Science.gov

Sample records for ags cell line

  1. Apoptosis and G2/M arrest induced by Allium ursinum (ramson) watery extract in an AGS gastric cancer cell line

    PubMed Central

    Xu, Xiao-yan; Song, Guo-qing; Yu, Yan-qiu; Ma, Hai-ying; Ma, Ling; Jin, Yu-nan

    2013-01-01

    Background The present study was designed to determine whether Allium ursinum L (ramson) could inhibit the proliferation of human AGS gastric cancer cells. Furthermore, we attempted to determine whether this inhibition could occur by targeting regulatory elements of the cell cycle. Methods Flow cytometry was used to observe apoptosis and the cell cycle in AGS cell lines treated or not treated with ramson watery extract. Proteins related to the cell cycle were detected by Western blotting. Caspase activity was measured using a colorimetric assay kit according to the manufacturer’s instructions. Results Ramson watery extract induced apoptosis and G2/M phase arrest in AGS cells. Western blotting showed that cyclin B was inhibited by ramson watery extract. However, G1 phase-related proteins remain unchanged after treatment. Conclusion Our results indicate that ramson effectively sup pressed proliferation and induced apoptosis and G2/M arrest in AGS cells by regulating elements of the cell cycle. PMID:23836991

  2. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    SciTech Connect

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho . E-mail: keesh@korea.ac.kr

    2005-08-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear {beta}-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear {beta}-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3{beta} activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death.

  3. Inhibitory effects of rHP-NAP IgY against Helicobacter pylori attachment to AGS cell line.

    PubMed

    Borhani, Katayoun; Mohabati Mobarez, Ashraf; Khabiri, Ali Reza; Behmanesh, Mehrdad; Khoramabadi, Nima

    2016-08-01

    Helicobacter pylori is a major human pathogen related to gastric adenocarcinoma and gastroduodenal diseases. Treatment of H. pylori infections is complicated by the rise of antibiotic resistance, necessitating investigation of alternative therapies. One such alternative is passive immunization by oral administration of antibacterial immunoglobulin. In the present study, chicken immunoglobulin (IgY) was used for passive immunotherapy against a major virulence factor of H. pylori, namely recombinant HP-Nap protein. Recombinant HP-Nap was prepared and used to immunize hens. IgY was purified from the eggs by polyethylene glycol precipitation method with a total IgY-HP-NAP yield of 30 mg per egg. The inhibitory effect of specific IgY on H. pylori attachment was investigated in AGS cell line infected by the bacteria. The results demonstrate the potent effect of IgY- HP-NAP in inhibition of H. pylori attachment to the AGS cells.

  4. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  5. In vitro and in vivo studies on antitumor effects of gossypol on human stomach adenocarcinoma (AGS) cell line and MNNG induced experimental gastric cancer

    SciTech Connect

    Gunassekaran, G.R.; Kalpana Deepa Priya, D.; Gayathri, R.; Sakthisekaran, D.

    2011-08-12

    Highlights: {yields} Gossypol is a well known polyphenolic compound used for anticancer studies but we are the first to report that gossypol has antitumor effect on MNNG induced gastric cancer in experimental animal models. {yields} Our study shows that gossypol inhibits the proliferation of AGS (human gastric adenocarcinoma) cell line. {yields} In animal models, gossypol extends the survival of cancer bearing animals and also protects the cells from carcinogenic effect. {yields} So we suggest that gossypol would be a potential chemotherapeutic and chemopreventive agent for gastric cancer. -- Abstract: The present study has evaluated the chemopreventive effects of gossypol on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis and on human gastric adenocarcinoma (AGS) cell line. Gossypol, C{sub 30}H{sub 30}O{sub 8}, is a polyphenolic compound that has anti proliferative effect and induces apoptosis in various cancer cells. The aim of this work was to delineate in vivo and in vitro anti-initiating mechanisms of orally administered gossypol in target (stomach) tissues and in human gastric adenocarcinoma (AGS) cell line. In vitro results prove that gossypol has potent cytotoxic effect and inhibit the proliferation of adenocarcinoma (AGS) cell line. In vivo results prove gossypol to be successful in prolonging the survival of MNNG induced cancer bearing animals and in delaying the onset of tumor in animals administrated with gossypol and MNNG simultaneously. Examination of the target (stomach) tissues in sacrificed experimental animals shows that administration of gossypol significantly reduces the level of tumor marker enzyme (carcino embryonic antigen) and pepsin. The level of Nucleic acid contents (DNA and RNA) significantly reduces, and the membrane damage of glycoprotein subsides, in the target tissues of cancer bearing animals, with the administration of gossypol. These data suggest that gossypol may create a beneficial effect in patients

  6. Optimization of in vitro HBV replication and HBsAg production in HuH7 cell line.

    PubMed

    Cavallone, Daniela; Moriconi, Francesco; Colombatto, Piero; Oliveri, Filippo; Bonino, Ferruccio; Brunetto, Maurizia Rossana

    2013-04-01

    The Gunther's vector-free method (GM), using PCR-amplified full length HBV-DNA (fl-HBV-DNA), is currently the best in vitro HBV replication system despite the low intracellular HBV-DNA production. The replication efficiency and HBsAg secretion of 12 isolates from HBsAg/HBeAg positive sera by GM, Monomer-Linear-Sticky-Ends-DNA (MLSE) and Monomer-Circular-Closed (MCC) were compared in HuH7 cells. Eight of twelve genomes (67%) were replication competent by GM; however direct sequencing (DS) showed that more than 80% of input DNA was undigested in spite of SapI treatment. Replication Intermediates (RI) were detected earlier (24 vs. 48h) and in higher amounts (2.51±0.32 and 6.43±0.43 fold) by MCC than GM or MLSE. By MCC 10 of 12 genomes (83%) were replication competent and 7 produced high RI levels. RI and HBsAg kinetics correlated positively in MCC (R=0.696, p=0.017 overall; R=0.928, p=0.008), but not in GM (R=-0.437, p=0.179 overall; R=-0.395, p=0.439) in genotype D isolates. In conclusion, HBV-DNA circularization prior transfection improves in vitro viral replication and replication competent HBsAg production, mimicking better the in vivo conditions.

  7. Production of specific IgY Helicobacter pylori recombinant OipA protein and assessment of its inhibitory effects towards attachment of H. pylori to AGS cell line

    PubMed Central

    Borhani, Katayoun; Behmanesh, Mehrdad; Khoramabadi, Nima

    2015-01-01

    Purpose The common triple therapy for Helicobacter pylori is challenged by the increasing cases of antibiotic resistant infections, raising the need to explore alternative therapies. Oral administration of egg yolk immunoglobulin Y (IgY) has been previously reported as a means of passive immunization therapy for H. pylori infections. In this work, we investigated the inhibitory effect of IgY on the attachment of H. pylori to AGS cell line. Materials and Methods Recombinant OipA was prepared. Hens were immunized with recombinant protein three times. IgY was purified from egg yolks of immunized hens using polyethylene glycol precipitation method. The inhibitory effect of the specific immunoglobulin was evaluated in AGS cell line infected with H. pylori. Results The presence of recombinant OipA (30 kD) was confirmed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immunization of hens was confirmed using enzyme-linked immunosorbent assay. The purified IgY from egg yolks were assessed using SDS-PAGE and confirmed by western blot. Conclusion The results showed that IgY-OipA had inhibitory effect on attachment of H. pylori to AGS cell line and may be utilized as a therapeutic or prophylaxis material. PMID:26273576

  8. Upregulation of microRNA-574-3p in a human gastric cancer cell line AGS by TGF-β1.

    PubMed

    Zhang, Renwen; Wang, Mingqi; Sui, Pengcheng; Ding, Lei; Yang, Qing

    2017-03-20

    The mechanisms that regulate miR-574-3p expression in cells remain elusive. In the present study, we used real-time PCR assay to demonstrate TGF-β1-induced miR-574-3p upregulation in AGS cells, which was inhibited by TGF-β receptor I inhibitor SB431542. We used a computer search to identify Smad binding sites upstream of the miR-574-3p precursor sequence. We demonstrated that silencing Smad4, but not Smad2 or Smad3, significantly inhibited the TGF-β1-induced miR-574-3p upregulation in AGS cells. Furthermore, TGF-β1 significantly increased the activity of a dual-luciferase reporter that contains the Smad binding sites upstream of the miR-574 precursor sequence. Silencing Smad4 significantly inhibited the TGF-β1-induced increase in the activity of the reporter in AGS cells. ChIP assay showed that Smad4 directly bound to the promoter of miR-574-3p. MiR-574-3p inhibition was effective in eliminating the inhibition of AGS cell proliferation induced by TGF-β1, suggesting that TGF-β1 inducing upregulation of miR-574-3p is functionally significant.

  9. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    SciTech Connect

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  10. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum.

    PubMed

    Venugopal, K; Rather, H A; Rajagopal, K; Shanthi, M P; Sheriff, K; Illiyas, M; Rather, R A; Manikandan, E; Uvarajan, S; Bhaskar, M; Maaza, M

    2017-02-01

    In the present report, silver nanoparticles were synthesized using Piper nigrum extract for in vitro cytotoxicity efficacy against MCF-7 and HEP-2 cells. The silver nanoparticles (AgNPs) were formed within 20min and after preliminarily confirmation by UV-Visible spectroscopy (strong peak observed at ~441nm), they were characterized by using FT-IR and HR-TEM. The TEM images show spherical shape of biosynthesized AgNPs with particle size in the range 5-40nm while as compositional analysis were observed by EDAX. MTT assays were carried out for cytotoxicity of various concentrations of biosynthesized silver nanoparticles and Piper nigrum extract ranging from 10 to 100μg. The biosynthesized silver nanoparticles showed a significant anticancer activity against both MCF-7 and Hep-2 cells compared to Piper nigrum extract which was dose dependent. Our study thus revealed an excellent application of greenly synthesized silver nanoparticles using Piper nigrum. The study further suggested the potential therapeutic use of these nanoparticles in cancer study.

  11. Physics of the AGS-to-RHIC transfer line commissioning

    SciTech Connect

    Satogata, T.; Ahrens, L.; Brennan, M.; Brown, K.; Clifford, T.; Connolly, R.; Dell, F.; Deng, D.P.; Hoff, L.; Kewisch, J.; MacKay, W.W.; Maldonado, G.; Martin, B.; Olsen, R.; Peggs, S.; Pilat, F.; Robinson, T.; Sathe, S.; Shea, D.; Shea, T.J.; Tanaka, M.; Thompson, P.; Tepikian, S.; Trahern, C.G.; Trbojevic, D.; Tsoupas, N.; Wei, J.; Witkover, R.; Zhou, P.

    1996-07-01

    This paper presents beam physics results from the fall 1995 AGS-to- RHIC (ATR) transfer line commissioning run with fully ionized gold nuclei. We first describe beam position monitors and transverse video profile monitors, instrumentation relevant to measurements performed during this commissioning. Measured and corrected beam trajectories demonstrate agreement with design optics to a few percent, including optical transfer functions and beamline dispersion. Digitized 2- dimensional video profile monitors were used to measure beam emittance, and beamline optics and AGS gold ion beam parameters are shown to be comparable to RHIC design requirements.

  12. Cell line provenance.

    PubMed

    Freshney, R Ian

    2002-07-01

    Cultured cell lines have become an extremely valuable resource, both in academic research and in industrial biotechnology. However, their value is frequently compromised by misidentification and undetected microbial contamination. As detailed elsewhere in this volume, the technology, both simple and sophisticated, is available to remedy the problems of misidentification and contamination, given the will to apply it. Combined with proper records of the origin and history of the cell line, assays for authentication and contamination contribute to the provenance of the cell line. Detailed records should start from the initiation or receipt of the cell line, and should incorporate data on the donor as well as the tissue from which the cell line was derived, should continue with details of maintenance, and include any accidental as well as deliberate deviations from normal maintenance. Records should also contain details of authentication and regular checks for contamination. With this information, preferably stored in a database, and suitable backed up, the provenance of the cell line so created makes the cell line a much more valuable resource, fit for validation in industrial applications and more likely to provide reproducible experimental results when disseminated for research in other laboratories.

  13. Gastroprotective activities of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) on the growth of the stomach cancer AGS cell line and indomethacin-induced gastric ulcers.

    PubMed

    Chung, Cheng-Pei; Hsia, Shih-Min; Lee, Ming-Yi; Chen, Hong-Jhang; Cheng, Faiwen; Chan, Lu-Chi; Kuo, Yueh-Hsiung; Lin, Yun-Lian; Chiang, Wenchang

    2011-06-08

    Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seeds have long been used to treat warts, chapped skin, rheumatism, and neuralgia in traditional Chinese medicine (TCM). Recently, studies demonstrated its anti-inflammatory, antiproliferative, antitumor, and antiallergic activities. In the present study, we first report the gastroprotective effects of dehulled adlay (DA) seeds, which consist of bran (AB) and endosperm (AE). The DA ethanolic extract (DAE) was prepared, along with the AB and AE ethanolic extracts (ABE and AEE), and the inhibitory effects of these extracts were tested on the AGS gastric cancer cell line. Results indicated that the ABE showed better antiproliferative activity, and 19 compounds were purified from AB in a further phenolic-compound-guided separation. Among the isolated compounds, caffeic and chlorogenic acids significantly suppressed the growth of AGS cells. In addition, the antiulcer activity of DA was examined in an indomethacin-induced gastric lesion model. The ulcer index (UI) and oxidative biomarkers in animals decreased, while the non-protein sulfhydryl (NPSH) groups were elevated when given DA. This is the first investigation of antiulcer activity of adlay, and we demonstrated that the antioxidative-active phenolic acids in DA contribute to some portion of the gastroprotective effects.

  14. Induction of experimental autoimmune uveoretinitis by T-cell lines.

    PubMed Central

    Rozenszajn, L A; Muellenberg-Coulombre, C; Gery, I; el-Saied, M; Kuwabara, T; Mochizuki, M; Lando, Z; Nussenblatt, R B

    1986-01-01

    Experimental autoimmune uveoretinitis was induced in genetically susceptible Lewis rats by passive transfer of T-lymphocyte cell lines from long-term cultures primed against soluble retinal antigen (S-Ag). A continuous T-cell line was established from non-adherent lymph node cells of S-Ag-immunized Lewis rats. The lymphoid cells were propagated in vitro by serially restimulating them with S-Ag in the presence of irradiated syngeneic spleen cells and expanding them in IL-2-containing media. The cell lines exhibited markers specific for T lymphocytes and the majority had the helper phenotype. When naïve rats were inoculated intravenously with anti S-Ag T-cell lines re-exposed to the antigen prior to injection, they developed uveoretinitis with both clinical and histological characteristics in half the time required by S-Ag to induce the disease by active immunization. The rats exhibited a delayed hypersensitivity skin reaction towards S-Ag. Images Figure 2 Figure 3 PMID:3485569

  15. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast

    PubMed Central

    Ortega, Francisco G; Fernández-Baldo, Martín A; Fernández, Jorge G; Serrano, María J; Sanz, María I; Diaz-Mochón, Juan J; Lorente, José A; Raba, Julio

    2015-01-01

    In the present article, we describe a study of antitumor activity in breast cell lines using silver nanoparticles (Ag NPs) synthesized by a microbiological method. These Ag NPs were tested for their antitumor activity against MCF7 and T47D cancer cells and MCF10-A normal breast cell line. We analyzed cell viability, apoptosis induction, and endocytosis activity of those cell lines and we observed that the effects of the biosynthesized Ag NPs were directly related with the endocytosis activity. Moreover, Ag NPs had higher inhibition efficacy in tumor lines than in normal lines of breast cells, which is due to the higher endocytic activity of tumor cells compared to normal cells. In this way, we demonstrate that biosynthesized Ag NPs can be an alternative for the treatment of tumors. PMID:25844035

  16. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast.

    PubMed

    Ortega, Francisco G; Fernández-Baldo, Martín A; Fernández, Jorge G; Serrano, María J; Sanz, María I; Diaz-Mochón, Juan J; Lorente, José A; Raba, Julio

    2015-01-01

    In the present article, we describe a study of antitumor activity in breast cell lines using silver nanoparticles (Ag NPs) synthesized by a microbiological method. These Ag NPs were tested for their antitumor activity against MCF7 and T47D cancer cells and MCF10-A normal breast cell line. We analyzed cell viability, apoptosis induction, and endocytosis activity of those cell lines and we observed that the effects of the biosynthesized Ag NPs were directly related with the endocytosis activity. Moreover, Ag NPs had higher inhibition efficacy in tumor lines than in normal lines of breast cells, which is due to the higher endocytic activity of tumor cells compared to normal cells. In this way, we demonstrate that biosynthesized Ag NPs can be an alternative for the treatment of tumors.

  17. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  18. Genome Sequence of the Parainfluenza Virus 5 Strain That Persistently Infects AGS Cells

    PubMed Central

    Wignall-Fleming, Elizabeth; Young, Dan F.; Goodbourn, Steve; Davison, Andrew J.

    2016-01-01

    We have sequenced the parainfluenza virus 5 strain that persistently infects the commonly used AGS human cell line without causing cytopathology. This virus is most closely related to human strains, indicating that it may have originated from biopsy material or from laboratory contamination during generation of the cell line. PMID:27445371

  19. Matching the BtA line to the bare-AGS (Part 1)

    SciTech Connect

    Tsoupas,N.; Glenn, J. W.; Huan, H.; MacKay, W. W.; Raparia, D.; Zeno, K.

    2008-11-01

    The Booster to AGS (BtA) transfer line [Ref for BtA line] transports the beam bunches from the AGS-Booster to the AGS synchrotron, and also matches the beam parameters ({beta}{sub x,y}, {alpha}{sub x,y}) and dispersion functions ({eta}{sub x,y}, {eta}{prime}{sub x,y}) of the transported beam to the corresponding quantities of the circulating beam in AGS, at the AGS injection point. In this technical note we describe in details, the calculations of the matching procedure of the BtA line to the bare-AGS, and provide magnet settings for the MAD-model of the BtA transfer line which is 'matched' to the bare-AGS. In a separate but more concise technical note (Part II) we will present results on the beam optics of the BtA beam line which is 'matched' to the AGS with two helical snakes.

  20. Production of occlusion bodies of Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line: influence of infection conditions and statistical optimization.

    PubMed

    Micheloud, Gabriela A; Gioria, Verónica V; Pérez, Gustavo; Claus, Juan D

    2009-12-01

    The influence of the conditions of infection on the yield of occlusion bodies (OBs) of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), produced in serum-free suspension cultures of saUFL-AG-286 cells, was investigated by two 2(2) full factorial experiments with centre point. Each experiment tested the effects of the initial cell density and the multiplicity of infection at two levels, in the four possible combinations of levels and conditions, plus a further combination with each condition set at the middle of its extreme levels. The yield of occlusion bodies proved to be sensitive to the modification of infection conditions. Maximum yield as high as 3 x 10(8) OBs mL(-1) was attained provided that the maximum density of viable cells was in the range between 4 and 8 x 10(5) cells mL(-1). The optimum value of the maximum density of viable cells could be reached by the combination of several values of initial cell density and multiplicity of infection. A regression model was established and validated in order to optimize the infection conditions. These results demonstrate the importance of an adequate selection of infection conditions, and they could be useful in the development of a feasible in vitro process to produce the AgMNPV insecticide in a new serum-free medium.

  1. Pediatric brain tumor cell lines.

    PubMed

    Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

    2015-02-01

    Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.

  2. Spectral Line Variations of Symbiotic Stars EG And, AG Dra, and BX Mon and Its Interpretation

    NASA Astrophysics Data System (ADS)

    Yoon, Tae Seog; Kim, Soo Hyun; Moon, Hyeonwoo; Kim, Kyu-Seob; Oh, Hyungil

    2013-02-01

    We present some results obtained by high resolution spectroscopic observations for symbiotic stars EG And, AG Dra, and BX Mon in recent years which were performed with 1.8-m reflector and echelle spectrograph BOES at Bohyunsan Optical Astronomy Observatory, Youngcheon, South Korea. The variations of Hα emission line during a night and the variations of H Balmer lines and He I emission lines among several analyzed lines over months and years are shown and discussed.

  3. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    PubMed Central

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  4. Induction of apoptosis by opium in some tumor cell lines.

    PubMed

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  5. Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines

    NASA Astrophysics Data System (ADS)

    Netchareonsirisuk, Ponsawan; Puthong, Songchan; Dubas, Stephan; Palaga, Tanapat; Komolpis, Kittinan

    2016-11-01

    Silver nanoparticles (AgNPs) are among the most widely used nanomaterials in medical and consumer products. However, safety in the uses of AgNPs is still controversial. The toxicity of AgNPs toward various cell types has been reported to depend on the surface properties of the nanoparticles. In this study, the effect of AgNPs with the average size of 5-15 nm on the viability of the CCD-986SK human normal skin fibroblast cell line and A375 human malignant melanoma cell line was evaluated. Comparative toxicity studies, based on MTT assay, were performed by using either sodium alginate or poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) as capping agent in the nanoparticle preparation. The cytotoxicity tests revealed that AgNO3 alone was highly toxic to both cell types while both alginate and PSSMA alone were not toxic. AgNPs capped with alginate were selectively toxic to the cancer cell line but not to the normal cell line while AgNPs capped with PSSMA were toxic to both cancer and normal cell lines. Judging from the 50 % inhibition concentration (IC50), it was found that the cancer cell line was more sensitive to AgNPs than the normal cell line. Study on the mode of cell death by annexin V and propidium iodide staining revealed that AgNPs induced more apoptotic cell death (84-90 %) than necrosis (8-12 %) in the skin cancer cell line. These results suggest that the toxicity of AgNPs depended on the type of capping agent and the type of cell line.

  6. Novel hypophysiotropic AgRP2 neurons and pineal cells revealed by BAC transgenesis in zebrafish

    PubMed Central

    Shainer, Inbal; Buchshtab, Adi; Hawkins, Thomas A.; Wilson, Stephen W.; Cone, Roger D.; Gothilf, Yoav

    2017-01-01

    The neuropeptide agouti-related protein (AgRP) is expressed in the arcuate nucleus of the mammalian hypothalamus and plays a key role in regulating food consumption and energy homeostasis. Fish express two agrp genes in the brain: agrp1, considered functionally homologous with the mammalian AgRP, and agrp2. The role of agrp2 and its relationship to agrp1 are not fully understood. Utilizing BAC transgenesis, we generated transgenic zebrafish in which agrp1- and agrp2-expressing cells can be visualized and manipulated. By characterizing these transgenic lines, we showed that agrp1-expressing neurons are located in the ventral periventricular hypothalamus (the equivalent of the mammalian arcuate nucleus), projecting throughout the hypothalamus and towards the preoptic area. The agrp2 gene was expressed in the pineal gland in a previously uncharacterized subgroup of cells. Additionally, agrp2 was expressed in a small group of neurons in the preoptic area that project directly towards the pituitary and form an interface with the pituitary vasculature, suggesting that preoptic AgRP2 neurons are hypophysiotropic. We showed that direct synaptic connection can exist between AgRP1 and AgRP2 neurons in the hypothalamus, suggesting communication and coordination between AgRP1 and AgRP2 neurons and, therefore, probably also between the processes they regulate. PMID:28317906

  7. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition.

    PubMed

    Yue, Yang; Behra, Renata; Sigg, Laura; Fernández Freire, Paloma; Pillai, Smitha; Schirmer, Kristin

    2015-02-01

    In aqueous solutions, silver nanoparticle (AgNP) behavior is affected by a variety of factors which lead to altered AgNP size and toxicity. Our research aims to explore the effect of media composition on citrate-coated AgNP (cit-AgNP) behavior and toxicity to the cell line from rainbow trout (Oncorhynchus mykiss) gill, RTgill-W1. Three different exposure media (L15/ex, L15/ex w/o Cl and d-L15/ex) were used. These were characterized by varying ionic strength and chloride content, both of which had a dominant effect on the behaviour of cit-AgNP. Comparing the behaviour and toxicity of cit-AgNP in the different media, stronger agglomeration of cit-AgNP correlated with higher toxicity. Deposition of cit-AgNP on cells might explain the higher toxicity of agglomerated cit-AgNP compared to that of suspended cit-AgNP. The cit-AgNP concentration-response curves as a function of dissolved silver ions, and the limited prevention of toxicity by silver ligands, indicated that cit-AgNP elicited a particle-specific effect on the cells. Furthermore, the lysosomal membrane integrity was significantly more sensitive to cit-AgNP exposure than cellular metabolic activity or cell membrane integrity and showed the weakest protection by silver ligands. This revealed that cit-AgNP toxicity seems to particularly act on RTgill-W1 cell lysosomes. The newly developed low ionic strength medium, d-L15/ex, which can stabilize cit-AgNP and better mimic the freshwater environment, offers an excellent exposure solution to study cellular and molecular effects of NP to gill cells.

  8. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  9. Improvement plans for the RHIC/AGS on-line model environments

    SciTech Connect

    Brown,K.A.; Ahrens, L.; Beebe-Wang, J.; Morris, J.; Nemesure, S.; Robert-Demolaize, G.; Satogata, T.; Schoefer, V.; Tepikian, S.

    2009-08-31

    The on-line models for Relativistic Ion Collider (RHIC) and the RHIC pre-injectors (the AGS and the AGS Booster) can be thought of as containing our best collective knowledge of these accelerators. As we improve these on-line models we are building the framework to have a sophisticated model-based controls system. Currently the RHIC on-line model is an integral part of the controls system, providing the interface for tune control, chromaticity control, and non-linear chromaticity control. What we discuss in this paper is our vision of the future of the on-line model environment for RHIC and the RHIC preinjectors. Although these on-line models are primarily used as Courant-Snyder parameter calculators using live machine settings, we envision expanding these environments to encompass many other problem domains.

  10. Non-contact printing of high aspect ratio Ag electrodes for polycrystalline silicone solar cell with electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Jang, Yonghee; Hartarto Tambunan, Indra; Tak, Hyowon; Dat Nguyen, Vu; Kang, TaeSam; Byun, Doyoung

    2013-03-01

    This paper presents a non-contact printing mechanism for high aspect ratio silver (Ag) electrodes fabricated by an electrohydrodynamic (EHD) jet printing technique. Using high viscosity Ag paste ink, we were able to fabricate narrow and high aspect ratio electrodes. We investigated the effect of the surface energy of the substrate and improved the aspect ratio of printed lines through multiple printing. We fabricated the polycrystalline silicone solar cell with the Ag electrode and achieved cell efficiency of around 13.7%. The EHD jet printing mechanism may be an alternative method for non-contact fabrication of solar cells electrodes.

  11. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells

    NASA Astrophysics Data System (ADS)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-03-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  12. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    PubMed

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  13. The Effects of Aqueous Extract of Alpinia Galangal on Gastric Cancer Cells (AGS) and L929 Cells in Vitro

    PubMed Central

    Hadjzadeh, Mosa-Al-Reza; Ghanbari, Habib; Keshavarzi, Zakieh; Tavakol-Afshari, Jalil

    2014-01-01

    Background Although the incidence of gastric cancer is declining during the last half century, this cancer still is the second morbid cancer in the world after lung cancer. The incidence of gastric cancer is 26 per 100,000 in Iran. This study evaluated the effect of Alpinia galangal on AGS cells (human gastric adenocarcinoma epithelial cell line) and L929 cells (as a standard cell line originated from mouse fibroblast cells). Methods After culturing the cells in Roswell Park Memorial Institute (RPMI) medium, the cells were incubated with different doses of Alpinia galangal (0 (control), 125, 250, 500, 750 and 1000 µg/ml) in 24, 48 and 72 hour periods and then, cells viability were assessed using MTT based cell proliferation assay. Results After 24 hours, the percentage of living AGS cells compared to the control group showed no significant decrease at the concentrations of 125 and 250µg/ml. But in the rest concentrations were significant (p<0.05). Only, the percentage of surviving L929 cells at concentration of 125µg/ml of the extract was not significant, but these percentages in the other concentrations were significant. After 48 and 72h incubation, in the last three extract concentrations, the percentage of living AGS and L929 cells significantly decreased compared to control cells (p<0.05). Conclusion We have demonstrated, using cell culture model, anti-proliferative effect of aqueous extract of Alpinia galangal on human gastric tumor (AGS) and L929 cell lines. This effect was prominent in high concentrations. PMID:25250165

  14. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells.

    PubMed

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.

  15. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells

    PubMed Central

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P.

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag. PMID:26061169

  16. Low Carrier Density Metal Realized in Candidate Line-Node Dirac Semimetals CaAgP and CaAgAs

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiko; Inohara, Takumi; Yamakage, Ai; Yamakawa, Youichi; Takenaka, Koshi

    2016-12-01

    We study polycrystalline samples of the hexagonal pnictides, CaAgP and CaAgAs, both of which are ideal candidates for line-node Dirac semimetals. The polycrystalline samples of CaAgP and CaAgAs obtained in this study are low-carrier metals, where hole carriers are dominant. By combining the hole carrier densities estimated from Hall coefficients and the electronic structures calculated by first principles calculations, both samples are found to have a ring-torus Fermi surface, derived from a ring-shaped Dirac line node. In the phosphide sample, the Fermi energy EF is located at around the end of the linear dispersion region of the electronic bands, while the EF in the arsenide sample exists in the middle of this region, suggesting that the arsenide is a more promising system for uncovering the physics of line-node Dirac semimetals.

  17. Chapter 6. available lepidopteran insect cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter lists the known cell lines from Lepidoptera, largely based on previous compilations of insect cell lines published by W. Fred Hink. More than 320 lines from 65 species are listed. The official designation is given for each cell line as well as the species, tissue source, and, when kno...

  18. Distinction of two different classes of small-cell lung cancer cell lines by enzymatically inactive neuron-specific enolase.

    PubMed Central

    Splinter, T. A.; Verkoelen, C. F.; Vlastuin, M.; Kok, T. C.; Rijksen, G.; Haglid, K. G.; Boomsma, F.; van de Gaast, A.

    1992-01-01

    Neuron specific enolase (NSE) is widely used as a neuro-endocrine marker. However the presence of NSE in many non-neuroendocrine tissues has raised questions on the specificity of NSE. We have investigated NSE immunoreactivity (NSA-ag), gamma-enolase activity and total enolase activity in small cell lung cancer (SCLC) cell lines. During well-controlled exponential growth comparison of NSE-ag content and gamma-enolase activity with the doubling-time (Td) and NSE-ag content with gamma-enolase and total enolase activity led to a clear distinction of two types of cell line: variant cell lines plus part of the classic cell lines (type I) and the remaining classic cell lines (type II). The distinction was based upon both an abrupt 6-fold increase of gamma-enolase activity and an 18-fold increase of NSE-ag, which for the larger part was enzymatically inactive. Within each group the increase of NSE-ag content was significantly correlated with the increase of gamma-enolase activity and both NSE-ag content and gamma-enolase activity increased linearly with Td. It is concluded that gamma-enolase seems to be associated with the regulation of growth rate and that a compound with the gamma-enolase antigen but without enzyme activity can distinguish two different classes of SCLC cell lines. Furthermore the demonstration that NSE-ag can represent the active enzyme as well as an enzymatically inactive compound may explain why a controversy about neuron- or non-specificity of NSE exists. PMID:1333786

  19. Nanocomposite Ag-LSM solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    Advances in infiltration technology have enabled the creation of innovative electrode architectures that are key to highly effective SOFC anodes and cathodes. In this work, an Ag-infiltrated electrode has been created using a pre-sintered porous scandia-stabilized zirconia (SSZ) electrode backbone. The well-sintered SSZ provides a highly connected ion-conducting pathway throughout the electrode, while the nanometer thickness of the Ag particle layer minimizes the oxygen transport resistance that otherwise limits reaction rates in typical Ag composite electrodes. The new Ag composite electrode had minimal activation polarization by 750 °C. The infiltration technology has allowed for incorporation of additional nanoscale electrocatalysts. Here, an Ag-LSM (strontium-doped lanthanum manganate) composite was produced, that takes advantage of each component catalyst and demonstrates a further enhanced effectiveness of the cathode Ag metal catalyst, producing relatively stable cell power densities of 316 mW cm -2 at 0.7 V (and 467 mW cm -2 peak power at ∼0.4 V) for over 500 h.

  20. Noncentrosymmetric Line-Node Dirac semimetal CaAgX (X=P, As)

    NASA Astrophysics Data System (ADS)

    Yamakage, Ai; Yamakawa, Youichi; Tanaka, Yukio; Okamoto, Yoshihiko

    Noncentrosymmetric ternary pnictide CaAg X (X = P, As) is shown to be a topological line-node semimetal protected solely by mirror-reflection symmetry. The band gap vanishes on a circle in momentum space and surface states emerge within the circle. The Z2 topological invariant ν related to the surface states is defined from the Berry phase and mirror-reflection symmetry. Extending this study to spin-orbit coupled systems reveals that, compared with CaAgP, a substantial band gap is induced in CaAgAs by large spin-orbit interaction. The resulting states are a topological insulator, in which the Z2 topological invariant is given by 1;000. We have found that the Z2 topological invariants ν0, ν1, ν2, and ν3 for time-reversal-invariant insulators without spatial-inversion symmetry and with mirror-reflection symmetry are calculated from the Z2 invariant ν for a line node in the absence of spin-orbit interaction. Namely, line-node Dirac semimetals protected by mirror-reflection symmetry turn into strong topological insulators owing to spin-orbit interaction. [AY, Y. Yamakawa, Y. Tanaka, and Y. Okamoto, arXiv:1510.00202

  1. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  2. Methanolic Extract of Ganoderma lucidum Induces Autophagy of AGS Human Gastric Tumor Cells.

    PubMed

    Reis, Filipa S; Lima, Raquel T; Morales, Patricia; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2015-09-29

    Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement.

  3. Effect of Di(2-ethylhexyl)phthalate on Helicobacter pylori-Induced Apoptosis in AGS Cells

    PubMed Central

    Wu, Chien-Yi; Kou, Hwang-Shang; Chen, Chiao-Yun; Huang, Meng-Chuan; Hu, Huang-Ming; Wu, Meng-Chieh; Lu, Chien-Yu; Wu, Deng-Chyang; Wu, Ming-Tsang; Kuo, Fu-Chen

    2013-01-01

    Plastic products are wildly used in human life. Di(2-ethylhexyl)phthalate (DEHP) is an essential additive in plastic manufacturing and is used as plasticizer for many products including plastic food packaging. DEHP is a teratogenic compound and can cause potent reproductive toxicity. DEHP can also cause liver damage, peroxisome proliferation, and carcinogenesis. DEHP is also strongly associated with peptic ulcers and gastric cancer; however, the underlying effect and mechanism of DEHP on the gastrointestinal tract are not entirely clear. The oral infection route of H. pylori parallels the major ingestion route of DEHP into the human body. Therefore, we wanted to study the effect of DEHP and H. pylori exposure on the human gastric epithelial cell line, AGS (gastric adenocarcinoma). The viability of the AGS cell line was significantly lower in 80 μM-DEHP and H. pylori (MOI = 100 : 1) coexposure than DEHP or H. pylori alone. DEHP and H. pylori coexposure also induced caspase-3 activation, and increased Bax/Bcl-2 ratio and DNA fragmentation in AGS cells. These results indicate that DEHP can enhance H. pylori cytotoxicity and induce gastric epithelial cell apoptosis. Therefore, it is possible that DEHP and H. pylori coexposure might enhance the disruption of the gastric mucosa integrity and potentially promote the pathogenesis of gastric carcinogenesis. PMID:24454344

  4. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells.

    PubMed

    Torres-Martínez, A C; Gallardo-Vera, J F; Lara-Holguin, A N; Montaño, L F; Rendón-Huerta, E P

    2017-01-01

    Claudins participate in tissue barrier function. The loss of this barrier is associated to metalloproteases-related extracellular matrix and basal membranes degradation. Claudin-1 is a pro-MMP-2 activator and claudin-6 transfected AGS (AGS-Cld6) cells are highly invasive. Our aim was to determine if claudin-6 was direct or indirectly associated with MMP-2 activation and cell invasiveness. Cytofluorometry, cell fractioning, immunoprecipitation, gelatin-zymography, cell migration and invasiveness assays were performed, claudin-2, -6, -7 and -9 transfected AGS cells, anti-MMP-2, -9 and -14, anti-claudins specific antibodies and claudin-1 small interfering RNA were used. The results showed a significant (p<0.001) overexpression of claudin-1 in AGS-Cld6 cell membranes. A strong MMP-2 activity was identified in culture supernatants of AGS-Cld6. Claudin-1 co-localized with MMP-2 and MMP-14; interestingly a significant increase in cell membrane and cytosol MMP-14 expression was detected in AGS-Cld6 cells (p<0.05). Silencing of claudin-1 in AGS-Cld6 cells showed a 60% MMP-2 activity decrease in culture supernatants and a significant decrease (p<0.05) in cell migration and invasiveness. Our results suggest that claudin-6 induces MMP-2 activation through claudin-1 membrane expression, which in turn promotes cell migration and invasiveness.

  5. Apoptosis of AGS human gastric adenocarcinoma cells by methanolic extract of Dictamnus

    PubMed Central

    Park, Hyun Soo; Hong, Noo Ri; Ahn, Tae Seok; Kim, Hyungwoo; Jung, Myeong Ho; Kim, Byung Joo

    2015-01-01

    Background: The root bark of Dictamnus dasycarpus Turcz has traditionally been used in East Asia to treat skin diseases such as eczema, atopic dermatitis, and psoriasis. However, it has also been reported to exhibit an anti-proliferative effect on cancer cells. Objective: To investigate the anti-cancer effects of a methanol extract of Dictamnus dasycarpus root bark (MEDD) on AGS cells (a human gastric adenocarcinoma cell-line). Materials and Methods: An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay, a caspase activity assay, cell cycle analysis, mitochondrial membrane potential (MMP) measurements, and western blotting were used to investigate the anti-cancer effects of MEDD on AGS cells. Results: Treatment with MEDD significantly and concentration-dependently inhibited AGS cell growth. MEDD treatment in AGS cells led to increased accumulation of apoptotic sub-G1 phase cells in a concentration-dependent manner. Also, MEDD reduced the expressions of pro-caspase-3, -8 and -9, and increased the active form of caspase-3. Furthermore, subsequent Western blotting revealed elevated levels of poly (ADP-ribose) polymerase protein. MEDD treatment reduced levels of MMP and anti-apoptotic Bcl-2 and Bcl-xL proteins. Pretreatment with SB203580 (a specific inhibitor of p38 mitogen-activated protein kinases), SP600125 (a potent inhibitor of C-Jun N-terminal kinases), or PD98059 (a potent inhibitor of extracellular signal-regulated kinases) did not modify the effects of MEDD treatment. However, pretreatment with LY294002 (a specific inhibitor of Akt) significantly enhanced MEDD-induced cell death. Conclusion: These results suggest that MEDD-mediated cell death is associated with the intrinsic apoptotic pathway and that inhibition of Akt signaling contributes to apoptosis induction by MEDD. PMID:26664023

  6. Life testing of secondary Ag-Zn cells

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Doreswamy, Rajiv

    1991-01-01

    Testing on a variety of secondary silver-zinc (Ag-Zn) cells has continued at MSFC for the past six years. The latest test involves a 350 amp/hr cell design that was cycled for 12 months and has undergone approximately 5400 low-earth-orbit cycles as well as 12 deep discharges. This test is not only a life test of these cells, but it also addresses different methods of storing the cells between deep discharges. Also, impedance measurements are made on one of the packs during periodic deep discharges. It is hoped that this will give a good correlation between the health of a cell and its impedance.

  7. LINE-1 Cultured Cell Retrotransposition Assay.

    PubMed

    Kopera, Huira C; Larson, Peter A; Moldovan, John B; Richardson, Sandra R; Liu, Ying; Moran, John V

    2016-01-01

    The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells.

  8. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-12-31

    A beam position monitor system has been developed and used in the commissioning of Brookhaven`s Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  9. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  10. Apoptotic effect of sodium acetate on a human gastric adenocarcinoma epithelial cell line.

    PubMed

    Xia, Y; Zhang, X L; Jin, F; Wang, Q X; Xiao, R; Hao, Z H; Gui, Q D; Sun, J

    2016-10-05

    The objective of this study was to investigate the effect of sodium acetate on the viability of the human gastric adenocarcinoma (AGS) epithelial cell line. AGS cells were exposed to a range of concentrations of sodium acetate for different periods of time, and the sodium acetate-induced cytotoxic effects, including cell viability, DNA fragmentation, apoptotic gene expression, and caspase activity, were assessed. The changes in these phenotypes were quantified by performing a lactate dehydrogenase cell viability assay, annexin V staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and several caspase activity assays. In vitro studies demonstrated that the cytotoxicity of sodium acetate on the AGS cell line were dose- and time-dependent manners. No differences were found between the negative control and sodium acetate-treated cells stained with annexin V and subjected to the TUNEL assay. However, caspase-3 activity was increased in AGS cells exposed to sodium acetate. Overall, it was concluded that sodium acetate exerted an apoptotic effect in AGS cells via a caspase-dependent apoptotic pathway.

  11. Toxicity Effect of Silver Nanoparticles on Mice Liver Primary Cell Culture and HepG2 Cell Line.

    PubMed

    Faedmaleki, Firouz; H Shirazi, Farshad; Salarian, Amir-Ahmad; Ahmadi Ashtiani, Hamidreza; Rastegar, Hossein

    2014-01-01

    Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, textiles and medical applications (e.g. wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). For their antibacterial activity, silver nanoparticles are largely used in various commercially available products. Thus, the use of nano-silver is becoming more and more widespread in medicine. In this study we investigated the cytotoxic effects of AgNPs on liver primary cells of mice, as well as the human liver HepG2 cell. Cell viability was examined with MTT assay after HepG2 cells exposure to AgNPs at 1, 2, 3, 4, 5, 7.5, 10 ppm compared to mice primary liver cells at 1, 10, 50, 100, 150, 200, 400 ppm for 24h. AgNPs caused a concentration-dependent decrease of cell viability in both cells. IC50 value of 2.764 ppm (µg/mL) was calculated in HepG2 cell line and IC50 value of 121.7 ppm (µg/mL) was calculated in primary liver cells of mice. The results of this experiment indicated that silver nanoparticles had cytotoxic effects on HepG2 cell line and primary liver cells of mice. The results illustrated that nano-silver had 44 times stronger inhibitory effect on the growth of cancerous cells (HepG2 cell line) compared to the normal cells (primary liver cells of mice). which might further justify AgNPs as a cytotoxic agents and a potential anticancer candidate which needs further studies in this regard.

  12. Line-Node Dirac Semimetal and Topological Insulating Phase in Noncentrosymmetric Pnictides CaAgX (X = P, As)

    NASA Astrophysics Data System (ADS)

    Yamakage, Ai; Yamakawa, Youichi; Tanaka, Yukio; Okamoto, Yoshihiko

    2016-01-01

    Two noncentrosymmetric ternary pnictides, CaAgP and CaAgAs, are reported as topological line-node semimetals protected solely by mirror-reflection symmetry. The band gap vanishes on a circle in momentum space, and surface states emerge within the circle. Extending this study to spin-orbit coupled systems reveals that, compared with CaAgP, a substantial band gap is induced in CaAgAs by large spin-orbit interaction. The resulting states are a topological insulator, in which the Z2 topological invariant is given by 1;000. To clarify the Z2 topological invariants for time-reversal-invariant systems without spatial-inversion symmetry, we introduce an alternative way to calculate the invariants characterizing a line node and topological insulator for mirror-reflection-invariant systems.

  13. Optimization of Gene Transfection in Murine Myeloma Cell Lines using Different Transfection Reagents

    PubMed Central

    Shabani, Mahdi; Hemmati, Sheyda; Hadavi, Reza; Amirghofran, Zahra; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Shokri, Fazel

    2010-01-01

    Purification and isolation of cellular target proteins for monoclonal antibody (MAb) production is a difficult and time-consuming process. Immunization of mice with murine cell lines stably transfected with genes coding for xenogenic target molecules is an alternative method for mouse immunization and MAb production. Here we present data on transfection efficiency of some commercial reagents used for transfection of murine myeloma cell lines. Little is known about transfectability of murine myeloma cell lines by different transfection reagents. Mouse myeloma cell lines (SP2/0, NS0, NS1, Ag8, and P3U1) were transfected with pEGFP-N1 vector using Lipofectamine 2000, jetPEI and LyoVec commercial transfection reagents in different combinations. The transfection permissible HEK293-FT cell line was used as a control in transfection procedure. Transfected cells, expressing the Enhanced Green Fluorescent Protein (EGFP), were analyzed by flow cytometry 48 hrs post transfection. Our results showed transfection efficiency of 71%, 57% and 22% for HEK293-FT, 5.5%, 3.4% and 1% for SP2/0, 55.7%, 21.1% and 9.3% for NS0, 8.2%, 6% and 5.5% for NS1, 22%, 49.2% and 5.5% for Ag8 and 6.3%, 21.5% and 4.6% for P3U1 cell lines after transfection with Lipofectamine 2000, jetPEI and LyoVec reagents, respectively. Our data indicate that NS0 and Ag8 are efficiently transfected by Lipofectamine 2000 and jetPEI reagents. Finally, we propose Ag8 and NS0 cell lines as suitable host cells for efficient expression of target genes which can be used for mouse immunization and MAb production. PMID:23408356

  14. Cell line fingerprinting using retroelement insertion polymorphism.

    PubMed

    Ustyugova, Svetlana V; Amosova, Anna L; Lebedev, Yuri B; Sverdlov, Eugene D

    2005-04-01

    Human cell lines are an indispensable tool for functional studies of living entities in their numerous manifestations starting with integral complex systems such as signal pathways and networks, regulation of gene ensembles, epigenetic factors, and finishing with pathological changes and impact of artificially introduced elements, such as various transgenes, on the behavior of the cell. Therefore, it is highly desirable to have reliable cell line identification techniques to make sure that the cell lines to be used in experiments are exactly what is expected. To this end, we developed a set of informative markers based on insertion polymorphism of human retroelements (REs). The set includes 47 pairs of PCR primers corresponding to introns of the human genes with dimorphic LINE1 (L1) and Alu insertions. Using locus-specific PCR assays, we have genotyped 10 human cell lines of various origins. For each of these cell lines, characteristic fingerprints were obtained. An estimated probability that two different cell lines possess the same marker genotype is about 10-18. Therefore, the proposed set of markers provides a reliable tool for cell line identification.

  15. Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines.

    PubMed

    Juarez-Moreno, K; Gonzalez, E B; Girón-Vazquez, N; Chávez-Santoscoy, R A; Mota-Morales, J D; Perez-Mozqueda, L L; Garcia-Garcia, M R; Pestryakov, A; Bogdanchikova, N

    2016-11-04

    The wide application of silver nanoparticles (AgNPs) has pointed out the need to evaluate their potential risk and toxic effects on human health. Herein, the cytotoxic effects of Argovit™ AgNPs were evaluated on eight cancer cell lines. Further cytotoxic studies were performed in gynecological cancer cell lines from cervical (HeLa) and breast (MDA-MB-231 and MCF7) cancer. In both cases, the half maximal inhibitory concentration (IC50) of AgNPs produced the formation of reactive oxygen species (ROS) after 24 h of incubation, but it was not statistically significant compared with untreated cells. However, HeLa, MDA-MB-231, and MCF7 cells treated with the maximal IC of AgNPs induced the formation of ROS either at 12 or 24 h of incubation. Genotoxicity achieved by comet assay in HeLa, MDA-MB-231, and MCF7 cells revealed that exposure to IC50 of AgNPs does not induced noticeable DNA damage in the cells. However, the IC of AgNPs provoked severe DNA damage after 12 and 24 h of exposure. We conclude that, Argovit (polyvinylpyrrolidone-coated AgNPs) induce a cytotoxic effect in a time and dose-dependent manner in all the eight cancer cell lines tested. Nevertheless, the genotoxic effect is mainly restricted by the concentration effect. The results contribute to explore new therapeutic applications of AgNPs for malignances in murine models and to study in deep the cytotoxic and genotoxic effects of AgNPs in healthy cells at the surrounding tissue of the neoplasia.

  16. Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector

    NASA Astrophysics Data System (ADS)

    Aho, Timo; Aho, Arto; Tukiainen, Antti; Polojärvi, Ville; Salminen, Turkka; Raappana, Marianna; Guina, Mircea

    2016-12-01

    The effect of a Ag/Cu-based double-layer back reflector on current generation in GaInNAs single-junction solar cell is reported. Compared to Ti/Au reflector, the use of Ag/Cu led to a 28% enhancement of short-circuit current density, attaining a value of ˜14 mA/cm2 at AM1.5D (1000 W/m2) under a GaAs filter. The enhanced current generation is in line with requirements for current-matching in GaInP/GaAs/GaInNAs triple-junction solar cells. The Ag/Cu reflectors also had a low contact resistivity of the order of 10-6 Ω.cm2 and none of the samples exhibited notable peeling of metals in the adhesion tests. Moreover, no discernible diffusion of the metals into the semiconductor was observed after thermal annealing at 200 °C.

  17. Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.

    PubMed

    Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi

    2016-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions.

  18. Embedment of nano-sized Ag layer into Ag-doped In2O3 films for use as highly transparent and conductive anode in organic solar cells

    NASA Astrophysics Data System (ADS)

    Cho, Da-Young; Na, Seok-In; Chung, Kwun-Bum; Kim, Han-Ki

    2015-08-01

    By inserting a nano-sized Ag layer between bottom Ag-doped In2O3 (AIO) and a top AIO layer, we were able to control the sheet resistance and optical transmittance of AIO films for application in organic solar cells (OSCs) as a transparent electrode. To optimize the AIO/Ag/AIO multilayer, we investigated the electrical, optical, structural and morphological properties of the AIO/Ag/AIO multilayer as a function of Ag interlayer thickness with a constant bottom and top AIO thickness of 35 nm. The optimized AIO/Ag/AIO multilayer showed a much lower resistivity of 3.988 × 10-5 Ω cm and a higher optical transmittance of 84.79% than the values (4.625 × 10-4 Ω cm and 78.36%) of the single AIO film, due to the high conductivity of the metallic Ag layer and the antireflection effect of the symmetric AIO/Ag/AIO structure. In addition, we investigated the performances of OSCs with AIO/Ag/AIO electrodes as a function of Ag interlayer thickness to determine the optimal Ag thickness to produce a high power conversion efficiency (PCE) of the OSCs. Based on the PCE of the OSCs, we correlated the performance of the OSCs with the Ag interlayer thickness in the AIO/Ag/AIO multilayer and suggested a possible mechanism to explain the dependency of PCE on Ag thickness in AIO/Ag/AIO multilayer electrodes.

  19. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions.

    PubMed

    Eom, Hyun-Jeong; Chatterjee, Nivedita; Lee, Jeongsoo; Choi, Jinhee

    2014-08-17

    In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the

  20. Standards for Cell Line Authentication and Beyond

    PubMed Central

    Cole, Kenneth D.; Plant, Anne L.

    2016-01-01

    Different genomic technologies have been applied to cell line authentication, but only one method (short tandem repeat [STR] profiling) has been the subject of a comprehensive and definitive standard (ASN-0002). Here we discuss the power of this document and why standards such as this are so critical for establishing the consensus technical criteria and practices that can enable progress in the fields of research that use cell lines. We also examine other methods that could be used for authentication and discuss how a combination of methods could be used in a holistic fashion to assess various critical aspects of the quality of cell lines. PMID:27300367

  1. Embryonic stem cell lines of nonhuman primates.

    PubMed

    Nakatsuji, Norio; Suemori, Hirofumi

    2002-06-26

    Human embryonic stem (ES) cell lines have opened great potential and expectation for cell therapy and regenerative medicine. Monkey and human ES cell lines, which are very similar to each other, have been established from monkey blastocysts and surplus human blastocysts from fertility clinics. Nonhuman primate ES cell lines provide important research tools for basic and applicative research. Firstly, they provide wider aspects of investigation of the regulative mechanisms of stem cells and cell differentiation among primate species. Secondly, their usage does not need clearance or permission from the regulative rules in many countries that are associated with the ethical aspects of human ES cells, although human and nonhuman embryos and fetuses are very similar to each other. Lastly and most importantly, they are indispensable for animal models of cell therapy to test effectiveness, safety, and immunological reaction of the allogenic transplantation in a setting similar to the treatment of human diseases. So far, ES cell lines have been established from rhesus monkey (Macaca mulatta), common marmoset (Callithrix jacchus), and cynomolgus monkey (Macaca fascicularis), using blastocysts produced naturally or by in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). These cell lines seem to have very similar characteristics. They express alkaline phosphatase activity and stage-specific embryonic antigen (SSEA)-4 and, in most cases, SSEA-3. Their pluripotency was confirmed by the formation of embryoid bodies and differentiation into various cell types in culture and also by the formation of teratomas that contained many types of differentiated tissues including derivatives of three germ layers after transplantation into the severe combined immunodeficiency (SCID) mice. The noneffectiveness of the leukemia inhibitory factor (LIF) signal makes culture of primate and human ES cell lines prone to undergo spontaneous differentiation and thus it is

  2. Induction of apoptosis by Saussurea lappa and Pharbitis nil on AGS gastric cancer cells.

    PubMed

    Ko, Seong-Gyu; Koh, Seung-Hee; Jun, Chan-Yong; Nam, Chang-Gyu; Bae, Hyun-Su; Shin, Min-Kyu

    2004-10-01

    We performed this study to understand the molecular basis underlying the antitumor effects of Saussurea lappa, Pharbitis nil, Plantago asiatica and Taraxacum mongolicum, which have been used for herbal medicinal treatments against cancers in East Asia. We analyzed the effects of these medicinal herbs on proliferation and on expression of cell growth/apoptosis related molecules, with using an AGS gastric cancer cell line. The treatments of Saussurea lappa and Pharbitis nil dramatically reduced cell viabilities in a dose and time-dependent manner, but Plantago asiatica and Taraxacum mongolicum didn't. FACS analysis and Annexin V staining assay also showed that both Saussurea lappa and Pharbitis nil induce apoptotic cell death of AGS. Expression analyses via RT-PCR and Western blots revealed that Saussurea lappa, but not Pharbitis nil, increased expression of the p53 and its downstream effector p21Waf1, and that the both increased expression of apoptosis related Bax and cleavage of active caspase-3 protein. We also confirmed the translocation of Bax to mitochondria. Collectively, our data demonstrate that Saussurea lappa and Pharbitis nil induce growth inhibition and apoptosis of human gastric cancer cells, and these effects are correlated with down- and up-regulation of growth-regulating apoptotic and tumor suppressor genes, respectively.

  3. Thyroid cancer cell lines: an overview

    PubMed Central

    Saiselet, Manuel; Floor, Sébastien; Tarabichi, Maxime; Dom, Geneviève; Hébrant, Aline; van Staveren, Wilma C. G.; Maenhaut, Carine

    2012-01-01

    Human thyroid cancer cell lines are the most used models for thyroid cancer studies. They must be used with detailed knowledge of their characteristics. These in vitro cell lines originate from differentiated and dedifferentiated in vivo human thyroid tumors. However, it has been shown that mRNA expression profiles of these cell lines were closer to dedifferentiated in vivo thyroid tumors (anaplastic thyroid carcinoma, ATC) than to differentiated ones. Here an overview of the knowledge of these models was made. The mutational status of six human thyroid cancer cell lines (WRO, FTC133, BCPAP, TPC1, K1, and 8505C) was in line with previously reported findings for 10 genes frequently mutated in thyroid cancer. However, the presence of a BRAF mutation (T1799A: V600E) in WRO questions the use of this cell line as a model for follicular thyroid carcinoma (FTC). Next, to investigate the biological meaning of the modulated mRNAs in these cells, a pathway analysis on previously obtained mRNA profiles was performed on five cell lines. In five cell lines, the MHC class II pathway was down-regulated and in four of them, ribosome biosynthesis and translation pathways were up-regulated. mRNA expression profiles of the cell lines were also compared to those of the different types of thyroid cancers. Three datasets originating from different microarray platforms and derived from distinct laboratories were used. This meta-analysis showed a significant higher correlation between the profiles of the thyroid cancer cell lines and ATC, than to differentiated thyroid tumors (i.e., PTC or FTC) specifically for DNA replication. This already observed higher correlation was obtained here with an increased number of in vivo tumors and using different platforms. In summary, this would suggest that some papillary thyroid carcinoma or follicular thyroid carcinoma (PTC or FTC) cell lines (i.e., TPC-1) might have partially lost their original DNA synthesis/replication regulation mechanisms during

  4. Divergent tropism of HHV-6AGS and HHV-6BPL1 in T cells expressing different CD46 isoform patterns.

    PubMed

    Hansen, Aida S; Bundgaard, Bettina B; Biltoft, Mette; Rossen, Litten S; Höllsberg, Per

    2017-02-01

    CD46 is a receptor for HHV-6A, but its role as a receptor for HHV-6B is controversial. The significance of CD46 isoforms for HHV-6A and HHV-6B tropism is unknown. HHV-6AGS was able to initiate transcription of the viral genes U7 and U23 in the CD46(+)CD134(-) T-cell lines Peer, Jurkat, Molt3, and SupT1, whereas HHV-6BPL1 was only able to do so in Molt3 and SupT1, which expressed a CD46 isoform pattern different from Peer and Jurkat. The HHV-6BPL1-susceptible T-cell lines were characterized by low expression of the CD46 isoform BC2 and domination of isoforms containing the cytoplasmic tail, CYT-1. A HHV-6BPL1 susceptible cell line, Be13, changed over time its CD46 isoform pattern to resemble Peer and Jurkat and concomitantly lost its susceptibility to HHV-6BPL1 but not HHV-6AGS infection. We propose that isoforms of CD46 impact on HHV-6B infection and thereby in part explain the distinct tropism of HHV-6AGS and HHV-6BPL1.

  5. Virus Discovery Using Tick Cell Lines

    PubMed Central

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  6. Refractory lining for electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1987-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  7. Regulation of cholesterol synthesis in four colonic adenocarcinoma cell lines.

    PubMed

    Cerda, S R; Wilkinson, J; Broitman, S A

    1995-12-01

    Colon tumor cells, unlike normal human fibroblasts, exhibited an uncoupling of low density lipoprotein (LDL)-derived cholesterol from cellular growth, when endogenous cholesterol synthesis was inhibited by mevinolin, a hydroxymethylglutaryl-CoA reductase (HMG-CoAR) competitive inhibitor [Fabricant, M., and Broitman, S.A. (1990) Cancer Res. 50, 632-636]. Further evaluation of cholesterol metabolism was conducted in two undifferentiated (SW480, SW1417) and two differentiated (HT29, CACO2) colonic adenocarcinoma (adeno-CA) cell lines and an untransformed human fibroblast, AG1519A. Cells grown in monolayer culture to near subconfluency were used to assess endogenous cholesterol synthesis by 14C-acetate incorporation, in response to the following treatments in lipoprotein-deficient serum (LPDS)-supplemented minimum essential medium (MEM): LPDS alone, LDL, mevinolin, mevinolin with LDL, and 25-hydroxy-cholesterol (25-OH-CH). Complete fetal bovine serum (FBS)-supplemented MEM was used as control. All colon tumor lines exhibited similarly high endogenous cholesterol synthesis in both FBS and LPDS relative to the fibroblasts which demonstrated low basal levels in FBS and maximal synthesis in LPDS. LDL treatment did not inhibit cholesterol synthesis in colon tumor cells, but suppressed that in the fibroblast by 70%. Sterol repression of cholesterol synthesis mediated by 25-OH-CH occurred in all cells. Mevinolin caused a reduction in cholesterol synthesis in the colonic cancer cell lines, which was not further decreased by concurrent addition of LDL. In contrast, in mevinolin-treated fibroblasts, LDL further inhibited cholesterol synthesis. When the effect of cell density on cholesterol synthesis regulation was evaluated under conditions of sparse density in SW480 and SW147, results indicated that (i) basal rates of cholesterol synthesis were higher, (ii) LDL inhibited cholesterol synthesis more effectively, and (iii) mevinolin or 25-OH-CH had a more pronounced effect than in

  8. Exposition of hepatitis B surface antigen (HBsAg) on the surface of HEK293T cell and evaluation of its expression

    PubMed Central

    Mirian, Mina; Taghizadeh, Razieh; Khanahmad, Hossein; Salehi, Mansour; Jahanian-Najafabadi, Ali; Sadeghi-aliabadi, Hojjat; Kouhpayeh, Shirin

    2016-01-01

    Hepatitis B virus (HBV) is considered as a global health concern and hepatitis B surface antigen (HBsAg) is the most immunogenic protein of HBV. The purpose of this study was to evaluate the expression of HBsAg on the cell surface of human embryonic kidney cell line (HEK293T). After transformation of expression vector pcDNA/HBsAg to E.coli TOP10F’, plasmid was extracted and digested with BglII. Afterwards, the linearized vector was transfected to cells and treated with hygromycin B for 5 weeks to expand the resulted clonies. The permanent expression of HBsAg followed by flow cytometry uptill now about one year. Genomic DNA was extracted from transfected cells and the existence of HBsAg gene was assessed by PCR. Real-time RT-PCR was utilized to measure the expression at the RNA level and flow cytometery was carried out to assess protein expression. Insertion of HBsAg cDNA in HEK293T genome was confirmed by PCR. The results of real-time RT-PCR illustrated that each cell expresses 2275 copies of mRNA molecule. Flow cytometry showed that compared with negative control cells, 99.9% of transfected cells express HBsAg on their surface. In conclusion, stable expression of hepatitis B surface antigen on the membrane of HEK293T provides an accurate post-translational modification, proper structure, and native folding in contrast with purified protein from prokaryotic expression systems. Therefore, these exposing HBsAg cells are practical in therapeutic, pharmaceutical, and biological sets of research. PMID:27920818

  9. Effects of teicoplanin on cell number of cultured cell lines

    PubMed Central

    Kashkolinejad-Koohi, Tahere; Saadat, Iraj

    2015-01-01

    Teicoplanin is a glycopeptide antibiotic with a wide variation in human serum half-life. It is also a valuable alternative of vancomycin. There is however no study on its effect on cultured cells. The aim of the present study was to test the effect of teicoplanin on cultured cell lines CHO, Jurkat E6.1 and MCF-7. The cultured cells were exposed to teicoplanin at final concentrations of 0–11000 μg/ml for 24 hours. To determine cell viability, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was performed. At low concentrations of teicoplanin the numbers of cultured cells (due to cell proliferation) were increased in the three cell lines examined. The maximum cell proliferation rates were observed at concentrations of 1000, 400, and 200 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. Cell toxicity was observed at final concentrations over 2000, 6000, and 400 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. A dose-dependent manner of cell toxicity was observed. Our present findings indicated that teicoplanin at clinically used concentrations induced cell proliferation. It should therefore be used cautiously, particularly in children, pregnant women and patients with cancer. PMID:27486356

  10. Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles

    PubMed Central

    Chen, Ni; Song, Zheng-Mei; Tang, Huan; Xi, Wen-Song; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2016-01-01

    Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs) via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20–30 nm with different surface coatings) to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT), bare Ag NP (Ag-B), and poly (N-vinyl-2-pyrrolidone)-coated Ag NP (Ag-PVP). The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 μg/mL Ag-CIT, 0.9 μg/mL Ag-B or >1.0 μg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS) generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level). The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 μg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 μg/mL Ag-PVP remained normal as the control. Generally, 0.3 μg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure. PMID:27338357

  11. Low-toxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells.

    PubMed

    Zhang, Xiaoru; Liu, Mingshuai; Liu, Hongxia; Zhang, Shusheng

    2014-06-15

    A new photoelectrochemical (PEC) biosensor was developed using low-toxic Ag2S QDs as photoelectrochemically active species. Energy levels of Ag2S and Ag2Se QD were compared to explain their differences in the PEC performance. The preparation condition of Ag2S QD was optimized and its structure characterization was measured. Then the developed photoelectric active interface was used to detect glucose and MCF-7 cancer cell and showed the good sensitivity and specificity. Under optimal condition, detection limits of 3.2 × 10(-5)M for glucose and 98 cells/mL for MCF-7 cell were achieved. Thus, the prepared Ag2S QD could serve as an excellent and promising photoelectric active material in the PEC biosensor.

  12. Radiation sensitivity of Merkel cell carcinoma cell lines

    SciTech Connect

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  13. The impact of Ag nanoparticles on the parameters of DSS- cells sensitized by Z907

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh; Aimukhanov, A. K.; Zeinidenov, A. K.

    2016-02-01

    Research of influence of Ag nanoparticles are in-process undertaken on absorption and on parameters CVC DSS-cells sensitized Z907. It is set that with the height of concentration Ag nanoparticles in tape to the concentration of 0.3% wt%. the absorbance of Z907 in a short-wave stripe grew to the value 1,6. It is set that under reaching the concentration of Ag nanoparticles in the cell of value the 0.3% wt%. efficiency of cell increased to 2.2%.

  14. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    SciTech Connect

    Felthaus, O.; Ettl, T.; Gosau, M.; Driemel, O.; Brockhoff, G.; Reck, A.; Zeitler, K.; Hautmann, M.; Reichert, T.E.; Schmalz, G.; Morsczeck, C.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  15. Insight into the unit cell: Structure of picene thin films on Ag(100) revealed with complementary methods

    NASA Astrophysics Data System (ADS)

    Huempfner, Tobias; Hafermann, Martin; Udhardt, Christian; Otto, Felix; Forker, Roman; Fritz, Torsten

    2016-11-01

    We study the molecular structure of one monolayer of picene on a Ag(100) surface. Low energy electron diffraction and scanning tunneling microscopy experiments show that the molecules arrange in a highly ordered manner exhibiting a point-on-line epitaxy with two differently arranged molecules per unit cell. Comparing measured and simulated photoelectron momentum maps allows further conclusions about the composition of the unit cell. The structural basis consists of two parallel molecules; one molecule lies face-on and the other is tilted by ≈45° around its long axis with respect to the surface normal.

  16. STAT3 is essential for Hodgkin lymphoma cell proliferation and is a target of tyrphostin AG17 which confers sensitization for apoptosis.

    PubMed

    Holtick, U; Vockerodt, M; Pinkert, D; Schoof, N; Stürzenhofecker, B; Kussebi, N; Lauber, K; Wesselborg, S; Löffler, D; Horn, F; Trümper, L; Kube, D

    2005-06-01

    Classical Hodgkin lymphoma (cHL) is a distinct malignancy of the immune system. Despite the progress made in the understanding of the biology of cHL, the transforming events remain to be elucidated. Recently, we demonstrated that the Janus kinase inhibitor AG490 blocked cellular proliferation and STAT3 phosphorylation in cHL. To explore the potential of constitutively activated STAT3 as a drug target and its role in cHL pathogenesis, different cHL cell lines were analyzed. Treatment of cHL cells by the protein tyrosine kinase inhibitor AG17 was associated with inhibition of cellular proliferation and cell cycle arrest. AG17 treatment was accompanied by decreased levels of STAT3 phosphorylation, whereas NF-kappaB and p38/SAPK2 signaling were not inhibited. Incubation with AG17 or AG490 sensitized cHL cells to CD95/Fas/Apo-1 or staurosporine-mediated apoptosis. Coincubation of tyrphostins with staurosporine was accompanied by rapid complete inhibition of STAT3 phosphorylation. RNA interference directed against STAT3 in L428 and L1236 cHL cells demonstrated that STAT3 is essential for cell proliferation of these cHL cells. In conclusion, these findings support the concept that STAT3 signaling is important in the pathogenesis of cHL and tyrphostins are agents for developing new therapeutic strategies.

  17. Investigating citrullinated proteins in tumour cell lines

    PubMed Central

    2013-01-01

    Background The conversion of arginine into citrulline, termed citrullination, has important consequences for the structure and function of proteins. Studies have found PADI4, an enzyme performing citrullination, to be highly expressed in a variety of malignant tumours and have shown that PADI4 participates in the process of tumorigenesis. However, as citrullinated proteins have not been systematically investigated in tumours, the present study aimed to identify novel citrullinated proteins in tumours by 2-D western blotting (2-D WB). Methods Two identical two-dimensional electrophoresis (2-DE) gels were prepared using extracts from ECA, H292, HeLa, HEPG2, Lovo, MCF-7, PANC-1, SGC, and SKOV3 tumour cell lines. The expression profiles on a 2-DE gel were trans-blotted to PVDF membranes, and the blots were then probed with an anti-citrulline antibody. By comparing the 2-DE profile with the parallel 2-D WB profile at a global level, protein spots with immuno-signals were collected from the second 2-DE gel and identified using mass spectrometry. Immunoprecipitation was used to verify the expression and citrullination of the targeted proteins in tumour cell lines. Results 2-D WB and mass spectrometry identified citrullinated α-enolase (ENO1), heat shock protein 60 (HSP60), keratin 8 (KRT8), tubulin beta (TUBB), T cell receptor chain and vimentin in these cell lines. Immunoprecipitation analyses verified the expression and citrullination of ENO1, HSP60, KRT8, and TUBB in the total protein lysates of the tumour cell lines. Conclusions The citrullination of these proteins suggests a new mechanism in the tumorigenic process. PMID:24099319

  18. Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells.

    PubMed

    Du, Peng; Jing, Pengtao; Li, Di; Cao, Yinghui; Liu, Zhenyu; Sun, Zaicheng

    2015-05-01

    Localized surface plasmon resonance (LSPR), light scattering, and lowering the series resistance of noble metal nanoparticles (NPs) provide positive effect on the performance of photovoltaic device. However, the exciton recombination on the noble metal NPs accompanying above influences will deteriorate the performance of device. In this report, surface-modified Ag@oxide (TiO2 or SiO2 ) nanoprisms with 1-2 nm shell thickness are developed. The thin film composed of P3HT/Ag@oxides and P3HT:PCBM/Ag@oxides is investigated by absorption, photoluminescence (PL), and transient absorption spectroscopy. The results show a significant absorption, PL enhancement, and long-lived photogenerated polaron in the P3HT/Ag@TiO2 film, indicating the increase of photogenerated exciton population by LSPR of Ag nanoprisms. In the case of P3HT/Ag nanoprisms, partial PL quench and relatively short-lived photogenerated polaron are observed. That indicates that the oxides layer can effectively avoid the exciton recombination. When the Ag@oxide nanoprisms are introduced into the active layer of P3HT:PCBM photovoltaic devices, about 31% of power conversion efficiency enhancement is obtained relative to the reference cell. All these results indicate that Ag@oxides can enhance the performance of the cell, at the same time the ultrathin oxide shell prevents from the exciton recombination.

  19. Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode.

    PubMed

    Ma, Wenqiang; Chen, Fuyi; Zhang, Nan; Wu, Xiaoqiang

    2014-10-01

    The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant bimetallic catalysts to replace platinum. Here, we present a first-principles study of ORR on Ag12Cu cluster in alkaline environment. The adsorptions of O2, OOH, and OH on Cu-doped Ag13 are stronger than on Ag13. The d-band centers of adsorption sites show the Cu-doping makes d-electrons transferred to higher energy state, and improves O2 dissociation. ORR processes on Ag12Cu and Ag13 indicate Cu-doping can strongly promote ORR, and ORR process can be better preformed on Ag12Cu than on Ag13. For four-electron transfer, the effective reversible potential is 0.401 V/RHE on Ag12Cu in alkaline medium.

  20. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler; Choi, Jea-Young; Choi, Hyung Woo; Alford, Terry; Jeong, Doo Seok; Lee, Taek Sung; Lee, Wook Seong; Lee, Kyeong-Seok; Li, Jian; Kim, Inho

    2015-09-01

    Incorporation of metal nanoparticles into active layers of organic solar cells is one of the promising light trapping approaches. The size of metal nanoparticles is one of key factors to strong light trapping, and the size of thermally evaporated metal nanoparticles can be tuned by either post heat treatment or surface modification of substrates. We deposited Ag nanoparticles on ITO by varying nominal thicknesses, and post annealing was carried out to increase their size in radius. PEDOT:PSS was employed onto the ITO substrates as a buffer layer to alter the dewetting behavior of Ag nanoparticles. The size of Ag nanoparticles on PEDOT:PSS were dramatically increased by more than three times compared to those on the ITO substrates. Organic solar cells were fabricated on the ITO and PEDOT:PSS coated ITO substrates with incorporation of those Ag nanoparticles, and their performances were compared. The photocurrents of the cells with the active layers on PEDOT:PSS with an optimal choice of the Ag nanoparticles were greatly enhanced whereas the Ag nanoparticles on the ITO substrates did not lead to the photocurrent enhancements. The origin of the photocurrent enhancements with introducing the Ag nanoparticles on PEDOT:PSS are discussed.

  1. Ni/Cu/Ag plated contacts: A study of resistivity and contact adhesion for crystalline-Si solar cells

    NASA Astrophysics Data System (ADS)

    ur Rehman, Atteq; Lee, Sang Hee; Bhopal, Muhammad Fahad; Lee, Soo Hong

    2016-07-01

    Ni/Cu/Ag plated contacts were examined as an alternate to Ag screen printed contacts for silicon (Si) solar cell metallization. To realize a reliable contact for industrial applications, the contact resistance and its adhesion to Si substrates were evaluated. Si surface roughness by picosecond (ps) laser ablation of silicon-nitride (SiNx) antireflection coating (ARC) was done in order to prepare the patterns. The sintering process after Ni/Cu/Ag full metallization in the form of the post-annealing process was applied to investigate the contact resistivity and adhesion. A very low contact resistivity of approximately 0.5 mΩcm2 has been achieved with measurements made by the transfer length method (TLM). Thin finger lines of about 26 μm wide and a line resistance of 0.51 Ω/cm have been realized by plating technology. Improved contact adhesion by combining the ps-laser-ablation and post-annealing process has been achieved. We have shown the peel-off strengths >1 N/mm with a higher average adhesion of 1.9 N/mm. Our pull-tab adhesion tests demonstrate excellent strength well above the wafer breakage force. [Figure not available: see fulltext.

  2. Okadaic Acid Toxin at Sublethal Dose Produced Cell Proliferation in Gastric and Colon Epithelial Cell Lines

    PubMed Central

    del Campo, Miguel; Toledo, Héctor; Lagos, Néstor

    2013-01-01

    The aim of this study was to analyze the effect of Okadaic Acid (OA) on the proliferation of gastric and colon epithelial cells, the main target tissues of the toxin. We hypothesized that OA, at sublethal doses, activates multiple signaling pathways, such as Erk and Akt, through the inhibition of PP2A. To demonstrate this, we carried out curves of doses and time response against OA in AGS, MKN-45 and Caco 2 cell lines, and found an increase in the cell proliferation at sublethal doses, at 24 h or 48 h exposure. Indeed, cells can withstand high concentrations of the toxin at 4 h exposure, the time chosen considering the maximum time before total gastric emptying. We have proved that this increased proliferation is due to an overexpression of Cyclin B, a cyclin that promotes the passage from G2 to mitosis. In addition, we have demonstrated that OA induces activation of Akt and Erk in the three cells lines, showing that OA can activate pathways involved in oncogenesis. In conclusion, this study contributes to the knowledge about the possible effects of chronic OA consumption. PMID:24317467

  3. Pancreastatin producing cell line from human pancreatic islet cell tumor.

    PubMed

    Funakoshi, A; Tateishi, K; Tsuru, M; Jimi, A; Wakasugi, H; Ikeda, Y; Kono, A

    1990-04-30

    It has been characterized that cell line QGP-1 derived from human non-functioning pancreatic islet cell tumor produces human pancreastatin. Exponentially growing cultures produced 5.7 fmol of pancreastatin/10(6) cells/hr. Human pancreastatin immunoreactivities in plasma and tumor after xenografting with QGP-1 into nude mouse were 92.7 fmol/ml and 160.2 pmol/g wet weight, respectively. Immunocytochemical study revealed both chromogranin A and pancreastatin immunoreactive cells in the tumor. Gel filtrations of culture medium and tumor extract identified heterogenous molecular forms of PST-LI which eluted as large and smaller molecular species. These results suggest that plasma pancreastatin levels may be useful as a tumor marker of endocrine tumor of the pancreas, and the pancreastatin producing cell line may be useful for studies of the mechanism of secretions and processing of chromogranin A and pancreastatin.

  4. Effect of glutamate analogues on brain tumor cell lines.

    PubMed

    Campbell, G L; Bartel, R; Freidman, H S; Bigner, D D

    1985-10-01

    Glutamate analogues have been used in many different experimental approaches in neurobiology. A small number of these analogues have been classified as gliotoxic. We have examined the effect of seven glutamate analogues (five gliotoxic and two neurotoxic) on the growth and viability of four human glioma cell lines, one human medulloblastoma cell line, and one human sarcoma cell line. Aminoadipic acid and homocysteic acid predominantly affected the growth of two glioma cell lines in the presence of 4 mM glutamine. Phosphonobutyric acid predominantly affected the other two glioma cell lines and the medulloblastoma cell line in the presence of 4 mM glutamine. In medium containing no glutamine, all three analogues had marked effects on all the cell lines except the sarcoma cell line. These effects were dose dependent. We postulate that these results can in part be explained on the basis of metabolic compartmentalization.

  5. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  6. On the Ontology Based Representation of Cell Lines

    PubMed Central

    Ganzinger, Matthias; He, Shan; Breuhahn, Kai; Knaup, Petra

    2012-01-01

    Cell lines are frequently used as highly standardized and reproducible in vitro models for biomedical analyses and assays. Cell lines are distributed by cell banks that operate databases describing their products. However, the description of the cell lines' properties are not standardized across different cell banks. Existing cell line-related ontologies mostly focus on the description of the cell lines' names, but do not cover aspects like the origin or optimal growth conditions. The objective of this work is to develop an ontology that allows for a more comprehensive description of cell lines and their metadata, which should cover the data elements provided by cell banks. This will provide the basis for the standardized annotation of cell lines and corresponding assays in biomedical research. In addition, the ontology will be the foundation for automated evaluation of such assays and their respective protocols in the future. To accomplish this, a broad range of cell bank databases as well as existing ontologies were analyzed in a comprehensive manner. We identified existing ontologies capable of covering different aspects of the cell line domain. However, not all data fields derived from the cell banks' databases could be mapped to existing ontologies. As a result, we created a new ontology called cell culture ontology (CCONT) integrating existing ontologies where possible. CCONT provides classes from the areas of cell line identification, origin, cell line properties, propagation and tests performed. PMID:23144907

  7. AgNORs in hyperplasia, papilloma and oral squamous cell carcinoma.

    PubMed

    Fonseca, L M; do Carmo, M A

    2000-01-01

    Ten inflammatory fibrous hyperplasias, ten papillomas, and nineteen oral squamous cell carcinomas were analyzed by the AgNOR technique to determine if different disturbances of oral epithelia presented different AgNOR counts. The papilloma group showed higher mean AgNOR counts (3.15 +/- 0.58) than the hyperplasia group (1.98 +/- 0.24) and smaller than the well-differentiated oral squamous cell carcinoma group (6.56 +/- 1.25) and poorly differentiated oral squamous cell carcinoma group (7.07 +/- 1.60). The differences among the groups of lesions were statistically significant (P < 0.05) except between the well differentiated oral squamous cell carcinoma group and the poorly differentiated oral squamous cell carcinoma group. Our findings suggest that the cellular proliferation ratio in papillomas is greater than hyperplasias and smaller than carcinomas.

  8. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  9. Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

    PubMed Central

    Hahm, Sahng-Wook; Park, Jieun; Park, Kun-Young; Son, Yong-Suk; Han, Hyungchul

    2016-01-01

    Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF (100 μg/mL) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF (200 μg/mL) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells. PMID:27069903

  10. Comparison of leucine-rich repeat-containing G protein-coupled receptor 5 expression in different cancer and normal cell lines

    PubMed Central

    ALIZADEH-NAVAEI, REZA; RAFIEI, ALIREZA; ABEDIAN-KENARI, SAEID; ASGARIAN-OMRAN, HOSSEIN; VALADAN, REZA; HEDAYATIZADEH-OMRAN, AKBAR

    2016-01-01

    Evaluating the expression of leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) may be useful for predicting the best models and achieving more accurate results in cancer research. Therefore, the aim of the present study was to analyze the LGR5 expression levels in different cell lines. Eight commonly used cell lines were assessed (COS-7, NIH3T3, HEK293, VERO, HeLa, BHK, HepG2 and AGS). All the cell lines were cultured in RPMI-1640 medium contain 10% fetal calf serum at 37°C in humidified conditions with 5% CO2. According to the western blotting results, LGR5 was expressed in all cell lines. Densitometry results of LGR5 expression in the different cell lines showed that high LGR5 expression levels were apparent in BHK, AGS, VERO and NIH3T3 cell lines compared with the other cell lines. The results indicate that for the normal and cancer cell lines, BNK and AGS may be a better choice, respectively, for in vitro cancer studies. PMID:27347416

  11. Non-toxic silver iodide (AgI) quantum dots sensitized solar cells

    SciTech Connect

    Moosakhani, S.; Sabbagh Alvani, A.A.; Sarabi, A.A.; Sameie, H.; Salimi, R.; Kiani, S.; Ebrahimi, Y.

    2014-12-15

    Highlights: • We have demonstrated AgI sensitized solar cell for the first time. • Obtained mesoporous titania powders possessed small crystallite size, high purity and surface area, and developed mesopores with a narrow pore size distribution. • Photovoltaic measurements revealed the electron injection from AgI to TiO{sub 2}. • The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% under one sun illumination. • AgI may be a suitable candidate material for use as a non-toxic sensitizer in QDSSC. - Abstract: The present study reports the performance of a new photosensitizer -AgI quantum dots (QDs)- and mesoporous titania (TiO{sub 2}) nanocrystals synthesized by sol–gel (SG) method for solar cells. Furthermore, the effects of n-heptane on the textural properties of TiO{sub 2} nanocrystals were comprehensively investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N{sub 2} adsorption–desorption measurements, and UV–vis spectroscopy. TiO{sub 2} powders exhibited an anatase-type mesoporous structure with a high surface area of 89.7 m{sup 2}/g. Afterwards, the QDs were grown on mesoporous TiO{sub 2} surface to fabricate a TiO{sub 2}/AgI electrode by a successive ionic layer adsorption and reaction (SILAR) deposition route. Current–voltage characteristics and electrochemical impedance spectroscopy (EIS) data demonstrated that the injection of photoexcited electrons from AgI QDs into the TiO{sub 2} matrix produces photocurrents. The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% and a short-circuit current of 2.13 mA/cm{sup 2} under one sun illumination.

  12. Plasmon resonance energy transfer and hot electron injection induced high photocurrent density in liquid junction Ag@Ag2S sensitized solar cells.

    PubMed

    Wu, Dapeng; Wang, Fujuan; Wang, Hongju; Cao, Kun; Gao, Zhiyong; Xu, Fang; Jiang, Kai

    2016-10-18

    An in situ technique was developed to deposit Ag@Ag2S core-shell quantum dots on a SnO2 mesoporous film for solar energy conversion. When adopted as a photoanode, an impressive high photocurrent density of ∼25.6 mA cm(-2) was demonstrated in a cell configuration using polysulfide S(2-)/Sn(2-) as an electrolyte and Cu2S/brass as a counter electrode, which leads to a power conversion efficiency of ∼0.784% for this environmentally benign device. Optical measurements showed that Ag nanoparticles could be employed as plasmon resonance centers to enhance the harvesting efficiency of incident light at the visible and near-infrared range. Moreover, photoluminescence spectra demonstrated fast charge transfer at Ag@Ag2S/SnO2 interfaces, which facilitates direct hot electron injection from sensitizers to the SnO2 matrix and finally gives rise to the high photocurrent density.

  13. The inhibitory effect of flavonoids on interleukin-8 release by human gastric adenocarcinoma (AGS) cells infected with cag PAI (+) Helicobacter pylori

    PubMed Central

    Szendzielorz, Kornelia; Mazur, Bogdan; Król, Wojciech

    2016-01-01

    Introduction It is well known that the presence of Helicobacter pylori in the stomach induces gastritis and causes an immune response. Exposure of gastric epithelial cell lines to this germ induces the secretion of interleukin-8 (IL-8), which is a potent PMN-activating chemotactic cytokine. Interleukin-8 is usually elevated in gastric biopsy samples of patients with H. pylori-associated gastritis and significantly increases in the supernatant of in vitro cultivated biopsy samples of gastric mucosa with active H. pylori gastritis. Interleukin-8 is an activating factor for leucocytes and other pro-inflammatory factors, free radicals, and proteolytic enzymes. That is why natural compounds potentially useful in therapy are still investigated – among them flavonoids. They reveal anti-oxidative and anti-inflammatory activities and significantly inhibit the gastric mucosa damage. The aim of the study Was the estimation of the anti-inflammatory effects of flavonoids on H. pylori-induced activation of human gastric adenocarcinoma cells (AGS). After infection of AGS cells by cag PAI (+) H. pylori in vitro, secretion of IL-8, effects of flavonoids on viability of AGS cells, and effects of flavonoids on increase of H. pylori were determined. Such flavones as chrysin, quercetin, kaemferide, flavanone, galangin, and kaempferol were examined. Results This study has shown an inhibitory effect of flavonoids on the release of IL-8 through infected AGS cells (except chrysin), and no toxic effects to AGS cells were observed. Galangin revealed antibacterial effects against H. pylori. Flavonoids limit the inflammatory process through the inhibition of IL-8 release in infected AGS cells with H. pylori. The strongest inhibitor of IL-8 was galangin. PMID:27833438

  14. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells.

    PubMed

    Rajasekharreddy, Pala; Rani, Pathipati Usha

    2014-06-01

    A one-step and eco-friendly process for the synthesis of silver-(protein-lipid) nanoparticles (Ag-PL NPs) (core-shell) has been developed using the seed extract from wild Indian Almond tree, Sterculia foetida (L.) (Sterculiaceae). The reaction temperature played a major role in controlling the size and shell formation of NPs. The amount of NPs synthesized and qualitative characterization was done by UV-vis spectroscopy and transmission electron microscopy (TEM), respectively. TEM studies exhibited controlled dispersity of spherical shaped NPs with an average size of 6.9±0.2nm. Selected area electron diffraction (SAED) and X-ray diffraction (XRD) revealed 'fcc' phase and crystallinity of the particles. X-ray photoelectron spectroscopy (XPS) was used to identify the protein-lipid (PL) bilayer that appears as a shell around the Ag core particles. The thermal stability of the Ag-PL NPs was examined using thermogravimetric analysis (TGA). Further analysis was carried out by using Fourier transform infrared spectroscopy (FTIR), where the spectra provided evidence for the presence of proteins and lipid moieties ((2n-octylcycloprop-1-enyl)-octanoic acid (I)), and their role in synthesis and stabilization of Ag NPs. This is the first report of plant seed assisted synthesis of PL conjugated Ag NPs. These formed Ag-PL NPs showed potential mosquito larvicidal activity against Aedes aegypti (L.), Anopheles stephensi Liston and Culex quinquefasciatus Say. These Ag-PL NPs can also act as promising agents in cancer therapy. They exhibited anti-proliferative activity against HeLa cancer cell lines and a promising toxicity was observed in a dose dependent manner. Toxicity studies were further supported by the cellular DNA fragmentation in the Ag-PL NPs treated HeLa cells.

  15. Evaluation of apoptosis induction using PARP cleavage on gastric adenocarcinoma and fibroblast cell lines by different strains of Helicobacter pylori.

    PubMed

    Mojtahedi, Ali; Salehi, Rasoul; Navabakbar, Farahtaj; Tamizifar, Hasan; Tavakkoli, Hamid; Duronio, Vincent

    2007-11-15

    Helicobacter pylori is one of the most common pathogens affecting humans and is the major environmental factor in the development of gastric cancer increasing from 4 to 6 folds the risk of its development. Variations in cancer risk among H. pylori infected individuals may correlate to difference in H. pylori strains, variable host characteristics and specific interactions between host and microbial determinants. To determine the effect of different strains of H. pylori on cellular apoptosis this study was designed an in vitro model using AGS and HEF cell lines. After specified time intervals total cell proteins was extracted and subjected to SDS-PAGE and immunoblotting using anti poly ADP-ribose polymerase (PARP) antibody. Decrease in densitometric value of PARP was indicative of higher level of apoptosis. The ability of apoptosis induction in AGS and HEF cell lines by wild type (cagA+/vacA+), cagA-/vacA+, vacA-/cagA+ and double negative (cagA-/vacA-) strains were significantly different. The assessed apoptosis in AGS cell line co-cultured with wild type strain was 3.22 +/- 0.2 in 24 h, 2.8 +/- 0.1 in 48 and 2.1 +/- 0.09 in 72 h of incubation time. Similar assessment with cagA-/vacA+ strains in AGS cells was 4.17 +/- 1.49 in 24 h, 3.32 +/- 0.45 in 48 h and 2.32 +/- 0.61 in 72 h incubation. A variation in apoptotic potential between the H. pylori strains on two cells (AGS and HEF) was observed. Based on present results, it is concluded that H. pylori strains as well as target cell types are important in pathogenesis and induction of apoptosis during a specified time interval.

  16. Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines

    PubMed Central

    Fernández-Moreno, Mercedes; Hermida-Gómez, Tamara; Gallardo, M. Esther; Dalmao-Fernández, Andrea; Rego-Pérez, Ignacio; Garesse, Rafael

    2016-01-01

    Introduction The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr. Methodology Two immortalized hMSC lines (3a6 and KP) were used; 143B.TK-Rho-0 cells were used as reference control. For generation of Rho-0 hMSCs, cells were cultured in medium supplemented with each tested reagent. Total DNA was isolated and mtDNA content was measured by real-time polymerase chain reaction (PCR). Phenotypic characterization and gene expression assays were performed to determine whether 3a6 Rho-0 hMSCs maintain the same stem properties as untreated 3a6 hMSCs. To evaluate whether 3a6 Rho-0 hMSCs had a phenotype similar to that of 143B.TK-Rho-0 cells, in terms of reactive oxygen species (ROS) production, apoptotic levels and mitochondrial membrane potential (Δψm) were measured by flow cytometry and mitochondrial respiration was evaluated using a SeaHorse XFp Extracellular Flux Analyzer. The differentiation capacity of 3a6 and 3a6 Rho-0 hMSCs was evaluated using real-time PCR, comparing the relative expression of genes involved in osteogenesis, adipogenesis and chondrogenesis. Results The results showed the capacity of the 3a6 cell line to deplete its mtDNA and to survive in culture with uridine. Of all tested drugs, Stavudine (dt4) was the most effective in producing 3a6-Rho cells. The data indicate that hMSC Rho-0 cells continue to express the characteristic MSC cell surface receptor pattern. Phenotypic characterization showed that 3a6 Rho-0 cells resembled 143B.TK-Rho-0 cells, indicating that hMSC Rho-0 cells are Rho-0 cells. While the adipogenic capability was higher in 3a6 Rho-0 cells than in 3a6 cells, the osteogenic and chondrogenic

  17. Compartmentalization of endocannabinoids into lipid rafts in a microglial cell line devoid of caveorrlin-1

    PubMed Central

    Rimmerman, Neta; Bradshaw, Heather B; Kozela, Ewa; Levy, Rivka; Juknat, Ana; Vogel, Zvi

    2012-01-01

    BACKGROUND AND PURPOSE N-acyl ethanolamines (NAEs) and 2-arachidonoyl glycerol (2-AG) are endogenous cannabinoids and along with related lipids are synthesized on demand from membrane phospholipids. Here, we have studied the compartmentalization of NAEs and 2-AG into lipid raft fractions isolated from the caveolin-1-lacking microglial cell line BV-2, following vehicle or cannabidiol (CBD) treatment. Results were compared with those from the caveolin-1-positive F-11 cell line. EXPERIMENTAL APPROACH BV-2 cells were incubated with CBD or vehicle. Cells were fractionated using a detergent-free continuous OptiPrep density gradient. Lipids in fractions were quantified using HPLC/MS/MS. Proteins were measured using Western blot. KEY RESULTS BV-2 cells were devoid of caveolin-1. Lipid rafts were isolated from BV-2 cells as confirmed by co-localization with flotillin-1 and sphingomyelin. Small amounts of cannabinoid CB1 receptors were found in lipid raft fractions. After incubation with CBD, levels and distribution in lipid rafts of 2-AG, N-arachidonoyl ethanolamine (AEA), and N-oleoyl ethanolamine (OEA) were not changed. Conversely, the levels of the saturated N-stearoyl ethanolamine (SEA) and N-palmitoyl ethanolamine (PEA) were elevated in lipid raft fractions. In whole cells with growth medium, CBD treatment increased AEA and OEA time-dependently, while levels of 2-AG, PEA and SEA did not change. CONCLUSIONS AND IMPLICATIONS Whereas levels of 2-AG were not affected by CBD treatment, the distribution and levels of NAEs showed significant changes. Among the NAEs, the degree of acyl chain saturation predicted the compartmentalization after CBD treatment suggesting a shift in cell signalling activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10

  18. DNA profiling and characterization of animal cell lines.

    PubMed

    Stacey, Glyn N; Byrne, Ed; Hawkins, J Ross

    2014-01-01

    The history of the culture of animal cell lines is littered with published and much unpublished experience with cell lines that have become switched, mislabelled, or cross-contaminated during laboratory handling. To deliver valid and good quality research and to avoid waste of time and resources on such rogue lines, it is vital to perform some kind of qualification for the provenance of cell lines used in research and particularly in the development of biomedical products. DNA profiling provides a valuable tool to compare different sources of the same cells and, where original material or tissue is available, to confirm the correct identity of a cell line. This chapter provides a review of some of the most useful techniques to test the identity of cells in the cell culture laboratory and gives methods which have been used in the authentication of cell lines.

  19. Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications

    NASA Astrophysics Data System (ADS)

    Bossert, Nelli; de Bruin, Donny; Götz, Maria; Bouwmeester, Dirk; Heinrich, Doris

    2016-11-01

    DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.

  20. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  1. Green and black tea inhibit cytokine-induced IL-8 production and secretion in AGS gastric cancer cells via inhibition of NF-κB activity.

    PubMed

    Gutierrez-Orozco, Fabiola; Stephens, Brian R; Neilson, Andrew P; Green, Rodney; Ferruzzi, Mario G; Bomser, Joshua A

    2010-10-01

    Consumption of tea is associated with a reduced risk for several gastrointestinal cancers. Inflammatory processes, such as secretion of IL-8 from the gastric epithelium in response to chronic chemokine or antigen exposure, serve both as a chemoattractant for white blood cells and a prerequisite for gastric carcinogenesis. In this study, the gastric adenocarcinoma cell line AGS was used to investigate the effect of green tea extract, black tea extract, and epigallocatechin gallate (EGCG), the most abundant catechin in tea, on cytokine-induced inflammation. AGS cells were stimulated with interleukin-1β (IL-1β) to initiate inflammation, followed by exposure to either tea extracts or EGCG. We found that both green and black tea extracts at concentrations of 20 and 2 µM total catechins, respectively, significantly (p < 0.05) inhibited IL-1β-induced IL-8 production and secretion to a similar extent. Treatment of AGS cells with EGCG (8 µM) produced similar reductions in IL-1β-induced IL-8 production and secretion. Inhibition of NF-κB activity was found to be responsible, in part, for these observed effects. Our findings demonstrate that both green and black tea extracts with distinctly different catechin profiles, are capable of disrupting the molecular link between inflammation and carcinogenesis via inhibition of NF-κB activity in AGS cells.

  2. Heteronuclear gold(I)-silver(I) sulfanylcarboxylates: Synthesis, structure and cytotoxic activity against cancer cell lines.

    PubMed

    Barreiro, Elena; Casas, José S; Couce, María D; Sánchez, Agustín; Sordo, José; Vázquez-López, Ezequiel M

    2014-02-01

    Heteronuclear complexes of the type [AgAu(PPh3)2(xspa)] [H2xspa=3-(aryl)-2-sulfanylpropenoic acids; (x=3-phenyl-; 3-(2-chlorophenyl)-; 3-(o-methoxyphenyl)-; 3-(p-methoxyphenyl)-; 3-(p-hydroxyphenyl)-; 3-(2-furyl)-; 3-(2-thienyl)-; spa=2-sulfanylpropenoate)] were prepared by reacting the appropriate [Au(PPh3)(Hxspa)] precursor with Ag(PPh3)NO3. The compounds were characterized by spectroscopic methods, (IR; (1)H, (13)C and (31)P NMR) and mass spectrometry and the structures of the phenyl and p-methoxyphenyl derivatives were determined by X-ray diffraction. The in vitro antitumor activity against the HeLa-229, A2780 and A2780cis cell lines was determined and compared with that of cisplatin and the equivalent homonuclear gold(I) complexes.

  3. Ag-In-Zn-S quantum dots for hybrid organic-inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Eung-min; Ruankham, Pipat; Lee, Jae-hyeong; Hachiya, Kan; Sagawa, Takashi

    2016-02-01

    Quantum dots of (AgIn)xZn2(1-x)S2 (x = 0.6, 0.8, and 1.0) capped by oleylamine were prepared and applied for hybrid organic-inorganic solar cells consisting of glass-indium-tin-oxide/ZnO/(AgIn)xZn2(1-x)S2/poly(3-hexylthiophene)/MoO3/Ag. The short-circuit current density (Jsc) and open-circuit voltage (Voc) of the hybrid solar cells were measured, and we found a low power conversion efficiency (PCE) below 0.1%. From the incident photon-to-current efficiency (IPCE) profiles of the hybrid devices, there is no marked photocurrent generation from 350 to 700 nm, which is ascribed to the absorption region of (AgIn)xZn2(1-x)S2. To improve the photovoltaic performance, ligand substitution from oleylamine to pyridine was performed. The PCE of the hybrid cell using the pyridine-capped (AgIn)xZn2(1-x)S2 was improved twofold in terms of both Jsc and Voc as compared with that of the oleylamine-capped one. In particular, from the IPCE measurements, a remarkable (more than doubled) enhancement of photocurrent generation from 400 to 450 nm was observed with the pyridine-substituted nanoparticles.

  4. Transparent Conductive ITO/Ag/ITO Electrode Deposited at Room Temperature for Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ho; Kang, Tae-Woon; Kwon, Sung-Nam; Na, Seok-In; Yoo, Young-Zo; Im, Hyeong-Seop; Seong, Tae-Yeon

    2017-01-01

    We investigated the optical and electrical properties of room-temperature-deposited indium-tin-oxide (ITO)/Ag (19 nm)/ITO multilayer films as a function of ITO layer thickness. The optical and electrical properties of the ITO/Ag/ITO films were compared with those of high-temperature-deposited ITO-only films for use as an anode in organic solar cells (OSCs). The ITO/Ag/ITO multilayer films had sheet resistances in the range 5.40-5.78 Ω/sq, while the ITO-only film showed 14.18 Ω/sq. The carrier concentration of the ITO/Ag/ITO films gradually decreased from 2.01 × 1022 to 7.20 × 1021 cm-3 as the ITO thickness increased from 17 nm to 83 nm. At 530 nm, the transmittance of the ITO/Ag/ITO (50 nm/19 nm/50 nm) films was 90%, while that of the ITO-only film gave 96.5%. The multilayer film had a smooth surface with a root mean square (RMS) roughness of 0.49 nm. Poly (3-hexylthiophene) (P3HT):[6,6]-phenyl-C61 butyric acid methylester (PCBM) bulk heterojunction (BHJ)-based OSCs fabricated with the ITO/Ag/ITO (50 nm/19 nm/50 nm) film showed a power conversion efficiency (PCE) (2.84%) comparable to that of OSCs with a conventional ITO-only anode (3.48%).

  5. R_transport_matrices of the Fast Extraction Beam (FEB) of the AGS, and Beam Parameters at the Starting point of the AtR Line

    SciTech Connect

    Tsoupas,N.; MacKay, W.W.; Satogata, T.; Glenn, W.; Ahrens, L.; Brown, K.; Gardner, C.; Tanaka, S.

    2008-01-01

    As part of the task to improve and further automate the 'AtR BPM Application' we provide the theoretically calculated R-transport-matrices for the following beam line sections, which are shown schematically in Figure 1: (a) the Fast Extraction Beam section (FEB) of the AGS synchrotron. The FEB section starts at the middle of the GlO-kicker and ends at the middle of the H1 0{_}septum. (b) the Drift Extraction Channel (DEC) section of the AGS synchrotron. The DEC section starts at the middle of the H10{_}septum, continues along the fringe field region of the H11,H12, and H13 AGS main magnets, and ends at the starting point of the AtR line. The knowledge of these R-transport-matrices are needed in order to calculate the beam parameters at the beginning of the AtR line, which in turn, are required to calculate the magnet settings of the U{_}line, that match the U{_}line into the W{_}line. Also by incorporating these R{_}matrices into the model of the AtR line, the G10 kicker and the H10 septum are included in the AtR model therefore one can investigate any 'jitter' of either the GlO{_}kicker or HlO{_}septum by looking at the trajectory of the beam in the AtR line.

  6. AG36 Inhibits Human Breast Cancer Cells Proliferation by Promotion of Apoptosis In vitro and In vivo

    PubMed Central

    Mu, Li-Hua; Wang, Yu-Ning; Wang, Dong-Xiao; Zhang, Jing; Liu, Li; Dong, Xian-Zhe; Hu, Yuan; Liu, Ping

    2017-01-01

    AG36 is the biotransformation product of triterpenoid saponin from Ardisia gigantifolia stapf. In this study, the antitumor activity and underlying molecular mechanisms of AG36 against human breast MCF-7, MDA-MB-231, and SK-BR-3 cancer cells were investigated. AG36 inhibited the viability of MCF-7, MDA-MB-231, and SK-BR-3 cells in a dose and time-dependent manner, with an IC50 of approximately 0.73, 18.1, and 23.4 μM at 48 h, respectively. AG36 obviously induced apoptosis and G2/M arrest of all the three breast cancer cells. Moreover, AG36 decreased the protein expression of cycle regulatory proteins cyclin B1 or cyclin D1. In MCF-7 and MDA-MB-231 cells, AG36 strongly increased the cleaved caspase-3 and -8 protein expressions, while in SK-BR-3 cells, AG36 only increased the protein expression of cleaved caspase-3. In all the three breast cancer cells, the ratio of Bax/Bcl-2 and cytosolic cytochrome c content increased significantly compared with control group. The death receptor-related proteins Fas/FasL, TNFR1, and DR5 were detected by Western blot, it showed that different breast cancer cells activated the death receptor-mediated extrinsic caspase-8 pathway through different receptors. In addition, the caspase-8 inhibitor z-IETD-fmk could significantly block AG36-triggered MCF-7 cells apoptosis. The in vivo studies showed that AG36 significantly inhibited the growth of MCF-7 xenograft tumors in BALB/c nude mice comparing with control. In conclusion, AG36 inhibited MCF-7, MDA-MB-231, and SK-BR-3 cells proliferation by the intrinsic mitochondrial and the extrinsic death receptor pathways and AG36 might be a potential breast cancer therapeutic agent. PMID:28184196

  7. Line narrowing of AgGaSe2 optical parametric oscillator by injection seeding

    NASA Technical Reports Server (NTRS)

    Watson, George H.; Barnes, Norman; Murray, Keith

    1991-01-01

    Solid-state lasers are developed for atmospheric applications. Optical parametric oscillators (OPO) are being investigated as sources of tunable radiation in the 2.5-12 micron range where development of conventional lasers is subject to numerous difficulties. Parametric oscillation is a nonlinear optical technique for converting laser output to longer wavelengths. Incident photons, typically from a pulsed pump laser, are converted into two photons of longer wavelength, while satisfying energy conservation. The particular split of energy is determined by momentum conservation; the wavelength of interest is usually selected by angle orientation of the nonlinear material with respect to the direction of propagation of the pump beam. An OPO based on AgGaSe2 was considered.

  8. 77 FR 5489 - Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National... tandem repeat (STR) profiling up to 1500 human cell line samples as part of the Identification of Human... its intent to unambiguously identify by short tandem repeat (STR) profiling up to 1500 human cell...

  9. Immunoglobulin expression and synthesis by human haemic cell lines.

    PubMed Central

    Gordon, J; Hough, D; Karpas, A; Smith, J L

    1977-01-01

    Twenty-six human cell lines derived from a variety of lymphoid and non-lymphoid malignancies, were investigated for their immunological markers, with special reference to the class of immunoglobulin expressed. Twenty-five of the lines stained positively for surface immunoglobulin and IgD together with IgM proved to be the major immunoglobulin classes on these cells. Six of the lines were chosen for a study of their immunoglobulin synthesis patterns over an 18-h period and the immunoglobulin produced was analysed on SDS-polyacrylamide gel electrophoresis. Patterns obtained from the cell lines were similar to that from normal lymph node lymphocytes and differed markedly to plasma cells. Two of the cell lines had abnormal immunoglobulin synthesis patterns characterized as free light chains in one case. The cell lines are evaluated for their usefulness as models of immunoglobulin synthesis and analogues of normal and neoplastic states. PMID:608682

  10. Antitumor effects of the flavone chalcone: inhibition of invasion and migration through the FAK/JNK signaling pathway in human gastric adenocarcinoma AGS cells.

    PubMed

    Lin, Su-Hsuan; Shih, Yuan-Wei

    2014-06-01

    Chalcones (benzylideneacetophenone) are cancer-preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in human gastric adenocarcinoma cell lines: AGS. The results showed that chalcone could inhibit the abilities of the adhesion, invasion, and migration by cell-matrix adhesion assay, Boyden chamber invasion/migration assay, and wound-healing assay. Molecular data showed that the effect of chalcone in AGS cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) and c-Jun N-terminal kinase 1 and 2 (JNK1/2) signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Next, chalcone-treated AGS cells showed tremendous decrease in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, treating FAK small interfering RNA (FAK siRNA) and specific inhibitor for JNK (SP600125) to AGS cells could reduce the phosphorylation of JNK1/2 and the activity of MMP-2 and MMP-9. Our results revealed that chalcone significantly inhibited the metastatic ability of AGS cells by reducing MMP-2 and MMP-9 expressions concomitantly with a marked reduction on cell invasion and migration through suppressing and JNK signaling pathways. We suggest that chalcone may offer the application in clinical medicine.

  11. p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression

    PubMed Central

    Drayman, Nir; Ben-nun-Shaul, Orly; Butin-Israeli, Veronika; Srivastava, Rohit; Rubinstein, Ariel M.; Mock, Caroline S.; Elyada, Ela; Ben-Neriah, Yinon; Lahav, Galit; Oppenheim, Ariella

    2016-01-01

    SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression. PMID:27462916

  12. Continuous human cell lines and method of making same

    SciTech Connect

    Stampfer, M.R.

    1989-02-28

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. No Drawings

  13. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, M.R.

    1985-07-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

  14. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R.

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  15. Anti-tumor Activity of Ferulago angulata Boiss. Extract in Gastric Cancer Cell Line via Induction of Apoptosis

    PubMed Central

    Heidari, Shafagh; Akrami, Hassan; Gharaei, Roghaye; Jalili, Ali; Mahdiuni, Hamid; Golezar, Elham

    2014-01-01

    Ferulago angulata Boiss. known in Iran as Chavir, has some bioactive compounds having antioxidant activity. Because of its antioxidant activities, it sounded Chavir extract can be a good candidate for finding chemopreventive agents having inductive apoptosis properties on cancer cells. In this study, the cytotoxic effects and proapoptotic activities of Chavir’s leaf and flower extracts were investigated on human adenocarcinoma gastric cell line (AGS). The ferric reducing antioxidant power (FRAP) assay was used to determine antioxidant activity of the extract. Cytotoxic effects of the extract were performed by trypan blue and neutral red assays. For apoptosis detection, we used Annexin V staining, flow cytometry and DNA fragmentation assays. The FRAP assay results showed that antioxidant activity of leaf extract was higher than flower extract. Cytotoxicity and apoptosis–inducing activity of flower and leaf extracts changed coordinately, indicating the cytotoxicity of chavir extracts is due probably to induce apoptosis. Our results revealed that the cytotoxic effects of F. angulate Boiss. extracts on AGS cell line is close to some other plant extracts such as Rhus verniciflua Stokes (RVS) and Scutellaria litwinowii. This is the first study on cytotoxic and apoptosis–inducing effects of chavir leaf and flower extracts against AGS cell line. The Further investigation can be identification of the agent(s) by which these effects is observed. PMID:25587323

  16. Anti-tumor Activity of Ferulago angulata Boiss. Extract in Gastric Cancer Cell Line via Induction of Apoptosis.

    PubMed

    Heidari, Shafagh; Akrami, Hassan; Gharaei, Roghaye; Jalili, Ali; Mahdiuni, Hamid; Golezar, Elham

    2014-01-01

    Ferulago angulata Boiss. known in Iran as Chavir, has some bioactive compounds having antioxidant activity. Because of its antioxidant activities, it sounded Chavir extract can be a good candidate for finding chemopreventive agents having inductive apoptosis properties on cancer cells. In this study, the cytotoxic effects and proapoptotic activities of Chavir's leaf and flower extracts were investigated on human adenocarcinoma gastric cell line (AGS). The ferric reducing antioxidant power (FRAP) assay was used to determine antioxidant activity of the extract. Cytotoxic effects of the extract were performed by trypan blue and neutral red assays. For apoptosis detection, we used Annexin V staining, flow cytometry and DNA fragmentation assays. The FRAP assay results showed that antioxidant activity of leaf extract was higher than flower extract. Cytotoxicity and apoptosis-inducing activity of flower and leaf extracts changed coordinately, indicating the cytotoxicity of chavir extracts is due probably to induce apoptosis. Our results revealed that the cytotoxic effects of F. angulate Boiss. extracts on AGS cell line is close to some other plant extracts such as Rhus verniciflua Stokes (RVS) and Scutellaria litwinowii. This is the first study on cytotoxic and apoptosis-inducing effects of chavir leaf and flower extracts against AGS cell line. The Further investigation can be identification of the agent(s) by which these effects is observed.

  17. Susceptibilities of 14 cell lines to bluetongue virus infection.

    PubMed Central

    Wechsler, S J; McHolland, L E

    1988-01-01

    The effect of bluetongue virus (BTV) infection was investigated in 14 cell lines. The cell lines included the following vertebrate cells: baby hamster kidney, African green monkey kidney (Vero), rabbit kidney, bovine kidney, canine kidney, bovine turbinate, bovine endothelium (CPAE), bighorn sheep tongue, equine dermis, gekko lung, rainbow trout gonad, and mouse fibroblast (L929); they also included the following invertebrate lines: mosquito and biting midge. Comparisons between the cell lines were made on the basis of time to observed cytopathic effects, titer in 50% tissue culture infectious doses, and titer in plaque-forming units. The CPAE cell line produced the highest BTV 50% tissue culture infectious dose of all cell lines tested. The Vero and L929 cells gave the most discrete plaques in plaque assays. Of the 14 cell lines tested, the CPAE cells were the most susceptible to both cell culture-adapted and animal source BTV. Bovine endothelial cells demonstrate significant potential as a cell culture system for BTV investigations. PMID:2853175

  18. Re-characterization of established human retinoblastoma cell lines.

    PubMed

    Busch, Maike; Philippeit, Claudia; Weise, Andreas; Dünker, Nicole

    2015-03-01

    Retinoblastoma (RB) is the most common malignant intraocular childhood tumor. Forty years after their first description, in the present study, we re-characterized seven established retinoblastoma cell lines with regard to their RB1 mutation status, morphology, growth pattern, endogenous apoptosis levels, colony formation efficiency in soft agar and invasiveness and dissemination capacity in chick chorioallantoic membrane (CAM) assays. All RB cell lines predominantly resemble small epithelioid cells with little cytoplasm and large nucleus, which mainly grow in cell clusters, but sometimes form chain-like structures with incident loops or three-dimensional aggregates. We observed different growth rates for the different retinoblastoma cells investigated. RBL-30, RBL-13 and RBL 383 cells grew very slowly, whereas Y-79 cells grew fastest under our culture conditions. Apoptosis rates likewise differed with highest cell death levels in RB 383 and RB 355 and lowest in WERI-Rb1 and RBL-15. Contradicting former reports, six of the seven RB cell lines analyzed were able to form colonies in soft agarose after single cell seeding within 3 weeks of incubation. Upon inoculation of four out of seven RB cell lines on the dorsal CAM, GFP-positive cells were detectable in the ventral CAM and two RB cell lines caused tumor development, indicating their intravasation and dissemination potential. All RB cell lines exhibited the potential to extravasate from the capillary system after intravenous CAM injection. Our study provides valuable new details for future therapy-related retinoblastoma basic research in vitro.

  19. Identification of cell lines permissive for human coronavirus NL63.

    PubMed

    Schildgen, Oliver; Jebbink, Maarten F; de Vries, Michel; Pyrc, Krzysztov; Dijkman, Ronald; Simon, Arne; Müller, Andreas; Kupfer, Bernd; van der Hoek, Lia

    2006-12-01

    Six cell lines routinely used in laboratories were tested for permissiveness to the infection with the newly identified human coronavirus NL63. Two monkey epithelial cell lines, LLC-MK2 and Vero-B4, showed a cytopathic effect (CPE) and clear viral replication, whereas no CPE or replication was observed in human lung fibroblasts MRC-5s. In Rhabdomyosarcoma cells, Madin-Darby-Canine-kidney cells and in an undefined monkey kidney cell line some replication was observed but massive exponential rise in virus yield lacked The results will lead to an improved routine diagnostic algorithm for the detection of the human coronavirus NL63.

  20. Ag@Ag8W4O16 nanoroasted rice beads with photocatalytic, antibacterial and anticancer activity.

    PubMed

    Selvamani, Muthamizh; Krishnamoorthy, Giribabu; Ramadoss, Manigandan; Sivakumar, Praveen Kumar; Settu, Munusamy; Ranganathan, Suresh; Vengidusamy, Narayanan

    2016-03-01

    Increasing resistance of pathogens and cancer cell line towards antibiotics and anticancer agents has caused serious health problems in the past decades. Due to these problems in recent years, researchers have tried to combine nanotechnology with material science to have intrinsic antimicrobial and anticancer activity. The metals and metal oxides were investigated with respect to their antimicrobial and anticancer effects towards bacteria and cancer cell line. In the present work metal@metal tungstate (Ag@Ag8W4O16 nanoroasted rice beads) is investigated for antibacterial activity against Escherichia coli and Staphylococcus aureus using Mueller-Hinton broth and the anticancer activity against B16F10 cell line was studied. Silver decorated silver tungstate (Ag@Ag8W4O16) was synthesized by the microwave irradiation method using Cetyl Trimethyl Ammonium Bromide (CTAB). Ag@Ag8W4O16 was characterized by using various spectroscopic techniques. The phase and crystalline nature were analyzed by using XRD. The morphological analysis was carried out using Field Emission Scanning Electron Microscopy (FE-SEM), and High Resolution Transmission Electron Microscopy (HR-TEM). Further, Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectral analysis were carried out in order to ascertain the presence of functional groups in Ag@Ag8W4O16. The optical property was investigated using Diffuse Reflectance Ultraviolet-Visible Spectroscopy (DRS-UV-Vis) and the band gap was found to be 3.08eV. Surface area of the synthesized Ag@Ag8W4O16 wasanalyzed by BET analysis and Ag@Ag8W4O16 was utilized for the degradation of organic dyes methylene blue and rhodamine B. The morphology of the Ag@Ag8W4O16 resembles roasted rice beads with breath and length in nm range. The oxidation state of tungsten (W) and silver (Ag) was investigated using X-ray photoelectron spectroscopy (XPS).

  1. Effects of a silver nanomaterial on cellular organelles and time course of oxidative stress in a fish cell line (PLHC-1).

    PubMed

    Bermejo-Nogales, A; Fernández, M; Fernández-Cruz, M L; Navas, J M

    2016-12-01

    Among the nanomaterials currently in commercial products, those based on silver are the most used, and so there is a high probability that silver nanoparticles (AgNPs) will be released into aquatic environments where they could adversely affect aquatic organisms, including fish. Taking this into account, the aim of the present work was to characterize in depth the mechanisms underlying the toxic action of AgNPs using fish cell lines, determining specifically the contribution of alterations in cellular structures and oxidative stress time course to the cytotoxicity of AgNPs. Since liver plays a key role in detoxification, the hepatoma cell line PLHC-1 was used. Exposure to AgNPs (NM-300K, obtained from the Joint Research Centre Repository) caused alterations at the lysosomal and mitochondrial levels at lower concentrations than those that disrupted plasma membrane (evaluated by means of neutral red, alamarBlue, and 5-carboxyfluorescein diacetate, acetoxymethyl ester assays respectively). AgNO3, used as a control Ag(+) ion source, produced similar cytotoxic effects but at lower concentrations than AgNPs. Both silver forms caused oxidative disruption but the initial response was delayed in AgNPs until 6h of exposure. Transmission electron microscopy analysis also evidenced the disruption of mitochondrial structures in cells exposed to cytotoxic concentrations of both forms of silver. At non-cytotoxic concentrations, AgNPs were detected inside the nucleoli and mitochondria, thereby pointing to long-term effects. The present work evidences the mutual interaction between the induction of oxidative stress and the alterations of cellular structures, particularly mitochondria, as cytotoxicity mechanisms not exclusively associated to NPs.

  2. Direct laser patterning of transparent ITO-Ag-ITO multilayer anodes for organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Yong Hyeon; Choi, Jiyeon; Kim, Han-Ki

    2015-02-01

    Direct laser patterning of transparent ITO-Ag-ITO (IAI) multilayer anodes is investigated using a femtosecond fiber laser for application in organic solar cells (OSC) fabrication. By adjusting laser fluence and scan speed, we successfully patterned the IAI multilayer anode without changing the electrical or optical properties. At an optimized laser fluence of 0.6 J/cm2 and a scan speed of 200 mm/s, the patterned IAI multilayer was electrically isolated with a clean edge. The metallic Ag interlayer of the IAI multilayer plays an important role in direct laser patterning because it absorbed the laser and increases the maximum temperature in the IAI multilayer. In addition, the Ag layer could effectively decrease the temperature of the IAI multilayer after irradiation of laser. The OSC fabricated on the laser patterned IAI multilayer showed power conversion efficiencies of 3.12% (Ag 8 nm) and 2.85% (Ag 12 nm). Successful operation of the OSC indicates that direct laser patterning of IAI multilayer anodes is a promising, simple patterning technology for fabrication of IAI-based OSCs.

  3. Trichloroethylene toxicity in a human hepatoma cell line

    SciTech Connect

    Thevenin, E.; McMillian, J.

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  4. γδ T cells support gut Ag-reactive colitogenic effector T-cell generation by enhancing Ag presentation by CD11b(+) DCs in the mesenteric LN.

    PubMed

    Do, Jeongsu; Visperas, Anabelle; Freeman, Michael L; Jang, Eunjung; Kim, Sohee; Malissen, Bernard; Min, Booki

    2016-02-01

    T cells expressing the γδ TCR are dominant T-cell subsets in the intestinal immune system. We previously demonstrated that γδ T cells play important roles in augmenting Th17-type colitogenic immune responses in a T-cell-induced colitic inflammation model. However, its underlying mechanism remains poorly understood. In this study, an in vitro coculture system using effector T cells enriched in gut Ag-reactive cells was employed as a readout tool to search for gut Ag presenting APCs. We found that the presence of γδ T cells dramatically enhances gut Ag presentation within the mLN in mice. Gut Ag presentation by CD11b(+) DC subsets was particularly controlled by γδ T cells. Interestingly, γδ T-cell entry to the lymph nodes was essential to improve the Ag presentation. Therefore, our results highlight that γδ T cells play a previously unrecognized role to support colitogenic immunity by regulating gut Ag presentation in the draining LN.

  5. Motoneuron differentiation of immortalized human spinal cord cell lines.

    PubMed

    Li, R; Thode, S; Zhou, J; Richard, N; Pardinas, J; Rao, M S; Sah, D W

    2000-02-01

    Human motoneuron cell lines will be valuable tools for spinal cord research and drug discovery. To create such cell lines, we immortalized NCAM(+)/neurofilament(+) precursors from human embryonic spinal cord with a tetracycline repressible v-myc oncogene. Clonal NCAM(+)/neurofilament(+) cell lines differentiated exclusively into neurons within 1 week. These neurons displayed extensive processes, exhibited immunoreactivity for mature neuron-specific markers such as tau and synaptophysin, and fired action potentials upon current injection. Moreover, a clonal precursor cell line gave rise to multiple types of spinal cord neurons, including ChAT(+)/Lhx3(+)/Lhx4(+) motoneurons and GABA(+) interneurons. These neuronal restricted precursor cell lines will expedite the elucidation of molecular mechanisms that regulate the differentiation, maturation and survival of specific subsets of spinal cord neurons, and the identification and validation of novel drug targets for motoneuron diseases and spinal cord injury.

  6. Fire-through Ag contact formation for crystalline Si solar cells using single-step inkjet printing.

    PubMed

    Kim, Hyun-Gang; Cho, Sung-Bin; Chung, Bo-Mook; Huh, Joo-Youl; Yoon, Sam S

    2012-04-01

    Inkjet-printed Ag metallization is a promising method of forming front-side contacts on Si solar cells due to its non-contact printing nature and fine grid resolution. However, conventional Ag inks are unable to punch through the SiN(x) anti-reflection coating (ARC) layer on emitter Si surfaces. In this study, a novel formulation of Ag ink is examined for the formation of fire-through contacts on a SiN(x)-coated Si substrate using the single-step printing of Ag ink, followed by rapid thermal annealing at 800 degrees C. In order to formulate Ag inks with fire-through contact formation capabilities, a liquid etching agent was first formulated by dissolving metal nitrates in an organic solvent and then mixing the resulting solution with a commercial Ag nanoparticle ink at various volume ratios. During the firing process, the dissolved metal nitrates decomposed into metal oxides and acted in a similar manner to the glass frit contained in Ag pastes for screen-printed Ag metallization. The newly formulated ink with a 1 wt% loading ratio of metal oxides to Ag formed finely distributed Ag crystallites on the Si substrate after firing at 800 degrees C for 1 min.

  7. GREG cells, a dysferlin-deficient myogenic mouse cell line

    SciTech Connect

    Humphrey, Glen W.; Mekhedov, Elena; Blank, Paul S.; Morree, Antoine de; Pekkurnaz, Gulcin; Nagaraju, Kanneboyina; Zimmerberg, Joshua

    2012-01-15

    The dysferlinopathies (e.g. LGMD2b, Myoshi myopathy) are progressive, adult-onset muscle wasting syndromes caused by mutations in the gene coding for dysferlin. Dysferlin is a large ({approx} 200 kDa) membrane-anchored protein, required for maintenance of plasmalemmal integrity in muscle fibers. To facilitate analysis of dysferlin function in muscle cells, we have established a dysferlin-deficient myogenic cell line (GREG cells) from the A/J mouse, a genetic model for dysferlinopathy. GREG cells have no detectable dysferlin expression, but proliferate normally in growth medium and fuse into functional myotubes in differentiation medium. GREG myotubes exhibit deficiencies in plasma membrane repair, as measured by laser wounding in the presence of FM1-43 dye. Under the wounding conditions used, the majority ({approx} 66%) of GREG myotubes lack membrane repair capacity, while no membrane repair deficiency was observed in dysferlin-normal C2C12 myotubes, assayed under the same conditions. We discuss the possibility that the observed heterogeneity in membrane resealing represents genetic compensation for dysferlin deficiency.

  8. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release

    PubMed Central

    2014-01-01

    Background Silver nanoparticles (AgNPs) are currently one of the most manufactured nanomaterials. A wide range of toxicity studies have been performed on various AgNPs, but these studies report a high variation in toxicity and often lack proper particle characterization. The aim of this study was to investigate size- and coating-dependent toxicity of thoroughly characterized AgNPs following exposure of human lung cells and to explore the mechanisms of toxicity. Methods BEAS-2B cells were exposed to citrate coated AgNPs of different primary particle sizes (10, 40 and 75 nm) as well as to 10 nm PVP coated and 50 nm uncoated AgNPs. The particle agglomeration in cell medium was investigated by photon cross correlation spectroscopy (PCCS); cell viability by LDH and Alamar Blue assay; ROS induction by DCFH-DA assay; genotoxicity by alkaline comet assay and γH2AX foci formation; uptake and intracellular localization by transmission electron microscopy (TEM); and cellular dose as well as Ag release by atomic absorption spectroscopy (AAS). Results The results showed cytotoxicity only of the 10 nm particles independent of surface coating. In contrast, all AgNPs tested caused an increase in overall DNA damage after 24 h assessed by the comet assay, suggesting independent mechanisms for cytotoxicity and DNA damage. However, there was no γH2AX foci formation and no increased production of intracellular reactive oxygen species (ROS). The reasons for the higher toxicity of the 10 nm particles were explored by investigating particle agglomeration in cell medium, cellular uptake, intracellular localization and Ag release. Despite different agglomeration patterns, there was no evident difference in the uptake or intracellular localization of the citrate and PVP coated AgNPs. However, the 10 nm particles released significantly more Ag compared with all other AgNPs (approx. 24 wt% vs. 4–7 wt%) following 24 h in cell medium. The released fraction in cell medium did not induce any

  9. Identification of conjugated linoleic acid (CLA) isomers by silver ion-liquid chromatography/in-line ozonolysis/mass spectrometry (Ag+-LC/O3-MS).

    PubMed

    Sun, Chenxing; Black, Brenna A; Zhao, Yuan-Yuan; Gänzle, Michael G; Curtis, Jonathan M

    2013-08-06

    A novel method for the identification of conjugated linoleic acid (CLA) isomers has been developed in which silver ion liquid chromatography is coupled to in-line ozonolysis/mass spectrometry (Ag(+)-LC/O3-MS). The mobile phase containing CLA isomers eluting from the Ag(+)-LC column flows through a length of gas-permeable tubing within an ozone rich environment. Ozone penetrating the tubing wall reacts with the conjugated double bonds forming ozonolysis product aldehydes. These, and their corresponding methanol loss fragment ions formed within the atmospheric pressure photoionization (APPI) source, were detected by in-line MS and used for the direct assignment of double bond positions. Assignment of positional isomers is based entirely on the two pairs of diagnostic ions seen in the in-line O3-MS mass spectra. In this way, de novo identification of CLA positional isomers, i.e. without requiring comparison to CLA standards, was achieved. The Ag(+)-LC/O3-MS method was applied to the analysis of CLA isomers in a commercial CLA supplement, milk fat, and the lipid extract from a Lactobacillus plantarum TMW1460 culture. The results demonstrate how Ag(+)-LC/O3-MS can be used for the direct and fast determination of CLA isomers at low concentrations and in complex lipid mixtures.

  10. Synthesis of fluorescent and low cytotoxicity phenol formaldehyde resin (PFR)@Ag composites for cell imaging and antibacterial activity.

    PubMed

    Yang, Ping; Dong, Hao; Xia, Jun; Xu, Andong; Shi, Jianjun; He, Jie; Ding, Jianzhong; Li, Dewei

    2015-12-01

    Ag nanoparticles (NPs) were loaded onto the surface of phenol formaldehyde resin (PFR) NPs without any reducing agent. The as-synthesized PFR@Ag composites have low cytotoxicity, which makes them promising antibacterial agents. Furthermore, the good fluorescence of PFR could be used for cell imaging.

  11. Germ line, stem cells, and epigenetic reprogramming.

    PubMed

    Surani, M A; Durcova-Hills, G; Hajkova, P; Hayashi, K; Tee, W W

    2008-01-01

    The germ cell lineage has the unique attribute of generating the totipotent state. Development of blastocysts from the totipotent zygote results in the establishment of pluripotent primitive ectoderm cells in the inner cell mass of blastocysts, which subsequently develop into epiblast cells in postimplantation embryos. The germ cell lineage in mice originates from these pluripotent epiblast cells of postimplantation embryos in response to specific signals. Pluripotent stem cells and unipotent germ cells share some fundamental properties despite significant phenotypic differences between them. Additionally, early primordial germ cells can be induced to undergo dedifferentiation into pluripotent embryonic germ cells. Investigations on the relationship between germ cells and pluripotent stem cells may further elucidate the nature of the pluripotent state. Furthermore, comprehensive epigenetic reprogramming of the genome in early germ cells, including extensive erasure of epigenetic modifications, is a critical step toward establishment of totipotency. The mechanisms involved may be relevant for gaining insight into events that lead to reprogramming of somatic cells into pluripotent stem cells.

  12. Cytotoxic activities of naturally occurring oleanane-, ursane-, and lupane-type triterpenes on HepG2 and AGS cells

    PubMed Central

    Yang, Heejung; Kim, Hyun Woo; Kim, Young Choong; Sung, Sang Hyun

    2017-01-01

    Background: It is well known that the naturally occurring modified triterpenes in plants have a wide diversity of chemical structures and biological functions. The lupane-, oleanane-, and ursane-type triterpenes are the three major members of natural triterpenes with a wide range of biological properties. A systematic approach is necessary to review their structures and biological activities according to the backbones and the different substituents. Objective: Thirty lupane-(L1-7), oleanane-(O1-14), and ursane-type (U1-9) triterpenes with structural diversity were examined to evaluate their cytotoxic activities against two cancer cell lines, human hepatocellular carcinoma (HepG2) and AGS cells. Materials and Methods: They were isolated from Hedera helix, Juglans sinensis, and Pulsatilla koreana using a series of column chromatography methods and were treated to evaluate their cytotoxic activities against HepG2 and AGS human gastric adenocarcinoma cell. Further, two triterpenes showing the most potent activities were subjected to the apoptotic screening assay using flow cytometry. Results: The polar groups, such as an oxo group at C-1, a free hydroxyl at C-2, C-3, or C-23, and a carboxylic moiety at C-28, as well as the type of backbone, explicitly increased the cytotoxic activity on two cancer cells. O5 and U5 showed significantly the potent cytotoxic activity in comparison to other glycosidic triterpenes. In annexin-V/propidium iodide (PI) staining assay, the percentage of late apoptosis (annexin-V+/PI+) 12 and 24 h after treatment with O5 and U5 at 25 μM increased from 14.5% to 93.1% and from 46.4% to 49.1%, respectively, in AGS cells. The cytotoxicity induced by O5 showed a significant difference compared to U5 for 12 and 24 h. Conclusion: In the study, we can suggest the potent moieties which influence their cytotoxic activities against two cancer cells. The polar groups at C-1, C-2, C-3, C-23, and C-28 and the linkage of sugar moieties influenced the

  13. Ag-Incorporated Organic-Inorganic Perovskite Films and Planar Heterojunction Solar Cells.

    PubMed

    Chen, Qi; Chen, Lei; Ye, Fengye; Zhao, Ting; Tang, Feng; Rajagopal, Adharsh; Jiang, Zheng; Jiang, Shenlong; Jen, Alex K-Y; Xie, Yi; Cai, Jinhua; Chen, Liwei

    2017-04-06

    Controlled doping for adjustable material polarity and charge carrier concentration is the basis of semiconductor materials and devices, and it is much more difficult to achieve in ionic semiconductors (e.g., ZnO and GaN) than in covalent semiconductors (e.g., Si and Ge), due to the high intrinsic defect density in ionic semiconductors. The organic-inorganic perovskite material, which is frenetically being researched for applications in solar cells and beyond, is also an ionic semiconductor. Here we present the Ag-incorporated organic-inorganic perovskite films and planar heterojunction solar cells. Partial substitution of Pb(2+) by Ag(+) leads to improved film morphology, crystallinity, and carrier dynamics as well as shifted Fermi level and reduced electron concentration. Consequently, in planar heterojunction photovoltaic devices with inverted stacking structure, Ag incorporation results in an enhancement of the power conversion efficiency from 16.0% to 18.4% in MAPbI3 based devices and from 11.2% to 15.4% in MAPbI3-xClx based devices. Our work implies that Ag incorporation is a feasible route to adjust carrier concentrations in solution-processed perovskite materials in spite of the high concentration of intrinsic defects.

  14. Establishment of a Human Thymic Myoid Cell Line

    PubMed Central

    Wakkach, Abdel; Poea, Sandrine; Chastre, Eric; Gespach, Christian; Lecerf, Florence; De la Porte, Sabine; Tzartos, Socrates; Coulombe, Alain; Berrih-Aknin, Sonia

    1999-01-01

    The subset of myoid cells is a normal component of the thymic stroma. To characterize these cells, we immortalized stromal cells from human thymus by using a plasmid vector encoding the SV40 T oncogene. Among the eight cell lines obtained, one had myoid characteristics including desmin and troponin antigens. This new line was designated MITC (myoid immortalized thymic cells). These cells expressed both the fetal and adult forms of muscle acetylcholine receptor (AChR) at the mRNA level, as well as the myogenic transcription factor MyoD1. α-Subunit AChR protein expression was detected by flow cytometry and the AChR was functional in patch-clamp studies. In addition, AChR expression was down-modulated by myasthenia gravis sera or by monoclonal antibody anti-AChR on MITC line similarly to TE671 rhabdomyosarcoma cells, making the MITC line an interesting tool for AChR antigenic modulation experiments. Finally, the MITC line expressed LFA-3, produced several cytokines able to act on T cells, and protected total thymocytes from spontaneous apoptosis in vitro. These results are compatible with a role of thymic myoid cells in some steps of thymocyte development. Therefore MITC line appears to be a useful tool to investigate the physiological role of thymic myoid cells. PMID:10514405

  15. Recombinant protein production from stable mammalian cell lines and pools.

    PubMed

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced.

  16. Anti-metastatic activity of fangchinoline in human gastric cancer AGS cells

    PubMed Central

    Chen, Zhengrong; He, Tengfei; Zhao, Kui; Xing, Chungen

    2017-01-01

    Fangchinoline (FCL) is an active component isolated from the traditional medicinal plant Stephania tetrandra S. Moore, and has been reported to possess anti-cancer functions in several types of cancers; however, the effect of FCL on gastric cancer metastasis and its underlying molecular mechanisms remain unknown. The current study aimed to investigate the effect of FCL on the cell migration and invasion of human metastatic gastric cancer AGS cells and its mechanisms. Our study demonstrates that FCL dosage dependently suppressed the adhesion, migration and invasion capacities of human gastric cancer AGS cells without obvious cytotoxic effects. Reverse transcription-polymerase chain reaction and western blot assays demonstrated that FCL greatly inhibited the expression of matrix metalloproteinase (MMP)-2 and MMP-9 at both the mRNA and protein levels, while it significantly increased the expression of tissue inhibitor of metalloproteinase (TIMP) 1 and TIMP2 messenger RNAs. Our results also indicated that FCL repressed the phosphorylation of AKT in gastric cancer AGS cells. In summary, FCL may exert its anti-metastatic property in human gastric cancer cells in vitro by suppression of MMP-2 and MMP-9, increase of TIMP1 and TIMP2 genes, and inhibition of AKT phosphorylation. FCL may be a drug candidate for the treatment of gastric cancer metastasis.

  17. Quantitative methods to characterize morphological properties of cell lines.

    PubMed

    Mancia, Annalaura; Elliott, John T; Halter, Michael; Bhadriraju, Kiran; Tona, Alessandro; Spurlin, Tighe A; Middlebrooks, Bobby L; Baatz, John E; Warr, Gregory W; Plant, Anne L

    2012-07-01

    Descriptive terms are often used to characterize cells in culture, but the use of nonquantitative and poorly defined terms can lead to ambiguities when comparing data from different laboratories. Although recently there has been a good deal of interest in unambiguous identification of cell lines via their genetic markers, it is also critical to have definitive, quantitative metrics to describe cell phenotypic characteristics. Quantitative metrics of cell phenotype will aid the comparison of data from experiments performed at different times and in different laboratories where influences such as the age of the population and differences in culture conditions or protocols can potentially affect cellular metabolic state and gene expression in the absence of changes in the genetic profile. Here, we present examples of robust methodologies for quantitatively assessing characteristics of cell morphology and cell-cell interactions, and of growth rates of cells within the population. We performed these analyses with endothelial cell lines derived from dolphin, bovine and human, and with a mouse fibroblast cell line. These metrics quantify some characteristics of these cells lines that clearly distinguish them from one another, and provide quantitative information on phenotypic changes in one of the cell lines over large number of passages.

  18. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    SciTech Connect

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-09-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10{sup −5} Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10{sup −3} Ω{sup −1}, comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.

  19. A new medium energy beam transport line for the proton injector of AGS-RHIC

    SciTech Connect

    Okamura, M.; Briscoe, B.; Fite, J.; LoDestro, V.; Raparia, D.; Ritter, J.; Hayashizaki, N.

    2010-09-12

    In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupole magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.

  20. On the Origin of the Raman Scattered O VI 1032 Å Line During Outbursts and Quiescent Phases of the Symbiotic Binary AG Dra

    NASA Astrophysics Data System (ADS)

    Kreibiková, Z.; Skopal, A.

    2015-07-01

    We investigate the effect of Raman scattering of photons from the O VI 1032 Å line on neutral atoms of hydrogen in the symbiotic binary AG Dra. We found that the profile of the Raman scattered O VI 6825 Å line can be fitted by two Gaussians. We have investigated the behavior of their parameters (position, flux at maximum, FWHM, and the corresponding total flux of the line) as a function of orbital phase and the level of activity. Differences in some parameters as measured during quiescent and active phases suggest a significant variation of the ionization structure of the binary as a function of the activity level.

  1. Cell line models for differentiation: preadipocytes and adipocytes.

    PubMed

    Poulos, Sylvia P; Dodson, Michael V; Hausman, Gary J

    2010-10-01

    In vitro models have been invaluable in determining the mechanisms involved in adipocyte proliferation, differentiation, adipokine secretion and gene/protein expression. The cells presently available for research purposes all have unique advantages and disadvantages that one should be aware of when selecting cells. Established cell lines, such as 3T3-L1 cells, are easier and less costly to use than freshly isolated cells, even though freshly isolated cells allow for various comparisons such as the in vitro evaluation of different in vivo conditions that may not be possible using cell lines. Moreover, stem cells, transdifferentiated cells or dedifferentiated cells are relatively new cell models being evaluated for the study of adipocyte regulation and physiology. The focus of this brief review is to highlight similarities and differences in adipocyte models to aid in appropriate model selection and data interpretation for successful advancement of our understanding of adipocyte biology.

  2. Growth of Murine Cytomegalovirus in Various Cell Lines

    PubMed Central

    Kim, Kwang Soo; Carp, Richard I.

    1971-01-01

    Murine cytomegalovirus (MCMV) was capable of infecting and replicating in both primary and continuous cell lines obtained from various species. In African green monkey kidney (BSC-1) cells, primary rabbit kidney cells, and baby hamster kidney (BHK-21) cells, there were cytopathic effects (CPE) and virus replication upon initial exposure of cells to virus. In primary fetal sheep brain (FSB) cells, L cells, and rabbit kidney (RK-13) cells, it was necessary to subculture the infected cells one or more times before appearance of CPE and replication of virus. In the case of the infected FSB cultures, it was found that the virus effect could be induced if subculturing were accomplished by trypsinization but did not occur if cells were subcultured by scraping. FSB-grown virus replicated better in FSB than in mouse embryo fibroblast (MEF) cells. The CPE produced in all of the above cell lines was similar to that observed in MEF infected with MCMV. The virus grown in different cell lines was completely neutralized when mixed with several reference sera prepared in rabbits or mice. The populations of virions released from infected MEF and FSB cells were compared by isopycnic centrifugation in potassium tartrate, and no differences were revealed in the buoyant densities of the populations. Human embryonic brain cells, human embryonic kidney cells, a human lung fibroblast cell strain (WI-38), HeLa, and Hep-2 were not susceptible to MCMV. PMID:4327583

  3. Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Yang, Da-Peng; Zhang, Chunlei; Lin, Jing; He, Meng; Bao, Le; Cui, Daxiang

    2011-09-01

    Biocompatible Ag@BSA microspheres were successfully synthesized via one-pot reaction in aqueous phase at room temperature by using BSA as soft templates. The individual Ag microsphere is composed of nanoscale Ag assemblies and shows enhanced radiation effects on gastric cancer cells.Biocompatible Ag@BSA microspheres were successfully synthesized via one-pot reaction in aqueous phase at room temperature by using BSA as soft templates. The individual Ag microsphere is composed of nanoscale Ag assemblies and shows enhanced radiation effects on gastric cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10586h

  4. Radiosensitivity of hepatoma cell lines and human normal liver cell lines exposed to 12C6+ ions

    NASA Astrophysics Data System (ADS)

    Jing, X.; Yang, J.; Li, W.; Guo, C.; Dang, B.; Wang, J.; Zhou, L.; Wei, W.; Gao, Q.

    AIM To investigate the radiosensitivity of hepatoma cell lines and human normal liver cell lines METHODS Accelerated carbon ions by heavy ion research facility in Lanzhou HIRFL have high LET We employed it to study the radiosensitivity of hepatoma cell lines SMMC-7721 and human normal liver cell lines L02 using premature chromosome condensation technique PCC Cell survive was documented by a colony assay Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A RESULTS The survival curve of the two cell lines presented a good linear relationship and the survival fraction of L02 is higher than that of SMMC-7721 Additionally the two types of G 2 phase chromosome breaks chromatid breaks and isochromatid breaks of L02 are lower than that of SMMC-7721 CONCLUSION Human normal liver cell line have high radioresistance than that of hepatoma cell line It imply that it is less damage to normal organs when radiotherapy to hepatoma

  5. Regulation of germ line stem cell homeostasis

    PubMed Central

    Garcia, T.X.; Hofmann, M.C.

    2015-01-01

    Mammalian spermatogenesis is a complex process in which spermatogonial stem cells of the testis (SSCs) develop to ultimately form spermatozoa. In the seminiferous epithelium, SSCs self-renew to maintain the pool of stem cells throughout life, or they differentiate to generate a large number of germ cells. A balance between SSC self-renewal and differentiation is therefore essential to maintain normal spermatogenesis and fertility. Stem cell homeostasis is tightly regulated by signals from the surrounding microenvironment, or SSC niche. By physically supporting the SSCs and providing them with these extrinsic molecules, the Sertoli cell is the main component of the niche. Earlier studies have demonstrated that GDNF and CYP26B1, produced by Sertoli cells, are crucial for self-renewal of the SSC pool and maintenance of the undifferentiated state. Down-regulating the production of these molecules is therefore equally important to allow germ cell differentiation. We propose that NOTCH signaling in Sertoli cells is a crucial regulator of germ cell fate by counteracting these stimulatory factors to maintain stem cell homeostasis. Dysregulation of this essential niche component can lead by itself to sterility or facilitate testicular cancer development.

  6. Mechanochemically synthesized Ag-based nanohybrids with unprecedented low toxicity in biomedical applications.

    PubMed

    Arancon, Rick A D; Balu, Alina M; Romero, Antonio A; Ojeda, Manuel; Gomez, Mercedes; Blanco, Jordi; Domingo, Jose L; Luque, Rafael

    2017-04-01

    A simple and innovative mechanochemical approach was employed to synthesize Ag-polysaccharide nanohybrid materials that were proved to exhibit remarkable surface properties and structures for biomedical applications. The synthesized Ag nanomaterials possessed an unprecedented low cytotoxicity against human cell lines A549 and SH-SY5Y as compared to similarly reported Ag nanomaterials due to the stability and low release of Ag(+) and high biocompatibility of the nanohybrids.

  7. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells

    DOE PAGES

    Benipal, Neeva; Qi, Ji; Liu, Qi; ...

    2017-03-10

    Electro-oxidation of alcohol is the key reaction occurring at the anode of a direct alcohol fuel cell (DAFC), in which both reaction kinetics (rate) and selectivity (to deep oxidation products) need improvement to obtain higher power density and fuel utilization for a more efficient DAFC. We recently found that a PdAg bimetallic nanoparticle catalyst is more efficient than Pd for alcohol oxidation: Pd can facilitate deprotonation of alcohol in a base electrolyte, while Ag can promote intermediate aldehyde oxidation and cleavage of C-single bondC bond of C3 species to C2 species. Furthermore, a combination of the two active sites (Pdmore » and Ag) with two different functions, can simultaneously improve the reaction rates and deeper oxidation products of alcohols. In this continuing work, Pd, Ag mono, and bimetallic nanoparticles supported on carbon nanotubes (Ag/CNT, Pd/CNT, Pd1Ag1/CNT, and Pd1Ag3/CNT) were prepared using an aqueous-phase reduction method; they served as working catalysts for studying electrocatalytic oxidation of glycerol in an anion-exchange membrane-based direct glycerol fuel cell. Combined XRD, TEM, and HAADF-STEM analyses performed to fully characterize as-prepared catalysts suggested that they have small particle sizes: 2.0 nm for Pd/CNT, 2.3 nm for PdAg/CNT, 2.4 nm for PdAg3/CNT, and 13.9 nm for Ag/CNT. XPS further shows that alloying with Ag results in more metal state Pd presented on the surface, and this may be related to their higher direct glycerol fuel cell (DGFC) performances. Single DGFC performance and product analysis results show that PdAg bimetallic nanoparticles can not only improve the glycerol reaction rate so that higher power output can be achieved, but also facilitate deep oxidation of glycerol so that a higher faradaic efficiency and fuel utilization can be achieved along with optimal reaction conditions (increased base-to-fuel ratio). Half-cell electrocatalytic activity measurement and single fuel cell product analysis

  8. Development of a cell line from Echinococcus granulosus germinal layer.

    PubMed

    Albani, Clara María; Cumino, Andrea Carina; Elissondo, María Celina; Denegri, Guillermo María

    2013-10-01

    In vitro culture of parasitic helminths provides an important tool to study cell regeneration and physiology, as well as for molecular biology and genetic engineering studies. In the present study, we established in vitro propagation of cells from Echinococcus granulosus germinal cyst layer. E. granulosus germinal cells grew beyond 100 passages and showed no signs of reduced proliferation capacity. Microscopic analysis revealed that cells grew both attached to the substrate and in suspension, forming three-dimensional structures like mammalian stem cell aggregates. Examination of the chromosome number of attached germinal cells showed a high degree of heteroploidy, suggesting the occurrence of transformation during culture. Monolayer cells survived cryopreservation and were able to proliferate after thawing. Based on the characteristics displayed by E. granulosus germinal cells, we establish a cell line from the E. granulosus germinal layer. Furthermore, we propose that this cell line could be useful for drug screening and for obtaining parasite material.

  9. Development and characterization of a largemouth bass cell line.

    PubMed

    Getchell, Rodman G; Groocock, Geoffrey H; Cornwell, Emily R; Schumacher, Vanessa L; Glasner, Lindsay I; Baker, Barry J; Frattini, Stephen A; Wooster, Gregory A; Bowser, Paul R

    2014-09-01

    Abstract The development and characterization of a new cell line, derived from the ovary of Largemouth Bass Micropterus salmoides, is described. Gonad tissue was collected from Largemouth Bass that were electrofished from Oneida Lake, New York. The tissue was processed and grown in culture flasks at approximately 22°C for more than 118 passages during an 8-year period from 2004 to 2011. The identity of these cells as Largemouth Bass origin was confirmed by sequencing a portion of the cytochrome b gene. Growth rate at three different temperatures was documented. The cell line was susceptible to Largemouth Bass virus (LMBV) and its replication was compared with that of Bluegill Lepomis macrochirus fry (BF-2), one of the cell lines recommended for LMBV isolation by the American Fisheries Society Fish Health Section Blue Book. Quantitative PCR results from the replication trial showed the BF-2 cell line produced approximately 10-fold more LMBV copies per cell than the new Largemouth Bass cell line after 6 d, while the titration assay showed similar quantities in each cell line after 1 week. Received February 18, 2014; accepted April 16, 2014.

  10. Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line.

    PubMed

    Habibi, Laleh; Shokrgozar, Mohammad Ali; Tabrizi, Mina; Modarressi, Mohammad Hossein; Akrami, Seyed Mohammad

    2014-01-01

    L1 retro-elements comprise 17% of the human genome. Approximately 100 copies of these autonomous mobile elements are active in our DNA and can cause mutations, gene disruptions, and genomic instability. Therefore, human cells control the activities of L1 elements, in order to prevent their deleterious effects through different mechanisms. However, some toxic agents increase the retrotransposition activity of L1 elements in somatic cells. In order to identify specific effects of neurotoxic metals on L1 activity in neuronal cells, we studied the effects of mercury and cobalt on L1-retroelement activity by measuring levels of cellular transcription, protein expression, and genomic retrotransposition in a neuroblastoma cell line compared with the effects in three non-neuronal cell lines. Our results show that mercury increased the expression of L1 RNA, the activity of the L1 5'UTR, and L1 retrotransposition exclusively in the neuroblastoma cell line but not in non-neuronal cell lines. However, cobalt increased the expression of L1 RNA in neuroblastoma cells, HeLa cells, and wild-type human fibroblasts, and also increased the activity of the L1 5'UTR as well as the SV40 promoter in HeLa cells but not in neuroblastoma cells. Exposure to cobalt did not result in increased retrotransposition activity in HeLa cells or neuroblastoma cells. We conclude that non-toxic levels of the neurotoxic agent mercury could influence DNA by increasing L1 activities, specifically in neuronal cells, and may make these cells susceptible to neurodegeneration over time.

  11. Apoptotic effect of noscapine in breast cancer cell lines.

    PubMed

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  12. Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cai, Chunqi; Zhai, Lanlan; Ma, Yahui; Zou, Chao; Zhang, Lijie; Yang, Yun; Huang, Shaoming

    2017-02-01

    Synthesis of quantum dots (QDs) with high photoluminescence is critical for quantum dot sensitized solar cells (QDSCs). A series of high quality AgInS2 QDs were synthesized under air circumstance by the organometallic high temperature method. Feature of tunable photoluminescence of AgInS2 QDs with long lifetime and quantum yields beyond 40% has been achieved, which was mainly attributed to the donor-acceptor pair recombination, contributed above 91% to the whole emission profiles. After ligand exchange with bifunctional linker, water-soluble AgInS2 QDs were adopted as light harvesters to fabricate QDSCs, achieved best PCE of 2.91% (short-circuit current density of 13.78 mA cm-2, open-circuit voltage of 0.47 V, and fill factor of 45%) under one full sun illumination. The improved photovoltaic performance of AgInS2 QDs-based QDSCs is mainly originated from broadened optoelectronic response range up to ∼900 nm, and enhanced photoluminescence with long lifetime and high quantum yield beyond 40%, which provide strong photoresponse ∼40% over the window below 750 nm. The synthetic approach combined with intrinsic defects created by intentionally composition modulation introduces a new approach towards the goal of high performance QDSCs.

  13. Coinfection of hepatic cell lines with human immunodeficiency virus and hepatitis B virus leads to an increase in intracellular hepatitis B surface antigen.

    PubMed

    Iser, David M; Warner, Nadia; Revill, Peter A; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F; Desmond, Paul V; Locarnini, Stephen A; Lewin, Sharon R

    2010-06-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals.

  14. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes.

    PubMed

    Kang, Myung-Gyu; Xu, Ting; Park, Hui Joon; Luo, Xiangang; Guo, L Jay

    2010-10-15

    Surface plasmon enhanced photo-current and power conversion efficiency of organic solar cells using periodic Ag nanowires as transparent electrodes are reported, as compared to the device with conventional ITO electrodes. External quantum efficiencies are enhanced about 2.5 fold around the peak solar spectrum wavelength of 560 nm, resulting in 35% overall increase in power conversion efficiency than the ITO control device under normal unpolarized light.

  15. Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes

    SciTech Connect

    Kang, Myung-Gyu; Xu, Ting; Park, Hui Joon; Luo, Xiangang G; Guo, L. Jay

    2010-08-23

    Surface plasmon enhanced photo-current and power conversion efficiency of organic solar cells using periodic Ag nanowires as transparent electrodes are reported, as compared to the device with conventional ITO electrodes. External quantum efficiencies are enhanced about 2.5 fold around the peak solar spectrum wavelength of 560 nm, resulting in 35% overall increase in power conversion efficiency than the ITO control device under normal unpolarized light.

  16. Natural Killer Cells for Immunotherapy - Advantages of the NK-92 Cell Line over Blood NK Cells.

    PubMed

    Klingemann, Hans; Boissel, Laurent; Toneguzzo, Frances

    2016-01-01

    Natural killer (NK) cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells from a patient's blood since they represent only 10% of the lymphocytes and are often dysfunctional. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T cells to prevent graft-versus-host reactions. Cytotoxic cell lines have been established from patients with clonal NK-cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. Except for the NK-92 cell line, though, none of the other six known NK cell lines has consistently and reproducibly shown high antitumor cytotoxicity. Only NK-92 cells can easily be genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through antibody-dependent cellular cytotoxicity. NK-92 is also the only cell line product that has been infused into patients with advanced cancer with clinical benefit and minimal side effects.

  17. Combinatorial Study of Ag-Te Thin Films and Their Application as Cation Supply Layer in CBRAM Cells.

    PubMed

    Devulder, Wouter; Opsomer, Karl; Meersschaut, Johan; Deduytsche, Davy; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe

    2015-05-11

    In this work, we investigate binary Ag-Te thin films and their functionality as a cation supply layer in conductive bridge random access memory devices. A combinatorial sputter deposition technique is used to deposit a graded Ag(x)Te(1-x) (0 < x < 1) layer with varying composition as a function of the position on the substrate. The crystallinity, surface morphology, and material stability under thermal treatment as a function of the composition of the material are investigated. From this screening, a narrow composition range between 33 and 38 at% Te is selected which shows a good morphology and a high melting temperature. Functionality of a single Ag(2-δ)Te composition as cation supply layer in CBRAM with dedicated Al2O3 switching layer is then investigated by implementing it in 580 μm diameter dot Pt/Ag(2-δ)Te/Al2O3/Si cells. Switching properties are investigated and compared to cells with a pure Ag cation supply layer. An improved cycling behavior is observed when Te is added compared to pure Ag, which we relate to the ionic conducting properties of Ag2Te and the preferred formation of Ag-Te phases.

  18. Investigation of the selenium metabolism in cancer cell lines.

    PubMed

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan; Andresen, Lars; Skov, Søren; Gammelgaard, Bente

    2011-02-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 μM were incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size exclusion chromatography and ICP-MS detection. The selenium compounds exhibited large differences in their ability to induce cell death in the three cell lines and the susceptibilities of the cell lines were different. Full recovery of selenium in the cellular fractions was observed for all Se compounds except MeSeA. Speciation analysis showed that MeSeA was completely transformed during the incubations, while metabolic conversion of the other Se compounds was limited. Production of volatile dimethyl diselenide was observed for MeSeA and MeSeCys. MeSeA, MeSeCys and selenite showed noticeable protein binding. Correlations between cell death induction and the Se compounds transformations could not be demonstrated.

  19. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation.

    PubMed

    Porter, Alison J; Racher, Andrew J; Preziosi, Richard; Dickson, Alan J

    2010-01-01

    Transfectants with a wide range of cellular phenotypes are obtained during the process of cell line generation. For the successful manufacture of a therapeutic protein, a means is required to identify a cell line with desirable growth and productivity characteristics from this phenotypically wide-ranging transfectant population. This identification process is on the critical path for first-in-human studies. We have stringently examined a typical selection strategy used to isolate cell lines suitable for cGMP manufacturing. One-hundred and seventy-five transfectants were evaluated as they progressed through the different assessment stages of the selection strategy. High producing cell lines, suitable for cGMP manufacturing, were identified. However, our analyses showed that the frequency of isolation of the highest producing cell lines was low and that ranking positions were not consistent between each assessment stage, suggesting that there is potential to improve upon the strategy. Attempts to increase the frequency of isolation of the 10 highest producing cell lines, by in silico analysis of alternative selection strategies, were unsuccessful. We identified alternative strategies with similar predictive capabilities to the typical selection strategy. One alternate strategy required fewer cell lines to be progressed at the assessment stages but the stochastic nature of the models means that cell line numbers are likely to change between programs. In summary, our studies illuminate the potential for improvement to this and future selection strategies, based around use of assessments that are more informative or that reduce variance, paving the way to improved efficiency of generation of manufacturing cell lines.

  20. Effects of ethanol on an intestinal epithelial cell line

    SciTech Connect

    Nano, J.L.; Cefai, D.; Rampal, P. )

    1990-02-01

    The effect of exposure of an intestinal epithelial cell line to various concentrations of ethanol (217 mM (1%) to 652 mM (3%)) during 24, 48, and 72 hr was investigated in vitro using a rat intestinal epithelial cell line (IRD 98). Incubation of these cells in the presence of ethanol significantly decreased cell growth. This inhibition was accompanied by a strong increase in cellular protein. Stimulation of specific disaccharidases, gamma-glutamyl transferase, and aminopeptidase activities by ethanol was dose- and time-dependent. Ethanol induces a change in the relative proportions of the different lipid classes synthesized; triglycerides, fatty acids, and cholesterol esters were preferentially synthethysed. Our findings show that cell lines are good models for investigation of the effects of ethanol, and that alcohol considerably modifies the functions of intestinal epithelial cells.

  1. Reliable in vitro studies require appropriate ovarian cancer cell lines

    PubMed Central

    2014-01-01

    Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210

  2. Antiproliferative Effect of Solanum nigrum on Human Leukemic Cell Lines

    PubMed Central

    Gabrani, Reema; Jain, Ramya; Sharma, Anjali; Sarethy, Indira P.; Dang, Shweta; Gupta, S.

    2012-01-01

    Solanum nigrum is used in various traditional medical systems for antiproliferative, antiinflammatory, antiseizure and hepatoprotective activities. We have evaluated organic solvent and aqueous extracts obtained from berries of Solanum nigrum for antiproliferative activity on leukemic cell lines, Jurkat and HL-60 (Human promyelocytic leukemia cells). The cell viability after the treatment with Solanum nigrum extract was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Results indicated increased cytotoxicity with increasing extract concentrations. Comparative analysis indicated that 50% inhibitory concentration value of methanol extract is the lowest on both cell lines. PMID:23716874

  3. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines.

    PubMed

    Harenza, Jo Lynne; Diamond, Maura A; Adams, Rebecca N; Song, Michael M; Davidson, Heather L; Hart, Lori S; Dent, Maiah H; Fortina, Paolo; Reynolds, C Patrick; Maris, John M

    2017-03-28

    Neuroblastoma cell lines are an important and cost-effective model used to study oncogenic drivers of the disease. While many of these cell lines have been previously characterized with SNP, methylation, and/or mRNA expression microarrays, there has not been an effort to comprehensively sequence these cell lines. Here, we present raw whole transcriptome data generated by RNA sequencing of 39 commonly-used neuroblastoma cell lines. These data can be used to perform differential expression analysis based on a genetic aberration or phenotype in neuroblastoma (e.g., MYCN amplification status, ALK mutation status, chromosome arm 1p, 11q and/or 17q status, sensitivity to pharmacologic perturbation). Additionally, we designed this experiment to enable structural variant and/or long-noncoding RNA analysis across these cell lines. Finally, as more DNase/ATAC and histone/transcription factor ChIP sequencing is performed in these cell lines, our RNA-Seq data will be an important complement to inform transcriptional targets as well as regulatory (enhancer or repressor) elements in neuroblastoma.

  4. Baculovirus studies in new, indigenous lepidopteran cell lines.

    PubMed

    Pant, U; Sudeep, A B; Athawale, S S; Vipat, V C

    2002-01-01

    Eight lepidopteran cell lines were established recently and their susceptibility to different insect viruses was studied. Two Spodoptera litura cell lines from the larval and pupal ovaries, were found highly susceptible to S. litura nuclear polyhedrosis virus (SLNPV, 5-6 x 10(6) NPV/ml). The Helicoverpa armigera cell line from the embryonic tissue was highly susceptible to H. armigera NPV (HaNPV, 6.3 x 10(6) NPV/ml). These in vitro grown SLNPV and HaNPV caused 100% mortality to respective 2nd instar larvae. The susceptibility of the cryo-preserved cell lines to respective baculoviruses (SLNPV/HaNPV) was studied and no significant difference in their susceptibility status was observed. The cultures could grow as suspension culture on shakers and may find application for in vitro production of wild type/recombinant baculoviruses as bio-insecticides. S. litura and Bombyx mori cell lines from larval ovaries, were highly susceptible to Autographa californica NPV (5.5 x 10(6) NPV/ml) and Bombyx mori NPV (BmNPV, 6.1 x 10(6) NPV/ml) respectively. These cell lines may find application in baculovirus expression vector studies for the production of recombinant proteins, useful in the development of diagnostic kits or as vaccines.

  5. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines

    PubMed Central

    Harenza, Jo Lynne; Diamond, Maura A.; Adams, Rebecca N.; Song, Michael M.; Davidson, Heather L.; Hart, Lori S.; Dent, Maiah H.; Fortina, Paolo; Reynolds, C. Patrick; Maris, John M.

    2017-01-01

    Neuroblastoma cell lines are an important and cost-effective model used to study oncogenic drivers of the disease. While many of these cell lines have been previously characterized with SNP, methylation, and/or mRNA expression microarrays, there has not been an effort to comprehensively sequence these cell lines. Here, we present raw whole transcriptome data generated by RNA sequencing of 39 commonly-used neuroblastoma cell lines. These data can be used to perform differential expression analysis based on a genetic aberration or phenotype in neuroblastoma (e.g., MYCN amplification status, ALK mutation status, chromosome arm 1p, 11q and/or 17q status, sensitivity to pharmacologic perturbation). Additionally, we designed this experiment to enable structural variant and/or long-noncoding RNA analysis across these cell lines. Finally, as more DNase/ATAC and histone/transcription factor ChIP sequencing is performed in these cell lines, our RNA-Seq data will be an important complement to inform transcriptional targets as well as regulatory (enhancer or repressor) elements in neuroblastoma. PMID:28350380

  6. Metronidazole decreases viability of DLD-1 colorectal cancer cell line.

    PubMed

    Sadowska, Anna; Krętowski, Rafał; Szynaka, Beata; Cechowska-Pasko, Marzanna; Car, Halina

    2013-10-01

    The aim of our study was to evaluate the impact of metronidazole (MTZ) on DLD-1 colorectal cancer cell (CRC) line. Toxicity of MTZ was determined by MTT test. Cells were incubated with MTZ used in different concentrations for 24, 48, and 72 hours. The effect of MTZ on DNA synthesis was measured as [3H]-thymidine incorporation. The morphological changes in human DLD-1 cell line were defined by transmission electron microscope OPTON 900. The influence of MTZ on the apoptosis of DLD-1 cell lines was detected by flow cytometry and fluorescence microscopy, while cell concentration, volume, and diameter were displayed by Scepter Cell Counter from Millipore. Our results show that cell viability was diminished in all experimental groups in comparison with the control, and the differences were statistically significant. We did not find any significant differences in [3H]-thymidine incorporation in all experimental groups and times of observation. Cytofluorimetric assays demonstrated a statistically significant increase of apoptotic rate in MTZ concentrations 10 and 50 μg/mL after 24 hours; 0.1, 10, 50, and 250 μg/mL after 48 hours; and in all concentrations after 72 hours compared with control groups. In the ultrastructural studies, necrotic or apoptotic cells were occasionally seen. In conclusion, MTZ affects human CRC cell line viability. The reduction of cell viability was consistent with the apoptotic test.

  7. Inducible human immunodeficiency virus type 1 packaging cell lines.

    PubMed Central

    Yu, H; Rabson, A B; Kaul, M; Ron, Y; Dougherty, J P

    1996-01-01

    Packaging cell lines are important tools for transferring genes into eukaryotic cells. Human immunodeficiency virus type 1 (HIV-1)-based packaging cell lines are difficult to obtain, in part owing to the problem that some HIV-1 proteins are cytotoxic in a variety of cells. To overcome this, we have developed an HIV-1-based packaging cell line which has an inducible expression system. The tetracycline-inducible expression system was utilized to control the expression of the Rev regulatory protein, which in turn controls the expression of the late proteins including Gag, Pol, and Env. Western blotting (immunoblotting) demonstrated that the expression of p24gag and gp120env from the packaging cells peaked on days 6 and 7 postinduction. Reverse transcriptase activity could be detected by day 4 after induction and also peaked on days 6 and 7. Defective vector virus could be propagated, yielding titers as high as 7 x 10(3) CFU/ml, while replication-competent virus was not detectable at any time. Thus, the cell line should enable the transfer of specific genes into CD4+ cells and should be a useful tool for studying the biology of HIV-1. We have also established an inducible HIV-1 Env-expressing cell line which could be used to propagate HIV-1 vectors that require only Env in trans. The env-minus vector virus titer produced from the Env-expressing cells reached 2 x 10(4) CFU/ml. The inducible HIV-1 Env-expressing cell line should be a useful tool for the study of HIV-1 Env as well. PMID:8676479

  8. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    PubMed

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  9. Myelination in coculture of established neuronal and Schwann cell lines.

    PubMed

    Sango, Kazunori; Kawakami, Emiko; Yanagisawa, Hiroko; Takaku, Shizuka; Tsukamoto, Masami; Utsunomiya, Kazunori; Watabe, Kazuhiko

    2012-06-01

    Establishing stable coculture systems with neuronal and Schwann cell lines has been considered difficult, presumably because of their high proliferative activity and phenotypic differences from primary cultured cells. The present study is aimed at developing methods for myelin formation under coculture of the neural crest-derived pheochromocytoma cell line PC12 and the immortalized adult rat Schwann cell line IFRS1. Prior to coculture, PC12 cells were seeded at low density (3 × 10(2)/cm(2)) and maintained in serum-free medium with N2 supplement, ascorbic acid (50 μg/ml), and nerve growth factor (NGF) (50 ng/ml) for a week. Exposure to such a NGF-rich environment with minimum nutrients accelerated differentiation and neurite extension, but not proliferation, of PC12 cells. When IFRS1 cells were added to NGF-primed PC12 cells, the cell density ratio of PC12 cells to IFRS1 cells was adjusted from 1:50 to 1:100. The cocultured cells were then maintained in serum-free medium with B27 supplement, ascorbic acid (50 μg/ml), NGF (10 ng/ml), and recombinant soluble neuregulin-1 type III (25 ng/ml). Myelin formation was illustrated by light and electron microscopy performed at day 28 of coculture. The stable PC12-IFRS1 coculture system is free of technical and ethical problems arising from the primary culture and can be a valuable tool to study peripheral nerve degeneration and regeneration.

  10. Experimental Adaptation of Rotaviruses to Tumor Cell Lines

    PubMed Central

    Guerrero, Carlos A.; Guerrero, Rafael A.; Silva, Elver; Acosta, Orlando; Barreto, Emiliano

    2016-01-01

    A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death. PMID:26828934

  11. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    PubMed

    Lin, Chih-Lang; Chien, Rong-Nan; Lin, Shi-Ming; Ke, Po-Yuan; Lin, Chen-Chun; Yeh, Chau-Ting

    2013-01-01

    Occult hepatitis B virus (HBV) infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg). Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV) and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2). Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  12. Sclerostin Antibody Administration Converts Bone Lining Cells Into Active Osteoblasts.

    PubMed

    Kim, Sang Wan; Lu, Yanhui; Williams, Elizabeth A; Lai, Forest; Lee, Ji Yeon; Enishi, Tetsuya; Balani, Deepak H; Ominsky, Michael S; Ke, Hua Zhu; Kronenberg, Henry M; Wein, Marc N

    2016-11-14

    Sclerostin antibody (Scl-Ab) increases osteoblast activity, in part through increasing modeling-based bone formation on previously quiescent surfaces. Histomorphometric studies have suggested that this might occur through conversion of bone lining cells into active osteoblasts. However, direct data demonstrating Scl-Ab-induced conversion of lining cells into active osteoblasts are lacking. Here, we used in vivo lineage tracing to determine if Scl-Ab promotes the conversion of lining cells into osteoblasts on periosteal and endocortical bone surfaces in mice. Two independent, tamoxifen-inducible lineage-tracing strategies were used to label mature osteoblasts and their progeny using the DMP1 and osteocalcin promoters. After a prolonged "chase" period, the majority of labeled cells on bone surfaces assumed a thin, quiescent morphology. Then, mice were treated with either vehicle or Scl-Ab (25 mg/kg) twice over the course of the subsequent week. After euthanization, marked cells were enumerated, their thickness quantified, and proliferation and apoptosis examined. Scl-Ab led to a significant increase in the average thickness of labeled cells on periosteal and endocortical bone surfaces, consistent with osteoblast activation. Scl-Ab did not induce proliferation of labeled cells, and Scl-Ab did not regulate apoptosis of labeled cells. Therefore, direct reactivation of quiescent bone lining cells contributes to the acute increase in osteoblast numbers after Scl-Ab treatment in mice. © 2017 American Society for Bone and Mineral Research.

  13. TLR8 agonists stimulate newly recruited monocyte-derived cells into potent APCs that enhance HBsAg immunogenicity

    PubMed Central

    Du, Jun; Wu, Zhiyuan; Ren, Shurong; Wei, Yong; Gao, Meihua; Randolph, Gwendalyn J.; Qu, Chunfeng

    2011-01-01

    We previously reported that synthetic or natural Toll-like receptor (TLR) 7/8 agonists present within dead cells enhanced cell-associated antigen presentation both in vitro and in vivo. Here, we investigated the immunopotency of different chemically synthesized TLR7/8 agonists, Resiquimod, Gardiquimod, CL075, and CL097, on HBsAg immunogenicity. These agonists stimulated inflammatory monocyte-derived cells to become potent antigen-presenting dendritic cells (DCs), which augmented HBsAg specific T cell proliferation after they were conditioned with HBsAg. The TLR8 agonist CL075 and the TLR7/8 dual agonist CL097 showed more potent effects than the TLR7 agonist. Compared with alum adjuvant, when HBsAg mixed with CL075 was injected intramuscularly into mice, more monocyte-derived DCs carried antigens into draining lymph nodes and spleens. Specific Abs, particularly IgG2a, were significantly increased, and more IL-5 and IFN-γ were produced by splenocytes and intrahepatic immunocytes in mice that received HBsAg mixed with CL075 and CL097. These results suggest that TLR8 agonists are good candidates to enhance recombinant HBsAg immunogenicity to induce specific humoral and cellular immune responses. PMID:20637759

  14. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

    PubMed Central

    Zhang, N.; Chen, F. Y.; Wu, X.Q.

    2015-01-01

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is −3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells. PMID:26148904

  15. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells.

    PubMed

    Zhang, N; Chen, F Y; Wu, X Q

    2015-07-07

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is -3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells.

  16. Establishment and characterization of 10 cell lines derived from patients with adult T-cell leukemia.

    PubMed Central

    Hoshino, H; Esumi, H; Miwa, M; Shimoyama, M; Minato, K; Tobinai, K; Hirose, M; Watanabe, S; Inada, N; Kinoshita, K; Kamihira, S; Ichimaru, M; Sugimura, T

    1983-01-01

    By using human T-cell growth factor (TCGF), 10 cell lines were established from tissue samples of 10 patients with adult T-cell leukemia (ATL). Three cell lines were adapted to growth in medium lacking TCGF. The surface markers of all cell lines were characteristic of inducer/helper T cells, i.e., OKT3+, OKT4+, OKT6-, OKT8-, OKIa1+, and human Lyt2+ and Lyt3+, except that one cell line was OKT3-. The expression of the viral antigen was examined during establishment of 8 of the 10 cell lines. The viral antigen was not expressed in leukemic cells before cultivation. In 5 lines, the viral antigen was detected by immunofluorescent staining after a short period of cultivation. However, 3 cell lines, ATL-6A, ATL-9Y, and ATL-1K did not express the viral antigen during short-term culture: the ATL-6A and ATL-9Y cell lines became positive for the viral antigen after 5 and 2 months of cultivation, respectively; the ATL-1K cell line remained antigen-negative throughout a culture period of 13 months. Southern blot hybridization assay showed that all of the cell lines, including the viral antigen-negative ATL-1K cell line, contained the viral genome. Thus, the retrovirus was associated with all 10 cell lines established from ATL patients, but there was a heterogeneity in the expression time of the retroviral antigen in leukemic cells maintained in vitro. Our findings suggested that the expression of the viral antigen was not required for maintenance of the leukemic state in vivo and for growth of leukemic cells in vitro. Images PMID:6193528

  17. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line.

    PubMed

    Miranda, Renata Rank; Bezerra, Arandi Ginane; Oliveira Ribeiro, Ciro Alberto; Randi, Marco Antônio Ferreira; Voigt, Carmen Lúcia; Skytte, Lilian; Rasmussen, Kaare Lund; Kjeldsen, Frank; Filipak Neto, Francisco

    2017-04-01

    Toxicological interaction represents a challenge to toxicology, particularly for novel contaminants. There are no data whether silver nanoparticles (AgNPs), present in a wide variety of products, can interact and modulate the toxicity of ubiquitous contaminants, such as nonessential metals. In the current study, we investigated the toxicological interactions of AgNP (size=1-2nm; zeta potential=-23mV), cadmium and mercury in human hepatoma HepG2 cells. The results indicated that the co-exposures led to toxicological interactions, with AgNP+Cd being more toxic than AgNP+Hg. Early (2-4h) increases of ROS (DCF assay) and mitochondrial O2(-) levels (Mitosox® assay) were observed in the cells co-exposed to AgNP+Cd/Hg, in comparison to control and individual contaminants, but the effect was partially reverted in AgNP+Hg at the end of 24h-exposure. In addition, decreases of mitochondrial metabolism (MTT), cell viability (neutral red uptake assay), cell proliferation (crystal violet assay) and ABC-transporters activity (rhodamine accumulation assay) were also more pronounced in the co-exposure groups. Foremost, co-exposure to AgNP and metals potentiated cell death (mainly by necrosis) and Hg(2+) (but not Cd(2+)) intracellular levels (ICP-MS). Therefore, toxicological interactions seem to increase the toxicity of AgNP, cadmium and mercury.

  18. Three-dimensional cultured glioma cell lines

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)

    1991-01-01

    Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.

  19. Hedgehog signaling pathway is inactive in colorectal cancer cell lines.

    PubMed

    Chatel, Guillaume; Ganeff, Corine; Boussif, Naima; Delacroix, Laurence; Briquet, Alexandra; Nolens, Gregory; Winkler, Rosita

    2007-12-15

    The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro-intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines.

  20. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  1. Canine mammary tumour cell lines established in vitro.

    PubMed

    Hellmén, E

    1993-01-01

    Mammary tumours are the most common tumours in the female dog. The tumours have a complex histology and exist in epithelial, mixed and mesenchymal forms. To study the biology of canine mammary tumours, five cell lines have been established and characterized. The results indicate that canine mammary tumours might be derived from mammary stem cells and that the tumour growth is independent of oestrogens. The established canine mammary tumour cell lines will be valuable tools in further studies of the histogenesis and pathogenesis of these tumours.

  2. Guidelines for the use of cell lines in biomedical research

    PubMed Central

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-01-01

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise. PMID:25117809

  3. Design of tunable microwave transmission lines using metamaterial cells

    NASA Astrophysics Data System (ADS)

    Bensafieddine, D.; Djerfaf, F.; Chouireb, F.; Vincent, D.

    2017-04-01

    In this paper, frequency tunable transmission lines are designed using metasurface split ring resonator unit cell. We prove that the tuning principle in metasurface transmission lines is based on the variation of the resonance frequency of the permeability. The frequency-tuning arises by changing the values of two gaps in the inner and outer rings of unit cell ( g1 and g2). The branches of a disconnected gaps type conductor of each unit cell can be joined by switches (PIN diodes, MEMs, etc.). According to switch states ON or OFF, the unit cell has four different commutable behaviors which are 00, 01, 11, and 10. The results show that the resonance frequency of our metasurface transmission line is strongly shifted by about 2.5 GHz between the cases (01) and (11).

  4. Guidelines for the use of cell lines in biomedical research.

    PubMed

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  5. Susceptibility of nonprimate cell lines to hepatitis A virus infection.

    PubMed Central

    Dotzauer, A; Feinstone, S M; Kaplan, G

    1994-01-01

    Hepatitis A virus (HAV) has been adapted to grow in primate cell cultures. We investigated replication of HAV in nonprimate cells by inoculating 20 cell lines from different species with the tissue culture-adapted HM175 strain. Slot blot hybridization and immunofluorescence analysis revealed that HAV replicated in GPE, SP 1K, and IB-RS-2 D10 cells of guinea pig, dolphin, and pig origin, respectively. Studies in IB-RS-2 D10 cells were discontinued because cultures were contaminated with classical swine fever virus. A growth curve showed that HAV grew poorly in GPE cells and intermediately in SP 1K cells compared with growth in FRhK-4 cells. Therefore, the cell surface receptor(s) and other host factor(s) required for HAV replication are present in nonprimate as well as primate cells. Images PMID:8057483

  6. Preparation of Silicon-Carbon-Based Dots@Dopamine and Its Application in Intracellular Ag(+) Detection and Cell Imaging.

    PubMed

    Jiang, Yuliang; Wang, Zhaoyin; Dai, Zhihui

    2016-02-17

    A novel nanocomposite, silicon-carbon-based dots@dopamine (Si-CDs@DA) was prepared using (3-aminopropyl) triethoxysilane, glycerol, and dopamine as raw materials via a rapid microwave-assisted irradiation. This type of Si-CDs@DA exhibited ultrabright fluorescence emission (quantum yield of 12.4%) and could response to Ag(+) selectively and sensitively. Moreover, the obtained Si-CDs@DA can be further applied in sensing intracellular Ag(+) and cell imaging, because of its photostability, salt stability, and low cytotoxicity. This study provides a simple and efficient approach for preparing novel Ag(+) fluorescent probes, which could expand the application of carbon nanomaterials in designing related biosensors.

  7. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    NASA Astrophysics Data System (ADS)

    Placzek-Popko, E.; Gwozdz, K.; Gumienny, Z.; Zielony, E.; Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S.; Godlewski, M.; Jacak, W.; Chang, Liann-Be

    2015-05-01

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5-10 nm, 20-30 nm, and 50-60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm-1 and 561 cm-1. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20-30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  8. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    SciTech Connect

    Placzek-Popko, E. Gwozdz, K.; Gumienny, Z.; Zielony, E.; Jacak, W.; Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S.; Chang, Liann-Be

    2015-05-21

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5–10 nm, 20-30 nm, and 50–60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm{sup −1} and 561 cm{sup −1}. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20–30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  9. Non-targeted radiation effects in vertebrate cell lines

    NASA Astrophysics Data System (ADS)

    Ryan, Lorna

    Radiation effects, such as bystander effects, hyper radiosensitivity/induced radioresistance (HRS/IRR) and adaptive response that are not related to direct DNA damage are now accepted. However the inter-relationship between them and the possible impact on the scientific basis for radiation protection are highly controversial. This thesis attempts to elucidate the mechanisms of some of these well known but little understood effects. Each paper examines some aspect of bystander effects, adaptive responses and HRS/IRR in an effort to understand how they vary with cell type, dose and time of exposure to single or multiple doses. All the effects involve non-linear dose effect curves and are mainly evident following low doses. Overall findings of the thesis include (1) A clear difference was observed between radioresistant, tumorigenic cell lines with mutant p53 gene expression, and radiosensitive, more normal, cell lines with wild type p53. In general death inducing bystander responses are induced in normal cell populations exposed to low doses of radiation while survival inducing IRR and adaptive responses are seen in the radioresistant tumorigenic cell lines. (2) A cohort of fish cell lines which demonstrated survival promoting bystander effects, also did not show a protective adaptive responses. (3) Adaptive responses traditionally occur when a large challenge dose is given 4--6hrs following low (10--100mGy) priming doses but this thesis shows that for the epithelial cell lines tested, the size of the priming dose (range 0.1--2Gy) does not appear to alter the size of the recovery response. Additionally increased survival could be detected in some cases when the challenge dose was given within one hour of the priming dose. The overall conclusion is that cell lines induce either a bystander response or a protective/adaptive response depending on genetic background and other factors. Care is needed in the interpretation of data generated from only one or two cell lines

  10. Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery.

    PubMed

    Campos, Diana; Freitas, Daniela; Gomes, Joana; Magalhães, Ana; Steentoft, Catharina; Gomes, Catarina; Vester-Christensen, Malene B; Ferreira, José Alexandre; Afonso, Luis P; Santos, Lúcio L; Pinto de Sousa, João; Mandel, Ulla; Clausen, Henrik; Vakhrushev, Sergey Y; Reis, Celso A

    2015-06-01

    Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biomarker assays. However, the current knowledge of secreted and circulating O-glycoproteins is limited. Here, we used the COSMC KO "SimpleCell" (SC) strategy to characterize the O-glycoproteome of two gastric cancer SimpleCell lines (AGS, MKN45) as well as a gastric cell line (KATO III) which naturally expresses at least partially truncated O-glycans. Overall, we identified 499 O-glycoproteins and 1236 O-glycosites in gastric cancer SimpleCells, and a total 47 O-glycoproteins and 73 O-glycosites in the KATO III cell line. We next modified the glycoproteomic strategy to apply it to pools of sera from gastric cancer and healthy individuals to identify circulating O-glycoproteins with the STn glycoform. We identified 37 O-glycoproteins in the pool of cancer sera, and only nine of these were also found in sera from healthy individuals. Two identified candidate O-glycoprotein biomarkers (CD44 and GalNAc-T5) circulating with the STn glycoform were further validated as being expressed in gastric cancer tissue. A proximity ligation assay was used to show that CD44 was expressed with the STn glycoform in gastric cancer tissues. The study provides a discovery strategy for aberrantly glycosylated O-glycoproteins and a set of O-glycoprotein candidates with biomarker potential in gastric cancer.

  11. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    PubMed Central

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  12. Butyrate-Induced Apoptosis in Prostate Cancer Cell Lines

    DTIC Science & Technology

    2001-09-01

    butyrate-induced apoptosis was independent of cell cycle phase. 14. SUBJECT TERMS 15. NUMBER OF PAGES prostate cancer, histone deacetylase inhibitors, bone...of cells plated) HDI histone deacetylase inhibitor SBHA suberoylbishydroxamate PKC protein kinase C activator SDS-PAGE SDS polyacrylamide gel...cancer cell lines 1. Summary of goals and findings Histone deacetylase inhibitors (HDI) such as butyrate and suberoylbishydroxamate (SBHA) have

  13. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    SciTech Connect

    Kim, Hyo-Joong; Kim, Han-Ki; Lee, Hyun Hwi; Kal, Jinha; Hahn, Jungseok

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  14. Glucose sensing mechanisms in hypothalamic cell models: glucose inhibition of AgRP synthesis and secretion.

    PubMed

    Chalmers, Jennifer A; Jang, Janet J; Belsham, Denise D

    2014-01-25

    Glucose-sensing neurons play a role in energy homeostasis, yet how orexigenic neurons sense glucose remains unclear. As models of glucose-inhibited (GI) neurons, mHypoE-29/1 and mHypoA-NPY/GFP cells express the essential orexigenic neuropeptide AgRP and glucose sensing machinery. Exposure to increasing concentrations of glucose or the glucose analog 2-deoxyglucose (2-DG) results in a decrease in AgRP mRNA levels. Taste receptor, Tas1R2 mRNA expression was reduced by glucose, whereas 2-DG reduced Tas1R3 mRNA levels. Increasing glucose concentrations elicited a rise in Akt and neuronal nitric oxide synthase (nNOS) phosphorylation, CaMKKβ levels, and a reduction of AMP-kinase alpha phosphorylation. Inhibitors of NOS and the cystic fibrosis transmembrane conductance regulator (CFTR) prevented a decrease in AgRP secretion with glucose, suggesting a pivotal role for nNOS and the CFTR in glucose-sensing. These models possess the hallmark characteristics of GI neurons, and can be used to disentangle the mechanisms by which orexigenic neurons sense glucose.

  15. A methanolic extract of Ganoderma lucidum fruiting body inhibits the growth of a gastric cancer cell line and affects cellular autophagy and cell cycle.

    PubMed

    Oliveira, Marta; Reis, Filipa S; Sousa, Diana; Tavares, Catarina; Lima, Raquel T; Ferreira, Isabel C F R; dos Santos, Tiago; Vasconcelos, M Helena

    2014-07-25

    Ganoderma lucidum is one of the most extensively studied mushrooms as a functional food and as a chemopreventive agent due to its recognized medicinal properties. Some G. lucidum extracts have shown promising antitumor potential. In this study, the bioactive properties of various extracts of G. lucidum, from both the fruiting body and the spores, were investigated. The most potent extract identified was the methanolic fruiting body extract, which inhibited the growth of a gastric cancer cell line (AGS) by interfering with cellular autophagy and cell cycle.

  16. Effective medium analysis of thermally evaporated Ag nanoparticle films for plasmonic enhancement in organic solar cell

    NASA Astrophysics Data System (ADS)

    Haidari, Gholamhosain; Hajimahmoodzadeh, Morteza; Fallah, Hamid Reza; Varnamkhasti, Mohsen Ghasemi

    2015-09-01

    Films of silver nanoparticles have optical properties that are useful for applications such as plasmonic light trapping in solar cells. We report on the simple fabrication of Ag nanoparticle films via thermal evaporation, with and without subsequent annealing. These films result in a random array of particles of various shapes and sizes. The modeling of such a vast collection of particles is still beyond reach of the modern computers. We show that it is possible to represent the silver island films by the Bergman effective mediums with the same optical properties. The effective medium method provides us with deep insight about the shape, the size and the distribution of nanoparticles. The far field simulations of solar cells, in which the silver island film is replaced with an effective medium layer, show a reduction in the absorption of active layer. Besides, the near field simulations based on finite-difference time-domain technique demonstrate that the near field effects on active layer absorption are negligible and this method highlights the importance of nanoparticles shapes. The PCPDTBT:PCBM solar cells with embedded silver island films are fabricated, and it is found that their performances show the similar trend. This insight can be used for the optical analysis of thermally evaporated Ag nanoparticle films for the improvement of organic solar cells.

  17. Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.

    PubMed

    López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J

    2014-12-15

    A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density.

  18. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells.

    PubMed

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5' AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression of

  19. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    PubMed Central

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5′ AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression

  20. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations.

    PubMed

    Meeth, Katrina; Wang, Jake Xiao; Micevic, Goran; Damsky, William; Bosenberg, Marcus W

    2016-09-01

    The remarkable success of immune therapies emphasizes the need for immune-competent cancer models. Elegant genetically engineered mouse models of a variety of cancers have been established, but their effective use is limited by cost and difficulties in rapidly generating experimental data. Some mouse cancer cell lines are transplantable to immunocompetent host mice and have been utilized extensively to study cancer immunology. Here, we describe the Yale University Mouse Melanoma (YUMM) lines, a comprehensive system of mouse melanoma cell lines that are syngeneic to C57BL/6, have well-defined human-relevant driver mutations, and are genomically stable. This will be a useful tool for the study of tumor immunology and genotype-specific cancer biology.

  1. Near infrared emission of TbAG:Ce3+,Yb3+ phosphor for solar cell applications

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Yadav, P. J.; Pathak, A. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimated to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr3+, Gd3+,Gd3+-Eu3+, and Er3+-Tb3+ had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb3+-Yb3+, Pr3+-Yb3+, and Tm3+-Yb3+ has been reported. The Yb3+ ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb3+ is close to 100% and the energy of the only excited level of Yb3+ (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce3+-doped Tb3Al5O12 (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300-500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce3+ ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this

  2. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  3. Electrophysiological characterization of Nsc-34 cell line using Microelectrode Array.

    PubMed

    Sabitha, K R; Sanjay, D; Savita, B; Raju, T R; Laxmi, T R

    2016-11-15

    Neurons communicate with each other through intricate network to evolve higher brain functions. The electrical activity of the neurons plays a crucial role in shaping the connectivity. With motor neurons being vulnerable to neurodegenerative diseases, understanding the electrophysiological properties of motor neurons is the need of the hour, in order to comprehend the impairment of connectivity in these diseases. NSC-34 cell line serves as an excellent model to study the properties of motor neurons as they express Choline acetyltransferase (ChAT). Although NSC-34 cell lines have been used to study the effect of various toxicological, neurotrophic and neuroprotective agents, the electrical activity of these cells has not been elucidated. In the current study, we have characterized the electrophysiological properties of NSC-34 cell lines using Micro-Electrode Array (MEA) as a tool. Based on the spike waveform, firing frequency, auto- and cross-correlogram analysis, we demonstrate that NSC-34 cell culture has >2 distinct types of neuronal population: principal excitatory neurons, putative interneurons and unclassified neurons. The presence of interneurons in the NSC-34 culture was characterized by increased expression of GAD-67 markers. Thus, finding an understanding of the electrophysiological properties of different population of neurons in NSC-34 cell line, will have multiple applications in the treatment of neurological disorders.

  4. Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells

    PubMed Central

    Ko, Hyeonseok; Kim, Sun-Joong; Shim, So Hee; Chang, HyoIhl; Ha, Chang Hoon

    2016-01-01

    Shikonin, which derives from Lithospermum erythrorhizon, has been traditionally used against a variety of diseases, including cancer, in Eastern Asia. Here we determined that shikonin inhibits proliferation of gastric cancer cells by inducing apoptosis. Shikonin’s biological activity was validated by observing cell viability, caspase 3 activity, reactive oxygen species (ROS) generation, and apoptotic marker expressions in AGS stomach cancer cells. The concentration range of shikonin was 35–250 nM with the incubation time of 6 h. Protein levels of Nrf2 and p53 were evaluated by western blotting and confirmed by real-time PCR. Our results revealed that shikonin induced the generation of ROS as well as caspase 3-dependent apoptosis. c-Jun-N-terminal kinases (JNK) activity was significantly elevated in shikonin-treated cells, thereby linking JNK to apoptosis. Furthermore, our results revealed that shikonin induced p53 expression but repressed Nrf2 expression. Moreover, our results suggested that there may be a co-regulation between p53 and Nrf2, in which transfection with siNrf2 induced the p53 expression. We demonstrated for the first time that shikonin activated cell apoptosis in AGS cells via caspase 3- and JNK-dependent pathways, as well as through the p53-Nrf2 mediated signal pathway. Our study validates in partly the contribution of shikonin as a new therapeutic approaches/ agent for cancer chemotherapy. PMID:27257011

  5. Caffeine augments Alprazolam induced cytotoxicity in human cell lines.

    PubMed

    Saha, Biswarup; Mukherjee, Ananda; Samanta, Saheli; Saha, Piyali; Ghosh, Anup Kumar; Santra, Chitta Ranjan; Karmakar, Parimal

    2009-09-01

    Combined effects of alprazolam (Alp), a member of benzodiazepine group of drugs and caffeine on human cell lines, HeLa and THP1 were investigated in this study. Alp mediated cytotoxicity was enhanced while caffeine was present. The cell death was confirmed by observing morphological changes, LDH assay and membrane anisotropic study. Also such combined effects induced elevated level of ROS and depletion of GSH. The mechanism of cell death induced by simultaneous treatment of Alp and caffeine was associated with the calcium-mediated activation of mu-calpain, release of lysosomal protease cathepsin B, activation of PARP and cleavage of caspase 3. Our results indicate that, Alp alone induces apoptosis in human cells but in the presence of caffeine it augments necrosis in a well-regulated pathway. Thus our observations strongly suggest that, alprazolam and caffeine together produce severe cytotoxicity in human cell lines.

  6. A new cell line from a human chondrosarcoma.

    PubMed Central

    de Man, J. C.; Snoep, M. P.; Huiskens-van der Meij, J. W.; Warnaar, S. O.; Schaberg, A.

    1977-01-01

    Morphological and growth characteristics are described of a rapidly growing cell line with epithelioid and giant-cell characteristics derived from a chondrosarcoma in a male patient 65 years of age. This cell line is of considerable interest because in these cells cross-reacting antigens with known animal oncorna-viruses are present. Biochemically, the cells contain particles with a density of 1-16 with "cores" of density 1'23 associated with a reverse-transcriptase-like enzyme and with 70S RNA. Occasionally, virus-like particles were demonstrated by electron microscope in material derived from the culture medium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 8 Fig. 9 PMID:857824

  7. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    PubMed Central

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-01-01

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824

  8. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.

    PubMed

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-11-29

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  9. Generation and Characterization of JCV Permissive Hybrid Cell Lines

    PubMed Central

    Sariyer, Ilker K.; Safak, Mahmut; Gordon, Jennifer; Khalili, Kamel

    2009-01-01

    JC virus (JCV) is a human neurotropic polyomavirus whose replication in the central nervous system induces the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). JCV particles have been detected primarily in oligodendrocytes and astrocytes of the brains of patients with PML and in the laboratory its propagation is limited to primary cultures of human fetal glial cells. In this short communication, the development of a new cell culture system is described through the fusion of primary human fetal astrocytes with the human glioblastoma cell line, U-87MG. The new hybrid cell line obtained from this fusion has the capacity to support efficiently expression of JCV and replication of viral DNA in vitro up to 16 passages. This cell line can serve as a reliable culture system to study the biology of JCV host cell interaction, determine the mechanisms involved in cell type specific replication of JCV, and provide a convenient cell culture system for high throughput screening of anti-viral agents. PMID:19442856

  10. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 Dye-Sensitized Solar Cells.

    PubMed

    Liu, Yunyu; She, Guangwei; Qi, Xiaopeng; Mu, Lixuan; Wang, Xuesong; Shi, Wensheng

    2015-09-01

    Ag nanowires (AgNWs) were employed in mesoporous TiO2 dye-sensitized solar cells (DSSCs) to enhance the photoelectric conversion efficiency (PCE). The possible reasons for PCE improvement, i.e., improvement in electron transport and light harvesting due to light scattering and plasmonic resonance effect of AgNWs are investigated. Electrochemical impedance spectra (EIS) study proved that addition of AgNWs can enhance the conductivity of TiO2 thin film photoanode, which is an important reason for the increase of photocurrent. Furthermore, through the comparison experiments as well as the UV-Vis absorption and IPCE characterization, contributions of the light scattering and plasmonic resonance effect to the enhancement of light harvest, and thus PCE of the DSSCs were demonstrated. It was found that fast electron transport of AgNWs played more important role for the PCE improvement than the light harvest enhancement due to light scattering and plasmonic effect. Based on these investigations, the AgNWs modified TiO2 thin film DSSCs were optimized. After integrating AgNWs into the photoanode, the photocurrent increased significantly and PCE increased -50% comparing with the pure TiO2-based DSSCs.

  11. Saussurea lappa induces G2-growth arrest and apoptosis in AGS gastric cancer cells.

    PubMed

    Ko, Seong Gyu; Kim, Hwang-Phill; Jin, Dong-Hoon; Bae, Hyun-Su; Kim, Sung Hoon; Park, Chong-Hyeong; Lee, Jung Weon

    2005-03-18

    The molecular effects of Saussurea lappa extracts, a traditional medicine in Eastern Asia, on the fate of gastric carcinoma have not been understood. In this study, its cytostatic effects were examined using gastric AGS cancer cells. Its treatment resulted in apoptosis and G2-arrest in a dose- and time-dependent manner. The effects were attributed to the regulation of cyclins and pro-apoptotic molecules and suppression of anti-apoptotic molecules. Therefore, these results suggest that extracts of S. lappa root may be a candidate to deal with gastric cancers either by traditional herbal therapy or by combinational therapy with conventional chemotherapy.

  12. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    PubMed

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-04

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

  13. Boldine: a potential new antiproliferative drug against glioma cell lines.

    PubMed

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent.

  14. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse.

  15. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    SciTech Connect

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  16. Generation of cell lines for monoclonal antibody production.

    PubMed

    Alvin, Krista; Ye, Jianxin

    2014-01-01

    Monoclonal antibodies (mAbs) represent the largest group of therapeutic proteins with 30 products approved in the USA and hundreds of therapies currently undergoing clinical trials. The complex nature of mAbs makes their development as therapeutic agents constrained by numerous criteria such as quality, safety, regulation, and quantity. Identification of a clonal cell line expressing high levels of mAb with adequate quality attributes and generated in compliance with regulatory standards is a necessary step prior to a program moving to large-scale production for clinical material. This chapter outlines the stable transfection technology that generates clonal cell lines for commercial manufacturing processes.

  17. LINEing germ and embryonic stem cells' silencing of retrotransposons.

    PubMed

    Ishiuchi, Takashi; Torres-Padilla, Maria-Elena

    2014-07-01

    Almost half of our genome is occupied by transposable elements. Although most of them are inactive, one type of non-long terminal repeat (LTR) retrotransposon, long interspersed nuclear element 1 (LINE1), is capable of retrotransposition. Two studies in this issue, Pezic and colleagues (pp. 1410-1428) and Castro-Diaz and colleagues (pp. 1397-1409), provide novel insight into the regulation of LINE1s in human embryonic stem cells and mouse germ cells and shed new light on the conservation of complex mechanisms to ensure silencing of transposable elements in mammals.

  18. Fucoidans Disrupt Adherence of Helicobacter pylori to AGS Cells In Vitro

    PubMed Central

    Chua, Eng-Guan; Verbrugghe, Phebe; Perkins, Timothy T.; Tay, Chin-Yen

    2015-01-01

    Fucoidans are complex sulphated polysaccharides derived from abundant and edible marine algae. Helicobacter pylori is a stomach pathogen that persists in the hostile milieu of the human stomach unless treated with antibiotics. This study aims to provide preliminary data to determine, in vitro, if fucoidans can inhibit the growth of H. pylori and its ability to adhere to gastric epithelial cells (AGS). We analysed the activity of three different fucoidan preparations (Fucus A, Fucus B, and Undaria extracts). Bacterial growth was not arrested or inhibited by the fucoidan preparations supplemented into culture media. All fucoidans, when supplemented into tissue culture media at 1000 µg mL−1, were toxic to AGS cells and reduced the viable cell count significantly. Fucoidan preparations at 100 µg mL−1 were shown to significantly reduce the number of adherent H. pylori. These in vitro findings provide the basis for further studies on the clinical use of sulphated polysaccharides as complementary therapeutic agents. PMID:26604968

  19. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies

    PubMed Central

    Krampe, Britta

    2010-01-01

    Cell death is a fundamentally important problem in cell lines used by the biopharmaceutical industry. Environmental stress, which can result from nutrient depletion, by-product accumulation and chemical agents, activates through signalling cascades regulators that promote death. The best known key regulators of death process are the Bcl-2 family proteins which constitute a critical intracellular checkpoint of apoptosis cell death within a common death pathway. Engineering of several members of the anti-apoptosis Bcl-2 family genes in several cell types has extended the knowledge of their molecular function and interaction with other proteins, and their regulation of cell death. In this review, we describe the various modes of cell death and their death pathways at molecular and organelle level and discuss the relevance of the growing knowledge of anti-apoptotic engineering strategies to inhibit cell death and increase productivity in mammalian cell culture. PMID:20502964

  20. Thyroid hormone transport in a human glioma cell line.

    PubMed

    Goncalves, E; Lakshmanan, M; Pontecorvi, A; Robbins, J

    1990-03-05

    The uptake of 3,5,3'-triiodothyronine (T3) and thyroxine (T4) was studied in human glioma cells (Hs 683) and compared with that in several other neural cell lines. At 25 degrees C or 37 degrees C, total cell uptake rose rapidly and reached equilibrium within 60 min. The glioma cells had the highest uptake: 47.6 fmol of L-T3 and 43.4 fmol of L-T4 per 10(6) cells at 37 degrees C. These were inhibited 77% and 72%, respectively, by excess unlabeled hormone. Uptake in the nuclei reached equilibrium between 90 and 120 min and was also highest in glioma cells: 1.46 fmol of L-T3 and 0.49 fmol of L-T4 per 10(6) cells. When expressed as percent of total cell uptake, however, glioma cells had the lowest values (3.1% for L-T3 and 1.1% for L-T4). Also in contrast to other cell lines, glioma cells transported L-T4 almost as effectively as L-T3. D-T3 and D-T4 total cell uptake was 86% and 96% lower than that of the respective L-isomers, and the nuclear uptake as a fraction of the cell uptake was similar. Kinetic analysis of the initial rate of cell uptake gave Vmax values for D-T3 and D-T4 that were 97% and 98% lower than for the L-isomers. Antimycin and monodansylcadaverine decreased the Vmax as well as the equilibrium cell and nuclear uptake of the L-isomers. The apparent nuclear affinity constant for L-T4 in intact cells was inhibited 90% in the presence of antimycin, whereas no effect was observed in isolated nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Downregulation of NDRG1 promotes invasion of human gastric cancer AGS cells through MMP-2.

    PubMed

    Liu, Yan-Li; Bai, Wen-Tao; Luo, Wen; Zhang, De-Xin; Yan, Yan; Xu, Zhi-Kai; Zhang, Fang-Lin

    2011-02-01

    The N-myc downstream-regulated gene-1 (NDRG1) has recently been proposed as a metastasis suppressor, but its precise role remains unclear. To investigate whether NDRG1 can indeed influence the metastasis progress, expression of endogenous NDRG1 was knocked down in human AGS gastric adenocarcinoma cells using RNA interference. Stable NDRG1 "silenced" transfectants showed similar growth rates as their control counterparts. By contrast, invasive ability in Matrigel invasion activity and Gelatinolytic activity by matrix metalloproteinase-2 (MMP-2) were markedly increased in NDRG1 "silenced" cells. Moreover, re-expression of NDRG1 by recombinant adenovirus Ad-NDRG1 in NDRG1 "silenced" cells inhibited the increased invasive ability. Further study, we found the induction of MMP-2 by downregulation of NDRG1 was mediated by MT1-MMP. Altogether, our results imply that NDRG-1 could play a key role in the regulation of cellular invasion and metastasis, which may involve the upregulation of matrix metalloproteinases.

  2. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.

    PubMed

    Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping

    2013-01-09

    This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.

  3. Increased EGF receptors on human squamous carcinoma cell lines.

    PubMed Central

    Cowley, G. P.; Smith, J. A.; Gusterson, B. A.

    1986-01-01

    Characterisation and quantitation of epidermal growth factor receptors (EGFR) have been carried out on eight human squamous carcinoma cell lines and the results compared with those from simian virus transformed keratinocytes and normal keratinocytes grown under similar conditions. All cells tested possess both high and low affinity receptors with dissociation constants ranging from 2.4 X 10(-10) M to 5.4 X 10(-9) M. When epidermal growth factor (EGF) binds to its receptor it is internalised and degraded and the receptor is down regulated. Malignant cells and virally transformed cells possess 5-50 times more EGF receptors than normal keratinocytes and one cell line LICR-LON-HN-5 possesses up to 1.4 X 10(7) receptors per cell, which is the highest number yet reported for a cell line. These results are discussed in the context of recent data that suggest that the increased expression of EGF receptors in epidermoid malignancies may be an important component of the malignant phenotype in these tumours. PMID:2420349

  4. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    PubMed

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs.

  5. Transthyretin expression in medulloblastomas and medulloblastoma cell lines.

    PubMed

    Albrecht, S; Bayer, T A; Kraus, J A; Pietsch, T

    1995-10-01

    Transthyretin is a protein crucial to the transport of lipophilic molecules such as thyroid hormones and retinoids. In the central nervous system, large amounts of transthyretin are synthesized by the choroid plexus and are secreted into the cerebrospinal fluid. The choroid plexus is the only site of transthyretin synthesis in the brain. Transthyretin is expressed by most benign and malignant choroid plexus tumours while gliomas and meningiomas do not express transthyretin. Other major sites of transthyretin synthesis are the retinal pigment epithelium and hepatocytes. Medulloblastoma is the prototypical primitive neuroectodermal tumour of the cerebellum and can show multiple lines of differentiation, including the expression of retinal markers. In this study, we examined transthyretin expression both at the RNA and protein level in four medulloblastomas and six medulloblastoma cell lines using Northern and Western blot analysis, reverse transcription polymerase chain reaction (PCR), RNA in situ hybridization, and immunohistochemistry. All four medulloblastomas and five of the six medulloblastoma cell lines expressed transthyretin-mRNA as demonstrated by reverse PCR and in situ hybridization while three medulloblastomas and one cell line were positive on Northern blot. The medulloblastoma with the most abundant RNA expression was transthyretin-immunoreactive on cryosections and the medulloblastoma cell line that was positive on Northern blot also expressed transthyretin at levels detectable by Western blot. No transthyretin-immunoreactivity was seen in 16 additional medulloblastomas studied on paraffin sections. These findings indicate that low-level expression of transthyretin-mRNA is common in medulloblastomas and medulloblastoma cell lines. Expression of transthyretin protein occurs rarely but can reach significant levels. Transthyretin expression in medulloblastoma is consistent with retinal pigment epithelium differentiation in medulloblastomas and reflects

  6. Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells

    NASA Astrophysics Data System (ADS)

    Duan, Donghong; Liu, Huihong; You, Xiu; Wei, Huikai; Liu, Shibin

    2015-10-01

    Carbon-supported Cu@Ag core-shell nanoparticles are prepared by a successive reduction method in an aqueous solution and are used as an anode electrocatalyst for the direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronopotentiometry (CP), and fuel cell tests. In situ Fourier transform infrared (FTIR) spectroscopy is employed in 2 M NaOH/0.1 M NaBH4 to understand the borohydride oxidation reaction (BOR) mechanism by studying the intermediate reactions occurring on the Cu@Ag/C electrode. The TEM images show that the average size of the Cu1@Ag1/C particles is approximately 18 nm. Among the as-prepared catalysts, the Cu2@Ag1/C catalyst presents the highest catalytic activity. As shown by in situ FTIR, the oxidation reaction mechanism of BH4- is similar to that of Ag/C: BHn(OH)4-n- + 2OH- → BHn-1(OH)5-n- +H2 O + 2e . At 25 °C, the DBHFC with Cu2@Ag1/C as the anode electrocatalyst and Pt mesh (1 cm2) as the cathode electrode exhibits a maximum anodic power density of 17.27 mW mg-1 at a discharge current density of 27.8 mA mg-1.

  7. Maslinic Acid Inhibits Proliferation of Renal Cell Carcinoma Cell Lines and Suppresses Angiogenesis of Endothelial Cells

    PubMed Central

    Thakor, Parth; Song, Wenzhe; Subramanian, Ramalingam B.; Thakkar, Vasudev R.; Vesey, David A.

    2017-01-01

    Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC) remains a treatment-resistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1), endothelial cells (human umbilical vein endothelial cell line [HUVEC]), and primary cultures of kidney proximal tubular epithelial cells (PTEC) were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  8. Engineering Retina from Human Retinal Progenitors (Cell Lines)

    PubMed Central

    Cao, Yang

    2009-01-01

    Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell–cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr2e3, expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription–polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell

  9. The silver lining of induced pluripotent stem cell variation

    PubMed Central

    Jain, Tanya; Sevilla, Ana

    2016-01-01

    Induced pluripotent stem cells (iPSCs) are being generated using various reprogramming methods and from different cell sources. Hence, a lot of effort has been devoted to evaluating the differences among iPSC lines, in particular with respect to their differentiation capacity. While line-to-line variability should mainly reflect the genetic diversity within the human population, here we review some studies that have brought attention to additional variation caused by genomic and epigenomic alterations. We discuss strategies to evaluate aberrant changes and to minimize technical and culture-induced noise, in order to generate safe cells for clinical applications. We focus on the findings from a recent study, which compared the differentiation capacity of several iPSC lines committed to the hematopoietic lineage and correlated the differential maturation capacity with aberrant DNA methylations. Although iPSC variation represents a challenge for the field, we embrace the authors’ perspective that iPSC variations should be used to our advantage for predicting and selecting the best performing iPSC lines, depending on the desired application. PMID:28066788

  10. Beam Transport of 4 GeV Protons from AGS to the Proton Interrogation Target of the Neutrino Line (Z_line) and Effect of the Air on the Transported Beam

    SciTech Connect

    Tsoupas,N.; Ahrens, L.; Pile, P.; Thieberger, P.; Murray, M.M.

    2008-10-01

    As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along the drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.

  11. All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes.

    PubMed

    Wang, Mingqing; Choy, Kwang-Leong

    2016-07-06

    With record cell efficiency of 21.7%, CIGS solar cells have demonstrated to be a very promising photovoltaic (PV) technology. However, their market penetration has been limited due to the inherent high cost of the cells. In this work, to lower the cost of CIGS solar cells, all nonvacuum-processed CIGS solar cells were designed and developed. CIGS absorber was prepared by the annealing of electrodeposited metallic layers in a chalcogen atmosphere. Nonvacuum-deposited Ag nanowires (NWs)/AZO transparent electrodes (TEs) with good transmittance (92.0% at 550 nm) and high conductivity (sheet resistance of 20 Ω/□) were used to replace the vacuum-sputtered window layer. Additional thermal treatment after device preparation was conducted at 220 °C for a few of minutes to improve both the value and the uniformity of the efficiency of CIGS pixel cell on 5 × 5 cm substrate. The best performance of the all-nonvacuum-fabricated CIGS solar cells showed an efficiency of 14.05% with Jsc of 34.82 mA/cm(2), Voc of 0.58 V, and FF of 69.60%, respectively, which is comparable with the efficiency of 14.45% of a reference cell using a sputtered window layer.

  12. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells.

    PubMed

    Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong

    2014-04-22

    In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.

  13. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    NASA Astrophysics Data System (ADS)

    Liu, Pengpeng; Guan, Rongfa; Ye, Xingqian; Jiang, Jiaxin; Liu, Mingqi; Huang, Guangrong; Chen, Xiaoting

    2011-07-01

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 μg·mL-1. LDH leakage significantly increased in cells exposed to Ag NPs (>= 25 μg mL-1) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 μg·mL-1). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage. Though the exact mechanism behind Ag NPs

  14. UOK 268 Cell Line for Hereditary Leiomyomatosis and Renal Cell Carcinoma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Urologic Oncology Branch seeks parties to co-develop the UOK 262 immortalized cell line as research tool to study aggressive hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-associated recurring kidney cancer.

  15. Volatile metabolomic signature of human breast cancer cell lines

    PubMed Central

    Silva, Catarina L.; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S.

    2017-01-01

    Breast cancer (BC) remains the most prevalent oncologic pathology in women, causing huge psychological, economic and social impacts on our society. Currently, the available diagnostic tools have limited sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and is a useful platform for discovering new biomarkers or make disease diagnosis using different biofluids. Volatile organic compounds (VOCs) from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC–MS), thus defining a volatile metabolomic signature. 2-Pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in cultured BC cell lines. Multivariate statistical methods were used to verify the volatomic differences between BC cell lines and normal cells in order to find a set of specific VOCs that could be associated with BC, providing comprehensive insight into VOCs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the BC diagnostic tools and explore the associated metabolomic pathways. PMID:28256598

  16. Volatile metabolomic signature of human breast cancer cell lines.

    PubMed

    Silva, Catarina L; Perestrelo, Rosa; Silva, Pedro; Tomás, Helena; Câmara, José S

    2017-03-03

    Breast cancer (BC) remains the most prevalent oncologic pathology in women, causing huge psychological, economic and social impacts on our society. Currently, the available diagnostic tools have limited sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and is a useful platform for discovering new biomarkers or make disease diagnosis using different biofluids. Volatile organic compounds (VOCs) from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC-MS), thus defining a volatile metabolomic signature. 2-Pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in cultured BC cell lines. Multivariate statistical methods were used to verify the volatomic differences between BC cell lines and normal cells in order to find a set of specific VOCs that could be associated with BC, providing comprehensive insight into VOCs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the BC diagnostic tools and explore the associated metabolomic pathways.

  17. Antiproliferative Properties of Clausine-B against Cancer Cell Lines

    PubMed Central

    Wan Mohd Zain, Wan Nor I’zzah; Rahmat, Asmah; Othman, Fauziah; Yap, Taufiq Yun Hin

    2009-01-01

    Background: Clausine B, a carbazole alkaloid isolated from the stem bark of Clausena excavata, was investigated for its antiproliferative activities against five human cancer cell lines: HepG2 (hepatic cancer), MCF-7 (hormone-dependent breast cancer), MDA-MB-231 (non-hormone-dependent breast cancer), HeLa (cervical cancer), and CAOV3 (ovarian cancer). Methods: Chang liver (normal cells) was used as a control. The effect of clausine-B was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results: Clausine-B was found to be active (IC50<30 μg/mL) against four of the cancer cell lines tested. The IC50 values for these four lines were: 21.50 μg/mL (MDA-MB-231), 22.90 g/ml (HeLa), 27.00 μg/mL (CAOV3) and 28.94 μg/mL (HepG2). Clausine-B inhibited the MCF-7 cancer cell line at 52.90 μg/mL, and no IC50 value was obtained against Chang liver. Conclusion: It is possible that the phenolic group in clausine-B responsible for the antiproliferative activities found in this study. PMID:22589662

  18. Use of Cell Lines in the Investigation of Pharmacogenetic Loci

    PubMed Central

    Zhang, Wei; Dolan, M. Eileen

    2009-01-01

    Drug response and toxicity, complex traits that are often highly varied among individuals, likely involve multiple genetic and non-genetic factors. Pharmacogenomic research aims to individualize therapy in an effort to maximize efficacy and minimize toxicity for each patient. Cell lines can be used as a model system for cellular pharmacologic effects, which include, but are not limited to, drug-induced cytotoxicity or apoptosis, biochemical effects and enzymatic reactions. Because severe toxicities may be associated with drugs such as chemotherapeutics, cell lines derived from healthy individuals or patients provide a convenient model to study how human genetic variation alters response to these drugs that would be unsafe or unethical to administer to human volunteers. In addition to the traditional candidate gene approaches that focus on well-understood candidate genes and pathways, the availability of extensive genotypic and phenotypic data on some cell line models has begun to allow genome-wide association (GWA) studies to simultaneously test the entire human genome for associations with drug response and toxicity. Though with some important limitations, the use of these cell lines in pharmacogenomic discovery demonstrates the promise of constructing a more comprehensive model that may ultimately integrate both genetic and non-genetic factors to predict individual response and toxicity to anticancer drugs. PMID:19925429

  19. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    EPA Science Inventory

    Diversity of arsenic metabolism in cultured human cancer cell lines.

    Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  20. METHYLATION OF ARSENITE BY SOME MAMMALIAN CELL LINES

    EPA Science Inventory

    THIS ABSTRACT WAS SUBMITTED ELECTRONICALLY;. SPACE CONSTRAINTS WERE SEVERE)

    Methylation of Arsenite by Some Mammalian Cell Lines.

    Methylation of arsenite is thought to play an important role in the carcinogenicity of arsenic.
    Aim 1: Determine if there is diffe...

  1. Curbing rampant cross-contamination and misidentification of cell lines.

    PubMed

    Nardone, Roland M

    2008-09-01

    A son's challenge started an emeritus professor of biology on a three-year odyssey to get biological researchers to correct a decades-long problem with cross-contaminated and misidentified cell lines. These errors may account for more than 15% of mammalian cultures, wasting resources and undermining the integrity of research.

  2. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ...; Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology (NIST...) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All... for Biotechnology Information (NCBI) and will be used to differentiate among cell lines, as...

  3. Cell Culture Derived AgMNPV Bioinsecticide: Biological Constraints and Bioprocess Issues.

    PubMed

    Rodas, Valeria M; Marques, Fabiano H; Honda, Marcelo T; Soares, Daniela M; Jorge, Soraia A C; Antoniazzi, Marta M; Medugno, Claudia; Castro, Maria E B; Ribeiro, Bergmann M; Souza, Marlinda L; Tonso, Aldo; Pereira, Carlos A

    2005-06-01

    We have studied parameters for optimizing the Spodoptera frugiperda (Sf9) cell culture and viral infection for the production of Anticarsia gemmatalis multiple nucleopolyhedrosis virus (AgMNPV) polyhedra inclusion bodies (PIBs) in shaker-Schott or spinner bottles and bioreactors. We have assayed the k(L)a of the systems, initial cell seeding, cell culture volume, dissolved oxygen (DO), multiplicity of infection (MOI), nutrients consumption, and metabolites production. The medium surface oxygen transfer was shown to be higher in shaker bottles than in spinner ones, which was in direct correlation to the higher cell density obtained. Best quantitative performances of PIBs production were obtained with a SF900II medium volume/shaker-bottle volume ratio of 15% and MOI of 0.5 to 1 performed at a cell concentration at infection (CCI) of 1 to 2.5x10(6) cells/ml in a medium containing enough glucose and glutamine. Upon infection, a decrease in the cell multiplication was observed to be dependent on the MOI used, and the muX at the exponential growth phase in infected and non-infected cultures were, respectively, of 0.2832 and 0.3914 (day(-1)). The glucose consumption and lactate production were higher in the infected cultures (muGlucose and muLactate of, respectively, 0.0248 and 0.0089x10(-8) g/cellxday in infected cultures and 0.0151 and 0.0046x10(-8) g/cellxday in non infected ones). The glutamine consumption did not differ in both cultures (muGlutamine of 0.0034 and 0.0037x10(-8) g/cellxday in, respectively, infected and non infected cultures). When a virus MOI of 0.1 to 1 was used for infection, a higher concentration of PIBs/ml was obtained. This was in direct correlation to a higher cell concentration present in these cultures, where a decrease in cell multiplication due to virus infection is minimized. When a MOI of 1 was used, a more effective decrease in cell multiplication was observed and a lower concentration of PIBs/ml was obtained, but with the best

  4. Biological characteristics of side population cells in a self-established human ovarian cancer cell line

    PubMed Central

    WEI, ZHENTONG; LV, SHUANG; WANG, YISHU; SUN, MEIYU; CHI, GUANGFAN; GUO, JUN; SONG, PEIYE; FU, XIAOYU; ZHANG, SONGLING; LI, YULIN

    2016-01-01

    The aim of the present study was to establish an ovarian cancer (OC) cell line from ascites of an ovarian serous cystadenocarcinoma patient and investigate the biological characteristics of its side population (SP) cells. The OC cell line was established by isolating, purifying and subculturing primary cells from ascites of an ovarian serous cystadenocarcinoma patient (stage IIIc; grade 3). SP and non-SP (NSP) cells were isolated by fluorescence-activated cell sorting and cultured in serum-free medium and soft agar to compare the tumorsphere and colony formation capacities. Furthermore, SP and NSP cell tumorigenesis was examined by subcutaneous and intraperitoneal injection of the cells to non-obese diabetic/severe combined immune deficiency (NOD/SCID) mice. Drug resistance to cisplatin was examined by cell counting kit-8. The OC cell line was successfully established from ascites of an ovarian serous cystadenocarcinoma patient, which exhibited properties similar to primary tumors subsequent to >50 passages and >2 years of culture. The SP cell ratio was 0.38% in the OC cell line, and a similar SP cell ratio (0.39%) was observed when sorted SP cells were cultured for 3 weeks. Compared with NSP cells, SP cells exhibited increased abilities in differentiation and tumorsphere and colony formation, in addition to the formation of xenografted tumors and ascites and metastasis of the tumors in NOD/SCID mice, even at low cell numbers (3.0×103 cells). The xenografted tumors demonstrated histological features similar to primary tumors and expressed the ovarian serous cystadenocarcinoma marker CA125. In addition, SP cells demonstrated a significantly stronger drug resistance to cisplatin compared with NSP and unsorted cells, while treatment with verapamil, an inhibitor of ATP-binding cassette transporters, potently abrogated SP cell drug resistance. In conclusion, the present study verified SP cells from an established OC cell line and characterized the cells with self

  5. Establishment a CHO Cell Line Expressing Human CD52 Molecule

    PubMed Central

    Kadijeh, Tati; Mahsa, Yazdanpanah-Samani; Amin, Ramezani; Elham, Mahmoudi Maymand; Abbas, Ghaderi

    2016-01-01

    Background: CD52 is a small glycoprotein with a GPI anchor at its C-terminus. CD52 is expressed by Normal and malignant T and B lymphocytes and monocytes. There are detectable amounts of soluble CD52 in plasma of patients with CLL and could be used as a tumor marker. Although the biological function of CD52 is unknown but it seems that CD52 may be involved in migration and activation of T-cells .The aim of this study was to clone and express human CD52 gene in CHO cell line and studying its function in more details Methods: Based on GenBank databases two specific primers were designed for amplification of cd52 gene. Total RNA was extracted from Raji cell line and cDNA synthesized. Amplified fragment was cloned in pBudCE4.1 vector. The new construct was transfected to CHO-K1 cell line using electroporation method. Expression of recombinant CD52 protein was evaluated by Real time PCR and flow cytometry methods. Results: Amplification of CD52 gene using specific primers on Raji cDNA showed a 209 bp band. New construct was confirmed by PCR and restriction pattern and sequence analysis. The new construct was designated as pBudKT1. RT-PCR analysis detected cd52 mRNAs in transfected cells and Flow cytometry Results showed that 78.4 % of cells represented CD52 in their surfaces. Conclusion: In conclusion, we established a human CD52 positive cell line, CHO-CD52, and the protein was expressed on the membrane. Cloning of the CD52 gene could be the first step for the production of therapeutic monoclonal antibodies and detection systems for soluble CD52 in biological fluids PMID:28070536

  6. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations

    PubMed Central

    Meeth, Katrina; Wang, Jake; Micevic, Goran; Damsky, William; Bosenberg, Marcus W.

    2017-01-01

    Summary The remarkable success of immune therapies emphasizes the need for immune competent cancer models. Elegant genetically engineered mouse models of a variety of cancers have been established, but their effective use is limited by cost and difficulties in rapidly generating experimental data. Some mouse cancer cell lines are transplantable to immunocompetent host mice and have been utilized extensively to study cancer immunology. Here we describe a comprehensive system of mouse melanoma cell lines that are syngeneic to C57Bl/6J, have well-defined human-relevant driver mutations, and are genomically stable. These will be a useful tool for the study of tumor immunology and genotype-specific cancer biology. PMID:27287723

  7. Diffuse Large B Cell Lymphoma Cell Line U-2946: Model for MCL1 Inhibitor Testing

    PubMed Central

    Quentmeier, Hilmar; Drexler, Hans G.; Hauer, Vivien; MacLeod, Roderick A. F.; Pommerenke, Claudia; Uphoff, Cord C.; Zaborski, Margarete; Berglund, Mattias

    2016-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common form of non-Hodgkin lymphoma worldwide. We describe the establishment and molecular characteristics of the DLBCL cell line U-2946. This cell line was derived from a 52-year-old male with DLBCL. U-2946 cells carried the chromosomal translocation t(8;14) and strongly expressed MYC, but not the mature B-cell lymphoma associated oncogenes BCL2 and BCL6. Instead, U-2946 cells expressed the antiapoptotic BCL2 family member MCL1 which was highly amplified genomically (14n). MCL1 amplification is recurrent in DLBCL, especially in the activated B cell (ABC) variant. Results of microarray expression cluster analysis placed U-2946 together with ABC-, but apart from germinal center (GC)-type DLBCL cell lines. The 1q21.3 region including MCL1 was focally coamplified with a short region of 17p11.2 (also present at 14n). The MCL1 inhibitor A-1210477 triggered apoptosis in U-2946 (MCL1pos/BCL2neg) cells. In contrast to BCL2pos DLBCL cell lines, U-2946 did not respond to the BCL2 inhibitor ABT-263. In conclusion, the novel characteristics of cell line U-2946 renders it a unique model system to test the function of small molecule inhibitors, especially when constructing a panel of DLBCL cell lines expressing broad combinations of antiapoptotic BCL2-family members. PMID:27907212

  8. Diffuse Large B Cell Lymphoma Cell Line U-2946: Model for MCL1 Inhibitor Testing.

    PubMed

    Quentmeier, Hilmar; Drexler, Hans G; Hauer, Vivien; MacLeod, Roderick A F; Pommerenke, Claudia; Uphoff, Cord C; Zaborski, Margarete; Berglund, Mattias; Enblad, Gunilla; Amini, Rose-Marie

    2016-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common form of non-Hodgkin lymphoma worldwide. We describe the establishment and molecular characteristics of the DLBCL cell line U-2946. This cell line was derived from a 52-year-old male with DLBCL. U-2946 cells carried the chromosomal translocation t(8;14) and strongly expressed MYC, but not the mature B-cell lymphoma associated oncogenes BCL2 and BCL6. Instead, U-2946 cells expressed the antiapoptotic BCL2 family member MCL1 which was highly amplified genomically (14n). MCL1 amplification is recurrent in DLBCL, especially in the activated B cell (ABC) variant. Results of microarray expression cluster analysis placed U-2946 together with ABC-, but apart from germinal center (GC)-type DLBCL cell lines. The 1q21.3 region including MCL1 was focally coamplified with a short region of 17p11.2 (also present at 14n). The MCL1 inhibitor A-1210477 triggered apoptosis in U-2946 (MCL1pos/BCL2neg) cells. In contrast to BCL2pos DLBCL cell lines, U-2946 did not respond to the BCL2 inhibitor ABT-263. In conclusion, the novel characteristics of cell line U-2946 renders it a unique model system to test the function of small molecule inhibitors, especially when constructing a panel of DLBCL cell lines expressing broad combinations of antiapoptotic BCL2-family members.

  9. Immortality of cell lines: challenges and advantages of establishment.

    PubMed

    Maqsood, Muhammad Irfan; Matin, Maryam M; Bahrami, Ahmad Reza; Ghasroldasht, Mohammad M

    2013-10-01

    Cellular immortality happens upon impairment of cell-cycle checkpoint pathways (p53/p16/pRb), reactivation or up-regulation of telomerase enzyme, or upregulation of some oncogenes or oncoproteins leading to a higher rate of cell division.There are also some other factors and mechanisms involved in immortalisation, which need to be discovered. Immortalisation of cells derived from different sources and establishment of immortal cell lines has proven useful in understanding the molecular pathways governing cell developmental cascades in eukaryotic, especially human, cells. After the breakthrough of achieving the immortal cells and understanding their critical importance in the field of molecular biology, intense efforts have been dedicated to establish cell lines useful for elucidating the functions of telomerase, developmental lineage of progenitors, self-renewal potency, cellular transformation, differentiation patterns and some bioprocesses, like odontogenesis. Meanwhile, discovering the exact mechanisms of immortality, a major challenge for science yet, is believed to open new gateways toward understanding and treatment of cancer in the long term. This review summarises the methods involved in establishing immortality, its advantages and the challenges still being faced in this field.

  10. 9-{beta}-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    SciTech Connect

    Heaton, D.; Mustafi, R.; Schwartz, J.L. |

    1992-06-01

    The effect of 9-{beta}-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D{sub 0} values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D{sub 0} values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 {mu}M) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 {mu}M were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo.

  11. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines

    PubMed Central

    2014-01-01

    Background Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Methods Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett’s or Tukey’s post hoc tests, as appropriate. Results We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p < 0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. Conclusions The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the

  12. [Sorting of side population cells from multiple myeloma cell lines and analysis of their biological characteristics].

    PubMed

    Zhang, Xiao-Li; Zhang, Li-Na; Huang, Hong-Ming; Ding, Run-Sheng; Shi, Wei; Xu, Rui-Rong; Yu, Xiao-Tang; Jiang, Sheng-Hua

    2014-06-01

    This study was aimed to sort the side population (SP) cells from human multiple myeloma cell lines, then detect the biological characteristics of those SP cells. After Hoechst33342 staining, intracellular Hoechst33342 fluorescence staining differences of myeloma cell lines observed by the fluorescence microscopy. The fluorescence-activated cell sorting (FACS) technology was used to isolate SP cells and main population (MP) cells; proliferative capacity in vitro was determined by cell growth curve; the cell colony forming ability was compared by colony forming test. The CD138 expression was detected by flow cytometry. The expression of ABCG2 mRNA was detected by reverse transcription PCR; CCK-8 assay and colony forming test were used to evaluate the effect of bortezomib on the cell proliferation, vitality and colony forming ability of the two populations. The results showed that the myeloma cell lines had a small proportion of SP cells, especially, RPMI 8226 cells accounted for the highest proportion of SP cells (7.10 ± 2.69)%, which have also been confirmed under the fluorescence microscope; the proliferative activity and cell colony forming ability of SP cells were significantly higher than those of MP cells (P < 0.05). The expression levels of CD138 in SP and MP cells were not significantly different (P > 0.05). RT-PCR results showed that SP cells expressed the drug-resistance gene ABCG2, but MP cells hardly express these genes. The inhibition rate of bortezomib on SP cells was significantly lower than that on MP cells (P < 0.05), however, the difference was not significant (P > 0.05) at bortezomib 40 nmol/L. Bortezomib could reduce colony formation in the both two cell populations, but more severe reduction appeared in the MP cells. It is concluded that the myeloma cell line contain a small amount of SP cells with the cancer stem cell characteristics.

  13. An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells

    NASA Astrophysics Data System (ADS)

    Kiebach, Ragnar; Engelbrecht, Kurt; Grahl-Madsen, Laila; Sieborg, Bertil; Chen, Ming; Hjelm, Johan; Norrman, Kion; Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2016-05-01

    An Ag-Al2TiO5 composite braze was developed and successfully tested as seal for solid oxide cells. The thermo-mechanical properties of the Ag-Al2TiO5 system and the chemical compatibility between this composite braze and relevant materials used in stacks were characterized and the leak rates as a function of the operation temperature were measured. The thermal expansion coefficient in the Ag-Al2TiO5 system can be tailored by varying the amount of the ceramic filler. The brazing process can be carried out in air, the joining partners showed a good chemical stability and sufficient low leak rates were demonstrated. Furthermore, the long-term stability of the Ag-Al2TiO5 composite braze was studied under relevant SOFC and SOEC conditions. The stability of brazed Crofer/Ag-Al2TiO5/NiO-YSZ assemblies in reducing atmosphere and in pure oxygen was investigated over 500 h at 850 °C. Additionally, a cell component test was performed to investigate the durability of the Ag-Al2TiO5 seal when exposed to dual atmosphere. The seals performed well over 900 h under electrolysis operation conditions (-0.5 A cm2, 850 °C), and no cell degradation related to the Ag-Al2TiO5 sealing was found, indicating that the developed braze system is applicable for the use in SOFC/SOEC stacks.

  14. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol.

    PubMed

    De Matteis, Valeria; Malvindi, Maria Ada; Galeone, Antonio; Brunetti, Virgilio; De Luca, Elisa; Kote, Sachin; Kshirsagar, Prakash; Sabella, Stefania; Bardi, Giuseppe; Pompa, Pier Paolo

    2015-04-01

    Toxicity of silver nanoparticles (AgNPs) is supported by many observations in literature, but no mechanism details have been proved yet. Here we confirm and quantify the toxic potential of fully characterized AgNPs in HeLa and A549 cells. Notably, through a specific fluorescent probe, we demonstrate the intracellular release of Ag(+) ions in living cells after nanoparticle internalization, showing that in-situ particle degradation is promoted by the acidic lysosomal environment. The activation of metallothioneins in response to AgNPs and the possibility to reverse the main toxic pathway by Ag(+) chelating agents demonstrate a cause/effect relationship between ions and cell death. We propose that endocytosed AgNPs are degraded in the lysosomes and the release of Ag(+) ions in the cytosol induces cell damages, while ions released in the cell culture medium play a negligible effect. These findings will be useful to develop safer-by-design nanoparticles and proper regulatory guidelines of AgNPs. From the clinical editor: The authors describe the toxic potential of silver nanoparticles (AgNP) in human cancer cell lines. Cell death following the application of AgNPs is dose-dependent, and it is mostly due to Ag+ ions. Further in vivo studies should be performed to gain a comprehensive picture of AgNP-toxicity in mammals.

  15. Plasmids and packaging cell lines for use in phage display

    DOEpatents

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  16. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  17. Androglobin knockdown inhibits growth of glioma cell lines

    PubMed Central

    Huang, Bo; Lu, Yi-Sheng; Li, Xia; Zhu, Zhi-Chuan; Li, Kui; Liu, Ji-Wei; Zheng, Jing; Hu, Ze-Lan

    2014-01-01

    Globin family was famous for oxygen supply function of its members such as hemoglobin and myoglobin. With the progress of research, several members of this protein family have been proven to play roles in tumors including glioma. Androglobin (ADGB) is a recently identified member of globin family with very few studies about its function. In the present study, we show that ADGB plays an oncogene role in glioma. Lentiviral vector mediated ADGB knockdown inhibited the proliferation of glioma cell lines determined by MTT assay and colony formation assay. ADGB knockdown also increased the apoptosis of glioma cell line U251 assessed by flow cytometry. In addition, western blot showed that ADGB knockdown altered levels of several proteins related to proliferation, survival or apoptosis in U251 cells. These findings suggest ADGB is involved in the progression of glioma in vitro. PMID:24966926

  18. Fucose-targeted glycoengineering of pharmaceutical cell lines.

    PubMed

    Ogorek, Christiane; Jordan, Ingo; Sandig, Volker; von Horsten, Hans Henning

    2012-01-01

    Glycosylation is known to have an impact on pharmacokinetics and pharmacodynamics of therapeutic proteins. While the production of pharmaceutically desirable glycosylation forms of a therapeutic protein can in certain cases be influenced by the upstream process parameters, certain specialized glycan structures can only be produced in large quantities from cell lines that have been genetically engineered.One particular case where a specialized glycostructure has a major impact on pharmacodynamic mode of action is the enhanced ADCC-effector function of afucosylated IgG1-type monoclonal antibodies. Here we describe the methodological details of a powerful yet simple glycoengineering approach targeted at the fucosylation machinery within eukaryotic cells. As an example we demonstrate the modification of the permanent avian cell line AGE1.CR.pIX which is characterized by a unique glycosylation machinery.

  19. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines.

    PubMed

    El-Hussein, Ahmed; Mfouo-Tynga, Ivan; Abdel-Harith, Mohamed; Abrahamse, Heidi

    2015-12-01

    Cancer is one of the dreadest diseases once diagnosed and has severe impacts on health, social and economic global aspects. Nanomedicine is considered an emerging approach for early cancer diagnosis and treatment. The multifunctional effects of silver and gold nanoparticles (Ag and Au NPs) have rendered them to be potent candidates for biomedical applications. The current work presents a comparative study between Au NPs and Ag NPs as possible potent photosensitizers (PS) in photodynamic therapy (PDT). Transmission electron microscopy (TEM) was used to identify and characterize the shape, size, and cellular localization of Au NPs; the absorption properties of Au NPs were determined using ultraviolet-visible spectroscopy (UV-Vis) and zeta potential was used to identify surface charge. Inverted light microscopy (LM), Trypan blue exclusion assay, adenosine triphosphate luminescence (ATP), and lactate dehydrogenase membrane integrity assays (LDH) were used for investigating the photodynamic ability of these nanostructures on breast (MCF-7) and lung (A549) cancer cell lines. Flow cytometry using Annexin V and propidium iodide (PI) dyes was used to determine the cell death pathway induced. The average size of the synthesized Au NPs was 50 nm, having an absorption peak at 540 nm with -7.85 mV surface net charge. MCF-7 and A549 cells were able to absorb the Au NPs. The latter, when irradiated with laser light in the phototherapeutic window, promoted cytotoxicity and a significant reduction in cell viability and proliferation were observed. The photodynamic activity that was observed in both cancer cell lines was found to be less eminent than that observed in case of the Ag NPs when compared to Au NPs. The present study is the first that compares the photodynamic ability of two different nanoparticles, silver and gold, as photosensitizers without any further functionalization. This study extends the possibilities of using such nanostructures in PDT within the therapeutic

  20. Characterization of AgMaT2, a plasma membrane mannitol transporter from celery, expressed in phloem cells, including phloem parenchyma cells.

    PubMed

    Juchaux-Cachau, Marjorie; Landouar-Arsivaud, Lucie; Pichaut, Jean-Philippe; Campion, Claire; Porcheron, Benoit; Jeauffre, Julien; Noiraud-Romy, Nathalie; Simoneau, Philippe; Maurousset, Laurence; Lemoine, Rémi

    2007-09-01

    A second mannitol transporter, AgMaT2, was identified in celery (Apium graveolens L. var. dulce), a species that synthesizes and transports mannitol. This transporter was successfully expressed in two different heterologous expression systems: baker's yeast (Saccharomyces cerevisiae) cells and tobacco (Nicotiana tabacum) plants (a non-mannitol-producing species). Data indicated that AgMaT2 works as an H(+)/mannitol cotransporter with a weak selectivity toward other polyol molecules. When expressed in tobacco, AgMaT2 decreased the sensitivity to the mannitol-secreting pathogenic fungi Alternaria longipes, suggesting a role for polyol transporters in defense mechanisms. In celery, in situ hybridization showed that AgMaT2 was expressed in the phloem of leaflets, petioles from young and mature leaves, floral stems, and roots. In the phloem of petioles and leaflets, AgMaT2, as localized with specific antibodies, was present in the plasma membrane of three ontologically related cell types: sieve elements, companion cells, and phloem parenchyma cells. These new data are discussed in relation to the physiological role of AgMaT2 in regulating mannitol fluxes in celery petioles.

  1. Characterization of AgMaT2, a Plasma Membrane Mannitol Transporter from Celery, Expressed in Phloem Cells, Including Phloem Parenchyma Cells[OA

    PubMed Central

    Juchaux-Cachau, Marjorie; Landouar-Arsivaud, Lucie; Pichaut, Jean-Philippe; Campion, Claire; Porcheron, Benoit; Jeauffre, Julien; Noiraud-Romy, Nathalie; Simoneau, Philippe; Maurousset, Laurence; Lemoine, Rémi

    2007-01-01

    A second mannitol transporter, AgMaT2, was identified in celery (Apium graveolens L. var. dulce), a species that synthesizes and transports mannitol. This transporter was successfully expressed in two different heterologous expression systems: baker's yeast (Saccharomyces cerevisiae) cells and tobacco (Nicotiana tabacum) plants (a non-mannitol-producing species). Data indicated that AgMaT2 works as an H+/mannitol cotransporter with a weak selectivity toward other polyol molecules. When expressed in tobacco, AgMaT2 decreased the sensitivity to the mannitol-secreting pathogenic fungi Alternaria longipes, suggesting a role for polyol transporters in defense mechanisms. In celery, in situ hybridization showed that AgMaT2 was expressed in the phloem of leaflets, petioles from young and mature leaves, floral stems, and roots. In the phloem of petioles and leaflets, AgMaT2, as localized with specific antibodies, was present in the plasma membrane of three ontologically related cell types: sieve elements, companion cells, and phloem parenchyma cells. These new data are discussed in relation to the physiological role of AgMaT2 in regulating mannitol fluxes in celery petioles. PMID:17631523

  2. Photoelectric properties of ITO/CdS/chlorophyll a/Ag heterojunction solar cells

    SciTech Connect

    Segui, J.; Hotchandani, S.; Baddou, D.; Leblanc, R.M. )

    1991-10-31

    The heterojunction ITO/CdS/Chl a/Ag (Chl a = chlorophyll a) solar cells have been prepared by sequential electrodeposition of CdS and Chl a onto conductive indium-tin oxide (ITO) electrode followed by vacuum deposition of Ag, and their photovoltaic studies have been carried out. The dark J-V and photovoltaic characteristics, especially the action spectra, suggest the presence of a barrier at CdS/CFhl a interface. Various photovoltaic parameters of the cells obtained for the incident light power of 20 {mu}W/Cm{sup 2} at 740 nm, the maximum of Chl a absorption in red region, are as follows: J{sub SC} {approx equal} 150-200 nA/cm{sup 2}, V{sub OC} {approx} 0.35-0.40 V, ff = 0.26, and {eta} (%) = 0.17. The measurements performed at three wavelengths, namely, 740, 680, and 560 nm, indicate that the cells (illuminated through CdS electrode) perform better for weakly absorbed light at 560 nm. The results further show that the use of CdS instead of Al as rectifying electrode has definitely led to an improvement in the performance of CdS/Chl a over Al/Chl a cells in terms of the decreased internal resistances, decreased dark current and voltage, increased fill factors, and increased power conversion efficiencies. This has been attributed to the elimination of insulating layer of Al{sub 2}O{sub 3} existing at Al/Chl a interface.

  3. Origin of Unusual Excitonic Absorption and Emission from Colloidal Ag2S Nanocrystals: Ultrafast Photophysics and Solar Cell.

    PubMed

    Mir, Wasim J; Swarnkar, Abhishek; Sharma, Rituraj; Katti, Aditya; Adarsh, K V; Nag, Angshuman

    2015-10-01

    Colloidal Ag2S nanocrystals (NCs) typically do not exhibit sharp excitonic absorption and emission. We first elucidate the reason behind this problem by preparing Ag2S NCs from nearly monodisperse CdS NCs employing cation exchange reaction. It was found that the defect-related midgap transitions overlap with excitonic transition, blurring the absorption spectrum. On the basis of this observation, we prepared nearly defect-free Ag2S NCs using molecular precursors. These defect-free Ag2S NCs exhibit sharp excitonic absorption, emission (quantum yield 20%) in near-infrared (853 nm) region, and improved performance of Ag2S quantum-dot-sensitized solar cells (QDSSCs). Samples with lower defects exhibit photoconversion efficiencies >1% and open circuit voltage of ∼0.3 V, which are better compared with prior reports of Ag2S QDSSCs. Femtosecond transient absorption shows pump-probe two-photon absorption above 630 nm and slow-decaying excited state absorption below 600 nm. Concomitantly, open-aperture z-scan shows strong two-photon absorption at 532 nm (coefficient 55 ± 3 cm/GW).

  4. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-06-16

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  5. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties.

    PubMed

    Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam

    2016-12-12

    The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 9999: 1-15, 2016. © 2016 Wiley Periodicals, Inc.

  6. Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line.

    PubMed

    Dier, Usawadee; Shin, Dong-Hui; Hemachandra, L P Madhubhani P; Uusitalo, Larissa M; Hempel, Nadine

    2014-01-01

    Epithelial ovarian cancer (EOC) is the most lethal of all gynecological cancers, and encompasses distinct histological subtypes that have specific genetic and tissues-of-origin differences. Ovarian clear cell carcinoma (OCCC) represents approximately 10% of cases and has been termed a stress responsive cancer. OCCC is characterized by increased expression of oxidative stress and glycolysis-related genes. In the present study, we hypothesized that bioenergetic profiling might uniquely distinguish OCCC from other EOC histological subtypes. Using an extracellular flux analyzer, OCCC lines (ES-2, TOV-21-G) were shown to be highly metabolically active, with high oxygen consumption rate (OCR) and high extracellular acidification rate (ECAR), indicative of enhanced mitochondrial oxidative phosphorylation and glycolytic rate, respectively. A high bioenergetics profile was associated with the cell lines' ability to form anchorage independent spheroids. Given their high glycolytic and mitochondrial activity, OCCC cells displayed strong sensitivity to 2-deoxy-D-glucose and Rotenone growth inhibition, although this chemosensitivity profile was not specific to only OCCC cells. Bioenergetic profiling also identified a non-OCCC cell line, OVCA420, to have severely compromised mitochondrial function, based on low OCR and a lack of stimulation of maximal respiration following application of the uncoupler FCCP. This was accompanied by mitochondrial morphology changes indicative of enhanced fission, increased expression of the mitochondrial fission protein Drp1, a loss of mitochondrial membrane potential and dependence on glycolysis. Importantly, this loss of mitochondrial function was accompanied by the inability of OVCA420 cells to cope with hypoxic stress, and a compromised ability to stabilize HIF-1α in response to 1% O2 hypoxia. This knowledge may be imperative for researchers planning to utilize this cell line for further studies of metabolism and hypoxia, and suggests that

  7. Rosiglitazone inhibits cell proliferation by inducing G1 cell cycle arrest and apoptosis in ADPKD cyst-lining epithelia cells.

    PubMed

    Liu, Yawei; Dai, Bing; Fu, Lili; Jia, Jieshuang; Mei, Changlin

    2010-06-01

    Abnormal proliferation is an important pathological feature of autosomal dominant polycystic kidney disease (ADPKD). Many drugs inhibiting cell proliferation have been proved to be effective in slowing the disease progression in ADPKD. Recent evidence has suggested that peroxisome proliferator-activated receptor gamma (PPARgamma) ligands have anti-neoplasm effects through inhibiting cell growth and inducing cell apoptosis in various cancer cells. In the present study, we examined the expression of PPARgamma in human ADPKD kidney tissues and cyst-lining epithelial cell line, and found that the expression of PPARgamma was greater in ADPKD kidney tissues and cyst-lining epithelial cell line than in normal kidney tissues and human kidney cortex (HKC) cell line. Rosiglitazone inhibited significantly proliferation of cyst-lining epithelial cells in a concentration- and time-dependent manner. These effects were diminished by GW9662, a specific PPARgamma antagonist. Cell cycle analysis showed a G0/G1 arrest in human ADPKD cyst-lining epithelial cells with rosiglitazone treatment. Analysis of cell cycle regulatory proteins revealed that rosiglitazone decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, cyclin D2 and Cdk4 but increased the levels of p21 and p27 in a dose-dependent manner. Rosiglitazone also induced apoptosis in cyst-lining epithelial cells, which was correlated with increased bax expression and decreased bcl-2 expression. These results suggest PPARgamma agonist might serve as a promising drug for the treatment of ADPKD.

  8. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication morphology,...

  9. A murine stromal cell line promotes the proliferation of the human factor-dependent leukemic cell line UT-7.

    PubMed

    Auffray, I; Dubart, A; Izac, B; Vainchenker, W; Coulombel, L

    1994-05-01

    In long-term human bone marrow cultures, stromal cells of human origin are usually used on the assumption that human primitive progenitor cells do not respond to cytokines produced by stromal cells from other species. There is accumulating evidence, however, that murine stromal cells also promote maintenance and differentiation of very primitive human stem cells, which suggests the existence of novel stromal activities that cross species barriers. In this study, we show that a murine bone marrow-derived stromal cell line, MS-5, allows the proliferation of the human leukemic cell line UT-7. The long-term growth of UT-7 is usually supported only by human interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or erythropoietin (Epo). None of these three cytokines was involved in the observed effect, since murine GM-CSF and IL-3 do not act on human cells and MS-5 cells do not produce Epo. Soluble stem cell factor (SCF) induced UT-7 cell proliferation. However, S1/S1 mutant fibroblasts also supported UT-7 cell growth and anti-c-kit antibodies only partially abolished UT-7 cell proliferative response to MS-5 cells. These observations excluded a major role of SCF in this system. MS-5-derived growth-promoting activity was diffusible, but attempts to grow UT-7 cells in high levels of known soluble murine stromal-derived cytokines active on human cells showed no or minimal response, suggesting that MS-5's proliferative effect was not mediated by known cytokines. Finally, involvement of an autocrine loop of activation induced by MS-5 was excluded: RT-PCR analysis did not detect increased transcripts for GM-CSF, IL-3, IL-6, SCF, or Epo in UT-7 cells cocultured for 2 to 6 days with MS-5. In addition, UT-7 cell proliferation on MS-5 was not inhibited by neutralizing antibodies against the human GM-CSF receptor or the human IL-6 receptor alpha chain. Whether UT-7 cell proliferation triggered by MS-5 reflects the existence of novel stromal cytokines or

  10. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines

    PubMed Central

    Contino, Gianmarco; Eldridge, Matthew D.; Secrier, Maria; Bower, Lawrence; Fels Elliott, Rachael; Weaver, Jamie; Lynch, Andy G.; Edwards, Paul A.W.; Fitzgerald, Rebecca C.

    2016-01-01

    Esophageal adenocarcinoma (EAC) is highly mutated and molecularly heterogeneous. The number of cell lines available for study is limited and their genome has been only partially characterized. The availability of an accurate annotation of their mutational landscape is crucial for accurate experimental design and correct interpretation of genotype-phenotype findings. We performed high coverage, paired end whole genome sequencing on eight EAC cell lines—ESO26, ESO51, FLO-1, JH-EsoAd1, OACM5.1 C, OACP4 C, OE33, SK-GT-4—all verified against original patient material, and one esophageal high grade dysplasia cell line, CP-D. We have made available the aligned sequence data and report single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number alterations, identified by comparison with the human reference genome and known single nucleotide polymorphisms (SNPs). We compare these putative mutations to mutations found in primary tissue EAC samples, to inform the use of these cell lines as a model of EAC. PMID:27594985

  11. Cysteine modified polyaniline films improve biocompatibility for two cell lines.

    PubMed

    Yslas, Edith I; Cavallo, Pablo; Acevedo, Diego F; Barbero, César A; Rivarola, Viviana A

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using l-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV-visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86°±1 to 90°±1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering.

  12. Toxicity of Calcium Hydroxide Nanoparticles on Murine Fibroblast Cell Line

    PubMed Central

    Dianat, Omid; Azadnia, Sina; Mozayeni, Mohammad Ali

    2015-01-01

    Introduction: One of the major contributing factors, which may cause failure of endodontic treatment, is the presence of residual microorganisms in the root canal system. For years, most dentists have been using calcium hydroxide (CH) as the intracanal medicament between treatment sessions to eliminate remnant microorganisms. Reducing the size of CH particles into nanoparticles enhances the penetration of this medicament into dentinal tubules and increases their antimicrobial efficacy. This in vitro study aimed to compare the cytotoxicity of CH nanoparticles and conventional CH on fibroblast cell line using the Mosmann’s Tetrazolium Toxicity (MTT) assay. Methods and Materials: This study was conducted on L929 murine fibroblast cell line by cell culture and evaluation of the direct effect of materials on the cultured cells. Materials were evaluated in two groups of 10 samples each at 24, 48 and 72 h. At each time point, 10 samples along with 5 positive and 5 negative controls were evaluated. The samples were transferred into tubes and exposed to fibroblast cells. The viability of cells was then evaluated. The Two-way ANOVA was used for statistical analysis and the level of significance was set at 0.05. Results: Cytotoxicity of both materials decreased over time and for conventional CH was lower than that of nanoparticles. However, this difference was not statistically significant (P>0.05). Conclusion: The cytotoxicity of CH nanoparticles was similar to that of conventional CH. PMID:25598810

  13. The dual role of TLR3 in metastatic cell line.

    PubMed

    Matijevic, Tanja; Pavelic, Jasminka

    2011-10-01

    Toll-like receptors (TLRs) are members of transmembrane proteins that recognize conserved molecular motifs of viral and bacterial origin and initiate innate immune response. As the role of TLRs in tumors cells is still not clear, our aim was to investigate the role of TLR3 in primary tumor and metastatic cells (SW480, SW620, FaDu and Detroit 562). We have reported here on the dual role of TLR3 in pharynx metastatic cell line (Detroit 562); on one hand TLR3 activation drove cells to apoptosis while on the other its stimulation contributed to tumor progression by altering the expression of tumor promoting genes (PLAUR, RORB) and enhancing the cell migration potential. In addition, we have shown TLR3 signaling pathway is functional in another metastatic cancer cell line (SW620) suggesting TLR3 might be important in the process of tumor metastasis. Since TLR3 agonists have been used in tumor therapy with the aim to activate immune system, scientific contribution of this work is drawing attention to the importance of further work on this topic, especially pro-tumor effect of TLR3, in order to avoid possible side-effects.

  14. Growth dynamics and cyclin expression in cutaneous T-cell lymphoma cell lines

    PubMed Central

    Biskup, Edyta; Manfé, Valentina; Kamstrup, Maria R.; Gniadecki, Robert

    2010-01-01

    We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa), Sézary syndrome (SeAx), and CD30+ lympho-proliferative diseases (Mac1, Mac2a, JK). Mac1 and Mac2a had the highest growth rate (doubling time 18–28 h, >90% cycling cells) whereas SeAx was proliferating slowly (doubling time 55 h, approximately 35% cycling cells). Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma. PMID:25386244

  15. Bisphosphonates induce apoptosis in human breast cancer cell lines

    PubMed Central

    Senaratne, S G; Pirianov, G; Mansi, J L; Arnett, T R; Colston, K W

    2000-01-01

    Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility that bisphosphonates may have a direct effect on breast cancer cells. We have investigated the in vitro effects of bisphosphonates zoledronate, pamidronate, clodronate and EB 1053 on growth, viability and induction of apoptosis in three human breast cancer cell lines (MDA-MB-231, Hs 578T and MCF-7). Cell growth was monitored by crystal violet dye assay, and cell viability was quantitated by MTS dye reduction. Induction of apoptosis was determined by identification of morphological features of apoptosis using time-lapse videomicroscopy, identifying morphological changes in nucleis using Hoechst staining, quantitation of DNA fragmentation, level of expression of bcl-2 and bax proteins and identification of the proteolytic cleavage of Poly (ADP)-ribose polymerase (PARP). All four bisphosphonates significantly reduced cell viability in all three cell lines. Zoledronate was the most potent bisphosphonate with IC50values of 15, 20 and 3 μM respectively in MDA-MB-231, MCF-7 and Hs 578T cells. Corresponding values for pamidronate were 40, 35 and 25 μM, whereas clodronate and EB 1053 were more than two orders of magnitude less potent. An increase in the proportion of cells having morphological features characteristic of apoptosis, characteristic apoptotic changes in the nucleus, time-dependent increase in the percentage of fragmented chromosomal DNA, down-regulation in bcl-2 protein and proteolytic cleavage of PARP, all indicate that bisphosphonates have direct anti-tumour effects on human breast cancer cells. © 2000 Cancer Research Campaign PMID:10780527

  16. Designing of promiscuous inhibitors against pancreatic cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

    2014-04-01

    Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

  17. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  18. Efficient Genetic Method for Establishing Drosophila Cell Lines Unlocks the Potential to Create Lines of Specific Genotypes

    PubMed Central

    Truesdell, Sharon; Paul, Litty; Chen, Ting; Butchar, Jonathan P.; Justiniano, Steven

    2008-01-01

    Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene RasV12 (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of RasV12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype. PMID:18670627

  19. Apoptosis induced by propolis in human hepatocellular carcinoma cell line.

    PubMed

    Choi, Y H; Lee, W Y; Nam, S Y; Choi, K C; Park, Y E

    1999-07-01

    Propolis has been reported to exhibit a wide spectrum of activities including antibiotic, antiviral, anti-inflammatory, immunostimulatory and tumor carcinostatic properties. We showed propolis induced apoptosis in a human hepatoma cell line (SNU449) by FITC-Annexin V/PI staining. We also compared the apoptosis inducing effect between Korean and Commercial (Sigma # p-1010) propolis. There was no difference on apoptosis between them.

  20. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines.

    PubMed

    Tomiya, Noboru; Narang, Someet; Lee, Yuan C; Betenbaugh, Michael J

    2004-01-01

    In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic

  1. Reversal of diabetes following transplantation of an insulin-secreting human liver cell line: Melligen cells

    PubMed Central

    Lawandi, Janet; Tao, Chang; Ren, Binhai; Williams, Paul; Ling, Dora; Swan, M Anne; Nassif, Najah T; Torpy, Fraser R; O’Brien, Bronwyn A; Simpson, Ann M

    2015-01-01

    As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes (TID). The initial liver cell line (Huh7ins) commenced secretion of insulin in response to a glucose concentration of 2.5 mmol/l. After transfection of the Huh7ins cells with human islet glucokinase, the resultant Melligen cells secreted insulin in response to glucose within the physiological range; commencing at 4.25 mmol/l. Melligen cells exhibited increased glucokinase enzymatic activity in response to physiological glucose concentrations, as compared with Huh7ins cells. When transplanted into diabetic immunoincompetent mice, Melligen cells restored normoglycemia. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that both cell lines expressed a range of β-cell transcription factors and pancreatic hormones. Exposure of Melligen and Huh7ins cells to proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) affected neither their viability nor their ability to secrete insulin to glucose. Gene expression (microarray and qRT-PCR) analyses indicated the survival of Melligen cells in the presence of known β-cell cytotoxins was associated with the expression of NF-κB and antiapoptotic genes (such as BIRC3). This study describes the successful generation of an artificial β-cell line, which, if encapsulated to avoid allograft rejection, may offer a clinically applicable cure for T1D. PMID:26029722

  2. Hepatitis C virus infection of cholangiocarcinoma cell lines.

    PubMed

    Fletcher, Nicola F; Humphreys, Elizabeth; Jennings, Elliott; Osburn, William; Lissauer, Samantha; Wilson, Garrick K; van IJzendoorn, Sven C D; Baumert, Thomas F; Balfe, Peter; Afford, Simon; McKeating, Jane A

    2015-06-01

    Hepatitis C virus (HCV) infects the liver and hepatocytes are the major cell type supporting viral replication. Hepatocytes and cholangiocytes derive from a common hepatic progenitor cell that proliferates during inflammatory conditions, raising the possibility that cholangiocytes may support HCV replication and contribute to the hepatic reservoir. We screened cholangiocytes along with a panel of cholangiocarcinoma-derived cell lines for their ability to support HCV entry and replication. While primary cholangiocytes were refractory to infection and lacked expression of several entry factors, two cholangiocarcinoma lines, CC-LP-1 and Sk-ChA-1, supported efficient HCV entry; furthermore, Sk-ChA-1 cells supported full virus replication. In vivo cholangiocarcinomas expressed all of the essential HCV entry factors; however, cholangiocytes adjacent to the tumour and in normal tissue showed a similar pattern of receptor expression to ex vivo isolated cholangiocytes, lacking SR-BI expression, explaining their inability to support infection. This study provides the first report that HCV can infect cholangiocarcinoma cells and suggests that these heterogeneous tumours may provide a reservoir for HCV replication in vivo.

  3. Restoration of WNT4 inhibits cell growth in leukemia-derived cell lines

    PubMed Central

    2013-01-01

    Background WNT signaling pathways are significantly altered during cancer development. Vertebrates possess two classes of WNT signaling pathways: the “canonical” WNT/β-catenin signaling pathway, and the “non-canonical” pathways including WNT/Ca2+ and WNT/Planar cell polarity [PCP] signaling. WNT4 influences hematopoietic progenitor cell expansion and survival; however, WNT4 function in cancer development and the resulting implications for oncogenesis are poorly understood. The aim of this study was twofold: first, to determine the expression of WNT4 in mature peripheral blood cells and diverse leukemia-derived cells including cell lines from hematopoietic neoplasms and cells from patients with leukemia; second, to identify the effect of this ligand on the proliferation and apoptosis of the blast-derived cell lines BJAB, Jurkat, CEM, K562, and HL60. Methods We determined WNT4 expression by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) and T- and B-lymphocytes from healthy individuals, as well as from five leukemia-derived cell lines and blasts derived from patients with leukemia. To analyze the effect of WNT4 on cell proliferation, PBMCs and cell lines were exposed to a commercially available WNT4 recombinant human protein. Furthermore, WNT4 expression was restored in BJAB cells using an inducible lentiviral expression system. Cell viability and proliferation were measured by the addition of WST-1 to cell cultures and counting cells; in addition, the progression of the cell cycle and the amount of apoptosis were analyzed in the absence or presence of WNT4. Finally, the expression of WNT-pathway target genes was measured by qRT-PCR. Results WNT4 expression was severely reduced in leukemia-derived cell lines and blasts derived from patients with leukemia. The exposure of cell lines to WNT4 recombinant protein significantly inhibited cell proliferation; inducing WNT4 expression in BJAB

  4. HIV-1 latency in actively dividing human T cell lines

    PubMed Central

    Jeeninga, Rienk E; Westerhout, Ellen M; van Gerven, Marja L; Berkhout, Ben

    2008-01-01

    Background Eradication of HIV-1 from an infected individual cannot be achieved by current drug regimens. Viral reservoirs established early during the infection remain unaffected by anti-retroviral therapy and are able to replenish systemic infection upon interruption of the treatment. Therapeutic targeting of viral latency will require a better understanding of the basic mechanisms underlying the establishment and long-term maintenance of HIV-1 in resting memory CD4 T cells, the most prominent reservoir of transcriptional silent provirus. However, the molecular mechanisms that permit long-term transcriptional control of proviral gene expression in these cells are still not well understood. Exploring the molecular details of viral latency will provide new insights for eventual future therapeutics that aim at viral eradication. Results We set out to develop a new in vitro HIV-1 latency model system using the doxycycline (dox)-inducible HIV-rtTA variant. Stable cell clones were generated with a silent HIV-1 provirus, which can subsequently be activated by dox-addition. Surprisingly, only a minority of the cells was able to induce viral gene expression and a spreading infection, eventhough these experiments were performed with the actively dividing SupT1 T cell line. These latent proviruses are responsive to TNFα treatment and alteration of the DNA methylation status with 5-Azacytidine or genistein, but not responsive to the regular T cell activators PMA and IL2. Follow-up experiments in several T cell lines and with wild-type HIV-1 support these findings. Conclusion We describe the development of a new in vitro model for HIV-1 latency and discuss the advantages of this system. The data suggest that HIV-1 proviral latency is not restricted to resting T cells, but rather an intrinsic property of the virus. PMID:18439275

  5. Bombesin stimulates insulin secretion by a pancreatic islet cell line.

    PubMed Central

    Swope, S L; Schonbrunn, A

    1984-01-01

    The amphibian tetradecapeptide, bombesin (BBS) has been shown to stimulate insulin secretion both in vivo and by pancreatic islet cells in vitro. To determine whether BBS can act directly on pancreatic beta cells, we examined its effects on insulin secretion by HIT-T15 cells (HIT cells), a clonal islet cell line. Addition of 100 nM BBS to HIT cells stimulated insulin release 25-fold within 30 sec. The rapid stimulatory effect of BBS on insulin release was short-lived: the secretory rate returned to basal levels after 90 min of BBS treatment. The decrease in the rate of insulin release in the continued presence of BBS was due not to depletion of intracellular insulin stores but to specific desensitization to this peptide. Stimulation of insulin secretion by BBS was dose dependent with an ED50 value (0.51 +/- 0.15 nM) similar to the concentration of BBS-like immunoreactive material in rat plasma. Five BBS analogs, including porcine gastrin-releasing peptide, were as powerful as BBS in stimulating insulin release. The relative potencies of the analogs tested indicated that the COOH-terminal octapeptide sequence in BBS was sufficient for stimulation of release. In contrast, 14 peptides structurally unrelated to BBS did not alter insulin secretion. BBS action was synergistic with that of glucagon; insulin secretion in the presence of maximal concentrations of both peptides was greater than the additive effects of the two peptides added individually. Somatostatin inhibited BBS-stimulated release by 69 +/- 1% with an ID50 value of 3.2 +/- 0.3 nM. These results show that BBS stimulation of insulin secretion by a clonal pancreatic cell line closely parallels its effects in vivo and support the hypothesis that BBS stimulates insulin secretion by a direct effect on the pancreatic beta cell. The clonal HIT cell line provides a homogeneous cell preparation amenable for studies on the biochemical mechanisms of BBS action in the endocrine pancreas. PMID:6143320

  6. Cytogenetic instability of dental pulp stem cell lines.

    PubMed

    Duailibi, Monica Talarico; Kulikowski, Leslie Domenici; Duailibi, Silvio Eduardo; Lipay, Monica Vannucci Nunes; Melaragno, Maria Isabel; Ferreira, Lydia Masako; Vacanti, Joseph Phillip; Yelick, Pamela Crotty

    2012-02-01

    Human adult stem cells (hASCs) offer a potentially renewable source of cell types that are easily isolated and rapidly expanded for use in regenerative medicine and cell therapies without the complicating ethical problems that are associated with embryonic stem cells. However, the eventual therapeutic use of hASCs requires that these cells and their derivatives maintain their genomic stability. There is currently a lack of systematic studies that are aimed at characterising aberrant chromosomal changes in cultured ASCs over time. However, the presence of mosaicism and accumulation of karyotypic abnormalities within cultured cell subpopulations have been reported. To investigate cytogenetic integrity of cultured human dental stem cell (hDSC) lines, we analysed four expanded hDSC cultures using classical G banding and fluorescent in situ hybridisation (FISH) with X chromosome specific probe. Our preliminary results revealed that about 70% of the cells exhibited karyotypic abnormalities including polyploidy, aneuploidy and ring chromosomes. The heterogeneous spectrum of abnormalities indicates a high frequency of chromosomal mutations that continuously arise upon extended culture. These findings emphasise the need for the careful analysis of the cytogenetic stability of cultured hDSCs before they can be used in clinical therapies.

  7. [Mechanisms of gamma-inducible death of Jurkat cells line].

    PubMed

    Gamkrelidze, M M; Bezhitashvili, N D; Pavliashvili, A T; Mchedlishvili, T V; Sanikidze, T V

    2008-06-01

    Mechanisms of radio-inducible death of Jurkat cells were investigated. Human lymphoblastoid T-cell line Jurkat is widely established model for studying apoptosis mechanisms. The cell was radiated by "Teragam" (Czech Republic) by dose 2 g during 1 minute. After radiation cells were incubated at standard conditions during 24 hours. After gamma radiation in cell population amount of cells in gaplois (apoptotic G 0) stage was increased 8,2 folds, in diplois (G 0/G1) stage - by 17%, in synthetic (S) stage decreased by 35% and tetraploid (G2/M) stage by 73% in comparison to control group. It was revealed intensive production of free radicals of oxygen and nitric oxide and decreasing activity of antioxidant enzymes (superoxidismutasa, catalasa and glutathione peroxidase). Revealed dependence between intensification of apoptosis and radiation-induced arrest of cell cycle G2/M phase may be determined by excess amount of free oxygen and nitrogen radicals generated in Jurkat cells as a result of nondirect effects of low doses of gamma radiation.

  8. Establishment of lal-/- myeloid lineage cell line that resembles myeloid-derived suppressive cells.

    PubMed

    Ding, Xinchun; Wu, Lingyan; Yan, Cong; Du, Hong

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) in mouse are inflammatory cells that play critical roles in promoting cancer growth and metastasis by directly stimulating cancer cell proliferation and suppressing immune surveillance. In order to facilitate characterization of biochemical and cellular mechanisms of MDSCs, it is urgent to establish an "MDSC-like" cell line. By cross breeding of immortomouse (simian virus 40 large T antigen transgenic mice) with wild type and lysosomal acid lipase (LAL) knock-out (lal-/-) mice, we have established a wild type (HD1A) and a lal-/- (HD1B) myeloid cell lines. Compared with HD1A cells, HD1B cells demonstrated many characteristics similar to lal-/- MDSCs. HD1B cells exhibited increased lysosomes around perinuclear areas, dysfunction of mitochondria skewing toward fission structure, damaged membrane potential, and increased ROS production. HD1B cells showed increased glycolytic metabolism during blockage of fatty acid metabolism to fuel the energy need. Similar to lal-/- MDSCs, the mTOR signal pathway in HD1B cells is overly activated. Rapamycin treatment of HD1B cells reduced ROS production and restored the mitochondrial membrane potential. HD1B cells showed much stronger immunosuppression on CD4+ T cell proliferation and function in vitro, and enhanced cancer cells proliferation. Knockdown of mTOR with siRNA reduced the HD1B cell ability to immunosuppress T cells and stimulate cancer cell proliferation. Therefore, the HD1B myeloid cell line is an "MDSC-like" cell line that can be used as an alternative in vitro system to study how LAL controls various myeloid cell functions.

  9. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II.

    PubMed

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag(+) ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm(-1), equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given.

  10. Solution-processed Ag-nanowire/ZnO-nanoparticle composite transparent electrode for flexible organic solar cells.

    PubMed

    Wei, Bin; Pan, Saihu; Wang, Taohong; Tian, Zhenghao; Chen, Guo; Xu, Tao

    2016-12-16

    This paper demonstrates a hybrid transparent electrode composed of a solution-processed silver-nanowire (AgNW) film coated by zinc oxide nanoparticles (ZnO-NPs) acting as a modified buffer layer. The effect of the ZnO-NPs' coating ratio on the performances of indium tin oxide (ITO)-free organic solar cells (OSCs) has been systematically investigated. The optimized ITO-free OSCs achieved a power conversion efficiency (PCE) of 2.85%, while flexible OSCs using the AgNW/ZnO-NP composite transparent electrode grown on a polyethylene terephthalate (PET) substrate showed a PCE of 2.2%.

  11. Solution-processed Ag-nanowire/ZnO-nanoparticle composite transparent electrode for flexible organic solar cells

    NASA Astrophysics Data System (ADS)

    Wei, Bin; Pan, Saihu; Wang, Taohong; Tian, Zhenghao; Chen, Guo; Xu, Tao

    2016-12-01

    This paper demonstrates a hybrid transparent electrode composed of a solution-processed silver-nanowire (AgNW) film coated by zinc oxide nanoparticles (ZnO-NPs) acting as a modified buffer layer. The effect of the ZnO-NPs’ coating ratio on the performances of indium tin oxide (ITO)-free organic solar cells (OSCs) has been systematically investigated. The optimized ITO-free OSCs achieved a power conversion efficiency (PCE) of 2.85%, while flexible OSCs using the AgNW/ZnO-NP composite transparent electrode grown on a polyethylene terephthalate (PET) substrate showed a PCE of 2.2%.

  12. [Investigation of chromosomes in varieties and translocation lines of pea Pisum sativum L. by FISH, Ag-NOR, and differential DAPI staining].

    PubMed

    Samatadze, T E; Muravenko, O M; Bol'sheva, N L; Amosova, A B; Gostimsckiĭ, S A; Zelenin, A V

    2005-12-01

    The DNA intercalator 9-aminoachridine was used for obtaining high-resolution DAPI patterns of chromosomes of Pisum sativum L. with more than 300 bands per haploid chromosome set. The karyotypes of three pea varieties, Viola, Capital, and Rosa Crown, and two translocation lines, L-108 (T(2-4s)) and M-10 (T(2-7s)), were examined. Based on the results of DAPI staining, we have identified chromosomes, constructed idiograms, and established breakpoints of chromosome translocations. Lines L-108 (T(2-4s)) and M-10 (T(2-7s)) were shown to appear as a result of respectively one translocation between chromosomes 2 and 4 and two translocations between chromosomes 2 and 7. All varieties and translocation lines of pea were examined using fluorescence in situ hybridization (FISH) with telomere repetition probes, 5S and 45S wheat DNA probes. Transcriptional activity of 45S rRNA was detected by Ag-NOR staining. Telomere repetitions were shown to be located only in telomeric chromosome regions. Using high-resolution DAPI staining allowed us to verify localization of 5S genes on pea chromosomes 1, 3, and 5. 45S rDNAs were localized in the secondary constriction regions on the satellite and the satellite thread of chromosome and on the satellite thread and in more proximal satellite heterochromatic region of chromosome 7. The size of 45S rDNA signal on chromosome 7 was larger and its transcriptional activity, higher than the corresponding parameters on chromosome 4 in most of the forms studied. A visual comparison of the results of FISH and Ag-NOR staining of normal and translocated pea chromosomes did not reveal any significant differences between them. The translocations of the satellite chromosomes apparently did not cause significant changes either in the amount of the ribosomal genes or in their transcriptional activity.

  13. Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes.

    PubMed

    Paik, Isha; Scurr, David J; Morris, Bryan; Hall, Graham; Denning, Chris; Alexander, Morgan R; Shakesheff, Kevin M; Dixon, James E

    2012-10-01

    Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron-scale control of cell position can be achieved over centimeter-length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro-stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel™) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH-3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches.

  14. Establishment and characterization of feeder-cell-dependent bovine fetal liver cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment and initial characterization of bovine fetal liver cell lines is described. Bovine fetal hepatocytes were cultured from the liver of a 34-day bovine fetus by physical disruption of the liver tissue. Released liver cells and clumps of cells were plated on STO feeder layers and wer...

  15. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    PubMed

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research.

  16. Thrombospondin-1 (TSP1)-producing B cells restore antigen (Ag)-specific immune tolerance in an allergic environment.

    PubMed

    Yang, Gui; Geng, Xiao-Rui; Liu, Zhi-Qiang; Liu, Jiang-Qi; Liu, Xiao-Yu; Xu, Ling-Zhi; Zhang, Huan-Ping; Sun, Ying-Xue; Liu, Zhi-Gang; Yang, Ping-Chang

    2015-05-15

    Restoration of the antigen (Ag)-specific immune tolerance in an allergic environment is refractory. B cells are involved in immune regulation. Whether B cells facilitate the generation of Ag-specific immune tolerance in an allergic environment requires further investigation. This paper aims to elucidate the mechanism by which B cells restore the Ag-specific immune tolerance in an allergic environment. In this study, a B cell-deficient mouse model was created by injecting an anti-CD20 antibody. The frequency of tolerogenic dendritic cell (TolDC) was assessed by flow cytometry. The levels of cytokines were determined by enzyme-linked immunosorbent assay. The expression of thrombospondin-1 (TSP1) was assessed by quantitative real-time RT-PCR, Western blotting, and methylation-specific PCR. The results showed that B cells were required in the generation of the TGF-β-producing TolDCs in mice. B cell-derived TSP1 converted the latent TGF-β to the active TGF-β in DCs, which generated TGF-β-producing TolDCs. Exposure to IL-13 inhibited the expression of TSP1 in B cells by enhancing the TSP1 gene DNA methylation. Treating food allergy mice with Ag-specific immunotherapy and IL-13 antagonists restored the generation of TolDCs and enhanced the effect of specific immunotherapy. In conclusion, B cells play a critical role in the restoration of specific immune tolerance in an allergic environment. Blocking IL-13 in an allergic environment facilitated the generation of TolDCs and enhanced the therapeutic effect of immunotherapy.

  17. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    SciTech Connect

    Himaya, S.W.A.; Dewapriya, Pradeep; Kim, Se-Kwon

    2013-06-15

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.

  18. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Ahmadi, V.; Yousefi rad, M.; Kohnehpoushi, S.

    2015-04-01

    CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.

  19. Cross-contamination of cell lines as revealed by DNA fingerprinting in the IFO animal cell bank.

    PubMed

    Satoh, M; Takeuchi, M

    1993-01-01

    For quality control of cell lines, the Institute for Fermentation, Osaka (IFO) animal cell bank recently introduced DNA fingerprinting analysis, which enables verification of cell lines at the individual level, to detect cross-culture contamination. By using this analysis, we found two cases of cross-contamination of cell lines.

  20. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS.

    PubMed

    Rajanayake, Krishani K; Taylor, William R; Isailovic, Dragan

    2016-08-05

    Glycosphingolipids (GSLs) are important biomolecules, which are linked to many diseases such as GSL storage disorders and cancer. Consequently, the expression of GSLs may be altered in ovarian cancer cell lines in comparison to apparently healthy cell lines. Here, differential expressions of GSLs in an epithelial ovarian cancer cell line SKOV3 and a nontumorigenic epithelial ovarian cell line T29 were studied using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and MALDI-MS/MS. The isolation of GSLs from SKOV3 and T29 cell lines was carried out using Folch partition. GSLs were successfully detected by MALDI-MS, and structurally assigned by a comparison of their MALDI-MS/MS fragmentation patterns with MS/MS data found in SimLipid database. Additionally, LIPID MAPS was used to assign GSL ion masses in MALDI-MS spectra. Seventeen neutral GSLs were identified in Folch partition lower (chloroform/methanol) phases originating from both cell lines, while five globo series neutral GSLs were identified only in the Folch partition lower phase of SKOV3 cell line. Several different sialylated GSLs were detected in Folch partition upper (water/methanol) phases of SKOV3 and T29 cell lines. Overall, this study demonstrates the alteration and increased glycosylation of GSLs in an epithelial ovarian cancer cell line in comparison to a nontumorigenic epithelial ovarian cell line.

  1. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    PubMed

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

  2. Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines

    PubMed Central

    Zhang, Jinqian; Sun, Qiang; Bo, Jian; Huang, Rui; Zhang, Mengran; Xia, Zhenglin; Ju, Lili; Xiang, Guoan

    2014-01-01

    Single-walled carbon nanohorns (SWNHs) may be useful as carriers for anticancer drugs due to their particular structure. However, the interactions between the material itself and cancerous or normal cells have seldom been studied. To address this problem, the effects of raw SWNH material on the biological functions of human liver cell lines were studied. Our results showed that unmodified SWNHs inhibited mitotic entry, growth, and proliferation of human liver cell lines and promoted their apoptosis, especially in hepatoma cell lines. Individual spherical SWNH particles were found inside the nuclei of human hepatoma HepG2 cells and the lysosomes of normal human liver L02 cells, implying that SWNH particles could penetrate into human liver cells_and the different interacted mechanisms on human normal cell lines compared to hepatoma cell lines. Further research on the mechanisms and application in treatment of hepatocellular carcinoma with SWNHs is needed. PMID:24523586

  3. Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line

    PubMed Central

    2012-01-01

    Background Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. Results In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. Conclusions We present a Tg(tnks1bp1:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general. PMID:22273551

  4. Construction and characterization of deltaretrovirus indicator cell lines.

    PubMed

    Jewell, Nancy A; Mansky, Louis M

    2005-01-01

    The deltaretroviruses, which include bovine leukemia virus (BLV) and human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2), replicate poorly in culture and the molecular details of their life cycles are limited. To facilitate the analysis of virus replication, mammalian cell lines were created with the long terminal repeats (LTRs) of each virus driving expression of the enhanced green fluorescent protein gene (egfp). The BLGFP, H1GFP and H2GFP cell lines detect virus infection by the expression of GFP via the transactivation of the LTR via the Tax protein of BLV, HTLV-1 or HTLV-2, respectively. GFP expression was measured by flow cytometry, yielding sensitive and rapid detection of virus infectivity. Interestingly, we observed that the Tax proteins of HTLV-1 and HTLV-2 could transactivate the BLV LTR at levels that were comparable to that of BLV Tax. In contrast, the BLV Tax showed low levels of transactivation in H1GFP and H2GFP cells. HTLV-1 and HTLV-2 Tax proteins efficiently transactivated both the HTLV-1 and HTLV-2 LTRs. Finally, spinoculation of BLV resulted in only a two-fold increase in viral titer.

  5. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    SciTech Connect

    Itoigawa, Yoshiaki; Kishimoto, Koshi N.; Okuno, Hiroshi; Sano, Hirotaka; Kaneko, Kazuo; Itoi, Eiji

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  6. Characterization of cell lines stably transfected with rubella virus replicons

    SciTech Connect

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  7. Phase transformations during the Ag-In plating and bonding of vertical diode elements of multijunction solar cells

    SciTech Connect

    Klochko, N. P. Khrypunov, G. S.; Volkova, N. D.; Kopach, V. R.; Lyubov, V. N.; Kirichenko, M. V.; Momotenko, A. V.; Kharchenko, N. M.; Nikitin, V. A.

    2013-06-15

    The conditions of the bonding of silicon multijunction solar cells with vertical p-n junctions using Ag-In solder are studied. The compositions of electrodeposited indium films on silicon wafers silver plated by screen printing and silver and indium films fabricated by layer-by-layer electrochemical deposition onto the surface of silicon vertical diode cells silver plated in vacuum are studied. Studying the electrochemical-deposition conditions, structure, and surface morphology of the grown layers showed that guaranteed bonding is provided by 8-min heat treatment at 400 Degree-Sign C under the pressure of a stack of metallized silicon wafers; however, the ratio of the indium and silver layer thicknesses should not exceed 1: 3. As this condition is satisfied, the solder after wafer bonding has the InAg{sub 3} structure (or InAg{sub 3} with an Ag phase admixture), due to which the junction melting point exceeds 700 Degree-Sign C, which guarantees the functioning of such solar cells under concentrated illumination.

  8. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells.

    PubMed

    Kim, Areum; Won, Yulim; Woo, Kyoohee; Kim, Chul-Hong; Moon, Jooho

    2013-02-26

    We present an indium-free transparent conducting composite electrode composed of silver nanowires (AgNWs) and ZnO bilayers. The AgNWs form a random percolating network embedded between the ZnO layers. The unique structural features of our ZnO/AgNW/ZnO multilayered composite allow for a novel transparent conducting electrode with unprecedented excellent thermal stability (∼375 °C), adhesiveness, and flexibility as well as high electrical conductivity (∼8.0 Ω/sq) and good optical transparency (>91% at 550 nm). Cu(In,Ga)(S,Se)₂ (CIGSSe) thin film solar cells incorporating this composite electrode exhibited a 20% increase of the power conversion efficiency compared to a conventional sputtered indium tin oxide-based CIGSSe solar cell. The ZnO/AgNW/ZnO composite structure enables effective light transmission and current collection as well as a reduced leakage current, all of which lead to better cell performance.

  9. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines.

    PubMed

    Aschacher, T; Wolf, B; Enzmann, F; Kienzl, P; Messner, B; Sampl, S; Svoboda, M; Mechtcheriakova, D; Holzmann, K; Bergmann, M

    2016-01-07

    A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for facilitating aberrant recombination. Using L1-knockdown (KD), we show for the first time that L1 is critical for telomere maintenance in telomerase-positive tumour cells. The reduced length of telomeres in the L1-KD-treated cells correlated with an increased rate of telomere dysfunction foci, a reduced expression of shelterin proteins and an increased rate of anaphase bridges. The decreased telomere length was associated with a decreased telomerase activity and decreased telomerase mRNA level; the latter was increased upon L1 overexpression. L1-KD also led to a decrease in mRNA and protein expression of cMyc and KLF-4, two main transcription factors of telomerase and altered mRNA levels of other stem-cell-associated proteins such as CD44 and hMyb, as well as a corresponding reduced growth of spheroids. The KD of KLF-4 or cMyc decreased the level of L1-ORF1 mRNA, suggesting a specific reciprocal regulation with L1. Thus, our findings contribute to the understanding of L1 as a pathogenicity factor in cancer cells. As L1 is only expressed in pathophysiological conditions, L1 now appears to be target in the rational treatment of telomerase-positive cancer.

  10. Ag nanoparticle-blended plasmonic organic solar cells: performance enhancement or detraction?

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Mathews, Nripan; Sum, Tze Chien

    2014-03-01

    The blending of metallic nanoparticles into the active layer of organic solar cells in a bid to enhance their light absorption and device performance has led to controversial reports of both efficiency enhancement and degradation. Herein, through comprehensive transient absorption spectroscopy, we present clear evidence of traps being responsible for performance degradation of poly (3-hexylthiophene): [6,6]-phenyl-C 61-butyric acid methyl ester organic photovoltaic devices incorporated with oleylamine-capped silver nanoparticles. Although the presence of the metallic nanoparticles leads to more excitons being generated in the active layer, higher losses suffered by the polaron population through trap-assisted recombination strongly limits the device performance. Device modeling based on a single mid-gap trap state introduced by the AgNPs can well reproduce the current-voltage curves of the plasmonic organic solar cells - in agreement with the transient absorption findings. These new insights into the photophysics and charge dynamics of plasmonic organic solar cells would help resolve the existing controversy and provide clear guidelines for device design and fabrication.

  11. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Bernechea, María; Miller, Nichole Cates; Xercavins, Guillem; So, David; Stavrinadis, Alexandros; Konstantatos, Gerasimos

    2016-08-01

    Solution-processed inorganic solar cells are a promising low-cost alternative to first-generation solar cells. Solution processing at low temperatures combined with the use of non-toxic and abundant elements can help minimize fabrication costs and facilitate regulatory acceptance. However, at present, there is no material that exhibits all these features while demonstrating promising efficiencies. Many of the candidates being explored contain toxic elements such as lead or cadmium (perovskites, PbS, CdTe and CdS(Se)) or scarce elements such as tellurium or indium (CdTe and CIGS(Se)/CIS). Others require high-temperature processes such as selenization or sintering, or rely on vacuum deposition techniques (Sb2S(Se)3, SnS and CZTS(Se)). Here, we present AgBiS2 nanocrystals as a non-toxic, earth-abundant material for high-performance, solution-processed solar cells fabricated under ambient conditions at low temperatures (≤100 °C). We demonstrate devices with a certified power conversion efficiency of 6.3%, with no hysteresis and a short-circuit current density of ˜22 mA cm-2 for an active layer thickness of only ˜35 nm.

  12. Comparison of Ag and SiO2 Nanoparticles for Light Trapping Applications in Silicon Thin Film Solar Cells.

    PubMed

    Theuring, Martin; Wang, Peng Hui; Vehse, Martin; Steenhoff, Volker; von Maydell, Karsten; Agert, Carsten; Brolo, Alexandre G

    2014-10-02

    Plasmonic and photonic light trapping structures can significantly improve the efficiency of solar cells. This work presents an experimental and computational comparison of identically shaped metallic (Ag) and nonmetallic (SiO2) nanoparticles integrated to the back contact of amorphous silicon solar cells. Our results show comparable performance for both samples, suggesting that minor influence arises from the nanoparticle material. Particularly, no additional beneficial effect of the plasmonic features due to metallic nanoparticles could be observed.

  13. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.

    PubMed

    Priyadharshini, Ramaramesh Indra; Prasannaraj, Govindaraj; Geetha, Natesan; Venkatachalam, Perumal

    2014-12-01

    A rapid and novel microwave-mediated protocol was established for extracellular synthesis of metallic silver (Ag) and zinc oxide (ZnO) nanoparticles using the extracts of macro-algae Gracilaria edulis (GE) and also examined its anticancer activity against human prostate cancer cell lines (PC3). The formation of silver nanoparticles (GEAgNPs) and zinc oxide nanoparticles (GEZnONPs) in the reaction mixture was determined by ultraviolet-visible spectroscopy. The synthesized Ag and ZnO nanoparticles were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, energy dispersive X-ray, and field emission scanning electron microscopy. The silver and zinc oxide nanoparticles were spherical and rod-shaped, respectively. Cell viability assays were carried out to determine the cytotoxic effects of AgNPs and ZnONPs against PC3 and normal African monkey kidney (VERO) cell line. The inhibitory concentration values were found to be 39.60, 28.55, 53.99 μg/mL and 68.49, 88.05, 71.98 μg/mL against PC3 cells and Vero cells for AgNPs, ZnONPs, and aqueous G. edulis extracts, respectively, at 48 h incubation period. As evidenced by acridine orange/ethidium bromide staining, the percentage of the apoptotic bodies was found to be 62 and 70 % for AgNPs and ZnONPs, respectively. The present results strongly suggest that the synthesized ZnONPs showed an effective anticancer activity against PC3 cell lines than AgNPs.

  14. Perfluorooctane sulfonate induces apoptosis in N9 microglial cell line.

    PubMed

    Zhang, Ling; Li, Yuan-yuan; Zeng, Huai-cai; Li, Miao; Wan, Yan-Jian; Schluesener, Hermann J; Zhang, Zhi-yuan; Xu, Shun-qing

    2011-03-01

    Perfluorooctane sulfonate (PFOS) is an environmental persistent acid found at low levels in human, wildlife, and environmental media samples. To study the apoptosis effects of PFOS on microglia, murine N9 cell line was used as a model in current research. The results showed that PFOS could reduce the cell viability significantly, and the cellular apoptosis induced by PFOS was closely accompanied with dissipation of mitochondria membrane potential, upregulation messenger RNAs (mRNAs) of p53, Bax, caspase 9, and caspase 3, and decreased expression of Bcl-2 mRNA. These results suggested that PFOS could disturb homeostasis of N9 cells, impact mitochondria, and affect gene expression of apoptotic regulators, all of which resulted in a start-up of apoptosis.

  15. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines

    SciTech Connect

    Lee, Jae-Eun; Hong, Eun-Jung; Nam, Hye-Young; Hwang, Meeyul; Kim, Ji-Hyun; Han, Bok-Ghee; Jeon, Jae-Pil

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We identified the inhibitory effect of ISL on cell proliferation of LCLs. Black-Right-Pointing-Pointer We found ISL-induced genes and miRNAs through microarray approach. Black-Right-Pointing-Pointer ISL-treated LCLs represented gene expression changes in cell cycle and p53 pathway. Black-Right-Pointing-Pointer We revealed 12 putative mRNA-miRNA functional pairs associated with ISL effect. -- Abstract: Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.

  16. Genetically-defined novel oral squamous cell carcinoma cell lines for the development of molecular therapies

    PubMed Central

    Fadlullah, Muhammad Zaki Hidayatullah; Chiang, Ivy Kim-Ni; Dionne, Kalen R.; Yee, Pei San; Gan, Chai Phei; Sam, Kin Kit; Tiong, Kai Hung; Ng, Adrian Kwok Wen; Martin, Daniel; Lim, Kue Peng; Kallarakkal, Thomas George; Mustafa, Wan Mahadzir Wan; Lau, Shin Hin; Abraham, Mannil Thomas; Zain, Rosnah Binti; Rahman, Zainal Ariff Abdul; Molinolo, Alfredo; Patel, Vyomesh; Gutkind, J. Silvio; Tan, Aik Choon; Cheong, Sok Ching

    2016-01-01

    Emerging biological and translational insights from large sequencing efforts underscore the need for genetically-relevant cell lines to study the relationships between genomic alterations of tumors, and therapeutic dependencies. Here, we report a detailed characterization of a novel panel of clinically annotated oral squamous cell carcinoma (OSCC) cell lines, derived from patients with diverse ethnicity and risk habits. Molecular analysis by RNAseq and copy number alterations (CNA) identified that the cell lines harbour CNA that have been previously reported in OSCC, for example focal amplications in 3q, 7p, 8q, 11q, 20q and deletions in 3p, 5q, 8p, 18q. Similarly, our analysis identified the same cohort of frequently mutated genes previously reported in OSCC including TP53, CDKN2A, EPHA2, FAT1, NOTCH1, CASP8 and PIK3CA. Notably, we identified mutations (MLL4, USP9X, ARID2) in cell lines derived from betel quid users that may be associated with this specific risk factor. Gene expression profiles of the ORL lines also aligned with those reported for OSCC. By focusing on those gene expression signatures that are predictive of chemotherapeutic response, we observed that the ORL lines broadly clustered into three groups (cell cycle, xenobiotic metabolism, others). The ORL lines noted to be enriched in cell cycle genes responded preferentially to the CDK1 inhibitor RO3306, by MTT cell viability assay. Overall, our in-depth characterization of clinically annotated ORL lines provides new insight into the molecular alterations synonymous with OSCC, which can facilitate in the identification of biomarkers that can be used to guide diagnosis, prognosis, and treatment of OSCC. PMID:27050151

  17. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  18. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    PubMed

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was

  19. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Gnana Selvi, B. Clara; Madhavan, J.; Santhanam, Amutha

    2016-09-01

    In recent years researchers were attracted towards marine sources due to the presence of active components in it. Seaweeds were widely used in pharmaceutical research for their known biological activities. The biological synthesis method of silver nanoparticles (AgNPs) using Padina tetrastromatica seaweed extract and their cytotoxicity against breast cancer MCF-7 cells was reported in this study. The synthesized AgNPs using seaweed extract were subjected to x-ray diffraction, UV-visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscope, energy dispersive x-ray, zeta potential to elucidate the structural, morphology, size as well as surface potential parameters. An absorption peak at 430 nm in UV-visible spectrum reveals the excitation and surface plasmon resonance of AgNPs. FE-SEM micrographs exhibits the biosynthesized AgNPs, which are pre-dominantly round shaped and the size ranges between 40-50 nm. The zeta potential value of -27.6 mV confirms the stable nature of biosynthesized silver nanoparticles. Furthermore, the biological synthesized Ag NPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and the inhibitory concentration (IC50) was found for AgNPs against MCF-7 at 24 h incubation. Biological method of synthesizing silver nanoparticles shows a environmental friendly property which helps in effective electrifying usage in many fields.

  20. Pharmacological and molecular characterization of a dorsal root ganglion cell line expressing cannabinoid CB(1) and CB(2) receptors.

    PubMed

    Fan, Yihong; Hooker, Bradley A; Garrison, Tiffany Runyan; El-Kouhen, Odile F; Idler, Kenneth B; Holley-Shanks, Rhonda R; Meyer, Michael D; Yao, Betty Bei

    2011-06-01

    The behavioral effects evoked by cannabinoids are primarily mediated by the CB(1) and CB(2) cannabinoid receptor subtypes. In vitro pharmacology of cannabinoid receptors has been elucidated using recombinant expression systems expressing either CB(1) or CB(2) receptors, with limited characterization in native cell lines endogenously expressing both CB(1) and CB(2) receptors. In the current study, we report the molecular and pharmacological characterization of the F-11 cell line, a hybridoma of rat dorsal root ganglion neurons and mouse neuroblastoma (N18TG2) cells, reported to endogenously express both cannabinoid receptors. The present study revealed that both receptors are of mouse origin in F-11 cells, and describes the relative gene expression levels between the two receptors. Pharmacological characterization of the F-11 cell line using cannabinoid agonists and antagonists indicated that the functional responses to these cannabinoid ligands are mainly mediated by CB(1) receptors. The non-selective cannabinoid ligands CP 55,940 and WIN 55212-2 are potent agonists and their efficacies in adenylate cyclase and MAPK assays are inhibited by the CB(1) selective antagonist SR141716A (SR1), but not by the CB(2) selective antagonist SR144528 (SR2). The endocannabinoid ligand 2AG, although not active in adenylate cyclase assays, was a potent activator of MAPK signaling in F-11 cells. The analysis of CB(1) and CB(2) receptor gene expression and the characterization of cannabinoid receptor pharmacology in the F-11 cell line demonstrate that it can be used as a tool for interrogating the endogenous signal transduction of cannabinoid receptor subtypes.

  1. The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Shen, Liang; Meng, Fanxu; Zhang, Jiaqi; Xie, Wenfa; Yu, Wenjuan; Guo, Wenbin; Jia, Xu; Ruan, Shengping

    2013-03-01

    Here, we demonstrate silver (Ag) nanoparticles (NPs) existing in molybdenum trioxide (MoO3) buffer layers can improve the photocurrent by surface plasmon resonance (SPR) and backscattering enhancement. The device structure is glass/indium tin oxides/titanium dioxide (TiO2)/regioregular poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/MoO3/Ag NPs/MoO3/Ag. Compared to the device without Ag NPs, the short current density (Jsc) is improved from 7.76 ± 0.14 mA/cm2 to 8.89 ± 0.12 mA/cm2, and the power conversion efficiency is also enhanced from 2.70% ± 0.11% to 3.35% ± 0.08%. The transmittance spectra show that the device with Ag NPs has weaker transmittance than the device without, which could be attributed to the photons absorption of Ag NPs and light scattering by Ag NPs. The absorption profile of the devices with or without Ag NPs is simulated using finite-difference time-domain methods. It is approved that the Ag NPs result in the absorption improvement by SPR and backscattering enhancement.

  2. Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Yin, Guanchao; Steigert, Alexander; Andrae, Patrick; Goebelt, Manuela; Latzel, Michael; Manley, Phillip; Lauermann, Iver; Christiansen, Silke; Schmid, Martina

    2015-11-01

    Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se2 (CIGSe) solar cells is investigated. X-ray photoelectron spectroscopy results show that Ag nanoparticles underneath a Sn:In2O3 back contact could not be thermally passivated even at a low substrate temperature of 440 °C during CIGSe deposition. It is shown that a 50 nm thick Al2O3 film prepared by atomic layer deposition is able to block the diffusion of Ag, clearing the thermal obstacle in utilizing Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. Via 3-D finite element optical simulation, it is proved that the Ag nanoparticles show the potential to contribute the effective absorption in CIGSe solar cells.

  3. Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line.

    PubMed Central

    Mintz, K P; Fives-Taylor, P M

    1994-01-01

    Two quantitative, rapid assays were developed to study the adhesion of Actinobacillus actinomycetemcomitans, an oral bacterium associated with periodontal disease, to human epithelial cells. The human oral carcinoma cell line KB was grown in microtiter plates, and adherent bacteria were detected by an enzyme-linked immunosorbent assay with purified anti-A. actinomycetemcomitans serum and horseradish peroxidase-conjugated secondary antibody or [3H]thymidine-labeled bacteria. Adhesion was found to be time dependent and increased linearly with increasing numbers of bacteria added. Variation in the level of adhesion was noted among strains of A. actinomycetemcomitans. Adhesion was not significantly altered by changes in pH (from pH 5 to 9) but was sensitive to sodium chloride concentrations greater than 0.15 M. Pooled human saliva was inhibitory for adhesion when bacteria were pretreated with saliva before being added to the cells. Pretreatment of the KB cells with saliva did not inhibit adhesion. Protease treatment of A. actinomycetemcomitans reduced adhesion of the bacteria to KB cells. The data are consistent with the hypothesis that a protein(s) is required for bacterial adhesion and that host components may play a role in modulating adhesion to epithelial cells. Images PMID:8063383

  4. Functional somatostatin receptors on a rat pancreatic acinar cell line

    SciTech Connect

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A. Mount Zion Hospital and Medical Center, San Francisco, CA Universite Libre de Bruxelles, Brussels )

    1988-07-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.

  5. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation.

    PubMed

    Taylor, A W; Dixit, S; Yu, J

    2015-01-29

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  6. Ferulic acid promoting apoptosis in human osteosarcoma cell lines

    PubMed Central

    Zhang, Xu-dong; Wu, Qiang; Yang, Shu-hua

    2017-01-01

    Objective: To explore the promoting apoptosis and antitumor activities of ferulic acid (FA) in human osteosarcoma and its potential mechanism. Methods: The SaOS-2 and MG63 osteosarcoma cell lines were opted to experiment and these cells were, respectively, cultured with various concentrations of FA (0 μM, 10 μM, 20 μM, 40 μM) for 72 hours at 37°C. The viabilities of the FA treated cells were monitored by MTT. Apoptosis cells were evaluated using annexin V/PI by flow cytometry. Apoptosis proteins caspase-3, procaspase-3, Bcl-2 and Bax were detected by western blot. Expressions of apoptotic genes Bcl-2 and Bax were quantified by qPCR. Results: The cell viabilities were critically declined in the concentration-dependent manner in FA groups (P < 0.01). The apoptosis cells were increased proportionately with the concentration of FA (P < 0.05). The procaspase-3 protein contents, and Bcl-2 mRNA and protein contents were significantly decreased while caspase-3 protein contents, and Bax mRNA and protein contents were concomitantly increased in the concentration-dependent manner in FA groups (P < 0.05). The response to FA by the SaOS-2 osteosarcoma cell was similar with the MG63 osteosarcoma cell (P > 0.05). Conclusion: Ferulic acid could significantly descend osteosarcoma cell viability through the promoting apoptosis pathway in which FA activates both caspase-3 and Bax and inactivates Bcl-2. PMID:28367185

  7. Ion-exchange synthesis and improved photovoltaic performance of CdS/Ag2S heterostructures for inorganic-organic hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyun; Wang, Xiong; Zhang, Yange; Li, Pinjiang

    2016-11-01

    A facile ultrasound-assisted ion exchange route was developed for the synthesis of CdS/Ag2S heterojunctions by ion exchange between the nanostructured CdS film and [Ag(NH3)2]+ under ultrasonication. The CdS/Ag2S heterojunction film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis DRS spectroscopy, photoelectrochemical measurements, and the transient photovoltage (TPV) technique. CdSsbnd Ag2S heterojunctions exhibit a dense morphology, enhanced visible light absorption and stronger photocurrent response than the pure CdS films. Poly(3-hexylthiophene) (P3HT) was then spin coated into the CdS/Ag2S framework. Hybrid solar cells constructed with FTO/CdS/Ag2S/P3HT/Au display relatively higher power conversion efficiency than FTO/CdS/P3HT/Au.

  8. Energy level systems and transitions of Ho:LuAG laser resonantly pumped by a narrow line-width Tm fiber laser.

    PubMed

    Chen, Hao; Zhao, Ting; Yang, Hao; Zhang, Le; Zhou, Tianyuan; Tang, Dingyuan; Wong, Chingping; Chen, Yung-Fu; Shen, Deyuan

    2016-11-28

    We presented a Ho:LuAG ceramic laser in-band pumped by a narrow emission line-width Tm fiber laser at 1907 nm. All of potential transitions between 5I7 and 5I8 manifold were discussed to form the Ho's in-band-pump energy level systems, which were not described in details earlier. For the emission band centered at ~2095 nm, both laser absorption and emission transition separately consisted of two groups were first analyzed and observed. Using output couplers (OCs) with different transmittances (T = 6, 10 and 20%), the similar ~0.5 W continuous-wave (CW) output power under an incident pump power of ~4.9 W was obtained, with twin (or triplet) emission bands respectively. The blue shift of center emission wavelengths was observed with the increase of transmittances.

  9. A comparative study of the effects of Ag2S films prepared by MPD and HRTD methods on the performance of polymer solar cells

    NASA Astrophysics Data System (ADS)

    Zhai, Yong; Li, Fumin; Ling, Lanyun; Chen, Chong

    2016-10-01

    In this work, the Ag2S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag2S/P3HT:PCBM/MoO3/Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag2S films prepared by these two methods were compared and the effect of the prepared Ag2S film on the device performance is investigated. It is found that the Ag2S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag2S(HRTD, n)/P3HT:PCBM/MoO3/Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag2S(HRTD, 50)/P3HT:PCBM/MoO3/Au cell is 93% higher than that of the ITO/Ag2S(MPD, 2)/P3HT:PCBM/MoO3/Au cell.

  10. Hodgkin's disease cell lines: a model for interleukin-1-independent accessory cell function.

    PubMed

    McKenzie, J L; Egner, W; Calder, V L; Hart, D N

    1992-11-01

    The haemopoietic origins of the Hodgkin's disease (HD)-derived cell lines L428, KM-H2 and HDLM-2 remain controversial. Analysis of T-cell receptor (TcR) and Ig rearrangements cannot resolve this, and lineage promiscuity limits the interpretation of isolated surface antigen expression. Nonetheless the cell marker profile of L428 has similarities with human dendritic cells (DC), and L428 strongly stimulates in the mixed leucocyte reaction (MLR). We therefore undertook an extended immunophenotypic comparison of the HD lines with that recently defined for DC, prior to examining their ability to stimulate allogenic T lymphocytes, and comparing the molecular interactions involved with those of primary MLR stimulatory cells. The immunophenotype of the HD lines failed to establish either a lymphoid or monocytoid derivation. The profile of L428 appeared similar to the human DC. All three lines were potent stimulators in the primary MLR, and each expressed relevant adhesion and signal-transducing molecules important for co-stimulating T lymphocytes. Inhibition studies using monoclonal antibodies indicated similar contributions within HD line-T cell MLR to that documented in human tonsil DC-T cell MLR. The HD lines produced no detectable interleukin-1 (IL-1) by biological or immunological analysis. Moreover they stimulated allogeneic T lymphocytes in the presence of anti-IL-1 antibodies. Thus although IL-1 mRNA can be detected in both HDLM-2 and KM-H2 by polymerase chain reaction, these lines, and L428, share with DC the ability to stimulate allogeneic T lymphocytes in an IL-1-independent manner [corrected]. HD lines, particularly L428, may provide a standardized, reproducible, IL-1-independent model for dissection of the co-stimulatory requirements of the human primary MLR.

  11. Is parainfluenza virus a threatening virus for human cancer cell lines?

    PubMed

    Danjoh, Inaho; Sone, Hiyori; Noda, Nahomi; Iimura, Emi; Nagayoshi, Mariko; Saijo, Kaoru; Hiroyama, Takashi; Nakamura, Yukio

    2009-08-01

    Immortalized cell lines, such as human cancer cell lines, are an indispensable experimental resource for many types of biological and medical research. However, unless the cell line has been authenticated prior to use, interpretation of experimental results may be problematic. The potential problems this may cause are illustrated by studies in which authentication of cell lines has not been carried out. For example, immortalized cell lines may unknowingly be infected with viruses that alter their characteristics. In fact, parainfluenza virus type 5 (PIV5) poses a threat to the use of immortalized cell lines in biological and medical research; PIV5 infection significantly alters cellular physiology associated with the response to interferon. If PIV5 infection is widespread in immortalized cell lines, then a very large number of published studies might have to be re-evaluated. Fortunately, analyses of a large number of immortalized cell lines indicate that PIV5 infection is not widespread.

  12. Quantitative analysis of cell proliferation by a dye dilution assay: Application to cell lines and cocultures.

    PubMed

    Chung, Soobin; Kim, Seol-Hee; Seo, Yuri; Kim, Sook-Kyung; Lee, Ji Youn

    2017-04-04

    Cell proliferation represents one of the most fundamental processes in biological systems, thus the quantitative analysis of cell proliferation is important in many biological applications such as drug screening, production of biologics, and assessment of cytotoxicity. Conventional proliferation assays mainly quantify cell number based on a calibration curve of a homogeneous cell population, and therefore are not applicable for the analysis of cocultured cells. Moreover, these assays measure cell proliferation indirectly, based on cellular metabolic activity or DNA content. To overcome these shortcomings, a dye dilution assay employing fluorescent cell tracking dyes that are retained within cells was applied and was diluted proportionally by subsequent cell divisions. Here, it was demonstrated that this assay could be implemented to quantitatively analyze the cell proliferation of different types of cell lines, and to concurrently analyze the proliferation of two types of cell lines in coculture by utilizing cell tracking dyes with different spectral characteristics. The mean division time estimated by the dye dilution assay is compared with the population doubling time obtained from conventional methods and values from literature. Additionally, dye transfer between cocultured cells was investigated and it was found that it is a characteristic of the cells rather than a characteristic of the dye. It was suggested that this method can be easily combined with other flow cytometric analyses of cellular properties, providing valuable information on cell status under diverse conditions. © 2017 International Society for Advancement of Cytometry.

  13. Sourcing human embryos for embryonic stem cell lines: problems & perspectives.

    PubMed

    Mehta, Rajvi H

    2014-11-01

    The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been 'discarded' or 'spare' fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART) and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. in case a couple does not desire to 'cryopreserve' their embryos then all the embryos remaining following embryo transfer can be considered 'spare' or if a couple is no longer in need of the 'cryopreserved' embryos then these also can be considered as 'spare'. But, the question raised by the ethicists is, "what about 'slightly' over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to 'discarded' embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of 'discarding' embryos. What would be the criteria for discarding embryos and the potential 'use' of ESC derived from the 'abnormal appearing' embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  14. Establishment of Immortalized Human Erythroid Progenitor Cell Lines Able to Produce Enucleated Red Blood Cells

    PubMed Central

    Kurita, Ryo; Suda, Noriko; Sudo, Kazuhiro; Miharada, Kenichi; Hiroyama, Takashi; Miyoshi, Hiroyuki; Tani, Kenzaburo; Nakamura, Yukio

    2013-01-01

    Transfusion of red blood cells (RBCs) is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs. PMID:23533656

  15. Probiotic Lactobacillus fermentum UCO-979C biofilm formation on AGS and Caco-2 cells and Helicobacter pylori inhibition.

    PubMed

    Salas-Jara, M J; Sanhueza, E A; Retamal-Díaz, A; González, C; Urrutia, H; García, A

    2016-11-01

    The ability of the human isolate Lactobacillus fermentum UCO-979C to form biofilm and synthesize exopolysaccharide on abiotic and biotic models is described. These properties were compared with the well-known Lactobacillus casei Shirota to better understand their anti-Helicobacter pylori probiotic activities. The two strains of lactobacilli synthesized exopolysaccharide as detected by the Dubois method and formed biofilm on abiotic and biotic surfaces visualized by crystal violet staining and scanning electron microscopy. Concomitantly, these strains inhibited H. pylori urease activity by up to 80.4% (strain UCO-979C) and 66.8% (strain Shirota) in gastric adenocarcinoma (AGS) cells, but the two species showed equal levels of inhibition (~84%) in colorectal adenocarcinoma (Caco-2) cells. The results suggest that L. fermentum UCO-979C has probiotic potential against H. pylori infections. However, further analyses are needed to explain the increased activity observed against the pathogen in AGS cells as compared to L. casei Shirota.

  16. The cell surface protein Ag43 facilitates phage infection of Escherichia coli in the presence of bile salts and carbohydrates.

    PubMed

    Gabig, Magdalena; Herman-Antosiewicz, Anna; Kwiatkowska, Marta; Los, Marcin; Thomas, Mark S; Wegrzyn, Grzegorz

    2002-05-01

    It was found that infection of Escherichia coli by bacteriophage lambda is inhibited in the presence of certain bile salts and carbohydrates when cells are in the "OFF" state for production of the phase-variable cell surface protein antigen 43 (Ag43). The inhibition of phage growth was found to be due to a significant impairment in the process of phage adsorption. Expression of the gene encoding Ag43 (agn43) from a plasmid or inactivation of the oxyR gene (encoding an activator of genes important for defence against oxidative stress) suppressed this inhibition. A mutation, rpoA341, in the gene encoding the alpha subunit of RNA polymerase also facilitated phage adsorption in the presence of bile salts and carbohydrates. The rpoA341 mutation promoted efficient production of Ag43 in a genetic background that would otherwise be in the "OFF" phase for expression of the agn43 gene. Analysis of a reporter gene fusion demonstrated that the promoter for the agn43 gene was more active in the rpoA341 mutant than in the otherwise isogenic rpoA(+) strain. The combined inhibitory action of bile salts and carbohydrates on phage adsorption and the abolition of this inhibition by production of Ag43 was not restricted to lambda, as a similar phenomenon was observed for the coliphages P1 and T4.

  17. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines.

    PubMed

    Arndt, Nadia X; Tiralongo, Joe; Madge, Paul D; von Itzstein, Mark; Day, Christopher J

    2011-09-01

    Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.

  18. Porcine Endogenous Retrovirus Infects but Does Not Replicate in Nonhuman Primate Primary Cells and Cell Lines

    PubMed Central

    Ritzhaupt, Armin; van der Laan, Luc J. W.; Salomon, Daniel R.; Wilson, Carolyn A.

    2002-01-01

    Porcine endogenous retroviruses (PERV) can infect human cell lines in vitro; hence, there is a presumed risk of viral exposure to a recipient when pig cells are transplanted into humans (xenotransplantation). Nonhuman primates (NHP) are considered a potential permissive animal model to study the risk of in vivo infection of PERV after xenotransplantation. We set out to determine whether PERV can infect and replicate in NHP primary cells or established cell lines from African green monkey, rhesus macaque, and baboon. We confirm that the NHP cell lines under investigation were infected with PERV as measured by detection of viral DNA and RNA by PCR and reverse transcription (RT)-PCR, respectively, indicating that a functional receptor must be present on the cell surface. However, the load of detectable viral DNA in infected NHP cells declined over time, and the cells never had detectable reverse transcriptase activity. Utilizing quantitative real-time TaqMan PCR we found detectable levels of unintegrated DNA intermediates, but the levels were approximately 100-fold lower compared to HEK 293 cells infected with PERV. Virions released from infected NHP cells could productively infect naïve human cell lines, HEK 293 and HeLa, as shown by RT-PCR and RT assay. However, naïve NHP cells remained negative in RT-PCR and RT assay after exposure to virions from infected NHP cells. Together our data demonstrate that NHP cells are not permissive to productive replication by PERV, presumably due to inefficient cell entry and replication. In light of these observations, the appropriateness of NHP as suitable animal models to study PERV infection in vivo needs to be reevaluated. PMID:12388691

  19. Tumorigenic potential of mononucleated small cells of Hodgkin lymphoma cell lines.

    PubMed

    Ikeda, Jun-ichiro; Mamat, Suhana; Tian, Tian; Wang, Yi; Rahadiani, Nur; Aozasa, Katsuyuki; Morii, Eiichi

    2010-12-01

    Tumor cells with tumorigenic potential are limited to a small cell population known as cancer stem cells (CSCs). CSCs yield both CSCs and non-CSCs, whereas non-CSCs do not yield CSCs. CSCs have not been identified in any malignant lymphomas. Hodgkin lymphoma (HL) is a mostly B-cell neoplasm that can be diagnosed by the presence of multinucleated (Reed-Sternberg; RS) cells admixed with Hodgkin cells with distinct nucleoli and various inflammatory cells. Here, the tumorigenic potential of cells with a single nucleus (S) and cells with multiple nuclei (M), which may be equivalent to Hodgkin and RS cells, respectively, was examined in HL cell lines L1236 and L428. Cultures of single S cells yielded both S and M cells, whereas M cell cultures yielded only M cells. When either cultured in methylcellulose or inoculated into NOD/SCID mice, the colony number and tumor size were both larger in S than in M cells. Concentrations of intracellular reactive oxygen species (ROS) were at low levels in a portion of S cells that abundantly expressed FoxO3a, a transcription factor that regulates ROS-degrading enzymes. In clinical samples of HL, FoxO3a was expressed in mononuclear Hodgkin cells but not in multinucleated RS cells. These findings suggest that smaller cells or Hodgkin cells that show low-ROS concentrations and high FoxO3a expression levels might be candidates for HL CSCs.

  20. Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in organic solar cells.

    PubMed

    Liu, Xinfeng; Wu, Bo; Zhang, Qing; Yip, Jing Ngei; Yu, Guannan; Xiong, Qihua; Mathews, Nripan; Sum, Tze Chien

    2014-10-28

    The origins of performance enhancement in hybrid plasmonic organic photovoltaic devices are often embroiled in a complex interaction of light scattering, localized surface plasmon resonances, exciton-plasmon energy transfer and even nonplasmonic effects. To clearly deconvolve the plasmonic contributions from a single nanostructure, we herein investigate the influence of a single silver nanowire (NW) on the charge carriers in bulk heterojunction polymer solar cells using spatially resolved optical spectroscopy, and correlate to electrical device characterization. Polarization-dependent photocurrent enhancements with a maximum of ∼ 36% over the reference are observed when the transverse mode of the plasmonic excitations in the Ag NW is activated. The ensuing higher absorbance and light scattering induced by the electronic motion perpendicular to the NW long axis lead to increased exciton and polaron densities instead of direct surface plasmon-exciton energy transfer. Finite-difference time-domain simulations also validate these findings. Importantly, our study at the single nanostructure level explores the fundamental limits of plasmonic enhancement achievable in organic solar cells with a single plasmonic nanostructure.

  1. Inhibition of {beta}-catenin-mediated transactivation by flavanone in AGS gastric cancer cells

    SciTech Connect

    Park, Chi Hoon; Hahm, Eun Ryeong; Lee, Ju Hyung; Jung, Kyung Chae; Yang, Chul Hak . E-mail: chulyang@plaza.snu.ac.kr

    2005-06-17

    Recently, data which prove that Wnt pathway activation may be an early event in multistep carcinogenesis in the stomach have been accumulating. We examined the effect of flavanone against {beta}-catenin/Tcf signaling in AGS gastric cancer cells. Reporter gene assay showed that flavanone inhibited {beta}-catenin/Tcf signaling efficiently. In addition, the inhibition of {beta}-catenin/Tcf signaling by flavanone in HEK293 cells transiently transfected with constitutively mutant {beta}-catenin gene, whose product is not phosphorylated by GSK3{beta}, indicates that its inhibitory mechanism was related to {beta}-catenin itself or downstream components. To investigate the precise inhibitory mechanism, we performed immunofluorescence, Western blot, and EMSA. As a result, our data revealed that there is no change of {beta}-catenin distribution and of nuclear {beta}-catenin levels through flavanone. In addition, the binding of Tcf complexes to DNA is not influenced by flavanone. The {beta}-catenin/Tcf transcriptional target gene cyclinD1 was downregulated by flavanone. These data suggest that flavanone inhibits the transcription of {beta}-catenin/Tcf responsive genes, by modulating Tcf activity without disrupting {beta}-catenin/Tcf complex formation.

  2. Aldehyde dehydrogenase activity in cancer stem cells from canine mammary carcinoma cell lines.

    PubMed

    Michishita, M; Akiyoshi, R; Suemizu, H; Nakagawa, T; Sasaki, N; Takemitsu, H; Arai, T; Takahashi, K

    2012-08-01

    Increasing evidence suggests that diverse solid tumours arise from a small population of cells known as cancer stem cells or tumour-initiating cells. Cancer stem cells in several solid tumours are enriched for aldehyde dehydrogenase (ALDH) activity. High levels of ALDH activity (ALDH(high)) were detected in four cell lines derived from canine mammary carcinomas. ALDH(high) cells were enriched in a CD44(+)CD24(-) population having self-renewal capacity. Xenotransplantation into immunodeficient mice demonstrated that 1×10(4) ALDH(high) cells were sufficient for tumour formation in all injected mice, whereas 1×10(4) ALDH(low) cells failed to initiate any tumours. ALDH(high)-derived tumours contained both ALDH(+) and ALDH(-) cells, indicating that these cells had cancer stem cell-like properties.

  3. Edwardsiella tarda invasion of fish cell lines and the activation of divergent cell death pathways.

    PubMed

    Wang, Bin; Yu, Tong; Dong, Xue; Zhang, Zenghu; Song, Lin; Xu, Ying; Zhang, Xiao-Hua

    2013-05-03

    Edwardsiella tarda is an important gram-negative intracellular pathogen of fish. However, the invasive features of E. tarda to fish cells and the pathogenesis of host cell death have not been thoroughly investigated. In this study, two fish cell models were used to investigate the interactions between E. tarda and its cellular hosts. E. tarda invaded and replicated in both cell lines. Epithelioma papulosum cyprini (EPC) cells were more sensitive to E. tarda infection than the flounder gill cell line FG-9307, with higher levels of intracellular bacteria in the former. The invasion and intracellular replication of E. tarda in FG-9307 cells were studied at the ultrastructural level, and infected cells with large amounts of replicated bacteria and destroyed organelles were observed. Apoptosis was observed in EPC cells upon infection, characterized by the occurrence of apoptotic bodies, DNA ladder, increased Annexin V binding and the activation of caspase-3, whereas E. tarda infected FG-9307 cells were negative for all of those features. E. tarda infection in FG-9307 cells failed to protect the staurosporine-induced apoptosis. Moreover, both intrinsic and extrinsic pathways were activated in EPC cells upon E. tarda infection. The present study revealed that E. tarda interacts with fish cells in different manners, and divergent pathways were activated in these cellular hosts to mediate cell death. These results provided new information on the interactions between E. tarda and fish cells.

  4. Effects of oxalate on IMCD cells: a line of mouse inner medullary collecting duct cells.

    PubMed

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Chandhoke, Paramjit S; Koul, Hari K

    2004-12-01

    Oxalate, a metabolic end product and a major constituent of the majority of renal stones, has been shown to be toxic to renal epithelial cells of cortical origin. However, it is unknown whether inner medullary collecting duct (IMCD) cells that are physiologically exposed to higher concentrations of oxalate also behave in a similar manner. In the present study, we examined the effects of oxalate on IMCD cells. IMCD cells from the mouse were maintained in DMEM/F12 media supplemented with fetal bovine serum and antibiotics. Exposure of IMCD cells to oxalate produced time- and concentration-dependent changes in the light microscopic appearance of the cells. Long-term exposure to oxalate resulted in alterations in cell viability, with net cell loss after exposure to concentrations of 2 mM or greater. The production of free radicals was directly related to the exposure time and the concentration of oxalate. Crystal formation occurred in less than 1 h and cells in proximity to crystals would lose membrane integrity. Compared with IMCD cells, LLC-PK1 cells as well as HK-2 cells showed significant toxicity starting at lower oxalate concentrations (0.4 mM or greater). These results provide the first direct demonstration of toxic effects of oxalate in IMCD cells, a line of renal epithelial cells of the inner medullary collecting duct, and suggest that the cells lining the collecting duct are relatively resistant to oxalate toxicity.

  5. Highly tumorigenic hepatocellular carcinoma cell line with cancer stem cell-like properties

    PubMed Central

    Cassim, Shamir; Lapierre, Pascal; Bilodeau, Marc

    2017-01-01

    There are limited numbers of models to study hepatocellular carcinoma (HCC) in vivo in immunocompetent hosts. In an effort to develop a cell line with improved tumorigenicity, we derived a new cell line from Hepa1-6 cells through an in vivo passage in C57BL/6 mice. The resulting Dt81Hepa1-6 cell line showed enhanced tumorigenicity compared to Hepa1-6 with more frequent (28±12 vs. 0±0 lesions at 21 days) and more rapid tumor development (21 (100%) vs. 70 days (10%)) in C57BL/6 mice. The minimal Dt81Hepa1-6 cell number required to obtain visible tumors was 100,000 cells. The Dt81Hepa1-6 cell line showed high hepatotropism with subcutaneous injection leading to liver tumors without development of tumors in lungs or spleen. In vitro, Dt81Hepa1-6 cells showed increased anchorage-independent growth (34.7±6.8 vs. 12.3±3.3 colonies; P<0.05) and increased EpCAM (8.7±1.1 folds; P<0.01) and β-catenin (5.4±1.0 folds; P<0.01) expression. A significant proportion of Dt81Hepa1-6 cells expressed EpCAM compared to Hepa1-6 (34.8±1.1% vs 0.9±0.13%; P<0.001). Enriched EpCAM+ Dt81Hepa1-6 cells led to higher tumor load than EpCAM- Dt81Hepa1-6 cells (1093±74 vs 473±100 tumors; P<0.01). The in vivo selected Dt81Hepa1-6 cell line shows high liver specificity and increased tumorigenicity compared to Hepa1-6 cells. These properties are associated with increased expression of EpCAM and β-catenin confirming that EpCAM+ HCC cells comprise a subset with characteristics of tumor-initiating cells with stem/progenitor cell features. The Dt81Hepa1-6 cell line with its cancer stem cell-like properties will be a useful tool for the study of hepatocellular carcinoma in vivo. PMID:28152020

  6. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A...

  7. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A...

  8. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A...

  9. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A...

  10. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A...

  11. Response of a mouse hybridoma cell line to heat shock, agitation, and sparging

    NASA Technical Reports Server (NTRS)

    Passini, Cheryl A.; Goochee, Charles F.

    1989-01-01

    A mouse hybridoma cell line is used as a model system for studying the effect of environmental stress on attachment-independent mammalian cells. The full time course of recovery for a mouse hybridoma cell line from both a mild and intermediate heat shock is examined. The pattern of intracellular synthesis is compared for actively growing, log phase cells and nondividing, stationary phase cells.

  12. Increased transversions in a novel mutator colon cancer cell line.

    PubMed

    Eshleman, J R; Donover, P S; Littman, S J; Swinler, S E; Li, G M; Lutterbaugh, J D; Willson, J K; Modrich, P; Sedwick, W D; Markowitz, S D; Veigl, M L

    1998-03-05

    We describe a novel mutator phenotype in the Vaco411 colon cancer cell line which increases the spontaneous mutation rate 10-100-fold over background. This mutator results primarily in transversion base substitutions which are found infrequently in repair competent cells. Of the four possible types of transversions, only three were principally recovered. Spontaneous mutations recovered also included transitions and large deletions, but very few frameshifts were recovered. When compared to known mismatch repair defective colon cancer mutators, the distribution of mutations in Vaco411 is significantly different. Consistent with this difference, Vaco411 extracts are proficient in assays of mismatch repair. The Vaco411 mutator appears to be novel, and is not an obvious human homologue of any of the previously characterized bacterial or yeast transversion phenotypes. Several hypotheses by which this mutator may produce transversions are presented.

  13. Control of Differentiation of a Mammary Cell Line by Lipids

    NASA Astrophysics Data System (ADS)

    Dulbecco, Renato; Bologna, Mauro; Unger, Michael

    1980-03-01

    A rat mammary cell line (LA7) undergoes spontaneous differentiation into domes due to production of specific inducers by the cells. Some of these inducers may be lipids, and we show that lipids regulate this differentiation as both inducers and inhibitors. One inhibitor is the tumor promoter tetradecanoyl-13 phorbol 12-acetate. The inducers are saturated fatty acids of two groups: butyric acid and acids with chain lengths from C13 to C16, especially myristic acid (C14). Other inducers are myristoyl and palmitoyl lysolecithins, myristic acid methyl ester, and two cationic detergents with a tetradecenyl chain. We propose that the lipids with a C14-C16 alkyl chain affect differentiation by recognizing specific receptors through their alkyl chains and that the effects obtained depend on the head groups. These lipids may be physiological regulators in the mammary gland.

  14. Real-Space Microscopic Electrical Imaging of n+-p Junction Beneath Front-Side Ag Contact of Multicrystalline Si Solar Cells

    SciTech Connect

    Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

    2012-04-15

    We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.

  15. Cytotoxic effects of mistletoe (Viscum album L.) in head and neck squamous cell carcinoma cell lines.

    PubMed

    Klingbeil, Ma Fátima G; Xavier, Flávia C A; Sardinha, Luiz R; Severino, Patricia; Mathor, Monica B; Rodrigues, Rodrigo V; Pinto, Décio S

    2013-11-01

    Head and neck squamous cell carcinoma is a complex disease with several etiologic factors and different molecular changes that may trigger certain events; it is also globally one of the most common malignancies in this topography. Extracts from Viscum album L. (VA) (mistletoe) have been used as adjuvant therapies with promising results in several types of cancer, mainly in European countries. In vitro studies have demonstrated that various types of VA may have cytotoxicity in carcinoma cells, activating the apoptotic cascade or leading cells to necrosis. This study aimed to verify the effects of three types of VA extracts (Iscador Qu Spezial, Iscador P and Iscador M) in squamous cell carcinoma of the tongue cell lines SCC9 and SCC25, not previously studied. A concentration of 0.3 mg/ml (IC50) of the drugs induced apoptosis, affecting gene expression and protein levels of AKT, PTEN and CYCLIN D1. It was concluded that VA extracts have a cytotoxic effect on SCC9 and SCC25 cell lines, but while SCC9 cell line was more resistant to the action of the drugs, Iscador Qu Spezial and Iscador M have higher cytotoxic potential in both cell lines compared to Iscador P.

  16. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    PubMed

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  17. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    SciTech Connect

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  18. AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis

    SciTech Connect

    Li, Chang-hong; Zhao, Jin-xia; Sun, Lin; Yao, Zhong-qiang; Deng, Xiao-li; Liu, Rui; Liu, Xiang-yuan

    2013-06-14

    Highlights: •AG490 inhibits RANKL-induced osteoclastogenesis in RAW264.7 cells. •AG490 affects cell proliferation and cell cycle distribution. •AG490 reduces NFATc1 expression during RANKL-induced osteoclastogenesis. •AG490 disrupts the activation of RANKL-mediated JAK2/STAT3 signaling pathway. •STAT3 depletion partly mimics the effect of AG490 on RANKL-induced osteoclastogenesis. -- Abstract: Commonly, JAK/STAT relays cytokine signals for cell activation and proliferation, and recent studies have shown that the elevated expression of JAK/STAT is associated with the immune rejection of allografts and the inflammatory processes of autoimmune disease. However, the role which JAK2/STAT3 signaling plays in the receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis is unknown. In this study, we investigated the effects of AG490, specific JAK2 inhibitor, on osteoclast differentiation in vitro. AG490 significantly inhibited osteoclastogenesis in murine osteoclast precursor cell line RAW264.7 induced by RANKL. AG490 suppressed cell proliferation and delayed the G1 to S cell cycle transition. Furthermore, AG490 also suppressed the expression of nuclear factor of activated T cells (NFAT) c1 but not c-Fos in RAW264.7. Subsequently, we investigated various intracellular signaling components associated with osteoclastogenesis. AG490 had no effects on RANKL-induced activation of Akt, ERK1/2. Interestingly, AG490 partly inhibited RANKL-induced phosphorylation of Ser{sup 727} in STAT3. Additionally, down-regulation of STAT3 using siRNA resulted in suppression of TRAP, RANK and NFATc1 expression. In conclusion, we demonstrated that AG490 inhibited RANKL-induced osteoclastogenesis by suppressing NFATc1 production and cell proliferation via the STAT3 pathway. These results suggest that inhibition of JAK2 may be useful for the treatment of bone diseases characterized by excessive osteoclastogenesis.

  19. Duck lymphocytes. VIII. T-lymphoblastoid cell lines from reticuloendotheliosis virus-induced tumours.

    PubMed

    Chan, S W; Bando, Y; Warr, G W; Middleton, D L; Higgins, D A

    1999-04-01

    The T strain of reticuloendotheliosis virus (REV-T) obtained, along with the helper chicken syncytia virus (CSV), from the CSO4 cell line was highly oncogenic and rapidly fatal in ducks. Tumours were mainly seen in spleen, but neoplastic cells were observed microscopically in many organs. In vitro REV transformation of duck lymphocytes failed to yield stable cell lines, so cells from organs (blood, bone marrow, spleen, lymph node, bursa of Fabricius) of infected birds were used to establish cell lines. Some of these cell lines have been cloned. The success rates of establishment and cloning were increased if cells were cultured in a range of media containing different supplements; however, medium containing 5% foetal calf serum (FCS) and 5% duck serum was generally most efficacious for initial establishment, while spent medium from the parental line supplemented with a further 20% FCS gave best results for cloning. Cloned cell lines had the morphology of lymphoblastoid cells, with irregular nuclei and diffuse chromatin. Analysis of mRNA extracted from these cell lines showed that the uncloned lines were strongly expressing the β chain of the T cell antigen receptor (TCR) and weakly expressing immunoglobulin (Ig) polypeptides [λ light chain and μ, υ, υ (ΔFc) and α heavy chains in various proportions], suggesting the presence of T and B cells. The cloned cell lines that could be classified were TCR β+ ve T cells. This is the first report of the establishment, cloning and partial characterization of duck lymphoblastoid cell lines.

  20. Two-photon AgNP/DNA-TP dye nanosensing conjugate for biothiol probing in live cells.

    PubMed

    Liu, Mingli; Tang, Qiao; Deng, Ting; Yan, Huijuan; Li, Jishan; Li, Yinhui; Yang, Ronghua

    2014-12-07

    A novel silver nanoparticle (AgNP)/DNA-two-photon dye (TP dye) conjugate was fabricated as a two-photon nanoprobe for biothiol imaging in live cells. DNA-templated silver nanoparticles are efficient quenchers and also provide a biocompatible nanoplatform for facile delivery of DNA into living cells. In the presence of biothiols (Cys, Hcy, or GSH), the strong interaction between the thiol group and silver results in the release of TP dye-labeled single-stranded DNA (ssDNA) from the AgNP surface and the subsequent fluorescence emission of the TP dye, thus enabling biothiols to be assayed. Our results reveal that the AgNP/DNA-TP dye nanosensing conjugate not only is a robust, sensitive, and selective sensor for quantitative detection of biothiols in the complex biological environment but also can be efficiently delivered into live cells and act as a "signal-on" sensor for specific, high-contrast imaging of target biomolecules. Our design provides a methodology for the development of future DNA-templated silver nanoparticle-based two-photon fluorescent probes for use in vitro or in vivo as biomolecular sensors for live-cell imaging.

  1. Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research

    PubMed Central

    Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.

    2010-01-01

    Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594

  2. Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines.

    PubMed

    Ho, Yi-Chien; Liu, Chi-Hsien; Chen, Chien-Nan; Duan, Kow-Jen; Lin, Ming-Tse

    2008-11-01

    Xanthohumol is one of the main flavonoids in hop extracts and in beer. Very few investigations of xanthohumol have studied hepatocellular carcinoma. In this study, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were investigated. The IC(50) values of xanthohumol for two hepatocellular carcinoma cell lines and one normal hepatocyte cell line were 108, 166 and 211 microm, respectively. Normal murine hepatocyte cell line had more resistance to xanthohumol than hepatocellular carcinoma cell lines. Besides, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were attributed to apoptosis as indicated in the results of flow cytometry, fluorescent nuclear staining and electrophoresis of oligonucleosomal DNA fragments. Hop xanthohumol was more efficient in the growth inhibition of hepatocellular carcinoma cell lines than the flavonoids silibinin and naringin from thistle and citrus. It was shown for the first time that xanthohumol from hops effectively inhibits proliferation of human hepatocellular carcinoma cells in vitro.

  3. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines.

    PubMed

    Araújo, João R; Gonçalves, Pedro; Martel, Fátima

    2011-02-01

    Colorectal cancer (CRC) is the second most fatal and the third most diagnosed type of cancer worldwide. Despite having multifactorial causes, most CRC cases are mainly determined by dietary factors. In recent years, a large number of studies have attributed a protective effect to polyphenols and foods containing these compounds (fruits and vegetables) against CRC. Indeed, polyphenols have been reported to interfere with cancer initiation, promotion, and progression, acting as chemopreventive agents. The aim of this review is to summarize the main chemopreventive properties of some polyphenols (quercetin, rutin, myricetin, chrysin, epigallocatechin-3-gallate, epicatechin, catechin, resveratrol, and xanthohumol) against CRC, observed in cell culture models. From the data reviewed in this article, it can be concluded that these compounds inhibit cell growth, by inducing cell cycle arrest and/or apoptosis; inhibit proliferation, angiogenesis, and/or metastasis; and exhibit anti-inflammatory and/or antioxidant effects. In turn, these effects involve multiple molecular and biochemical mechanisms of action, which are still not completely characterized. Thus, caution is mandatory when attempting to extrapolate the observations obtained in CRC cell line studies to humans.

  4. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.

    PubMed

    Kumar, P Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-04-21

    A novel photoanode architecture with plasmonic silver (Ag) nanostructures embedded in titania (TiO2), which served as the wide band gap semiconducting support and CdS quantum dots (QDs), as light absorbers, is presented. Ag nanostructures were prepared by a polyol method and are comprised of clumps of nanorods, 15-35 nm wide, interspersed with globular nanoparticles and they were characterized by a face centered cubic lattice. Optimization of Ag nanostructures was achieved on the basis of a superior power conversion efficiency (PCE) obtained for the cell with a Ag/TiO2/CdS electrode encompassing a mixed morphology of Ag nano-rods and particles, relative to analogous cells with either Ag nanoparticles or Ag nanorods. Interfacial charge transfer kinetics was unraveled by fluorescence quenching and lifetime studies. Ag nanostructures improve the light harvesting ability of the TiO2/CdS photoanode via (a) plasmonic and scattering effects, which induce both near- and far-field enhancements which translate to higher photocurrent densities and (b) charging effects, whereby, photoexcited electron transfer from TiO2 to Ag is facilitated by Fermi level equilibration. Owing to the spectacular ability of Ag nanostructures to increase light absorption, a greatly increased PCE of 4.27% and a maximum external quantum efficiency of 55% (at 440 nm) was achieved for the cell based on Ag/TiO2/CdS, greater by 42 and 66%, respectively, compared to the TiO2/CdS based cell. In addition, the liquid S(2-) electrolyte was replaced by a S(2-) gel containing fumed silica, and the redox potential, conductivity and p-type conduction of the two were deduced to be comparable. Although the gel based cells showed diminished solar cell performances compared to their liquid counterparts, nonetheless, the Ag/TiO2/CdS electrode continued to outperform the TiO2/CdS electrode. Our studies demonstrate that Ag nanostructures effectively capture a significant chunk of the electromagnetic spectrum and aid QD

  5. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    PubMed Central

    Turk, Seyhan; Malkan, Umit Yavuz; Ghasemi, Mehdi; Hocaoglu, Helin; Mutlu, Duygu; Gunes, Gursel; Aksu, Salih; Haznedaroglu, Ibrahim Celalettin

    2017-01-01

    Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells. PMID:28293423

  6. Characterization of a mantle cell lymphoma cell line resistant to the Chk1 inhibitor PF-00477736.

    PubMed

    Restelli, Valentina; Chilà, Rosaria; Lupi, Monica; Rinaldi, Andrea; Kwee, Ivo; Bertoni, Francesco; Damia, Giovanna; Carrassa, Laura

    2015-11-10

    Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the chromosomal translocation t(11;14) that leads to constitutive expression of cyclin D1, a master regulator of the G1-S phase. Chk1 inhibitors have been recently shown to be strongly effective as single agents in MCL. To investigate molecular mechanisms at the basis of Chk1 inhibitor activity, a MCL cell line resistant to the Chk1 inhibitor PF-00477736 (JEKO-1 R) was obtained and characterized. The JEKO-1 R cell line was cross resistant to another Chk1 inhibitor (AZD-7762) and to the Wee1 inhibitor MK-1775. It displayed a shorter doubling time than parental cell line, likely due to a faster S phase. Cyclin D1 expression levels were decreased in resistant cell line and its re-overexpression partially re-established PF-00477736 sensitivity. Gene expression profiling showed an enrichment in gene sets involved in pro-survival pathways in JEKO-1 R. Dasatinib treatment partly restored PF-00477736 sensitivity in resistant cells suggesting that the pharmacological interference of pro-survival pathways can overcome the resistance to Chk1 inhibitors. These data further corroborate the involvement of the t(11;14) in cellular sensitivity to Chk1 inhibitors, fostering the clinical testing of Chk1 inhibitors as single agents in MCL.

  7. In vitro cell-toxicity of Peganum harmala alkaloids on cancerous cell-lines.

    PubMed

    Lamchouri, F; Settaf, A; Cherrah, Y; Hassar, M; Zemzami, M; Atif, N; Nadori, E B; Zaid, A; Lyoussi, B

    2000-02-01

    The alkaloidic fraction of the methanol extract of Peganum harmala seeds was tested in vitro on three tumoral cell-lines: UCP-Med and Med-mek carcinoma, and UCP-Med sarcoma. Proliferation was significantly reduced at all tested concentrations (20-120 micrograms/ml) during the first 24 h of contact. A cell lysis effect occurred after 24 h and increased thereafter to complete cell death within 48-72 h, depending on tested concentration.

  8. Investigation of Cross-Contamination and Misidentification of 278 Widely Used Tumor Cell Lines

    PubMed Central

    Huang, Yaqing; Liu, Yuehong; Zheng, Congyi; Shen, Chao

    2017-01-01

    In recent years, biological research involving human cell lines has been rapidly developing in China. However, some of the cell lines are not authenticated before use. Therefore, misidentified and/or cross-contaminated cell lines are unfortunately commonplace. In this study, we present a comprehensive investigation of cross-contamination and misidentification for a panel of 278 cell lines from 28 institutes in China by using short tandem repeat profiling method. By comparing the DNA profiles with the cell bank databases of ATCC and DSMZ, a total of 46.0% (128/278) cases with cross-contamination/misidentification were uncovered coming from 22 institutes. Notably, 73.2% (52 out of 71) of the cell lines established by the Chinese researchers were misidentified and accounted for 40.6% of total misidentification (52/128). Further, 67.3% (35/52) of the misidentified cell lines established in laboratories of China were HeLa cells or a possible hybrid of HeLa with another kind of cell line. Furthermore, the bile duct cancer cell line HCCC-9810 and degenerative lung cancer Calu-6 exhibited 88.9% match in the ATCC database (9-loci), indicating that they were from the same origin. However, when we used 21-loci to compare these two cell lines with the same algorithm, the percent match was only 48.2%, indicating that these two cell lines were different. The SNP profiles of HCCC-9810 and Calu-6 also revealed that they were different cell lines. 150 cell lines with unique profiles demonstrated a wide range of in vitro phenotypes. This panel of 150 genomically validated cancer cell lines represents a valuable resource for the cancer research community and will advance our understanding of the disease by providing a standard reference for cell lines that can be used for biological as well as preclinical studies. PMID:28107433

  9. Killing of human myelomonocytic leukemia and lymphocytic cell lines by Actinobacillus actinomycetemcomitans leukotoxin.

    PubMed Central

    Simpson, D L; Berthold, P; Taichman, N S

    1988-01-01

    The purified leukotoxin of Actinobacillus actinomycetemcomitans kills human leukemic cell lines (e.g., HL-60, U937, and KG-1) and human T- and B-cell lines (e.g., JURKAT, MOLT-4, Daudi, and Raji) in a dose- and time-dependent manner. The 50% effective doses for these cell lines are similar to those established for human polymorphonuclear leukocytes and monocytes. In contrast, other human and nonhuman tumor cell lines are not susceptible to the leukotoxin. These human leukemia and lymphoid cell lines will serve as useful model systems with which to study the molecular specificity and mechanism(s) of action of the actinobacillus leukotoxin. Images PMID:3258584

  10. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells.

    PubMed

    Hu, Hongwei; Ding, Jianning; Zhang, Shuai; Li, Yan; Bai, Li; Yuan, Ningyi

    2013-01-03

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV-vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2.

  11. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells

    PubMed Central

    2013-01-01

    Ag2S quantum dots were deposited on the surface of TiO2 nanorod arrays by a two-step photodeposition. The prepared TiO2 nanorod arrays as well as the Ag2S deposited electrodes were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope, suggesting a large coverage of Ag2S quantum dots on the ordered TiO2 nanorod arrays. UV–vis absorption spectra of Ag2S deposited electrodes show a broad absorption range of the visible light. The quantum dot-sensitized solar cells (QDSSCs) based on these electrodes were fabricated, and the photoelectrochemical properties were examined. A high photocurrent density of 10.25 mA/cm2 with a conversion efficiency of 0.98% at AM 1.5 solar light of 100 mW/cm2 was obtained with an optimal photodeposition time. The performance of the QDSSC at different incident light intensities was also investigated. The results display a better performance at a lower incident light level with a conversion efficiency of 1.25% at 47 mW/cm2. PMID:23286551

  12. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

    PubMed Central

    Fernández-Araujo, Andrea; Sánchez, Jon A.; Alfonso, Amparo; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed. PMID:26136685

  13. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines.

    PubMed

    Fernández-Araujo, Andrea; Sánchez, Jon A; Alfonso, Amparo; Vieytes, Mercedes R; Botana, Luis M

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed.

  14. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    SciTech Connect

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw . E-mail: jdastych@cbm.pan.pl

    2005-09-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals.

  15. Inflammatory responses of a human keratinocyte cell line to 10 nm citrate- and PEG-coated silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bastos, V.; Brown, D.; Johnston, H.; Daniel-da-Silva, A. L.; Duarte, I. F.; Santos, C.; Oliveira, H.

    2016-07-01

    Silver nanoparticles (AgNPs) are among the most commonly used engineered NPs and various commercially available products are designed to come in direct contact with the skin (wound dressings, textiles, creams, among others). Currently, there is limited understanding of the influence of coatings on the toxicity of AgNPs and in particular their ability to impact on AgNP's mediated inflammatory responses. As AgNPs are often stabilized by different coatings, including citrate and polyethyleneglycol (PEG), in this study we investigate the influence of citrate (Cit10) or PEG (PEG10) coatings to 10 nm AgNP on skin, using human HaCaT keratinocytes. AgNPs cytotoxicity and inflammatory response (nuclear factor (NF)-κB induction and cytokine production) of HaCaT were assessed after in vitro exposure to 10 and 40 µg/mL after 4, 24, and 48 h. Results showed that although both types of coated AgNPs decreased cell proliferation and viability, Cit10 AgNPs were more toxic. NF-κB inhibition was observed for the highest concentration (40 µg/mL) of PEG10 AgNPs, and the putative link to early apoptotic pathways observed in these cells is discussed. No production of IL-1β, IL-6, IL-10, and TNFα was stimulated by AgNPs. Furthermore, Cit10 and PEG10 AgNPs decreased the release of MCP-1 by HaCaT cells after 48 h of exposure. As cytokines are vital for the immunologic regulation in the human body, and it is demonstrated that they may interfere with NPs, more research is needed to understand how different AgNPs affect the immune system.

  16. The Cancer-Related Transcription Factor Runx2 Modulates Cell Proliferation in Human Osteosarcoma Cell Lines

    PubMed Central

    Lucero, Claudia M.J.; Vega, Oscar A.; Osorio, Mariana M.; Tapia, Julio C.; Antonelli, Marcelo; Stein, Gary S.; Van Wijnen, Andre J.; Galindo, Mario A.

    2013-01-01

    Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre-osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up-regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle-regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre-established levels in a given cell type triggers one or more anti-proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. PMID:22949168

  17. Ag nanoparticles-anchored reduced graphene oxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li-O2 cells.

    PubMed

    Kumar, Surender; Selvaraj, C; Scanlon, L G; Munichandraiah, N

    2014-11-07

    Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag(+) ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O2 cells, these cells are assembled and characterized. Li-O2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O2 cells.

  18. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI).

    PubMed

    Sandberg, Rickard; Ernberg, Ingemar

    2005-02-08

    The gene expression profiles of 60 cell lines, derived from nine different tissues, were compared with their corresponding in vivo tumors and tissues. Cell lines expressed few tissue-specific (2%) or tumor-specific (5%) genes when analyzed group-wise. A tissue similarity index (TSI) was designed based upon singular value decomposition that measured in vivo tumor characteristic gene expression in each cell line independently. Only 34 of the 60 cell lines received the highest TSI toward its tumor of origin. In addition, we identified the most appropriate cell lines to be used as model systems for different in vivo tumors. Seven cell lines were identified as being of another origin than the originally presumed one. The proposed TSI will likely become an important tool for the selection of the most appropriate cell lines in pharmaceutical screening programs and experimental and biomedical research.

  19. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis

    PubMed Central

    Tian, J; Tang, Z Y; Ye, S L; Liu, Y K; Lin, Z Y; Chen, J; Xue, Q

    1999-01-01

    A new human hepatocellular carcinoma (HCC) cell line with a highly metastatic potential was established from subcutaneous xenograft of a metastatic model of human HCC in nude mice (LCI-D20) by means of alternating cell culture in vitro and growth in nude mice. The line, designated MHCC97, has been cultivated for 18 months and subcultured for more than 90 passages. The line was showed to be of human origin by karyotype analysis. The cells were either grown as compact colonies (in clusters) or as a monolayered sheet with about 31 h of population-doubling time, exhibited typical malignant epithelial in morphology and were positive for α-fetoprotein (AFP). Flow cytometric analysis of the cell DNA content showed an aneuploid pattern, and its index was 1.5 as compared to that of normal human peripheral blood lymphocytes. Karyotypic analyses of G- and C-banding techniques revealed that all cells presented chromosome abnormalities in number and structure. The number of cell line MHCC97 chromosome ranged from 59 to 65 with a modal number of 60 and 61. At least two common chromosome markers, i(1q) and der(4)t(4;?)(4pter→q35::?), were present in all cells, and deletion of Y chromosome also occurred in all cells. The subcutaneous and intrahepatic xenografts were formed and metastatic lesions in lungs were found after the cells were inoculated into nude mice. The rate of metastasis to lungs was 100% using orthotopic inoculation. Reverse transcription polymerase chain reaction products revealed positive expressions of integrin α5 and β1, urokinase type plasminogen activator receptor (uPAR), vascular endothelial growth factor and nm23-H1 mRNAs of cell line MHCC97. Immunostaining of c-Met, uPAR showed strongly positive in both subcutaneous xenografts and lung metastatic lesions; while positive in xenografts and negative in metastatic lesions for integrin α5, β1. E-cadherin and P53 was not expressed either in xenograft or in the metastatic lesions. PCR products of HBsAg and

  20. Sulphamoylated 2-Methoxyestradiol Analogues Induce Apoptosis in Adenocarcinoma Cell Lines

    PubMed Central

    Visagie, Michelle; Theron, Anne; Mqoco, Thandi; Vieira, Warren; Prudent, Renaud; Martinez, Anne; Lafanechère, Laurence; Joubert, Annie

    2013-01-01

    2-Methoxyestradiol (2ME2) is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1–25 μM) was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues. PMID:24039728

  1. Evaluation of the change in sphingolipids in the human multiple myeloma cell line U266 and gastric cancer cell line MGC-803 treated with arsenic trioxide.

    PubMed

    Zou, Jianhua; Ma, Xiaoqiong; Zhang, Guangji; Shen, Li; Zhou, Liting; Yu, Yu; Zhu, Fanfan; Chen, Zhe

    2015-11-01

    Arsenic trioxide (As2O3) has been found to display anticancer activity against many types of tumors and has been developed into an anticancer drug in clinical treatments. Sphingolipids are membrane lipids that participate in many signal transduction pathways. In this paper, the changes in sphingolipids of the human multiple myeloma cell line U266 and the gastric cancer cell line MGC-803 treated with arsenic trioxide were investigated using an HPLC-ESI-MS/MS method. Analytes were separated by an XBridge BEH C8 column used for Cer, HexCer, LacCer and SM chromatographic separation, and a Capcell PAK MG II C18 column was used for Sph, dhSph, S1P and dhS1P chromatographic separation and gradient elution with acetonitrile-water containing 0.1% formic acid as a mobile phase. A tandem mass spectrometer QTrap in SRM mode was employed in combination with RPLC as a detector for quantitative analysis. The ceramide/sphingolipid internal standard (IS) mixture was used to quantify the levels of sphingolipids. The distributions of sphingolipids were found to be different in the human multiple myeloma cell line U266 and the gastric cancer cell line MGC-803. Ceramide (Cer), hexosylceramide (HexCer) and dihexosylceramide (Hex2Cer) levels in U266 cell line are higher than those in MGC-803 cell line. Additionally, sphingomyelin (SM), sphingosine-1-phosphate (S1P) and sphinganine-1-phosphate (dhS1P) levels in the MGC-803 cell line are higher than those in the U266 cell line. When treated with arsenic trioxide (1-5μM iAs(III)(As(III) ions)), the levels of Hex2Cer in the human multiple myeloma cell line U266 decreased, and the levels of S1P and dhS1P in the human gastric cancer cell line MGC-803 decreased. The decrease of Hex2Cer, S1P and dhS1P in the human multiple myeloma cell line U266 and gastric cancer cell line MGC-803 were observed when the concentration of iAs(III) is 1.0μM. Therefore, arsenic trioxide exhibits anti-cancer activity by altering the sphingolipid pathway in the

  2. A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag-PAMAM-luminol nanocomposites.

    PubMed

    Wang, Yin-Zhu; Hao, Nan; Feng, Qiu-Mei; Shi, Hai-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-03-15

    In this work, a dual-signaling electrochemiluminescence (ECL) ratiometric sensing approach for the detection of HL-60 cancer cells was reported for the first time. G-C3N4 nanosheets and Ag-PAMAM-luminol nanocomposits (Ag-PAMAM-luminol NCs) were prepared and served as reductive-oxidative and oxidative-reductive ECL emitters respectively. DNA probe functionalized Ag-PAMAM-luminol NCs would hybridize with aptamers modified onto magnetic beads. In the presence of HL-60 cells, the aptamer would conjugate with the target cell and release Ag-PAMAM-luminol NCs. After magnetic separation, released Ag-PAMAM-luminol NCs would hybridize with capture DNA on g-C3N4 nanosheets. ECL from g-C3N4 nanosheets coated on ITO electrode at -1.25 V (vs SCE) could be quenched by Ag-PAMAM-luminol NCs due to the resonance energy transfer (RET) from g-C3N4 nanosheets to Ag NPs. Meanwhile, Ag-PAMAM-luminol brought the ECL signal of luminol at +0.45 V (vs SCE). Thus, the concentration of HL-60 cancer cells could be quantified by both the quenching of ECL from g-C3N4 nanosheets and the enhancement of ECL from luminol. By measuring the ratio of ECL intensities at two excitation potentials, this approach could achieve sensitive and reliable detection for cancer cells in a wide range from 200 cells/mL to 9000 cells/mL with the detection limit of 150 cells (S/N=3).

  3. An antimicrobial peptide with angiogenic properties, AG-30/5C, activates human mast cells through the MAPK and NF-κB pathways.

    PubMed

    Kanazawa, Kazo; Okumura, Ko; Ogawa, Hideoki; Niyonsaba, François

    2016-04-01

    Apart from their direct antimicrobial activities against invading pathogens, antimicrobial peptides exhibit additional protective functions that have led to their being named host defense peptides (HDPs). These functions include the stimulation of the production of cytokines/chemokines, the promotion of chemotaxis and cell proliferation and the induction of angiogenesis and wound healing. AG-30/5C is a novel angiogenic HDP that in addition to its antimicrobial activity also activates fibroblasts and endothelial cells and promotes angiogenesis and wound healing. Given that mast cells are found primarily in the vicinity of vessels, where they are intimately involved in wound healing, we hypothesized that AG-30/5C may activate mast cells. We demonstrated that AG-30/5C activated LAD2 human mast cells to degranulate and produce lipid mediators including leukotriene C4, prostaglandin D2 and E2. Moreover, AG-30/5C increased mast cell chemotaxis and induced the production of the cytokines GM-CSF and TNF-α and various chemokines, such as IL-8, MCP-1, MCP-3, MIP-1α and MIP-1β. The chemotaxis and cytokine/chemokine production induced by AG-30/5C were suppressed by both pertussis toxin and U-73122, suggesting the involvement of the G protein and phospholipase C pathways in AG-30/5C-induced mast cell activation. Furthermore, these pathways were activated downstream of the MAPK and NF-κB signaling molecules, as demonstrated by the inhibitory effects of ERK-, JNK-, p38- and NF-κB-specific inhibitors on cytokine/chemokine production. Interestingly, AG-30/5C caused the phosphorylation of MAPKs and IκB. We suggest that the angiogenic and antimicrobial peptide AG-30/5C plays a key role in the recruitment and activation of human mast cells at inflammation and wound sites.

  4. Development of improved vaccine cell lines against rotavirus

    PubMed Central

    Wu, Weilin; Orr-Burks, Nichole; Karpilow, Jon; Tripp, Ralph A.

    2017-01-01

    Rotavirus is a major cause of severe gastroenteritis among very young children. In developing countries, rotavirus is the major cause of mortality in children under five years old, causing up to 20% of all childhood deaths in countries with high diarrheal disease burden, with more than 90% of these deaths occurring in Africa and Asia. Rotavirus vaccination mimics the first infection without causing illness, thus inducing strong and broad heterotypic immunity against prospective rotavirus infections. Two live vaccines are available, Rotarix and RotaTeq, but vaccination efforts are hampered by high production costs. Here, we present a dataset containing a genome-wide RNA interference (RNAi) screen that identified silencing events that enhanced rotavirus replication. Evaluated against several rotavirus vaccine strains, hits were validated in a Vero vaccine cell line as well as CRISPR/Cas9 generated cells permanently and stably lacking the genes that affect RV replication. Knockout cells were dramatically more permissive to RV replication and permitted an increase in rotavirus replication. These data show a means to improve manufacturing of rotavirus vaccine. PMID:28248921

  5. Diverse Hormone Response Networks in 41 Independent Drosophila Cell Lines

    DOE PAGES

    Stoiber, Marcus; Celniker, Susan; Cherbas, Lucy; ...

    2016-01-15

    Steroid hormones induce cascades of gene activation and repression with transformative effects on cell fate . Steroid transduction plays a major role in the development and physiology of nearly all metazoan species, and in the progression of the most common forms of cancer. Despite the paramount importance of steroids in developmental and translational biology, a complete map of transcriptional response has not been developed for any hormone . In the case of 20-hydroxyecdysone (ecdysone) in Drosophila melanogaster, these trajectories range from apoptosis to immortalization. We mapped the ecdysone transduction network in a cohort of 41 cell lines, the largest suchmore » atlas yet assembled. We found that the early transcriptional response mirrors the distinctiveness of physiological origins: genes respond in restricted patterns, conditional on the expression levels of dozens of transcription factors. Only a small cohort of genes is constitutively modulated independent of initial cell state. Ecdysone-responsive genes tend to organize into directional same-stranded units, with consecutive genes induced from the same strand. Here, we identify half of the ecdysone receptor heterodimer as the primary rate-limiting step in the response, and find that initial receptor isoform levels modulate the activated cohort of target transcription factors. In conclusion, this atlas of steroid response reveals organizing principles of gene regulation by a model type II nuclear receptor and lays the foundation for comprehensive and predictive understanding of the ecdysone transduction network in the fruit fly.« less

  6. Diverse Hormone Response Networks in 41 Independent Drosophila Cell Lines

    SciTech Connect

    Stoiber, Marcus; Celniker, Susan; Cherbas, Lucy; Brown, Ben; Cherbas, Peter

    2016-01-15

    Steroid hormones induce cascades of gene activation and repression with transformative effects on cell fate . Steroid transduction plays a major role in the development and physiology of nearly all metazoan species, and in the progression of the most common forms of cancer. Despite the paramount importance of steroids in developmental and translational biology, a complete map of transcriptional response has not been developed for any hormone . In the case of 20-hydroxyecdysone (ecdysone) in Drosophila melanogaster, these trajectories range from apoptosis to immortalization. We mapped the ecdysone transduction network in a cohort of 41 cell lines, the largest such atlas yet assembled. We found that the early transcriptional response mirrors the distinctiveness of physiological origins: genes respond in restricted patterns, conditional on the expression levels of dozens of transcription factors. Only a small cohort of genes is constitutively modulated independent of initial cell state. Ecdysone-responsive genes tend to organize into directional same-stranded units, with consecutive genes induced from the same strand. Here, we identify half of the ecdysone receptor heterodimer as the primary rate-limiting step in the response, and find that initial receptor isoform levels modulate the activated cohort of target transcription factors. In conclusion, this atlas of steroid response reveals organizing principles of gene regulation by a model type II nuclear receptor and lays the foundation for comprehensive and predictive understanding of the ecdysone transduction network in the fruit fly.

  7. Diverse Hormone Response Networks in 41 Independent Drosophila Cell Lines

    PubMed Central

    Stoiber, Marcus; Celniker, Susan; Cherbas, Lucy; Brown, Ben; Cherbas, Peter

    2016-01-01

    Steroid hormones induce cascades of gene activation and repression with transformative effects on cell fate . Steroid transduction plays a major role in the development and physiology of nearly all metazoan species, and in the progression of the most common forms of cancer. Despite the paramount importance of steroids in developmental and translational biology, a complete map of transcriptional response has not been developed for any hormone . In the case of 20-hydroxyecdysone (ecdysone) in Drosophila melanogaster, these trajectories range from apoptosis to immortalization. We mapped the ecdysone transduction network in a cohort of 41 cell lines, the largest such atlas yet assembled. We found that the early transcriptional response mirrors the distinctiveness of physiological origins: genes respond in restricted patterns, conditional on the expression levels of dozens of transcription factors. Only a small cohort of genes is constitutively modulated independent of initial cell state. Ecdysone-responsive genes tend to organize into directional same-stranded units, with consecutive genes induced from the same strand. Here, we identify half of the ecdysone receptor heterodimer as the primary rate-limiting step in the response, and find that initial receptor isoform levels modulate the activated cohort of target transcription factors. This atlas of steroid response reveals organizing principles of gene regulation by a model type II nuclear receptor and lays the foundation for comprehensive and predictive understanding of the ecdysone transduction network in the fruit fly. PMID:26772746

  8. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    SciTech Connect

    Carrasco-Garcia, Estefania; Saceda, Miguel; Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles; Garcia-Morales, Pilar; Ferragut, Jose A.; Martinez-Lacaci, Isabel

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  9. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  10. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    PubMed Central

    Yaacob, Nik Soriani; Nengsih, Agustine; Norazmi, Mohd. Nor

    2013-01-01

    Tualang honey (TH) is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM), in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-)responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects. PMID:23476711

  11. Lipid analysis of eight human breast cancer cell lines with ToF-SIMS

    PubMed Central

    Robinson, Michael A.; Graham, Daniel J.; Morrish, Fionnuala; Hockenbery, David; Gamble, Lara J.

    2015-01-01

    In this work, four triple negative (TN) cell lines, three ER+ and PR+ receptor positive (RP) cell lines, and one ER+, PR+, and HER2+ cell line were chemically distinguished from one another using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and principal component analysis (PCA). PCA scores separation was observed between the individual cell lines within a given classification (TN and RP) and there were distinctly different trends found in the fatty acid and lipid compositions of the two different classifications. These trends indicated that the RP cell lines separated out based on the carbon chain length of the lipids while the TN cell lines showed separation based on cholesterol-related peaks (in the positive ion data). Both cell types separated out by trends in fatty acid chain length and saturation in the negative ions. These chemical differences may be manifestations of unique metabolic processes within each of the different cell lines. Additionally, the HER2+ cell line was distinguished from three other RP cell types as having a unique distribution of fatty acids including anticorrelation to 18-carbon chain fatty acids. As these cell lines could not be grown in the same growth media, a combination of chemical fixation, rinsing, C60+ presputtering, and selection of cellular regions-of-interest is also presented as a successful method to acquire ToF-SIMS data from cell lines grown in different media. PMID:26319020

  12. Development of cell lines from the sheep used to construct the CHORI-243 ovine BAC library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two cell lines, designated MARC.OVSM and MARC.OKF, were initiated from the aorta and kidney, respectively, obtained from the Texel ram used to make the CHORI-243 Ovine BAC library. These cell lines have been submitted to the NIA Aging Cell Repository at the Coriell Cell Respositories, Camden, NJ, U...

  13. Bracken-fern extracts induce cell cycle arrest and apoptosis in certain cancer cell lines.

    PubMed

    Roudsari, Motahhareh Tourchi; Bahrami, Ahmad Reza; Dehghani, Hesam

    2012-01-01

    Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations (200 μg/mL) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and 30 μg/mL) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

  14. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells.

    PubMed

    Othon, Christina M; Wu, Xingjia; Anders, Juanita J; Ringeisen, Bradley R

    2008-09-01

    Biological laser printing (BioLP) is a unique tool capable of printing high resolution two- and three-dimensional patterns of living mammalian cells, with greater than 95% viability. These results have been extended to primary cultured olfactory ensheathing cells (OECs), harvested from adult Sprague-Dawley rats. OECs have been found to provide stimulating environments for neurite outgrowth in spinal cord injury models. BioLP is unique in that small load volumes ( approximately microLs) are required to achieve printing, enabling low numbers of OECs to be harvested, concentrated and printed. BioLP was used to form several 8 mm lines of OECs throughout a multilayer hydrogel scaffold. The line width was as low as 20 microm, with most lines comprising aligned single cells. Fluorescent confocal microscopy was used to determine the functionality of the printed OECs, to monitor interactions between printed OECs, and to determine the extent of cell migration throughout the 3D scaffold. High-resolution printing of low cell count, harvested OECs is an important advancement for in vitro study of cell interactions and functionality. In addition, these cell-printed scaffolds may provide an alternative for spinal cord repair studies, as the single-cell patterns formed here are on relevant size scales for neurite outgrowth.

  15. Differences in lipid characteristics of autologous human melanoma cell lines with distinct biological properties.

    PubMed

    Le Bivic, A; Sari, H; Reynier, M; Lebec, S; Bardin, F

    1987-12-01

    Significant differences in lipid composition were found when six established human melanoma cell lines were compared. A pair of cell lines was initiated from a superficial spreading melanoma and the lymph node of the same patient; four others were also autologous, three of which originated from the same nodular melanoma and the other from its metastasis. Cell lines varied in pigmentation level and ability to grow in nude mice. Cell lines contained similar amounts of total cholesterol, glycerides, and phospholipids but different amounts of free cholesterol and cholesterol esters. In particular, the molar ratio of free cholesterol to phospholipid was increased in highly tumorigenic cell lines. No changes in phospholipid profiles were noted among cell lines, except an increase in sphingomyelin with a concomitant decrease in phosphatidylcholine in one cell line compared to the profiles of its counterpart cell line. The saturated-to-unsaturated fatty acid ratios in phosphatidylcholine and phosphatidylethanolamine were similar in all cell lines, but the monounsaturated-to-polyunsaturated fatty acid ratio in phosphatidylcholine was increased in highly tumorigenic cell lines. A significant variation in the latter ratio in phosphatidylethanolamine was also observed in the pair of autologous cell lines. These changes were unrelated to a depletion in linoleic acid in culture medium. Results obtained by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene were consistent with the differences in lipid composition between two autologous cell lines. The present results indicate that two lipid characteristics were significantly changed in highly tumorigenic cell lines as compared to cell lines with low tumorigenicity, but no correlation was found between either pigmentation level or origin (primary or metastatic) and lipid composition.

  16. One-pot one-cluster synthesis of fluorescent and bio-compatible Ag14 nanoclusters for cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Xia, Nan; Wang, Xinan; Liu, Xianhu; Xu, An; Wu, Zhikun; Luo, Zhixun

    2015-11-01

    Small-molecule-protected silver nanoclusters have smaller hydrodynamic diameter, and thus may hold greater potential in biomedicine application compared with the same core-sized, macromolecule (i.e. DNA)-protected silver nanoclusters. However, the live cell imaging labeled by small-molecule-protected silver nanoclusters has not been reported until now, and the synthesis and atom-precise characterization of silver nanoclusters have been challenging for a long time. We develop a one-pot one-cluster synthesis method to prepare silver nanoclusters capped with GSH which is bio-compatible. The as-prepared silver nanoclusters are identified to be Ag14(SG)11 (abbreviated as Ag14, SG: glutathione) by isotope-resolvable ESI-MS. The structure is probed by 1D NMR spectroscopy together with 2D COSY and HSQC. This cluster species is fluorescent and the fluorescence quantum yield is solvent-dependent. Very importantly, Ag14 was successfully applied to label lung cancer cells (A549) for imaging, and this work represents the first attempt to image live cells with small-molecule-protected silver nanoclusters. Furthermore, it is revealed that the Ag14 nanoclusters exhibit lower cytotoxicity compared with some other silver species (including silver salt, silver complex and large silver nanoparticles), and the explanation is also provided. The comparison of silver nanoclusters to state-of-the-art labeling materials in terms of cytotoxicity and photobleaching lifetime is also conducted.Small-molecule-protected silver nanoclusters have smaller hydrodynamic diameter, and thus may hold greater potential in biomedicine application compared with the same core-sized, macromolecule (i.e. DNA)-protected silver nanoclusters. However, the live cell imaging labeled by small-molecule-protected silver nanoclusters has not been reported until now, and the synthesis and atom-precise characterization of silver nanoclusters have been challenging for a long time. We develop a one-pot one

  17. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

    PubMed Central

    Damstrup, L.; Rude Voldborg, B.; Spang-Thomsen, M.; Brünner, N.; Skovgaard Poulsen, H.

    1998-01-01

    Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth factor receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16% of the cells added to the upper chamber were able to traverse the Matrigel membrane. Expression of several matrix metalloproteases (MMP), of tissue inhibitor of MMP (TIMP) and of cathepsin B was evaluated by immunoprecipitation, Western blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition of this antibody resulted in a significant reduction of the in vitro invasion in three selected EGFR-positive cell lines. Our results show that only EGFR-positive SCLC cell lines had the in vitro invasive phenotype, and it is therefore suggested that the EGFR might play an important role for the invasion potential of SCLC cell lines. Images Figure 1 Figure 3 Figure 4 PMID:9744504

  18. A Cell-Permeable Fluorescent Polymeric Thermometer for Intracellular Temperature Mapping in Mammalian Cell Lines

    PubMed Central

    Hayashi, Teruyuki; Fukuda, Nanaho; Uchiyama, Seiichi; Inada, Noriko

    2015-01-01

    Changes in intracellular temperatures reflect the activity of the cell. Thus, the tool to measure intracellular temperatures could provide valuable information about cellular status. We previously reported a method to analyze the intracellular temperature distribution using a fluorescent polymeric thermometer (FPT) in combination with fluorescence lifetime imaging microscopy (FLIM). Intracellular delivery of the FPT used in the previous study required microinjection. We now report a novel FPT that is cell permeable and highly photostable, and we describe the application of this FPT to the imaging of intracellular temperature distributions in various types of mammalian cell lines. This cell-permeable FPT displayed a temperature resolution of 0.05°C to 0.54°C within the range from 28°C to 38°C in HeLa cell extracts. Using our optimized protocol, this cell-permeable FPT spontaneously diffused into HeLa cells within 10 min of incubation and exhibited minimal toxicity over several hours of observation. FLIM analysis confirmed a temperature difference between the nucleus and the cytoplasm and heat production near the mitochondria, which were also detected previously using the microinjected FPT. We also showed that this cell-permeable FPT protocol can be applied to other mammalian cell lines, COS7 and NIH/3T3 cells. Thus, this cell-permeable FPT represents a promising tool to study cellular states and functions with respect to temperature. PMID:25692871

  19. [Neuronal differentiation of human small cell lung cancer cell line PC-6 by Solcoseryl].

    PubMed

    Shimizu, T

    1997-11-01

    Solcoseryl is composed of extracts from calf blood, and is a drug known to activate tissue respiration. In the present study, I demonstrated the cell biological effects of Solcoseryl on a human small cell lung cancer cell line, PC-6, by analyzing cell morphology, cell growth, expression of neuronal differentiation markers, and the ras proto-oncogene product(ras p21). Exposure of PC-6 cells to Solcoseryl at the concentration of 200 microliters/ml induced (1) cell morphological changes, including neurodendrite-like projections from the cell surface, and (2) complete inhibition of cell growth, that was shown by the loss of Ki-67 expression. Solcoseryl also induced the expression of neurofilament protein and acetylcholinesterase, both of which are markers of neuronal differentiation. Moreover, it upregulated the expression of the ras proto-oncogene product, ras p21. Taken together, these data suggest that Solcoseryl is composed of component(s) which can induce neuronal differentiation of the human small cell lung cancer cell line, PC-6.

  20. Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues

    PubMed Central

    Barallon, Rita; Bauer, Steven R.; Butler, John; Capes-Davis, Amanda; Dirks, Wilhelm G.; Furtado, Manohar; Kline, Margaret C.; Kohara, Arihiro; Los, Georgyi V.; MacLeod, Roderick A. F.; Masters, John R. W.; Nardone, Mark; Nardone, Roland M.; Nims, Raymond W.; Price, Paul J.; Reid, Yvonne A.; Shewale, Jaiprakash; Sykes, Gregory; Steuer, Anton F.; Storts, Douglas R.; Thomson, Jim; Taraporewala, Zenobia; Alston-Roberts, Christine; Kerrigan, Liz

    2010-01-01

    Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues. PMID:20614197

  1. Evaluation of cytokine gene expression after avian influenza virus infection in avian cell lines and primary cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune responses elicited by avian influenza virus (AIV) infection has been studied by measuring cytokine gene expression by relative real time PCR (rRT-PCR) in vitro, using both cell lines and primary cell cultures. Continuous cell lines offer advantages over the use of primary cell cult...

  2. DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines

    PubMed Central

    Tian, Sunny; Bertelsmann, Karina; Yu, Linda; Sun, Shuying

    2016-01-01

    Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I2 statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating “hub genes” – heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility. PMID:27688708

  3. Characterization of the (Ag,Cu)(In,Ga)Se2 thin film alloy system for solar cells

    NASA Astrophysics Data System (ADS)

    Boyle, Jonathan

    Energy is the underlying factor to human economic activity, and more energy is projected to be needed in the near future and photovoltaics provide a means to supply that energy. Results presented in this dissertation detail material properties of the (Ag,Cu)(In,Ga)Se2 thin film alloy system for use as a solar cell material. Structural and optical properties were determined via X-ray diffraction and UV/Vis/NIR spectrophotometry, respectively. Structural data was analyzed using JADE 2010 software and optical data was analyzed via two different methods. Results of Ag substitution into Cu(In,Ga)Se2 alloy were reconciled with the Jaffe-Wei-Zunger (JWZ) theoretical model, which relates structural and chemical properties of Cu-based ternary chalcopyrite alloys to their optical properties. Dominant phase of the alloy system was identified as chalcopyrite I-42d, Space group 122, with minor secondary phases and order defect phases. No chalcopyrite-chalcopyrite miscibility gap was present in the alloy compositional space, counter to prior literature on bulk polycrystalline materials and thermodynamic calculations performed here, indicating that Ag was successfully substituted into the chalcopyrite lattice. Lattice constant results were consistent with JWZ model, where a O lattice constant closely follows Vegard's rule, cO lattice constant changes at different rates than aO does with composition, and anion displacement is affected by cation radii. Optical results showed bandgap widening with Ag and Ga substitution across the full compositional space, with bowing parameters shown overall to be invariant with cation substitution, counter to expectations. (Ag+Cu)/(In+Ga) ratio effect on bandgap for a limited set of samples is consistent with p-d hybridization effects from JWZ model.

  4. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods.

    PubMed

    Zong, Shenfei; Wang, Zhuyuan; Yang, Jing; Wang, Chunlei; Xu, Shuhong; Cui, Yiping

    2012-08-15

    We report a dual mode cancer cell targeting probe based on CdTe quantum dots (QDs) conjugated, silica coated Au@Ag core-shell nanorods (Au@Ag NRs), which can generate both surface enhanced Raman scattering (SERS) and fluorescence signals. In such a probe, folic acid (FA) is used as a targeting ligand for folate receptors (FRs) overexpressed cancer cells. To synthesize the probe, Au@Ag NRs were first prepared to serve as the SERS substrates by coating an Ag shell on the gold nanorods. Then the Au@Ag NRs were labeled with 4-mercaptobenzoic acid (4MBA) to generate SERS signals, followed by being coated with a silica shell through a modified Stöber method. Finally, CdTe QDs and FA were conjugated to the silica coated Au@Ag NRs by the carbodiimide chemistry to yield fluorescence and the targeting ability, respectively. To validate the targeting capability of the probe, in vitro experiments were conducted, using HeLa cells with overexpressed FRs as the model target cells and MRC-5 cells with a low folate receptor expression level as the negative control. Both the fluorescence imaging and the SERS mapping results confirmed that the proposed probe can be used as an efficient cancer cell targeting agent. This kind of multifunctional probe has great potential in the diagnosis and therapeutics of cancerous diseases due to its specific targeting and multiplex imaging abilities, especially in the simultaneous tracking of multiple components in a hybrid bio-system.

  5. Interaction of the hemolytic lectin, CEL-III, with cultured human leukemic cell lines.

    PubMed

    Sallay, I; Moriwaki, S; Nakamura, O; Yasuda, S; Kimura, M; Yamasaki, N; Itoh, K; Ohba, H

    2000-12-01

    We studied interaction of CEL-III with cultured human leukemic cell lines and lymphocytes from normal adults by evaluating the extent of cytotoxicity and cytoagglutination. Among acute T lymphoblastic leukemia (T-ALL) cell lines, CEL-III displayed increased toxicity against different acute lymphoblastic leukemia (ALL) cell lines as a function of increasing differentiation stage. In the case of acute B lymphoblastic leukemia (B-ALL) cell lines, CEL-III showed strong cytotoxicity against relatively immature cell lines. We found that CEL-III was more toxic for ALL cell lines than leukocytes obtained from peripheral blood of healthy adults. Strong influence of the additional amount of calcium ion on the extent of cytotoxicity was observed. In addition, we describe a new way to evaluate the extent of cytoagglutination in "% of agglutinated cells". These findings make CEL-III a promising candidate in research for lectins which bind to and destroy only the targeted leukemic cells.

  6. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    SciTech Connect

    Blattmann, Claudia; Oertel, Susanne; Ehemann, Volker

    2010-09-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.

  7. How Reliable Are Sino-Nasal Cell Lines for Studying the Pathophysiology of Chronic Rhinosinusitis?

    PubMed Central

    Suwara, Monika I.; Borthwick, Lee A.; Wilson, Janet A.; Mann, Derek A.; Fisher, Andrew J.

    2015-01-01

    Background: Well-characterized cell lines represent useful scientific tools to study the pathophysiology of human disease. Chronic rhinosinusitis (CRS) is a very common condition, though the number of CRS cell lines is limited, as are data showing how closely they resemble primary cells. Methodology: Searches for available human cell lines were performed using the American Type Culture Collection (ATCC) and European Collection of Cell Cultures (ECACC). Identified cells were cultured and characterized with tinctorial and immunohistochemical staining and ELISA to assess their response to common, disease-relevant inflammatory stimuli. Carefully phenotyped CRS patients were recruited with informed consent. Primary nasal epithelial cell (PNEC) brushings were harvested, cultured, and compared to the available cell lines. Results: Searches identified 1 relevant CRS sino-nasal cell line, RPMI 2650. Cultured PNECs showed strong expression of epithelial markers while being negative for mesenchymal markers. However, RPMI 2650 cells show an atypical mixed epithelial/mesenchymal phenotype. When stimulated by pro-inflammatory ligands, PNECs responded in a dose-dependent manner, whereas RPMI 2650 cells showed limited response. Conclusions: The number and availability of cell lines to study the pathophysiology of CRS greatly underrepresent the disease burden. Additionally, the sole commercially available cell line appears to have a different phenotype and behavior to primary patient-derived cells. The development of further reproducible cell lines would be beneficial in our understanding of CRS. PMID:25539661

  8. Germline transmission of a novel rat embryonic stem cell line derived from transgenic rats.

    PubMed

    Men, Hongsheng; Bauer, Beth A; Bryda, Elizabeth C

    2012-09-20

    Germline-competent rat embryonic stem (ES) cell lines are important resources for the creation of mutant rat models using ES-cell-based gene targeting technology. The ability to isolate germline-competent ES cell lines from any rat strain, including genetically modified strains, would allow for more sophisticated genetic manipulations without extensive breeding. Sprague Dawley (SD) males carrying an enhanced green fluorescent protein (EGFP) transgene were used as the founder animals for the derivation of ES cell lines. A number of ES cell lines were established and subjected to rigorous quality control testing that included assessment of pluripotency factor expression, karyotype analysis, and pathogen/sterility testing. Two male ES cell lines, SD-Tg.EC1/Rrrc and SD-Tg.EC8/Rrrc, were injected into blastocysts recovered from a cross of Dark Agouti (DA) males with SD females. Resulting chimeric animals were bred with wild-type SD mates to verify the germline transmissibility of the ES cell lines by identifying pups carrying the ES cell line-derived EGFP transgene. While both ES cell lines gave rise to chimeric animals, only SD-Tg.EC1 was germline competent. This confirms the feasibility of deriving germline-competent ES cell lines from transgenic rat strains and provides a novel ES cell line with a stable green fluorescent protein (GFP) reporter for future genetic manipulations to create new rat models.

  9. Gravure-Offset Printed Metallization of Multi-Crystalline Silicon Solar Cells with Low Metal-Line Width for Mass Production.

    PubMed

    Lee, Jonghwan; Jeong, Chaehwan

    2016-05-01

    The gravure offset method has been developed toward an industrially viable printing technique for electronic circuitry. In this paper, a roller type gravure offset manufacturing process was developed to fabricate fine line for using front electrode for solar cells. In order to obtain the optimum metallization printing lines, thickness of 20 μm which is narrow line is required. The main targets are the reduction of metallized area to reduce the shading loss, and a high conductivity to transport the current as loss free as possible out of the cell. However, it is well known that there is a poor contact resistance between the front Ag electrode and the n(+) emitter. Nickel plating was conducted to prevent the increase of contact resistance and the increase of fill factor (FF). The performance of n-Si/Ag (seed layer)/Ni solar cells were observed in 609 mV of open circuit voltage, 35.54 mA/cm2 of short circuit current density, 75.75% of fill factor, and 16.04% of conversion efficiency.

  10. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  11. Drug treatment of cancer cell lines: a way to select for cancer stem cells?

    PubMed

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A Ivana; Mondello, Chiara

    2011-03-04

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.

  12. Drug Treatment of Cancer Cell Lines: A Way to Select for Cancer Stem Cells?

    PubMed Central

    Chiodi, Ilaria; Belgiovine, Cristina; Donà, Francesca; Scovassi, A. Ivana; Mondello, Chiara

    2011-01-01

    Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs. PMID:24212655

  13. Photodynamic therapy-induced programmed cell death in carcinoma cell lines

    NASA Astrophysics Data System (ADS)

    He, Xiao-Yan; Sikes, Robert A.; Thomsen, Sharon L.; Chung, L.; Jacques, Steven L.

    1993-06-01

    The mode of cell death following photodynamic therapy (PDT) was investigated from the perspective of programmed cell death (apoptosis). Human prostate carcinoma cells (PC3), human non-small cell lung carcinoma (H322a), and rat mammary carcinoma (MTF7) were treated by PDT following sensitization with dihematoporphyrin ether (DHE). The response of these carcinoma cell lines to PDT was variable. An examination of extracted cellular DNA by gel electrophoresis showed the characteristic DNA ladder pattern indicative of internucleosomal cleavage of DNA during apoptosis. MTF7 and PC3 responded to PDT by inducing apoptosis while H322a had no apoptotic response. The magnitude of the response and the PDT dosage required to induce the effect were different in PC3 and MTF7. MTF7 cells responded with rapid apoptosis at the dose of light and drug that yielded 50% cell death (LD50). In contrast, PC3 showed only marginal apoptosis at the LD50 but had a marked response at the LD85. Furthermore, the onset of apoptosis followed slower kinetics in PC3 (2 hr - 4 hr) than in MTF7 (< 1 hr). H322a cells were killed by PDT but failed to exhibit any apoptotic response. This study indicates that apoptosis may occur during PDT induced cell death, but this pathway is not universal for all cancer cell lines.

  14. Rabies virus interaction with various cell lines is independent of the acetylcholine receptor.

    PubMed

    Reagan, K J; Wunner, W H

    1985-01-01

    Rabies virus infects most cells in vitro. The presence of the nicotinic acetylcholine receptor on the plasma membrane of various cell lines is not an obligate factor for rabies virus susceptibility of those cells.

  15. Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2012-10-01

    The aims of this work were to compare health promoting effects of commonly consumed food legumes in terms of cancer cell proliferation inhibitory effects and cellular antioxidant activities (CAA). The CAA was evaluated by fluorescence microplate reader based on in vitro animal cell cultivation. Antiproliferative properties were assayed by MTT method using in vitro cell culture system. Phytochemicals (including total phenolic, procyanidin, saponin and phytic acid) and chemical antioxidant activities (including DPPH free radical scavenging activity, oxygen radical absorbing capacity, peroxyl radical scavenging capacity (PRSC)) were also determined for comparison purposes. The results showed that different types of legumes possessed considerable variations in their phytochemicals, as well as chemical and cellular antioxidant activities. Adzuki bean exhibited the strongest antiproliferative properties in a dose-dependent manner against all digestive system cancer cell lines (CAL27, AGS, HepG2, SW480 and Caco-2), ovary cancer cell SK-OV-3 and breast cancer cell MCF-7 among all legumes tested. Black soybean exhibited the highest saponin, phytic acid content, PRSC values, and the strongest CAA values. These results indicate that commonly consumed food legumes may serve as an excellent dietary source of natural antioxidants for health promotion and cancer prevention.

  16. Deguelin Potentiates Apoptotic Activity of an EGFR Tyrosine Kinase Inhibitor (AG1478) in PIK3CA-Mutated Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Baba, Yuh; Maeda, Toyonobu; Suzuki, Atsuko; Takada, Satoshi; Fujii, Masato; Kato, Yasumasa

    2017-01-01

    Head and neck squamous cell carcinoma (HNSCC) is known to be intrinsically resistant to inhibitors for epidermal growth factor receptor (EGFR). Until now, clinical outcomes for HNSCC using EGFR inhibitors as single agents have yielded disappointing results. Here, we aimed to study whether combinatorial treatment using AG1478 (EGFR tyrosine kinase inhibitor) and deguelin, which is a rotenoid isolated from the African plant Mundulea sericea, could enhance the anti-tumor effects of AG1478 in HNSCC. For Ca9-22 cells with EGFR, KRAS, and PIK3CA wild types, AG1478 alone suppressed both phosphorylated levels of ERK and AKT and induced apoptosis. On the contrary, for HSC-4 cells with EGFR and KRAS wild types, and a PIK3CA mutant, AG1478 alone did not suppress the phosphorylated level of AKT nor induce apoptosis, while it suppressed ERK phosphorylation. Forced expression of constitutively active PIK3CA (G1633A mutation) significantly reduced the apoptotic effect of AG1478 on the PIK3CA wild-type Ca9-22 cells. When HSC-4 cells with the PIK3CA G1633A mutation were treated with a combination of AG1478 and deguelin, combination effects on apoptosis induction were observed through the inhibition of the AKT pathway. These results suggest that the combination of EGFR tyrosine kinase inhibitor with deguelin is a potential therapeutic approach to treat PIK3CA-mutated HNSCC. PMID:28134774

  17. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  18. Silver Vanadium Phosphorous Oxide, Ag(2)VO(2)PO(4): Chimie Douce Preparation and Resulting Lithium Cell Electrochemistry.

    PubMed

    Kim, Young Jin; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-08-15

    Recently, we have shown silver vanadium phosphorous oxide (Ag(2)VO(2)PO(4), SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.

  19. N-linked glycan profiling in neuroblastoma cell lines.

    PubMed

    Hu, Yunli; Mayampurath, Anoop; Khan, Saira; Cohen, Joanna K; Mechref, Yehia; Volchenboum, Samuel L

    2015-05-01

    Although MYCN amplification has been associated with aggressive neuroblastoma, the molecular mechanisms that differentiate low-risk, MYCN-nonamplified neuroblastoma from high-risk, MYCN-amplified disease are largely unknown. Genomic and proteomic studies have been limited in discerning differences in signaling pathways that account for this heterogeneity. N-Linked glycosylation is a common protein modification resulting from the attachment of sugars to protein residues and is important in cell signaling and immune response. Aberrant N-linked glycosylation has been routinely linked to various cancers. In particular, glycomic markers have often proven to be useful in distinguishing cancers from precancerous conditions. Here, we perform a systematic comparison of N-linked glycomic variation between MYCN-nonamplified SY5Y and MYCN-amplified NLF cell lines with the aim of identifying changes in sugar abundance linked to high-risk neuroblastoma. Through a combination of liquid chromatography-mass spectrometry and bioinformatics analysis, we identified 16 glycans that show a statistically significant change in abundance between NLF and SY5Y samples. Closer examination revealed the preference for larger (in terms of total monosaccharide count) and more sialylated glycan structures in the MYCN-amplified samples in comparison to smaller, nonsialylated glycans that are more dominant in the MYCN-nonamplified samples. These results offer clues for deriving marker candidates for accurate neuroblastoma risk diagnosis.

  20. Opioid binding site in EL-4 thymoma cell line

    SciTech Connect

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  1. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis)

    PubMed Central

    Jager, Martine J.; Magner, J. Antonio Bermudez; Ksander, Bruce R.; Dubovy, Sander R.

    2016-01-01

    Purpose To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Methods Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Results Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. Conclusions All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines. PMID:28018010

  2. Efficient derivation of extraembryonic endoderm stem cell lines from mouse postimplantation embryos

    PubMed Central

    Lin, Jiangwei; Khan, Mona; Zapiec, Bolek; Mombaerts, Peter

    2016-01-01

    Various types of stem cell lines have been derived from preimplantation or postimplantation mouse embryos: embryonic stem cell lines, epiblast stem cell lines, and trophoblast stem cell lines. It is not known if extraembryonic endoderm stem (XEN) cell lines can be derived from postimplantation mouse embryos. Here, we report the derivation of 77 XEN cell lines from 85 postimplantation embryos at embryonic day E5.5 or E6.5, in parallel to the derivation of 41 XEN lines from 69 preimplantation embryos at the blastocyst stage. We attain a success rate of 100% of XEN cell line derivation with our E5.5 whole-embryo and E6.5 disaggregated-embryo methods. Immunofluorescence and NanoString gene expression analyses indicate that the XEN cell lines that we derived from postimplantation embryos (post-XEN) are very similar to the XEN cell lines that we derived from preimplantation embryos (pre-XEN) using a conventional method. After injection into blastocysts, post-XEN cells contribute to extraembryonic endoderm in chimeras at E6.5 and E7.5. PMID:27991575

  3. In vitro cytotoxicity evaluation of porous TiO₂-Ag antibacterial coatings for human fetal osteoblasts.

    PubMed

    Necula, B S; van Leeuwen, J P T M; Fratila-Apachitei, L E; Zaat, S A J; Apachitei, I; Duszczyk, J

    2012-11-01

    Implant-associated infections (IAIs) may be prevented by providing antibacterial properties to the implant surface prior to implantation. Using a plasma electrolytic oxidation (PEO) technique, we produced porous TiO₂ coatings bearing various concentrations of Ag nanoparticles (Ag NPs) (designated as 0 Ag, 0.3 Ag and 3.0 Ag) on a Ti-6Al-7Nb biomedical alloy. This study investigates the cytotoxicity of these coatings using a human osteoblastic cell line (SV-HFO) and evaluates their bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA). The release of Ag and the total amount of Ag in the coatings were determined using a graphite furnace atomic absorption spectrometry technique (GF-AAS) and flame-AAS, respectively. Cytotoxicity was evaluated using the AlamarBlue assay coupled with the scanning electron microscopy (SEM) observation of seeded cells and by fluorescence microscopy examination of the actin cytoskeleton and nuclei after 48 h of incubation. Antibacterial activity was assessed quantitatively using a direct contact assay. AlamarBlue viability assay, SEM and fluorescence microscopy observation of the SV-HFO cells showed no toxicity for 0 Ag and 0.3 Ag specimens, after 2, 5 and 7 days of culture, while 3.0 Ag surfaces appeared to be extremely cytotoxic. All Ag-bearing surfaces had good antibacterial activity, whereas Ag-free coatings showed an increase in bacterial numbers. Our results show that the 0.3 Ag coatings offer conditions for optimum cell growth next to antibacterial properties, which makes them extremely useful for the development of new antibacterial dental and orthopedic implants.

  4. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.

    PubMed

    Yun, Juyoung; Hwang, Sun Hye; Jang, Jyongsik

    2015-01-28

    Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%).

  5. Graphene oxide-encoded Ag nanoshells with single-particle detection sensitivity towards cancer cell imaging based on SERRS.

    PubMed

    Yim, DaBin; Kang, Homan; Jeon, Su-Ji; Kim, Hye-In; Yang, Jin-Kyoung; Kang, Tae Wook; Lee, Sangyeop; Choo, Jaebum; Lee, Yoon-Sik; Kim, Jin Woong; Kim, Jong-Ho

    2015-05-21

    Developing ultrasensitive Raman nanoprobes is one of the emerging interests in the field of biosensing and bioimaging. Herein, we constructed a new type of surface-enhanced resonance Raman scattering nanoprobe composed of an Ag nanoshell as a surface-enhanced Raman scattering-active nanostructure, which was encapsulated with 4,7,10-trioxa-1,13-tridecanediamine-functionalized graphene oxide as an ultrasensitive Raman reporter exhibiting strong resonance Raman scattering including distinct D and G modes. The designed nanoprobe was able to produce much more intense and simpler Raman signals even at a single particle level than the Ag nanoshell bearing a well-known Raman reporter, which is beneficial for the sensitive detection of a target in a complex biological system. Finally, this ultrasensitive nanoprobe successfully demonstrated its potential for bioimaging of cancer cells using Raman spectroscopy.

  6. Comparative In Vitro Immune Stimulation Analysis of Primary Human B Cells and B Cell Lines

    PubMed Central

    Van Belle, Kristien; Herman, Jean; Boon, Louis; Waer, Mark

    2016-01-01

    B cell specific immunomodulatory drugs still remain an unmet medical need. Utilisation of validated simplified in vitro models would allow readily obtaining new insights in the complexity of B cell regulation. For this purpose we investigated which human B lymphocyte stimulation assays may be ideally suited to investigate new B lymphocyte immunosuppressants. Primary polyclonal human B cells underwent in vitro stimulation and their proliferation, production of immunoglobulins (Igs) and of cytokines, and expression of cell surface molecules were analysed using various stimuli. ODN2006, a toll-like receptor 9 (TLR9) agonist, was the most potent general B cell stimulus. Subsequently, we investigated on which human B cell lines ODN2006 evoked the broadest immunostimulatory effects. The Namalwa cell line proved to be the most responsive upon TLR9 stimulation and hence may serve as a relevant, homogeneous, and stable B cell model in an in vitro phenotypic assay for the discovery of new targets and inhibitors of the B cell activation processes. As for the read-out for such screening assay, it is proposed that the expression of activation and costimulatory surface markers reliably reflects B lymphocyte activation. PMID:28116319

  7. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y.

    PubMed

    Attoff, K; Kertika, D; Lundqvist, J; Oredsson, S; Forsby, A

    2016-09-01

    Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide.

  8. [Ag85B and BCG enhance immune activity of dendritic cells in patients with initially treated tuberculosis].

    PubMed

    Guo, Yun; Su, Yuanyuan; Sun, Yang; Guan, Weiwei; Yang, Li; Zhang, Zhi; Wang, Yuling; Dai, Erhei

    2016-06-01

    Objective To investigate the regulatory effects of Mycobacterium tuberculosis major secreted protein Ag85B and Bacillus Calmette-Guerin (BCG) on the immune function of dendritic cells (DCs) in the patients with tuberculosis who have received an initial treatment. Methods The peripheral blood mononuclear cells were collected and separated in 26 healthy subjects and 31 patients with tuberculosis who had been treated initially. Every specimen was divided into 4 groups and DCs were induced and cultured. On the 6th day, the DCs in the three experimental groups were treated by lipopolysaccharide (LPS), BCG, Ag85B, respectively and no-treated DCs served as a control group. After 24-hour treatment, DCs were collected and examined for the levels of CD83, CD86, HLA-DR and CD11c using flow cytometry. Moreover, the levels of interleukin 12 (IL-12), IL-10 and interferon γ (IFN-γ) in the supernatants were measured by ELISA. Results The expression levels of CD83 and IL-10 in the patient control group were significantly lower than those in healthy subject control group. The levels of CD83, CD86 and IFN-γ in the Ag85B treated group were obviously high than those in the control group. The level of IFN-γ in the BCG treated group was significantly high than that in the control group. The levels of CD83, CD86, HLA-DR and IL-10 in the LPS treated group were remarkably higher than those in the control group. The levels of CD83, CD86 and IL-10 in the healthy subject LPS treated group were significantly higher than those in the healthy subject control group. Conclusion The immune-enhancing effect of Ag85B on DCs is superior to that of BCG in the patients with initially treated tuberculosis.

  9. Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages.

    PubMed

    Nyambura, Lydon Wainaina; Jarmalavicius, Saulius; Baleeiro, Renato Brito; Walden, Peter

    2016-09-15

    Dendritic cells (DCs) and macrophages are specialized APCs that process and present self-Ags for induction of tolerance and foreign Ags to initiate T cell-mediated immunity. Related to differentiation states they have specific phenotypes and functions. However, the impact of these differentiations on Ag processing and presentation remains poorly defined. To gain insight into this, we analyzed and compared the HLA-I peptidomes of MUTZ3-derived human immature and mature DC lines and THP1-derived macrophages by liquid chromatography tandem mass spectrometry. We found that the HLA-I peptidomes were heterogeneous and individualized and were dominated by nonapeptides with similar HLA-I binding affinities and anchor residues. MUTZ3-derived DCs and THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and were involved in various cellular functions in similar proportion, with preference to proteins involved in cell communication, signal transduction, protein metabolism, and transcription factor/regulator activity.

  10. Sorafenib inhibits cell growth but fails to enhance radio- and chemosensitivity of glioblastoma cell lines

    PubMed Central

    Riedel, Matthias; Struve, Nina; Müller-Goebel, Justus; Köcher, Sabrina; Petersen, Cordula; Dikomey, Ekkehard; Rothkamm, Kai; Kriegs, Malte

    2016-01-01

    Background Glioblastomas (GBM) are the most common malignant type of primary brain tumor. GBM are intensively treated with surgery and combined radiochemotherapy using X-irradiation and temozolomide (TMZ) but they are still associated with an extremely poor prognosis, urging for the development of new treatment strategies. To improve the outcome of GBM patients, the small molecule multi-kinase inhibitor sorafenib has moved into focus of recent research. Sorafenib has already been shown to enhance the radio- and radiochemosensitivity of other tumor entities. Whether sorafenib is also able to sensitize GBM cells to radio- and chemotherapy is still an unsolved question which we have addressed in this study. Methods The effect of sorafenib on signaling, proliferation, radiosensitivity, chemosensitivity and radiochemosensitivity was analyzed in six glioblastoma cell lines using Western blot, proliferation- and colony formation assays. Results In half of the cell lines sorafenib clearly inhibited MAPK signaling. We also observed a strong blockage of proliferation, which was, however, not associated with MAPK pathway inhibition. Sorafenib had only minor effects on cell survival when administered alone. Most importantly, sorafenib treatment failed to enhance GBM cell killing by irradiation, TMZ or combined treatment, and instead rather caused resistance in some cell lines. Conclusion Our data suggest that sorafenib treatment may not improve the efficacy of radiochemotherapy in GBM. PMID:27542273

  11. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    PubMed Central

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  12. 188Rhenium-induced cell death and apoptosis in a panel of tumor cell lines

    NASA Astrophysics Data System (ADS)

    Antoccia, Antonio; Banzato, Alessandra; Bello, Michele; Bollini, Dante; De Notaristefani, Francesco; Giron, Cecilia; Mazzi, Ulderico; Alafort, Laura Melendez; Moschini, Giuliano; Nadali, Anna; Navarria, Francesco; Perrotta, Andrea; Rosato, Antonio; Tanzarella, Caterina; Uzunov, Nikolay

    2007-02-01

    Assessment of "in vitro" tumor growth inhibition and radiobiological effects, such as apoptosis, have been evaluated in human neoplastic cells of different histotypes (H460 lung cancer cells, U87 glioblastoma, LnCaP prostate tumor cells) treated using solutions of 188Rhenium-perrhenate. The MTT assay, which measures mitochondrial metabolism in the entire cell culture is a recognized test for cytotoxicity and was used in cells exposed 48-72 h to specific activities ranged from 37 to 148 GBq/l. Whereas H460 and LnCaP were particularly sensitive to treatment, U87 glioblastoma cells behaved as radioresistant ones. However, evaluation of 188Re-induced apoptosis indicated that this kind of cell death contributed only marginally to the reduction in cell viability of H460 and LNCaP lines, suggesting the existence of protective mechanisms against apoptosis. In this respect, the membrane receptor, CD44, whose expression is dysregulated in most malignant cell types has proven to alter the response of cancer cells to apoptotic stimuli, including ionizing radiation. Cell samples decorated with a FITC-labelled CD44 antibody indicated, that in H460 and U87 cells the CD44(+) correlated well with an apoptosis-resistant response. Conversely, LnCap cells proven as CD44(-) did not display however sensitivity to radio-induced apoptosis.

  13. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    SciTech Connect

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee; Jeon, Jae-Pil

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  14. Sphere Culture of Murine Lung Cancer Cell Lines Are Enriched with Cancer Initiating Cells

    PubMed Central

    Morrison, Brian J.

    2012-01-01

    Cancer initiating cells (CICs) represent a unique cell population essential for the maintenance and growth of tumors. Most in vivo studies of CICs utilize human tumor xenografts in immunodeficient mice. These models provide limited information on the interaction of CICs with the host immune system and are of limited value in assessing therapies targeting CICs, especially immune-based therapies. To assess this, a syngeneic cancer model is needed. We examined the sphere-forming capacity of thirteen murine lung cancer cell lines and identified TC-1 and a metastatic subclone of Lewis lung carcinoma (HM-LLC) as cell lines that readily formed and maintained spheres over multiple passages. TC-1 tumorspheres were not enriched for expression of CD133 or CD44, putative CIC markers, nor did they demonstrate Hoechst 33342 side population staining or Aldefluor activity compared to adherent TC-1 cells. However, in tumorsphere culture, these cells exhibited self-renewal and long-term symmetric division capacity and expressed more Oct-4 compared to adherent cells. HM-LLC sphere-derived cells exhibited increased Oct-4, CD133, and CD44 expression, demonstrated a Hoechst 33342 side population and Aldefluor activity compared to adherent cells or a low metastatic subclone of LLC (LM-LLC). In syngeneic mice, HM-LLC sphere-derived cells required fewer cells to initiate tumorigenesis compared to adherent or LM-LLC cells. Similarly TC-1 sphere-derived cells were more tumorigenic than adherent cells in syngeneic mice. In contrast, in immunocompromised mice, less than 500 sphere or adherent TC-1 cells and less than 1,000 sphere or adherent LLC cells were required to initiate a tumor. We suggest that no single phenotypic marker can identify CICs in murine lung cancer cell lines. Tumorsphere culture may provide an alternative approach to identify and enrich for murine lung CICs. Furthermore, we propose that assessing tumorigenicity of murine lung CICs in syngeneic mice better models the

  15. Unexpected expression of intermediate filament protein genes in human oligodendroglioma cell lines

    SciTech Connect

    Kashima, Tsuyoshi; Vinters, H.V.; Campagnoni, A.T.

    1995-01-01

    From a human oligodendroglioma cell line cDNA library, ten intermediate filament (IF) cDNA clones were isolated. Five clones corresponded to vimentin mRNA, two corresponded to cytokeratin K7 mRNA, and two corresponded to cytokeratin K8 mRNA. One clone encoded a novel IF mRNA. The expression of these and other IF protein genes was examined in five cell lines derived from human oligodendroglioma, astrocytoma and neuroblastoma tumors. Vimentin mRNA and K18 mRNA were expressed in all the cell lines. The K7 and K8 genes were expressed only in the oligodendroglioma cell lines. Surprisingly, nestin mRNA was expressed in the astrocytoma lines and the neuroblastoma line, but was not expressed in the oligodendroglioma lines. These results indicate that oligodendroglioma cell lines express Types I and II cytokeratin genes. This pattern of IF gene expression was different from that of the astrocytoma and neuroblastoma cell lines, which expressed IF genes usually associated with the mature cell types or with differentiating fetal neural precursor cells, i.e. GFAP and neurofilament-L. The results also suggest that the oligodendroglioma cell lines are more epithelial in character and do not reflect the gene expression of mature oligodendrocytes. 46 refs., 8 figs., 2 tabs.

  16. Microstructural characterization and current conduction mechanisms of front-side contact of n-type crystalline Si solar cells with Ag/Al pastes

    NASA Astrophysics Data System (ADS)

    Liang, L.; Li, Z. G.; Cheng, L. K.; Takeda, N.; Carroll, A. F.

    2015-06-01

    Recently, high efficiency n-type crystalline Si cells made with the screen printed Ag/Al metallization have received considerable attention. We report here our microstructural investigations of the critical interfacial region between the front-side contact and the Si wafer of n-type cells fired under progressively higher temperatures. Our study revealed that the key characteristic microstructures of the interfacial region changed from one with a large fraction of residual SiNx, to one consisting of a thin glass layer with nano-Ag colloids, and finally to one decorated with Ag and Ag/Al crystallites attached to the emitter surface for cells with under-, optimally-, and over-fired conditions, respectively. We did not find any Al-Si eutectic layer on the emitter surface that would support a silicon dissolution and re-growth mechanism, which is operative in the back surface field formation process for the Al back contact of p-type industrial solar cells. The presence of the SiNx antireflection coating has likely altered the chemistry between Si and Al significantly. The observed microstructures lead us to conclude that the main current conduction mechanism in optimally-fired n-type cells is tunneling through those areas of thin interfacial glass containing nano-Ag colloids. This mechanism is similar to the current conduction model we have proposed previously for optimally-fired p-type crystalline Si solar cells. We believe that the intrusion of Ag/Al (and/or Ag) crystallites into the p+-Si emitter in over-fired cells is one of the major sources of metallization-induced recombination losses, which degrades cell performance.

  17. Chromium VI-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and a lymphoblastic leukemia cell line (MOLT-4).

    PubMed

    Gambelunghe, Angela; Piccinini, Renza; Abbritti, Giuseppe; Ambrogi, Maura; Ugolini, Barbara; Marchetti, Cristina; Migliorati, Graziella; Balducci, Chiara; Muzi, Giacomo

    2006-03-01

    Hexavalent chromium compounds are well-documented human carcinogens. In vitro experiments show Cr (VI) induces cell death by apoptosis by activating p53 protein. The aim of this study was to evaluate Cr (VI)-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and in a lymphoblastic leukemia cell line (MOLT-4). Cr (VI) caused a dose- and time-dependent increase in the apoptosis rate in both cell lines. Western blotting showed increased p53 protein expression in MOLT-4 cells, but not in BEAS-2B cells, after exposure to 0.5 and 3 muM hexavalent chromium for 12 hours and 4 hours, respectively. Apoptotic cell death induced by Cr (VI) was not decreased by pretreatment with caspase-3, -8, and -9 inhibitors. These preliminary results provide evidence of Cr (VI)-induced apoptosis, which deserves further investigation in occupationally exposed workers.

  18. Hesa-A Effects on Cell Cycle Signaling in Esophageal Carcinoma Cell Line

    PubMed Central

    Ahmadian, Nasser; Pashaei-Asl, Roghiyeh; Samadi, Nasser; Rahmati-yamchi, Mohammad; Rashidi, Mohammad-Reza; Ahmadian, Masomeh; Esmaeili, Moosa; Salamat, Faezeh; Besharat, Sima; Joshaghani, Hamid Reza

    2016-01-01

    BACKGROUND Hesa-A is a natural compound with anticancer properties. The exact mechanism of its action in esophageal cancer is not clear, yet. The aim of this study was to evaluate the cell toxicity effect of Hesa-A on the esophageal carcinoma cell lines, KYSE-30, and cell cycle genes expression. METHODS In this study, we tested cell toxicity with MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay and flow cytometry to evaluatet he cell cycle arrest. Real time polymerase chain reaction was used to assess the expression of P53, P16, P21, cyclin D1, and cyclin B1 genes. RESULTS Our results showed that Hesa-A is effective in the expression of cell cycling check point proteins. Hesa-A induced an arrest in G2 phase of esophageal cell cycle. The levels of P53 (>13 times), P21 (>21 times), P16, cyclin B1, and cyclin D1 genes were increased 48 hours after Hesa-A treatment. CONCLUSION P21 and P16 expression were the potential mechanisms for G2 arrest of KYSE-30 esophageal cancer cell line by Hesa-A. PMID:27957293

  19. Development and characterization of two porcine monocyte-derived macrophage cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell lines Cdelta2+ and Cdelta2- were developed from monocytes obtained from a 10-month-old, crossbred, female pig. These cells morphologically resembled macrophages, stained positively for a-naphthyl esterase and negatively for peroxidase. The cell lines were bactericidal and highly phagocytic. ...

  20. Molecular Integrative Cluster