the liquid solubility of Ag in the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) melt and the details of the peritectic decomposition pathway of Bi2212 as a function on Ag content and oxygen partial pressure (PO{sub 2}). A liquid immiscibility region between oxide and Ag liquids in the 8--98 at% range was found above 900 C. Two eutectics were found in the Bi2212-Ag pseudobinary. On the oxide rich side, a eutectic exists at approximately 4 at% Ag. On the Ag rich side, a eutectic exists at approximately 98 at% Ag at a temperature of 15 C below the melting point of pure Ag. Six distinct solid phases were found to be in equilibrium with the partial melt within the Ag content and PO{sub 2} range studied. The stability of these solid phases were found to be highly sensitive to PO{sub 2}, and to a much lesser extent Ag content. High temperature x-ray diffraction (HTXRD) studies of this system are in conflict with these results. It is suggested that these discrepancies are due to experimental artifacts caused by the significant thermal gradients and lack of full bulk sampling which is inherent in conventional HTXRD designs. In part 2, a new furnace design compatible with synchrotron radiation sources is introduced to address these problems. This design allows for full bulk sampling in a low thermal gradient environment using Debye-Scherrer transmission geometry. Sample spinning is also introduced in the design to eliminate preferred orientation and incomplete powder averaging and allow for quantitative phase analysis and structural refinement. Studies on model systems are presented to demonstrate the capabilities for high resolution structural studies (Al{sub 2}O{sub 3}) and time resolved phase transformation studies (SrCO{sub 3}). Finally, the Bi2212 system is examined to confirm the quenching results

  6. Constrained numerical gradients and composite gradients: Practical tools for geometry optimization and potential energy surface navigation.

    PubMed

    Stenrup, Michael; Lindh, Roland; Fdez Galván, Ignacio

    2015-08-15

    A method is proposed to easily reduce the number of energy evaluations required to compute numerical gradients when constraints are imposed on the system, especially in connection with rigid fragment optimization. The method is based on the separation of the coordinate space into a constrained and an unconstrained space, and the numerical differentiation is done exclusively in the unconstrained space. The decrease in the number of energy calculations can be very important if the system is significantly constrained. The performance of the method is tested on systems that can be considered as composed of several rigid groups or molecules, and the results show that the error with respect to conventional optimizations is of the order of the convergence criteria. Comparison with another method designed for rigid fragment optimization proves the present method to be competitive. The proposed method can also be applied to combine numerical and analytical gradients computed at different theory levels, allowing an unconstrained optimization with numerical differentiation restricted to the most significant degrees of freedom. This approach can be a practical alternative when analytical gradients are not available at the desired computational level and full numerical differentiation is not affordable.

  7. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  8. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  9. Behavior of detonation propagation in mixtures with concentration gradients

    NASA Astrophysics Data System (ADS)

    Hall, Brian C.; Kirwin, William D.

    2007-08-01

    Behavior of detonation waves in mixtures with concentration gradients normal to the propagation direction was studied experimentally. Mixtures with various concentration gradients were formed by sliding the separation plate which divides a detonation chamber from a diffusion chamber in which a diffusion gas was initially introduced. A stoichiometric hydrogen oxygen mixture was charged in the detonation chamber, while oxygen or nitrogen was filled in the diffusion gas chamber. Temporal concentration measurement was conducted by the infrared absorption method using ethane as alternate of oxygen. Smoked foil records show a deformation of regular diamond cells to parallelogram ones, which well corresponds to local mixture concentration. Schlieren photographs reveal the tilted wave front whose angle is consistent with the deflection angle of the detonation front obtained from trajectories of the triple point. The local deflection angle increases with increase in local concentration gradient. Calculation of wave trajectory based on the ray tracing theory predicts formation of the tilted wave front from an initial planar front.

  10. Baryon production and collective flow in relativistic heavy-ion collisions in the AGS, SPS, RHIC, and LHC energy regions ({radical}(s{sub NN}){<=}5 GeV to 5.5 TeV)

    SciTech Connect

    Feng Shengqin; Zhong Yang

    2011-03-15

    The features of net-baryon productions and collective flow in relativistic heavy-ion collisions at energies reached at the CERN Large Hadron Collider (LHC), BNL Relativistic Heavy Ion Collider (RHIC), CERN Super Proton Synchrotron (SPS), and BNL Alternating Gradient Synchrotron (AGS) with the model of nonuniform flow model (NUFM) are systematically studied in this paper. In particular we predict the feature of net-baryon productions and collective flow at LHC {radical}(s{sub NN})=5500 GeV based on the detailed study at RHIC {radical}(s{sub NN})=62.4 and 200 GeV. The dependencies of the features of baryon stopping and collective flow on the collision energies and centralities are investigated.

  11. Gradient Domain Guided Image Filtering.

    PubMed

    Kou, Fei; Chen, Weihai; Wen, Changyun; Li, Zhengguo

    2015-11-01

    Guided image filter (GIF) is a well-known local filter for its edge-preserving property and low computational complexity. Unfortunately, the GIF may suffer from halo artifacts, because the local linear model used in the GIF cannot represent the image well near some edges. In this paper, a gradient domain GIF is proposed by incorporating an explicit first-order edge-aware constraint. The edge-aware constraint makes edges be preserved better. To illustrate the efficiency of the proposed filter, the proposed gradient domain GIF is applied for single-image detail enhancement, tone mapping of high dynamic range images and image saliency detection. Both theoretical analysis and experimental results prove that the proposed gradient domain GIF can produce better resultant images, especially near the edges, where halos appear in the original GIF. PMID:26285153

  12. Research and Development for Ultra-High Gradient Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Dolgashev, Valery; Higashi, Yasuo; Spataro, Bruno

    2010-11-01

    Research on the basic physics of high-gradient, high frequency accelerator structures and the associated RF/microwave technology are essential for the future of discovery science, medicine and biology, energy and environment, and national security. We will review the state-of-the-art for the development of high gradient linear accelerators. We will present the research activities aimed at exploring the basic physics phenomenon of RF breakdown. We present the experimental results of a true systematic study in which the surface processing, geometry, and materials of the structures have been varied, one parameter at a time. The breakdown rate or alternatively, the probability of breakdown/pulse/meter has been recorded for different operating parameters. These statistical data reveal a strong dependence of breakdown probability on surface magnetic field, or alternatively on surface pulsed heating. This is in contrast to the classical view of electric field dependence.

  13. Templating Surfaces with Gradient Assemblies

    SciTech Connect

    Genzer,J.

    2005-01-01

    One of the most versatile and widely used methods of forming surfaces with position-dependent wettability is that conceived by Chaudhury and Whitesides more than a decade ago. In this paper we review several projects that utilize this gradient-forming methodology for: controlled of deposition of self-assembled monolayers on surfaces, generating arrays of nanoparticles with number density gradients, probing the mushroom-to-brush transition in surface-anchored polymers, and controlling the speed of moving liquid droplets on surfaces.

  14. Oxidation in a temperature gradient

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2001-01-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick's first law of diffusion to include a heat flux term--a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and for nickel doped with chromium. Research in progress is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient above 800 C, and comparing the kinetics to isothermal oxidation. The tests are being carried out in the new high temperature gaseous corrosion and corrosion/erosion facility at the Albany Research Center.

  15. AGS slow extracted beam improvement

    SciTech Connect

    Marneris, I.; Danowski, G.; Sandberg, J.; Soukas, A.

    1997-07-01

    The Brookhaven AGS is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to an equivalent proton energy of 29 GeV. Since the late 1960`s it has been serving high energy physics (HEP - proton beam) users of both slow and fast extracted beams. The AGS fixed target program presently uses primary proton and heavy ion beams (HIP) in slowly extracted fashion over spill lengths of 1.5 to 4.0 seconds. Extraction is accomplished by flattoping the main and extraction magnets and exciting a third integer resonance in the AGS. Over the long spill times, control of the subharmonic amplitude components up to a frequency of 1 kilohertz is very crucial. One of the most critical contributions to spill modulation is due to the AGS MMPS. An active filter was developed to reduce these frequencies and it`s operation is described in a previous paper. However there are still frequency components in the 60-720 Hz sub-harmonic ripple range, modulating the spill structure due to extraction power supplies and any remaining structures on the AGS MMPS. A recent scheme is being developed to use the existing tune-trim control horizontal quadrupole magnets and power supply to further reduce these troublesome noise sources. Feedback from an external beam sensor and overcoming the limitations of the quadrupole system by lead/lag compensation techniques will be described.

  16. AN EXPERIMENTAL PROPOSAL TO STUDY HEAVY-ION COOLING IN THE AGS DUE TO BEAM GAS OR THE INTRABEAM SCATTERING.

    SciTech Connect

    TRBOJEVIC, D.; AHERNS, L.; ROSER, T.; MACKAY, W.; BRENNAN, J.; BLASKIEWICZ,M.; PARZEN, G.; BEEBE-WANG, J.

    2006-06-23

    Low emittance of not-fully-stripped gold (Z=79) Au{sup +77} Helium-like ion beams from the AGS (Alternating Gradient Synchrotron) injector to the Relativistic Heavy Ion Collider (RHIC) could be attributed to the cooling phenomenon due to inelastic intrabeam scattering [1,2] or due to electron de-excitations from collisions with the residual gas [3]. The low emittance gold beams have always been observed at injection in the Relativistic Heavy Ion Collider (RHIC). There have been previous attempts to attribute the low emittance to a cooling due to the exchange of energy between ions during the inelastic intrabeam scattering. The Fano-Lichten theory [4] of electron promotion might be applied during inelastic collisions between helium like gold ions in the AGS. The two K-shell electrons in gold Au{sup +77} could get promoted if the ions reach the critical distance of the closest approach during intra-beam scattering or collisions with the residual gas. During collisions if the ion energy is large enough, a quasi-molecule could be formed, and electron excitation could occur. During de-excitations of electrons, photons are emitted and a loss of total bunch energy could occur. This would lead to smaller beam size. We propose to inject gold ions with two missing electrons into RHIC, at injection energy, and study the beam behavior with bunched and de-bunched beam, varying the RF voltage and the beam intensity. If the ''cooling'' is observed additional X-ray detectors could be installed to observe emitted photons.

  17. Effects of TiO2 and Ag nanoparticles on polyhydroxybutyrate biosynthesis by activated sludge bacteria.

    PubMed

    Priester, John H; Van De Werfhorst, Laurie C; Ge, Yuan; Adeleye, Adeyemi S; Tomar, Shivira; Tom, Lauren M; Piceno, Yvette M; Andersen, Gary L; Holden, Patricia A

    2014-12-16

    Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L(-1)). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers. PMID:25409530

  18. Variable metric conjugate gradient methods

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1994-07-01

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  19. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  20. Photoelectron spectroscopy of AgCl, AgBr, and AgI vapors

    SciTech Connect

    Berkowitz, J.; Batson, C.H.; Goodman, G.L.

    1980-06-01

    He I photoelectron spectra of AgCl, AgBr and AgI vapors have been obtained which differ significantly from earlier work. In each instance, the characteristic features of the diatomic molecule are prominent. The spectral features separate into a valence region, predominantly halogen p-like, and a deeper region, predominantly of Ag 4d character. The latter is split by spin--orbit and ligand field interactions, which are parametrized from the experimental data. Relativistic calculations of the X/sub ..cap alpha../--DVM--SCC type have been performed for these species. At the transition state level, they agree very well with the experimental peak positions. Nonrelativistic calculations of this type have been performed for CuCl and cyclic Cu/sub 3/Cl/sub 3/. Unlike the AgX species, the CuCl and Cu/sub 3/Cl/sub 3/ exhibit strong mixing of metal d and halogen p orbitals for the uppermost occupied orbital, and other Cu 3d-like orbitals above the Cl 3p-like orbitals. It is suggested that the occurrence of Cu 3d orbitals in the valence region may play a role in the anomalous diagmagnetic signal and large conductivity changes of CuCl condensed from the vapor.

  1. Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa; Pan, Chia-Chi

    2012-06-01

    Optical examination of a chaocogenide compound AgAlS2 which can spontaneously transfer to a AgAlO2 oxide has been investigated by thermoreflectance (TR) spectroscopy herein. The single crystals of AgAlS2 were grown by chemical vapor transport (CVT) method using ICl3 as a transport agent sealed in evacuated quartz tubes. The as-grown AgAlS2 crystals essentially possess a transparent and white color in vacuum. The crystal surface of AgAlS2 becomes darkened and brownish when putting AgAlS2 into atmosphere for reacting with water vapor or hydrogen gas. Undergoing the chemical reaction process, oxygen deficient AgAlO2-2x with brownish and reddish-like color on surface of AgAlS2 forms. The transition energy of deficient AgAlO2-2x was evaluated by TR experiment. The value was determined to be ˜2.452 eV at 300 K. If the sample is kept dry and moved away from moisture, AgAlS2 crystal can stop forming more deficient AgAlO2-2x surface oxides. The experimental TR spectra for the surface-reacted sample show clearly two transition features at EW=2.452 eV for deficient AgAlO2-2x and EU=3.186 eV for AgAlS2, respectively. The EU transition belongs to direct band-edge exciton of AgAlS2. Alternatively, for surface-oxidation process of AgAlS2 lasting for a long time, a AgAlO2 crystal with yellowish color will eventually form. The TR measurements show mainly a ground-state band edge exciton of E{}_{OX}^1 detected for AgAlO2. The energy was determined to be E{}_{OX}^1=2.792 eV at 300 K. The valence-band electronic structure of AgAlS2 has been detailed characterized using polarized-thermoreflectance (PTR) measurements in the temperature range between 30 and 340 K. Physical chemistry behaviors of AgAlS2 and AgAlO2 have been comprehensively studied via detailed analyses of PTR and TR spectra. Based on the experimental analyses, optical and chemical behaviors of the AgAlS2 crystals under atmosphere are realized. A possible optical-detecting scheme for using AgAlS2 as a humidity sensor has

  2. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  3. Interaction of a converging laser beam with a Ag colloidal solution during the ablation of a Ag target in water.

    PubMed

    Resano-Garcia, Amandine; Battie, Yann; Naciri, Aotmane En; Chaoui, Nouari

    2016-05-27

    We studied the nanosecond laser-induced shape modifications of Ag colloids exposed to a converging laser beam during the ablation of a Ag target in water. To this end, we performed a series of laser ablation experiments in which the laser energy was varied while all other parameters were kept constant. In addition to transmission electron microscopy (TEM), the shape distribution of the Ag nanoparticles was determined by modelling the extinction spectra of the final colloidal solutions using theoretical calculations based on shape distributed effective medium theory (SDEMT). From these calculations, two physical parameters named sphericity and dispersity were introduced and used to gauge the evolution of the shape distribution of the particles. As the laser energy on the target was increased from 5 to 20 mJ/pulse, an apparently abrupt modification of the shape distribution of the particles was evidenced by both TEM and SDEMT calculations. This change is explained in terms of competitive fragmentation, growth and reshaping processes. On the basis the heating-melting-vaporization model, we demonstrate how the competition between these processes, occurring at different locations of the converging beam, determines the shape distribution of the final product. We highlight the relevance of the fluence gradient along the beam path and the laser interaction volume on the laser-induced modifications of the suspended particles during the ablation process. PMID:27095289

  4. Interaction of a converging laser beam with a Ag colloidal solution during the ablation of a Ag target in water

    NASA Astrophysics Data System (ADS)

    Resano-Garcia, Amandine; Battie, Yann; Naciri, Aotmane En; Chaoui, Nouari

    2016-05-01

    We studied the nanosecond laser-induced shape modifications of Ag colloids exposed to a converging laser beam during the ablation of a Ag target in water. To this end, we performed a series of laser ablation experiments in which the laser energy was varied while all other parameters were kept constant. In addition to transmission electron microscopy (TEM), the shape distribution of the Ag nanoparticles was determined by modelling the extinction spectra of the final colloidal solutions using theoretical calculations based on shape distributed effective medium theory (SDEMT). From these calculations, two physical parameters named sphericity and dispersity were introduced and used to gauge the evolution of the shape distribution of the particles. As the laser energy on the target was increased from 5 to 20 mJ/pulse, an apparently abrupt modification of the shape distribution of the particles was evidenced by both TEM and SDEMT calculations. This change is explained in terms of competitive fragmentation, growth and reshaping processes. On the basis the heating–melting–vaporization model, we demonstrate how the competition between these processes, occurring at different locations of the converging beam, determines the shape distribution of the final product. We highlight the relevance of the fluence gradient along the beam path and the laser interaction volume on the laser-induced modifications of the suspended particles during the ablation process.

  5. The AGS Booster control system

    SciTech Connect

    Frankel, R.; Auerbach, E.; Culwick, B.; Clifford, T.; Mandell, S.; Mariotti, R.; Salwen, C.; Schumburg, N.

    1988-01-01

    Although moderate in size, the Booster construction project requires a comprehensive control system. There are three operational modes: as a high intensity proton injector for the AGS, as a heavy ion accelerator and injector supporting a wide range of ions and as a polarized proton storage injector. These requirements are met using a workstation based extension of the existing AGS control system. Since the Booster is joining a complex of existing accelerators, the new system will be capable of supporting multiuser operational scenarios. A short discussion of this system is discussed in this paper.

  6. AG Draconis - a symbiotic mystery

    NASA Astrophysics Data System (ADS)

    Galis, R.; Hric, L.; Smelcer, L.

    2015-02-01

    Symbiotic system AG Draconis regularly undergoes quiescent and active stages which consist of the series of individual outbursts. The period analysis of new and historical photometric data, as well as radial velocities, confirmed the presence of the two periods. The longer one (~550 d) is related to the orbital motion and the shorter one (~355 d) could be due to pulsation of the cool component of AG Dra. In addition, the active stages change distinctively, but the outbursts are repeated with periods from 359 - 375 d.

  7. Pouring reproducible gradients in gels under computer control: new devices for simultaneous delivery of two independent gradients, for more flexible slope and pH range of immobilized pH gradients.

    PubMed

    Altland, K; Altland, A

    1984-12-01

    Recently we described (Electrophoresis 5: 143-147, 1984) a new device for producing density and solute gradients, involving computer-controlled coöperation of stepmotor-driven high-precision burettes, the purpose being to substantially improve reproducibility, flexibility, and documentation of gradients used in gels and in other applications in biochemistry. Here we present the functional principle of three modified and partly alternative devices, based on simultaneous delivery of a density gradient and a non-density gradient. They provide unlimited flexibility of choice for the slope of the non-density gradient, which is stabilized by the density gradient. They seem especially useful for pouring immobilized pH gradients in gels of wide pH ranges (between pH 3.5 and 10) where localized flattening of the gradient is needed to selectively improve resolution. Used in two-dimensional electrophoretic analysis, they should considerably improve control of spot coördinates, standardization of the technique, and interlaboratory data exchange.

  8. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  9. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation.

  10. Thermal Gradient Behavior of TBCs Subjected to a Laser Gradient Test Rig: Simulating an Air-to-Air Combat Flight

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio S.; Marple, Basil R.; Marcoux, P.

    2016-01-01

    A computer-controlled laser test rig (using a CO2 laser) offers an interesting alternative to traditional flame-based thermal gradient rigs in evaluating thermal barrier coatings (TBCs). The temperature gradient between the top and back surfaces of a TBC system can be controlled based on the laser power and a forced air back-face cooling system, enabling the temperature history of complete aircraft missions to be simulated. An air plasma spray-deposited TBC was tested and, based on experimental data available in the literature, the temperature gradients across the TBC system (ZrO2-Y2O3 YSZ top coat/CoNiCrAlY bond coat/Inconel 625 substrate) and their respective frequencies during air-to-air combat missions of fighter jets were replicated. The missions included (i) idle/taxi on the runway, (ii) take-off and climbing, (iii) cruise trajectory to rendezvous zone, (iv) air-to-air combat maneuvering, (v) cruise trajectory back to runway, and (vi) idle/taxi after landing. The results show that the TBC thermal gradient experimental data in turbine engines can be replicated in the laser gradient rig, leading to an important tool to better engineer TBCs.

  11. Intermediate-range chemical ordering of cations in molten RbCl-AgCl

    SciTech Connect

    Tahara, S.; Kawakita, Y.; Shimakura, H.; Ohara, K.; Fukami, T.; Takeda, S.

    2015-07-28

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag–Cl and ionic Rb–Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag–Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb–Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag–Ag and Rb–Rb correlations, S{sub AgAg}(Q) and S{sub RbRb}(Q), show a positive contribution to the FSDP, while S{sub AgRb}(Q) for the Ag–Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM.

  12. Role of Ag addition in L10 ordering of FePt-based nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Vasiliu, F.; Mercioniu, I.; Crisan, O.

    2014-01-01

    The FePt system has important perspectives as high-temperature corrosion-resistant magnets. In the form of rapidly solidified melt-spun ribbons, FePt-based magnets may exhibit in certain cases a two-phase hard-soft magnetic behaviour. The present paper deals with a microstructural and magnetic study of FePtAgB alloys with increasing Ag content. The aim is to identify and confirm the effect of Ag addition in decreasing the temperature of the FePt disorder-order structural phase transformation. A detailed high-resolution transmission electron microscopy study is employed, and the alternative disposal of hard and soft regions within the two-phase microstructure is observed and interpreted with respect to the X-ray diffraction results. In the as-cast Ag-containing samples, it is shown that there is an optimum of the Ag content for which best magnetic properties are obtained. Ag addition creates a nonlinear behaviour of the coercive field and the ordering parameter, similar to the RKKY interaction-induced interlayer exchange coupling (IEC) observed in magnetic layers separated by non-magnetic spacer layers. Direct formation of the L10 phase from the as-cast state in the FePtAgB alloys is reported with magnetic parameters compatible to other exchange spring permanent nanomagnets. These findings open novel perspectives into utilization of such alloys in applications requiring magnets operating in high-temperature industrial environments.

  13. Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.

    PubMed

    Shahjamali, Mohammad M; Zhou, Yong; Zaraee, Negin; Xue, Can; Wu, Jinsong; Large, Nicolas; McGuirk, C Michael; Boey, Freddy; Dravid, Vinayak; Cui, Zhifeng; Schatz, George C; Mirkin, Chad A

    2016-05-24

    Recently, Ag-Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag-Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag-Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag-Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag-Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)-anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism.

  14. The protonation state of thiols in self-assembled monolayers on roughened Ag/Au surfaces and nanoparticles.

    PubMed

    Bandyopadhyay, Sabyasachi; Chattopadhyay, Samir; Dey, Abhishek

    2015-10-14

    The protonation state of thiols in self-assembled monolayers (SAMs) on Ag and Au surfaces and nanoparticles (NPs) has been an issue of contestation. It has been recently demonstrated that deuterating the thiol proton produces ostentatious changes in the Raman spectra of thiols and can be used to detect the presence of the thiol functional group. Surface enhanced Raman spectroscopy (SERS) of H/D substituted aliphatic thiols on Ag surfaces clearly shows the presence of S-H vibration between 2150-2200 cm(-1) which shifts by 400 cm(-1) upon deuteration and a simultaneous >20 cm(-1) shift in the C-S vibration of thiol deuteration. Large shifts (>15 cm(-1)) in the C-S vibration are also observed for alkyl thiol SAMs on Au surfaces. Alternatively, neither the S-H vibration nor the H/D isotope effect on the C-S vibration is observed for alkyl thiol SAMs on Ag/Au NPs. XPS data on Ag/Au surfaces bearing aliphatic thiol SAMs show the presence of both protonated and deprotonated thiols while on Ag/Au NPs only deprotonated thiols are detected. These data suggest that aliphatic thiol SAMs on Au/Ag surfaces are partially protonated whereas they are totally deprotonated on Au/Ag NPs. Aromatic PhSH SAMs on Ag/Au surfaces and Ag/Au NPs do not show these vibrations or H/D shifts as well indicating that the thiols are deprotonated at these interfaces.

  15. Alternative methods for the design of jet engine control systems

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Leake, R. J.; Basso, R.; Gejji, R.; Maloney, A.; Seshadri, V.

    1976-01-01

    Various alternatives to linear quadratic design methods for jet engine control systems are discussed. The main alternatives are classified into two broad categories: nonlinear global mathematical programming methods and linear local multivariable frequency domain methods. Specific studies within these categories include model reduction, the eigenvalue locus method, the inverse Nyquist method, polynomial design, dynamic programming, and conjugate gradient approaches.

  16. Effect of Metallic Glass Particle Size on the Contact Resistance of Ag/Metallic Glass Electrode

    NASA Astrophysics Data System (ADS)

    Park, Jin Man; Park, Keum Hwan; Park, Eun Soo; Hong, Seok-Moo; Kim, Se Yun; Jee, Sang Soo; Lee, Eun Sung; Kim, Suck Jun; Kim, Ki Buem; Kim, Do Hyang; Eckert, Jürgen

    2015-06-01

    In this study, electrically conductive Al-based metallic glass (MG) has been applied as an alternative of oxide glass in silver paste. Al85Ni5Y8Co2 MG powder was produced by gas atomization process and simultaneously classified depending on the size of powder. The wetting behavior of MG was dramatically altered by the degree of crystallinity and the size of MG powder, resulting in the different sinterability of silver (Ag) and contact area between Si emitter and Ag. The Ag electrode with smaller MG powder shows much denser structure of Ag and larger contact area, leading to low contact resistance, 0.69 ± 0.38 at p-type and 0.56 ± 0.13 mΩcm2 at n-type emitter.

  17. Effect of CIP process on superconducting properties of Bi-2223/Ag wires composite bulk

    NASA Astrophysics Data System (ADS)

    Yamamoto, R.; Yoshizawa, S.; Hirano, S.; Hishinuma, Y.; Nishimura, A.; Matsumoto, A.; Kumakura, H.

    2002-10-01

    In order to improve superconducting property of Bi-2223 superconductor bulk, Ag wires were composed in the bulk. The composite was made by stacking alternately Ag wires and the calcined powder. The sample was sintered at 840 °C for 50 h in air. After treatment with a cold isostatic press as an intermediate pressing, the sample was sintered again. The maximum Jc at 4.2 K and self-field of the sample composed with 24 Ag wires of 0.4 mm in diameter was obtained to be 2000 A/cm 2. Scanning electron microscope and electron probe microanalyzer observation results showed that highly c-axis oriented and densely structured Bi-2223 plate-like grains could be formed around the interfacial region between the superconducting oxide and the metal Ag.

  18. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S.

    2011-04-01

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses.

  19. Photoreduction of Ag+ in Ag/Ag2S/Au memristor

    NASA Astrophysics Data System (ADS)

    Mou, N. I.; Tabib-Azar, M.

    2015-06-01

    Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag2S/Au memristors using a green laser (473-523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from -0.8 V to -0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag2S may be used in three dimensional optical memories that can be electronically read and reset.

  20. Ag-Ag dispersive interaction and physical properties of Ag3Co(CN)6

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Dove, Martin T.; Refson, Keith

    2014-08-01

    We report a density functional theory (DFT) study of Ag3Co(CN)6, a material noted for its colossal positive and negative thermal expansion, and its giant negative linear compressibility. Here, we explicitly include the dispersive interaction within the DFT calculation, and find that it is essential to reproduce the ground state, the high-pressure phase, and the phonons of this material, and hence essential to understand this material's remarkable physical properties. New exotic properties are predicted. These include heat enhancement of the negative linear compressibility, a large reduction in the coefficient of thermal expansion on compression with change of sign of the mode Grüneisen parameters under pressure, and large softening of the material on heating. Our results suggest that these are associated with the weak Ag-Ag dispersive interactions acting with an efficient hinging mechanism in the framework structure.

  1. Laser-based synthesis of core Ag-shell AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Hua; Fan, Wai Yip

    2005-05-01

    A laser-controlled synthesis of silver iodide (AgI) nanoparticles with isolable AgI shell-Ag core stable intermediates is achieved via molecular iodine photodissociation in the presence of pure Ag nanoparticles dispersed in water. Ag nanoparticles were introduced into the solution containing sodium dodecylsulphate surfactants and iodine by ablating a piece of silver foil with a 532 nm pulsed Nd-YAG laser. Transmission electron microscopy images showed that different AgI shell-Ag core sizes could be achieved by controlling the photolysis of I 2 in solution. These nanoparticles were also found to catalyse an atom-economy Grignard-Barbier organic reaction.

  2. AGS experiments: 1990, 1991, 1992. Ninth edition

    SciTech Connect

    Depken, J.C.

    1993-04-01

    This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ``as run``; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters.

  3. High gradient RF breakdown studies

    NASA Astrophysics Data System (ADS)

    Laurent, Lisa Leanne

    Higher accelerating gradients are required by future demands for TeV electron linear colliders. With higher energy comes the challenge of handling stronger electromagnetic fields in the accelerator structures and in the microwave sources that supply the power. A limit on the maximum field gradient is imposed by rf electrical breakdown. Investigating methods to achieve higher gradients and to better understand the mechanisms involved in the rf breakdown process has been the focal point of this study. A systematic series of rf breakdown experiments have been conducted at Stanford Linear Accelerator Center utilizing a transmission cavity operating in the TM020 mode. A procedure was developed to examine the high gradient section of the cavity in an electron microscope. The results have revealed that breakdown asymmetry exists between opposing high gradient surfaces. During breakdown, a plasma formation is detected localized near the surface with no visible evidence of an arc traversing the gap. These findings support the theory that high frequency rf breakdown is a single surface phenomenon. Other results from this study have shown that breakdown can occur at relatively low voltages when surface irregularities exist and along grain boundaries. A series of steps have been developed through this study that have significantly reduced the number of breakdowns that occur along grain boundaries. Testing under various vacuum conditions (10-11--10 -5 Torr) have revealed that while the breakdown threshold remained the same, the field emitted current density increased by almost two orders of magnitude. This suggests that the total field emitted current density is not the critical parameter in the initiation of high frequency vacuum breakdown. In the course of this study, microparticles were carefully tracked before and after rf processing. The outcome of this research suggests that expensive cleanroom facilities may not offer any advantage over practicing good cleaning and

  4. Biosorption behavior and mechanism of lead (II) from aqueous solution by aerobic granules (AG) and bacterial alginate (BA)

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Yu

    2012-12-01

    Lead (Pb) and its compounds are common pollutants in industrial wastewaters. To develop appropriate Pb2+ treatment technologies, aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions. The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption. In this paper, the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH, contact time, and initial Pb2+ concentration. The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150 mg L-1). The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass). When the initial pH was 5, the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1). During the process of Pb2+ biosorption, K+, Ca2+, and Mg2+ were released. The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA. This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG. At the same optimal pH, AG cultivated with different carbon source has different Pb2+ biosorption capacity. The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.

  5. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  6. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min.

  7. AGS 20th anniversary celebration

    SciTech Connect

    Baggett, N.V.

    1980-05-22

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume.

  8. AGS experiments: 1985, 1986, 1987

    SciTech Connect

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987.

  9. Correcting the AGS depolarizing resonances

    SciTech Connect

    Ratner, L.G.

    1986-01-01

    For the 1986 AGS run, the technique of correcting an imperfection resonance using a beat harmonic instead of the direct harmonic was applied and found to be useful in achieving a 22 GeV/c polarized beam. Both conventional and modified techniques are explained. (LEW)

  10. What Is Ag-Ed?

    ERIC Educational Resources Information Center

    Linley, Judy; Mylne, Lee

    1998-01-01

    Ag-Ed, an agricultural education project for upper elementary students, was held in conjunction with the Toowoomba Show in Queensland, Australia. Agriculture industry representatives provided 20 interactive agricultural presentations for class groups, which were supplemented with a teacher resource-package containing a directory and 13 sections of…

  11. AGS experiments, 1988, 1989, 1990

    SciTech Connect

    Depken, J.C.

    1991-04-01

    This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters.

  12. Absorption spectra of AgI at pressures to 136 kbar

    SciTech Connect

    Liebenberg, D.H.; Hudson, J.

    1981-01-01

    Spectral absorption measurements in AgI are reported at pressures up to 136 kbar using a diamond anvil cell. In the NaCl phase between 5 and 70 kbar the absorption edge shift is found to be nearly linear with pressure. No indication of a sudden jump into a CsCl phase is found near 100 kbar and the possible influence of larger pressure gradients in earlier measurements is discussed.

  13. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    NASA Astrophysics Data System (ADS)

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  14. Recombinant nAG (a salamander-derived protein) decreases the formation of hypertrophic scarring in the rabbit ear model.

    PubMed

    Al-Qattan, Mohammad M; Abd-Al Wahed, Mervat M; Hawary, Khalid; Alhumidi, Ahmed A; Shier, Medhat K

    2014-01-01

    nAG (newt-Anterrior Gradient) protein is the key mediator of regrowth of amputated limbs in salamanders. In a previous work in our lab, a new nAG gene (suitable for humans) was designed and cloned. The cloned vector was transfected into primary human fibroblasts. The expression of nAG in human primary fibroblasts was found to suppress collagen expression. The current study shows that local injection of recombinant nAG reduces scar hypertrophy in the rabbit ear model. This is associated with lower scar elevation index (SEI), lower levels of collagen I & III, higher levels of MMP1, and a higher degree of scar maturation in experimental wounds compared to controls.

  15. Experimental and theoretical investigation of high gradient acceleration. Progress report, June 1, 1991--February 1, 1992

    SciTech Connect

    Bekefi, G.; Chen, C.; Chen, S.; Danly, B.; Temkin, R.J.; Wurtele, J.S.

    1992-02-01

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-FG0291ER-40648. ``Experimental and Theoretical Investigations of High Gradient Acceleration.`` This grant supports three research tasks: Task A consists of the design and fabrication of a 17GHz of photocathode gun, Task B supports the testing of high gradient acceleration using a 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders. This report is organized as follows. The development of an rf gun design and research progress on the picosecond laser system is summarized in Sec. 2, the status of the studies of the LBL/Haimson high gradient structure, using a 50 MW free-electron laser is summarized in Sec. 3, and theoretical research progress is described in Sec. 4. Supporting material is contained in Appendices A-G.

  16. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  17. High gradient directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1985-01-01

    A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.

  18. Effect of Mixed Glass Former on Ionic Conductivity of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O-{B2O3:WO3}

    NASA Astrophysics Data System (ADS)

    Dehariya, Harsha; Kumar, R.; Polu, A. R.

    2012-05-01

    The idea to explore new 'Superionic Electrolytes', "Fast ionic conductors" is due to their tremendous potential applications in solid state electrochemical devices viz. solid state batteries, fuel cells, sensors, super capacitors. Superionic glasses have attracted great deal of attention due to their several advantageous over their crystalline counterparts such as high ionic conductivity, easy preparation, wide selection of compositions, isotropic properties and high stability etc [4-7]. Large numbers of silver ion based glasses have been reported in the literature for the glassy system of AgI:Ag2O: MxOy (MxOy = B2O3, SiO2, P2O5, GeO2, V2O5, As2O5, CrO3, SeO2, MoO3 & TeO3 etc many of them shows high silver ion conductivity [8]. Ion transport behavior of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O{B2O3:WO3}], where 0 <= x <= 1 in molar wt% prepared by melt quench technique were reported. The new host [0.75AgI:0.25AgCl] was used as a better alternate in place of conventional host salt AgI. Conductivity measurement were carried out on this glass system as a function of frequency from 50 Hz to 5 MHz, over a temperature range of 27°C to 200°C, for different compositions by Impedance spectroscopy. The composition 0.7[0.75AgI:0.25AgCl]: 0.3[Ag2O{B2O3:WO3}] shows the highest conductivity of the order of σrt ~ 2.76 × 10-2 S/cm, referred to as the Optimum Conducting Composition (OCC). The enhancement in the conductivity has been obtained by mixed former effect. XRD result shows that the system is completely amorphous. Temperature dependence of conductivity of all compositions were studied & reported. Activation energies (Ea) were also evaluated from the slope of .Log(σ) vs 1000/T, Arrhenius plots.

  19. Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Ji Dang; Yun, Hyosuk; Kim, Gwui Cheol; Lee, Chul Won; Choi, Hyun Chul

    2013-10-01

    A facile approach to the synthesis of novel CNT-Ag and GO-Ag antibacterial materials, in which thiol groups are utilized as linkers to secure silver (Ag) nanoparticles to the CNT and GO surfaces without agglomeration, is reported. The resulting CNT-Ag and GO-Ag samples were characterized by performing TEM, XRD, Auger, XPS, and Raman measurements, which revealed that in these antibacterial materials size-similar and quasi-spherical Ag nanoparticles are anchored to the CNT and GO surfaces. The Ag nanoparticles in CNT-Ag and GO-Ag have narrow size distributions with average diameters of 2.6 and 3.5 nm respectively. The antibacterial activities of CNT-Ag and GO-Ag against Escherichia coli were assessed with the paper-disk diffusion method and by determining the minimal inhibitory concentrations (MICs). CNT-Ag was found to have higher antibacterial activity than the reference Ag colloid. Moreover, both CNT-Ag and GO-Ag retain more than 50% of their original antibacterial activities after 20 washes with detergent, which indicates their potential as antibacterial materials for laboratory and medical purposes.

  20. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  1. High-resolution MRI encoding using radiofrequency phase gradients.

    PubMed

    Sharp, Jonathan C; King, Scott B; Deng, Qunli; Volotovskyy, Vyacheslav; Tomanek, Boguslaw

    2013-11-01

    Although MRI offers highly diagnostic medical imagery, patient access to this modality worldwide is very limited when compared with X-ray or ultrasound. One reason for this is the expense and complexity of the equipment used to generate the switched magnetic fields necessary for MRI encoding. These field gradients are also responsible for intense acoustic noise and have the potential to induce nerve stimulation. We present results with a new MRI encoding principle which operates entirely without the use of conventional B0 field gradients. This new approach--'Transmit Array Spatial Encoding' (TRASE)--uses only the resonant radiofrequency (RF) field to produce Fourier spatial encoding equivalent to conventional MRI. k-space traversal (image encoding) is achieved by spin refocusing with phase gradient transmit fields in spin echo trains. A transmit coil array, driven by just a single transmitter channel, was constructed to produce four phase gradient fields, which allows the encoding of two orthogonal spatial axes. High-resolution two-dimensional-encoded in vivo MR images of hand and wrist were obtained at 0.2 T. TRASE exploits RF field phase gradients, and offers the possibility of very low-cost diagnostics and novel experiments exploiting unique capabilities, such as imaging without disturbance of the main B0 magnetic field. Lower field imaging (<1 T) and micro-imaging are favorable application domains as, in both cases, it is technically easier to achieve the short RF pulses desirable for long echo trains, and also to limit RF power deposition. As TRASE is simply an alternative mechanism (and technology) of moving through k space, there are many close analogies between it and conventional B0 -encoded techniques. TRASE is compatible with both B0 gradient encoding and parallel imaging, and so hybrid sequences containing all three spatial encoding approaches are possible.

  2. An education gradient in health, a health gradient in education, or a confounded gradient in both?

    PubMed

    Lynch, Jamie L; von Hippel, Paul T

    2016-04-01

    There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health.

  3. Photostimulated Luminescence and Dynamics of AgI and Ag Nanoclusters in Zeolites

    SciTech Connect

    Chen, Wei; Joly, Alan G.; Roark, Joel

    2002-06-15

    The photoluminescence and photostimulated luminescence of Ag and AgI nanoclusters formed in zeolite-Y are studied using fluorescence spectroscopy. The photoluminescence spectra of AgI nanoclusters show emission from both AgI and Ag nanoclusters, while the in the photostimulated luminescence, only the emission of Ag clusters is observed. While the photoluminescence from both Ag and AgI particles displays both sub-nanosecond and microsecond lifetimes, the emission from photostimulated luminescence shows very short, picosecond lifetimes. A model which ascribes the photostimulated luminescence to recombination of electrons trapped in the zeolite with Ag in close proximity to the trap site is proposed. The appearance of strong photostimulated luminescence with short decays in these systems demonstrates that nanoparticles have potential for digital storage and medical radiology applications.

  4. Chemically-inactive interfaces in thin film Ag/AgI systems for resistive switching memories

    PubMed Central

    Cho, Deok-Yong; Tappertzhofen, Stefan; Waser, Rainer; Valov, Ilia

    2013-01-01

    AgI nanoionics-based resistive switching memories were studied in respect to chemical stability of the Ag/AgI interface using x-ray absorption spectroscopy. The apparent dissolution of Ag films of thickness below some tens of nanometers and the loss of electrode/electrolyte contact was critically addressed. The results evidently show that there are no chemical interactions at the interface despite the high ionic mobility of Ag ions. Simulation results further show that Ag metal clusters can form in the AgI layer with intermediate-range order at least up to next-next nearest neighbors, suggesting that Ag can permeate into the AgI only in an aggregated form of metal crystallite. PMID:23378904

  5. Real and perceived sources of gradient calculation error in the Savannah River Site groundwater monitoring program

    SciTech Connect

    Bennett, C.B.; Reed, J.K.; Bruns, A.C.; Rasmussen, T.C.

    1996-12-31

    Understanding and predicting contaminant migration trajectories is a major concern at the Savannah River Site. Migration of contaminated groundwater is controlled by hydraulic gradients and local hydrogeologic conditions. Because errors in estimating the hydraulic gradient may result in substantial risks to downgradient water bodies, a program was initiated to quantify the sources and magnitude of potential contributors to hydraulic gradient uncertainty. The primary objective was to develop a management program that better incorporates theoretical and local information to minimize and estimate uncertainties in the hydraulic gradient calculation. Hydraulic and statistical tools were coupled to provide computational resources for evaluating alternative management actions. Primary sources of gradient uncertainty identified at SRS were (1) water level variation due to diurnal variation in barometric pressure mediated by geologic effects on barometric efficiency; (2) intermittent variations in streamflow that locally alter water levels in adjacent aquifers; and (3) intermittent rainfall events that temporarily increase water levels in confined aquifers due to loading effects.

  6. Gradient-based enhancement of tubular structures in medical images.

    PubMed

    Moreno, Rodrigo; Smedby, Örjan

    2015-12-01

    Vesselness filters aim at enhancing tubular structures in medical images. The most popular vesselness filters are based on eigenanalyses of the Hessian matrix computed at different scales. However, Hessian-based methods have well-known limitations, most of them related to the use of second order derivatives. In this paper, we propose an alternative strategy in which ring-like patterns are sought in the local orientation distribution of the gradient. The method takes advantage of symmetry properties of ring-like patterns in the spherical harmonics domain. For bright vessels, gradients not pointing towards the center are filtered out from every local neighborhood in a first step. The opposite criterion is used for dark vessels. Afterwards, structuredness, evenness and uniformness measurements are computed from the power spectrum in spherical harmonics of both the original and the half-zeroed orientation distribution of the gradient. Finally, the features are combined into a single vesselness measurement. Alternatively, a structure tensor that is suitable for vesselness can be estimated before the analysis in spherical harmonics. The two proposed methods are called Ring Pattern Detector (RPD) and Filtered Structure Tensor (FST) respectively. Experimental results with computed tomography angiography data show that the proposed filters perform better compared to the state-of-the-art.

  7. [The purification of the protein alternative to alfa-fetoprotein].

    PubMed

    Poltoranina, V S; Kuprina, N I; Eraĭzer, T L; Karamova, E R; Abelev, G I

    2007-01-01

    The subject of the study was the unidentified protein Ag A2/3, which is found in some cells of rat hepatoma McA RH7777 and their clones. The feature of this protein is that its expression is alternative to alfa-fetoprotein (AFP), i.e. Ag A2/3 is not found in cells and cell clones containing AFP, and vice versa. Ag A2/3 proved to be a cell stress protein--it was induced by heavy metal salts (Pb2+ and Cd2+) in the liver of adult rats and AFP+/A2/3(-) clones of hepatomas; the attenuation of AFP synthesis occurred simultaneously. This paper describes the preparation of Ag A2/3 for sequence analysis, and the scheme of Ag A2/3 purification. When trying to obtain a blot for sequencing it proved to be impossible to reveal the protein using McAb to Ag A2/3 after the transfer of separated proteins on PVDF. The reactivity of the antigen determinant was reestablished with blot processing on PVDF membrane with methanol and Twin 80. PMID:18084830

  8. Derivative Free Gradient Projection Algorithms for Rotation

    ERIC Educational Resources Information Center

    Jennrich, Robert I.

    2004-01-01

    A simple modification substantially simplifies the use of the gradient projection (GP) rotation algorithms of Jennrich (2001, 2002). These algorithms require subroutines to compute the value and gradient of any specific rotation criterion of interest. The gradient can be difficult to derive and program. It is shown that using numerical gradients…

  9. Acoustically-driven thread-based tuneable gradient generators.

    PubMed

    Ramesan, Shwathy; Rezk, Amgad R; Cheng, Kai Wei; Chan, Peggy P Y; Yeo, Leslie Y

    2016-08-01

    Thread-based microfluidics offer a simple, easy to use, low-cost, disposable and biodegradable alternative to conventional microfluidic systems. While it has recently been shown that such thread networks facilitate manipulation of fluid samples including mixing, flow splitting and the formation of concentration gradients, the passive capillary transport of fluid through the thread does not allow for precise control due to the random orientation of cellulose fibres that make up the thread, nor does it permit dynamic manipulation of the flow. Here, we demonstrate the use of high frequency sound waves driven from a chip-scale device that drives rapid, precise and uniform convective transport through the thread network. In particular, we show that it is not only possible to generate a stable and continuous concentration gradient in a serial dilution and recombination network, but also one that can be dynamically tuned, which cannot be achieved solely with passive capillary transport. Additionally, we show a proof-of-concept in which such spatiotemporal gradient generation can be achieved with the entire thread network embedded in a three-dimensional hydrogel construct to more closely mimic the in vivo tissue microenvironment in microfluidic chemotaxis studies and cell culture systems, which is then employed to demonstrate the effect of such gradients on the proliferation of cells within the hydrogel. PMID:27334420

  10. Comparative biodiversity along a gradient of agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Burel, Françoise; Baudry, Jacques; Butet, Alain; Clergeau, Philippe; Delettre, Yannick; Le Coeur, Didier; Dubs, Florence; Morvan, Nathalie; Paillat, Gilles; Petit, Sandrine; Thenail, Claudine; Brunel, Etienne; Lefeuvre, Jean-Claude

    1998-02-01

    The aim of this study is to compare biodiversity in contrasted landscape units within a small region. In western France agricultural intensification leads to changes in landscape structure: permanent grasslands are ploughed, fields enlarged and surrounding hedgerows removed or deteriorated, brooks are straightened and cleaned. South of Mont Saint Michel Bay, four landscape units have been identified along an intensification gradient. Several taxonomic groups (small mammals, birds, insects and plants) have been used to evaluate the characteristics of biodiversity along this gradient. The hypothesis that intensification of agricultural practices lead to changes in biodiversity has been tested. Biodiversity is measured by the species richness, Shannon's diversity index, equitability and similarity indexes. Our results show that intensification of agriculture does not always lead to a decrease in species richness, but to several functional responses according to taxonomic groups, either no modification, or stability by replacement of species, or loss of species. For most of the studied taxonomic groups species richness does not vary greatly along the gradient. Depending on the landscape structure and farming systems this gradient is probably truncated and does not allow to show major changes in species richness. An alternative hypothesis is that used indexes are not sensitive enough to reveal changes in biodiversity. Nevertheless, similarity indexes reveal that sensitivity to changes varies, invertebrates being more likely to perceive the dynamics of the landscapes studied than vertebrates or plants. These points have to be taken into consideration when elaborating policies for sustainable agriculture or nature conservation.

  11. Scalable preparation of ultrathin silica-coated Ag nanoparticles for SERS application.

    PubMed

    Hu, Yanjie; Shi, Yunli; Jiang, Hao; Huang, Guangjian; Li, Chunzhong

    2013-11-13

    Silica-coated Ag nanoparticles (Ag@SiO2 NPs) have been successfully prepared by a scalable flame spray pyrolysis (FSP) technique with production rate up to 4 g/h in laboratory-scale. The ultrathin SiO2 shell, with a thickness 1 nm, not only effectively avoids the intersintering of Ag nanoparticles core at the high temperature, but also serves as a protective layer of the SERS-active nanostructure. The silica-coated Ag nanoparticles form agglomerates in the large temperature gradient zone, which with several nanometers gaps from each other but not contact. Such an intriguing feature can result in more Raman hot-spots generated at the gaps among Ag core active sites, which will beneficial for the whole SERS substrate enhancement. The results demonstrate that a maximum enhancement factor can reach ~10(5) with a detectable concentration as low as 10(-10) M for rhodamine 6G (R6G) molecules, indicating that the as-obtained unique nanostructure will be a promising candidate for SERS applications. PMID:24117322

  12. Autonomous pump against concentration gradient

    PubMed Central

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Zhong, Wei-rong

    2016-01-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process. PMID:26996204

  13. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  14. Shape reconstruction from gradient data

    SciTech Connect

    Ettl, Svenja; Kaminski, Juergen; Knauer, Markus C.; Haeusler, Gerd

    2008-04-20

    We present a generalized method for reconstructing the shape of an object from measured gradient data. A certain class of optical sensors does not measure the shape of an object but rather its local slope. These sensors display several advantages, including high information efficiency, sensitivity, and robustness. For many applications, however, it is necessary to acquire the shape, which must be calculated from the slopes by numerical integration. Existing integration techniques show drawbacks that render them unusable in many cases. Our method is based on an approximation employing radial basis functions. It can be applied to irregularly sampled, noisy, and incomplete data, and it reconstructs surfaces both locally and globally with high accuracy.

  15. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  16. Core-shell ellipsoidal MnCo₂O₄ anode with micro-/nano-structure and concentration gradient for lithium-ion batteries.

    PubMed

    Huang, Guoyong; Xu, Shengming; Xu, Zhenghe; Sun, Hongyu; Li, Linyan

    2014-12-10

    In this study, novel core-shell ellipsoidal MnCo2O4 powders with desired micro/nano-structure and a unique concentration gradient have been synthesized as anode material for Li-ion batteries. The special porous ellipsoid (2.5-4.5 μm in the long axis, 1.5-2.5 μm in the short axis, 200-300 nm in the thickness of shell) is built up by irregular nanoparticles attached to each other, and corresponding to the ellipsoid with concentration gradient, the Co/Mn atomic ratios of core and shell are about 1.76:1 and 2.34:1, respectively. The good performance, including high initial discharge capacities (1433.3 mAhg(-1) at 0.1 Ag(-1) and 1248.4 mAhg(-1) at 0.4 Ag(-1)), advanced capacity retention (∼900.0 mAhg(-1) after 60 cycles at 0.1 Ag(-1)), and fair rate performance (∼620.0 mAhg(-1) after 50 cycles at 0.4 Ag(-1)) has been measured by the battery test. Remarkably, the ellipsoidal shape and core-shell microstructure with concentration gradient are still maintained after 70 cycles of charge/discharge at 0.1 Ag(-1).

  17. Silver Nanoparticles Entering Soils via the Wastewater-Sludge-Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability.

    PubMed

    Wang, Peng; Menzies, Neal W; Dennis, Paul G; Guo, Jianhua; Forstner, Christian; Sekine, Ryo; Lombi, Enzo; Kappen, Peter; Bertsch, Paul M; Kopittke, Peter M

    2016-08-01

    The widespread use of silver nanoparticles (Ag-NPs) results in their movement into wastewater treatment facilities and subsequently to agricultural soils via application of contaminated sludge. On-route, the chemical properties of Ag may change, and further alterations are possible upon entry to soil. In the present study, we examined the long-term stability and (bio)availability of Ag along the "wastewater-sludge-soil" pathway. Synchrotron-based X-ray absorption spectroscopy (XAS) revealed that ca. 99% of Ag added to the sludge reactors as either Ag-NPs or AgNO3 was retained in sludge, with ≥79% of this being transformed to Ag2S, with the majority (≥87%) remaining in this form even after introduction to soils at various pH values and Cl concentrations for up to 400 days. Diffusive gradients in thin films (DGT), chemical extraction, and plant uptake experiments indicated that the potential (bio)availability of Ag in soil was low but increased markedly in soils with elevated Cl, likely due to the formation of soluble AgClx complexes in the soil solution. Although high Cl concentrations increased the bioavailability of Ag markedly, plant growth was not reduced in any treatment. Our results indicate that Ag-NPs entering soils through the wastewater-sludge-soil pathway pose low risk to plants due to their conversion to Ag2S in the wastewater treatment process, although bioavailability may increase in saline soils or when irrigated with high-Cl water. PMID:27380126

  18. Environmental causes for plant biodiversity gradients.

    PubMed Central

    Davies, T Jonathan; Barraclough, Timothy G; Savolainen, Vincent; Chase, Mark W

    2004-01-01

    One of the most pervasive patterns observed in biodiversity studies is the tendency for species richness to decline towards the poles. One possible explanation is that high levels of environmental energy promote higher species richness nearer the equator. Energy input may set a limit to the number of species that can coexist in an area or alternatively may influence evolutionary rates. Within flowering plants (angiosperms), families exposed to a high energy load tend to be both more species rich and possess faster evolutionary rates, although there is no evidence that one drives the other. Specific environmental effects are likely to vary among lineages, reflecting the interaction between biological traits and environmental conditions in which they are found. One example of this is demonstrated by the high species richness of the iris family (Iridaceae) in the Cape of South Africa, a likely product of biological traits associated with reproductive isolation and the steep ecological and climatic gradients of the region. Within any set of conditions some lineages will tend to be favoured over others; however, the identity of these lineages will fluctuate with a changing environment, explaining the highly labile nature of diversification rates observed among major lineages of flowering plants. PMID:15519979

  19. Polysome analysis and RNA purification from sucrose gradients.

    PubMed

    Mašek, Tomáš; Valášek, Leoš; Pospíšek, Martin

    2011-01-01

    Velocity separation of translation complexes in linear sucrose gradients is the ultimate method for both analysis of the overall fitness of protein synthesis as well as for detailed investigation of physiological roles played by individual factors of the translational machinery. Polysome profile analysis is a frequently performed task in translational control research that not only enables direct monitoring of the efficiency of translation but can easily be extended with a wide range of downstream applications such as Northern and Western blotting, genome-wide microarray analysis or qRT-PCR. This chapter provides a basic overview of the polysome profile analysis technique and the RNA isolation procedure from sucrose gradients. We also discuss possible experimental pitfalls of data normalization, describe main alternatives of the basic protocol and outline a novel application of denaturing RNA electrophoresis in several steps of polysome profile analysis.

  20. Interphase Strain Gradients in Multilayered Steel Composite from Microdiffraction

    NASA Astrophysics Data System (ADS)

    Barabash, Rozaliya I.; Barabash, Oleg M.; Ojima, Mayumi; Yu, Zhenzhen; Inoue, Junya; Nambu, Shoichi; Koseki, Toshihiko; Xu, Ruqing; Feng, Zhili

    2014-01-01

    Multilayered steel composites consisting of alternating martensite and austenite layers and exhibiting a combination of high strength and ductility were successfully fabricated. To understand the microplasticity mechanisms responsible for such exceptional mechanical behavior, 3D X-ray microscopy with a submicron beam size was employed to probe the stress/strain distribution within the top two layers during incremental tensile loading. The 3D depth-dependent strain gradients were monitored in situ near the martensite/austenite interfaces as a function of the load level. It was observed that the strain gradients redistributed during loading. Specifically, large compressive strains developed in the top martensite layer transverse to the loading direction, while small tensile strains were found across the layer interface into the underneath austenite layer.

  1. Gradient-Modulated PETRA MRI

    PubMed Central

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J.; Garwood, Michael

    2015-01-01

    Image blurring due to off-resonance and fast T2* signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2* signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners. PMID:26771005

  2. Tyrphostin AG 1296 induces glioblastoma cell apoptosis in vitro and in vivo

    PubMed Central

    LI, HONGWEI; ZHENG, JUNNING; GUAN, RUIYUN; ZHU, ZIFENG; YUAN, XIANHOU

    2015-01-01

    Glioblastoma is the most common type of malignant human brain tumor. Currently available chemotherapies for glioblastoma focus on targeting tyrosine kinases. However, the existing inhibitors of tyrosine kinases have not produced the therapeutic outcomes that were anticipated. In order to investigate the viability alternative chemotherapeutic agents in this disease, the present study examined the anticancer effects of tyrphostin AG 1296, focusing on its involvement in apoptosis in glioblastoma cells. The study aimed to identify whether tyrphostin AG 1296 affects glioblastoma cell growth by inducing cell apoptosis. To achieve this, cell viability, propidium iodide analysis and cell invasion assay were used to measure cell growth, cell apoptosis and cell migration of human glioblastoma cells. The results showed that tyrphostin AG 1296 treatment reduced cell viability and suppressed migration of human glioblastoma cells. It was also demonstrated that tyrphostin AG 1296 induced cell apoptosis in vitro. Finally, tyrphostin AG 1296 was also shown to significantly inhibit the growth of glioblastoma cells and to increase tumor cell apoptosis in vivo. These findings suggest that tyrphostin AG 1296 induces apoptosis, thereby reducing cell viability and capacity for migration of glioblastoma cells. PMID:26788146

  3. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    NASA Astrophysics Data System (ADS)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  4. Extraordinary strain hardening by gradient structure.

    PubMed

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T

    2014-05-20

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

  5. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    PubMed

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water.

  6. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria.

    PubMed

    Hu, Chun; Lan, Yongqing; Qu, Jiuhui; Hu, Xuexiang; Wang, Aimin

    2006-03-01

    Ag/AgBr/TiO2 was prepared by the deposition-precipitation method and was found to be a novel visible light driven photocatalyst. The catalyst showed high efficiency for the degradation of nonbiodegradable azodyes and the killing of Escherichia coli under visible light irradiation (lambda>420 nm). The catalyst activity was maintained effectively after successive cyclic experiments under UV or visible light irradiation without the destruction of AgBr. On the basis of the characterization of X-ray diffraction, X-ray photoelectron spectroscopy, and Auger electron spectroscopy, the surface Ag species mainly exist as Ag0 in the structure of all samples before and after reaction, and Ag0 species scavenged hVB+ and then trapped eCB- in the process of photocatalytic reaction, inhibiting the decomposition of AgBr. The studies of ESR and H2O2 formation revealed that *OH and O2*- were formed in visible light irradiated aqueous Ag/AgBr/TiO2 suspension, while there was no reactive oxygen species in the visible light irradiated Ag0/TiO2 system. The results indicate that AgBr is the main photoactive species for the destruction of azodyes and bacteria under visible light. In addition, the bactericidal efficiency and killing mechanism of Ag/AgBr/TiO2 under visible light irradiation are illustrated and discussed. PMID:16509698

  7. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    PubMed

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water. PMID:24928455

  8. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae).

    PubMed

    Zhang, Bo; Liu, Zhi-Xiong; Ma, Jiang; Song, Yi; Chen, Fa-Ju

    2015-12-01

    Magnolia stellata is a woody ornamental shrub with more petaloid tepals than related plants from family Magnoliaceae. Recent studies revealed that expression changes in an AGAMOUS (AG) orthologous gene could resulted in double flowers with increased numbers of petals. We isolated three transcripts encoding different isoforms of a single AG orthologous gene, MastAG, mastag_2 and mastag_3, from M. stellata. Sequence alignments and Southern blot analyses suggested that MastAG was a single-copy gene in M. stellata genomes, and that mastag_2 and mastag_3 were abnormally spliced isoforms of MastAG. An 144bp exon skipping in MastAG results in the truncated mastag_2 protein lacking the completely I domain and 18 aa of the K1 subdomain, whereas an 165bp exon skipping of MastAG produces a truncated mastag_3 protein lacking 6 aa of the K3 subdomain and the completely C terminal region. Expression analyses showed that three alternative splicing (AS) isoforms expressed only in developing stamens and carpels. Functional analyses revealed that MastAG could mimic the endogenous AG to specify carpel identity, but failed to regulate stamen development in an Arabidopsis ag-1 mutant. Moreover, the key domain or subdomain deletions represented by mastag_2 and mastag_3 resulted in loss of C-function. However, ectopic expression of mastag_2 in Arabidopsis produced flowers with sepals converted into carpeloid organs, but without petals and stamens, whereas ectopic expression of mastag_3 in Arabidopsis could mimic the flower phenotype of the ag mutant and produced double flowers with homeotic transformation of stamens into petals and carpels into another ag flower. Our results also suggest that mastag_3 holds some potential for biotechnical engineering to create multi-petal phenotypes in commercial ornamental cultivars.

  9. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae).

    PubMed

    Zhang, Bo; Liu, Zhi-Xiong; Ma, Jiang; Song, Yi; Chen, Fa-Ju

    2015-12-01

    Magnolia stellata is a woody ornamental shrub with more petaloid tepals than related plants from family Magnoliaceae. Recent studies revealed that expression changes in an AGAMOUS (AG) orthologous gene could resulted in double flowers with increased numbers of petals. We isolated three transcripts encoding different isoforms of a single AG orthologous gene, MastAG, mastag_2 and mastag_3, from M. stellata. Sequence alignments and Southern blot analyses suggested that MastAG was a single-copy gene in M. stellata genomes, and that mastag_2 and mastag_3 were abnormally spliced isoforms of MastAG. An 144bp exon skipping in MastAG results in the truncated mastag_2 protein lacking the completely I domain and 18 aa of the K1 subdomain, whereas an 165bp exon skipping of MastAG produces a truncated mastag_3 protein lacking 6 aa of the K3 subdomain and the completely C terminal region. Expression analyses showed that three alternative splicing (AS) isoforms expressed only in developing stamens and carpels. Functional analyses revealed that MastAG could mimic the endogenous AG to specify carpel identity, but failed to regulate stamen development in an Arabidopsis ag-1 mutant. Moreover, the key domain or subdomain deletions represented by mastag_2 and mastag_3 resulted in loss of C-function. However, ectopic expression of mastag_2 in Arabidopsis produced flowers with sepals converted into carpeloid organs, but without petals and stamens, whereas ectopic expression of mastag_3 in Arabidopsis could mimic the flower phenotype of the ag mutant and produced double flowers with homeotic transformation of stamens into petals and carpels into another ag flower. Our results also suggest that mastag_3 holds some potential for biotechnical engineering to create multi-petal phenotypes in commercial ornamental cultivars. PMID:26706078

  10. Alternative learning algorithms for feedforward neural networks

    SciTech Connect

    Vitela, J.E.

    1996-03-01

    The efficiency of the back propagation algorithm to train feed forward multilayer neural networks has originated the erroneous belief among many neural networks users, that this is the only possible way to obtain the gradient of the error in this type of networks. The purpose of this paper is to show how alternative algorithms can be obtained within the framework of ordered partial derivatives. Two alternative forward-propagating algorithms are derived in this work which are mathematically equivalent to the BP algorithm. This systematic way of obtaining learning algorithms illustrated with this particular type of neural networks can also be used with other types such as recurrent neural networks.

  11. Aurora Upgrade: Volume 3. Gradient B drift transport risetime sharpening. Technical report, 1 February 1985-31 March 1988

    SciTech Connect

    Bailey, V.L.

    1988-04-01

    This report assesses the capability of gradient B drift transport to shorten both the risetime and duration of the Aurora radiation pulse. The theory of gradient B drift transport is reviewed, and experiments on both the CASINO simulator and the SPEED accelerator are summarized. Risetime shortening for Aurora is investigated, a possible experiment is defined, and a preliminary prediction of the Aurora radiation pulse shape is presented using gradient B drift transport. The report analyzes the effects which reduce radiation pulse spreading, and concludes that the gradient B drift transport is a promising backup/alternative to the Merkeltron for reducing the risetime of the Aurora radiation pulse.

  12. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  13. Facile synthesis of S–Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S–Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70–160 nm and lengths of 200–360 nm. X-ray diffraction of the S–Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S–Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S–Ag nanocomposites with diameters of 10–40 nm were obtained. The formation mechanism of the S–Ag nanocomposites was studied by designing a series of experiments using ultraviolet–visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S–Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S–Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  14. AgI/Ag{sub 3}PO{sub 4} hybrids with highly efficient visible-light driven photocatalytic activity

    SciTech Connect

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-03-15

    Highlights: • AgI/Ag{sub 3}PO{sub 4} hybrid was prepared via an in situ anion-exchange method. • AgI/Ag{sub 3}PO{sub 4} displays the excellent photocatalytic activity under visible light. • AgI/Ag{sub 3}PO{sub 4} readily transforms to be Ag@AgI/Ag{sub 3}PO{sub 4} system. • h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization over AgI/Ag{sub 3}PO{sub 4}. • The activity enhancement is ascribed to a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag{sub 3}PO{sub 4} hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag{sub 3}PO{sub 4} photocatalysts displayed the higher photocatalytic activity than pure Ag{sub 3}PO{sub 4} and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag{sub 3}PO{sub 4} with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag{sub 3}PO{sub 4} readily transformed to be Ag@AgI/Ag{sub 3}PO{sub 4} system while the photocatalytic activity of AgI/Ag{sub 3}PO{sub 4} remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag{sub 3}PO{sub 4} hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI, in which Ag nanoparticles act as the charge separation center.

  15. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance.

    PubMed

    Feng, Zhouzhou; Yu, Jiajie; Sun, Dongping; Wang, Tianhe

    2016-10-15

    In this paper, Ag/AgCl and Ag/AgCl/Al2O3 photocatalysts were synthesized via a precipitation reaction between NaCl and CH3COOAg or Ag(NH3)2NO3, wherein Ag/AgCl was immobilized into mesoporous Al2O3 medium. The Ag/AgCl-based nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, and so on. The photocatalysts displayed excellent photocatalytic activity for the degradations of methyl orange (MO) and methylene blue (MB) pollutants under visible light irradiation. The Ag/AgCl(CH3COOAg)/Al2O3 sample exhibited the best photocatalytic performance, degrading 99% MO after 9min of irradiation, which was 1.1 times, 1.22 times and 1.65 times higher than that of Ag/AgCl(Ag(NH3)2NO3)/Al2O3, Ag/AgCl(CH3COOAg) and Ag/AgCl(Ag(NH3)2NO3) photocatalyst, respectively. Meanwhile, Ag/AgCl(CH3COOAg)/Al2O3 also showed excellent capability of MB degradation. Compared to the data reported for Ag/AgCl/TiO2, the Ag/AgCl/Al2O3 prepared in this work exhibited a good performance for the degradation of methyl orange (MO). The results suggest that the dispersion of Ag/AgCl on mesoporous Al2O3 strongly affected their photocatalytic activities. O2(-), OH radicals and Cl(0) atoms are main active species during photocatalysis. PMID:27442145

  16. Excitons in AgI-BASED-GLASSES and -

    NASA Astrophysics Data System (ADS)

    Fujishiro, Fumito; Mochizuki, Shosuke

    2007-01-01

    We summarize our recent optical studies on different pristine AgI films, different AgI-based glasses and different AgI-oxide fine particle composites. The exciton spectra of these specimens give useful information about the ionic and electronic structures at the AgI/glass and AgI/oxide particle interfaces.

  17. A new approach for the synthesis of bisindoles through AgOTf as catalyst.

    PubMed

    Beltrá, Jorge; Gimeno, M Concepción; Herrera, Raquel P

    2014-01-01

    A novel approach for the catalyzed formation of bisindolylmethane derivatives (BIMs) is described. This methodology is the unique example where AgOTf has been successfully used for the activation of aldehydes, giving easy access to a broad range of bisindolyl derivatives with excellent results. Moreover, the simplicity and easy operational methodology using a small amount of commercially available AgOTf (1-3 mol %), one of the lowest catalytic charge used in this process to date, makes this procedure an alternative approach for this interesting and appealing reaction.

  18. A new approach for the synthesis of bisindoles through AgOTf as catalyst

    PubMed Central

    Beltrá, Jorge

    2014-01-01

    Summary A novel approach for the catalyzed formation of bisindolylmethane derivatives (BIMs) is described. This methodology is the unique example where AgOTf has been successfully used for the activation of aldehydes, giving easy access to a broad range of bisindolyl derivatives with excellent results. Moreover, the simplicity and easy operational methodology using a small amount of commercially available AgOTf (1–3 mol %), one of the lowest catalytic charge used in this process to date, makes this procedure an alternative approach for this interesting and appealing reaction. PMID:25246979

  19. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays. PMID:26671507

  20. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  1. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  2. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  3. AgRP Neurons Regulate Bone Mass.

    PubMed

    Kim, Jae Geun; Sun, Ben-Hua; Dietrich, Marcelo O; Koch, Marco; Yao, Gang-Qing; Diano, Sabrina; Insogna, Karl; Horvath, Tamas L

    2015-10-01

    The hypothalamus has been implicated in skeletal metabolism. Whether hunger-promoting neurons of the arcuate nucleus impact the bone is not known. We generated multiple lines of mice to affect AgRP neuronal circuit integrity. We found that mice with Ucp2 gene deletion, in which AgRP neuronal function was impaired, were osteopenic. This phenotype was rescued by cell-selective reactivation of Ucp2 in AgRP neurons. When the AgRP circuitry was impaired by early postnatal deletion of AgRP neurons or by cell autonomous deletion of Sirt1 (AgRP-Sirt1(-/-)), mice also developed reduced bone mass. No impact of leptin receptor deletion in AgRP neurons was found on bone homeostasis. Suppression of sympathetic tone in AgRP-Sirt1(-/-) mice reversed osteopenia in transgenic animals. Taken together, these observations establish a significant regulatory role for AgRP neurons in skeletal bone metabolism independent of leptin action. PMID:26411686

  4. New generalized gradient approximation functionals

    NASA Astrophysics Data System (ADS)

    Boese, A. Daniel; Doltsinis, Nikos L.; Handy, Nicholas C.; Sprik, Michiel

    2000-01-01

    New generalized gradient approximation (GGA) functionals are reported, using the expansion form of A. D. Becke, J. Chem. Phys. 107, 8554 (1997), with 15 linear parameters. Our original such GGA functional, called HCTH, was determined through a least squares refinement to data of 93 systems. Here, the data are extended to 120 systems and 147 systems, introducing electron and proton affinities, and weakly bound dimers to give the new functionals HCTH/120 and HCTH/147. HCTH/120 has already been shown to give high quality predictions for weakly bound systems. The functionals are applied in a comparative study of the addition reaction of water to formaldehyde and sulfur trioxide, respectively. Furthermore, the performance of the HCTH/120 functional in Car-Parrinello molecular dynamics simulations of liquid water is encouraging.

  5. Wnt Secretion and Gradient Formation

    PubMed Central

    Solis, Gonzalo P.; Lüchtenborg, Anne-Marie; Katanaev, Vladimir L.

    2013-01-01

    Concentration gradients formed by the lipid-modified morphogens of the Wnt family are known for their pivotal roles during embryogenesis and adult tissue homeostasis. Wnt morphogens are also implicated in a variety of human diseases, especially cancer. Therefore, the signaling cascades triggered by Wnts have received considerable attention during recent decades. However, how Wnts are secreted and how concentration gradients are formed remains poorly understood. The use of model organisms such as Drosophila melanogaster has provided important advances in this area. For instance, we have previously shown that the lipid raft-associated reggie/flotillin proteins influence Wnt secretion and spreading in Drosophila. Our work supports the notion that producing cells secrete Wnt molecules in at least two pools: a poorly diffusible one and a reggie/flotillin-dependent highly diffusible pool which allows morphogen spreading over long distances away from its source of production. Here we revise the current views of Wnt secretion and spreading, and propose two models for the role of the reggie/flotillin proteins in these processes: (i) reggies/flotillins regulate the basolateral endocytosis of the poorly diffusible, membrane-bound Wnt pool, which is then sorted and secreted to apical compartments for long-range diffusion, and (ii) lipid rafts organized by reggies/flotillins serve as “dating points” where extracellular Wnt transiently interacts with lipoprotein receptors to allow its capture and further spreading via lipoprotein particles. We further discuss these processes in the context of human breast cancer. A better understanding of these phenomena may be relevant for identification of novel drug targets and therapeutic strategies. PMID:23455472

  6. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO₃ via soil and food.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Morgan, A John; Kille, Peter; Svendsen, Claus; Jurkschat, Kerstin; Mosselmans, J Fred W; Soares, Amadeu M V M; Loureiro, Susana

    2016-03-01

    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment. PMID:26581474

  7. Characterization of the intermediate-range order in new superionic conducting AgI-Ag2S-AgPO3 glasses by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Kartini, E.; Kennedy, S. J.; Itoh, K.; Fukunaga, T.; Suminta, S.; Kamiyama, T.

    Superionic conducting glasses are of considerable technological interest because of their use in batteries, sensors, and displays. We have investigated the new ternary systems AgI-Ag2S-AgPO3 where the ratio AgI:Ag2S is 1:1. The system (AgI)x(Ag2S)x(AgPO3)1-2x, for a AgI+Ag2S fraction less than 82mol%, yields glasses. We have used a neutron-diffraction technique to obtain the total scattering structure factor S(Q) of this system at room temperature by using the HIT spectrometer at the High Energy Accelerator (KEK), Tsukuba, Japan. As for AgI-AgPO3 glasses, S(Q) shows a peak at anomalously low Q in the range from 0.6 to 0.9 Å-1. This peak is not observed in the corresponding glass Ag2S-AgPO3 or pure AgPO3. The peak depends strongly on the dopant salt. Its intensity increases as the amount of (AgI+Ag2S) increases and its position shifts to lower Q, while the number density of the glasses decreases with x. This peak can be associated with an intermediate structure of particles lying inside a continuous host with the characteristic length between 5 and 10 Å [1].

  8. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO₃ via soil and food.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Morgan, A John; Kille, Peter; Svendsen, Claus; Jurkschat, Kerstin; Mosselmans, J Fred W; Soares, Amadeu M V M; Loureiro, Susana

    2016-03-01

    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment.

  9. Evidence for surface Ag + complexes as the SERS-active sites on Ag electrodes

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Kawanami, O.; Honda, K.; Pettinger, B.

    1983-12-01

    Evidence is given that SERS-active sites at Ag electrodes are associated with Ag + ions, forming sparingly soluble surface complexes with ligands such as pyridine molecules and halide ions. Such surface Ag + complexes contribute a factor of >800 to the overall (10 7-fold) enhancement, possibly via a resonance Raman effect.

  10. Single step electrochemical synthesis of hydrophilic/hydrophobic Ag5 and Ag6 blue luminescent clusters.

    PubMed

    Santiago González, Beatriz; Blanco, M C; López-Quintela, M Arturo

    2012-12-21

    Well-defined Ag(5) and Ag(6) dodecanethiol/tetrabutyl ammonium-protected clusters were prepared by a one-pot electrochemical method. Ag clusters show bright and photostable emissions. The presence of a dual capping renders the silver clusters soluble in both organic and aqueous solvents.

  11. 78 FR 30965 - AG Valley Railroad, LLC-Operation Exemption-Ag Valley Holdings, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Surface Transportation Board AG Valley Railroad, LLC--Operation Exemption--Ag Valley Holdings, LLC AG... original and 10 copies of all pleadings, referring to Docket No. FD 35736, must be filed with the Surface.... Board decisions and notices are available on our Web site at www.stb.dot.gov . Decided: May 20, 2013....

  12. Progress with the AGS Booster

    SciTech Connect

    Weng, W.T.

    1988-01-01

    Rare K-decay, neutrino and heavy ion physics demands that a rapid- cycling high vacuum and high intensity Booster be built for the AGS at Brookhaven. For each mode of operation there are corresponding accelerator physics and design issues needing special attention. Problems pertinent to any single mode of operation have been encountered and solved before, but putting high intensity proton requirements and high vacuum heavy ion requirements into one machine demands careful design considerations and decisions. The lattice design and magnet characteristics will be briefly reviewed. Major design issues will be discussed and design choices explained. Finally, the construction status and schedule will be presented. 6 refs., 6 figs.

  13. Hypernuclear research at the AGS

    SciTech Connect

    Chrien, R.E.

    1984-01-01

    Although the field of hypernuclear research is over 30 years old, progress in exploring the detailed behavior of hypernuclei has been slow. This fact is due mainly to the technical problems of producing and studying these strange objects. Indeed each step in the improvement of technique has been accompanied by a breakthrough in our understanding of this fascinating subject. In this paper, the aim is to describe the evolution of hypernuclear research, stressing especially the contributions of the program based on the Brookhaven AGS. 23 references, 17 figures, 1 table.

  14. Mathematics of Experimentally Generated Chemoattractant Gradients.

    PubMed

    Postma, Marten; van Haastert, Peter J M

    2016-01-01

    Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation. PMID:27271915

  15. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. PMID:26776353

  16. Phase Behavior of Gradient Copolymer Solution

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Gallow, Keith; Loo, Yueh-Lin; Ganesan, Venkat

    2012-02-01

    We study the behavior of amphiphilic linear gradient copolymer chains under poor solvent conditions. Using Bond Fluctuation model and parallel tempering algorithm, we explore qualitative behavior of this class of polymers with varying gradient strength; which is the largest difference in the instantaneous composition along the polymer chain. Under poor solvent conditions, the chains collapse to form micelles. We find a linear dependence of hydrophilic to hydrophobic transition temperature on gradient strength. Systematic analysis of these clusters reveals a strong dependence of micelle properties on gradient strength. Also, we discuss our results with reference to recent experiments on synthesis and cloud point depression in gradient copolymers confirming gradient strength as key parameter in tuning micelle properties.

  17. Mathematics of Experimentally Generated Chemoattractant Gradients.

    PubMed

    Postma, Marten; van Haastert, Peter J M

    2016-01-01

    Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation.

  18. Ant colony optimization and stochastic gradient descent.

    PubMed

    Meuleau, Nicolas; Dorigo, Marco

    2002-01-01

    In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques. PMID:12171633

  19. Second order gradient ascent pulse engineering.

    PubMed

    de Fouquieres, P; Schirmer, S G; Glaser, S J; Kuprov, Ilya

    2011-10-01

    We report some improvements to the gradient ascent pulse engineering (GRAPE) algorithm for optimal control of spin ensembles and other quantum systems. These include more accurate gradients, convergence acceleration using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm as well as faster control derivative calculation algorithms. In all test systems, the wall clock time and the convergence rates show a considerable improvement over the approximate gradient ascent.

  20. Nanofiber Scaffold Gradients for Interfacial Tissue Engineering

    PubMed Central

    Ramalingam, Murugan; Young, Marian F.; Thomas, Vinoy; Sun, Limin; Chow, Laurence C.; Tison, Christopher K.; Chatterjee, Kaushik; Miles, William C.; Simon, Carl G.

    2012-01-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues. PMID:22286209

  1. Continuous spray forming of functionally gradient materials

    SciTech Connect

    McKechnie, T.N.; Richardson, E.H.; Watson, R.D.

    1995-12-31

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and X-ray diffraction analyses of the materials formed through innovative VPS processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.

  2. Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells

    NASA Astrophysics Data System (ADS)

    Li, Ying-Ying; Liu, Xiao-Li; Yang, Da-Jie; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-02-01

    We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.

  3. Photon emission intensities in the decay of 108mAg and 110mAg.

    PubMed

    Ferreux, L; Lépy, M-C; Bé, M-M; Isnard, H; Lourenço, V

    2014-05-01

    This study focuses on two radioisotopes of silver, (108m)Ag and (110m)Ag, characterized by a complex decay scheme. Each isotope has two disintegration modes, the isomeric transition leading to the daughter isotope ((108)Ag and (110)Ag, respectively) with a short half-life. The radioactive solution was obtained by neutron activation on silver powder enriched in (109)Ag. Gamma-spectrometry was carried out using a calibrated high purity germanium detector. The main relative photon emission intensities for both radionuclides were obtained and compared with previously published values.

  4. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    SciTech Connect

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  5. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Jurkschat, Kerstin; Soares, Amadeu M V M; Loureiro, Susana

    2015-10-01

    The effects of Ag-NPs and AgNO3 on the isopod Porcellionides pruinosus were determined upon soil and dietary exposures. Isopods avoided Ag in soil, with EC50 values of ∼16.0 and 14.0 mg Ag/kg for Ag-NPs and AgNO3, respectively. Feeding inhibition tests in soil showed EC50s for effects on consumption ratio of 127 and 56.7 mg Ag/kg, respectively. Although similar EC50s for effects on biomass were observed for nanoparticulate and ionic Ag (114 and 120 mg Ag/kg dry soil, respectively), at higher concentrations greater biomass loss was found for AgNO3. Upon dietary exposure, AgNO3 was more toxic, with EC50 for effects on biomass change being >1500 and 233 mg Ag/kg for Ag-NPs and AgNO3, respectively. The difference in toxicity between Ag-NPs and AgNO3 could not be explained from Ag body concentrations. This suggests that the relation between toxicity and bioavailability of Ag-NPs differs from that of ionic Ag in soils.

  6. Tribological properties of ag-based amphiphiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most ag-based materials are amphiphilic because they comprise polar and non-polar groups within the same molecule. One of the major categories of amphiphilic ag-based materials are seed oils, which are actively investigated as substitutes for petroleum in a wide variety of consumer and industrial a...

  7. AgRISTARS documents tracking list report

    NASA Technical Reports Server (NTRS)

    Hawkins, J. L.

    1983-01-01

    A quarterly listing of documents issued and placed in the AgRISTARS tracking system is provided. The technical publications are arranged by type of documents. The reference AgRISTARS document number, title and date of publication, the issuing organization, and the National Technical Information Service reference number is given.

  8. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  9. Recent hypernuclear research at the Brookhaven AGS

    SciTech Connect

    Chrien, R.E.

    1985-01-01

    Recent AGS experiments contributing to our knowledge of hypernuclei are reviewed. These experiments have suggested new areas of research on hypernuclei. With the proper beam line facilities, the AGS will be able to perform experiments in these areas and provide a transition to the future era of ''kaon factories''. 20 refs., 14 figs.

  10. Label-Free Detection of Ag+ Based on Gold Nanoparticles and Ag+-Specific DNA.

    PubMed

    Pu, Wendan; Zhao, Zhao; Wu, Liping; Liu, Yue; Zhao, Huawen

    2015-08-01

    A sensitive label-free method was presented for the determination of silver ion (Ag+) in this paper. Cytosine-rich DNA (C-DNA) was used as Ag+ specific DNA. Without Ag+ in the solution, fluorescence of fluorescein (FAM) is quenched by C-DNA stabilized gold nanoparticles (AuNPs) in high salt environment. When Ag+ is present in the solution, however, Ag+-mediated cytosine-Ag+-cytosine (C-Ag+-C) base pairs induced the C-DNA folding into a hairpin structure, which can not stabilize AuNPs in high salt environment, thus causing AuNPs aggregation. After centrifugation to remove the aggregated AuNPs, the quenching ability of the supernatant for FAM is decreased and the fluorescence intensity of solution increases with increasing the Ag+ concentration. Due to the highly specific interaction of the C-DNA towards Ag+ and the strong fluorescent quenching ability of AuNPs for FAM, the method has high selectivity and sensitivity for Ag+. Under the optimal conditions, the fluorescence intensity at 515 nm increased linearly with the concentration of Ag+ ranging from 15 nM to 700 nM, and the detection limit was determined as 6 nM based on 3 σ/slope. This method is simple, sensitive, and may be applied to other detection systems by selecting the appropriate DNA sequences. PMID:26369112

  11. Diffusion of Cu adatoms and dimers on Cu(111) and Ag(111) surfaces

    NASA Astrophysics Data System (ADS)

    Mińkowski, Marcin; Załuska-Kotur, Magdalena A.

    2015-12-01

    Diffusion of Cu adatoms and dimers on Cu(111) and Ag(111) surfaces is analyzed based on ab initio surface potentials. Single adatom diffusion is compared with dimer diffusion on both surfaces. Surface geometry makes the adatoms jump alternately between two states in the same way in both systems, whereas dimers undergo more complex diffusion process that combines translational and rotational motion. Small difference in the surface lattice constant between Cu and Ag crystals results in a completely different energy landscape for dimer jumps. As an effect the character of diffusion process changes. Homogeneous Cu dimer diffusion is more difficult and dimers rather rotate within single surface cell, whereas diffusion over Ag surface is faster and happens more smoothly. The temperature dependence of diffusion coefficient and its parameters: energy barrier and prefactor is calculated and compared for both surfaces.

  12. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  13. Atomic-level observation of Ag-ion hopping motion in AgI

    NASA Astrophysics Data System (ADS)

    Sato, W.; Komatsuda, S.; Mizuuchi, R.; Irioka, N.; Kawata, S.; Ohkubo, Y.

    2015-04-01

    Applicability of the 111mCd(→111Cd) and 111In(→111Cd) probes to the study of dynamics in polycrystalline silver iodide (AgI) was examined by means of the time-differential perturbed angular correlation technique. It was found that the 111mCd(→111Cd) probe occupies a unique site in γ-AgI and exhibits nuclear relaxation caused by dynamic perturbation arising from Ag + hopping motion in α-AgI; while the residential sites of 111In(→111Cd) vary, suggesting that 111In ions can not settle themselves in a fixed site in the AgI crystal structure. We here demonstrate that 111mCd(→111Cd) can be a potential nucleus to probe the Ag +-ion dynamic motion in α-AgI.

  14. Cell membrane thermal gradients induced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Deminsky, Maxim; Bogdan Neculaes, V.; Chashihin, V.; Knizhnik, Andrey; Potapkin, Boris

    2013-06-01

    While electromagnetic fields induce structural changes in cell membranes, particularly electroporation, much remains to be understood about membrane level temperature gradients. For instance, microwaves induce cell membrane temperature gradients (∇T) and bioeffects with little bulk temperature change. Recent calculations suggest that nanosecond pulsed electric fields (nsPEFs) may also induce such gradients that may additionally impact the electroporation threshold. Here, we analytically and numerically calculate the induced ∇T as a function of pulse duration and pulse repetition rate. We relate ∇T to the thermally induced cell membrane electric field (Em) by assuming the membrane behaves as a thermoelectric such that Em ˜ ∇T. Focusing initially on applying nsPEFs to a uniform membrane, we show that reducing pulse duration and increasing pulse repetition rate (or using higher frequency for alternating current (AC) fields) maximizes the magnitude and duration of ∇T and, concomitantly, Em. The maximum ∇T initially occurs at the interface between the cell membrane and extracellular fluid before becoming uniform across the membrane, potentially enabling initial molecular penetration and subsequent transport across the membrane. These results, which are equally applicable to AC fields, motivate further studies to elucidate thermoelectric behavior in a model membrane system and the coupling of the Em induced by ∇T with that created directly by the applied field.

  15. Behavior of detonation propagation in mixtures with concentration gradients

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Kojima, M.

    2007-08-01

    Behavior of detonation waves in mixtures with concentration gradients normal to the propagation direction was studied experimentally. Mixtures with various concentration gradients were formed by sliding the separation plate which divides a detonation chamber from a diffusion chamber in which a diffusion gas was initially introduced. A stoichiometric hydrogen-oxygen mixture was charged in the detonation chamber, while oxygen or nitrogen was filled in the diffusion gas chamber. Temporal concentration measurement was conducted by the infrared absorption method using ethane as alternate of oxygen. Smoked foil records show a deformation of regular diamond cells to parallelogram ones, which well corresponds to local mixture concentration. Schlieren photographs reveal the tilted wave front whose angle is consistent with the deflection angle of the detonation front obtained from trajectories of the triple point. The local deflection angle increases with increase in local concentration gradient. Calculation of wave trajectory based on the ray tracing theory predicts formation of the tilted wave front from an initial planar front.

  16. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-01

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations. PMID:26200921

  17. A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity.

    PubMed

    Ao, Hang; Qian, Zhaosheng; Zhu, Yuyu; Zhao, Meizhi; Tang, Cong; Huang, Yuanyuan; Feng, Hui; Wang, Aijun

    2016-12-15

    Due to the vital role of tyrosinase in melanin biosynthesis and its function as an important biomarker for melanoma cancer, highly sensitive detection of its activity using biocompatible materials is in urgent demand. Herein we report a convenient and highly sensitive fluorometric biosensor for tyrosinase activity detection based on biocompatible dopamine-functionalized Au/Ag nanoclusters (Dopa-Au/Ag NCs). Dopamine with redox property was covalently linked to Au/Ag NCs surface and formed a Dopa-Au/Ag NCs bioconjugate with strong blue fluorescence. Dopamine is readily oxidized by molecular oxygen under the catalysis of tyrosinase. After dopamine is transformed to o-dopaquinone, an intraparticle photoinduced election transfer (PET) process occurs between Au/Ag NCs and o-dopaquinone moiety, leading to the fluorescence quenching of the Dopa-Au/Ag NCs bioconjugate. Thus, this biosensor was utilized for sensitive and selective detection of tyrosinase in terms of the relationship between fluorescence quenching efficiency and tyrosinase activity. This study discovers that Au/Ag NCs and dopaquinone can serve as a good electron acceptor and donor pair which results in an efficient intraparticle photoinduced electron transfer process, and also provides another alternative way for tyrosinase activity monitoring. PMID:27448544

  18. ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects

    NASA Astrophysics Data System (ADS)

    Azizi, Susan; Mohamad, Rosfarizan; Rahim, Raha Abdul; Moghaddam, Amin Boroumand; Moniri, Mona; Ariff, Arbakariya; Saad, Wan Zuhainis; Namvab, Farideh

    2016-10-01

    In this paper, a novel green method for fabrication of zinc oxide-silver (ZnO-Ag) core-shell nanocomposite using essential oil of ginger (EO-G) is reported. The EO-G played two significant roles in the synthesis process: it could act as a reaction media for the formation of ZnO and reduce Ag+ to Ag0. The bioformed ZnO-Ag nanocomposite was compared with pure biosynthesized ZnO-NPs and characterized by UV-vis spectroscopy, TEM, EDX, XRD and FTIR. The characterization results confirmed that Ag-NPs had been embedded in ZnO hexagonal nanoparticles. Six Gram positive and negative pathogens were used to investigate the antibacterial effects of these samples. Ag-doping improves the bactericidal activity of ZnO-NPs. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 100 μg/mL was shown for ZnO-Ag nanocomposite. The biosynthesized ZnO-Ag nanocomposites were found to be comparable to those obtained from the conventional methods using hazardous materials which can be an excellent alternative for the synthesis of ZnO-Ag using biomass.

  19. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    SciTech Connect

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James; Rodriguez, Mark A.

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  20. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-06-16

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  1. Sequentially pulsed fluid delivery to establish soluble gradients within a scalable microfluidic chamber array

    PubMed Central

    Park, Edward S.; DiFeo, Michael A.; Rand, Jacqueline M.; Crane, Matthew M.; Lu, Hang

    2013-01-01

    This work presents a microfluidic chamber array that generates soluble gradients using sequentially pulsed fluid delivery (SPFD). SPFD produces stable gradients by delivering flow pulses to either side of a chamber. The pulses on each side contain different signal concentrations, and they alternate in sequence, providing the driving force to establish a gradient via diffusion. The device, herein, is significant because it demonstrates the potential to simultaneously meet four important needs that can accelerate and enhance the study of cellular responses to signal gradients. These needs are (i) a scalable chamber array, (ii) low complexity fabrication, (iii) a non-shearing microenvironment, and (iv) gradients with low (near zero) background concentrations. The ability to meet all four needs distinguishes the SPFD device from flow-based and diffusion-based designs, which can only achieve a subset of such needs. Gradients are characterized using fluorescence measurements, which reveal the ability to change the curvature of concentration profiles by simple adjustments to pulsing sequence and flow rate. Preliminary experiments with MDA-MB-231 cancer cells demonstrate cell viability and indicate migrational and morphological responses to a fetal bovine serum gradient. Improved and expanded versions of this technology could form the basis of high-throughput screening tools to study cell migration, development, and cancer. PMID:24403986

  2. The structural and electronic properties of cubic AgMO3 (M=Nb, Ta) by first principles calculations

    NASA Astrophysics Data System (ADS)

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket

    2016-05-01

    We report the electronic structure of the AgMO3(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O3 reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.

  3. An Inexpensive Digital Gradient Controller for HPLC.

    ERIC Educational Resources Information Center

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  4. Moving thermal gradients in gas chromatography.

    PubMed

    Tolley, H Dennis; Tolley, Samuel E; Wang, Anzi; Lee, Milton L

    2014-12-29

    This paper examines the separation effects of a moving thermal gradient on a chromatographic column in gas chromatography. This movement of the gradient has a focusing effect on the analyte bands, limiting band broadening in the column. Here we examine the relationship between the slope of this gradient, the velocity of the gradient and the resulting band width. Additionally we examine how transport of analytes along the column at their analyte specific constant temperatures, determined by the gradient slope and velocity, affects resolution. This examination is based primarily on a theoretical model of partitioning and transport of analyte under low concentration conditions. Preliminary predictions indicate that analytes reach near constant temperatures, relative positions and resolutions in less than 100cm of column transport. Use of longer columns produces very little improvement in resolution for any fixed slope. Properties of the thermal gradient determine a fixed solute band width for each analyte. These widths are nearly reached within the first 40-70cm, after which little broadening or narrowing of the bands occur. The focusing effect of the thermal gradient corrects for broad injections, reduces effects of irregular stationary phase coatings and can be used with short columns for fast analysis. Thermal gradient gas chromatographic instrumentation was constructed and used to illustrate some characteristics predicted from the theoretical results.

  5. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  6. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  7. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  8. Microinstabilities in weak density gradient tokamak systems

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  9. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    SciTech Connect

    Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R

    2011-03-21

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  10. [Meglumine acridonacetate in combined antiviral treatment of HBeAg-positive chronic hepatitis B].

    PubMed

    Stel'makh, V V; Okovityĭ, S V; Romantsov, M G; Tuan, N Kh; Oiungerel, M

    2013-06-01

    647 patients with HBeAg positive chronic hepatitis B who have not previously received antiviral therapy were participated in randomized, post-marketing, double-blinded, placebo-controlled clinical trial. Interferon inducer cycloferon was presented as study drug. 323 patients with chronic hepatitis B (HBV) with "wild" HBeAg(+) strain of HBV were treated with cycloferon and Lamivudin for 48 weeks. Control group included 324 patients with similar pathology, treated with Lamivudin and placebo for 48 weeks. The study has shown the benefit of cycloferon+lamivudin treatment in comparison with lamivudin monotherapy. Improving of liver histology in 48 weeks of the therapy was observed in 71% of patients in Study group in comparison with 57% in control group (p<0.01). Combined therapy has resulted in decrease of relapse by 24 week of the follow-up period (13% vs. 86%, p<0.001). The higher efficacy of cycloferon+lamivudin in patients with HBeAg positive chronic hepatitis B has proven the role of own antiviral effect of interferon inducer cycloferon, interferon effect of cycloferon in the elimination of virus-infected hepatocytes, as well as the presence of an immunomodulatory effect of the preparation, aimed at the elimination of HBeAg and HBsAg with the following seroconversion. 48-week course of combined antiviral therapy of HBeAg-positive patients with chronic hepatitis B is recommended as first-line therapy for patients with HBeAg-positive chronic hepatitis B, who have not previously received nucleoside analogues, as well as alternative therapy of Lamivudin-refractory patients. PMID:23863208

  11. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  12. Dual fuel gradients in uranium silicide plates

    SciTech Connect

    Pace, B.W.

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  13. Ag(I)-binding to phytochelatins.

    PubMed

    Mehra, R K; Tran, K; Scott, G W; Mulchandani, P; Saini, S S

    1996-02-01

    Phytochelatins (PCs) are glutathione-derived peptides with the general structure (gamma-Glu-Cys)nGly, where n varies from 2 to 11. A variety of metal ions such as Cu(II), Cd(II), Pb(II), Zn(II), and Ag(I) induce PC synthesis in plants and some yeasts. It has generally been assumed that the inducer metals also bind PCs. However, very little information is available on the binding of metals other than Cu(I) and Cd(II) to PCs. In this paper, we describe the Ag(I)-binding characteristics of PCs with the structure (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly. The Ag(I)-binding stoichiometries of these three peptides were determined by (i) UV/VIS spectrophotometry, (ii) luminescence spectroscopy at 77 K, and (iii) reverse-phase HPLC. The three techniques yielded similar results. ApoPCs exhibit featureless absorption in the 220-340 nm range. The binding of Ag(I) to PCs induced the appearance of specific absorption shoulders. The titration end point was indicated by the flattening of the characteristic absorption shoulders. Similarly, luminescence at 77 K due to Ag(I)-thiolate clusters increased with the addition of graded Ag(I) equivalents. The luminescence declined when Ag(I) equivalents in excess of the saturating amounts were added to the peptides. At neutral pH, (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly bind 1.0, 1.5, and 4.0 equivalents of Ag(I), respectively. The Ag(I)-binding capacity of (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly was increased at pH 5.0 and below so that Ag(I)/-SH ratio approached 1.0. A similar pH-dependent binding of Ag(I) to glutathione was also observed. The increased Ag(I)-binding to PCs at lower pH is of physiological significance as these peptides accumulate in acidic vacuoles. We also report lifetime data on Ag(I)-PCs. The relatively long decay-times (approximately 0.1-0.3 msec) accompanied with a large Stokes shift in the emission band are indicative of spin-forbidden phosphorescence. PMID

  14. Resource contrast in patterned peatlands increases along a climatic gradient.

    PubMed

    Eppinga, Maarten B; Rietkerk, Max; Belyea, Lisa R; Nilsson, Mats B; De Ruiter, Peter C; Wassen, Martin J

    2010-08-01

    Spatial patterning of ecosystems can be explained by several mechanisms. One approach to disentangling the influence of these mechanisms is to study a patterned ecosystem along a gradient of environmental conditions. This study focused on hummock-hollow patterning of peatlands. Previous models predicted that patterning in drainage-dominated peatlands is driven by a peat-accumulation mechanism, reflected by higher nutrient availability in hollows relative to hummocks. Alternatively, patterning in evapotranspiration (ET)-dominated peatlands may be driven by a nutrient-accumulation mechanism, reflected by reversed nutrient distribution, namely, higher nutrient availability in hummocks relative to hollows. Here, we tested these predictions by comparing nutrient distributions among patterned peatlands in maritime (Scotland), humid temperate (Sweden), and humid continental (Siberia) climates. The areas comprise a climatic gradient from very wet and drainage-dominated (Scotland) to less wet and ET-dominated (Siberia) peatlands. Nutrient distribution was quantified as resource contrast, a measure for hummock-hollow difference in nutrient availability. We tested the hypothesis that the climatic gradient shows a trend in the resource contrast; from negative (highest nutrient availability in hollows) in Scotland to positive (highest nutrient availability in hummocks) in Siberia. The resource contrasts as measured in vegetation indeed showed a trend along the climatic gradient: contrasts were negative to slightly positive in Scotland, positive in Sweden, and strongly positive in Siberia. This finding corroborates the main prediction of previous models. Our results, however, also provided indications for further model development. The low concentrations of nutrients in the water suggest that existing models could be improved by considering both the dissolved and adsorbed phase and explicit inclusion of both nutrient-uptake and nutrient-storage processes. Our study suggests that

  15. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness. PMID:26413647

  16. Investigation of Electrical and Optical Properties of Highly Transparent TCO/Ag/TCO Multilayer.

    PubMed

    Kim, Sunbo; Lee, Jaehyeong; Dao, Vinh Ai; Ahn, Shihyun; Hussain, Shahzada Qamar; Park, Jinjoo; Jung, Junhee; Lee, Chan; Song, Bong-Shik; Choi, Byoungdeog; Lee, Youn-Jung; Iftiquar, S M; Yi, Junsin

    2015-03-01

    Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

  17. Complementary and Alternative Medicine

    MedlinePlus

    ... Help a Friend Who Cuts? Complementary and Alternative Medicine KidsHealth > For Teens > Complementary and Alternative Medicine Print ... replacement. continue How Is CAM Different From Conventional Medicine? Conventional medicine is based on scientific knowledge of ...

  18. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  19. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  20. Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation

    NASA Astrophysics Data System (ADS)

    Nakajima, Yuya; Seino, Junji; Nakai, Hiromi

    2013-12-01

    In this study, the analytical energy gradient for the spin-free infinite-order Douglas-Kroll-Hess (IODKH) method at the levels of the Hartree-Fock (HF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) is developed. Furthermore, adopting the local unitary transformation (LUT) scheme for the IODKH method improves the efficiency in computation of the analytical energy gradient. Numerical assessments of the present gradient method are performed at the HF, DFT, and MP2 levels for the IODKH with and without the LUT scheme. The accuracies are examined for diatomic molecules such as hydrogen halides, halogen dimers, coinage metal (Cu, Ag, and Au) halides, and coinage metal dimers, and 20 metal complexes, including the fourth-sixth row transition metals. In addition, the efficiencies are investigated for one-, two-, and three-dimensional silver clusters. The numerical results confirm the accuracy and efficiency of the present method.

  1. Demonstration and partial characterization of 22-nm HBsAg and Dane particles of subtype HBsAg/ady.

    PubMed

    Hess, G; Shih, J W; Arnold, W; Gerin, J L; zum Büschenfelde, K H

    1979-09-01

    The present paper describes the demonstration of d, y, w, and r HBsAg determinants in one serum. It was shown that there are two populations of HBsAg particles: HBsAg/ad and HBsAg/ady. All complete Dane particles were of subtype HBsAg/ady. Further characterization of HBsAg/ady particles did not reveal morphologic differences when they were compared with HBsAg/ad and HBsAg/ay particles. An HBsAg/ady phenotype may be the result of a double infection with hepatitis B viruses or exchanges of DNA sequences that determine HBsAg/ay and HBsAg/ad to form a new genotype. PMID:89163

  2. Demonstration and partial characterization of 22-nm HBsAg and Dane particles of subtype HBsAg/ady.

    PubMed

    Hess, G; Shih, J W; Arnold, W; Gerin, J L; zum Büschenfelde, K H

    1979-09-01

    The present paper describes the demonstration of d, y, w, and r HBsAg determinants in one serum. It was shown that there are two populations of HBsAg particles: HBsAg/ad and HBsAg/ady. All complete Dane particles were of subtype HBsAg/ady. Further characterization of HBsAg/ady particles did not reveal morphologic differences when they were compared with HBsAg/ad and HBsAg/ay particles. An HBsAg/ady phenotype may be the result of a double infection with hepatitis B viruses or exchanges of DNA sequences that determine HBsAg/ay and HBsAg/ad to form a new genotype.

  3. Assessment "Honest Alternatives".

    ERIC Educational Resources Information Center

    Mandel, Susan Glazer

    1995-01-01

    Addresses the challenge of finding or creating alternatives to tests and traditional grading systems. Reflects on and describes the experience of creating an assessment tool and cautions against choosing alternatives that merely camouflage the grades. Encourages educators to find authentic alternatives to describe children's growth. (BAC)

  4. Complementary and Alternative Therapies

    PubMed Central

    Moore, Mary Lou

    2002-01-01

    Complementary and alternative therapies are increasingly used by many pregnant women in the United States; however, limited research is available on many therapies. The number of studies should increase with the establishment of the National Center for Complementary and Alternative Medicine by the National Institutes of Health. This column reviews recent studies of both herbal medicines and alternative therapies used in pregnancy. PMID:17273285

  5. Alternative Teacher Certification.

    ERIC Educational Resources Information Center

    Newman, Carol; Thomas, Kay

    This paper examines issues related to alternative teacher certification, discussing teacher certification in Texas and noting that most researchers agree that both traditional and alternative routes to teacher preparation need improvement. For over a decade, alternative certification has become increasingly available in Texas. This paper…

  6. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate.

    PubMed

    Huang, M L; Yang, F

    2014-01-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu(6)Sn(5) grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu(6)Sn(5) obeys a t(1/3) law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed. PMID:25408359

  7. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Yang, F.

    2014-11-01

    The downsizing of solder balls results in larger interfacial intermetallic compound (IMC) grains and less Cu substrate consumption in lead-free soldering on Cu substrates. This size effect on the interfacial reaction is experimentally demonstrated and theoretically analyzed using Sn-3.0Ag-0.5Cu and Sn-3.5Ag solder balls. The interfacial reaction between the Sn-xAg-yCu solders and Cu substrates is a dynamic response to a combination of effects of interfacial IMC growth, Cu substrate consumption and composition variation in the interface zone. A concentration gradient controlled (CGC) kinetics model is proposed to explain the combined effects. The concentration gradient of Cu at the interface, which is a function of solder volume, initial Cu concentration and reaction time, is the root cause of the size effect. We found that a larger Cu concentration gradient results in smaller Cu6Sn5 grains and more consumption of Cu substrate. According to our model, the growth kinetics of interfacial Cu6Sn5 obeys a t1/3 law when the molten solder has approached the solution saturation, and will be slower otherwise due to the interfering dissolution mechanism. The size effect introduced in this model is supported by a good agreement between theoretical and experimental results. Finally, the scope of application of this model is discussed.

  8. Thresholds and gradients in a semi-arid grassland: long-term grazing treatments induce slow, continuous, and reversible vegetation change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiarid ecosystems can exhibit non-reversible shifts among alternative stable ecosystem states (thresholds and hysteresis), but can also be characterized by slow, continuous, and reversible changes in plant composition (successional gradients). Conceptual state-and-transition models (STMs) attempt ...

  9. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  10. A FLYING WIRE SYSTEM IN THE AGS.

    SciTech Connect

    HUANG,H.; BUXTON,W.; MAHLER,G.; MARUSIC,A.; ROSER,T.; SMITH,G.; SYPHERS,M.; WILLIAMS,N.; WITKOVER,R.

    1999-03-29

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less depend on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system.

  11. Satellite gravity gradient grids for geophysics

    PubMed Central

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314

  12. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING

    PubMed Central

    Sant, Shilpa; Hancock, Matthew J.; Donnelly, Joseph P.; Iyer, Dharini; Khademhosseini, Ali

    2011-01-01

    During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell–material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell–material interactions in context with the long-term goals of tissue engineering. PMID:21874065

  13. Satellite gravity gradient grids for geophysics.

    PubMed

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.

  14. Extraordinary strain hardening by gradient structure

    PubMed Central

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.

    2014-01-01

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  15. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups.

  16. Gradient composite materials for artificial intervertebral discs.

    PubMed

    Migacz, Katarzyna; Chłopek, Jan; Morawska-Chochół, Anna; Ambroziak, Maciej

    2014-01-01

    Composites with the gradient of Young's modulus constitute a new group of biomimetic materials which affect the proper distribution of stresses between the implant and the bone. The aim of this article was to examine the mechanical properties of gradient materials based on carbon fibre-polysulfone composite, and to compare them to the properties of a natural intervertebral disc. Gradient properties were provided by different orientation or volume fraction of carbon fibres in particular layers of composites. The results obtained during in vitro tests displayed a good durability of the gradient materials put under long-term static load. However, the configuration based on a change in the volume fraction of the fibres seems more advantageous than the one based on a change of the fibres' orientation. The materials under study were designed to replace the intervertebral disc. The effect of Young's modulus of the material layers on the stress distribution between the tissue and the implant was analyzed and the biomimetic character of the gradient composites was stated. Unlike gradient materials, the pure polysulfone and the non-gradient composite resulted in the stress concentration in the region of nucleus pulposus, which is highly disadvantageous and does not occur in the stress distribution of natural intervertebral discs.

  17. Functional reconstitution of the. gamma. -aminobutyric acid transporter from synaptic vesicles using artificial ion gradients

    SciTech Connect

    Hell, J.W.; Edelmann, L.; Hartinger, J.; Jahn, R. )

    1991-12-24

    The {gamma}-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3{prime}-diisopropylthiodicarbocyanine iodide, and changes of the H{sup +} gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K{sup +} gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of ({sup 3}H)GABA which was saturable. Similarly, ({sup 3}H)glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K{sup +}-loaded proteoliposomes in a buffer free of K{sup +} or Na{sup +} ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H{sup +} ATPase by incubation of K{sup +}-loaded proteoliposomes in equimolar K{sup +} buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and {beta}-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, these data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.

  18. Crystallization kinetics of {alpha}-AgI in AgI-based silver orthoborate glasses

    SciTech Connect

    Taniguchi, Akihiro; Tatsumisago, Masahiro; Minami, Tsutomu

    1995-02-01

    Kinetics for nucleation and growth of {alpha}-AgI crystals in AgI-based silver orthoborate glasses, in which only {alpha}-AgI crystals were found to crystallize in the heating process of the glasses, were studied by isothermal and nonisothermal measurements using differential scanning calorimetry and by observations of the microstructure of the glasses using scanning electron microscopy. The values of both n and m, dependent on the crystallization mechanism, were found to be 3, indicating that a constant number of nuclei of {alpha}-AgI precipitated in a glass matrix grew three-dimensionally. The preannealing of the glasses at temperatures between glass transition and crystallization did not affect the DSC isothermal curves in the crystal growth process, which suggested that the number of {alpha}-AgI nuclei would have been saturated in the glass when the glasses were prepared by quenching the AgI-based melts.

  19. Extranuclear dynamics of 111Ag(→111Cd) doped in AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Sato, W.; Mizuuchi, R.; Irioka, N.; Komatsuda, S.; Kawata, S.; Taoka, A.; Ohkubo, Y.

    2014-08-01

    Dynamic behavior of the extranuclear field relative to the 111Ag(→111Cd) probe nucleus introduced in a superionic conductor silver iodide (AgI) was investigated by means of the time-differential perturbed angular correlation technique. For poly-N-vinyl-2-pyrrolidone (PVP)-coated AgI nanoparticles, we observed nuclear spin relaxation of the probe at room temperature. This result signifies that Ag+ ions in the polymer-coated sample make hopping motion from site to site at this low temperature. The activation energy for the dynamic motion was successfully estimated to be 46(10) meV. The first atomic-level observation of the temperature-dependent dynamic behavior of Ag+ ions in the polymer-coated AgI is reported.

  20. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    NASA Astrophysics Data System (ADS)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  1. Sound beam manipulation based on temperature gradients

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-10-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  2. Sound beam manipulation based on temperature gradients

    SciTech Connect

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  3. Colour and stellar population gradients in galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; Cardone, V. F.; Capaccioli, M.; Jetzer, P.; Molinaro, R.

    We discuss the colour, age and metallicity gradients in a wide sample of local SDSS early- and late-type galaxies. From the fitting of stellar population models we find that metallicity is the main driver of colour gradients and the age in the central regions is a dominant parameter which rules the scatter in both metallicity and age gradients. We find a consistency with independent observations and a set of simulations. From the comparison with simulations and theoretical considerations we are able to depict a general picture of a formation scenario.

  4. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    PubMed Central

    Molnár, Gábor Y; Shenouda, Shenouda S; Katona, Gábor L; Langer, Gábor A

    2016-01-01

    Summary Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd). It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself. PMID:27335738

  5. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry.

    PubMed

    Molnár, Gábor Y; Shenouda, Shenouda S; Katona, Gábor L; Langer, Gábor A; Beke, Dezső L

    2016-01-01

    Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd). It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself. PMID:27335738

  6. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-01-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  7. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-06-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  8. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  9. Near-infrared emitting AgInTe2 and Zn-Ag-In-Te colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Langevin, Marc-Antoine; Pons, Thomas; Ritcey, Anna M.; Nì. Allen, Claudine

    2015-06-01

    The synthesis of AgInTe2 nanocrystals emitting between 1095 nm and 1160 nm is presented. Evolution of the Ag:In:Te ratio shows progressive incorporation of In3+ in Ag2Te, leading to the formation of orthorhombic AgInTe2. When zinc is added to the synthesis, the photoluminescence quantum yield reaches 3.4 %.

  10. Redetermination of AgPO3

    PubMed Central

    Terebilenko, Katherina V.; Zatovsky, Igor V.; Ogorodnyk, Ivan V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.

    2011-01-01

    Single crystals of silver(I) polyphosphate(V), AgPO3, were prepared via a phospho­ric acid melt method using a solution of Ag3PO4 in H3PO4. In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961 ▶). Acta Cryst. 14, 779–784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO5] polyhedra, giving rise to multidirectional ribbons, and from two types of PO4 tetra­hedra linked into meandering chains (PO3)n spreading parallel to the b axis with a repeat unit of four tetra­hedra. The calculated bond-valence sum value of one of the two AgI ions indicates a significant strain of the structure. PMID:21522230

  11. Redetermination of AgPO(3).

    PubMed

    Terebilenko, Katherina V; Zatovsky, Igor V; Ogorodnyk, Ivan V; Baumer, Vyacheslav N; Slobodyanik, Nikolay S

    2011-02-09

    Single crystals of silver(I) polyphosphate(V), AgPO(3), were prepared via a phospho-ric acid melt method using a solution of Ag(3)PO(4) in H(3)PO(4). In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961 ▶). Acta Cryst. 14, 779-784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO(5)] polyhedra, giving rise to multidirectional ribbons, and from two types of PO(4) tetra-hedra linked into meandering chains (PO(3))(n) spreading parallel to the b axis with a repeat unit of four tetra-hedra. The calculated bond-valence sum value of one of the two Ag(I) ions indicates a significant strain of the structure.

  12. Redetermination of AgPO(3).

    PubMed

    Terebilenko, Katherina V; Zatovsky, Igor V; Ogorodnyk, Ivan V; Baumer, Vyacheslav N; Slobodyanik, Nikolay S

    2011-01-01

    Single crystals of silver(I) polyphosphate(V), AgPO(3), were prepared via a phospho-ric acid melt method using a solution of Ag(3)PO(4) in H(3)PO(4). In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961 ▶). Acta Cryst. 14, 779-784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO(5)] polyhedra, giving rise to multidirectional ribbons, and from two types of PO(4) tetra-hedra linked into meandering chains (PO(3))(n) spreading parallel to the b axis with a repeat unit of four tetra-hedra. The calculated bond-valence sum value of one of the two Ag(I) ions indicates a significant strain of the structure. PMID:21522230

  13. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Aude-Garcia, C.; Kieffer, I.; Gallon, T.; Delangle, P.; Herlin-Boime, N.; Rabilloud, T.; Carrière, M.

    2015-04-01

    Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag+ ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag+ release than acute exposure; Ag-S bond lengths are 2.41 +/- 0.03 Å and 2.38 +/- 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag+. The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides

  14. In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films.

    PubMed

    Unosson, Erik; Morgenstern, Matthias; Engqvist, Håkan; Welch, Ken

    2016-03-01

    Implanted materials are susceptible to bacterial colonization and biofilm formation, which can result in severe infection and lost implant function. UV induced photocatalytic disinfection on TiO2 and release of Ag(+) ions are two promising strategies to combat such events, and can be combined for improved efficiency. In the current study, a combinatorial physical vapor deposition technique was utilized to construct a gradient coating between Ag and Ti oxide, and the coating was evaluated for antibacterial properties in darkness and under UV light against Staphylococcus epidermidis. The findings revealed a potent antibacterial effect in darkness due to Ag(+) release, with near full elimination (97%) of viable bacteria and visible cell lysis on Ag dominated surfaces. The photocatalytic activity, however, was demonstrated poor due to low TiO2 crystallinity, and UV light irradiation of the coating did not contribute to the antibacterial effect. On the contrary, bacterial viability was in several instances higher after UV illumination, proposing a UV induced SOS response from the bacteria that limited the reduction rate during Ag(+) exposure. Such secondary effects should thus be considered in the development of multifunctional coatings that rely on UV activation.

  15. Novel PdAgCu ternary alloy as promising materials for hydrogen separation membranes: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Tarditi, Ana M.; Cornaglia, Laura M.

    2011-01-01

    The use of the sequential electroless plating method allowed us to obtain the PdAgCu ternary alloy on top of dense stainless steel (SS) 316 L disks. The XRD analysis indicated that initially the nucleation of the two phases of the alloy (FCC and BCC) takes place, but the FCC/BCC ratio increases with the annealing time at 500 °C in H 2 stream. After 162 h, the film contained only the FCC phase, which presents promising properties to be applied in the synthesis of hydrogen selective membranes. SEM cross-section results showed that a dense, continuous, defect-free film was deposited on top of the SS support, and the EDS data indicated that no significant gradient was present on the thickness of the film. XPS and LEIS allowed us to determine that Cu and Ag surface segregation takes place after annealing up to 500 °C/5 days. In the top-most surface layer, Ag enrichment takes place as determined by ARXPS experiments which can be the result of the lower surface tension of Ag compared to that of Cu and Pd. Increasing the annealing temperature results in an increase of the Ag surface segregation while the Cu concentration in the top-most surface layer decreases.

  16. In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films.

    PubMed

    Unosson, Erik; Morgenstern, Matthias; Engqvist, Håkan; Welch, Ken

    2016-03-01

    Implanted materials are susceptible to bacterial colonization and biofilm formation, which can result in severe infection and lost implant function. UV induced photocatalytic disinfection on TiO2 and release of Ag(+) ions are two promising strategies to combat such events, and can be combined for improved efficiency. In the current study, a combinatorial physical vapor deposition technique was utilized to construct a gradient coating between Ag and Ti oxide, and the coating was evaluated for antibacterial properties in darkness and under UV light against Staphylococcus epidermidis. The findings revealed a potent antibacterial effect in darkness due to Ag(+) release, with near full elimination (97%) of viable bacteria and visible cell lysis on Ag dominated surfaces. The photocatalytic activity, however, was demonstrated poor due to low TiO2 crystallinity, and UV light irradiation of the coating did not contribute to the antibacterial effect. On the contrary, bacterial viability was in several instances higher after UV illumination, proposing a UV induced SOS response from the bacteria that limited the reduction rate during Ag(+) exposure. Such secondary effects should thus be considered in the development of multifunctional coatings that rely on UV activation. PMID:26758896

  17. Coreless Concept for High Gradient Induction Cell

    SciTech Connect

    Krasnykh, Anatoly; /SLAC

    2008-01-07

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM{reg_sign}) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments.

  18. Velocity gradients and microturbulence in Cepheids

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1972-01-01

    Variations of the microturbulent velocity with phase and height in the atmosphere were reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.

  19. Artificial photosynthesis: Light-activated calcium gradients

    NASA Astrophysics Data System (ADS)

    Thompson, David H.

    2002-12-01

    Photosynthetic organisms use light to create chemical gradients across bilayer membranes that drive energetically unfavourable reactions. Synthetic systems that accomplish the same feat may find uses in a variety of biological and non-biological applications.

  20. SW New Mexico BHT geothermal gradient calculations

    SciTech Connect

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  1. Continuous spray forming of functionally gradient materials

    SciTech Connect

    McKechnie, T.N.; Richardson, E.H.

    1995-12-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.

  2. AgRISTARS documents tracking list report

    NASA Technical Reports Server (NTRS)

    Hawkins, J. L.

    1982-01-01

    A quarterly listing of those documents and related publications that have been issued and placed in the AgRISTARS tracking system is presented. The Tracking List Report provides a catalog, by project, of technical publications arranged by type of document and gives the reference AgRISTARS document numbers, title and date of publication, the issuing organization, and the National Technical Information Service reference number.

  3. 20% PARTIAL SIBERIAN SNAKE IN THE AGS.

    SciTech Connect

    Huang, H; Bai, M; Brown, K A; Glenn, W; Luccio, A U; Mackay, W W; Montag, C; Ptitsyn, V; Roser, T; Tsoupas, N; Zeno, K; Ranjbar, V; Spinka, H; Underwood, D

    2002-11-06

    An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.

  4. The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloys

    SciTech Connect

    Spinelli, José Eduardo; Silva, Bismarck Luiz; Cheung, Noé; Garcia, Amauri

    2014-10-15

    Bi–Ag alloys have been stressed as possible alternatives to replace Pb-based solder alloys. Although acceptable melting temperatures and suitable mechanical properties may characterize such alloys, as referenced in literature, there is a lack of comprehension regarding their microstructures (morphologies and sizes of the phases) considering a composition range from 1.5 to 4.0 wt.%Ag. In order to better comprehend such aspects and their correlations with solidification thermal parameters (growth rate, v and cooling rate, T-dot), directional solidification experiments were carried out under transient heat flow conditions. The effects of Ag content on both cooling rate and growth rate during solidification are examined. Microstructure parameters such as eutectic/dendritic spacing, interphase spacing and diameter of the Ag-rich phase were determined by optical microscopy and scanning electron microscopy. The competition between eutectic cells and dendrites in the range from 1.5 to 4.0 wt.%Ag is explained by the coupled zone concept. Microhardness was determined for different microstructures and alloy Ag contents with a view to permitting correlations with microstructure parameters to be established. Hardness is shown to be directly affected by both solute macrosegregation and morphologies of the phases forming the Bi–Ag alloys, with higher hardness being associated with the cellular morphology of the Bi-2.5 and 4.0 wt.%Ag alloys. - Highlights: • Asymmetric zone of coupled growth for Bi–Ag is demonstrated. • Faceted Bi-rich dendrites have been characterized for Bi–1.5 wt.%Ag alloy. • Eutectic cells were shown for the Bi-2.5 and 4.0 wt.%Ag solder alloys. • Interphase spacing relations with G × v are able to represent the experimental scatters. • Hall-Petch type equations are proposed relating microstructural spacings to hardness.

  5. Method and apparatus for fabrication of high gradient insulators with parallel surface conductors spaced less than one millimeter apart

    DOEpatents

    Sanders, David M.; Decker, Derek E.

    1999-01-01

    Optical patterns and lithographic techniques are used as part of a process to embed parallel and evenly spaced conductors in the non-planar surfaces of an insulator to produce high gradient insulators. The approach extends the size that high gradient insulating structures can be fabricated as well as improves the performance of those insulators by reducing the scale of the alternating parallel lines of insulator and conductor along the surface. This fabrication approach also substantially decreases the cost required to produce high gradient insulators.

  6. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves

    SciTech Connect

    Destgeer, Ghulam; Im, Sunghyuk; Hang Ha, Byung; Ho Jung, Jin; Ahmad Ansari, Mubashshir; Jin Sung, Hyung

    2014-01-13

    We demonstrate a simple device to generate chemical concentration gradients in a microfluidic channel using focused travelling surface acoustic waves (F-TSAW). A pair of curved interdigitated metal electrodes deposited on the surface of a piezoelectric (LiNbO{sub 3}) substrate disseminate high frequency sound waves when actuated by an alternating current source. The F-TSAW produces chaotic acoustic streaming flow upon its interaction with the fluid inside a microfluidic channel, which mixes confluent streams of chemicals in a controlled fashion for an adjustable and rapidly switching gradient generation.

  7. Salinity gradient power: utilizing vapor pressure differences.

    PubMed

    Olsson, M; Wick, G L; Isaacs, J D

    1979-10-26

    By utilizing the vapor pressure difference between high-salinity and lowsalinity wvater, one can obtain power from the gradients of salinity. This scheme eliminates the major problems associated with conversion methods in which membranes are used. The method we tested gave higher conversion efficiencies than membrane methods. Furthermore, hardware and techniques being developed for ocean thermal energy conversion may be applied to this approach to salinity gradient energy conversion. PMID:17809370

  8. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, D.H.

    1999-07-01

    We recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. We summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. We take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams. {copyright} {ital 1999 American Institute of Physics.}

  9. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.

  10. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, David H.

    1999-07-12

    We recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. We summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. We take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.

  11. Intratumoral oxygen gradients mediate sarcoma cell invasion.

    PubMed

    Lewis, Daniel M; Park, Kyung Min; Tang, Vitor; Xu, Yu; Pak, Koreana; Eisinger-Mathason, T S Karin; Simon, M Celeste; Gerecht, Sharon

    2016-08-16

    Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm(3)) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1-6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets. PMID:27486245

  12. Applying Thermal Gradients To Control Vibrations

    NASA Technical Reports Server (NTRS)

    Edberg, Donald L.

    1989-01-01

    Thermal actuators used to stabilize large structures. New damping concept calls for application of suitably timed and shaped thermal-gradient waveforms to generate expansions and contractions counteracting vibrations. Responding to processed signal from accelerometer, thermoelectric heat pumps apply thermal gradients producing expansions and contractions in upper and lower caps of cantilever beam. These expansions and contractions partly counteract vibrations sensed by accelerometer, thus contributing to damping.

  13. Acceleration of polarized protons in the AGS

    SciTech Connect

    Tsoupas, N.; Ahrens, L.; Bai, M.; Brown, K.; Courant, E.; Glenn, J.W.; Huang, H.; Luccio, A.; MacKay, W.W.; Roser, T.; Schoefer, V.; Zeno, K.

    2010-02-25

    The high energy (s{sup 1/2} = 500 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the proton beam. With the AGS used as the pre-injector to RHIC, one of the main tasks is to preserve the polarization of the proton beam, during the beam acceleration in the AGS. The polarization preservation is accomplished by the two partial helical magnets [1,2,3,4,5,6,7] which have been installed in AGS, and help overcome the imperfection and the intrinsic spin resonances which occur during the acceleration of protons. This elimination of the intrinsic resonances is accomplished by placing the vertical tune Q{sub y} at a value close to 8.98, within the spin-tune stop-band created by the snake. At this near integer tune the perturbations caused by the partial helical magnets is large resulting in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have introduced compensation quads[2] in the AGS. In this paper we present the beam optics of the AGS which ameliorates this effect of the partial helices.

  14. A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation.

    PubMed

    Yu, Changlin; Wei, Longfu; Zhou, Wanqin; Dionysiou, Dionysios D; Zhu, Lihua; Shu, Qing; Liu, Hong

    2016-08-01

    A series of Ag2S-Ag2CO3 (4%, 8%, 16%, 32% and 40% Ag2S), Ag2CO3@Ag2S (32%Ag2S) and Ag2S@Ag2CO3 (32%Ag2S) composite photocatalysts were fabricated by coprecipitation or successive precipitation reaction. The obtained catalysts were analyzed by N2 physical adsorption, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photocurrent test. Under visible light irradiation, the influences of Ag2S content and core-shell property on photocatalytic activity and stability were evaluated in studies focused on the degradation of methyl orange (MO) dye, phenol, and bisphenol A. Results showed that excellent photocatalytic performance was obtained over Ag2S/Ag2CO3 composite photocatalysts with respect to Ag2S and Ag2CO3. With optimal content of Ag2S (32 wt%), the Ag2S-Ag2CO3 showed the highest photocatalytic degradation efficiency. Moreover, the structured property of Ag2S/Ag2CO3 greatly influenced the activity. Compared with Ag2S-Ag2CO3 and Ag2CO3@Ag2S, core-shell like Ag2S@Ag2CO3 demonstrated the highest activity and stability. The main reason for the boosting of photocatalytic performance was due to the formation of Ag2S/Ag2CO3 well contacted interface and unique electron structures. Ag2S/Ag2CO3 interface could significantly increase the separation efficiency of the photo-generated electrons (e(-)) and holes (h(+)), and production of OH radicals. More importantly, the low solubility of Ag2S shell could effectively protect the core of Ag2CO3, which further guarantees the stability of Ag2CO3. PMID:27236845

  15. Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis

    PubMed Central

    Tweedy, Luke; Knecht, David A.; Mackay, Gillian M.; Insall, Robert H.

    2016-01-01

    Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine. PMID:26981861

  16. Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis.

    PubMed

    Tweedy, Luke; Knecht, David A; Mackay, Gillian M; Insall, Robert H

    2016-03-01

    Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine.

  17. Patterned gradient surface for spontaneous droplet transportation and water collection: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2016-11-01

    We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.

  18. Pressure gradient influence in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Reuther, Nico; Kaehler, Christian J.

    2015-11-01

    Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200 gradient.

  19. Magnetoelectrets prepared by using temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ojha, Pragya; Qureshi, M. S.; Malik, M. M.

    2015-05-01

    A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.

  20. Natural gradient learning algorithms for RBF networks.

    PubMed

    Zhao, Junsheng; Wei, Haikun; Zhang, Chi; Li, Weiling; Guo, Weili; Zhang, Kanjian

    2015-02-01

    Radial basis function (RBF) networks are one of the most widely used models for function approximation and classification. There are many strange behaviors in the learning process of RBF networks, such as slow learning speed and the existence of the plateaus. The natural gradient learning method can overcome these disadvantages effectively. It can accelerate the dynamics of learning and avoid plateaus. In this letter, we assume that the probability density function (pdf) of the input and the activation function are gaussian. First, we introduce natural gradient learning to the RBF networks and give the explicit forms of the Fisher information matrix and its inverse. Second, since it is difficult to calculate the Fisher information matrix and its inverse when the numbers of the hidden units and the dimensions of the input are large, we introduce the adaptive method to the natural gradient learning algorithms. Finally, we give an explicit form of the adaptive natural gradient learning algorithm and compare it to the conventional gradient descent method. Simulations show that the proposed adaptive natural gradient method, which can avoid the plateaus effectively, has a good performance when RBF networks are used for nonlinear functions approximation. PMID:25380332

  1. Alternative Certification Isn't Alternative

    ERIC Educational Resources Information Center

    Walsh, Kate; Jacobs, Sandi

    2007-01-01

    While nearly all states now have something on their books labeled "alternate route to certification," these programs defy standard definition due to their enormous variability. States differ in the types of candidates allowed to apply (e.g., career changers or recent college graduates) and in the academic backgrounds these individuals must…

  2. An alternative tensiometer design for deep vadose zone monitoring

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Kandelous, M. M.; Hopmans, J. W.

    2015-12-01

    The conventional tensiometer is among the most accurate devices for soil water matric potential measurements, as well as for estimations of soil water flux from soil water potential gradients. Uncertainties associated with conventional tensiometers such as caused by ambient temperature effects and the draining of the tensiometer tube, as well as their limitation for deep soil monitoring has prevented their widespread use for vadose zone monitoring, despite their superior accuracy, in general. We introduce an alternative tensiometer design that offers the accuracy of the conventional tensiometer, while minimizing afore-mentioned uncertainties and limitations. The proposed alternative tensiometer largely eliminates temperature-induced diurnal fluctuations and uncertainties associated with the draining of the tensiometer tube, and removes the limitation in installation depth. In addition, the manufacturing costs of this alternative tensiometer design is close to that of the conventional tensiometer, while it is especially suited for monitoring of soil water potential gradients as required for soil water flux measurements.

  3. Investigation of the structure of a Ag/Pd/Ag( 1 1 1 ) trilayer by means of electronic spectroscopies

    NASA Astrophysics Data System (ADS)

    Dumont, J.; Ghijsen, J.; Sporken, R.

    2002-06-01

    The growth of the Ag/Pd/Ag system has been studied by X-ray photoelectron spectroscopy and low energy electron diffraction. No chemical reaction or interdiffusion was observed between the Pd and Ag layers. The growth of the Pd interlayer follows the Frank Van der Merwe mode but is not pseudomorphic on the Ag(1 1 1) substrate. The growth of the top Ag layer on the Pd interlayer is pseudomorphic and layer by layer but contains around 12% of voids.

  4. Alternative Solar Indices

    SciTech Connect

    Lantz, L.J.

    1980-07-01

    Possible alternative Solar Indices which could either be a perturbation from the currently defined Solar Index or possible indices based on current technologies for other media markets are discussed. An overview is given of the current project, including the logic that was utilized in defining its current structure and then alternative indices and definitions are presented and finally, recommendations are made for adopting alternative indices.

  5. Alternative solar indices

    NASA Astrophysics Data System (ADS)

    Lantz, L. J.

    1980-07-01

    Possible alternative Solar Indices which could either be a perturbation from the currently defined Solar Index or possible indices based on current technologies for other media markets are discussed. An overview is given of the current project, including the logic that was utilized in defining its current structure and then alternative indices and definitions are presented and finally, recommendations are made for adopting alternative indices.

  6. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  7. Piston engine configuration alternatives

    SciTech Connect

    Wyczalek, F.A.

    1989-01-01

    This paper provides a technological assessment of alternate engine component configuration and material alternatives. It includes a comparative analysis of key characteristics of Gasoline, Diesel and Gas Turbine engines built by Daihatsu, Honda, Isuzu, Mazda, Mitsubishi, Nissan, Suburu, Suzuki and Toyota. The piston engines range from two to ten cylinders with inline, vee and opposed configurations. Furthermore, additional special features and alternative choices include variable compression ratio, ceramic structural components, supercharger, turbocharger, twin turbocharger, supercharger-turbocharger combined and the regenerative gas turbine.

  8. Alternator insulation evaluation tests

    NASA Technical Reports Server (NTRS)

    Penn, W. B.; Schaefer, R. F.; Balke, R. L.

    1972-01-01

    Tests were conducted to predict the remaining electrical insulation life of a 60 KW homopolar inductor alternator following completion of NASA turbo-alternator endurance tests for SNAP-8 space electrical power systems application. The insulation quality was established for two alternators following completion of these tests. A step-temperature aging test procedure was developed for insulation life prediction and applied to one of the two alternators. Armature winding insulation life of over 80,000 hours for an average winding temperature of 248 degrees C was predicted using the developed procedure.

  9. Facile synthesis of sunlight-driven AgCI:Ag plasmonic nanophotocatalyst.

    SciTech Connect

    An, C.; Peng, S.; Sun, Y.; Center for Nanoscale Materials; Univ. of Illinois

    2010-06-18

    Highly efficient plasmonic photocatalysts of AgCl:Ag hybrid nanoparticles are successfully synthesized via a one-pot synthetic approach involving a precipitation reaction followed by polyol reduction. The as-synthesized nanoparticles exhibit high catalytic performance under visible light and sunlight for decomposing organics, such as methylene blue.

  10. Beet Juice-Induced Green Fabrication of Plasmonic AgCl/Ag Nanoparticles

    EPA Science Inventory

    A simple, green, and fast approach (complete within 5 min) was explored for the fabrication of hybrid AgCl/Ag plasmonic nanoparticles under microwave (MW) irradiation. In this method, beet juice served as a reducing reagent, which is an abundant sugar-rich agricultural produce. I...

  11. Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    DUAN, H. Z.; LI, Y. L.; ZHAO, K. P.; QIU, P. F.; SHI, X.; CHEN, L. D.

    2016-10-01

    Ag2Se and CuAgSe have been recently reported as promising thermoelectric materials at room temperature. The traditional melting-annealing-sintering processes are used to grow Ag2Se and CuAgSe materials with the disadvantages of high costs of energy and time. In this work, phase-pure polycrystalline Ag2Se and CuAgSe compounds were synthesized from raw elemental powders directly by manual mixing followed by spark plasma sintering (MM-SPS) in a few minutes. The influence of SPS heating rate on the phase composition, microstructure, and thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were investigated. The zTs of 0.8 at 390 K and 0.6 at 450 K are obtained for Ag2Se and CuAgSe, respectively, which is comparable with the values in the materials prepared by the traditional method. Furthermore, this ultrafast sample synthesis can significantly save material synthesis time and thus has the obvious advantage for large-scale production.

  12. EXAFS Studies of Bimetallic Ag-Pt and Ag-Pd Nanorods

    SciTech Connect

    Lahiri, D.; Chattopadhyay, S.; Bunker, B.A.; Doudna, C.M.; Bertino, M.F.; Blum, F.; Tokuhiro, A.; Terry, J.

    2008-10-30

    Nanoparticles of Ag-Pt and Ag-Pd with high aspect ratios were synthesized using a radiolysis method. Gamma rays at dose rates below 0.5 kGy/h were used for irradiation. The nanoparticles were characterized by transmission electron microscopy (TEM), optical absorption spectroscopy and x-ray Absorption Fine Structure (XAFS) spectroscopy. Bright field micrographs show that Ag-Pt nanowires are composed of large particles with diameters ranging from 20-30 nm and joined by filaments of diameter between 2-5 nm. The Ag-Pd nanowires have diameters of 20-25 nm and lengths of 1.5 {micro}m. For XAFS measurements, the Pt L3 edge (11.564 keV), Ag K-edge (25.514 keV) and Pd K-edge (24.350 keV) were excited to determine the local structure around the respective atoms in the cluster. The Ag-Pt particles were found to possess a distinct core-shell structure with Pt in the core surrounded by Ag shell, with no indication of alloy formation. However, nanorods of Ag-Pd have formed an alloy for all the alloy compositions.

  13. Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    DUAN, H. Z.; LI, Y. L.; ZHAO, K. P.; QIU, P. F.; SHI, X.; CHEN, L. D.

    2016-06-01

    Ag2Se and CuAgSe have been recently reported as promising thermoelectric materials at room temperature. The traditional melting-annealing-sintering processes are used to grow Ag2Se and CuAgSe materials with the disadvantages of high costs of energy and time. In this work, phase-pure polycrystalline Ag2Se and CuAgSe compounds were synthesized from raw elemental powders directly by manual mixing followed by spark plasma sintering (MM-SPS) in a few minutes. The influence of SPS heating rate on the phase composition, microstructure, and thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were investigated. The zTs of 0.8 at 390 K and 0.6 at 450 K are obtained for Ag2Se and CuAgSe, respectively, which is comparable with the values in the materials prepared by the traditional method. Furthermore, this ultrafast sample synthesis can significantly save material synthesis time and thus has the obvious advantage for large-scale production.

  14. Ultra-sensitive detection of Ag+ ions based on Ag+-assisted isothermal exponential degradation reaction.

    PubMed

    Zhao, Jing; Fan, Qi; Zhu, Sha; Duan, Aiping; Yin, Yongmei; Li, Genxi

    2013-01-15

    Ag(+) ions are greatly toxic to a lot of algae, fungi, viruses and bacteria, which can also induce harmful side-effects to environments and human health. Herein we report an ultra-sensitive method for the selective detection of Ag(+) ions with electrochemical technique based on Ag(+)-assisted isothermal exponential degradation reaction. In the presence of Ag(+), mismatched trigger DNA can transiently bind to template DNA immobilized on an electrode surface through the formation of C-Ag(+)-C base pair, which then initiates the isothermal exponential degradation reaction. As a result, the mismatched trigger DNA may melt off the cleaved template DNA to trigger rounds of elongation and cutting. After the cyclic degradation reactions, removal of the template DNA immobilized on the electrode surface can be efficiently monitored by using electrochemical technique to show the status of the electrode surface, which can be then used to determine the presence of Ag(+). Further studies reveal that the proposed method can be ultra-sensitive to detect Ag(+) at a picomolar level. The selectivity of the detection can also be satisfactory, thus the proposed method for the Ag(+) ions detection may be potentially useful in the future. PMID:22921090

  15. An overview of NSPCG: A nonsymmetric preconditioned conjugate gradient package

    NASA Astrophysics Data System (ADS)

    Oppe, Thomas C.; Joubert, Wayne D.; Kincaid, David R.

    1989-05-01

    The most recent research-oriented software package developed as part of the ITPACK Project is called "NSPCG" since it contains many nonsymmetric preconditioned conjugate gradient procedures. It is designed to solve large sparse systems of linear algebraic equations by a variety of different iterative methods. One of the main purposes for the development of the package is to provide a common modular structure for research on iterative methods for nonsymmetric matrices. Another purpose for the development of the package is to investigate the suitability of several iterative methods for vector computers. Since the vectorizability of an iterative method depends greatly on the matrix structure, NSPCG allows great flexibility in the operator representation. The coefficient matrix can be passed in one of several different matrix data storage schemes. These sparse data formats allow matrices with a wide range of structures from highly structured ones such as those with all nonzeros along a relatively small number of diagonals to completely unstructured sparse matrices. Alternatively, the package allows the user to call the accelerators directly with user-supplied routines for performing certain matrix operations. In this case, one can use the data format from an application program and not be required to copy the matrix into one of the package formats. This is particularly advantageous when memory space is limited. Some of the basic preconditioners that are available are point methods such as Jacobi, Incomplete LU Decomposition and Symmetric Successive Overrelaxation as well as block and multicolor preconditioners. The user can select from a large collection of accelerators such as Conjugate Gradient (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual (GMRES), Biconjugate Gradient Squared (BCGS) and many others. The package is modular so that almost any accelerator can be used with almost any preconditioner.

  16. Ag on Si(111) from basic science to application

    SciTech Connect

    Belianinov, Aleksey

    2012-01-01

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-(√3x√3)R30°}–Ag (Ag-Si-√3 hereafter). In this thesis I systematically explore effects of Ag deposition on the Ag-Si-√3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  17. Enhanced thermoelectric performance of CdO : Ag nanocomposites.

    PubMed

    Gao, Linjie; Wang, Shufang; Liu, Ran; Zha, Xinyu; Sun, Niefeng; Wang, Shujie; Wang, Jianglong; Fu, Guangsheng

    2016-07-26

    CdO : Ag nanocomposites with metallic Ag nanoparticles embedded in the polycrystalline CdO matrix were synthesized by the solid-state reaction method. The addition of Ag led to increased grain boundaries of CdO and created numerous CdO/Ag interfaces. By incorporating Ag into the CdO matrix, the power factor was increased which was probably due to the carrier energy filtering effect induced by the enhanced energy-dependent scattering of electrons. In addition, reduced thermal conductivity was also achieved by stronger phonon scattering from grain boundaries, CdO/Ag interfaces and Ag nanoparticles. These concomitant effects resulted in enhanced ZT values for all CdO : Ag nanocomposites, demonstrating that the strategy of introducing metallic Ag nanoparticles into the CdO host was very effective in optimizing the thermoelectric performance. PMID:27411573

  18. Speciation along a depth gradient in a marine adaptive radiation

    PubMed Central

    Ingram, Travis

    2011-01-01

    Oceans are home to much of the world's biodiversity, but we know little about the processes driving speciation in marine ecosystems with few geographical barriers to gene flow. Ecological speciation resulting from divergent natural selection between ecological niches can occur in the face of gene flow. Sister species in the young and ecologically diverse rockfish genus Sebastes coexist in the northeast Pacific, implying that speciation may not require geographical isolation. Here, I use a novel phylogenetic comparative analysis to show that rockfish speciation is instead associated with divergence in habitat depth and depth-associated morphology, consistent with models of parapatric speciation. Using the same analysis, I find no support for alternative hypotheses that speciation involves divergence in diet or life history, or that speciation involves geographic isolation by latitude. These findings support the hypothesis that rockfishes undergo ecological speciation on an environmental gradient. PMID:20810434

  19. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.

  20. Anomalous evolution of interfaces in Fe/Ag magnetic multilayer

    NASA Astrophysics Data System (ADS)

    Sharma, Gagan; Gupta, Ranjeeta; Kumar, Dileep; Gupta, Ajay

    2013-12-01

    Interfaces greatly influence the magnetic properties of multilayer nanostructures. In the present work, the x-ray standing wave (XSW) technique along with conversion electron Mössbauer spectroscopy have been used to study the evolution of interfaces in Fe/Ag system as a function of thermal annealing. The XSW technique has sufficient depth resolution so as to determine the concentration profiles of Fe across the two interfaces, namely Fe-on-Ag and Ag-on-Fe independently. In as-deposited Ag/Fe/Ag trilayer, Fe-on-Ag interface has a substantially higher roughness of 1.3 nm as compared to 0.9 nm of Ag-on-Fe interface. It is shown that the observed difference in the roughness of the two interfaces is due to a substantial intermixing between Fe and Ag occurring preferentially at Fe-on-Ag interface. With thermal annealing, the two interfaces exhibit opposite behaviour; while Fe-on-Ag interface exhibits an initial sharpening, Ag-on-Fe interface exhibits a monotonous broadening. Two competing processes occur at the interfaces, (i) interface sharpening as a result of de-mixing, driven by a large positive heat of mixing between Fe and Ag and (ii) increase in topological roughness due to increased thermal agitation. This results in a non-monotonous variation in the roughness of Fe-on-Ag interface. At sufficiently high temperature the layered structure is completely destroyed, leading to formation of Fe and Ag nanoparticles.

  1. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10-5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  2. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10‑5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  3. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  4. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains. PMID:27487089

  5. Field comparison of an eddy accumulation and an aerodynamic-gradient system for measuring pesticide volatilization fluxes

    USGS Publications Warehouse

    Majewski, M.; Desjardina, R.; Rochette, P.; Pattey, E.; Selber, J.; Glotfelty, D.

    1993-01-01

    The field experiment reported here applied the relaxed eddy accumulation (REA) technique to the measurement of triallate (TA) and trifluralin (TF) volatilization from fallow soil. A critical analysis of the REA system used in this experiment is done, and the fluxes are compared to those obtained by the aerodynamic-gradient (AG) technique. The measured cumulative volatilization losses, corrected for the effective upwind source area (footprint), for the AG system were higher than with the REA system. The differences between the methods over the first 5 days of the experiment were 27 and 13% for TA and TF, respectively. A mass balance based on the amount of parent compounds volatilized from soil during the first 5 days of the experiment showed a 110 and 70% and a 79 and 61% accountability for triallate and trifluralin by the AG and REA methods, respectively. These results also show that the non-footprint-corrected AG flux values underestimated the volatilization flux by approximately 16%. The footprint correction model used in this experiment does not presently have the capability of accounting for changes in atmospheric stability. However, these values still provide an indication of the most likely upwind area affecting the evaporative flux estimations. The soil half-lives for triallate and trifluralin were 9.8 and 7.0 days, respectively. ?? 1992 American Chemical Society.

  6. System Alternatives Project

    ERIC Educational Resources Information Center

    Petrait, James A.

    1977-01-01

    The Systems Alternatives Project is an attempt to develop open classroom alternatives within a modular scheduling system. Biology students are given both action and test objectives that emphasize individualization. Structure of the project is detailed and an attempt to analyze the project evaluation data statistically is included. (MA)

  7. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  8. Alternative Schools, Mainstream Education

    ERIC Educational Resources Information Center

    McKee, Jan; Conner, Evguenia

    2007-01-01

    Alternative education has its own history. Having emerged in the sixties as a response to the social crisis, its goal was primarily to fight increasing bureaucracy and the depersonalization of public education by giving students more freedom and minimal adult supervision. In the eighties, the understanding of "alternative education" narrowed to…

  9. Alternatives: Project Description.

    ERIC Educational Resources Information Center

    Brier, Norman

    Alternatives is a project designed for youngsters, ages 11-15, who display serious conduct problems and severe learning deficiencies. The primary goal of the project is to prevent the development of a chronic antisocial orientation among youngsters who are at high risk for such an outcome. The interventions employed at Alternatives are based on…

  10. Alternative Automobile Engines

    ERIC Educational Resources Information Center

    Wilson, David Gordon

    1978-01-01

    Requirements for cleaner and more efficient engines have stimulated a search for alternatives to the conventional spark-ignition engine. So far, the defects of the alternative engines are clearer than the virtues. The following engines are compared: spark ignition, diesel, vapor-cycle, Stirling, and gas turbine. (Author/MA)

  11. Alternative Work Programs

    ERIC Educational Resources Information Center

    Kuehn, Kerri L.

    2004-01-01

    Employers are feeling the strain of needing to offer alternative work arrangements to retain and recruit employees. Due to a change in demographics, dual-career couples and increased technology; people are demanding a transformation in the workplace environment. Two alternatives, which are being offered by employers, are flextime and…

  12. Conditions of hydrodynamic instability appearance in fluid thin layers with changes in time thickness and density gradient

    NASA Astrophysics Data System (ADS)

    Grzegorczyn, Sławomir; Ślęzak, Andrzej; Michalska-Małecka, Katarzyna; Ślęzak-Prochazka, Izabella

    2012-03-01

    The transport of NaCl and ethanol through the microbial cellulose membrane was used as a generator of layers with density gradients, parallel to gravity vector. Changes in NaCl concentrations connected with density gradients in these layers were monitored by means of Ag|AgCl electrodes dipped directly into aqueous NaCl solutions with or without ethanol. The parameters used in this article and characterizing diffusive or diffusive-convective processes in layers are the ratio of NaCl concentrations at electrode surfaces () calculated for voltage which was measured 6 h after rebuilding of layers with density gradients, and time of appearance of hydrodynamic instabilities in the membrane system. The is the nonlinear function of initial ratio of NaCl on the membrane (), with maximum concentration at initial moment dependent on ethanol and configuration of the membrane system. The time of appearance of hydrodynamic instabilities in layers with density gradients parallel and directed opposite to the gravity vector depends on , ethanol concentration, and configuration of the membrane system. Besides, for aqueous NaCl solutions, critical values of density gradients and thicknesses of layers needed for the appearance of hydrodynamic instabilities were calculated and presented as functions of .

  13. Reversible photoswitching behavior in bulk resistance and in color of polycrystalline AgI at room temperature

    SciTech Connect

    Khaton, Rahima; Kashiwagi, Shin-ichiro; Iimori, Toshifumi; Ohta, Nobuhiro

    2008-12-08

    A photoinduced reversible change in bulk resistance of polycrystalline AgI is observed at room temperature. The original yellow color of the sample changes to dark brown with UV (308 nm) photoirradiation, associated with the small decrease in the bulk resistance. A reversible switching of color between dark brown and yellow is observed by alternative UV-visible photoirradiation, associated with a switching between high and low resistance states. The observed reversible photoswitching is interpreted in terms of the photoinduced reversible change in the {beta}-{gamma}-polytype stacking structure of the polycrystalline AgI.

  14. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  15. Alternative fuel transit buses

    SciTech Connect

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  16. Bumble Bees (Bombus spp) along a Gradient of Increasing Urbanization

    PubMed Central

    Ahrné, Karin; Bengtsson, Jan; Elmqvist, Thomas

    2009-01-01

    Background Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees. Methodology/Principal Findings We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species. Conclusions/Significance Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in

  17. Studying the Effect of Adaptive Momentum in Improving the Accuracy of Gradient Descent Back Propagation Algorithm on Classification Problems

    NASA Astrophysics Data System (ADS)

    Rehman, Muhammad Zubair; Nawi, Nazri Mohd.

    Despite being widely used in the practical problems around the world, Gradient Descent Back-propagation algorithm comes with problems like slow convergence and convergence to local minima. Previous researchers have suggested certain modifications to improve the convergence in gradient Descent Back-propagation algorithm such as careful selection of input weights and biases, learning rate, momentum, network topology, activation function and value for 'gain' in the activation function. This research proposed an algorithm for improving the working performance of back-propagation algorithm which is 'Gradient Descent with Adaptive Momentum (GDAM)' by keeping the gain value fixed during all network trials. The performance of GDAM is compared with 'Gradient Descent with fixed Momentum (GDM)' and 'Gradient Descent Method with Adaptive Gain (GDM-AG)'. The learning rate is fixed to 0.4 and maximum epochs are set to 3000 while sigmoid activation function is used for the experimentation. The results show that GDAM is a better approach than previous methods with an accuracy ratio of 1.0 for classification problems like Wine Quality, Mushroom and Thyroid disease.

  18. Measurement of phase gradients in the EEG.

    PubMed

    Alexander, D M; Trengove, C; Wright, J J; Boord, P R; Gordon, E

    2006-09-30

    Previous research has shown that spatio-temporal waves in the EEG are generally of long spatial wavelength and form smooth patterns of phase gradients at particular time-samples. This paper describes a method to measure smooth phase gradients of long spatial wavelength in the EEG. The method depends on the global pattern of phase at a given frequency and time and is therefore robust to variations, over time, in phase-lag between particular sites. Phases were estimated in the EEG signal using wavelet or short time-series Fourier methods. During an auditory oddball task, phases across the scalp tend to fall within a limited circular range, a range that is not indicative of phase-synchrony nor waves with multiple periods. At times the phases tended to maintain a spatially and temporally ordered relationship. The relative phases were analysed using three phase gradient basis functions, providing a measure of the amount of variance explained, across the electrodes, by smooth changes in relative phase from a single minimum or single maximum. The data from 586 adult subjects were analysed and it was found that the probability of phase gradient events varies with time and frequency in the stimulus-locked average, and with task demands. The temporal extent of spatio-temporal waves was measured by detecting smoothly changing patterns of phase latencies across the scalp. The specific spatial pattern and timing of phase gradients correspond closely to the latency distributions of certain ERPs. PMID:16574240

  19. Constrained length minimum inductance gradient coil design.

    PubMed

    Chronik, B A; Rutt, B K

    1998-02-01

    A gradient coil design algorithm capable of controlling the position of the homogeneous region of interest (ROI) with respect to the current-carrying wires is required for many advanced imaging and spectroscopy applications. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is presented. This constrained current minimum inductance method is derived in the context of previous target field methods. Complete details are shown and all equations required for implementation of the algorithm are given. The method has been implemented on computer and applied to the design of both a 1:1 aspect ratio (length:diameter) central ROI and a 2:1 aspect ratio edge ROI gradient coil. The 1:1 design demonstrates that a general analytic method can be used to easily obtain very short gradient coil designs for use with specialized magnet systems. The edge gradient design demonstrates that designs that allow imaging of the neck region with a head sized gradient coil can be obtained, as well as other applications requiring edge-of-cylinder regions of uniformity.

  20. Income Inequality and Socioeconomic Gradients in Mortality

    PubMed Central

    Wilkinson, Richard G.; Pickett, Kate E.

    2008-01-01

    Objectives. We investigated whether the processes underlying the association between income inequality and population health are related to those responsible for the socioeconomic gradient in health and whether health disparities are smaller when income differences are narrower. Methods. We used multilevel models in a regression analysis of 10 age- and cause-specific US county mortality rates on county median household incomes and on state income inequality. We assessed whether mortality rates more closely related to county income were also more closely related to state income inequality. We also compared mortality gradients in more- and less-equal states. Results. Mortality rates more strongly associated with county income were more strongly associated with state income inequality: across all mortality rates, r= −0.81; P=.004. The effect of state income inequality on the socioeconomic gradient in health varied by cause of death, but greater equality usually benefited both wealthier and poorer counties. Conclusions. Although mortality rates with steep socioeconomic gradients were more sensitive to income distribution than were rates with flatter gradients, narrower income differences benefit people in both wealthy and poor areas and may, paradoxically, do little to reduce health disparities. PMID:17901426

  1. Polarisation effects in gradient nano-optics

    SciTech Connect

    Erokhin, N S; Shvartsburg, A B; Zueva, Yu M

    2013-09-30

    The spectra of reflection of s- and p-polarised waves from gradient nanocoatings at arbitrary angles of incidence are found within the framework of two exactly solvable models of such coatings. To use the detected spectra in the visible and IR ranges, for different frequencies and coating thicknesses we present the wave reflection coefficients as functions of dimensionless frequencies related to the refractive index gradient of the coating material. It is shown that reflection from the gradient coatings in question is an order of magnitude weaker than reflection from uniform coatings, other parameters of radiation and the reflection system being equal. We report a new exactly solvable model illustrating the specific effect of gradient film optics – the possibility of non-reflective propagation of an s-wave through such a film (an analogue of the Brewster effect). The prospects are shown for the use of gradient nanostructures with different refractive index profiles to fabricate broadband non-reflective coatings. (nanogradient dielectric coatings and metamaterials)

  2. Gradient algorithm applied to laboratory quantum control

    SciTech Connect

    Roslund, Jonathan; Rabitz, Herschel

    2009-05-15

    The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.

  3. Importance of Ionospheric Gradients for error Correction

    NASA Astrophysics Data System (ADS)

    Ravula, Ramprasad

    Importance of Ionospheric Gradients for error Correction R. Ram Prasad1, P.Nagasekhar2 1Sai Spurthi Institute of Technology-JNTU Hyderabad,2Sai Spurthi Institute of Technology-JNTU Hyderabad Email ID:rams.ravula@gmail.com In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. To cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross sectional area in the line of site direction between the satellite and the user on the earth i.e. Total Electron Content (TEC).The irregular distribution of electron densities i.e. rate of TEC variation, causes Ionospheric gradients such as spatial gradients (Expressed in TECu/km) and temporal gradients (Expressed in TECu /minute). Among the satellite signals arriving to the earth in multiple directions, the signals which suffer from severe ionospheric gradients can be estimated i.e. Rate of TEC Index (ROTI) and Rate of TEC (ROT). These aspects which contribute to errors can be treated for improving GAGAN positional accuracy.

  4. Swarm magnetic gradients for lithospheric modelling (SLIM)

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Kotsiaros, Stavros; Brönner, Marco; Haagmans, Roger; Fuchs, Martin; Holzrichter, Nils; Olsen, Nils; Baykiev, Eldar

    2016-04-01

    We present first results of a feasibility study to use magnetic gradient information derived from Swarm data for crustal field modelling. The study is part of ESA's Support To Science Element (STSE) Swarm+ Innovations. In a first step, magnetic gradients have been derived from the observations taken by the three Swarm satellites, with emphasis on the two side-by-side flying spacecraft. Next, these gradients are used to compute magnetic gradient grids at 450 km altitude (the present mean altitude of the lower Swarm satellites) for one example region, North-West Europe. The suggested area comprise both exposed basement geology in southern Sweden and Norway with crustal scale magnetic anomalies and the Sorgenfrei-Tornquist Zone, a well-studied large scale tectonic fault system. With sensitivity analysis we studied the added benefit of the information from the gradient grids for lithospheric magnetic field modelling. A wealth of aeromagnetic data and additional constraining information for the example area allows us to validate our modelling results in great detail.

  5. Alternative sewerage solution: Condominial method and its application

    NASA Astrophysics Data System (ADS)

    Türker, Umut

    In this study, the fundamental of the theory of condominial sewer design is discussed through a readily available computer program and the theory is used to bring out the effect of pipe diameter and sewer gradient on design calculations through alternative solutions. It is proved that the roughness of the pipe is effective on the size, lifetime, and cost-saving property of the condominial sewer system, whereas the pipe diameter is not a vital parameter for the same criteria. Any expansion on the pipe roughness increased the gradient of flow and thus enlarged the excavation area hence; undermine the cost-saving property of the condominial method.

  6. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  7. Gradient sensitivity to within-category variation in words and syllables.

    PubMed

    McMurray, Bob; Aslin, Richard N; Tanenhaus, Michael K; Spivey, Michael J; Subik, Dana

    2008-12-01

    Five experiments monitored eye movements in phoneme and lexical identification tasks to examine the effect of within-category subphonetic variation on the perception of stop consonants. Experiment 1 demonstrated gradient effects along voice-onset time (VOT) continua made from natural speech, replicating results with synthetic speech (B. McMurray, M. K. Tanenhaus, & R. N. Aslin, 2002). Experiments 2-5 used synthetic VOT continua to examine effects of response alternatives (2 vs. 4), task (lexical vs. phoneme decision), and type of token (word vs. consonant-vowel). A gradient effect of VOT in at least one half of the continuum was observed in all conditions. These results suggest that during online spoken word recognition, lexical competitors are activated in proportion to their continuous distance from a category boundary. This gradient processing may allow listeners to anticipate upcoming acoustic-phonetic information in the speech signal and dynamically compensate for acoustic variability. PMID:19045996

  8. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-08-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future.

  9. Gradient sensitivity to within-category variation in words and syllables.

    PubMed

    McMurray, Bob; Aslin, Richard N; Tanenhaus, Michael K; Spivey, Michael J; Subik, Dana

    2008-12-01

    Five experiments monitored eye movements in phoneme and lexical identification tasks to examine the effect of within-category subphonetic variation on the perception of stop consonants. Experiment 1 demonstrated gradient effects along voice-onset time (VOT) continua made from natural speech, replicating results with synthetic speech (B. McMurray, M. K. Tanenhaus, & R. N. Aslin, 2002). Experiments 2-5 used synthetic VOT continua to examine effects of response alternatives (2 vs. 4), task (lexical vs. phoneme decision), and type of token (word vs. consonant-vowel). A gradient effect of VOT in at least one half of the continuum was observed in all conditions. These results suggest that during online spoken word recognition, lexical competitors are activated in proportion to their continuous distance from a category boundary. This gradient processing may allow listeners to anticipate upcoming acoustic-phonetic information in the speech signal and dynamically compensate for acoustic variability.

  10. Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.

    PubMed

    Gordon, J M

    2000-08-01

    Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints. PMID:18349958

  11. Synthesis, characterization and antimycobacterial activity of Ag(I)-aspartame, Ag(I)-saccharin and Ag(I)-cyclamate complexes.

    PubMed

    Cavicchioli, Maurício; Leite, Clarice Q F; Sato, Daisy N; Massabni, Antonio C

    2007-10-01

    The present work describes the synthesis and antimycobacterial activity of three Ag(I)-complexes with the sweeteners aspartame, saccharin, and cyclamate as ligands, with the aim of finding new candidate substances for fighting tuberculosis and other mycobacterial infections. The minimal inhibitory concentration of these three complexes was investigated in order to determine their in-vitro antimycobacterial activity against Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium malmoense, and Mycobacterium kansasii. The MIC values were determined using the Microplate Alamar Blue Assay. The best MIC values found for the complexes were 9.75 microM for Ag(I)-aspartame against M. kansasii and 15.7 microM for Ag(I)-cyclamate against M. tuberculosis.

  12. Spin coating of Ag nanoparticles: Effect of reduction

    SciTech Connect

    Ansari, A. A. Sartale, S. D.

    2014-04-24

    A surfactant free method for the growth of Ag nanoparticles on glass substrate by spin coating of Ag ions solution followed by chemical reduction in aqueous hydrazine hydrate (HyH) solution has been presented. Appearance of surface plasmon resonance confirms the formation of Ag nanoparticles. Morphology and absorbance spectra of Ag nanoparticles films are used to examine effect of hydrazine concentration on the growth of Ag nanoparticles. SEM images show uniformly distributed Ag nanoparticles. Rate constant was found to be dependent on HyH concentration as a consequence influence particle size.

  13. BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Mohaghegh, N.; Rahimi, E.

    2016-06-01

    Graphene-supported BiPO4/Ag/Ag3PO4 photocatalyst has been fabricated by simple hydrothermal and impregnation reaction. In BiPO4/Ag/Ag3PO4 based on Reduced Graphene Oxide (RGO), this network renders numerous pathways for rapid mass transport, strong adsorption and multireflection of incident light; meanwhile, the interface between BiPO4/Ag/Ag3PO4 and RGO increases the active sites and electron transfer rate. BiPO4/Ag/Ag3PO4 based on RGO noticeably exhibited high photocatalytic activity than that of BiPO4/Ag/Ag3PO4 and P25 under visible light irradiation for cationic dye (Rhodamine B), anionic dye (methyl orange) and 4-chlorophenol (4-CP) as a neutral pollutant, which are usually difficult to be degraded over the other catalysts. This enhanced photocatalytic activity of Graphene-supported BiPO4/Ag/Ag3PO4 for all pollutants could be mainly ascribed to the reinforced charge transfer from BiPO4/Ag/Ag3PO4 to RGO, which suppresses the recombination of electron/hole pairs. Besides that, this photocatalyst can be used repetitively with a high photocatalytic activity and no apparent loss of activity occurs. The results reveal that the RGO nanosheets work as a photocatalyst promoter during the photocatalytic reaction, leading to an improved photocatalytic activity.

  14. Template synthesis of Ag/AgCl microrods and their efficient visible light-driven photocatalytic performance

    SciTech Connect

    Chen, Hua; Xiao, Liang; Huang, Jianhua

    2014-09-15

    Highlights: • Preparation ofAg/AgCl microrods by reaction of Ag{sub 2}WO{sub 4} microrods with NaCl solution. • Generation of metallic Ag is induced by the ambient light in the synthesis process. • Ag/AgCl shows excellent visible light-driven photodegradation of organic dyes. - Abstract: Ag/AgCl microrods, aggregated by nanoparticles with a diameter ranging from 100 nm to 2 μm, were prepared by an ion-exchange reaction at 80 °C between Ag{sub 2}WO{sub 4} template and NaCl solution. The existence of metallic Ag species was confirmed by XRD, DRS and XPS measurements. Ag/AgCl microrods showed excellent photocatalytic activity for the degradation of rhodamine B and methylene blue under visible light irradiation. The degradation rate constants of rhodamine B and methylene blue are 0.176 and 0.114 min{sup −1}, respectively. The cycling photodegradation experiments suggest that Ag/AgCl microds could be employed as stable plasmonic photocatalysts for the degradation of organic dyes under visible light irradiation.

  15. Size distributions of chemically synthesized Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Thøgersen, Annett; Bonsak, Jack; Fosli, Carl Huseby; Muntingh, Georg

    2011-08-01

    Silver nanocrystals made by a chemical reduction of silver salts (AgNO3) by sodium borohydride (NaBH4) were studied using transmission electron microscopy and light scattering simulations. For various AgNO3/NaBH4 molar ratios, the size distributions of the nanocrystals were found to be approximately log-normal. In addition, a linear relation was found between the mean nanocrystal size and the molar ratio. In order to relate the size distribution of Ag nanocrystals of the various molar ratios to the scattering properties of Ag nanocrystals in solar cell devices, light scattering simulations of Ag nanocrystals in Si, SiO2, SiN, and Al2O3 matrices were carried out using MiePlot. These light scattering spectra for the individual nanocrystal sizes were combined into light scattering spectra for the fitted size distributions. The evolution of these scattering spectra with respect to an increasing mean nanocrystal size was then studied. From these findings, it is possible to find the molar ratio for which the corresponding nanocrystal size distribution has maximum scattering at a particular wavelength in the desired matrix.

  16. Structural and electronic properties of ultrathin picene films on the Ag(100) surface

    NASA Astrophysics Data System (ADS)

    Kelly, Simon J.; Sorescu, Dan C.; Wang, Jun; Archer, Kaye A.; Jordan, Kenneth D.; Maksymovych, Petro

    2016-10-01

    Using scanning tunneling microscopy and electronic structure calculations, we investigated the assembly and electronic properties of picene molecules on the Ag(100), Ag(111), and Cu(111) surfaces, with particular emphasis on Ag(100). In each case, picene molecules are found to lie parallel to the surface at coverages up to half a monolayer and to adopt alternating parallel and tilted orientations at full monolayer coverage. In the latter case, the arrangement of the molecules is roughly similar to that in the bulk crystal. On the metal surfaces considered, the growth mode of picene is quite different from that of its structural isomer pentacene, which forms a bilayer overlayer on top of a dense monolayer of flat-lying molecules on metal surfaces. Tunneling spectroscopy measurements provide estimates of the energies of several low-lying unfilled molecular orbitals as well as of the highest occupied molecular orbital of the absorbed picene molecules. From analysis of these results, we establish that the on-site Coulomb repulsion for picene decreases by ~ 2 eV in going from the gas phase to the full monolayer on Ag(100), bringing it close to that of the undoped bulk crystal.

  17. Mussel-inspired green synthesis of polydopamine-Ag-AgCl composites with efficient visible-light-driven photocatalytic activity.

    PubMed

    Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang

    2016-09-01

    Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts. PMID:27450302

  18. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Jamie Lead,

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  19. Mussel-inspired green synthesis of polydopamine-Ag-AgCl composites with efficient visible-light-driven photocatalytic activity.

    PubMed

    Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang

    2016-09-01

    Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts.

  20. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  1. Using Spatial Gradients to Model Localization Phenomena

    SciTech Connect

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  2. Orthogonal gradient networks via post polymerization reaction

    NASA Astrophysics Data System (ADS)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    2015-03-01

    We report a novel synthetic route to generate orthogonal gradient networks through post polymerization reaction using pentaflurophenylmethacrylate (PFPMAc) active ester chemistry. These chemoselective monomers were successfully copolymerized with 5 mole% of the photo (methacryloyloxybenzophenone) and thermal (styrenesulfonylazide) crosslinkers. Subsequently, the copolymers were modified by a series of amines having various alkyl chain lengths. The conversion of post polymerization reaction was monitored using Fourier Transform Infrared Spectroscopy (FT-IR) and noticed that almost all pentaflurophenyl moieties are substituted by amines within in an hour without affecting the crosslinkers. In addition, the incorporation of photo and thermal crosslinkers in the polymer enabled us to achieve stable and covalently surface-bound polymer gradient networks (PGN) in an orthogonal manner, i.e. complete control over the crosslink density of the network in two opposite directions (i.e. heat vs photo). The network properties such as wettability, swelling and tensile modulus of the gradient coatings are studied and revealed in the paper.

  3. Motion Driven by Strain Gradient Fields

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chen, Shaohua

    2015-09-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces.

  4. How receptor diffusion influences gradient sensing

    PubMed Central

    Nguyen, H.; Dayan, P.; Goodhill, G. J.

    2015-01-01

    Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes. Many eukaryotic cells perform spatial sensing, i.e. they detect gradients by comparing spatial differences in binding occupancy of chemosensory receptors across their membrane. In many theoretical models of spatial sensing, it is assumed, for the sake of simplicity, that the receptors concerned do not move. However, in reality, receptors undergo diverse modes of diffusion, and can traverse considerable distances in the time it takes such cells to turn in an external gradient. This sets a physical limit on the accuracy of spatial sensing, which we explore using a model in which receptors diffuse freely over the membrane. We find that the Fisher information carried in binding and unbinding events decreases monotonically with the diffusion constant of the receptors. PMID:25551145

  5. Conjugate gradient algorithms using multiple recursions

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  6. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  7. Time Rate Gradient Effects and Negative Mass

    NASA Astrophysics Data System (ADS)

    Miksch, Edmond

    2008-03-01

    The Harvard tower Experiment and tests with accurate atomic clocks show that a clock at a high elevation indicates more elapsed time than a clock at a low elevation, both clocks properly measuring time at their locations. This fact mandates that Newton's first law of motion be rewritten to cite impulse balance rather than force balance. Time rate gradient effects explain how the weight of a precisely vertical and precisely uniform electric field or a precisely vertical and precisely uniform magnetic field is supported in a precisely unidirectional gravitational field. Time rate gradient effects also explain how the weight of a unidirectional gravitational field is reacted. It is confirmed that the mass density of the gravitational field is negative. http://www.TimeRateGradient.com; http://www.Negative-Mass.com; http://www.EinsteinsElevator.com

  8. Gradients of signalling in the developing limb.

    PubMed

    Towers, Matthew; Wolpert, Lewis; Tickle, Cheryll

    2012-04-01

    The developing limb is one of the first systems where it was proposed that a signalling gradient is involved in pattern formation. This gradient for specifying positional information across the antero-posterior axis is based on Sonic hedgehog signalling from the polarizing region. Recent evidence suggests that Sonic hedgehog signalling also specifies positional information across the antero-posterior axis by a timing mechanism acting in parallel with graded signalling. The progress zone model for specifying proximo-distal pattern, involving timing to provide cells with positional information, continues to be challenged, and there is further evidence that graded signalling by retinoic acid specifies the proximal part of the limb. Other recent papers present the first evidence that gradients of signalling by Wnt5a and FGFs govern cell behaviour involved in outgrowth and morphogenesis of the developing limb.

  9. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  10. Relativistic klystrons for high-gradient accelerators

    SciTech Connect

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen

    1990-09-05

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.

  11. Substrate Curvature Gradient Drives Rapid Droplet Motion

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-01

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.

  12. Substrate curvature gradient drives rapid droplet motion.

    PubMed

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces. PMID:25062213

  13. Ceramic transactions: Functionally gradient materials. Volume 34

    SciTech Connect

    Holt, J.B.; Koizumi, Mitsue; Hirai, Toshio; Munir, Z.A.

    1993-01-01

    A functionally gradient material (FGM) is a composite that smoothly transitions from one material at one surface to another material at the opposite surface. Metals and ceramics are usually the materials that are combined in a controlled manner to optimize a specific property. The First International Symposium on Functionally Gradient Materials was held in Sendai, Japan, in August 1990. Contained in the present volume are the Proceedings of the Second International Symposium on Functionally Gradient Materials, presented at the Third International Ceramic Science and Technology Congress, held in San Francisco, CA, November 1-4, 1992. The papers presented here are divided into eight sections: the concept of FGM; mathematical modeling; methods of fabrication; material evaluation; applications; joining processes in FGM; process characterization; and design considerations. Separate abstracts are provided for each of the 54 papers.

  14. Electrical conductivity of a system of Ag2SO4:AgI eutectic added to 30Li2SO4:70Ag2SO4

    NASA Astrophysics Data System (ADS)

    Chandrayan, V. R.; Tejpal, A.; Singh, K.

    1989-10-01

    The electrical conductivity of rapidly quenched specimens of 48Ag2SO4:52AgI eutectic added to 30Li2SO4:70Ag2SO4 has been measured as a function of frequency and temperature. The results show a significant enhancement in the conductivity of the 30Li2SO4:70Ag2SO4 system with a maximum value at 12.5 mol. pct eutectic. This phenomenon is explained in terms of the dispersive nature of the fine eutectic crystallites in the crystalline matrix of the Li2SO4:Ag2SO4 system.

  15. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    SciTech Connect

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  16. Breathing Raman modes in Ag2S nanoparticles obtained from F9 zeolite matrix

    NASA Astrophysics Data System (ADS)

    Delgado-Beleño, Y.; Cortez-Valadez, M.; Martinez-Nuñez, C. E.; Britto Hurtado, R.; Alvarez, Ramón A. B.; Rocha-Rocha, O.; Arizpe-Chávez, H.; Perez-Rodríguez, A.; Flores-Acosta, M.

    2015-12-01

    Ag2S nanoparticles were synthesized with a combination of synthetic F9, silver nitrate (AgNO3) and monohydrated sodium sulfide (Na2S9H2O). An ionic exchange was achieved via hydrothermal reaction. Nanoparticles with a predominant size ranging from 2 to 3 nm were obtained through Transmission Electron Microscopy (TEM). The nanoparticles feature a phase P21/n (14) monoclinic structure. A Raman band can be observed at around 250 cm-1 in the nanoparticles. Furthermore, the vibrational properties and stability parameters of the clusters (AgS)n, (with n = 2-9) were studied by the Density Functional Theory (DFT). The approximation levels used with DFT were: Local Spin Density Approximation (LSDA) and Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence). The Radial Breathing Mode (RBM) for B3LYP was found between 227 and 295 cm-1 as well as in longer wavelengths for LSDA.

  17. Stereo transparency and the disparity gradient limit

    NASA Technical Reports Server (NTRS)

    McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.

  18. One-pot synthesis of ternary Ag₂CO₃/Ag/AgCl photocatalyst in natural geothermal water with enhanced photocatalytic activity under visible light irradiation.

    PubMed

    Yao, Xiaxi; Liu, Xiaoheng

    2014-09-15

    Geothermal water is a clean, cheap and renewable resource and it is widely distributed all over the world. In this work, ternary Ag2CO3/Ag/AgCl photocatalyst has been successfully synthesized via a one-pot precipitation method in natural geothermal water at room temperature, wherein the geothermal water serves as the source of chlorine and carbonate. The results suggest that the Ag/AgCl nanoparticles are anchored on the surface of Ag2CO3 and Ag2CO3/Ag/AgCl composite shows strong absorption ability in the visible light region. The evaluation of the photocatalytic activity indicates that the as-synthesized Ag2CO3/Ag/AgCl photocatalyst exhibits higher photocatalytic performance for the degradation of methylene blue (MB) aqueous solution under visible light irradiation than one-component (Ag2CO3), two-component (Ag/AgCl, Ag2CO3/AgCl) and the mechanical mixture of Ag2CO3 and Ag/AgCl. The trapping experiments confirmed that holes (h(+)) and (•)O2(-) were the two main active species in the photocatalytic process. Finally, a possible Z-scheme photocatalytic mechanism of the charge transfer was proposed for the enhanced photocatalytic performance. This work may open up new insights into the application of cheap geothermal water resources in the word and provide new opportunities for facile fabrication of Ag/AgCl-based photocatalysts.

  19. Bipolar Ag-Zn battery

    NASA Technical Reports Server (NTRS)

    Giltner, L. John

    1994-01-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  20. Complementary and Alternative Medicine.

    PubMed

    Quezada, Sandra M; Briscoe, Jessica; Cross, Raymond K

    2016-06-01

    Inflammatory bowel disease is a complex, chronic, multifactorial inflammatory disorder of the digestive tract. Standard therapies include immunosuppressive and biological treatments, but there is increasing interest in the potential benefit of complementary and alternative medicine for the treatment of inflammatory bowel disease. Given the high prevalence of use of complementary and alternative medicine among inflammatory bowel disease patients, gastroenterologists must remain knowledgeable regarding the risks and benefits of these treatment options. This article reviews the updated scientific data on the use of biologically based complementary and alternative therapies for the treatment of inflammatory bowel disease.

  1. High pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  2. Partial separation of fullerenes by gradient sublimation

    SciTech Connect

    Yeretzian, C.; Wiley, J.B.; Holczer, K.; Su, T.; Nguyen, S.; Kaner, R.B.; Whetten, R.L. )

    1993-09-30

    An experimental technique is investigated to separate/enrich fullerenes of metallofullerenes, exploiting differences in sublimation temperatures without the use of solvents. Fullerenes are sublimed out of the soot and deposited on a quartz rod along a temperature gradient (gradient sublimation). In a position-sensitive experiment the composition of the deposit on the rod is monitored by laser-desorption mass spectrometry. Strongly enriched regions containing specific fullerene molecules (i.e., C[sub 84] or LaC[sub 82]) are observed. Furthermore, C[sub 74], which could not be extracted from the soot by organic solvents, sublimes out of the soot. 26 refs., 6 figs.

  3. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  4. Design of spherical symmetric gradient index lenses

    NASA Astrophysics Data System (ADS)

    Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción

    2012-10-01

    Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.

  5. Onset of synchronization in complex gradient networks.

    PubMed

    Wang, Xingang; Huang, Liang; Guan, Shuguang; Lai, Ying-Cheng; Lai, Choy Heng

    2008-09-01

    Recently, it has been found that the synchronizability of a scale-free network can be enhanced by introducing some proper gradient in the coupling. This result has been obtained by using eigenvalue-spectrum analysis under the assumption of identical node dynamics. Here we obtain an analytic formula for the onset of synchronization by incorporating the Kuramoto model on gradient scale-free networks. Our result provides quantitative support for the enhancement of synchronization in such networks, further justifying their ubiquity in natural and in technological systems. PMID:19045491

  6. Enhancing synchronization based on complex gradient networks.

    PubMed

    Wang, Xingang; Lai, Ying-Cheng; Lai, Choy Heng

    2007-05-01

    The ubiquity of scale-free networks in nature and technological applications and the finding that such networks may be more difficult to synchronize than homogeneous networks pose an interesting phenomenon for study in network science. We argue and demonstrate that, in the presence of some proper gradient fields, scale-free networks can be more synchronizable than homogeneous networks. The gradient structure can in fact arise naturally in any weighted and asymmetrical networks; based on this we propose a coupling scheme that permits effective synchronous dynamics on the network. The synchronization scheme is verified by eigenvalue analysis and by direct numerical simulations using networks of nonidentical chaotic oscillators. PMID:17677146

  7. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  8. The effect of density gradients on hydrometers

    NASA Astrophysics Data System (ADS)

    Heinonen, Martti; Sillanpää, Sampo

    2003-05-01

    Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.

  9. Gradient Learning Algorithms for Ontology Computing

    PubMed Central

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  10. High-pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  11. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  12. Critique of the vertical gradient of gravity

    NASA Technical Reports Server (NTRS)

    Hammer, Sigmund

    1989-01-01

    Growing interest in high precision studies of the Earth's gravitational field warrant a critical review of precision requirements to yield useful results. Several problems are now under consideration. All of these problems involve, more or less, the precise value of the vertical gradients of gravity. The principle conclusion from this review is that the essential absence of Free Air Vertical Gravity Gradient control and actual values of gravimeter calibrations require serious attention. Large errors in high topography on official published gravity maps also cannot be ignored.

  13. Optical and Electric Gradients in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Dobek, Andrzej

    2007-11-01

    Light-gradient photovoltage is detected in most of the photosynthetic systems. The effect depends on the intensity, duration and wavelength of short light pulse excitation and on the redox state of the illuminated photosynthetic membrane. In the region of small absorption the polarity of the photovoltage is negative, whereas in the high absorption regions it is positive. The sign depends moreover on the geometrical dimensions of the membrane and on the difference in the refractive indices between the membrane and the surrounding aqueous phase. Light-gradient photovoltage studies permit a quantitative determination of the membrane birefringence and refractive index anisotropy.

  14. Electron heat transport down steep temperature gradients

    SciTech Connect

    Matte, J.P.; Virmont, J.

    1982-12-27

    Electron heat transport is studied by numerically solving the Fokker-Planck equation, with a spherical harmonic representation of the distribution function. The first two terms (f/sub 0/, f/sub 1/) suffice, even in steep temperature gradients. Deviations from the Spitzer-Haerm law appear for lambda/L/sub T/ ((mean free path)/(temperature gradient length))> or approx. =0.01, as a result of non-Maxwellian f/sub 0/. For lambda/L/sub T/> or approx. =1, the heat flux is (1/3) of the free-streaming value. In intermediate cases, a harmonic law describes well the hottest part of the plasma.

  15. Gravity gradient determination with tethered systems

    NASA Technical Reports Server (NTRS)

    Kalaghan, P. M.; Colombo, G.

    1978-01-01

    A detailed investigation of the Earth's gravity field is needed for application to modern solid earth and oceanic investigations. The use of gravity gradiometers presents a technique to measure the intermediate wavelength components of the gravity field. One configuration of a gradiometer involves a tethered pair of masses orbiting the Earth and stabilized by vertical gravity gradient of the earth. A mesurement of the tension in such a system, called the DUMBBELL system is described. It allows the determination of the vertical gradient of the anomalous component of the Earth's gravtiy field. Preliminary analysis of the dynamics, mechanization, expected signal levels and noise environment indicates that the Dumbbell system is feasible.

  16. New isomeric state in {sup 116}Ag

    SciTech Connect

    Batchelder, J.C.; Carter, H.K.; Spejewski, E.H.; Bingham, C.R.; Fong, D.; Hamilton, J.H.; Hwang, J.K.; Ramayya, A.V.; Garrett, P.E.; Hartley, D.J.; Krolas, W.; Kulp, W.D.; Wood, J.L.; Larochelle, Y.; Tantawy, M.N.; Piechaczek, A.

    2005-10-01

    A new isomer in {sup 116}Ag with a half-life of 20(1) s has been discovered through the use of conversion electron, {beta}, and {gamma} spectroscopy of on-line mass-separated radioactivities at the Holifield Radioactive Ion Beam Facility at ORNL. The observed electron peaks at 22.5, 44.42, and 47.33 keV were interpreted as the K,L, and M conversion electron lines resulting from a 47.9-keV E3 transition associated with the decay of a second isomeric level in {sup 116}Ag. A new level structure of {sup 116}Ag is proposed, with the levels identified as the 0{sup -} ground-state and isomers at 47.9 and 128.8 keV having spin/parities of 3{sup +} and 6{sup -} respectively.

  17. Adsorption of sulfur on Ag(100)

    SciTech Connect

    Russell, Selena M.; Shen, Mingmin; Liu, Da-Jiang; Thiel, Patricia A.

    2010-12-17

    We have used scanning tunneling microscopy and density Functional theory to investigate the structures formed by sulfur on Ag(100). As indicated by previous low-energy electron diffraction studies, the main phases have unit cells of p(2 x 2) and ({radical}17 x {radical}17)R14{sup o}. We show that the latter is a reconstruction. The favored structural model is one in which 5 Ag atoms are missing from the (100) surface plane per unit cell. The ejected Ag atoms combine with sulfur to form islands of the reconstructed phase on the terraces. The ({radical}17 x {radical}17)R14{sup o} phase coexists with the p(2 x 2), at sulfur coverages slightly above 0.25 monolayers. In addition, chain-like structures are observed in STM, both at room temperature (where they are dynamic) and below (where they are not). These results are compared with relevant literature for copper surfaces.

  18. Nonequilibrium microstructures for Ag-Ni nanowires.

    PubMed

    Rai, Rajesh K; Srivastava, Chandan

    2015-04-01

    This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.

  19. Spectrophotometry of the shell around AG Carinae

    NASA Technical Reports Server (NTRS)

    Mitra, P. Mila; Dufour, Reginald J.

    1990-01-01

    Spatially-resolved long-slit spectrophotometry are presented for two regions of the shell nebula around the P-Cygni variable star AG Carinae. The spectra cover the 3700-6800 A wavelength range. Emission-line diagnostics are used to derive extinction, electron temperatures, and densities for various positions in the nebula. The chemical abundances and ionization structure are calculated and compared with other types of planetary nebulae and shells around other luminous stars. It is found that the N/O and N/S ratios of Ag Car are high compared to solar neighborhood ISM values. The O/H depletion found for the AG Car shell approaches that found in the condensations of the Eta Car system.

  20. Filtering requirements for gradient-based optical flow measurement.

    PubMed

    Christmas, W J

    2000-01-01

    The accuracy of gradient-based optical flow algorithms depends on the ability to measure intensity gradients accurately. We show how the temporal gradient can be compromised by temporal aliasing arising from motion and how appropriate post-sampling spatial filtering improves the situation. We also demonstrate a benefit of using higher-order gradient estimators.

  1. The axisymmetric stellar wind of AG Carinae

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.; Clayton, Geoffrey C.; Hillier, D. John; Harries, Tim J.; Howarth, Ian D.

    1994-01-01

    We present optical linear spectropolarimetry of the Luminous Blue Variable AG Carinae obtained after a recent visual brightness increase. The absence of He II lambda 4686 emission, together with the weakening of the He I spectrum and the appearance of Fe lines in the region around 5300 A, confirm that AG Car has started a new excursion across the HR diagram. The H alpha line profile exhibits very extended line wings that are polarized differently in both amount and position angle from either the continuum or the line core. The polarization changes across H alpha, together with variable continuum polarization, indicate the presence of intrinsic polarization. Coexistence of the line-wing polarization with extended flux-line wings evidences that both are formed by electron scattering in a dense wind. The position angle rotates across the line profiles, in a way that presently available models suggest is due to rotation and expansion of the scattering material. AG Car displays very large variations of its linear polarization with time, Delta P approximately 1.2%, indicating significant variations in envelope opacity. We find that the polarization varies along a preferred position angle of approximately 145 deg (with a scatter of +/- 10 deg) which we interpret as a symmetry axis of the stellar wind (with an ambiguity of 90 deg). This position angle is co-aligned with the major axis of the AG Car ring nebula and perpendicular to the AG Car jet. Our observations thus suggest that the axisymmetric geometry seen in the resolved circumstellar environment at various distances already exists within a few stellar radii of AG Car. From the H alpha polarization profile we deduce an interstellar polarization of Q = 0.31%, U = -1.15% at H alpha. The inferred interstellar polarization implies that the intrinsic polarization is not always of the same sign. This indicates either significant temporal changes in the envelope geometry, or it may arise from effects of multiple scattering

  2. Orbit correction in a linear nonscaling fixed field alternating gradient accelerator

    DOE PAGES

    Kelliher, D. J.; Machida, S.; Edmonds, C. S.; Kirkman, I. W.; Jones, J. K.; Muratori, B. D.; Garland, J. M.; Berg, J. S.

    2014-11-20

    In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.

  3. Alternating-gradient focusing of the benzonitrile-argon van der Waals complex

    NASA Astrophysics Data System (ADS)

    Putzke, Stephan; Filsinger, Frank; Küpper, Jochen; Meijer, Gerard

    2012-09-01

    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C6H5CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within ±5%. By exploiting the different dipole-moment-to-mass (µ/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex.

  4. ERL with non-scaling fixed field alternating gradient lattice for eRHIC

    SciTech Connect

    Trbojevic, D.; Berg, J. S.; Brooks, S.; Hao, Y.; Litvinenko, V. N.; Liu, C.; Meot, F.; Minty, M.; Ptitsyn, V.; Roser, T.; Thieberger, P.; Tsoupas, N.

    2015-05-03

    The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.

  5. Alternating-gradient focusing of the benzonitrile-argon van der Waals complex.

    PubMed

    Putzke, Stephan; Filsinger, Frank; Küpper, Jochen; Meijer, Gerard

    2012-09-14

    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C(6)H(5)CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within ±5%. By exploiting the different dipole-moment-to-mass ([micro sign]/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex.

  6. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    SciTech Connect

    R.A. Kolesnikov; J.A. Krommes

    2004-10-21

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations.

  7. Custom Gradient Compression Stockings May Prevent Orthostatic Intolerance in Astronauts After Space Flight

    NASA Technical Reports Server (NTRS)

    Stenger, Michael B.; Lee, Stuart M. C.; Westby, Christian M.; Platts, Steven H.

    2010-01-01

    Orthostatic intolerance after space flight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. NASA astronauts currently wear an inflatable anti-gravity suit (AGS) during re-entry, but this device is uncomfortable and loses effectiveness upon egress from the Shuttle. We recently determined that thigh-high, gradient compression stockings were comfortable and effective after space flight, though to a lesser degree than the AGS. We also recently showed that addition of splanchnic compression to this thigh-high compression stocking paradigm improved orthostatic tolerance to a level similar to the AGS, in a ground based model. Purpose: The purpose of this study was to evaluate a new, three-piece breast-high gradient compression garment as a countermeasure to post-space flight orthostatic intolerance. Methods: Eight U.S. astronauts have volunteered for this experiment and were individually fitted for a three-piece, breast-high compression garment to provide 55 mmHg compression at the ankle which decreased to approximately 20 mmHg at the top of the leg and provides 15 mmHg over the abdomen. Orthostatic testing occurred 30 days pre-flight (w/o garment) and 2 hours after flight (w/ garment) on landing day. Blood pressure (BP), Heart Rate (HR) and Stroke Volume (SV) were acquired for 2 minutes while the subject lay prone and then for 3.5 minutes after the subject stands up. To date, two astronauts have completed pre- and post-space flight testing. Data are mean SD. Results: BP [pre (prone to stand): 137+/-1.6 to 129+/-2.5; post: 130+/-2.4 to 122+/-1.6 mmHg] and SV [pre (prone to stand): 61+/-1.6 to 38+/-0.2; post: 58+/-6.4 to 37+/-6.0 ml] decreased with standing, but no differences were seen post-flight w/ compression garments compared to pre-flight w/o garments. HR [pre (prone to stand): 66+/-1.6 to 74+/-3.0, post: 67+/-5.6 to 78+/-6.8 bpm] increased with standing, but no differences were seen pre- to post-flight. Conclusion: After space

  8. Facile synthesis of ternary Ag/AgBr-Ag2CO3 hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light.

    PubMed

    Zhang, Anchao; Zhang, Lixiang; Lu, Hao; Chen, Guoyan; Liu, Zhichao; Xiang, Jun; Sun, Lushi

    2016-08-15

    A novel technique for photocatalytic removal of elemental mercury (Hg(0)) using visible-light-driven Ag/AgBr-Ag2CO3 hybrids was proposed. The ternary Ag/AgBr-Ag2CO3 hybrids were synthesized by a simple modified co-precipitation method and characterized by N2 adsorption-desorption, scanning electron microscope (SEM), X-ray diffraction (XRD), UV-vis diffused reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) techniques. The effects of AgBr content, fluorescent lamp (FSL) irradiation, solution temperature, SO2 and NO on Hg(0) removal were investigated in detail. Furthermore, a possible reaction mechanism for higher Hg(0) removal was proposed, and the simultaneous removal of Hg(0), SO2 and NO was studied. The results showed that a high efficiency of Hg(0) removal was obtained by using Ag/AgBr-Ag2CO3 hybrids under fluorescent lamp irradiation. The AgBr content, FSL irradiation, solution temperature, and SO2 all exhibited significant effects on Hg(0) removal, while NO had slight effect on Hg(0) removal. The addition of Ca(OH)2 demonstrated a little impact on Hg(0) removal and could significantly improve the SO2-resistance performance of Ag/AgBr(0.7)-Ag2CO3 hybrid. The characterization results exhibited that hydroxyl radical (OH), superoxide radical (O2(-)), hole (h(+)), and Br(0), were reactive species responsible for removing Hg(0), and the h(+) played a key role in Hg(0) removal. PMID:27135702

  9. Evaluation of Expenditure Alternates

    ERIC Educational Resources Information Center

    Poehlein, Gary W.; And Others

    1973-01-01

    Illustrates a system of calculating dollar expenditures over periods of time in terms of present value. The system enables planners, school boards, and administrators to compare expenditure alternatives as a decisionmaking factor. (Author)

  10. GLOBAL ALTERNATIVE FUTURE SCENARIOS

    EPA Science Inventory

    One way to examine possible future outcomes for environmental protection is through the development and analysis of alternative future scenarios. This type of assessment postulates two or more different paths that social and environmental development might take, using correspond...

  11. Alternative disinfectant water treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative disinfestant water treatments are disinfestants not as commonly used by the horticultural industry. Chlorine products that produce hypochlorous acid are the main disinfestants used for treating irrigation water. Chlorine dioxide will be the primary disinfestant discussed as an alternativ...

  12. Alternative and Complementary Therapies

    MedlinePlus

    ... always designed to treat a particular illness: Some alternative therapies treat the whole person, not an illness. They might restore harmony, balance, or normal energy flow. Acupuncturists, for example, use the pulse to ...

  13. SOLVENT WASTE REDUCTION ALTERNATIVES

    EPA Science Inventory

    This publication contains edited versions of presentations on this subject made at five Technology Transfer seminars in 1988. Chapters are included on land disposal regulations and requirements; waste solvent disposal alternatives from various industries such as process equipment...

  14. Alternatives to Nursing Homes

    MedlinePlus

    ... this website may not be available. Alternatives to nursing homes Before you make any decisions about long ... live and what help you may need. A nursing home may not be your only choice. Discharge ...

  15. Alternative fuel information sources

    SciTech Connect

    Not Available

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  16. Seal design alternatives study

    SciTech Connect

    Van Sambeek, L.L.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information.

  17. Polarized proton acceleration program at the AGS

    SciTech Connect

    Lee, Y.Y.

    1981-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A multi-university/laboratory collaborative effort involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to improve and modify to accelerate polarized protons. From the experience at the ZGS and careful studies made us confident of the feasibility of achieving a polarization of over 60 percent up to 26 GeV/c with an intensity of 10/sup 11/ approx. 10/sup 12/ per pulse. The first polarized proton acceleration at the AGS is expected in 1983.

  18. RESONANT EXTRACTION PARAMETERS FOR THE AGS BOOSTER.

    SciTech Connect

    BROWN,K.A.; CULLEN,J.; GLENN,J.W.; MAPES,M.; MARNERIS,I.; TSOUPAS,N.; SNYDSTRUP,L.; VAN ASSELT,W.

    2001-06-18

    Brookhaven's AGS Booster is the injector for the AGS. It is being modified to send resonant extracted heavy ions to a new beam line, the Booster Applications Facility (BAF). The design of the resonant extraction system for BAF was described in [1]. This note will give a more detailed description of the system and describe the predicted resonant beam time structure. We will describe tune space manipulations necessary to extract the resonant beam at the maximum Booster rigidity, schemes for performing resonant extraction, and describe the modifications required to perform bunched beam extraction to the BAF facility.

  19. Reducing Strength Prevailing at Root Surface of Plants Promotes Reduction of Ag+ and Generation of Ag0/Ag2O Nanoparticles Exogenously in Aqueous Phase

    PubMed Central

    Pardha-Saradhi, Peddisetty; Yamal, Gupta; Peddisetty, Tanuj; Sharmila, Peddisetty; Nagar, Shilpi; Singh, Jyoti; Nagarajan, Rajamani; Rao, Kottapalli S.

    2014-01-01

    Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP) to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs) from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5–50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag0, which generate Ag0/Ag2O-NPs. Findings presented in this manuscript put forth a novel, simple

  20. Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances

    SciTech Connect

    Cao, Jing; Zhao, Yijie; Lin, Haili; Xu, Benyan; Chen, Shifu

    2013-10-15

    Novel Ag/AgI/BiOI composites were controllably synthesized via a facile ion-exchange followed by photoreduction strategy by using hierarchical BiOI microflower as substrate. The as-prepared Ag/AgI/BiOI composites were studied by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analyzer and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (λ>420 nm), Ag/AgI/BiOI displayed highly enhanced photocatalytic activities for degradation of methyl orange (MO) compared to the pure hierarchical BiOI, which was mainly ascribed to the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/BiOI ternary system. - Graphical abstract: Ag/AgI/BiOI displayed excellent photocatalytic activities for methyl orange degradation under visible light, which was mainly ascribed to the highly efficient separation of electrons and holes through Z-scheme pathway. Display Omitted - Highlights: • Novel Ag/AgI/BiOI composites were successfully synthesized. • Ag/AgI/BiOI displayed higher visible light activities than those of pure BiOI and AgI. • ·O{sub 2}{sup −} and h{sup +}, especially ·O{sub 2}{sup −}, dominated the photodegradation process of MO. • A Z-scheme pattern was adopted for Ag/AgI/BiOI activity enhancement.