Science.gov

Sample records for ags main magnet

  1. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-01-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  2. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-06-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  3. A model of the AGS based on stepwise ray-tracing through the measured field maps of the main magnets

    SciTech Connect

    Dutheil Y.; Meot, F.; Tsoupas, N.

    2012-05-20

    Two-dimensional mid-plane magnetic field maps of two of the main AGS magnets were produced, from Hall probe measurements, for a series of different current settings. The analysis of these data yielded the excitation functions [1] and the harmonic coefficients [2] of the main magnets which have been used so far in all the models of the AGS. The constant increase of the computation power makes it possible today to directly use a stepwise raytracing through these measured field maps with a reasonable computation time. We describe in detail how these field maps have allowed the generation of models of the 6 different types of AGS main magnets, and how they are being handled with the Zgoubi ray-tracing code [3]. We give and discuss a number of results obtained regarding both beam and spin dynamics in the AGS, and we provide comparisons with other numerical and analytical modelling methods.

  4. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  5. Anomalous evolution of interfaces in Fe/Ag magnetic multilayer

    NASA Astrophysics Data System (ADS)

    Sharma, Gagan; Gupta, Ranjeeta; Kumar, Dileep; Gupta, Ajay

    2013-12-01

    Interfaces greatly influence the magnetic properties of multilayer nanostructures. In the present work, the x-ray standing wave (XSW) technique along with conversion electron Mössbauer spectroscopy have been used to study the evolution of interfaces in Fe/Ag system as a function of thermal annealing. The XSW technique has sufficient depth resolution so as to determine the concentration profiles of Fe across the two interfaces, namely Fe-on-Ag and Ag-on-Fe independently. In as-deposited Ag/Fe/Ag trilayer, Fe-on-Ag interface has a substantially higher roughness of 1.3 nm as compared to 0.9 nm of Ag-on-Fe interface. It is shown that the observed difference in the roughness of the two interfaces is due to a substantial intermixing between Fe and Ag occurring preferentially at Fe-on-Ag interface. With thermal annealing, the two interfaces exhibit opposite behaviour; while Fe-on-Ag interface exhibits an initial sharpening, Ag-on-Fe interface exhibits a monotonous broadening. Two competing processes occur at the interfaces, (i) interface sharpening as a result of de-mixing, driven by a large positive heat of mixing between Fe and Ag and (ii) increase in topological roughness due to increased thermal agitation. This results in a non-monotonous variation in the roughness of Fe-on-Ag interface. At sufficiently high temperature the layered structure is completely destroyed, leading to formation of Fe and Ag nanoparticles.

  6. Structural and magnetic characterization of Co partical coated with Ag

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Sanchez, R. D.; Fondado, A.; Izco, C.; Garcia-Bastida, A. J.; Garcia-Otero, J.; Mira, J.; Baldomir, D.; Gonzalez, A.; Lado, I.

    1994-11-01

    Co fine particles coated with Ag have been synthesized through the microemulsion method in an inert atmosphere. The size of the particles is controlled by the water droplets of the microemulsions. Fine particles prepared by this method, consist of a magnetic core of Co covered by a layer of Ag. Samples containing from 3.3 to 40.5 vol % Co have been prepared. The average size of the particles obtained is in the nanometer range. The magnetic properties were studied by dc magnetization at 77 K and room temperature. The data show a strong dependence of the magnetic properties on the annealing temperature.

  7. CBA main magnet power supply ripple reduction

    SciTech Connect

    Bagley, G.; Edwards, R.J.

    1983-01-01

    The preliminary results of a development program to minimize beam perturbation resulting from ripple current generated by the CBA Main Magnet Power Supply are presented. The assessment of the magnitude and causes of the ripple generated led to a modification of the SCR Gate Driver and the addition of a bandpass amplifier correction loop which gave significant improvement. A description of the changes made and the results obtained are included. A second design approach was developed in which the timing of the SCR gate pulses is directly determined by a VCO. The results reported with this VCO Loop indicate superior performance particularly at frequencies below 60 Hz. A shunt transistor regulator design is proposed to minimize higher SCR switching frequency harmonics.

  8. Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).

    PubMed

    Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B

    2011-02-01

    The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.

  9. Magnetic properties of Co/Ag core/shell nanoparticles prepared by successive reactions in microemulsions

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Garcia-Bastida, A. J.; Lopez-Quintela, M. A.; Ramos, C.

    2006-05-01

    Co nanoparticles with an Ag covering layer have been prepared by successive reactions in microemulsions. Their magnetic behavior was studied as a function of heat treatment. It was confirmed that, under the experimental conditions of this study, the size of the Co nuclei is limited by the reactant concentration, whereas the Ag covering is fixed by microemulsion droplet size. The as-prepared particles contain mainly Co 3O 4 nuclei, and present high effective moments that agree with the spin state of Co 3+. The observed magnetic behaviors were explained taking into account the intra- and inter-particle structural evolution of the particle assemblies annealed under different experimental conditions.

  10. Magnetic main sequence stars as progenitors of blue supergiants

    NASA Astrophysics Data System (ADS)

    Petermann, I.; Castro, N.; Langer, N.

    2015-01-01

    Blue supergiants (BSGs) to the right the main sequence band in the HR diagram can not be reproduced by standard stellar evolution calculations. We investigate whether a reduced convective core mass due to strong internal magnetic fields during the main sequence might be able to recover this population of stars. We perform calculations with a reduced mass of the hydrogen burning convective core of stars in the mass range 3-30 M ⊙ in a parametric way, which indeed lead to BSGs. It is expected that these BSGs would still show large scale magnetic fields in the order of 10 G.

  11. Magnetic phase diagram in CePd 1- xAg x

    NASA Astrophysics Data System (ADS)

    Besnus, M. J.; Godart, C.; Kappler, J. P.; Sereni, J.

    1994-04-01

    Magnetic susceptibility, high field magnetization and specific heat measurements are presented on CePd 1- xAg x for 0 ≤ x ≤ 0.175. The strong effect of Pd substitution by Ag stresses the instability of the compound towards noble metals solutes or electron-like impurities.

  12. Interplay between structural symmetry and magnetism in Ag-Cu

    NASA Astrophysics Data System (ADS)

    Yen, Tsung-Wen; Lai, S. K.

    2016-01-01

    We present first-principles theoretical calculations of the magnetic properties of bimetallic clusters Ag-Cu. The calculations proceeded by combining a previously developed state-of-the-art optimization algorithm (P.J. Hsu, S.K. Lai, J. Chem. Phys. 124 (2006) 0447110) with an empirical potential and applied this numerical scheme to determine first the lowest energy structures of pure clusters Ag38 and Cu38, and also their different atomic compositions AgnCu38-n for n=1,2,…,37. Then, we carried out the Kohn-Sham spin unrestricted density functional theory calculations on the optimized atomic structures obtained in the preceding step. Given the minimized structures from the first step as input configurations, the results of these re-optimized structures by full density functional theory calculations yield more refined electronic and atomic structures. A thorough comparison of the structural differences between these two sets of atomic geometries, one from using an empirical potential in which the electronic degrees of freedom were included approximately and another from subsequent minimization using the spin unrestricted density functional theory, sheds light on how the electronic charges disperse near atoms in clusters AgnCu38-n, and hence the distributions of electronic spin and charge densities at re-optimized sites of the cluster. These data of the electronic dispersion and the ionic configuration give clue to the mystery of the unexpected net magnetic moments which were found in some of the clusters AgnCu38-n at n=1-4, 24 as well as the two pure clusters. Possible origins for this unanticipated magnetism were explained in the context of the point group theory in much the same idea as the Clemenger-Nilsson model applied to simple metal clusters except that we draw particular attention to the atomic topologies and stress the bearing that they have on valence electrons in inducing them to disperse and occupy different molecular orbital energy levels.

  13. AN UPGRADE OF MAGNET-FIELD-DRIVEN TIMING SYSTEMS AT THE AGS.

    SciTech Connect

    TIAN, Y.; OERTER, B.

    2005-10-10

    An upgrade of the main magnet-field-driven timing systems at Brookhaven National Laboratory's Alternating Gradient Synchrotron (AGS) and Booster accelerators will be described in this paper. A novel approach using content addressable memory (CAM) is applied to overcome a weakness in the previous systems, which required a reproducible dwell field for proper operation. Upgraded from a multibus-based system to a VME-based system, the new timing system also proves easier to maintain and to diagnose. Details of the system architecture, as well as its application in other timing systems will be discussed.

  14. Role of Ag addition in L10 ordering of FePt-based nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Vasiliu, F.; Mercioniu, I.; Crisan, O.

    2014-01-01

    The FePt system has important perspectives as high-temperature corrosion-resistant magnets. In the form of rapidly solidified melt-spun ribbons, FePt-based magnets may exhibit in certain cases a two-phase hard-soft magnetic behaviour. The present paper deals with a microstructural and magnetic study of FePtAgB alloys with increasing Ag content. The aim is to identify and confirm the effect of Ag addition in decreasing the temperature of the FePt disorder-order structural phase transformation. A detailed high-resolution transmission electron microscopy study is employed, and the alternative disposal of hard and soft regions within the two-phase microstructure is observed and interpreted with respect to the X-ray diffraction results. In the as-cast Ag-containing samples, it is shown that there is an optimum of the Ag content for which best magnetic properties are obtained. Ag addition creates a nonlinear behaviour of the coercive field and the ordering parameter, similar to the RKKY interaction-induced interlayer exchange coupling (IEC) observed in magnetic layers separated by non-magnetic spacer layers. Direct formation of the L10 phase from the as-cast state in the FePtAgB alloys is reported with magnetic parameters compatible to other exchange spring permanent nanomagnets. These findings open novel perspectives into utilization of such alloys in applications requiring magnets operating in high-temperature industrial environments.

  15. A mobile magnetic sensor unit for the KATRIN main spectrometer

    NASA Astrophysics Data System (ADS)

    Osipowicz, A.; Seller, W.; Letnev, J.; Marte, P.; Müller, A.; Spengler, A.; Unru, A.

    2012-06-01

    The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to measure the electron neutrino mass with an unprecedented sensitivity of 0.2 eV/c2, using β decay electrons from tritium decay. For the control of magnetic field in the main spectrometer area of the KATRIN experiment a mobile magnetic sensor unit is constructed and tested at the KATRIN main spectrometer site. The unit moves on inner rails of the support structures of the low field shaping coils which are arranged along the the main spectrometer. The unit propagates on a caterpillar drive and contains an electro motor, battery pack, board electronics, 2 triaxial flux gate sensors and 2 inclination senors. During operation all relevant data are stored on board and transmitted to the master station after the docking station is reached.

  16. Nitriding-induced texture, ordering and coercivity enhancement in FePtAgB nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Crisan, O.; Vasiliu, F.; Palade, P.; Mercioniu, I.

    2016-03-01

    FePt system attracts currently a great deal of interest for applications as future RE free permanent magnets. Among the key issues to be solved one may count the decreasing of the ordering temperature and improvement of magnetic behavior. For that purpose we have studied the effect of a nitriding post-synthesis procedure on the FePtAgB melt spun ribbons, aimed at refining the microstructure and enhancing the magnetic performances. Deep structural characterization by transmission electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy and X-ray diffraction allowed us to observe the morphology and to correctly assign and identify the nature of the main granular phases observed. Nitriding procedure is shown to strongly enhance the (001) texturing and the degree of ordering of the L10 FePt phase, as well as largely increase of coercivity, compared to the as-cast state. These changes are interpreted in terms of Ag segregation towards intergranular region associated to N diffusion and creation of vacancies that favor consistently the process of ordering the FePt grains into the L10 tetragonal phase.

  17. Single crystal and magnetic structures of maricite-type AgMnVO{sub 4}

    SciTech Connect

    Ben Yahia, Hamdi; Shikano, Masahiro; Gaudin, Etienne; Avdeev, Maxim; Ling, Chris D.

    2015-01-15

    Single crystals of the ternary manganese vanadate AgMnVO{sub 4}, were grown using AgVO{sub 3} flux. The structure was determined from single crystal X-ray diffraction data. The magnetic structure and properties of AgMnVO{sub 4} were characterized by magnetic susceptibility, specific heat, and low-temperature neutron powder diffraction measurements. AgMnVO{sub 4} crystallizes in the maricite-type structure with space group Pnma, a=9.5393(12), b=6.8132(9), c=5.3315(7) Å and Z=4. AgMnVO{sub 4} contains MnO{sub 4} chains made up of edge-sharing MnO{sub 6} octahedra, and these chains are interlinked by the VO{sub 4} and AgO{sub 4} tetrahedra. The specific heat measurements indicate a 3D-antiferromagnetic ordering at ∼12.1 K and the neutron powder diffraction measurements at 5 K show that the Mn{sup 2+}magnetic moments are antiferromagnetically coupled within the chains which are antiferromagnetically coupled to each other. - Graphical abstract: The AgMnVO{sub 4} crystals could be grown in AgVO{sub 3} flux and the magnetic structure was determined from neutron powder diffraction data. The spins in each MnO{sub 4} chain along [0 1 0] are antiferromagnetically coupled, while these antiferromagnetic chains are antiferromagnetically coupled along [0 0 1] but have a non-collinear arrangement along [1 0 1]. - Highlights: • We have been able to grow AgMnVO{sub 4} single crystals, using AgVO{sub 3} flux. • We solved its crystal structure using single crystal data. • We carried out magnetic susceptibility and specific heat measurements. • We solved the magnetic structure from low-temperature neutron powder diffraction data. • We compared the magnetic structure to that of NaFePO{sub 4}.

  18. Blue supergiants as descendants of magnetic main sequence stars

    NASA Astrophysics Data System (ADS)

    Petermann, I.; Langer, N.; Castro, N.; Fossati, L.

    2015-12-01

    About 10% of the massive main sequence stars have recently been found to host a strong, large scale magnetic field. Both, the origin and the evolutionary consequences of these fields are largely unknown. We argue that these fields may be sufficiently strong in the deep interior of the stars to suppress convection near the outer edge of their convective core. We performed parametrised stellar evolution calculations and assumed a reduced size of the convective core for stars in the mass range 16M⊙ to 28M⊙ from the zero age main sequence until core carbon depletion. We find that such models avoid the coolest part of the main sequence band, which is usually filled by evolutionary models that include convective core overshooting. Furthermore, our "magnetic" models populate the blue supergiant region during core helium burning, i.e., the post-main sequence gap left by ordinary single star models, and some of them end their life in a position near that of the progenitor of Supernova 1987A in the Hertzsprung-Russell diagram. Further effects include a strongly reduced luminosity during the red supergiant stage, and downward shift of the limiting initial mass for white dwarf and neutron star formation.

  19. Are blue supergiants descendants of magnetic main sequence stars?

    NASA Astrophysics Data System (ADS)

    Petermann, Ilka; Langer, Norbert

    2013-06-01

    Red and blue supergiants are, together with luminous blue variables and Wolf-Rayet stars, evolved phases of massive (OB) stars. The position of blue supergiants (BSG) near the main sequence band cannot be reproduced by standard stellar evolution calculations. However, the assumption of a reduced convective core mass during the main sequence (MS) due to strong internal magnetic fields, established in roughly 10% of all stars on the upper MS, can recover this BSG population. For our calculations of the (non-rotating) massive stars at solar metallicity we used the 1D stellar evolution code MESA and compare their evolutionary tracks with positions from stars obtained from the VLT Flames survey of massive stars.

  20. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  1. Structural, thermal and magnetic investigations on immiscible Ag-Co nanocrystalline alloy with addition of Mn

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Chabri, S.; Sardar, G.; Nath, D. N.; Chattopadhyay, P. P.

    2016-08-01

    50Ag-50Co (at%) and 40Ag-40Co-20Mn (at%) alloys prepared by ball milling up to 50 h and subsequent isothermal annealing at the temperature range of 350-650 °C for 1 h has been investigated systematically. Mn promotes early formation of the nanostructures and solid solutions of the alloys by ball milling. In contrast, annealing at 350 °C of Ag-Co alloy resulted the dissolution of hcp Co. Annealing above 350 °C decomposes the metastable Ag-Co alloy into the polycrystalline and segregated Ag and fcc Co. Enthalpy of mixing of both the alloy has increased with increase in milling time. Both the nanocrystalline alloys prepared by ball milling and annealing have been revealed the ferromagnetic behavior. The most significant improvement of magnetic properties is yielded in as-milled Ag-Co-Mn alloy obtained after annealing at 550 °C for 1 h.

  2. Laser assisted magnetic recording properties using SiAg near-field super-resolution structure

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Wei, Jingsong; Gan, Fuxi

    2008-12-01

    Laser assisted magnetic recording properties were obtained by SiAg nonmagnetic mask layer combined near-field coupled super-resolution technique. The film structure was "Glass/SiN(30nm)/SiAg(20nm)/SiN(20nm)/TbFeCo(50nm)/SiN(10nm)". SiN and TbFeCo films were prepared by Radio frequency (RF) and Direct current (DC) magnetron sputtering respectively. The SiAg nonmagnetic mask layer was deposited by co-sputtering from a composite target. In the process of sputtering, the substrate negative DC bias voltage was kept at about 100V. Magnetic properties were obtained by vibrating sample magnetometer(VSM) and the magneto optical Kerr measurement. The magnetic recording was conducted by a home-made laser-assisted optic-magnetic hybrid recording setup, whose laser wavelength is 406.7nm and numerical aperture of converging lens is 0.80, respectively. The optical spot size is about 600nm. In the course of recording, the laser pulse was fixed at 100ns, and the magnetic field intensity was 300 Oe. The magnetic domains with a size of about 100nm were obtained, which is about 1/6 of the optical spot size. The analysis indicates that the SiAg nonmagnetic mask layer played a key role in reducing the magnetic domain size.

  3. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media

    SciTech Connect

    Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K. Wang, J.; Hono, K.; Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T.

    2014-06-02

    We investigated the Ag distribution in a FePtAg-C granular film that is under consideration for a heat assisted magnetic recording medium by aberration-corrected scanning transmission electron microscope-energy dispersive X-ray spectroscopy and X-ray absorption fine structure. Ag is rejected from the core of FePt grains during the deposition, forming Ag-enriched shell surrounding L1{sub 0}-ordered FePt grains. Since Ag has no solubility in both Fe and Pt, the rejection of Ag induces atomic diffusions thereby enhancing the kinetics of the L1{sub 0}-order in the FePt grains.

  4. Fe3O4@Nico-Ag magnetically recyclable nanocatalyst for azo dyes reduction

    NASA Astrophysics Data System (ADS)

    Kurtan, U.; Amir, Md.; Baykal, A.

    2016-02-01

    In this study, we report the successful synthesis of Fe3O4@Nico-Ag nanocomposite as magnetically recyclable nanocatalyst (MRCs) via reflux process at 80 °C for 5 h followed by reduction of Ag+. FeCl3·6H2O, FeCl2·4H2O, AgNO3 as starting reactants and nicotinic acid as linker. The structure, morphology, thermal behaviour and magnetic properties of the product were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDX), thermal gravimetry (TG) and vibrating sample magnetometry (VSM), respectively. The catalytic activity of product for various azo dyes such as methylene blue (MB), methyl orange (MO), Rhodamine B (RhB) and eosin Y (EY) and their double mixtures were studied. It was found that Fe3O4@Nico-Ag MRCs is an efficient catalyst and can also rapidly separated from the reaction medium using magnet without considerable loss in its catalytic activity and used several times. Fe3O4@Nico-Ag MRCs has potential for the treatment of industrial dye pollutants.

  5. Magnetic Rotation in {sup 106}Ag and Systematics of A{approx}110 Mass Region

    SciTech Connect

    He, C. Y.; Zhu, L. H.; Wu, X. G.; Wen, S. X.; Li, G. S.; Liu, Y.; Wang, Z. M.; Li, X. Q.; Ma, R. G.; Yang, C. X.; Cui, X. Z.

    2008-11-11

    The high spin states of {sup 106}Ag were populated via the fusion-evaporation reaction {sup 100}Mo({sup 11}B,5n){sup 106}Ag at a beam energy of 60 MeV. A new level scheme of {sup 106}Ag is built on basis of the present experiment. The positive parity band with the configuration of {pi}g{sub 9/2} x V[h{sub 11/2}{sup 2}(g{sub 7/2}/d{sub 5/2})] is discussed on the ground of shears mechanism. Theoretical calculation of the effective interaction performed by TAC model agrees well with the experimental value. Systematics study shows that Ag isotopes are probably at the boundary of magnetic rotation in A{approx}110 mass region.

  6. AGS Fast spin resonance jump, magnets and power supplies

    SciTech Connect

    Glenn,J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-05-04

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 {micro}s, hold flat for about 4 ms and fan to zero in 100 {micro}s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described.

  7. Structure evolution, magnetic properties and giant magnetoresistance of granular NiFeCo-Ag films

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wong, S. P.; Lu, Xiang; Yan, Xin; Cheung, W. Y.; Ke, N.; Hu, Shejun; Zeng, Dechang; Liu, Zhenyi

    2000-06-01

    The structure evolution of granular (NiFeCo)xAg(1-x) (x = 9-41 at%) films was characterized by x-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, x-ray diffraction, atomic force microscopy and magnetic force microscopy. The giant magnetoresistance of the films was measured as a function of temperature between 20 and 300 K using a conventional four-point probe dc technique in the presence of a magnetic field up to 7.6 kOe. The temperature dependence of magnetization and magnetic hysteresis loops for the films were measured by a SQUID magnetometer. It was found that the optimum concentration and annealing temperature for the maximum giant magnetoresistance was associated with the crystalline structure and the magnetic domain structure of the film. A clear flat-top parabola and a significant deviation from the quadratic law expected for equal-size, non-interacting superparamagnetic particles in the magnetoresistance (Δρ/ρ) against magnetization (M/Ms) curve were observed for the 500 °C annealed (NiFeCo)20Ag80 sample in a wide field region. The curves of Δρ/ρ against M/Ms were well described by a function of the form c(M/Ms)10. This behaviour was explained by combining the characteristics of the microstructure, magnetic domain structure and magnetic properties of the sample.

  8. Magnetic and electronic structure of Mn nanostructures on Ag(111) and Au(111)

    NASA Astrophysics Data System (ADS)

    Cardias, R.; Bezerra-Neto, M. M.; Ribeiro, M. S.; Bergman, A.; Szilva, A.; Eriksson, O.; Klautau, A. B.

    2016-01-01

    We present results of the electronic and magnetic structure of Mn nanowires adsorbed on Ag(111) and Au(111) surfaces. For finite Mn nanowires on Ag(111) and Au(111) surfaces, our ab initio results show that the large difference between the spin-orbit splitting of these two surfaces leads to completely different magnetic configurations. The magnetic ordering for Mn nanowires adsorbed on Ag(111) is governed by the strong exchange interaction between Mn adatoms. For Mn nano-chains on Au(111), the competition between Heisenberg and Dzyaloshinskii-Moriya interactions leads to a complex magnetic structure of the clusters considered here. Among the more conspicuous results we note a spin-spiral helical type for the nanowire with seven atoms, and a complex magnetic configuration incommensurate with the substrate lattice for a double-sized Mn wire. The effect of the structural relaxation is also investigated, showing sensitivity of the exchange interactions to the bond distance to the substrate. We also demonstrate that small changes in the band filling of these Mn chains results in drastically different changes of the interatomic exchange. Finally, we show that dispersion of the electronic energy spectrum is possible even in nanostructures with bounded spatial extension.

  9. Megagauss Magnetic Field Sensors Based on Ag2Te

    SciTech Connect

    Stephen Mitchen; Allen L. Johnson; John W. Farley

    2006-11-30

    Pulsed power machines capable of producing tremendous energy face various diagnostic and characterizing challenges. Such devices, which may produce 10 - 100MAs, have traditionally relied on Faraday rotation and Rogowski coil technology for time-varying current measurements. Faraday rotation requires a host of costly optical components, including fibers, polarizers, retarders, lasers, and detectors, as well as setup, alignment, and time-consuming post-processing to unwrap the time-dependent current signal. Rogowski coils face potential problems such as physical distortion to the sensor itself due to the tremendous strain caused by magnetically induced pressures, which is proportional to the magnetic field squared (B2). Electrical breakdown in the intense field region is also a major concern. Other related challenges include, but are not limited to, bandwidth and inductance limitations and susceptibility issues related to electrical magnetic interference (EMI).

  10. Geodynamics branch data base for main magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  11. Collective magnetic behaviors of Fe-Ag nanostructured thin films above the percolation limit

    SciTech Connect

    Alonso, J.; Fdez-Gubieda, M. L.; Barandiaran, J. M.; Svalov, A.; Sarmiento, G.; Fernandez Barquin, L.; Pedro, I. de; Orue, I.

    2009-04-01

    The magnetic behavior of sputtered and pulsed laser deposited (PLD) Fe{sub x}Ag{sub 100-x} thin films with 27{<=}x{<=}55 has been studied by means of ac and dc magnetic measurements. Sputtered samples present a continuous decrease in the magnetization, down to 310 K for x=30, where a magnetic transition into a superparamagnetic state with the presence of dipolar interactions is observed. The ac susceptibility measurements indicate that this transition resembles that of three dimensional glassy systems. Sputtered samples with higher concentration of Fe present a similar but slower thermal evolution of magnetization. PLD samples with x{>=}50 show a Curie-Weiss-type transition above {approx}200 K triggered by direct exchange interactions. As the temperature decreases, the system behaves like a ferromagnet and below {approx}75 K, a transition into a cluster-glass state appears. As the composition decreases, these phenomena vanish.

  12. Stabilizing a magnetic vortex/antivortex array in single crystalline Fe/Ag(001) microstructures

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, A.; Moon, K. W.; Doran, A.; Marcus, M. A.; Young, A. T.; Arenholz, E.; Ma, S.; Yang, R. F.; Hwang, C.; Qiu, Z. Q.

    2014-06-01

    While a magnetic antivortex state can be created in ring structures, much effort has been devoted to stabilizing a magnetic antivortex as the ground state in a single island. Among many proposals, less attention has been paid to the role of magnetocrystalline anisotropy because most magnetic microstructures are made of polycrystalline materials. By patterning epitaxial Fe/Ag(001) films along different in-plane directions, we show that the Fe magnetocrystalline anisotropy plays a very important role in stabilizing different types of vortex/antivortex states. In particular, we find that an Fe island in the shape of an elongated hexagon favors vortex array formation when the long edge is parallel to the Fe easy magnetization axis, and favors the vortex-antivortex array formation when the long edge is parallel to the Fe hard magnetization axis.

  13. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  14. SrAgZn and EuAgZn with KHg{sub 2}-type structure—Structure, magnetic properties, and {sup 151}Eu Mössbauer spectroscopy

    SciTech Connect

    Gerke, Birgit; Rodewald, Ute Ch.; Niehaus, Oliver; Pöttgen, Rainer

    2013-07-15

    Samples of SrAgZn and EuAgZn were synthesized by reaction of the elements in sealed tantalum crucibles. Both structures were refined on the basis of single crystal X-ray diffractometer data: KHg{sub 2}-type, Imma, a=476.7(1), b=780.9(2), c=810.1(2) pm, R{sub 1}/wR{sub 2}=0.0189/0.0119, 381 F² values for SrAg{sub 1.12}Zn{sub 0.88} and a=474.43(9), b=760.8(2), c=799.0(2) pm, R{sub 1}/wR{sub 2}=0.0226/0.0483, 370 F² values for EuAg{sub 1.17}Zn{sub 0.83} with 13 variables per refinement. Silver and zinc are randomly distributed on the Hg position and build up three-dimensional networks. EuAgZn shows ferromagnetic ordering at 29(1) K. In the temperature range from 75 to 300 K the sample shows Curie–Weiss behaviour with μ{sub eff}=7.87(1) μ{sub B}/Eu atom and θ{sub P}=37.1(1) K, indicating divalent europium. {sup 151}Eu Mössbauer spectroscopic measurements confirmed the divalent state with an isomer shift of −9.31 mm/s at 78 K. Temperature dependent {sup 151}Eu data show first magnetic hyperfine field splitting at 25 K and a saturated magnetization of 17 T at 5.2 K. The temperature dependence can be described by an S=7/2 Brillouin function. - Graphical abstract: The near neighbor coordination of the strontium and europium atoms in SrAg{sub 1.12}Zn{sub 0.88}, EuAg{sub 1.17}Zn{sub 0.83}, and EuAuZn. - Highlights: • Synthesis of new intermetallic zinc compounds SrAgZn and EuAgZn. • Ferromagnetic ordering of EuAgZn at 29 K. • Magnetic hyperfine field splitting in the {sup 151}Eu Mössbauer spectrum.

  15. Magnet reliability in the Fermilab Main Injector and implications for the ILC

    SciTech Connect

    Tartaglia, M.A.; Blowers, J.; Capista, D.; Harding, D.J.; Kiemschies, O.; Rahimzadeh-Kalaleh, S.; Tompkins, J.C.; /Fermilab

    2007-08-01

    The International Linear Collider reference design requires over 13000 magnets, of approximately 135 styles, which must operate with very high reliability. The Fermilab Main Injector represents a modern machine with many conventional magnet styles, each of significant quantity, that has now accumulated many hundreds of magnet-years of operation. We review here the performance of the magnets built for this machine, assess their reliability and categorize the failure modes, and discuss implications for reliability of similar magnet styles expected to be used at the ILC.

  16. Magnetic properties of ZnS doped with noble metals (X = Ru, Rh, Pd, and Ag)

    NASA Astrophysics Data System (ADS)

    Tan, Zhiyun; Xiao, Wenzhi; Wang, Lingling; Yang, Youchang

    2012-12-01

    Density functional theory calculations are carried out to study the electronic structures and magnetic properties in zinc-blende structure ZnS doped with nonmagnetic noble metals (X = Ru, Rh, Pd, and Ag). Results show robust magnetic ground states for X-doped ZnS. The total magnetic moments are about 2.0, 3.0, and 2.0 μB per supercell for the Ru-, Rh-, and Pd-doped ZnS, respectively. As the atomic number of X element increases, the local magnetic moment tends toward delocalize and the hybridization between X-4d and S-3p states become stronger. This trend is strongly related to the difference in electronegativity between the substitutional X and the cation in the ZnS host. For Ag-doped ZnS, both non-spin- and spin-polarized calculations yield nearly equal total energy. The substitution of Zn in ZnS parent material by the nonmagnetic 4d transition-metals may lead to half-metallic ferromagnetism which stems from the hybridization between X-4d and S-3p states and could be attributed to a double-exchange mechanism. Curie temperature values are estimated using mean-field approximation.

  17. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab`s new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  18. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  19. Structural and magnetic phase transitions in CeCu6 -xTx (T =Ag ,Pd )

    NASA Astrophysics Data System (ADS)

    Poudel, L.; de la Cruz, C.; Payzant, E. A.; May, A. F.; Koehler, M.; Garlea, V. O.; Taylor, A. E.; Parker, D. S.; Cao, H. B.; McGuire, M. A.; Tian, W.; Matsuda, M.; Jeen, H.; Lee, H. N.; Hong, T.; Calder, S.; Zhou, H. D.; Lumsden, M. D.; Keppens, V.; Mandrus, D.; Christianson, A. D.

    2015-12-01

    The structural and the magnetic properties of CeCu6 -xAgx (0 ≤x ≤0.85 ) and CeCu6 -xPdx (0 ≤x ≤0.4 ) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu6 -xAgx and CeCu6 -xPdx as a function of Ag/Pd composition are reported. The end member, CeCu6, undergoes a structural phase transition from an orthorhombic (P n m a ) to a monoclinic (P 21/c ) phase at 240 K. In CeCu6 -xAgx , the structural phase transition temperature (Ts) decreases linearly with Ag concentration and extrapolates to zero at xS ≈0.1 . The structural transition in CeCu6 -xPdx remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu6 -xAgx and CeCu6 -xPdx , exhibit a magnetic quantum critical point (QCP), at x ≈0.2 and x ≈0.05 , respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ10 δ2), where δ1˜0.62 ,δ2˜0.25 ,x =0.125 for CeCu6 -xPdx and δ1˜0.64 ,δ2˜0.3 ,x =0.3 for CeCu6 -xAgx . The magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.

  20. Field errors introduced by eddy currents in Fermilab main injector magnets

    SciTech Connect

    Walbridge, D.G.C.; Brown, B.C.; Dinanco, J.B.; Sharoran, S.A.; Sim, J.W.

    1997-10-01

    The Fermilab Main Injector ramps from 8 GeV to 120 GeV in about half a second. The rapidly changing magnetic field induces eddy currents in the stainless steel vacuum tubes, which in turn produce error fields that can affect the beam. Field calculations and measurements are presented for the dipole and quadrupole magnets.

  1. Evidence of magnetic field decay in massive main-sequence stars

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Schneider, F. R. N.; Castro, N.; Langer, N.; Simón-Díaz, S.; Müller, A.; de Koter, A.; Morel, T.; Petit, V.; Sana, H.; Wade, G. A.

    2016-08-01

    A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understood. We compile a catalogue of 389 massive main-sequence stars, 61 of which are magnetic, and derive their fundamental parameters and ages. The two samples contain stars brighter than magnitude 9 in the V-band and range in mass between 5 and 100 M⊙. We find that the fractional main-sequence age distribution of all considered stars follows what is expected for a magnitude limited sample, while that of magnetic stars shows a clear decrease towards the end of the main sequence. This dearth of old magnetic stars is independent of the choice of adopted stellar evolution tracks, and appears to become more prominent when considering only the most massive stars. We show that the decreasing trend in the distribution is significantly stronger than expected from magnetic flux conservation. We also find that binary rejuvenation and magnetic suppression of core convection are unlikely to be responsible for the observed lack of older magnetic massive stars, and conclude that its most probable cause is the decay of the magnetic field, over a time span longer than the stellar lifetime for the lowest considered masses, and shorter for the highest masses. We then investigate the spin-down ages of the slowly rotating magnetic massive stars and find them to exceed the stellar ages by far in many cases. The high fraction of very slowly rotating magnetic stars thus provides an independent argument for a decay of the magnetic fields.

  2. Spatial-temporal dynamics of auroras during the magnetic storm main phase

    NASA Astrophysics Data System (ADS)

    Kornilova, T. A.; Kornilov, I. A.

    2009-12-01

    The structure and dynamics of auroras in the midnight sector during substorms, which develop during the magnetic storm main phase as compared to the characteristics of a typical auroral substorm, have been studied using the ground-based and satellite observations. It has been found out that a difference from the classical substorm is observed in auroras during the magnetic storm main phase. At the beginning of the storm main phase, the series of pseudobreakups with the most pronounced jump-like motion toward the equator shifts to lower latitudes. The substorm expansion phase can be observed not only as arc jumps to higher latitudes but also as an explosive expansion of a bright diffuse luminosity in all directions. During the magnetic storm main phase, auroras are mainly characterized by the presence of stable extensive rayed structures and by the simultaneous existence of different auroral forms, typical of different substorm phases, in the TV camera field of view.

  3. Magnetic hyperthermia in brick-like Ag@Fe3O4 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Brollo, M. E. F.; Orozco-Henao, J. M.; López-Ruiz, R.; Muraca, D.; Dias, C. S. B.; Pirota, K. R.; Knobel, M.

    2016-01-01

    Heating efficiency of multifunctional Ag@Fe3O4 brick-like nanoparticles under alternating magnetic field was investigated by means of specific absorption rate (SAR) measurements, and compared with equivalent measurements for plain magnetite and dimer heteroparticles. The samples were synthesized by thermal decomposition reactions and present narrow size polydispersity and high degree of crystallinity. The SAR values are analyzed using the superparamagnetic theory, in which the basic morphology, size and dispersion of sizes play key roles. The results suggest that these novel brick-like nanoparticles are good candidates for hyperthermia applications, displaying heating efficiencies comparable with the most efficient plain nanoparticles.

  4. LARGE SCALE DISTRIBUTED PARAMETER MODEL OF MAIN MAGNET SYSTEM AND FREQUENCY DECOMPOSITION ANALYSIS

    SciTech Connect

    ZHANG,W.; MARNERIS, I.; SANDBERG, J.

    2007-06-25

    Large accelerator main magnet system consists of hundreds, even thousands, of dipole magnets. They are linked together under selected configurations to provide highly uniform dipole fields when powered. Distributed capacitance, insulation resistance, coil resistance, magnet inductance, and coupling inductance of upper and lower pancakes make each magnet a complex network. When all dipole magnets are chained together in a circle, they become a coupled pair of very high order complex ladder networks. In this study, a network of more than thousand inductive, capacitive or resistive elements are used to model an actual system. The circuit is a large-scale network. Its equivalent polynomial form has several hundred degrees. Analysis of this high order circuit and simulation of the response of any or all components is often computationally infeasible. We present methods to use frequency decomposition approach to effectively simulate and analyze magnet configuration and power supply topologies.

  5. Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wu, Zheng; Chen, Liangwei; Zhang, Lianjie; Li, Xuelian; Xu, Haifeng; Wang, Hongyan; Zhu, Guang

    2016-02-01

    The novel three-component Fe3O4/TiO2/Ag composite mircospheres were prepared via a facile chemical deposition route. The Fe3O4/TiO2 mircospheres were first prepared by the solvothermal method, and then Ag nanoparticles were anchored onto the out-layer of TiO2 by the tyrosine-reduced method. The as-prepared magnetic Fe3O4/TiO2/Ag composite mircospheres were applied as photocatalysis for the photocatalytic degradation of methylene blue. The results indicate that the photocatalytic activity of Fe3O4/TiO2/Ag composite microspheres is superior to that of Fe3O4/TiO2 due to the dual effects of the enhanced light absorption and reduction of photoelectron-hole pair recombination in TiO2 with the introduction of Ag NPs. Moreover, these magnetic Fe3O4/TiO2/Ag composite microspheres can be completely removed from the dispersion with the help of magnetic separation and reused with little or no loss of catalytic activity.

  6. Ultrasonic-assisted preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites as magnetically separable visible-light-driven photocatalysts with excellent activity.

    PubMed

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2016-01-01

    The present work demonstrates preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites, as magnetically separable visible-light-driven photocatalysts using ultrasonic irradiation method. The XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques was applied for characterization of structure, purity, morphology, optical, and magnetic properties of the resultant samples. The superior activity was seen for the nanocomposite with 8 weight ratio of ZnO/AgI to Fe3O4 in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite in degradation of rhodamine B, methylene blue, and methyl orange is about 32, 6, and 5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The highly enhanced activity of the ternary magnetic photocatalyst was mainly attributed to more visible-light absorption ability and efficiently separation of the charge carriers. Furthermore, it was revealed that the ultrasonic irradiation time and calcination temperature affect largely on the photocatalytic activity. Finally, the magnetic photocatalyst was successfully separated from the treated solution using external magnetic field.

  7. The magnetic field of the pre-main sequence Herbig Ae star HD 190073

    NASA Astrophysics Data System (ADS)

    Catala, C.; Alecian, E.; Donati, J.-F.; Wade, G. A.; Landstreet, J. D.; Böhm, T.; Bouret, J.-C.; Bagnulo, S.; Folsom, C.; Silvester, J.

    2007-01-01

    Context: The general context of this paper is the study of magnetic fields in the pre-main sequence intermediate mass Herbig Ae/Be stars. Magnetic fields are likely to play an important role in pre-main sequence evolution at these masses, in particular in controlling the gains and losses of stellar angular momentum. Aims: The particular aim of this paper is to announce the detection of a structured magnetic field in the Herbig Ae star HD 190073, and to discuss various scenarii for the geometry of the star, its environment and its magnetic field. Methods: We have used the ESPaDOnS spectropolarimeter at CFHT in 2005 and 2006 to obtain high-resolution, high signal-to-noise circular polarization spectra which demonstrate unambiguously the presence of a magnetic field in the photosphere of this star. Results: Nine circular polarization spectra were obtained, each one showing a clear Zeeman signature. This signature is suggestive of a magnetic field structured on large scales. The signature, which corresponds to a longitudinal magnetic field of 74± 10 G, does not vary detectably on a one-year timeframe, indicating either an azimuthally symmetric field, a zero inclination angle between the rotation axis and the line of sight, or a very long rotation period. The optical spectrum of HD 190073 exhibits a large number of emission lines. We discuss the formation of these emission lines in the framework of a model involving a turbulent heated region at the base of the stellar wind, possibly powered by magnetic accretion. Conclusions: .This magnetic detection contributes an important new observational discovery which will aid our understanding of stellar magnetism at intermediate masses. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  8. A study of the magnetic field distribution in an Ag-sheathed Bi2223 tape using scanning Hall sensor and magneto-optical techniques

    NASA Astrophysics Data System (ADS)

    Kawano, K.; Abell, J. S.; Ohtake, A.; Oota, A.

    2000-09-01

    Using both magneto-optical (MO) and scanning Hall sensor techniques, magnetic field distributions have been observed in a superconducting Ag-sheathed Bi2223 monofilamentary tape in the presence of an external magnetic field. Application of the inversion scheme to the MO contrast has allowed the two-dimensional current distribution to be determined. The Hall sensor measurements indicate that the current distribution in the core depends on the applied external field, and the current flows mainly at the edge of the core in a high external field. The magnetic line profiles across the width of the tape have been analysed by a numerical calculation by modelling the current loops based on the two-dimensional current distribution from the MO image. The analysis shows that an increase in the external field limits and narrows the current flow region from the whole of the core to the edge.

  9. EDDY CURRENT EFFECT OF THE BNL-AGS VACUUM CHAMBER ON THE OPTICS OF THE BNL-AGS SYNCHROTRON.

    SciTech Connect

    TSOUPAS,N.; AHRENS,L.; BROWN,K.A.; GLENN,J.W.; GARDNER,K.

    1999-03-29

    During the acceleration cycle of the AGS synchrotron, eddy currents are generated within the walls of the vacuum chambers of the AGS main magnets. The vacuum chambers have elliptical cross section, are made of inconel material with a wall thickness of 2 mm and are placed within the gap of the combined-function main magnets of the AGS synchrotron. The generation of the eddy currents in the walls of the vacuum chambers, creates various magnetic multipoles, which affect the optics of the AGS machine. In this report these magnetic multipoles are calculated for various time interval starting at the acceleration cycle, where the magnetic field of the main magnet is {approx}0.1 T, and ending before the beam extraction process, where the magnetic field of the main magnet is almost constant at {approx}1.1 T. The calculations show that the magnetic multipoles generated by the eddy-currents affect the optics of the AGS synchrotron during the acceleration cycle and in particular at low magnetic fields of the main magnet. Their effect is too weak to affect the optics of the AGS machine during beam extraction at the nominal energies.

  10. Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3-AgBr.

    PubMed

    Ng, Tsz Wai; Zhang, Lisha; Liu, Jianshe; Huang, Guocheng; Wang, Wei; Wong, Po Keung

    2016-03-01

    Bacterial inactivation by magnetic photocatalyst receives increasing interests for the ease recovery and reuse of photocatalysts. This study investigated bacterial inactivation by a magnetic photocatalysts, Fe2O3-AgBr, under the irradiation of a commercially available light emitting diode lamp. The effects of different factors on the inactivation of Escherichia coli were also evaluated, in term of the efficiency in inactivation. The results showed that Fe2O3-AgBr was able to inactivate both Gram negative (E. coli) and Gram positive (Staphylococcus aureus) bacteria. Bacterial inactivation by Fe2O3-AgBr was more favorable under high temperature and alkaline pH. Presence of Ca(2+) promoted the bacterial inactivation while the presence of [Formula: see text] was inhibitory. The mechanisms of photocatalytic bacterial inactivation were systemically studied and the effects of the presence of various specific reactive species scavengers and argon suggest that Fe2O3-AgBr inactivate bacterial cells by the oxidation of H2O2 generated from the photo-generated electron and direct oxidation of photo-generated hole. The detection of different reactive species further supported the proposed mechanisms. The results provide information for the evaluation of bacterial inactivation performance of Fe2O3-AgBr under different conditions. More importantly, bacterial inactivation for five consecutive cycles demonstrated Fe2O3-AgBr exhibited highly stable bactericidal activity and suggest that the magnetic Fe2O3-AgBr has great potential for water disinfection.

  11. Magnetic relaxation in the nanoscale granular alloy Fe20Cu20Ag60

    NASA Astrophysics Data System (ADS)

    Ucko, D. H.; Pankhurst, Q. A.; Fernández Barquín, L.; Rodríguez Fernández, J.; Cox, S. F. J.

    2001-09-01

    The structural and magnetic properties of a representative member of a class of technologically relevant ternary metallic alloys have been studied in detail. The alloy, of composition Fe20Cu20Ag60, is a member of the family of nanoscale granular alloys that are of current interest in both giant magnetoresistive alloys and nanocrystalline soft magnets. Samples were produced by mechanical alloying (70 h, argon sealed) and were homogeneous according to scanning electron microscopy and electron microprobe analysis. Room-temperature magnetoresistance measurements in applied fields up to H=90 kOe gave a value of 5% (at 90 kOe) for the [R(H)-R(0)]/R(0) ratio. Rietveld calculations on high-resolution image plate data using a synchrotron source (λ=0.6920 Å) showed that the specimen comprised a dispersion of bcc Fe60Cu40 (Im-3m, a=2.951 Å) particles of mean size 5.5 nm in an fcc Ag90Cu10 (Fm-3m, a=4.057 Å) matrix. This structure was stable up to 380 K as revealed by differential scanning calorimetry. dc magnetization (peaks in zero-field-cooled data) and frequency-dependent ac susceptibility (in external dc magnetic fields from zero to 500 Oe) measurements showed blocking transitions between 280 and 300 K, with the onset of superparamagnetic behavior at higher temperatures. The superparamagnetic regime was confirmed at room temperature by the observation of anhysteretic M(H) curves, and through zero field and applied field Mössbauer experiments in which a combined singlet plus doublet spectrum was transformed to a magnetically split sextet on application of an 11-kOe field. In all cases the blocking transitions were clearly affected by the existence of intergranular interactions, which shifted them to higher temperatures than would be expected from noninteracting grains. Evidence of intergranular interactions were also found in the dynamic behavior of the ac susceptibility data (small frequency-dependent shifts in the blocking temperature, Vogel-Fulcher activation

  12. Magnetic properties of self-organized L1 0 FePtAg nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Wang, S.; Kang, S. S.; Nikles, D. E.; Harrell, J. W.; Wu, X. W.

    2003-10-01

    The magnetic properties of chemically synthesized high anisotropy L1 0 [Fe 49Pt 51] 88Ag 12 nanoparticle arrays have been studied as a function of annealing temperature. Particles were prepared by the simultaneous polyol reduction of platinum acetylacetonate and silver acetate and the thermal decomposition of iron carbonyl, yielding monodispersed particles of diameter ˜3.5 nm. Addition of Ag lowers the ordering temperature of self-assembled arrays by ˜150°C. After annealing at Ta=500°C for 30 min in an Ar/H 2 atmosphere, the coercivity was 13,800 Oe. TEM and delta- M measurements indicate weak particle aggregation up to Ta=400°C, with evidence of sintering at higher temperatures. Large ratios of remanent to hysteresis coercivity indicate a large distribution in anisotropy energies. Anomalously large thermal stability constants, KV/ kBT, and switching volumes were measured, even in samples with very little evidence of sintering. Zero field viscosity versus remanence curves show evidence of exchange interactions.

  13. Reduction of Marine Magnetic Data for Modeling the Main Field of the Earth

    NASA Technical Reports Server (NTRS)

    Baldwin, R. T.; Ridgway, J. R.; Davis, W. M.

    1992-01-01

    The marine data set archived at the National Geophysical Data Center (NGDC) consists of shipborne surveys conducted by various institutes worldwide. This data set spans four decades (1953, 1958, 1960-1987), and contains almost 13 million total intensity observations. These are often less than 1 km apart. These typically measure seafloor spreading anomalies with amplitudes of several hundred nanotesla (nT) which, since they originate in the crust, interfere with main field modeling. The source for these short wavelength features are confined within the magnetic crust (i.e., sources above the Curie isotherm). The main field, on the other hand, is of much longer wavelengths and originates within the earth's core. It is desirable to extract the long wavelength information from the marine data set for use in modeling the main field. This can be accomplished by averaging the data along the track. In addition, those data which are measured during periods of magnetic disturbance can be identified and eliminated. Thus, it should be possible to create a data set which has worldwide data distribution, spans several decades, is not contaminated with short wavelengths of the crustal field or with magnetic storm noise, and which is limited enough in size to be manageable for the main field modeling. The along track filtering described above has proved to be an effective means of condensing large numbers of shipborne magnetic data into a manageable and meaningful data set for main field modeling. Its simplicity and ability to adequately handle varying spatial and sampling constraints has outweighed consideration of more sophisticated approaches. This filtering technique also provides the benefits of smoothing out short wavelength crustal anomalies, discarding data recorded during magnetically noisy periods, and assigning reasonable error estimates to be used in the least square modeling. A useful data set now exists which spans 1953-1987.

  14. Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters

    SciTech Connect

    Friedrich, Stephan; Boyd, Stephen; Cantor, Robin

    2015-11-25

    This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.

  15. Structural, electrical and magnetic properties of polystyrene films filled with AgNO 3-FeCl 3 mixed fillers

    NASA Astrophysics Data System (ADS)

    Tawansi, A.; El-Khodary, A.; Youssef, A. E.

    2004-12-01

    The effect of various filling levels (FLs) of mixtures of two transition compounds (X)AgNO3 (10-X) FeCl3, on structural, electrical and magnetic properties of polystyrene (PS) films was investigated. The X-ray diffraction (XRD) displayed an unexpected appearance of a number of crystalline peaks beside the two main peaks characterizing the virgin film. The crystalline peaks were attributed to the cluster formation. The infrared (IR) analysis was used to detect the most notably PS peaks and to clarify the structural variations due to the filling. Certain IR peaks were taken as an evidence for the formation of polaron and/or bipolaron bound states in the polymeric matrix. The direct current (DC) electrical conduction studies revealed a linear temperature dependence of the hopping distance R0 for various FLs. This is an indication that the conduction mechanism can be attributed to one-dimensional intrachain type based on the phonon-assisted charge carrier interpolaron hopping model. The DC magnetic susceptibility results, in the temperature range 90-235 K, followed the Curie-Weiss behavior. The positive and negative values of the paramagnetic Curie temperature (θp) indicate the possibility of ferromagnetic and antiferromagnetic exchange interactions between the magnetic centers at low temperatures, respectively. The electron spin resonance (ESR) spectra at the lower values of X depicted a broad signal superimposed on it a narrow one as well as a deformed signal. The ESR investigations at the lower values of X indicated the presence of aggregated Fe+3 confirming the XRD implications about the cluster formation. On the other hand and at higher values of X, an appearance of unresolved five lines of fine structure character was noticed.

  16. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    SciTech Connect

    Bleadon, M.; Brown, B.; Chester, N.; Desavouret, E.; Garvey, J.; Glass, H.; Harding, D.; Harfoush, F.; Holmes, S.; Humbert, J.; Kerby, J.; Knauf, A.; Kobliska, G.; Lipski, A.; Martin, P.; Mazur, P.; Orris, D.; Ostiguy, J.; Peggs, S.; Pachnik, J.; Pewitt, E.; Satti, J.; Schmidt, E.; Sim, J.; Snowdon, S.; Walbridge, D.

    1991-09-01

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs.

  17. Study of road dust magnetic phases as the main carrier of potentially harmful trace elements.

    PubMed

    Bourliva, Anna; Papadopoulou, Lambrini; Aidona, Elina

    2016-05-15

    Mineralogical and morphological characteristics and heavy metal content of different fractions (bulk, non-magnetic fraction-NMF and magnetic fraction-MF) of road dusts from the city of Thessaloniki (Northern Greece) were investigated. Main emphasis was given on the magnetic phases extracted from these dusts. High magnetic susceptibility values were presented, whereas the MFs content of road dust samples ranged in 2.2-14.7 wt.%. Thermomagnetic analyses indicated that the dominating magnetic carrier in all road dust samples was magnetite, while the presence of hematite and iron sulphides in the investigated samples cannot be excluded. SEM/EDX analyses identified two groups of ferrimagnetic particles: spherules with various surface morphologies and textures and angular/aggregate particles with elevated heavy metal contents, especially Cr. The road dusts (bulk samples) were dominated by calcium, while the mean concentrations of trace elements decreased in the order Zn > Mn > Cu > Pb > Cr > Ni > V > Sn > As > Sb > Co > Mo > W > Cd. MFs exhibited significantly higher concentrations of trace elements compared to NMFs indicating that these potentially harmful elements (PHEs) are preferentially enriched in the MFs and highly associated with the ferrimagnetic particles. Hazard Index (HI) obtained for both adults and children through exposure to bulk dust samples were lower or close to the safe level (=1). On the contrary, the HIs for the magnetic phases indicated that both children and adults are experiencing potential health risk since HI for Cr was significantly higher than safe level. Cancer risk due to road dust exposure is low.

  18. 3D Design, Contruction, and Field Analysis of CIS Main Dipole Magnets

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Fox, W.; Friesel, D. L.; Rinckel, T.

    1997-05-01

    The lattice for CIS ( Cooler Injection Synchroton ) requires four laminated 90^circ main dipole magnets with bending radius ρ = 1.273 m, EFL = 2 m, and an edge angle of 12^circ. Optimum Cooler injection and injection in the planned 15 GeV LISS ring requires operation up to about 1.75 T. Initial operation of 1 Hz, with later upgrade to 5 Hz is planned. We will present 2D and 3D field calculations used to optimize the shape of laminations and endpacks of the magnet. Endpacks are designed to determine edge angle and to compensate hexapole components, in particular above 1.4 T where saturation becomes significant. The large dipole curvature required a new type of dipole construction. Each magnet consists of wedge shaped blocks fabricated from stamped lamination of cold rolled low carbon iron. B-stage (dry) epopy was used for bonding and insulation. The end blocks are machined to include the calculated 3D shape of the endpacks. All four magnets were mapped in the field range from 0.3 T - 1.8 T. Comparison of calculations and data in terms of B(I) curves, EFL, edge angle, and hexapole component as function of field excitation will be presented. The constructed magnets are well within expected specifications.

  19. Main-Sequence CMEs as Magnetic Explosions: Compatibility with Observed Kinematics

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2004-01-01

    We examine the kinematics of 26 CMEs of the morphological main sequence of CMEs, those having the classic three-part bubble structure of (1) a bright front eveloping (2) a dark cavity within which rides (3) a bright blob/filamentary feature. Each CME is observed in Yohkoh/SXT images to originate from near the limb (> or equal to 0.7 R(sub Sun) from disk center). The basic data (from the SOHO LASCO CME Catalog) for the kinematics of each CME are the sequence of LASCO images of the CME, the time of each image, the measured radial distance of the front edge of the CME in each image, and the measured angular extent of the CME. About half of our CMEs (12) occur with a flare, and the rest (14) occur without a flare. While the average linear-fit speed of the flare CMEs (1000 km/s) is twice that of the non-flare CMEs (510 km/s), the flare CMEs and the non-flare CMEs are similar in that some have nearly flat velocity-height (radial extent) profiles (little acceleration), some have noticeably falling velocity profiles (noticeable deceleration), and the rest have velocity profiles that rise considerably through the outer corona (blatant acceleration). This suggests that in addition to sharing similar morphology, main-sequence CMEs all have basically the same driving mechanism. The observed radial progression of each of our 26 CMEs is fit by a simple model magnetic plasmoid that is in pressure balance with the radial magnetic field in the outer corona and that propels itself outward by magnetic expansion, doing no net work on its surroundings. On average over the 26 CMEs, this model fits the observations as well as the assumption of constant acceleration. This is compatible with main-sequence CMEs being magnetically driven, basically magnetic explosions, with the velocity profile in the outer corona being largely dictated by the initial Alfien speed in the CME (when the front is at approx. 3 (sub Sun), analogous to the mass of a main-sequence star dictating the luminosity.

  20. Booster main magnet power supply, present operation and potential future upgrades

    SciTech Connect

    Bajon, E.; Bannon, M.; Marneris, I.; Danowski, G.; Sandberg, J.; Savatteri, S.

    2011-03-28

    The Brookhaven Booster Main Magnet Power Supply (MMPS) is a 24 pulse thyristor control supply, rated at 5500 Amps, +/-2000 Volts, or 3000 Amps, +/-6000 Volts. The power supply is fed directly from the power utility and the peak magnet power is 18 MWatts. This peak power is seen directly at the incoming ac line. This power supply has been in operation for the last 18 years. This paper will describe the present topology and operation of the power supply, the feedback control system and the different modes of operation of the power supply. Since the power supply has been in operation for the last 18 years, upgrading this power supply is essential. A new power supply topology has been studied where energy is stored in capacitor banks. DC to DC converters are used to convert the dc voltage stored in the capacitor banks to pulsed DC voltage into the magnet load. This enables the average incoming power from the ac line to be constant while the peak magnet power is pulsed to +/- 18 MWatts. Simulations and waveforms of this power supply will be presented.

  1. Magneto-transport and magnetization studies of Pr2/3Ba1/3MnO3:Ag2O composite manganites

    NASA Astrophysics Data System (ADS)

    Panwar, Neeraj; Pandya, D. K.; Agarwal, S. K.

    2007-11-01

    Magneto-transport and magnetic studies carried out on the (1-x)Pr2/3Ba1/3MnO3+xAg2O (x = 0-30 mol%) composite system are reported here. Two transitions (TP1 and TP2) are observed in the electrical resistivity of the pristine Pr2/3Ba1/3MnO3 (PBMO) system. With addition of Ag2O electrical resistivity decreases. While TP1 gets sharper, TP2 disappears with increasing Ag2O content. Electrical resistivity fitting below TP2 indicates that PBMO exhibits a crossover from a spin dependent scattering-like polycrystalline material to a single crystalline material in composites. Low temperature resistivity upturn, which results from the combined effect of weak localization, electron-electron and electron-phonon scattering mechanisms, also decreases in the composite materials. The enhanced intrinsic magneto-resistance seen in the composite system has been ascribed to factors like decrease in electrical resistivity due to the formation of metallic Ag from Ag2O dissociation, disorder reduction, magnetic inhomogeneity and growth of spin clusters. The monotonic decrease in the extrinsic magneto-resistance due to Ag is found to be related to the disappearance of the energy barrier formed at the grain boundary. The observed decrease in the magnetization below the Curie temperature (TC) is considered vis-à-vis the magnetic volume reduction and the non-magnetic Ag acting as a pinning centre to the domain rotation.

  2. The MAIN Shirt: A Textile-Integrated Magnetic Induction Sensor Array

    PubMed Central

    Teichmann, Daniel; Kuhn, Andreas; Leonhardt, Steffen; Walter, Marian

    2014-01-01

    A system is presented for long-term monitoring of respiration and pulse. It comprises four non-contact sensors based on magnetic eddy current induction that are textile-integrated into a shirt. The sensors are technically characterized by laboratory experiments that investigate the sensitivity and measuring depth, as well as the mutual interaction between adjacent pairs of sensors. The ability of the device to monitor respiration and pulse is demonstrated by measurements in healthy volunteers. The proposed system (called the MAIN (magnetic induction) Shirt) does not need electrodes or any other skin contact. It is wearable, unobtrusive and can easily be integrated into an individual's daily routine. Therefore, the system appears to be a suitable option for long-term monitoring in a domestic environment or any other unsupervised telemonitoring scenario. PMID:24412900

  3. Counter magnetization of SmCo5 permanent magnet by YBCO/Ag composite bulk superconductor — A competing interaction picture

    NASA Astrophysics Data System (ADS)

    Parthasarathy, R.; Lakshmi, M. M.; Seshubai, V.

    2012-06-01

    We report here for the first time the counter magnetization of an SmCo5 permanent magnet in the presence of a YBCO/Ag composite bulk superconductor. This remarkable phenomenon has been observed during our experiments to measure the levitation force of the superconductor. The inclination to study the effects of the superconductor on the permanent magnet led us to observe this surprising and curious phenomenon for the first time. A complete M-H hysteresis loop of the SmCo5 permanent magnet has been recorded using the bulk superconductor itself as a magnet. We present some of the initial results which are interesting and we discuss the possible kind of interaction that could lead to our observations.

  4. Performance of the cold powered diodes and diode leads in the main magnets of the LHC

    NASA Astrophysics Data System (ADS)

    Willering, G. P.; Giloux, C.; Bajko, M.; Bednarek, M.; Bottura, L.; Charifoulline, Z.; Dahlerup-Petersen, K.; Dib, G.; D'Angelo, G.; Gharib, A.; Grand-Clement, L.; Izquierdo Bermudez, S.; Prin, H.; Roger, V.; Rowan, S.; Savary, F.; Tock, J.-Ph; Verweij, A.

    2015-12-01

    During quench tests in 2011 variations in resistance of an order of magnitude were found in the diode by-pass circuit of the main LHC magnets. An investigation campaign was started to understand the source, the occurrence and the impact of the high resistances. Many tests were performed offline in the SM18 test facility with a focus on the contact resistance of the diode to heat sink contact and the diode wafer temperature. In 2014 the performance of the diodes and diode leads of the main dipole bypass systems in the LHC was assessed during a high current qualification test. In the test a current cycle similar to a magnet circuit discharge from 11 kA with a time constant of 100 s was performed. Resistances of up to 600 μΩ have been found in the diode leads at intermediate current, but in general the high resistances decrease at higher current levels and no sign of overheating of diodes has been seen and the bypass circuit passed the test. In this report the performance of the diodes and in particular the contact resistances in the diode leads are analysed with available data acquired over more than 10 years from acceptance test until the main dipole training campaign in the LHC in 2015.

  5. Spectral anion sensing and γ-radiation induced magnetic modifications of polyphenol generated Ag-nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Zarina; Dhara, Susmita; Bandyopadhyay, Bilwadal; Saha, Abhijit; Sen, Kamalika

    2016-03-01

    A fast one step bio-synthesis for in situ preparation of silver nanoparticles is proposed. The method involves reduction of AgNO3 with an aqueous extract of peanut skin, which is a good source of polyphenols. The silver nanoparticles thus synthesized were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis absorption spectroscopy, Fourier Transform infrared (FTIR) spectroscopy and magnetic measurements. Effect of low dose γ irradiation during the synthesis was studied and their physico-chemical properties were compared with those produced without irradiation. On the contrary to the diamagnetic behavior of bulk silver, the silver nanoparticles thus prepared show a significant ferromagnetic moment component. Variable time exposure to γ-irradiation results in an exponential decay of ferromagnetic component. A freshly prepared solution of silver nanoparticles shows selective spectral changes towards iodide ions at trace concentration (below 50 μM) among a series of 16 other competing anions. The prepared nanoparticles are therefore suitable for anion sensing application.

  6. Synthesis, characterization, and application of Fe3O4/Ag magnetic composites for mercury removal from water

    NASA Astrophysics Data System (ADS)

    Elhouderi, Z. A.; Beesley, D. P.; Nguyen, T. T.; Lai, P.; Sheehan, K.; Trudel, S.; Prenner, E.; Cramb, D. T.; Anikovskiy, M.

    2016-04-01

    Engineered nanocomposites (NCs) have recently emerged as materials of great scientific and technological interest. In these materials, different components are combined to yield a nanoentity with desired properties not afforded by the constituent materials. Designing novel NCs and synthetic routes that enable controlling the size and functionalities remains an active area of research. Here, we present a two-step method of synthesizing Ag-Fe3O4 NCs with tunable sizes. Unlike previously reported structures, the prepared NCs do not have a familiar core-shell architecture. Instead, small Fe3O4 nanoparticles (NPs) are embedded in a larger silver matrix. The superparamagnetic Fe3O4 NPs endow the NC with magnetic properties, enabling easy separation from solution. The degree of the NC response to an external magnetic field can be controlled by varying the concentration of Fe3O4 NPs during the synthesis. The Ag matrix serves to protect the embedded Fe3O4 NPs from degradation and can be used for further functionalization of the NCs with different sulfhydryl containing linkers. To demonstrate utility, we show how decorating the outer layer of the Ag NC with diphenyl-4,4‧-dithiol transforms the NCs into a water purifying system capable of sequestering highly toxic Hg2+ ions from solution magnetically.

  7. Magnetic Activity of Pre-main Sequence Stars near the Stellar-Substellar Boundary

    NASA Astrophysics Data System (ADS)

    Principe, David; Kastner, Joel. H.; Rodriguez, David

    2016-01-01

    X-ray observations of pre-main sequence (pre-MS) stars of M-type probe coronal emission and offer a means to investigate magnetic activity at the stellar-substellar boundary. Recent observations of main sequence (MS) stars at this boundary display a decrease in fractional X-ray luminosity (L X /L bol ) by almost two orders of magnitude for spectral types M7 and later. We investigate magnetic activity and search for a decrease in X-ray emission in the pre-MS progenitors of these MS stars. We present XMM-Newton X-ray observations and preliminary results for ~10 nearby (30-70 pc), very low mass pre-MS stars in the relatively unexplored age range of 10-30 Myr. We compare the fractional X-ray luminosities of these 10-30 Myr old stars to younger (1-3 Myr) pre-MS brown dwarfs and find no dependence on spectral type or age suggesting that X-ray activity declines at an age later than ~30 Myr in these very low-mass stars.

  8. Optimization of Fe3O4@Ag nanoshells in magnetic field-enriched surface-enhanced resonance Raman scattering for malaria diagnosis.

    PubMed

    Yuen, Clement; Liu, Quan

    2013-11-01

    The great potential of magnetic field enriched surface enhanced resonance Raman spectroscopy (SERRS) for early malaria diagnosis has been demonstrated previously. This technique is able to detect β-hematin, which is equivalent to a malaria biomarker (hemozoin) in Raman features, at a concentration of 5 nM. In this study, we present the optimization of nanoparticles used in the magnetic field enriched SERRS by tuning the core size and shell thickness of nanoparticles with an iron oxide core and a silver shell (Fe3O4@Ag). The discrete dipole approximation (DDA) model was introduced to investigate the localized electromagnetic field distributions and extinction efficiencies of the aggregate of Fe3O4@Ag and β-hematin, in correlation with their magnetic field enriched SERRS performance. We find that the optimal core-shell size of Fe3O4@Ag leading to the effective aggregation of Fe3O4@Ag and β-hematin under an external magnetic field with superior extinction efficiencies is the key to realize highly augmented Raman signals in this strategy. Furthermore, it is noted that the optimized result differs from the case without the external magnetic field to that with the external magnetic field. Therefore, this work demonstrates experimentally and theoretically the potential of tuning the core-shell Fe3O4@Ag for achieving the efficient magnetic field-enriched SERRS detection of β-hematin for early malaria diagnosis.

  9. Magnetic trapping of silver and copper, and anomalous spin relaxation in the ag-he system.

    PubMed

    Brahms, Nathan; Newman, Bonna; Johnson, Cort; Greytak, Tom; Kleppner, Daniel; Doyle, John

    2008-09-01

    We have trapped large numbers of copper (Cu) and silver (Ag) atoms using buffer-gas cooling. Up to 3 x 10{12} Cu atoms and 4 x 10{13} Ag atoms are trapped. Lifetimes are as long as 5 s, limited by collisions with the buffer gas. Ratios of elastic to inelastic collision rates with He are >or=10{6}, suggesting Cu and Ag are favorable for use in ultracold applications. The temperature dependence of the Ag-3He collision rate varies as T;{5.8+/-0.4}. We find that this temperature dependence is inconsistent with the behavior predicted for relaxation arising from the spin-rotation interaction, and conclude that the Ag-3He system displays anomalous collisional behavior in the multiple-partial wave regime. Gold (Au) was ablated into 3He buffer gas, however, atomic Au lifetimes were observed to be too short to permit trapping.

  10. The effect of Zn, Ag and Au substitution for Cu in Finemet on the crystallization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Chau, N.; Hoa, N. Q.; The, N. D.; Vu, L. V.

    2006-08-01

    Soft magnetic ribbons of Finemet compound with Zn, Ag and Au substituted for Cu: Fe 73.5Si 13.5B 9Nb 3Cu 1-xM x (M=Zn, Ag, Au; x=0.5, 1.0) have been fabricated by rapid quenching technique with wheel speeds of 10, 25 and 30 m/s, respectively. The crystallization evolution of samples examined by DSC measurements showed that the high cooling rates make the ribbons in amorphous state whereas the samples with M=Zn; x=0.5, 1.0 showed to be partly crystallized when they fabricated by the wheel speed of 10 m/s. In the case of Zn ( x=0.5, 1.0) and Ag ( x=1.0) substitution there is a sharp peak in the DSC curve corresponding to crystallization of α-Fe(Si) phase. However, the role of Au is similar to that of Cu. Hysteresis loops of as-cast samples exhibited square form which relates to the pinning centers in domain wall displacement. After appropriate annealing, the ultrasoft magnetic properties of studied ribbons are obtained.

  11. Comparison Of The Global Analytic Models Of The Main Geomagnetic Field With The Stratospheric Balloon Magnetic Data 335

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu.; Filippov, S.; Frunze, A.

    2013-12-01

    Three global analytical models of a main geomagnetic field constructed by satellite data are used: model IGRF, Daily Mean Spherical Harmonic Models (DMSHM), and model EMM/2010, and also scalar data of geomagnetic field and its gradients, received in stratospheric balloon gradient magnetic surveys at altitudes of ~30 km. At these altitudes the regional magnetic field is formed from all sources of the Earth's crust. It enables to receive along lengthy routes of surveys the fullest data on regional and longwave-lenght magnetic anomalies. Model DMSHM is used at extracting of magnetic anomalies for elimination of a secular variation up to significant value 0,2 nT. The model can be constructed within the limits of ± 1 months from the moment stratospheric balloon surveys with beneficial day terms with magnetic activity up to Kp <20, that leads to an error of representation of main MFE equal ±5 нТл. It is possible at presence acting for the period of stratospheric balloon magnetic survey of the satellite, for example, Swarm. On stratospheric balloon data it is shown, that model EMM/2010 unsatisfactorily displays MFE at altitude of 30 km. Hence, the qualitative model of the constant (main and anomaly) magnetic field cannot be constructed only with use of satellite and ground data. The improved model constant MFE, constructed according to satellite and stratospheric balloon magnetic surveys, developed up to a degree and the order m=n=720, will have a reliable data about regional crust magnetic field, hence, and about deep magnetic structure of the Earth's crust. The use gradient magnetic surveys aboard stratospheric balloons allows to find the places alternating approximately through 3000 km in which there are no magnetic anomalies. In these places probably to supervise satellite magnetic models for a range of altitude of 20-40 km, timed to stratospheric balloon magnetic surveys.

  12. Structural and magnetic phase transitions in CeCu6-xTx (T = Ag,Pd)

    DOE PAGES

    Poudel, Lekhanath N.; De la cruz, Clarina; Payzant, E. Andrew; Koehler, Michael R.; May, Andrew F.; Garlea, Vasile O.; Taylor, Alice E.; Parker, David S.; Cao, Huibo B.; McGuire, Michael A.; et al

    2015-12-15

    The structural and the magnetic properties of CeCu6-xAgx (0 ≤ x ≤ 0.85) and CeCu6-xPdx (0 ≤ x ≤ 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu6-xAgx and CeCu6-xPdx as a function of Ag/Pd composition are reported. The end member, CeCu6, undergoes a structural phase transition from an orthorhombic (Pnma) to a monoclinic (P21/c) phase at 240 K. In CeCu6-xAgx, the structural phase transition temperature (Ts) decreases linearly with Ag concentration and extrapolates to zero at xS ≈ 0.1. The structural transitionmore » in CeCu6-xPdx remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu6-xAgx and CeCu6-xPdx, exhibit a magnetic quantum critical point (QCP), at x ≈ 0.2 and x ≈ 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ1 0 δ2), where δ1 ~ 0.62, δ2 ~ 0.25, x = 0.125 for CeCu6-xPdx and δ1 ~ 0.64, δ2 ~ 0.3, x = 0.3 for CeCu6-xAgx. As a result, the magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.« less

  13. Measurements of beam pipe eddy current effects in Main Injector dipole magnets

    SciTech Connect

    Walbridge, D.G.C.; Bleadon, M.E.; Brown, B.C.; Glass, H.D.; Harding, D.J.; Mazur, P.O.; Sim, J.W.

    1992-08-01

    The dipole magnets for the proposed Main Injector project at Fermilab are designed to ramp to maximum field (1.7 T) at rates over 2.5 T/s. These ramp rates will produce eddy current effects which degrade overall field quality. A harmonics probe was constructed for the purpose of measuring eddy current field components during the ramp cycle. Three separate ramp rates were employed ranging from 1.3 T/s to 2.7 T/s. Tests were performed using beam pipes with two different resistivities. The dominant multipole contribution resulting from eddy current effects in each beam pipe was sextupole. The sextupole component closely matched the calculated prediction.

  14. Synthesis, characterization, and application of Fe3O4/Ag magnetic composites for mercury removal from water

    NASA Astrophysics Data System (ADS)

    Elhouderi, Z. A.; Beesley, D. P.; Nguyen, T. T.; Lai, P.; Sheehan, K.; Trudel, S.; Prenner, E.; Cramb, D. T.; Anikovskiy, M.

    2016-04-01

    Engineered nanocomposites (NCs) have recently emerged as materials of great scientific and technological interest. In these materials, different components are combined to yield a nanoentity with desired properties not afforded by the constituent materials. Designing novel NCs and synthetic routes that enable controlling the size and functionalities remains an active area of research. Here, we present a two-step method of synthesizing Ag–Fe3O4 NCs with tunable sizes. Unlike previously reported structures, the prepared NCs do not have a familiar core–shell architecture. Instead, small Fe3O4 nanoparticles (NPs) are embedded in a larger silver matrix. The superparamagnetic Fe3O4 NPs endow the NC with magnetic properties, enabling easy separation from solution. The degree of the NC response to an external magnetic field can be controlled by varying the concentration of Fe3O4 NPs during the synthesis. The Ag matrix serves to protect the embedded Fe3O4 NPs from degradation and can be used for further functionalization of the NCs with different sulfhydryl containing linkers. To demonstrate utility, we show how decorating the outer layer of the Ag NC with diphenyl-4,4‧-dithiol transforms the NCs into a water purifying system capable of sequestering highly toxic Hg2+ ions from solution magnetically.

  15. A preliminary study on the synthesis and characterization of multilayered Ag/Co magnetic nanowires fabricated via the electrodeposition method.

    PubMed

    Peng, Cheng-Hsiung; Wu, Tsung-Yung; Hwang, Chyi-Ching

    2013-01-01

    A single-bath electrodeposition method was developed to integrate multilayer Ag/Co nanowires with a commercial anodic alumina oxide (AAO) template with a pore diameter of 100-200 nm. An electrolyte system containing silver nitride and cobalt sulfide was studied using cyclic voltammetry, and the electrodeposition rate was varied to optimize the electrodeposition conditions. A constant stepwise potential and a variable cation ratio of [Co²⁺]/[Ag⁺] were used during electrodeposition. After the dissolution of the template in aqueous NaOH solution, multilayered Ag/Co nanowires were obtained with a composition of [Co]/[Ag₈₀Co₂₀], as identified by XRD and TEM, when [Co²⁺]/[Ag⁺] = 150. By annealing at 200°C for 1 h, uniformly structured (Co₉₉.₅₇/Ag₁₀₀) nanowires were obtained. Compared with pure Co nanowires, the magnetic hysteresis loops showed a greater magnetic anisotropy for (Co₉₉.₅₇/Ag₁₀₀) nanowires than for pure Co nanowires, corresponding to a change in the easy axis upon magnetization.

  16. Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

    SciTech Connect

    Feiden, Gregory A.; Chaboyer, Brian E-mail: brian.chaboyer@dartmouth.edu

    2014-07-01

    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.

  17. HSX: Engineering Design and Fabrication of the main Magnet Coils, Vacuum Vessel and Support/Alignment Structure

    NASA Astrophysics Data System (ADS)

    Anderson, F. Simon B.; Anderson, D. T.; Almagri, A. F.; Matthews, P. G.; Probert, P. H.; Shohet, J. L.; Talmadge, J. N.

    1996-11-01

    The HSX device, with a magnetic field consisting of a SINGLE dominant HELICAL component, has a set of 48 twisted main magnetic field coils. Engineering analysis (ANSYS) has resulted in a set of construction and alignment constraints and goals for field accuracy and coil structural strength. Close proximity of the main coil set to the magnetic separatrix imposes space restrictions on the vacuum vessel. Fabrication of the vessel using explosive techniques, and the structural analysis for the stresses in the vacuum chamber will be discussed. Crucial to the integrity of the quasihelical magnetic field is the accurate positioning of the magnet coils and maintenance of the position during operation. The design and construct- ion of the completed support structure for HSX coils will also be presented. *** Work supported by U.S Dept. of Energy Grant DE-FG02-93ER54222

  18. Sediment fingerprinting by using the Ag-110m: Cs-137 ratio along the main rivers draining the Fukushima radioactive pollution plume

    NASA Astrophysics Data System (ADS)

    Chartin, Caroline; Evrard, Olivier; Onda, Yuichi; Patin, Jeremy; Lefèvre, Irène; Ayrault, Sophie; Lepage, Hugo; Bonté, Philippe

    2013-04-01

    During the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, large quantities of radionuclides were released into the environment between 12 and 19 March 2011. Even though about 80% of these emissions were transported offshore and out over the Pacific Ocean, 20% were deposited as wet and dry deposits on soils of Fukushima Prefecture on 15-16 March. In particular, 6.4 PBq of Cs-137 were modeled to have deposited on Japanese soils over a distance of 70 km to the northwest of the Fukushima Dai-ichi nuclear power plant. As most radionuclides are strongly sorbed by fine particles, and their mineralogical clay and organic matter fractions, they are likely to be redistributed within the landscape in association with soil and sediment particles transported by erosion processes and runoff. Based on a spatial analysis of the gamma-emitting radionuclides present in the environment respectively eight and thirteen months after the accident, we aim to provide a radioactive tracer to investigate the temporal evolution of the contaminant dispersion across Fukushima Prefecture. For this purpose, sediments were collected along rivers draining the main contamination plume in Fukushima Prefecture (i.e, Rivers Kutchibuto, Mano, Nitta and Ota) in November 2011 and April 2012.These campaigns directly followed the main hydro-sedimentary events that occurred in this region, i.e., the typhoon season (July and September-October) and the snowmelt (March 2012). The river sediment activities in gamma-emitting radionuclides were then compared to the initial activities measured in soils provided by the Japanese Ministry of Education, Culture, Sport, Science and Technology (MEXT). The initial fallout patterns in 110mAg appeared to differ from those of the main contamination plume defined mainly by radiocaesium fallout (i.e., Cs-134+137). The Ag-110m:Cs-137 ratio was then used to trace the spatial origin of contaminated sediment collected in rivers. Sediments collected within the coastal

  19. Non-contact main cable NDE technique for suspension bridge using magnetic flux-based B-H loop measurements

    NASA Astrophysics Data System (ADS)

    Park, Seunghee; Kim, Ju-Won; Moon, Dae-Joong

    2015-04-01

    In this study, a noncontact main cable NDE method has been developed. This cable NDE method utilizes the direct current (DC) magnetization and a searching coil-based total flux measurement. A total flux sensor head prototype was fabricated that consists of an electro-magnet yoke and a searching coil sensor. To obtain a B-H loop, a magnetic field was generated by applying a cycle of low frequency direct current to the electro-magnet yoke. During the magnetization, a search coil sensor measures the electromotive force from magnetized cable. During the magnetization process, a search coil sensor was measured the magnetic flux density. Total flux was calculated by integrating the measured magnetic flux using a fluxmeter. A B-H loop is obtained by using relationship between a cycle of input DC voltage and measured total flux. The B-H loop can reflect the property of the ferromagnetic materials. Therefore, the cross-sectional loss of cable can be detected using variation of features from the B-H curve. To verify the feasibility of the proposed steel cable NDE method, a series of experimental studies using a main-cable mock-up specimen has been performed in this study.

  20. A comparative study of the magnetic properties of the 1/1 approximant Ag(50)In(36)Gd(14) and the icosahedral quasicrystal Ag(50)In(36)Gd(14).

    PubMed

    Wang, P; Stadnik, Z M; Al-Qadi, K; Przewoźnik, J

    2009-10-28

    We report on measurements of the dc and ac magnetic susceptibility, (155)Gd Mössbauer spectra, and specific heat of the 1/1 approximant Ag(50)In(36)Gd(14), and of the ac magnetic susceptibility of the icosahedral quasicrystal Ag(50)In(36)Gd(14). These alloys are shown to be spin glasses. For the icosahedral quasicrystal Ag(50)In(36)Gd(14), spin freezing occurs at T(f) = 4.3 K, and the frequency dependence of T(f) is well accounted for by the Vogel-Fulcher and power laws. Spin freezing in the 1/1 approximant Ag(50)In(36)Gd(14) occurs in two stages: at T(f(1)) = 3.7 K, Gd spins develop short-range correlations but continue to fluctuate, and then long-range freezing is achieved at T(f(2)) = 2.4 K. The frequency dependences of T(f(1)) and T(f(2)) can be accounted for by means of the Vogel-Fulcher law and the critical slowing down dynamics. It is shown that the spin freezing in both alloys is a nonequilibrium phenomenon rather than a true equilibrium phase transition. The (155)Gd Mössbauer spectra of the 1/1 approximant Ag(50)In(36)Gd(14) confirm that the Gd spins are frozen at 1.5 K and are fluctuating at 4.6 K. The magnetic specific heat exhibits a maximum at a temperature that is 30% larger than T(f(1)), but the temperature derivative of the magnetic entropy peaks at T(f(1)). The Debye temperature of the 1/1 approximant Ag(50)In(36)Gd(14) is 199(1) K as determined from the Mössbauer data, and 205(2) K as determined from the specific heat data.

  1. A comparative study of the magnetic properties of the 1/1 approximant Ag(50)In(36)Gd(14) and the icosahedral quasicrystal Ag(50)In(36)Gd(14).

    PubMed

    Wang, P; Stadnik, Z M; Al-Qadi, K; Przewoźnik, J

    2009-10-28

    We report on measurements of the dc and ac magnetic susceptibility, (155)Gd Mössbauer spectra, and specific heat of the 1/1 approximant Ag(50)In(36)Gd(14), and of the ac magnetic susceptibility of the icosahedral quasicrystal Ag(50)In(36)Gd(14). These alloys are shown to be spin glasses. For the icosahedral quasicrystal Ag(50)In(36)Gd(14), spin freezing occurs at T(f) = 4.3 K, and the frequency dependence of T(f) is well accounted for by the Vogel-Fulcher and power laws. Spin freezing in the 1/1 approximant Ag(50)In(36)Gd(14) occurs in two stages: at T(f(1)) = 3.7 K, Gd spins develop short-range correlations but continue to fluctuate, and then long-range freezing is achieved at T(f(2)) = 2.4 K. The frequency dependences of T(f(1)) and T(f(2)) can be accounted for by means of the Vogel-Fulcher law and the critical slowing down dynamics. It is shown that the spin freezing in both alloys is a nonequilibrium phenomenon rather than a true equilibrium phase transition. The (155)Gd Mössbauer spectra of the 1/1 approximant Ag(50)In(36)Gd(14) confirm that the Gd spins are frozen at 1.5 K and are fluctuating at 4.6 K. The magnetic specific heat exhibits a maximum at a temperature that is 30% larger than T(f(1)), but the temperature derivative of the magnetic entropy peaks at T(f(1)). The Debye temperature of the 1/1 approximant Ag(50)In(36)Gd(14) is 199(1) K as determined from the Mössbauer data, and 205(2) K as determined from the specific heat data. PMID:21832453

  2. Processing and properties of long-lengths of Ag-clad BSCCO superconductors and high-{Tc} magnets

    SciTech Connect

    Balachandran, U.; Iyer, A.N.; Jammy, R.; Haldar, P.; Hoehn, J.G. Jr.; Suenaga, M.

    1994-10-01

    Long lengths of Ag-clad mono and multicore BSCCO tapes were fabricated by the powder-in-tube technique. The critical current density (J{sub c}) of 125-m-long monocore tapes was {approx}12,000 A/cm{sup 2} (critical current, I{sub c} 20 A) at 77 K. A 230-m-long 37-filament tape carried an I{sub c} of 14 A (corresponding to a J{sub c} of {approx}10,000 A/cm{sup 2}). Pancake-shaped coils were formed from long-length conductors by the wind-and-react approach. High-T{sub c} magnets were then assembled by stacking the pancake coils and connecting them in series. The magnets were tested as a function of applied magnetic fields at 4.2, 27, 64, and 77 K. A magnet containing 480 m of high-{Tc} tape generated a record-high field of 2.6 T at 4.2 K. Another magnet assembled with {approx}770 m of tape generated a field of {approx}1 T at 4.2 K and {approx}0.6 T at 27 K, both in an applied background field of {approx}20 T. Strain tolerance of high-{Tc} tapes was evaluated by measuring J{sub c} retention as a function of applied strain in an 0.5 T applied field at 77 K.

  3. Accuracy estimates for some global analytical models of the Earth's main magnetic field on the basis of data on gradient magnetic surveys at stratospheric balloons

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu. P.; Brekhov, O. M.; Bondar, T. N.; Filippov, S. V.; Petrov, V. G.; Tsvetkova, N. M.; Frunze, A. Kh.

    2014-03-01

    Two global analytical models of the main magnetic field of the Earth (MFE) have been used to determine their potential in deriving an anomalous MFE from balloon magnetic surveys conducted at altitudes of ˜30 km. The daily mean spherical harmonic model (DMSHM) constructed from satellite data on the day of balloon magnetic surveys was analyzed. This model for the day of magnetic surveys was shown to be almost free of errors associated with secular variations and can be recommended for deriving an anomalous MFE. The error of the enhanced magnetic model (EMM) was estimated depending on the number of harmonics used in the model. The model limited by the first 13 harmonics was shown to be able to lead to errors in the main MFE of around 15 nT. The EMM developed to n = m = 720 and constructed on the basis of satellite and ground-based magnetic data fails to adequately simulate the anomalous MFE at altitudes of 30 km. To construct a representative model developed to m = n = 720, ground-based magnetic data should be replaced by data of balloon magnetic surveys for altitudes of ˜30 km. The results of investigations were confirmed by a balloon experiment conducted by Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences and the Moscow Aviation Institute.

  4. Magnetic fields of chemically peculiar and related stars. 2. Main results of 2015 and near-future prospects

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.

    2016-07-01

    We present an analytical survey of key publications concerned with the study of stellar magnetism published in 2015. We considered about 80 publications, the most significant from our point of view, presented brief reviews of them, and made generalizations. The paper considers: instruments, techniques of observations and analysis; large-scale magnetic fields of OBA stars on the Main Sequence (MS) (formation and evolution, field topology, search for new magnetic stars including the projects MiMeS, BOB, and BinaMIcS and observations with the Russian 6-m telescope, rotation and chemical abundance analysis of magnetic CP stars); magnetic fields, chemical abundance and variability of stars related to peculiar, primarily, active cool stars, solar-type stars and white dwarfs; multiple magnetic stars including interferometry data, exoplanets in a system of magnetic stars. We make a conclusion that the accuracy of magnetic field measurements has grown due to universal application of the multilinear method of observations especially with high-resolution spectropolarimeters. Usage of Zeeman-Doppler imaging technique (ZDI) when analyzing the obtained data allows us to confidently search and measure fields of complex topology of the order of 10 Gs. For the first time, a magnetic field has been detected for post-AGB stars and some other types of objects.

  5. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers.

    PubMed

    Das, R; Rinaldi-Montes, N; Alonso, J; Amghouz, Z; Garaio, E; García, J A; Gorria, P; Blanco, J A; Phan, M H; Srikanth, H

    2016-09-28

    Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine. PMID:27589410

  6. Hunting for millimeter flares from magnetic reconnection in pre-main sequence spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Salter, D. M.; Hogerheijde, M. R.; Moór, A.; Blake, G. A.

    2011-03-01

    Context. Recent observations of the low-mass pre-main sequence (PMS), eccentric spectroscopic binaries DQ Tau and V773 Tau A reveal that their millimeter spectrum is occasionally dominated by flares from non-thermal emission processes. The transient activity is believed to be synchrotron in nature, resulting from powerful magnetic reconnection events when the separate magnetic structures of the binary components are briefly capable of interacting and forced to reorganize, typically near periastron. Aims: We conducted the first systematic study of the millimeter variability toward a sample of 12 PMS spectroscopic binaries with the aim to characterize the proliferation of flares amongst sources likely to experience similar interbinary reconnection events. The source sample consists entirely of short-period, close-separation binaries that possess either a high orbital eccentricity (e > 0.1) or a circular orbit (e ≈ 0). Methods: Using the MAMBO2 array on the IRAM 30 m telescope, we carried out continuous monitoring at 1.25 mm (240 GHz) over a 4-night period during which all of the high-eccentricity binaries approached periastron. We also obtained simultaneous optical VRI measurements, since a strong link is often observed between stellar reconnection events (traced via X-rays) and optical brightenings. Results: UZ Tau E is the only source to be detected at millimeter wavelengths, and it exhibited significant variation (F1.25mm = 87-179 mJy); it is also the only source to undergo strong simultaneous optical variability (ΔR ≈ 0.9 mag). The binary possesses the largest orbital eccentricity in the current sample, a predicted factor in star-star magnetic interaction events. With orbital parameters and variable accretion activity similar to DQ Tau, the millimeter behavior of UZ Tau E draws many parallels to the DQ Tau model for colliding magnetospheres. However, on the basis of our observations alone, we cannot determine whether the variability is repetitive, or if it

  7. Results on search for a QGP with a TPC magnetic spectrometer at AGS and plans for an approx 4. pi. TPC magnetic spectrometer at RHIC

    SciTech Connect

    Lindenbaum, S.J. City Univ. of New York, NY )

    1991-01-01

    In the first part of this paper a search for a Quark-Gluon Plasma (QGP) with a TPC Magnetic Spectrometer at AGS by the BNL/CCNY/Johns Hopkins/Rice (E-810) Collaboration is discussed. At AGS energies the expected increase in baryon density is near maximum. If a QGP is formed even rarely this approach provides a sensitive method for its detection. We have found some interesting phenomena including strangeness enhancement, multi-{Lambda} and K{sub s}{sup 0} events and an increased slope for {pi}{sup {minus}} (corresponding to a reduced temperature) in the usual temperature plot for p{sub {perpendicular}} < 0.2 GeV/c. We plan to increase the statistics with the 14.5 GeV/c {times} A Si ions on targets from light to heavy and then to continue the program with incident Au ions. In Part 2 we discuss the BNL/CCNY/Notre Dame/Rice proposal for an {approx} 4{pi} TPC Magnetic Spectrometer for RHIC which we believe will be a sensitive probe for hadronic QGP signals, and also capable of observing departures from QCD should they occur. 8 refs., 12 figs.

  8. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging.

    PubMed

    Semendeferi, K; Damasio, H

    2000-02-01

    Primary comparative data on the hominoid brain are scarce and major neuroanatomical differences between humans and apes have not yet been described satisfactorily, even at the gross level. Basic questions that involve the evolution of the human brain cannot be addressed adequately unless the brains of all extant hominoid species are analyzed. Contrary to the scarcity of original data, there is a rich literature on the topic of human brain evolution and several debates exist on the size of particular sectors of the brain, e.g., the frontal lobe. In this study we applied a non-invasive imaging technique (magnetic resonance) on living human, great ape and lesser ape subjects in order to investigate the overall size of the hominoid brain. The images were reconstructed in three dimensions and volumetric estimates were obtained for the brain and its main anatomical sectors, including the frontal and temporal lobes, the insula, the parieto-occipital sector and the cerebellum.A remarkable homogeneity is present in the relative size of many of the large sectors of the hominoid brain, but interspecific and intraspecific variation exists in certain parts of the brain. The human cerebellum is smaller than expected for an ape brain of human size. It is suggested that the cerebellum increased less than the cerebrum after the split of the human lineage from the African ancestral hominoid stock. In contrast, humans have a slightly larger temporal lobe and insula than expected, but differences are not statistically significant. Humans do not have a larger frontal lobe than expected for an ape brain of human size and gibbons have a relatively smaller frontal lobe than the rest of the hominoids. Given the fact that the frontal lobe in humans and great apes has similar relative size, it is parsimonious to suggest that the relative size of the whole of the frontal lobe has not changed significantly during hominid evolution in the Plio-Pleistocene. PMID:10656781

  9. AGS slow extracted beam improvement

    SciTech Connect

    Marneris, I.; Danowski, G.; Sandberg, J.; Soukas, A.

    1997-07-01

    The Brookhaven AGS is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to an equivalent proton energy of 29 GeV. Since the late 1960`s it has been serving high energy physics (HEP - proton beam) users of both slow and fast extracted beams. The AGS fixed target program presently uses primary proton and heavy ion beams (HIP) in slowly extracted fashion over spill lengths of 1.5 to 4.0 seconds. Extraction is accomplished by flattoping the main and extraction magnets and exciting a third integer resonance in the AGS. Over the long spill times, control of the subharmonic amplitude components up to a frequency of 1 kilohertz is very crucial. One of the most critical contributions to spill modulation is due to the AGS MMPS. An active filter was developed to reduce these frequencies and it`s operation is described in a previous paper. However there are still frequency components in the 60-720 Hz sub-harmonic ripple range, modulating the spill structure due to extraction power supplies and any remaining structures on the AGS MMPS. A recent scheme is being developed to use the existing tune-trim control horizontal quadrupole magnets and power supply to further reduce these troublesome noise sources. Feedback from an external beam sensor and overcoming the limitations of the quadrupole system by lead/lag compensation techniques will be described.

  10. Thermal conditions on the International Space Station: Heat flux and temperature investigation of main radiators for the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Gao, Jianmin; Wu, Shaohua; Qin, Yukun

    2016-09-01

    The investigation on heat flux can clarify the thermal condition and explain temperature behavior on the main radiators of the Alpha Magnetic Spectrometer (AMS). In this paper, a detailed investigation of heat flux on the AMS main radiators is proposed. The heat transfer process of the AMS main radiators is theoretically analyzed. An updated thermal model of the AMS on the International Space Station (ISS) is developed to calculate the external heat flux density on the AMS main radiators. We conclude the ISS components and operations affect on the solar flux density of the AMS main radiators by reflecting or shading solar illumination. According to the energy conservation on the AMS main radiators, the temperature variation mainly depends on the solar flux change. The investigations are conducive to reference for the long-duration thermal control of the AMS, and knowledge for the thermal conditions on the ISS.

  11. Investigation of magnetic field enriched surface enhanced resonance Raman scattering performance using Fe3O4@Ag nanoparticles for malaria diagnosis

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2014-03-01

    Recently, we have demonstrated the magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β-hematin by using nanoparticles with iron oxide core and silver shell (Fe3O4@Ag) for the potential application in the early malaria diagnosis. In this study, we investigate the dependence of the magnetic field-enriched SERRS performance of β-hematin on the different core and shell sizes of the Fe3O4@Ag nanoparticles. We note that the core and shell parameters are critical in the realization of the optimal magnetic field-enrich SERRS β-hematin signal. These results are consistent with our simulations that will guide the optimization of the magnetic SERRS performance for the potential early diagnosis in the malaria disease.

  12. Thermal conditions on the International Space Station: Effects of operations of the station Main Radiators on the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Burger, Joseph

    2016-04-01

    A thermal model of the Alpha Magnetic Spectrometer on the International Space Station (ISS) has been developed, and Thermal Desktop® (with RadCAD®) and SINDA/FLUINT software have been used to calculate the effects of the operations of the ISS Main Radiators on AMS temperatures. We find that the ISS Starboard Main Radiator has significant influence on temperatures on the port side of AMS. The simulation results are used in AMS thermal control operations.

  13. First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds

    EPA Science Inventory

    A magnetic separable core-shell Ag@Ni nanocatalyst was prepared by a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as surfactant. The synthesized nanoparticles were characterized by several techniques such as X-ray diffr...

  14. High frequency variations of the main magnetic field: convergence of observations and theory (Petrus Peregrinus Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Jault, Dominique

    2013-04-01

    Understanding the main magnetic field variations has been hindered by the discrepancy between the periods (from months to years) of the simplest linear wave phenomena and the relatively long time intervals (10 to 100 years) over which magnetic field changes can be confidently monitored. A theoretical description of short-period waves within the Earth's fluid core is at hand. Quasi-geostrophic inertial waves (akin to Rossby waves in the atmosphere) are slightly modified in the presence of magnetic fields and torsional oscillations consist of differential motion between coaxial rigid cylindrical annuli. Torsional oscillations are sensitive to the whole magnetic field that they shear in the course of their propagation. From their modelling, we have thus gained an estimate for the magnetic field strength in the core interior. There is now ongoing work to extend the theoretical framework to longer times. Furthermore, data collected from the Swarm constellation of three satellites to be launched this year by ESA will permit to better separate the internal and external magnetic signals. We may thus dream to detect quasi-geostrophic inertial waves. As the spectral ranges of theoretical models and observations begin to overlap, we can now go beyond the understanding of the magnetic field variations as the juxtaposition of partial models, arranged as a set of nested Matryoshka dolls. This talk will give illustrations for this statement, among which the question of induction in the lower mantle.

  15. Effect of the size of GdBCO-Ag secondary magnet on the static forces performance of linear synchronous motors

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Shi, Yunhua; He, Dabo; Jing, Hailian; Li, Jing; Deng, Zigang; Wang, Suyu; Wang, Jiasu; Cardwell, David A.

    2014-11-01

    Bulk high temperature superconductor magnets (HTSMs) have a higher flux-generating capability compared to conventional permanent magnets (PMs). These materials potentially can be used in high temperature superconducting (HTS) linear synchronous motors (LSMs) as superconducting secondary magnets, what will result in a reduced volume and weight as well as in higher force density and efficiency of these devices when compared to conventional PMs. The focus of this paper is on the effect of size of the secondary HTSM on the static performance (thrust force and normal force) of a LSM. In order to obtain high-field HTSM as the secondary, single grain bulk GdBCO-Ag superconductors of diameter 20 mm, 30 mm and 40 mm, which have higher Jc and trapped fields than YBCO superconductors, were used in this device for the first time following application by the same optimized magnetization condition. It was found that both thrust and normal forces increase and saturate with the increasing size of the HTSM secondary at the small size range, and then potentially distort when the physical size of the HTSM secondary approaches the pole pitch of the linear three-phase primary windings of the LSM. Furthermore, more experiments of a larger-sized multi-seeded HTSM secondary, confirmed that the relationship between the HTSM secondary size and the pole pitch of the primary is an important factor for achieving higher thrust and normal forces. It is suggested that the multi-pole HTSM secondary will be more beneficial to future HTS LSM designs since the single-pole HTSM secondary size should be equal to or smaller than the stator pole pitch in the paper.

  16. Low-temperature ferromagnetic properties in Co-doped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Yang, Fengxia E-mail: xia9020@hust.edu.cn; Yu, Gen; Han, Chong; Liu, Tingting; Zhang, Duanming; Xia, Zhengcai E-mail: xia9020@hust.edu.cn

    2014-01-06

    β-Ag{sub 2}Se is a topologically nontrivial insulator. The magnetic properties of Co-doped Ag{sub 2}Se nanoparticles with Co concentrations up to 40% were investigated. The cusp of zero-field-cooling magnetization curves and the low-temperature hysteresis loops were observed. With increasing concentration of Co{sup 2+} ions mainly substituting Ag{sub I} sites in the Ag{sub 2}Se structure, the resistivity, Curie temperature T{sub c}, and magnetization increased. At 10 T, a sharp drop of resistance near T{sub c} was detected due to Co dopants. The ferromagnetic behavior in Co-doped Ag{sub 2}Se might result from the intra-layer ferromagnetic coupling and surface spin. This magnetic semiconductor is a promising candidate in electronics and spintronics.

  17. Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation

    NASA Astrophysics Data System (ADS)

    Li, Chao; Sun, Jun-Jie; Chen, Duo; Han, Guang-Bing; Yu, Shu-Yun; Kang, Shi-Shou; Mei, Liang-Mo

    2016-08-01

    A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites. This method involves coating Fe2O3 nanorods with a uniform silica layer, reduction in 10% H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4, and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods. The fabricated nanocomposites are further characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectroscopy. The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B (RhB) at room temperature, and maintain superior catalytic activity even after six cycles. In addition, these samples could be easily separated from the catalytic system by an external magnet and reused, which shows great potential applications in treating waste water. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11174183), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  18. Synthesis and magnetic properties of ALnO{sub 2} (A=Cu or Ag; Ln=rare earths) with the delafossite structure

    SciTech Connect

    Miyasaka, Naoyuki; Doi, Yoshihiro; Hinatsu, Yukio

    2009-08-15

    Synthesis, structures, and magnetic properties of ternary rare earth oxides ALnO{sub 2} (A=Cu or Ag; Ln=rare earths) have been investigated. CuLnO{sub 2} (Ln=La, Pr, Nd, Sm, Eu) were synthesized by the direct solid state reaction of Cu{sub 2}O and Ln{sub 2}O{sub 3}, and AgLnO{sub 2} (Ln=Tm, Yb, Lu) were obtained by the cation-exchange reaction of NaLnO{sub 2} and AgNO{sub 3} in a KNO{sub 3} flux. These compounds crystallized in the delafossite-type structure with the rhombohedral 3R type (space group: R-3m). Magnetic susceptibility measurements showed that these compounds are paramagnetic down to 1.8 K. Specific heat measurements down to 0.4 K indicated that CuNdO{sub 2} ordered antiferromagnetically at 0.8 K. - Graphical abstract: Ternary rare earth oxides ALnO{sub 2} (A=Cu or Ag; Ln=rare earths) crystallized in the delafossite-type structure with the rhombohedral 3R poly-type (space group: R-3m). Magnetic susceptibility measurements showed that these compounds are paramagnetic down to 1.8 K. Specific heat measurements down to 0.4 K indicated that CuNdO{sub 2} ordered antiferromagnetically at 0.8 K.

  19. Interaction transfer of silicon atoms forming Co silicide for Co/√(3)×√(3)R30°-Ag/Si(111) and related magnetic properties

    SciTech Connect

    Chang, Cheng-Hsun-Tony; Fu, Tsu-Yi; Tsay, Jyh-Shen

    2015-05-07

    Combined scanning tunneling microscopy, Auger electron spectroscopy, and surface magneto-optic Kerr effect studies were employed to study the microscopic structures and magnetic properties for ultrathin Co/√(3)×√(3)R30°-Ag/Si(111). As the annealing temperature increases, the upward diffusion of Si atoms and formation of Co silicides occurs at temperature above 400 K. Below 600 K, the √(3)×√(3)R30°-Ag/Si(111) surface structure persists. We propose an interaction transferring mechanism of Si atoms across the √(3)×√(3)R30°-Ag layer. The upward transferred Si atoms react with Co atoms to form Co silicide. The step height across the edge of the island, a separation of 0.75 nm from the analysis of the 2 × 2 structure, and the calculations of the normalized Auger signal serve as strong evidences for the formation of CoSi{sub 2} at the interface. The interaction transferring mechanism for Si atoms enhances the possibility of interactions between Co and Si atoms. The smoothness of the surface is advantage for that the easy axis of magnetization for Co/√(3)×√(3)R30°-Ag/Si(111) is in the surface plane. This provides a possible way of growing flat magnetic layers on silicon substrate with controllable silicide formation and shows potential applications in spintronics devices.

  20. Structural and magnetic phase transitions in CeCu6-xTx (T = Ag,Pd)

    SciTech Connect

    Poudel, Lekhanath N.; De la cruz, Clarina; Payzant, E. Andrew; Koehler, Michael R.; May, Andrew F.; Garlea, Vasile O.; Taylor, Alice E.; Parker, David S.; Cao, Huibo B.; McGuire, Michael A.; Tian, Wei; Matsuda, Masaaki; Jeen, Hyoung Jeen; Lee, Ho Nyung; Hong, Tao; Calder, Stuart A.; Lumsden, Mark D.; Zhou, Haidong; Keppens, Veerle; Mandrus, D.; Christianson, Andrew D.

    2015-12-15

    The structural and the magnetic properties of CeCu6-xAgx (0 ≤ x ≤ 0.85) and CeCu6-xPdx (0 ≤ x ≤ 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu6-xAgx and CeCu6-xPdx as a function of Ag/Pd composition are reported. The end member, CeCu6, undergoes a structural phase transition from an orthorhombic (Pnma) to a monoclinic (P21/c) phase at 240 K. In CeCu6-xAgx, the structural phase transition temperature (Ts) decreases linearly with Ag concentration and extrapolates to zero at xS ≈ 0.1. The structural transition in CeCu6-xPdx remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu6-xAgx and CeCu6-xPdx, exhibit a magnetic quantum critical point (QCP), at x ≈ 0.2 and x ≈ 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (δ1 0 δ2), where δ1 ~ 0.62, δ2 ~ 0.25, x = 0.125 for CeCu6-xPdx and δ1 ~ 0.64, δ2 ~ 0.3, x = 0.3 for CeCu6-xAgx. As a result, the magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell.

  1. Magnetic Braking of the Main Component of θ^{1} Ori C

    NASA Astrophysics Data System (ADS)

    Balega, Yu. Yu.; Leushin, V. V.; Weigelt, G.

    θ^{1} Ori C is the nearest massive O star at the early phase of the evolution. Interferometric study of the star at the 6-m BTA telescope showed that it is a binary system with an orbital period of 11 yr (Weigelt et al., 1999). It was also found that θ^{1} Ori C is an oblique magnetic rotator (Donati et al., 2002; Wade et al., 2006). From high resolution spectra of the binary collected with the 6-m telescope we succeeded to separate week lines of the secondary component and to measure its rotation velocity. It was found that the secondary rotates three times faster than the primary. We discuss the possibility of magnetic braking of the primary star as the mechanism explaining the difference of rotation.

  2. Performance of pancake coils of parallel co-wound Ag/BSCCO tape conductors in static and ramped magnetic fields

    SciTech Connect

    Schwenterly, S.W.; Lue, J.W.; Lubell, M.S.; Walker, M.S.; Hazelton, D.W.; Haldar, P.; Rice, J.A.; Hoehn, J.G. Jr.; Motowidlo, L.R.

    1994-12-31

    Critical Currents are reported for several Ag/BSCCO single-pancake coils in static magnetic fields ranging from 0 to 5 T and temperatures from 4.2 K to 105 K. The sample coils were co-wound of one to six tape conductors in parallel. Since the closed loops formed in such an arrangement could lead to eddy current heating or instability in changing fields, one of the coils was also tested in helium gas, in fields ramped at rates of up to 1.5 T/s. For these quasi-adiabatic tests, at each temperature the transport current was set just below the critical value for a preset static field of 3.3 or 4.9 T. The field was then rapidly ramped down to zero, held for 20 sec, and then ramped back up to the original value. The maximum observed temperature transient of about 1.7 K occurred at 9 K, for a field change of 4.75 T. The temperature transients became negligible when the sample was immersed in liquid helium. Above 30 K, the transients were below 1 K. These results give confidence that parallel co-wound HTSC coils are stable in a rapidly-ramped magnetic field, without undue eddy current heating.

  3. Monolayer magnetism of 3d transition metals in Ag, Au, Pd, and Pt hosts: Systematics of local moment variation

    NASA Astrophysics Data System (ADS)

    McHenry, M. E.; MacLaren, J. M.; Clougherty, D. P.

    1991-11-01

    Electronic and magnetic properties of T/Aun, T/Agn (T=Cr, Mn, Fe, Co, and Ni), Fe/Pdn and Fe/Ptn multilayers and sandwiches have been computed using the layer Korringa-Kohn-Rostoker (LKKR) band-structure technique. Enhanced (as compared with bulk) 2D T magnetism is observed in all Cr, Mn, and Fe/host configurations, consistent with weak coupling between Cr, Mn, and Fe d bands and those of the noble metal (NM) hosts and consequently d bandwidths which are exceeded by the exchange splitting. Fe and Cr moments vary systematically with the number of mediating Ag or Au planes and the Fermi energy of the system. These systematics are explained by considering the variation of the Fermi energy (EF) with composition as well as constraints of charge neutrality and strong (single-band) ferromagnetism. For Fe in Pt and Pd hosts, d-d hybridization leads to a nearly invariant Fe moment as a function of the number of mediating Pd or Pt planes but with large induced moments on the host.

  4. First discovery of a magnetic field in a main-sequence δ Scuti star: the Kepler star HD 188774

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Lampens, P.

    2015-11-01

    The Kepler space mission provided a wealth of δ Sct-γ Dor hybrid candidates. While some may be genuine hybrids, others might be misclassified due to the presence of a binary companion or to rotational modulation caused by magnetism and related surface inhomogeneities. In particular, the Kepler δ Sct-γ Dor hybrid candidate HD 188774 shows a few low frequencies in its light and radial velocity curves, whose origin is unclear. In this work, we check for the presence of a magnetic field in HD 188774. We obtained two spectropolarimetric measurements with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) at Canada-France-Hawaii Telescope. The data were analysed with the least-squares deconvolution (LSD) method. We detected a clear magnetic signature in the Stokes V LSD profiles. The origin of the low frequencies detected in HD 188774 is therefore most probably the rotational modulation of surface spots possibly related to the presence of a magnetic field. Consequently, HD 188774 is not a genuine hybrid δ Sct-γ Dor star, but the first known magnetic main-sequence δ Sct star. This makes it a prime target for future asteroseismic and spot modelling. This result casts new light on the interpretation of the Kepler results for other δ Sct-γ Dor hybrid candidates.

  5. Acceleration of polarized protons in the AGS

    SciTech Connect

    Tsoupas, N.; Ahrens, L.; Bai, M.; Brown, K.; Courant, E.; Glenn, J.W.; Huang, H.; Luccio, A.; MacKay, W.W.; Roser, T.; Schoefer, V.; Zeno, K.

    2010-02-25

    The high energy (s{sup 1/2} = 500 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the proton beam. With the AGS used as the pre-injector to RHIC, one of the main tasks is to preserve the polarization of the proton beam, during the beam acceleration in the AGS. The polarization preservation is accomplished by the two partial helical magnets [1,2,3,4,5,6,7] which have been installed in AGS, and help overcome the imperfection and the intrinsic spin resonances which occur during the acceleration of protons. This elimination of the intrinsic resonances is accomplished by placing the vertical tune Q{sub y} at a value close to 8.98, within the spin-tune stop-band created by the snake. At this near integer tune the perturbations caused by the partial helical magnets is large resulting in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have introduced compensation quads[2] in the AGS. In this paper we present the beam optics of the AGS which ameliorates this effect of the partial helices.

  6. Spin and orbital magnetism of coinage metal trimers (Cu{sub 3}, Ag{sub 3}, Au{sub 3}): A relativistic density functional theory study

    SciTech Connect

    Afshar, Mahdi; Sargolzaei, Mohsen

    2013-11-15

    We have demonstrated electronic structure and magnetic properties of Cu{sub 3}, Ag{sub 3} and Au{sub 3} trimers using a full potential local orbital method in the framework of relativistic density functional theory. We have also shown that the non-relativistic generalized gradient approximation for the exchange-correlation energy functional gives reliable magnetic properties in coinage metal trimers compared to experiment. In addition we have indicated that the spin-orbit coupling changes the structure and magnetic properties of gold trimer while the structure and magnetic properties of copper and silver trimers are marginally affected. A significant orbital moment of 0.21μ{sub B} was found for most stable geometry of the gold trimer whereas orbital magnetism is almost quenched in the copper and silver trimers.

  7. Synthesis of magnetically recyclable MnFe2O4@SiO2@Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction

    NASA Astrophysics Data System (ADS)

    Kurtan, U.; Amir, Md.; Yıldız, A.; Baykal, A.

    2016-07-01

    In this study, magnetically recycable MnFe2O4@SiO2@Ag nanocatalyst (MnFe2O4@SiO2@Ag MRCs) has been synthesized through co-precipition and chemical reduction method. XRD analysis confirmed the synthesis of single phase nanoproduct with crystallite size of 10 nm. VSM measurements showed the superparamagnetic property of the product. Catalytic studies showed that MnFe2O4@SiO2@Ag MRC could catalyze the reduction of the various azo compounds like methyl orange (MO), methylene blue (MB), eosin Y (EY), and rhodamine B (RhB) and also aromatic nitro compounds such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) and 2-nitroaniline (2-NA). Moreover, the magnetic nanocatalyst showed an excellent reusability properties that remained unchanged after several cycles. Therefore, MnFe2O4@SiO2@Ag is the potential candidate for the application of organic pollutants for wastewater treatment.

  8. Main magnetic focus ion source: Basic principles, theoretical predictions and experimental confirmations

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2016-03-01

    It is proposed to produce highly charged ions in the local potential traps formed by the rippled electron beam in a focusing magnetic field. In this method, extremely high electron current densities can be attained on short length of the ion trap. The design of very compact ion sources of the new generation is presented. The computer simulations predict that for such ions as, for example, Ne8+ and Xe44+, the intensities of about 109 and 106 ions per second, respectively, can be obtained. The experiments with pilot example of the ion source confirm efficiency of the suggested method. The X-ray emission from Ir59+, Xe44+ and Ar16+ ions was detected. The control over depth of the local ion trap is shown to be feasible.

  9. Magnetic properties and irreversibility behavior in Ag-sheathed Bi-based superconducting wires fabricated using a controlled melt procedure

    SciTech Connect

    Dou, S.X.; Liu, H.K.; Guo, Y.C. . School of Materials Science and Engineering); Shi, D.L. ); Sumption, M.D.; Collings, E.W. )

    1992-12-01

    A significant enhancement of the in-field J[sub c] of Ag-clad (Bi,Pb)-Sr-Ca-Cu-0 (BPSCCO:2223) wires has been achieved using a controlled melt procedure. The greatly reduced weak linking has resulted in an extended plateau regime in the J[sub c]-H curve. J[sub c]s of 40,000 A/cm[sup 2] at 77 K (self field) and 9,000 A/cm[sup 2] at 77 K (1 T) have been achieved. The improved J. H characteristics may be attributed to microstructures consisting of uniform grain alignment throughout the entire cross section, intimate connection between grains, impurities within the grains, and an optimal level of dispersed 2212 phase. Irreversibility line measurements using both AC susceptibility in DC fields (reported elsewhere), and magnetization measurements, have indicated that flux pinning can be enhanced in the melt-processed samples over the results of normal solid-state processing with its less-than optimal 2212-phase content. But sufficiently long annealing times during the normal'' route may achieve 2212-phase content and J[sub c]s which are comparable to those of melt-processed samples.

  10. Magnetic properties and irreversibility behavior in Ag-sheathed Bi-based superconducting wires fabricated using a controlled melt procedure

    SciTech Connect

    Dou, S.X.; Liu, H.K.; Guo, Y.C.; Shi, D.L.; Sumption, M.D.; Collings, E.W.

    1992-12-01

    A significant enhancement of the in-field J{sub c} of Ag-clad (Bi,Pb)-Sr-Ca-Cu-0 (BPSCCO:2223) wires has been achieved using a controlled melt procedure. The greatly reduced weak linking has resulted in an extended plateau regime in the J{sub c}-H curve. J{sub c}s of 40,000 A/cm{sup 2} at 77 K (self field) and 9,000 A/cm{sup 2} at 77 K (1 T) have been achieved. The improved J. H characteristics may be attributed to microstructures consisting of uniform grain alignment throughout the entire cross section, intimate connection between grains, impurities within the grains, and an optimal level of dispersed 2212 phase. Irreversibility line measurements using both AC susceptibility in DC fields (reported elsewhere), and magnetization measurements, have indicated that flux pinning can be enhanced in the melt-processed samples over the results of normal solid-state processing with its less-than optimal 2212-phase content. But sufficiently long annealing times during the ``normal`` route may achieve 2212-phase content and J{sub c}s which are comparable to those of melt-processed samples.

  11. Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2015-10-01

    In this work, we successfully prepared a series of novel magnetically separable ZnO/Ag3VO4/Fe3O4 nanocomposites by a facile refluxing method using Fe3O4, zinc nitrate, silver nitrate, ammonium metavanadate, and sodium hydroxide as starting materials without using any post preparation treatments. The microstructure, purity, morphology, spectroscopic, and magnetic properties of the prepared samples were studied using XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques. The ZnO/Ag3VO4/Fe3O4 nanocomposite with 8:1 weight ratio of ZnO/Ag3VO4 to Fe3O4 has the superior activity in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite is about 11.5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The results showed that the preparation time and calcination temperature significantly affect on the photocatalytic activity. The trapping experiments revealed that superoxide ions and holes have major influence on the degradation reaction. Furthermore, the enhanced activity of the nanocomposite for degradation of two more dye pollutants was confirmed. Finally, the nanocomposite was magnetically separated from the treated solution after four successive cycles.

  12. Cyto/hemocompatible magnetic hybrid nanoparticles (Ag2S-Fe3O4) with luminescence in the near-infrared region as promising theranostic materials.

    PubMed

    Hocaoglu, Ibrahim; Asik, Didar; Ulusoy, Gulen; Grandfils, Christian; Ojea-Jimenez, Isaac; Rossi, François; Kiraz, Alper; Doğan, Nurcan; Acar, Havva Yagci

    2015-09-01

    Small hybrid nanoparticles composed of highly biocompatible Ag2S quantum dots (QD) emitting in the near-infrared region and superparamagnetic iron oxide (SPION) are produced in a simple extraction method utilizing ligand exchange mechanism. Hybrid nanoparticles luminesce at the same wavelength as the parent QD, therefore an array of hybrid nanoparticles with emission between 840 and 912nm were easily produced. Such hybrid structures have (1) strong luminescence in the medical imaging window eliminating the autofluoresence of cells as effective optical probes, (2) strong magnetic response for magnetic targeting and (3) good cyto/hemocompatibility. An interesting size dependent cytotoxicity behavior was observed in HeLa and NIH/3T3 cell lines: smallest particles are internalized significantly more by both of the cell lines, yet showed almost no significant cytotoxicity in HeLa between 10 and 25μg/mL Ag concentration but were most toxic in NIH/3T3 cells. Cell internalization and hence the cytotoxicity enhanced when cells were incubated with the hybrid nanoparticles under magnetic field, especially with the hybrid nanoparticles containing larger amounts of SPION in the hybrid composition. These results prove them as effective optical imaging agents and magnetic delivery vehicles. Combined with the known advantages of SPIONs as a contrast agent in MRI, these particles are a step forward for new theranostics for multimode imaging and magnetic targeting. PMID:26101820

  13. Cyto/hemocompatible magnetic hybrid nanoparticles (Ag2S-Fe3O4) with luminescence in the near-infrared region as promising theranostic materials.

    PubMed

    Hocaoglu, Ibrahim; Asik, Didar; Ulusoy, Gulen; Grandfils, Christian; Ojea-Jimenez, Isaac; Rossi, François; Kiraz, Alper; Doğan, Nurcan; Acar, Havva Yagci

    2015-09-01

    Small hybrid nanoparticles composed of highly biocompatible Ag2S quantum dots (QD) emitting in the near-infrared region and superparamagnetic iron oxide (SPION) are produced in a simple extraction method utilizing ligand exchange mechanism. Hybrid nanoparticles luminesce at the same wavelength as the parent QD, therefore an array of hybrid nanoparticles with emission between 840 and 912nm were easily produced. Such hybrid structures have (1) strong luminescence in the medical imaging window eliminating the autofluoresence of cells as effective optical probes, (2) strong magnetic response for magnetic targeting and (3) good cyto/hemocompatibility. An interesting size dependent cytotoxicity behavior was observed in HeLa and NIH/3T3 cell lines: smallest particles are internalized significantly more by both of the cell lines, yet showed almost no significant cytotoxicity in HeLa between 10 and 25μg/mL Ag concentration but were most toxic in NIH/3T3 cells. Cell internalization and hence the cytotoxicity enhanced when cells were incubated with the hybrid nanoparticles under magnetic field, especially with the hybrid nanoparticles containing larger amounts of SPION in the hybrid composition. These results prove them as effective optical imaging agents and magnetic delivery vehicles. Combined with the known advantages of SPIONs as a contrast agent in MRI, these particles are a step forward for new theranostics for multimode imaging and magnetic targeting.

  14. Determination of the Fe magnetic anisotropies and the CoO frozen spins in epitaxial CoO/Fe/Ag(001)

    SciTech Connect

    Meng, J. Li, Y.; Park, J. S.; Jenkins, C. A.; Arenholz, E.; Scholl, A.; Tan, A.; Son, H.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-04-28

    CoO/Fe/Ag(001) films were grown epitaxially and studied by X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD). After field cooling along the Fe[100] axis to 80 K, exchange bias, uniaxial anisotropy, and 4-fold anisotropy of the films were determined by hysteresis loop and XMCD measurements by rotating the Fe magnetization within the film plane. The CoO frozen spins were determined by XMLD measurement as a function of CoO thickness.We find that among the exchange bias, uniaxial anisotropy, and 4-fold anisotropy, only the uniaxial magnetic anisotropy follows thickness dependence of the CoO frozen spins.

  15. The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe{sub 16}N{sub 2} thin films

    SciTech Connect

    Yang, Meiyin; Allard, Lawrence F.; Ji, Nian; Zhang, Xiaowei; Wang, Jian-Ping; Yu, Guang-Hua

    2013-12-09

    Partially ordered Fe-N thin films were grown by a facing target sputtering process on the surface of a (001) Ag underlayer on MgO substrates. It was confirmed by x-ray diffraction that the Ag layer enlarged the in-plane lattice of the Fe-N thin films. Domains of the ordered α″-Fe{sub 16}N{sub 2} phase within an epitaxial (001) α′-Fe{sub x}N phase were identified by electron diffraction and high-resolution aberration-corrected scanning transmission electron microscopy (STEM) methods. STEM dark-field and bright-field images showed the fully ordered structure of the α″-Fe{sub 16}N{sub 2} at the atomic column level. High saturation magnetization(Ms) of 1890 emu/cc was obtained for α″-Fe{sub 16}N{sub 2} on the Ag underlayer, while only 1500 emu/cc was measured for Fe-N on the Fe underlayer. The results are likely due to a tensile strain induced in the α″-Fe{sub 16}N{sub 2} phase by the Ag structure at the interface.

  16. Magnetic disorder in diluted FexM100-x granular thin films (M=Au, Ag, Cu; x < 10 at.%).

    PubMed

    Alba Venero, D; Fernández Barquín, L; Alonso, J; Fdez-Gubieda, M L; Rodríguez Fernández, L; Boada, R; Chaboy, J

    2013-07-10

    Nanogranular thin films of Fe7Au93, Fe7Ag93 and Fe9Cu91 have been sputtered onto Si(100) substrates with the aim of studying the magnetic interactions. X-ray diffraction shows a major noble metal matrix with broad peaks stemming from (111) textured fcc-Au, Ag and Cu. The noble metal forms a nanogranular environment, as confirmed by transmission electron microscopy, with mean particle sizes below 10 nm. The high magnetoresistance (>6%) reveals the existence of Fe nanoparticles. X-ray absorption near edge spectroscopy confirms the presence of a bcc-Fe atom arrangement and some dissolved Fe atoms in the matrix, and XMCD shows the polarization of Au by the Fe nanoparticles. DC-magnetization displays a field-dependent irreversibility produced by the freezing of magnetic nanoparticles into a superspin-glass state. The hysteresis loops remain unsaturated at 5 K and 45 kOe. The coercivity displays a sharp temperature decrease towards a minimum below 50 K, levelling off at higher values, reaching Hc = 200 Oe at 300 K. Annealing of FeAu results in a double-peak zero field cooled magnetization and a slight decrease of the coercivity. The interpretation of the results supports the presence of Fe nanoparticles embedded in the major noble matrix, with some diluted Fe atoms/clusters. PMID:23765439

  17. Effect of axial strain on the critical current of Ag-sheathed Bi-based superconductors in magnetic fields up to 25 T

    SciTech Connect

    Ekin, J.W. ); Finnemore, D.K.; Li, Q. ); Tenbrink, J. ); Carter, W. )

    1992-08-17

    The irreversible strain limit {epsilon}{sub irrev} for the onset of permanent axial strain damage to Ag-sheathed Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub 8+{ital x}} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{ital x}} superconductors has been measured to be in the range of 0.2%--0.35%. This strain damage onset is about an order of magnitude higher than for {ital bulk} {ital sintered} Y-, Bi-, or Tl-based superconductors and is approaching practical values for magnet design. The measurements show that the value of {epsilon}{sub irrev} is not dependent on magnetic field, nor does the critical current depend on strain below {epsilon}{sub irrev} at least up to 25 T at 4.2 K. Both of these factors indicate that the observed strain effect in Ag-sheathed Bi-based superconductors is not intrinsic to the superconductor material. Rather, the effect is extrinsic and arises from superconductor fracture. Thus, the damage onset is amenable to further enhancement. Indeed, the data suggest that subdividing the superconductor into fine filaments or adding Ag to the superconductor powder prior to processing significantly enhances the damage threshold {epsilon}{sub irrev} to above 0.6%.

  18. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity.

    PubMed

    Chi, Yue; Yuan, Qing; Li, Yanjuan; Zhao, Liang; Li, Nan; Li, Xiaotian; Yan, Wenfu

    2013-11-15

    Major efforts in modern material chemistry are devoted to the design and fabrication of nanostructured systems with tunable physical-chemical properties for advanced catalytic applications. Here, a novel Fe3O4@SiO2@TiO2-Ag nanocomposite has been synthesized and characterized by a series of techniques including SEM, TEM, XRD, XPS as well as magnetization measurement and subsequently tested for the photocatalytic activities. The well-designed nanocomposite exhibits significantly superior activity to that of the commercial Degussa P25 thanks to the suppression of electron-hole pairs from recombination by Ag nanoparticles, and can be easily recycled by applying an external magnetic field while maintaining the catalytic activity without significant decrease even after running 10 times. The unique nanostructure makes Fe3O4@SiO2@TiO2-Ag a highly efficient, recoverable, stable, and cost-effective photocatalytic system offering broad opportunities in the field of catalyst synthesis and application. PMID:24076477

  19. Exploring the thermoelectric and magnetic properties of uranium selenides: Tl2Ag2USe4 and Tl3Cu4USe6

    NASA Astrophysics Data System (ADS)

    Azam, Sikander; Khan, Saleem Ayaz; Din, Haleem Ud; Khenata, Rabah; Goumri-Said, Souraya

    2016-09-01

    The electronic, magnetic and thermoelectric properties of Tl2Ag2USe4 and Tl3Cu4USe6 compounds were investigated using the full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The exchange correlation was treated with the generalized gradient approximation plus optimized effective Hubbard parameter and spin-orbit coupling (GGA+U+SOC). The present uranium selenides show narrow direct energy band gap values of 0.7 and 0.875 eV for Tl2Ag2USe4 and Tl3Cu4USe6 respectively. For both selenides U-d/f states are responsible for electrical transport properties. Uranium atoms were the most contributors in the magnetic moment compared to other atoms and show ferromagnetic nature. The spin density isosurfaces show the polarization of neighboring atoms of Uranium, such as silver/copper and selenium. Thermoelectric calculations reveal that Tl3Cu4USe6 is more suitable for thermoelectric device applications than Tl2Ag2USe4.

  20. Enhanced photophysical properties of plasmonic magnetic metal-alloyed semiconductor heterostructure nanocrystals: a case study for the Ag@Ni/Zn1-xMgxO system.

    PubMed

    Paul, Sumana; Ghosh, Sirshendu; Saha, Manas; De, S K

    2016-05-14

    Understanding the effect of homovalent cation alloying in wide band gap ZnO and the formation of metal-semiconductor heterostructures is very important for maximisation of the photophysical properties of ZnO. Nearly monodisperse ZnO nanopyramid and Mg alloyed ZnO nanostructures have been successfully synthesized by one pot decomposition of metal stearate by using oleylamine both as activating and capping agent. The solid solubility of Mg(ii) ions in ZnO is limited to ∼30% without phase segregation. An interesting morphology change is found on increasing Mg alloying: from nanopyramids to self-assembled nanoflowers. The morphology change is explained by the oriented attachment process. The introduction of Mg into the ZnO matrix increases the band gap of the materials and also generates new zinc interstitial (Zni) and oxygen vacancy related defects. Plasmonic magnetic Ag@Ni core-shell (Ag as core and Ni as shell) nanocrystals are used as a seed material to synthesize Ag@Ni/Zn1-xMgxO complex heterostructures. Epitaxial growth is established between Ag(111) and ZnO(110) planes in the heterostructure. An epitaxial metal-semiconductor interface is very crucial for complete electron-hole (e-h) separation and enhancement of the exciton lifetime. The alloyed semiconductor-metal heterostructure is observed to be highly photocatalytically active for dye degradation as well as photodetection. Incorporation of magnetic Ni(0) makes the photocatalyst superparamagnetic at room temperature which is found to be helpful for catalyst regeneration. PMID:27113320

  1. Hierarchically assembled NiCo@SiO2@Ag magnetic core-shell microspheres as highly efficient and recyclable 3D SERS substrates.

    PubMed

    Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui

    2015-01-21

    The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument.

  2. Gulf Coast-East Coast magnetic anomaly I: Root of the main crustal decollement for the Appalachian-Ouachita orogen

    SciTech Connect

    Hall, D.J. )

    1990-09-01

    The Gulf Coast-East Coast magnetic anomaly extends for at least 4000 km from south-central Texas to offshore Newfoundland as one of the longest continuous tectonic features in North America and a major crustal element of the entire North Atlantic-Gulf Coast region. Analysis of 28 profiles spaced at 100km intervals and four computed models demonstrate that the anomaly may be explained by a thick zone of mafic and ultramafic rocks averaging 13-15 km in depth. The trend of the anomaly closely follows the trend of main Appalachian features: in the Gulf Coast of Louisiana, the anomaly is as far south of the Ouachita front as it is east of the western limit of deformation through the central Appalachians. Because the anomaly continues across well-known continental crust in northern Florida and onshore Texas, it cannot plausibly be ascribed to an edge effect at the boundary of oceanic with continental crustal compositions. The northwest-verging, deep-crustal events discovered in COCORP data from the Ouachitas and Appalachians suggest an analogy with the main suture of the Himalayan orogen in the Tibetan Plateau. In this paper the anomaly is identified with the late Paleozoic Alleghenian megasuture, in which the northwest-verging crustal-detachment surfaces ultimately root.

  3. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles.

    PubMed

    Wang, Liying; Sun, Ying; Wang, Jing; Wang, Jian; Yu, Aimin; Zhang, Hanqi; Song, Daqian

    2011-06-01

    In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.

  4. Modelling of the AGS using Zgoubi - Status

    SciTech Connect

    Meot F.; Ahrens, L.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Schoefer, V.; Tsoupas, N.

    2012-05-20

    This paper summarizes the progress achieved so far, and discusses various outcomes, regarding the development of a model of the Alternating Gradient Synchrotron at the RHIC collider. The model, based on stepwise ray-tracing methods, includes beam and polarization dynamics. This is an on-going work, and a follow-on of code developments and particle and spin dynamics simulations that have been subject to earlier publications at IPAC and PAC [1, 2, 3]. A companion paper [4] gives additional informations, regarding the use of the measured magnetic field maps of the AGS main magnets.

  5. Conduction and magnetization improvement of BiFeO{sub 3} multiferroic nanoparticles by Ag{sup +} doping

    SciTech Connect

    Ahmed, M.A.; Mansour, S.F.; El-Dek, S.I.; Abu-Abdeen, M.

    2014-01-01

    Graphical abstract: HRTEM micrographs of the samples BiFeO{sub 3}. - Highlights: • Flash auto combustion method was successful in the preparation of Ag doped BiFeO{sub 3} in nanosize. • Ag doping results in hexagonal platelet shapes up to x = 0.10, at x ≥ 0.15 needle shape predominates. • Mixed conduction is obtained in Ag doped samples. • This nanometric multiferroic could be recommended as attractive cathode for solid oxide fuel cell. - Abstract: Nanometric multiferroic namely Ag doped (BiFeO{sub 3}) was synthesized using flash auto combustion technique and glycine as a fuel. Single phase rhombohedral–hexagonal perovskite structure was obtained by annealing at 550 °C, as determined from XRD. High resolution transmission electron microscope (HRTEM) clarifies the hexagonal platelet shape with size 17.9 nm. Maximum room temperature AC conductivity was obtained at Ag content of x = 0.10. The results of this study promote the use of such multiferroic in solid oxide fuel cell applications.

  6. Three-dimensional simulations of near-surface convection in main-sequence stars. III. The structure of small-scale magnetic flux concentrations

    NASA Astrophysics Data System (ADS)

    Beeck, B.; Schüssler, M.; Cameron, R. H.; Reiners, A.

    2015-09-01

    Context. The convective envelopes of cool main-sequence stars harbour magnetic fields with a complex global and local structure. These fields affect the near-surface convection and the outer stellar atmospheres in many ways and are responsible for the observable magnetic activity of stars. Aims: Our aim is to understand the local structure in unipolar regions with moderate average magnetic flux density. These correspond to plage regions covering a substantial fraction of the surface of the Sun (and likely also the surface of other Sun-like stars) during periods of high magnetic activity. Methods: We analyse the results of 18 local-box magnetohydrodynamics simulations covering the upper layers of the convection zones and the photospheres of cool main-sequence stars of spectral types F to early M. The average vertical field in these simulations ranges from 20 to 500 G. Results: We find a substantial variation of the properties of the surface magnetoconvection between main-sequence stars of different spectral types. As a consequence of a reduced efficiency of the convective collapse of flux tubes, M dwarfs lack bright magnetic structures in unipolar regions of moderate field strength. The spatial correlation between velocity and the magnetic field as well as the lifetime of magnetic structures and their sizes relative to the granules vary significantly along the model sequence of stellar types. Movies associated to Fig. A.1 are available in electronic form at http://www.aanda.org

  7. Magnetic fields of chemically peculiar and related stars. I. Main results of 2014 and near-future prospects

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.

    2015-04-01

    We make a critical analysis of the results of studies of magnetic fields in chemically peculiar and related stars, published mostly in 2014. Methodological matters are discussed, and research results are analyzed. Most of the measurements of magnetic fields were obtained with well-known instruments. In 2014 a large observational project MiMeS was accomplished, the observations of more than 500 objects were performed, magnetic fields were found in 35 of them. Twenty new magnetic stars have been detected from the observations with the SAORAS 6-m telescope. Regular measurements of magnetic fields with an accuracy of units of gauss are conducted on a number of telescopes using the HARPS, ESPaDOnS, and NARVAL spectropolarimeters. The fields of complex topology have been studied, magnetic maps have been built, a connection with the distribution of anomalies of chemical composition has been found. The debate about the existence of a magnetic field of about 1 G in Vega and some other objects is ongoing. Apparently, the absence of a large-scale magnetic field greater than tens of gauss in the mercury-manganese and Am stars is confirmed. First CP stars were detected outside the Galaxy, in the Large Magellanic Cloud. Observations of magnetic fields in solar-type stars are continued, a strong correlation between the field strength and the degree of chromospheric activity was discovered.

  8. Electronic and magnetic properties of second main-group and second sub-group metals substitution for Al in delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Liu, Fu-Sheng; Liu, Zheng-Tang

    2015-07-01

    A systematic theoretical investigation has been carried out for the structural, electronic and magnetic properties of second main-group and second sub-group metals substitution for Al in delafossite CuAlO2 in the framework of density functional theory. The structural parameters and formation energies were calculated and discussed. The appearance of enhanced p-type conductivity after doping has been analyzed. Moreover, it is shown that all dopants have relatively large magnetic moments, but their ferromagnetic states are unstable, showing that their potential application in dilute magnetic semiconductors is not applicable.

  9. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  10. Evolution of structural and magnetic properties of Co-doped TiO2 thin films irradiated with 100 MeV Ag7+ ions

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Singh, V. P.; Mishra, N. C.; Ojha, S.; Kanjilal, D.; Rath, Chandana

    2014-08-01

    In continuation to our earlier studies where we have shown room temperature ferromagnetism observed in TiO2 and Co-doped TiO2 (CTO) thin films independent of their phase (Mohanty et al 2012 J. Phys. D: Appl. Phys. 45 325301), here the modifications in structure and magnetic properties in CTO thin films using 100 MeV Ag7+ ion irradiation are reported. Owing to the important role of defects in tailoring the magnetic properties of the material, we vary the ion fluence from 5 × 1011 to 1 × 1012 ions cm-2 to create post-deposition defects. While the film deposited under 0.1 mTorr oxygen partial pressure retains its crystallinity showing radiation-resistant behaviour even at a fluence of 1 × 1012 ions cm-2, films deposited under 1 to 300 mTorr oxygen partial pressure becomes almost amorphous at the same fluence. Using Poisson's law, the diameter of the amorphized region surrounding the ion path is calculated to be ˜4.2 nm from the x-ray diffraction peak intensity ((1 1 0) for rutile phase) as a function of ion fluence. The saturation magnetization (Ms) decreases exponentially similar to the decrease in x-ray peak intensity with fluence, indicating magnetic disordered region surrounding the ion path. The diameter of the magnetic disordered region is found to be ˜6.6 nm which is larger than the diameter of the amorphized latent track. Therefore, it is confirmed that swift heavy ion irradiation induces a more significant magnetic disorder than the structural disorder.

  11. Magnetic and electrical properties of Fe{sub 0.9}Ag{sub 0.1}In{sub 2.3}S{sub 4.4} single crystals

    SciTech Connect

    Bodnar, I. V.; Trukhanov, S. V.; Barugu, T. H.

    2015-10-15

    The magnetic and electrical properties of the Fe{sub 0.9}Ag{sub 0.1}In{sub 2.3}S{sub 4.4} single crystal are studied in the temperature range 4–300 K and in magnetic fields of 0–14 T. It is established that the sample under study is paramagnetic. In the ground state, short-range-order correlations typical of a spin glass with a freezing temperature of 10 K are detected. The magnetic ordering temperature is 15 K. The sample is a semiconductor with a resistivity of 3.5 kΩ cm at room temperature. For the Fe{sub 0.9}Ag{sub 0.1}In{sub 2.3}S{sub 4.4} single crystal, a mechanism for the formation of magnetic and electrical states is suggested.

  12. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  13. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-08-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  14. Finite element calculations on detailed 3D models for the superferric main magnets of the FAIR SIS100 synchrotron

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Shcherbakov, P.; Kurnyshov, R.

    2007-11-01

    The synchrotron SIS100 is one of the two basic accelerators of the future Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. This accelerator should provide high intensity U28+ and proton beams with a pulse repetition rate of 1 Hz (i.e. a ramp rate of 4 T/s). The magnetic system of the accelerator uses superferric 2.1 T dipoles of about 3 m length and 32 T/m quadrupoles of about 1 m length. The magnet coils are made of a hollow tube cable wrapped with Cu/NbTi composite wire cooled with two phase helium flow at 4.5 K. The bore dimensions were defined to 130 × 60 mm for the dipole and 135 × 65 mm for the quadrupole. We present the developed ANSYS models for different important aspects: AC loss, magnetic field quality and mechanical stability. Preliminary studies verified the approaches and these models were applied to calculate the effects for the coil, the yoke and the beam pipe structures. We outline further steps to fully describe the SIS100 magnets including mechanical and thermal properties.

  15. Enhanced magnetic and bolometric sensitivity of La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films due to 200 MeV Ag ion irradiation

    SciTech Connect

    Choudhary, R.J.; Kumar, Ravi; Patil, S.I.; Husain, Shahid; Srivastava, J.P.; Malik, S.K.

    2005-05-30

    The parameters for bolometric performance [temperature coefficient of resistance (TCR) and noise value] and magnetic sensitivity of pulsed-laser-deposited thin films of La{sub 0.7}Ce{sub 0.3}MnO{sub 3} and their dependence on the 200 MeV Ag ions irradiation are studied. It is observed that the TCR value and magnetic sensitivity can be tuned in different temperature regime by controlling the irradiation fluence value. It turns out that irradiation with a fluence value of 5x10{sup 10} ions/cm{sup 2} changes the TCR value in a positive direction and enhances magnetic sensitivity at room temperature, while irradiation with a fluence value of 1x10{sup 12} ions/cm{sup 2} enhances these parameters at 200 K. The observations are explained on the basis of structural and electrical transport modifications induced by the 200 MeV Ag ion irradiation.

  16. Thermal stability of partially ordered Fe{sub 16}N{sub 2} film on non-magnetic Ag under layer

    SciTech Connect

    Zhang, Xiaowei; Wang, Jian-Ping; Yang, Meiyin; Jiang, Yanfeng; Allard, Lawrence F.

    2014-05-07

    Partially ordered Fe{sub 16}N{sub 2} thin film with (001) texture is successfully grown on a Ag under layer using a facing target sputtering system. Fe{sub 16}N{sub 2} phase is formed after post-annealing, which is detected by X-ray diffraction (XRD). High saturation magnetization (M{sub s}) of Fe{sub 16}N{sub 2} thin films is observed by vibrating sample magnetometry. It is found that Fe{sub 16}N{sub 2} phase can be stable up to 225 °C, which is demonstrated by the Fe{sub 16}N{sub 2} finger print peak (002) in XRD. After heating to 250 °C, the Fe{sub 16}N{sub 2} phase decomposes, which leads to low M{sub s} and soft magnetic behavior. To further study Fe{sub 16}N{sub 2} decomposition, X-ray photoelectron spectroscopy is performed to detect the binding energy of nitrogen atoms. Differences of binding energy corresponding to before and after heat treatment show the variation of nitrogen atom in electronic state with surrounding Fe atoms, indicating nitrogen atomic migration during heat treatment.

  17. Fe3O4@Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One.

    PubMed

    Liu, Zhigang; Wang, Yi; Deng, Rong; Yang, Liyuan; Yu, Shihua; Xu, Shuping; Xu, Weiqing

    2016-06-01

    A multifunctional magnetic graphene surface-enhanced Raman scattering (SERS) substrate was fabricated successfully by the layer-by-layer assembly of silver and graphene oxide (GO) nanoparticles (NPs) on the magnetic ferroferric oxide particles (Fe3O4@GO@Ag). This ternary particle possesses magnetic properties, SERS activity, and adsorption ability simultaneously. Owing to the multifunction of this Fe3O4@GO@Ag ternary complex, we put forward a new method called a surface magnetic solid-phase extraction (SMSPE) technique, for the SERS detections of pesticide residues on the fruit peels. SMSPE integrates many sample pretreatment procedures, such as surface extraction, separation sample, and detection, all-in-one. So this method shows great superiority in simplicity, rapidity, and high efficiency above other standard methods. The whole detection process can be finished within 20 min including the sample pretreatment and SERS detection. Owing to the high density of Ag NPs, the detection sensitivity is high enough that the lowest detectable concentrations are 0.48 and 40 ng/cm(2) for thiram and thiabendazole, which are much lower than the maximal residue limits in fruit prescribed by the U.S. Environmental Protection Agency. This multifunctional ternary particle and its corresponding analytical method have been proven to be applicable for practical samples and also valuable for other surface analysis. PMID:27191584

  18. Reduced Magnetization and Loss in Ag-Mg Sheathed Bi2212 Wires: Systematics With Sample Twist Pitch and Length

    SciTech Connect

    Myers, C. S.; Susner, M. A.; Miao, H.; Huang, Y.; Sumption, M. D.; Collings, E. W.

    2014-11-20

    Suppression of magnetization and effective filament diameter (deff) with twisting was investigated for a series of recent Bi2212 strands manufactured by Oxford Superconducting Technologies. We measured magnetization as a function of field (out to 14 T), at 5.1 K, of twisted and nontwisted 37 × 18 double restack design strands. The samples were helical coils 5-6 mm in height and approximately 5 mm in diameter. The strand diameter was 0.8 mm. The magnetization of samples having twist pitches of 25.4, 12.7, and 6.35 mm were examined and compared to nontwisted samples of the same filament configuration. The critical state model was used to extract the 12-T deff from magnetization data for comparison. Twisting the samples reduced deff by a factor of 1.5-3. The deff was shown to increase both with L and Lp. Mathematical expressions, based upon the anisotropic continuum model, were fit to the data, and a parameter γ2, which quantifies the electrical connectivity perpendicular to the filament axis, was extracted. The bundle-to-bundle connectivity along the radial axis was found to be approximately 0.2%. The deff was substantially reduced with Lp. In addition, the importance of understanding sample length dependence for quantitative measurements is discussed.

  19. Reduced Magnetization and Loss in Ag-Mg Sheathed Bi2212 Wires: Systematics With Sample Twist Pitch and Length

    DOE PAGES

    Myers, C. S.; Susner, M. A.; Miao, H.; Huang, Y.; Sumption, M. D.; Collings, E. W.

    2014-11-20

    Suppression of magnetization and effective filament diameter (deff) with twisting was investigated for a series of recent Bi2212 strands manufactured by Oxford Superconducting Technologies. We measured magnetization as a function of field (out to 14 T), at 5.1 K, of twisted and nontwisted 37 × 18 double restack design strands. The samples were helical coils 5-6 mm in height and approximately 5 mm in diameter. The strand diameter was 0.8 mm. The magnetization of samples having twist pitches of 25.4, 12.7, and 6.35 mm were examined and compared to nontwisted samples of the same filament configuration. The critical state modelmore » was used to extract the 12-T deff from magnetization data for comparison. Twisting the samples reduced deff by a factor of 1.5-3. The deff was shown to increase both with L and Lp. Mathematical expressions, based upon the anisotropic continuum model, were fit to the data, and a parameter γ2, which quantifies the electrical connectivity perpendicular to the filament axis, was extracted. The bundle-to-bundle connectivity along the radial axis was found to be approximately 0.2%. The deff was substantially reduced with Lp. In addition, the importance of understanding sample length dependence for quantitative measurements is discussed.« less

  20. B2N2O4: Prediction of a Magnetic Ground State for a Light Main-Group Molecule

    SciTech Connect

    Varga, Zoltan; Truhlar, Donald G.

    2015-09-08

    Cyclobutanetetrone, (CO)4, has a triplet ground state. Here we predict, based on electronic structure calculations, that the B2N2O4 molecule also has a triplet ground state and is therefore paramagnetic; the structure is an analogue of (CO)4 in which the carbon ring is replaced by a (BN)2 ring. Similar to (CO)4, the triplet ground-state structure of B2N2O4 is also thermodynamically unstable. Besides analysis of the molecular orbitals, we found that the partial atomic charges are good indicators for predicting magnetic ground states.

  1. Multiple Partial Siberian Snakes in the AGS

    SciTech Connect

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.; Hattori, T.; Lin, F.

    2007-06-13

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  2. Modeling of the corrected D st * index temporal profile on the main phase of the magnetic storms generated by different types of solar wind

    NASA Astrophysics Data System (ADS)

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.

    2015-03-01

    A modeling of the corrected (taking into account the magnetopause currents [9]) D st * index during the main phase of magnetic storms generated by four types of the solar wind (SW), namely MC (10 storms), CIR (28 storms), Sheath (21 storms), and Ejecta (31 storms), is performed similarly to our previous work on the simple D st index [8]. The "Catalog of large-scale solar wind phenomena during 1976-2000" ([1], ftp://ftp.iki.rssi.ru/pub/omni/) prepared on the basis of the OMNI database, was used for the identification of SW types. The time behavior of D st * is approximated by a linear dependence on the integral electric field (sum E y ), dynamic pressure ( P d ), and fluctuation level (s B) of the interplanetary magnetic field (IMF). Three types of D st * modeling are performed: (1) by individual values of the approximation coefficients; (2) by approximation coefficients averaged over SW type, and (3) in the same way as in (2) but with allowance for the D st *-index values preceding the beginning of the main phase of the magnetic storm. The results of modeling the corrected D st * index are compared to modeling of the usual D st index. In the conditions of a strong statistical scatter of the approximation coefficients, the use of D st instead of D st * insignificantly influences the accuracy of the modeling and correlation coefficient.

  3. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance.

    PubMed

    Feng, Zhouzhou; Yu, Jiajie; Sun, Dongping; Wang, Tianhe

    2016-10-15

    In this paper, Ag/AgCl and Ag/AgCl/Al2O3 photocatalysts were synthesized via a precipitation reaction between NaCl and CH3COOAg or Ag(NH3)2NO3, wherein Ag/AgCl was immobilized into mesoporous Al2O3 medium. The Ag/AgCl-based nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, and so on. The photocatalysts displayed excellent photocatalytic activity for the degradations of methyl orange (MO) and methylene blue (MB) pollutants under visible light irradiation. The Ag/AgCl(CH3COOAg)/Al2O3 sample exhibited the best photocatalytic performance, degrading 99% MO after 9min of irradiation, which was 1.1 times, 1.22 times and 1.65 times higher than that of Ag/AgCl(Ag(NH3)2NO3)/Al2O3, Ag/AgCl(CH3COOAg) and Ag/AgCl(Ag(NH3)2NO3) photocatalyst, respectively. Meanwhile, Ag/AgCl(CH3COOAg)/Al2O3 also showed excellent capability of MB degradation. Compared to the data reported for Ag/AgCl/TiO2, the Ag/AgCl/Al2O3 prepared in this work exhibited a good performance for the degradation of methyl orange (MO). The results suggest that the dispersion of Ag/AgCl on mesoporous Al2O3 strongly affected their photocatalytic activities. O2(-), OH radicals and Cl(0) atoms are main active species during photocatalysis. PMID:27442145

  4. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles

    SciTech Connect

    Yantasee, Wassana; Hongsirikarn, Kitiya; Warner, Cynthia L.; Choi, Daiwon; Sangvanich, Thanapon; Toloczko, Mychailo B.; Warner, Marvin G.; Fryxell, Glen E.; Addleman, Raymond S.; Timchalk, Chuck

    2008-03-01

    Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics including toxic metals. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g/L of DMSA-Fe3O4, the sensor could detect background level of Pb (< 1 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%R.S.D of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (< 1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.

  5. Does the duration of the magnetic storm recovery phase depend on the development rate in its main phase? 2. A new method

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2016-05-01

    In contrast to our previous work (Yermolaev et al., 2015), in which we used the magnetic storm recovery phase duration, the exponential time of the recovery phase of magnetic storms generated by three interplanetary driver types (CIR, Sheath, and ICME) is introduced in the present work. The dependence of these times on the storm development rate | Dst min|/Δ T (where Δ T is the storm main phase duration) is studied. A similar physical result has been achieved despite the different data analysis method used: the times of the storm recovery and development rates correlate for storms induced by CIR and Sheath compression regions, and any relation between these parameters is absent for storms induced by ICME.

  6. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.

    PubMed

    Zhou, F Y; Qiu, K J; Li, H F; Huang, T; Wang, B L; Li, L; Zheng, Y F

    2013-12-01

    In this study, the microstructures, mechanical properties, corrosion behaviors, in vitro cytocompatibility and magnetic susceptibility of Zr-1X alloys with various alloying elements, including Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi, were systematically investigated to explore their potential use in biomedical applications. The experimental results indicated that annealed Zr-1X alloys consisted entirely or primarily of α phase. The alloying elements significantly increased the strength and hardness of pure Zr and had a relatively slight influence on elastic modulus. Ru was the most effective enhancing element and Zr-1Ru alloy had the largest elongation. The results of electrochemical corrosion indicated that adding various elements to Zr improved its corrosion resistance, as indicated by the reduced corrosion current density. The extracts of the studied Zr-1X alloys produced no significant deleterious effects on osteoblast-like cells (MG 63), indicating good in vitro cytocompatibility. All except for Zr-1Ag alloy showed decreased magnetic susceptibility compared to pure Zr, and Zr-1Ru alloy had the lowest magnetic susceptibility value, being comparable to that of α' phase Zr-Mo alloy and Zr-Nb alloy and far lower than that of Co-Cr alloy and Ti-6Al-4V alloy. Among the experimental Zr-1X alloys, Zr-1Ru alloy possessing high strength coupled with good ductility, good in vitro cytocompatibility and low magnetic susceptibility may be a good candidate alloy for medical devices within a magnetic resonance imaging environment.

  7. A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation.

    PubMed

    Yu, Changlin; Wei, Longfu; Zhou, Wanqin; Dionysiou, Dionysios D; Zhu, Lihua; Shu, Qing; Liu, Hong

    2016-08-01

    A series of Ag2S-Ag2CO3 (4%, 8%, 16%, 32% and 40% Ag2S), Ag2CO3@Ag2S (32%Ag2S) and Ag2S@Ag2CO3 (32%Ag2S) composite photocatalysts were fabricated by coprecipitation or successive precipitation reaction. The obtained catalysts were analyzed by N2 physical adsorption, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photocurrent test. Under visible light irradiation, the influences of Ag2S content and core-shell property on photocatalytic activity and stability were evaluated in studies focused on the degradation of methyl orange (MO) dye, phenol, and bisphenol A. Results showed that excellent photocatalytic performance was obtained over Ag2S/Ag2CO3 composite photocatalysts with respect to Ag2S and Ag2CO3. With optimal content of Ag2S (32 wt%), the Ag2S-Ag2CO3 showed the highest photocatalytic degradation efficiency. Moreover, the structured property of Ag2S/Ag2CO3 greatly influenced the activity. Compared with Ag2S-Ag2CO3 and Ag2CO3@Ag2S, core-shell like Ag2S@Ag2CO3 demonstrated the highest activity and stability. The main reason for the boosting of photocatalytic performance was due to the formation of Ag2S/Ag2CO3 well contacted interface and unique electron structures. Ag2S/Ag2CO3 interface could significantly increase the separation efficiency of the photo-generated electrons (e(-)) and holes (h(+)), and production of OH radicals. More importantly, the low solubility of Ag2S shell could effectively protect the core of Ag2CO3, which further guarantees the stability of Ag2CO3. PMID:27236845

  8. The AGS-Booster lattice

    SciTech Connect

    Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.

    1987-01-01

    The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.

  9. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria.

    PubMed

    Hu, Chun; Lan, Yongqing; Qu, Jiuhui; Hu, Xuexiang; Wang, Aimin

    2006-03-01

    Ag/AgBr/TiO2 was prepared by the deposition-precipitation method and was found to be a novel visible light driven photocatalyst. The catalyst showed high efficiency for the degradation of nonbiodegradable azodyes and the killing of Escherichia coli under visible light irradiation (lambda>420 nm). The catalyst activity was maintained effectively after successive cyclic experiments under UV or visible light irradiation without the destruction of AgBr. On the basis of the characterization of X-ray diffraction, X-ray photoelectron spectroscopy, and Auger electron spectroscopy, the surface Ag species mainly exist as Ag0 in the structure of all samples before and after reaction, and Ag0 species scavenged hVB+ and then trapped eCB- in the process of photocatalytic reaction, inhibiting the decomposition of AgBr. The studies of ESR and H2O2 formation revealed that *OH and O2*- were formed in visible light irradiated aqueous Ag/AgBr/TiO2 suspension, while there was no reactive oxygen species in the visible light irradiated Ag0/TiO2 system. The results indicate that AgBr is the main photoactive species for the destruction of azodyes and bacteria under visible light. In addition, the bactericidal efficiency and killing mechanism of Ag/AgBr/TiO2 under visible light irradiation are illustrated and discussed. PMID:16509698

  10. Effects of 200-MeV Ag-ion irradiation on magnetization in a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{ital y}} single crystal

    SciTech Connect

    Pradhan, A.K.; Roy, S.B.; Chaddah, P.; Kanjilal, D.; Chen, C.; Wanklyn, B.M.

    1996-02-01

    We report a dramatic change in the magnetization double peak anomaly and irreversibility line of a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} [BSCCO(2212)] single crystal after irradiation with 200-MeV Ag ions. We found that the partial destruction and ineffectiveness of dislocation networks in the CuO{sub 2} planes of the BSCCO crystal after irradiation are responsible for the disappearance of the double peak anomaly. Ag irradiation induces damage in the form of columnar defects which cause an enhancement of flux pinning and a shift in the irreversibility line towards higher temperatures. {copyright} {ital 1996 The American Physical Society.}

  11. One-pot synthesis of ternary Ag₂CO₃/Ag/AgCl photocatalyst in natural geothermal water with enhanced photocatalytic activity under visible light irradiation.

    PubMed

    Yao, Xiaxi; Liu, Xiaoheng

    2014-09-15

    Geothermal water is a clean, cheap and renewable resource and it is widely distributed all over the world. In this work, ternary Ag2CO3/Ag/AgCl photocatalyst has been successfully synthesized via a one-pot precipitation method in natural geothermal water at room temperature, wherein the geothermal water serves as the source of chlorine and carbonate. The results suggest that the Ag/AgCl nanoparticles are anchored on the surface of Ag2CO3 and Ag2CO3/Ag/AgCl composite shows strong absorption ability in the visible light region. The evaluation of the photocatalytic activity indicates that the as-synthesized Ag2CO3/Ag/AgCl photocatalyst exhibits higher photocatalytic performance for the degradation of methylene blue (MB) aqueous solution under visible light irradiation than one-component (Ag2CO3), two-component (Ag/AgCl, Ag2CO3/AgCl) and the mechanical mixture of Ag2CO3 and Ag/AgCl. The trapping experiments confirmed that holes (h(+)) and (•)O2(-) were the two main active species in the photocatalytic process. Finally, a possible Z-scheme photocatalytic mechanism of the charge transfer was proposed for the enhanced photocatalytic performance. This work may open up new insights into the application of cheap geothermal water resources in the word and provide new opportunities for facile fabrication of Ag/AgCl-based photocatalysts.

  12. Structural, electrical transport, magnetization, and 1/f noise studies in 200 MeV Ag ion irradiated La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films

    SciTech Connect

    Kumar, Ravi; Choudhary, R.J.; Patil, S.I.; Husain, Shahid; Srivastava, J.P.; Sanyal, S.P.; Lofland, S.E.

    2004-12-15

    The effect of 200 MeV Ag ion irradiation on structural, electrical transport, magnetization, and low-frequency conduction noise properties of electron-doped La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films have been investigated. The as-grown thin films show c-axis epitaxial structure along with a small amount of unreacted CeO{sub 2} phase. After the irradiation, at the lowest fluence both the magnetization and metal-insulator transition temperature increase. Further increase in fluence reduces the metal-insulator transition temperature and leads to larger resistivity; however, the unreacted phase of CeO{sub 2} disappears in the x-ray diffraction pattern. On the other hand, the normalized electrical noise is greatly enhanced even at the lowest nonzero fluence. Surprisingly the conducting noise in the irradiated samples is much higher in the metallic state than in the semiconducting one. The observed modifications in structural, electrical, magnetic, and noise properties of 200 MeV Ag ion irradiated La{sub 0.7}Ce{sub 0.3}MnO{sub 3} thin films have been explained on the basis of effects of the presence of swift heavy-ion irradiation-induced strain and defects.

  13. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen–Doped Magnetic Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Hu, Xinjiang; Wang, Hui; Liu, Yunguo

    2016-10-01

    A nitrogen–doped magnetic graphene oxide (NMGO) was synthesized and applied as an adsorbent to remove Cu(II) and Cr(VI) ions from aqueous solutions. The individual and combined effects of various factors (A: pH, B: temperature, C: initial concentration of metal ions, D: CaCl2, and E: humic acid [HA]) on the adsorption were analyzed by a 25‑1 fractional factorial design (FFD). The results from this study indicated that the NMGO had higher adsorption capacities for Cu(II) ions than for Cr(VI) ions under most conditions, and the five selected variables affected the two adsorption processes to different extents. A, AC, and C were the very important factors and interactions for Cu(II) adsorption. For Cr(VI) adsorption, A, B, C, AB, and BC were found to be very important influencing variables. The solution pH (A) was the most important influencing factor for removal of both the ions. The main effects of A–E on the removal of Cu(II) were positive. For Cr(VI) adsorption, the main effects of A and D were negative, while B, C, and E were observed to have positive effects. The maximum adsorption capacities for Cu(II) and Cr(VI) ions over NMGO were 146.365 and 72.978 mg/g, respectively, under optimal process conditions.

  14. A study on the main periodicities in interplanetary magnetic field Bz component and geomagnetic AE index during HILDCAA events using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Souza, A. M.; Echer, E.; Bolzan, M. J. A.; Hajra, R.

    2016-11-01

    The interplanetary and geomagnetic characteristics of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events are studied using wavelet analysis technique. The Morlet wavelet transform was applied to the 1 min interplanetary magnetic field (IMF) Bz component and the geomagnetic AE index during HILDCAA events. We have analyzed the AE data for the events occurring between 1975 and 2011, and the IMF Bz data (both in GSE and GSM) for the events between 1995 and 2011. We analyzed the scalograms and the global wavelet spectrum of the parameters. For 50% of all HILDCAA events, the main periodicities of the AE index are generally between 4 and 12 h. For the Bz component, the main periodicities were found to be less than 8 h for ~56% of times in GSM system and for ~54% of times in GSE system. It is conjectured that the periodicities might be associated with the Alfvén waves which have typical periods between 1 and 10 h. The results are discussed in the light of self organized criticality theory where the physical events have the capacity of releasing a considerable amount of energy in a short interval of time.

  15. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen–Doped Magnetic Graphene Oxide

    PubMed Central

    Hu, Xinjiang; Wang, Hui; Liu, Yunguo

    2016-01-01

    A nitrogen–doped magnetic graphene oxide (NMGO) was synthesized and applied as an adsorbent to remove Cu(II) and Cr(VI) ions from aqueous solutions. The individual and combined effects of various factors (A: pH, B: temperature, C: initial concentration of metal ions, D: CaCl2, and E: humic acid [HA]) on the adsorption were analyzed by a 25−1 fractional factorial design (FFD). The results from this study indicated that the NMGO had higher adsorption capacities for Cu(II) ions than for Cr(VI) ions under most conditions, and the five selected variables affected the two adsorption processes to different extents. A, AC, and C were the very important factors and interactions for Cu(II) adsorption. For Cr(VI) adsorption, A, B, C, AB, and BC were found to be very important influencing variables. The solution pH (A) was the most important influencing factor for removal of both the ions. The main effects of A–E on the removal of Cu(II) were positive. For Cr(VI) adsorption, the main effects of A and D were negative, while B, C, and E were observed to have positive effects. The maximum adsorption capacities for Cu(II) and Cr(VI) ions over NMGO were 146.365 and 72.978 mg/g, respectively, under optimal process conditions. PMID:27694891

  16. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  17. 3D inversion of magnetic and electrical resistivity-induced polarization data for an epithermal Au-Ag and underlying porphyry deposit: A case study from British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Abbassi, B.; Huebert, J.; Liu, L.; Lee, B.; Cheng, L.; Richards, J. P.; Unsworth, M. J.; Oldenburg, D.

    2013-12-01

    The Newton property is an epithermal Au-Ag deposit containing precious metals in association with disseminated sulfide minerals such as pyrite. This type of deposit often shows variable geological patterns, so it is important to find fast and cost-efficient methods for their exploration. Aeromagnetic surveys and ground electrical resistivity-induced polarization methods were applied over the Newton property. From preliminary 3D inversion of ZTEM and aeromagnetic data, and joint 3D inversion of electrical resistivity-induced polarization data, we show that low-resistivity and high-chargeability regions are signatures of disseminated sulfide mineralization. Potassic alteration, characterized by hydrothermal biotite (now mostly chloritized) and magnetite is also present locally, and may be related to underlying porphyry-type mineralization. This type of alteration can be identified from its magnetic signature, but the occurrence of other magnetic formations in the deposit area made interpretations of magnetic data difficult. We show that filtering geological noises related to background magnetic anomalies is an essential step in focusing on potassic alteration zones. We used electrical resistivity and induced polarization chargeability models to remove the signals of barren magnetic zones to focus on the susceptibilities pertaining to deep potassic alterations. In order to test the credibility of these interpretations, extensive petrophysical measurements (magnetic susceptibility, electrical resistivity, and gamma ray spectra) were collected on drill-core samples. We show that potassic alteration can also be characterized accurately from high levels of potassium to thorium ratio (K/Th) in gamma ray spectrometric measurements, and that this correlation is stronger than the magnetic signal (likely because hydrothermal magnetite is variable in abundance). Therefore, we focused on magnetic susceptibility values correlated with high K/Th ratios in order to reduce the

  18. Photon emission intensities in the decay of 108mAg and 110mAg.

    PubMed

    Ferreux, L; Lépy, M-C; Bé, M-M; Isnard, H; Lourenço, V

    2014-05-01

    This study focuses on two radioisotopes of silver, (108m)Ag and (110m)Ag, characterized by a complex decay scheme. Each isotope has two disintegration modes, the isomeric transition leading to the daughter isotope ((108)Ag and (110)Ag, respectively) with a short half-life. The radioactive solution was obtained by neutron activation on silver powder enriched in (109)Ag. Gamma-spectrometry was carried out using a calibrated high purity germanium detector. The main relative photon emission intensities for both radionuclides were obtained and compared with previously published values.

  19. AGS tune jump power supply design and test

    SciTech Connect

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-03-28

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  20. A simple crunching of the AGS 'bare' machine ORM data - February 2007 - to extract some aspects of AGS transverse coupling at injection and extraction

    SciTech Connect

    Ahrens, L.

    2010-11-01

    The objective of this note is to (once again) explore the AGS 'ORM' (orbit response matrix) data taken (by Operations) early during the 2007 run with an AGS bare machine and gold beam. Indeed the present motivation is to extract as much information about the AGS inherent transverse coupling as possible - from general arguments and the copious ORM data. And taking this one step further, (though not accomplished yet) the goal really should be to tell the model how to describe this coupling. 'Bare' as used here means the AGS with no quadrupole, sextupole or octupole magnets powered. Only the main (combined-function) magnet string and dipole bumps necessary to optimize beam survival are powered. 'ORM data' means the systematic recording of the equilibrium orbit beam position monitor response to powering individual dipole corrector magnets. The 'matrix' results from looking at the effect of each of the (12 superperiods X 4 dipoles per superperiod) 'kicks' on each of the (12 X 6) pick up electrodes (pues) in each transverse plane. So then we have two (48 X 72) matrices of numbers from the ORM data. (Though 'pue' usually refers to the hardware in the vacuum chamber and 'bpm' to the beam position monitoring system, the two labels will be used casually here.) The exercise is carried out at two magnet rigidities, injection (AGS field {approx}434 Gauss) and extraction to RHIC ({approx}9730 Gauss), - a ratio of rigidities of about 22.4. Since we stick with a bare machine, we are also stuck with the bare tunes which means the tunes are rather close together and near 8.75. Injection: (h,v) {approx} (8.73, 8.76).

  1. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    PubMed

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment. PMID:27427651

  2. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential

  3. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    NASA Astrophysics Data System (ADS)

    Chen, Peng

    As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn

  4. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  5. Maine Ingredients

    ERIC Educational Resources Information Center

    Waters, John K.

    2009-01-01

    This article features Maine Learning Technology Initiative (MLTI), the nation's first-ever statewide 1-to-1 laptop program which marks its seventh birthday by expanding into high schools, providing an occasion to celebrate--and to examine the components of its success. The plan to put laptops into the hands of every teacher and student in grades 7…

  6. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  7. SIMULATIONS OF THE AGS MMPS STORING ENERGY IN CAPACITOR BANKS

    SciTech Connect

    MARNERIS,I.; BADEA, V.S.; BONATI, R.; ROSER, T.; SANDBERG, J.

    2007-06-25

    The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old, made by Siemens and it is not clear if companies will be manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operations. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented along with the control system of the power section. The switching elements will be IGCT's made by ABB. The simulation program used is called PSIM version 6.1. The average power from the local power authority into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

  8. The High Field Magnetic Dependence of Critical Current Density at 4.2 K for Ag-Sheathed Bi2Sr2CaCu2Oy Superconducting Tape

    NASA Astrophysics Data System (ADS)

    Enomoto, Noritsugu; Kikuchi, Hiroyuki; Uno, Naoki; Kumakura, Hiroaki; Togano, Kazumasa; Watanabe, Kazuo

    1990-03-01

    Critical current density (Jc) at 4.2 K and its dependence on applied magnetic field was measured for Ag-sheathed Bi2Sr2CaCu2Oy superconducting tape. The specimen showed a strong grain alignment which could be attained by adjusting the conditions of heat treatment. The degree of crystal orientation (F) was evaluated to be up to 95% by XRD for this specimen. In the case of magnetic field applied in a direction parallel to the tape, the Jc initially decreased with the magnetic field from 1.2× 105 A/cm2 at 1 T to 5× 104 A/cm2 at 10T and then remained almost constant up to 23 T. As the F value decreased from 95%, Jc also decreased. The pinning force (Fp) of the 95%-F-value tape was estimated to be about 1× 1010 N/m3 at 23 T. This value is larger than those of conventional low-Tc superconductors.

  9. BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Mohaghegh, N.; Rahimi, E.

    2016-06-01

    Graphene-supported BiPO4/Ag/Ag3PO4 photocatalyst has been fabricated by simple hydrothermal and impregnation reaction. In BiPO4/Ag/Ag3PO4 based on Reduced Graphene Oxide (RGO), this network renders numerous pathways for rapid mass transport, strong adsorption and multireflection of incident light; meanwhile, the interface between BiPO4/Ag/Ag3PO4 and RGO increases the active sites and electron transfer rate. BiPO4/Ag/Ag3PO4 based on RGO noticeably exhibited high photocatalytic activity than that of BiPO4/Ag/Ag3PO4 and P25 under visible light irradiation for cationic dye (Rhodamine B), anionic dye (methyl orange) and 4-chlorophenol (4-CP) as a neutral pollutant, which are usually difficult to be degraded over the other catalysts. This enhanced photocatalytic activity of Graphene-supported BiPO4/Ag/Ag3PO4 for all pollutants could be mainly ascribed to the reinforced charge transfer from BiPO4/Ag/Ag3PO4 to RGO, which suppresses the recombination of electron/hole pairs. Besides that, this photocatalyst can be used repetitively with a high photocatalytic activity and no apparent loss of activity occurs. The results reveal that the RGO nanosheets work as a photocatalyst promoter during the photocatalytic reaction, leading to an improved photocatalytic activity.

  10. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V. Stephen, A.

    2014-01-28

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  11. Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances

    SciTech Connect

    Cao, Jing; Zhao, Yijie; Lin, Haili; Xu, Benyan; Chen, Shifu

    2013-10-15

    Novel Ag/AgI/BiOI composites were controllably synthesized via a facile ion-exchange followed by photoreduction strategy by using hierarchical BiOI microflower as substrate. The as-prepared Ag/AgI/BiOI composites were studied by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analyzer and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (λ>420 nm), Ag/AgI/BiOI displayed highly enhanced photocatalytic activities for degradation of methyl orange (MO) compared to the pure hierarchical BiOI, which was mainly ascribed to the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/BiOI ternary system. - Graphical abstract: Ag/AgI/BiOI displayed excellent photocatalytic activities for methyl orange degradation under visible light, which was mainly ascribed to the highly efficient separation of electrons and holes through Z-scheme pathway. Display Omitted - Highlights: • Novel Ag/AgI/BiOI composites were successfully synthesized. • Ag/AgI/BiOI displayed higher visible light activities than those of pure BiOI and AgI. • ·O{sub 2}{sup −} and h{sup +}, especially ·O{sub 2}{sup −}, dominated the photodegradation process of MO. • A Z-scheme pattern was adopted for Ag/AgI/BiOI activity enhancement.

  12. Three-dimensional simulations of near-surface convection in main-sequence stars. IV. Effect of small-scale magnetic flux concentrations on centre-to-limb variation and spectral lines

    NASA Astrophysics Data System (ADS)

    Beeck, B.; Schüssler, M.; Cameron, R. H.; Reiners, A.

    2015-09-01

    Context. Magnetic fields affect the local structure of the photosphere of stars. They can considerably influence the radiative properties near the optical surface, flow velocities, and the temperature and pressure profiles. This has an impact on observables such as limb darkening and spectral line profiles. Aims: We aim at understanding qualitatively the influence of small magnetic flux concentrations in unipolar plage regions on the centre-to-limb variation of the intensity and its contrast and on the shape of spectral line profiles in cool main-sequence stars. Methods: We analyse the bolometric and continuum intensity and its angular dependence of 24 radiative magnetohydrodynamic simulations of the near-surface layers of main-sequence stars with six different sets of stellar parameters (spectral types F to early M) and four different average magnetic field strengths (including the non-magnetic case). We also calculated disc-integrated profiles of three spectral lines. Results: The small magnetic flux concentrations formed in the magnetic runs of simulations have a considerable impact on the intensity and its centre-to-limb variation. In some cases, the difference in limb darkening between magnetic and non-magnetic runs is larger than the difference between the spectral types. Spectral lines are not only broadened owing to the Zeeman effect, but are also strongly affected by the modified thermodynamical structure and flow patterns. This indirect magnetic impact on the line profiles is often bigger than that of the Zeeman effect. Conclusions: The effects of the magnetic field on the radiation leaving the star can be considerable and is not restricted to spectral line broadening and polarisation by the Zeeman effect. The inhomogeneous structure of the magnetic field on small length scales and its impact on (and spatial correlation with) the local thermodynamical structure and the flow field near the surface influence the measurement of the global field properties

  13. Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus crypticus

    PubMed Central

    Ribeiro, Maria J.; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The mechanisms of toxicity of Ag nanoparticles (NPs) are unclear, in particular in the terrestrial environment. In this study the effects of AgNP (AgNM300K) were assessed in terms of oxidative stress in the soil worm Enchytraeus crypticus, using a range of biochemical markers [catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), total glutathione (TG), metallothionein (MT), lipid peroxidation (LPO)]. E. crypticus were exposed during 3 and 7 days (d) to the reproduction EC20, EC50 and EC80 levels of both AgNP and AgNO3. AgNO3 induced oxidative stress earlier (3 d) than AgNP (7 d), both leading to LPO despite the activation of the anti-redox system. MT increased only for AgNP. The Correspondence Analysis showed a clear separation between AgNO3 and AgNP, with e.g., CAT being the main descriptor for AgNP for 7 d. LPO, GST and GPx were for both 3 and 7 d associated with AgNO3, whereas MT and TG were associated with AgNP. These results may reflect a delay in the effects of AgNP compared to AgNO3 due to the slower release of Ag+ ions from the AgNP, although this does not fully explain the observed differences, i.e., we can conclude that there is a nanoparticle effect. PMID:26287225

  14. Nanoparticles affect PCR primarily via surface interactions with PCR components: using amino-modified silica-coated magnetic nanoparticles as a main model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic n...

  15. Commissioning of the new AGS MMPS transformers

    SciTech Connect

    Bajon,E.; Badea, V. S.; Bannon, M.; Bonati, R.; Marneris, I. M.; Porqueddu, r.; Roser, T.; Sandberg, J.; Savatteri, S.

    2009-05-04

    The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps. +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. During rectify and invert operation the P Bank power supplies are used. During the flattops the F Bank power supplies are used. The P Bank power supplies are fed from two 23 MVA transformers and the F Bank power supplies are fed from two 5.3 MYA transformers. The fundamental frequency of the F Bank power supplies is 1440 Hz, however the fundamental frequency of the P banks was 720 Hz. It was very important to reduce the ripple during rectify to improve polarized proton operations. For this reason and also because the original transformers were 45 years old we replaced these transformers with new ones and we made the fundamental frequency of both P and F banks 1440 Hz. This paper will highlight the major hurdles that were involved during the installation of the new transformers. It will present waveforms while running at different power levels up to 6MW full load. It will show the transition from the F-Bank power supplies to the P-Banks and also show the improvements in ripple made on the P-Bank power supplies.

  16. Effect of 100 MeV Ag+7 ion irradiation on the bulk and surface magnetic properties of Co-Fe-Si thin films

    NASA Astrophysics Data System (ADS)

    Hysen, T.; Geetha, P.; Al-Harthi, Salim; Al-Omari, I. A.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Avasthi, D. K.; Anantharaman, M. R.

    2014-12-01

    Thin films of Co-Fe-Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag+7 ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag7+ ions modifies the surface morphology. Irradiating with ions at fluences of 1×1011 ions/cm2 smoothens the mesoscopic hill-like structures, and then, at 1×1012 ions/cm2 new surface structures are created. When the fluence is further increased to 1×1013 ions/cm2 an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×1011 ions/cm2, 1×1012 ions/cm2 and 1×1013 ions/cm2 the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation.

  17. Main Group Metal-Actinide Magnetic Coupling and Structural Response Upon U(4+) Inclusion Into Bi, Tl/Bi, or Pb/Bi Cages.

    PubMed

    Lichtenberger, Niels; Wilson, Robert J; Eulenstein, Armin R; Massa, Werner; Clérac, Rodolphe; Weigend, Florian; Dehnen, Stefanie

    2016-07-27

    The encapsulation of actinide ions in intermetalloid clusters has long been proposed but was never realized synthetically. We report the isolation and experimental, as well as quantum chemical, characterization of the uranium-centered clusters [U@Bi12](3-), [U@Tl2Bi11](3-), [U@Pb7Bi7](3-), and [U@Pb4Bi9](3-), upon reaction of (EE'Bi2)(2-) (E = Ga, Tl, E' = Bi; E = E' = Pb) and [U(C5Me4H)3] or [U(C5Me4H)3Cl] in 1,2-diaminoethane. For [U@Bi12](3-), magnetic susceptibility measurements rationalize an unprecedented antiferromagnetic coupling between a magnetic U(4+) site and a unique radical Bi12(7-) shell.

  18. Main Group Metal-Actinide Magnetic Coupling and Structural Response Upon U(4+) Inclusion Into Bi, Tl/Bi, or Pb/Bi Cages.

    PubMed

    Lichtenberger, Niels; Wilson, Robert J; Eulenstein, Armin R; Massa, Werner; Clérac, Rodolphe; Weigend, Florian; Dehnen, Stefanie

    2016-07-27

    The encapsulation of actinide ions in intermetalloid clusters has long been proposed but was never realized synthetically. We report the isolation and experimental, as well as quantum chemical, characterization of the uranium-centered clusters [U@Bi12](3-), [U@Tl2Bi11](3-), [U@Pb7Bi7](3-), and [U@Pb4Bi9](3-), upon reaction of (EE'Bi2)(2-) (E = Ga, Tl, E' = Bi; E = E' = Pb) and [U(C5Me4H)3] or [U(C5Me4H)3Cl] in 1,2-diaminoethane. For [U@Bi12](3-), magnetic susceptibility measurements rationalize an unprecedented antiferromagnetic coupling between a magnetic U(4+) site and a unique radical Bi12(7-) shell. PMID:27392253

  19. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix

    PubMed Central

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively. PMID:26750659

  20. Control of Surface Segregation in Bimetallic NiCr Nanoalloys Immersed in Ag Matrix

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Toulkeridou, Evropi; Diaz, Rosa E.; Bobo, Jean-François; Sowwan, Mukhles

    2016-01-01

    Cr-surface segregation is a main roadblock encumbering many magneto-biomedical applications of bimetallic M-Cr nanoalloys (where M = Fe, Co and Ni). To overcome this problem, we developed Ni95Cr5:Ag nanocomposite as a model system, consisting of non-interacting Ni95Cr5 nanoalloys (5 ± 1 nm) immersed in non-magnetic Ag matrix by controlled simultaneous co-sputtering of Ni95Cr5 and Ag. We employed Curie temperature (TC) as an indicator of phase purity check of these nanocomposites, which is estimated to be around the bulk Ni95Cr5 value of 320 K. This confirms prevention of Cr-segregation and also entails effective control of surface oxidation. Compared to Cr-segregated Ni95Cr5 nanoalloy films and nanoclusters, we did not observe any unwanted magnetic effects such as presence Cr-antiferromagnetic transition, large non-saturation, exchange bias behavior (if any) or uncompensated higher TC values. These nanocomposites films also lose their unique magnetic properties only at elevated temperatures beyond application requirements (≥800 K), either by showing Ni-type behavior or by a complete conversion into Ni/Cr-oxides in vacuum and air environment, respectively.

  1. RRR and thermal conductivity of Ag and Ag-0.2 wt.%Mg alloy in Ag/Bi-2212 wires

    NASA Astrophysics Data System (ADS)

    Li, P.; Ye, L.; Jiang, J.; Shen, T.

    2015-12-01

    Residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ∼ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2 wt.% Mg) wires as well as the resistivity of Ag and Ag-0.2 wt.% Mg in Ag/Bi- 2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi- 2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ∼ 220 while the oxide-dispersion strengthened Ag-Mg exhibits a RRR of ∼ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn't degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt. % Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  2. Main Report

    PubMed Central

    2006-01-01

    scientific literature. The criteria were distributed among three main categories for each condition: The availability and characteristics of the screening test;The availability and complexity of diagnostic services; andThe availability and efficacy of treatments related to the conditions. A survey process utilizing a data collection instrument was used to gather expert opinion on the conditions in the first tier of the assessment. The data collection format and survey provided the opportunity to quantify expert opinion and to obtain the views of a diverse set of interest groups (necessary due to the subjective nature of some of the criteria). Statistical analysis of data produced a score for each condition, which determined its ranking and initial placement in one of three categories (high scoring, moderately scoring, or low scoring/absence of a newborn screening test). In the second tier of these analyses, the evidence base related to each condition was assessed in depth (e.g., via systematic reviews of reference lists including MedLine, PubMed and others; books; Internet searches; professional guidelines; clinical evidence; and cost/economic evidence and modeling). The fact sheets reflecting these analyses were evaluated by at least two acknowledged experts for each condition. These experts assessed the data and the associated references related to each criterion and provided corrections where appropriate, assigned a value to the level of evidence and the quality of the studies that established the evidence base, and determined whether there were significant variances from the survey data. Survey results were subsequently realigned with the evidence obtained from the scientific literature during the second-tier analysis for all objective criteria, based on input from at least three acknowledged experts in each condition. The information from these two tiers of assessment was then considered with regard to the overriding principles and other technology or condition

  3. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  4. Ag/AgBr/g-C{sub 3}N{sub 4}: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light

    SciTech Connect

    Cao, Jing; Zhao, Yijie; Lin, Haili; Xu, Benyan; Chen, Shifu

    2013-10-15

    Graphical abstract: Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed excellent photocatalytic activities on the degradation of methyl orange (MO) under visible light. The improved photocatalytic performance and stability of Ag/AgBr/g-C{sub 3}N{sub 4} originated from the synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. ·O{sub 2}−, one of the reactive species, was responsible for the photodegradation of MO compared to H+ and ·OH. - Highlights: • Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalyst was reported. • Ag/AgBr/g-C{sub 3}N{sub 4} had novel energy band combination between AgBr and g-C{sub 3}N{sub 4}. • Synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. • Electron trapping role of metallic Ag dominated the stability of Ag/AgBr/g-C{sub 3}N{sub 4}. - Abstract: Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts were constructed via deposition–precipitation method and extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (λ > 420 nm), Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed much higher photocatalytic activities than those of Ag/AgBr and g-C{sub 3}N{sub 4} for degradation of methyl orange (MO). 50% Ag/AgBr/g-C{sub 3}N{sub 4} presented the best photocatalytic performance, which was mainly attributed to the synergistic effects of AgBr/g-C{sub 3}N{sub 4} interface and the in situ metallic Ag nanoparticles for efficiently separating electron–hole pairs. Furthermore, Ag/AgBr/g-C{sub 3}N{sub 4} remained good photocatalytic activity through 5 times of cycle experiments. Additionally, the radical scavengers experiment indicated that ·O{sub 2}{sup −} was the main reactive species for the MO degradation under visible light.

  5. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-06-16

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  6. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  7. Progress with the AGS Booster

    SciTech Connect

    Weng, W.T.

    1988-01-01

    Rare K-decay, neutrino and heavy ion physics demands that a rapid- cycling high vacuum and high intensity Booster be built for the AGS at Brookhaven. For each mode of operation there are corresponding accelerator physics and design issues needing special attention. Problems pertinent to any single mode of operation have been encountered and solved before, but putting high intensity proton requirements and high vacuum heavy ion requirements into one machine demands careful design considerations and decisions. The lattice design and magnet characteristics will be briefly reviewed. Major design issues will be discussed and design choices explained. Finally, the construction status and schedule will be presented. 6 refs., 6 figs.

  8. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites

    SciTech Connect

    Li, Xiaojuan Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua Lin, Chunxiang; Liu, Yifan

    2014-08-15

    Highlights: • A plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe{sub 2}O{sub 4}. In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field.

  9. Enhancement of ferromagnetism by Ag doping in Ni-Mn-In-Ag Heusler alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    The effect of Ag on the structural, magnetocaloric, and thermomagnetic properties of Ni50Mn35In15-xAgx (x = 0.1, 0.2, 0.5, and 1) Heusler alloys was studied. The magnitude of the magnetization change at martensitic transition temperature (TM) decreases with increasing Ag concentration A smaller magnetic entropy changes (ΔSM) for the alloys with higher Ag concentration is observed. A shift of TM by about 25 K to a higher temperature was detected for P = 6.6 kbar with respect to ambient pressure. Large drop of resistivity is observed with the increase of Ag concentration. The magnetoresistance is dramatically suppressed with increasing Ag concentration due to the weakening of the antiferromagnetic interactions in the martensitic phase. The experimental results demonstrate that Ag substitution in Ni50Mn35In15-xAgx Heusler alloys suppresses the AFM interactions and enhances the FM interactions in the alloys. The possible mechanisms responsible for the observed behavior are discussed. Acknowledgement: This work was supported by the Office of Basic Energy Sciences, Material Science Division of the U.S. Department of Energy (DOE Grant No. DE-FG02-06ER46291 and DE-FG02-13ER46946).

  10. Characterization of the antiferromagnetism in Ag(pyz)2(S2O8) with a two-dimensional square lattice of Ag 2+ ions (Ag=silver, Pyz-pyrdzine, S2O8=sulfate)

    SciTech Connect

    Singleton, John; Mc Donald, R; Sengupta, P; Cox, S; Manson, J; Southerland, H; Warter, M; Stone, K; Stephens, P; Lancaster, T; Steele, A; Blundell, S; Baker, P; Pratt, F; Lee, C; Whangbo, M

    2009-01-01

    X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) consists of 2D square nets of Ag{sup 2+} ions resulting from the corner-sharing of axially elongated AgN{sub 4}O{sub 2} octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, {mu}{sup +}Sr measurements indicate that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) undergoes 3D magnetic ordering below 7.8(3) K.

  11. Redetermination of AgPO3

    PubMed Central

    Terebilenko, Katherina V.; Zatovsky, Igor V.; Ogorodnyk, Ivan V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.

    2011-01-01

    Single crystals of silver(I) polyphosphate(V), AgPO3, were prepared via a phospho­ric acid melt method using a solution of Ag3PO4 in H3PO4. In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961 ▶). Acta Cryst. 14, 779–784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO5] polyhedra, giving rise to multidirectional ribbons, and from two types of PO4 tetra­hedra linked into meandering chains (PO3)n spreading parallel to the b axis with a repeat unit of four tetra­hedra. The calculated bond-valence sum value of one of the two AgI ions indicates a significant strain of the structure. PMID:21522230

  12. Redetermination of AgPO(3).

    PubMed

    Terebilenko, Katherina V; Zatovsky, Igor V; Ogorodnyk, Ivan V; Baumer, Vyacheslav N; Slobodyanik, Nikolay S

    2011-02-09

    Single crystals of silver(I) polyphosphate(V), AgPO(3), were prepared via a phospho-ric acid melt method using a solution of Ag(3)PO(4) in H(3)PO(4). In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961 ▶). Acta Cryst. 14, 779-784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO(5)] polyhedra, giving rise to multidirectional ribbons, and from two types of PO(4) tetra-hedra linked into meandering chains (PO(3))(n) spreading parallel to the b axis with a repeat unit of four tetra-hedra. The calculated bond-valence sum value of one of the two Ag(I) ions indicates a significant strain of the structure.

  13. Redetermination of AgPO(3).

    PubMed

    Terebilenko, Katherina V; Zatovsky, Igor V; Ogorodnyk, Ivan V; Baumer, Vyacheslav N; Slobodyanik, Nikolay S

    2011-01-01

    Single crystals of silver(I) polyphosphate(V), AgPO(3), were prepared via a phospho-ric acid melt method using a solution of Ag(3)PO(4) in H(3)PO(4). In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961 ▶). Acta Cryst. 14, 779-784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO(5)] polyhedra, giving rise to multidirectional ribbons, and from two types of PO(4) tetra-hedra linked into meandering chains (PO(3))(n) spreading parallel to the b axis with a repeat unit of four tetra-hedra. The calculated bond-valence sum value of one of the two Ag(I) ions indicates a significant strain of the structure. PMID:21522230

  14. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  15. Functional analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: agsB is the major α-1,3-glucan synthase in this fungus.

    PubMed

    Yoshimi, Akira; Sano, Motoaki; Inaba, Azusa; Kokubun, Yuko; Fujioka, Tomonori; Mizutani, Osamu; Hagiwara, Daisuke; Fujikawa, Takashi; Nishimura, Marie; Yano, Shigekazu; Kasahara, Shin; Shimizu, Kiminori; Yamaguchi, Masashi; Kawakami, Kazuyoshi; Abe, Keietsu

    2013-01-01

    Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and (13)C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species.

  16. Characterization of the Antiferromagnetism in Ag(pyz)2(S2O8) with a Two-Dimensional Square Lattice of 4d9 Ag2+ Ions

    SciTech Connect

    Manson, J.; Stone, K; Southerland, H; Lancaster, T; Steele, A; Warter, M; Blundell, S; Pratt, F; Baker, P; et al,

    2009-01-01

    X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) consists of 2D square nets of Ag{sup 2+} ions resulting from the corner-sharing of axially elongated AgN{sub 4}O{sub 2} octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, {mu}{sup +}SR measurements indicate that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) undergoes 3D magnetic ordering below 7.8(3) K.

  17. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. PMID:26952433

  18. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution.

  19. First results of proton injection commissioning of the AGS Booster synchrotron

    SciTech Connect

    Reece, R.K.; Ahrens, L.; Alessi, J.; Bleser, E.; Brennan, J.M.; Luccio, A.; Skelly, J.; Soukas, A.; van Asselt, W.; Weng, W.T.; Witkover, R.

    1991-01-01

    Beam performance for the injection phase of proton beam commissioning of the AGS Booster synchrotron will be presented. The beam from the 200 MeV Linac is transported through a new beam line into the Booster. This Linac-to Booster (LTB) beam line includes a 126{degree} bend and brings the injected beam onto the Booster injection orbit through the backleg of a main ring dipole magnet. Transfer of beam from the Linac to the Booster, spiralling beam and closing the orbit in the Booster ring are discussed. Injection and transport through one sector of the ring has been accomplished. 8 refs., 1 fig.

  20. Synthesis and photocatalytic performance of an efficient Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} composite photocatalyst under visible light

    SciTech Connect

    Liang, Yinghua; Lin, Shuanglong; Liu, Li; Hu, Jinshan; Cui, Wenquan

    2014-08-15

    Highlights: • The plasmatic Ag@AgBr sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgBr greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The plamonic photocatalysts exhibited enhanced activity for the degradation of RhB. - Abstract: Ag@AgBr nanoparticle-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9}) were prepared by a facile precipitation–photoreduction method. The photocatalytic activities of the Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} nanocomposites were evaluated for photocatalytic degradation of (RhB) under visible light irradiation. The composites exhibited excellent visible light absorption, which was attributable to the surface plasmon effect of Ag nanoparticles. The Ag@AgBr was uniformly scattered on the surface of K{sub 2}Ti{sub 4}O{sub 9} and possessed sizes in the range of 20–50 nm. The loading amount of Ag@AgBr was also studied, and was found to influence the absorption spectra of the resulting composites. Approximately 95.9% of RhB was degraded by Ag@AgBr (20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} after irradiation for 1 h. The stability of the material was also investigated by performing consecutive runs. Additionally, studies performed using radical scavengers indicated that ·O{sub 2}{sup −} and Br{sup 0} acted as the main reactive species. Based on the experimental results, a photocatalytic mechanism for organics degradation over Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} photocatalysts was proposed.

  1. Ag surface diffusion and out-of-bulk segregation in CrN-Ag nano-composite coatings.

    PubMed

    Incerti, L; Rota, A; Ballestrazzi, A; Gualtieri, E; Valeri, S

    2011-10-01

    CrN-Ag nanocomposite coatings are deposited on Si(100) wafers and 20MnCr5 steel disks in a mixed Ar+N2 atmosphere by reactive magnetron sputtering. Structure, composition and morphology were investigated by Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), X-ray Photoemission Spectroscopy (XPS), X-ray Diffraction (XRD) and Focused Ion Beam (FIB) cross sectional analysis. The as deposited film matrix is mainly composed by CrN phase (78%), but a relevant part (28%) is composed by Cr2N. Ag agglomerates in the CrN matrix forming elongated grains 200-400 nm wide and 50-100 nm high, which extends on the top of CrN columns. At the surface Ag aggregates into two different structures: large tetrahedral crystalline clusters, with typical dimension ranging from 200 to 500 nm, and smaller Ag nanoparticles with diameter of 15-25 nm. The annealing in N2 atmosphere up to 500 degrees C does not affect size and distribution of the Ag grains in the sub-surface region, while it induces a size increase of the bigger Ag clusters on the surface, mainly related to Ag surface diffusion and clusters coalescence. Annealing at higher temperature leads to an evident Ag out-of-bulk segregation, generating Ag depleted voids in the near-surface region, and further increasing of the Ag clusters size at the surface. Tribological tests on as deposited CrN-Ag film reveal a coefficient of friction against a steel ball reduced with respect to CrN film, probably related to the presence of Ag which acts as solid lubricant, but the coating is removed after a very short sliding distance. The poor mechanical properties of the realized Ag-based coatings are confirmed by lower hardness and Young modulus values with respect to pure CrN.

  2. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells

    PubMed Central

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P.

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag. PMID:26061169

  3. Nano Ag@AgBr surface-sensitized Bi2WO6 photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Lin, Shuanglong; Liu, Li; Hu, Jinshan; Liang, Yinghua; Cui, Wenquan

    2015-01-01

    Nano Ag@AgBr decorated on the surface of flower-like Bi2WO6 (hereafter designated Ag@AgBr/Bi2WO6) were prepared via a facile oil-in-water self-assembly method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), etc. The characterization results indicated that nano Ag@AgBr was observed to be evenly dispersed on the surface of Bi2WO6, and was approximately 20 nm in size. Ag@AgBr/Bi2WO6 composites exhibited excellent UV-vis absorption, due to quantum dimension effect of Ag@AgBr, the surface plasmonic resonance (SPR) of Ag nanoparticles and the special flower-like structure of Bi2WO6. The photoelectrochemical measurement verified that the suitable band potential of Ag@AgBr and Bi2WO6 and the existence of metal Ag resulted in the high efficiency in charge separation of the composite. The photocatalytic activities of the Ag@AgBr/Bi2WO6 samples were examined under visible-light irradiation for the degradation of methylene blue (MB). The composite presented excellent photocatalytic activity due to the synergetic effect of Bi2WO6, AgBr, and Ag nanoparticles. The Ag@AgBr(20 wt.%)/Bi2WO6 sample exhibited the best photocatalytic activity, degrading 95.03% MB after irradiation for 2 h, which was respectively 1.29 times and 1.28 times higher than that of Ag@AgBr and Bi2WO6 photocatalyst. Meanwhile, phenol and salicylic acid were degraded to further prove the degradation ability of Ag@AgBr/Bi2WO6. Additionally, studies performed using radical scavengers indicated that O2-•, •OH and Br0 acted as the main reactive species. Based on above, a photocatalytic mechanism for organics degradation over Ag@AgBr/Bi2WO6 was proposed.

  4. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  5. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  6. Synthesis and Functions of Ag2S Nanostructures

    NASA Astrophysics Data System (ADS)

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-11-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals.

  7. Synthesis and Functions of Ag2S Nanostructures.

    PubMed

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-12-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals. PMID:26525702

  8. Aniline chlorination by in situ formed Ag-Cl complexes under simulated solar light irradiation.

    PubMed

    Hu, Xuefeng; Wang, Xiaowen; Dong, Liuliu; Chang, Fei; Luo, Yongming

    2015-01-01

    Ag speciation in a chloride medium was dependent upon the Cl/Ag ratio after releasing into surface water. In this study, the photoreaction of in situ formed Ag-Cl species and their effects on aniline photochlorination were systematically investigated. Our results suggested that formation of chloroaniline was strongly relevant to the Cl/Ag ratio and could be interpreted using the thermodynamically expected speciation of Ag in the presence of Cl-. AgCl was the main species responsible for the photochlorination of aniline. Both photoinduced hole and •OH drove the oxidation of Cl- to radical •Cl, which promoted the chlorination of aniline. Ag0 formation was observed from the surface plasmon resonance absorption during AgCl photoreaction. This study revealed that Ag+ released into Cl--containing water may result in the formation of chlorinated intermediates of organic compounds under solar light irradiation.

  9. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    SciTech Connect

    Tokuoka, Y.; Seto, Y.; Kato, T.; Iwata, S.

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5 nm) and FePd-Ag (5 nm) films were grown on MgO (001) substrate at temperatures of 250–400 °C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 10–20 at. % was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with the reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.

  10. Hypernuclear research at the AGS

    SciTech Connect

    Chrien, R.E.

    1984-01-01

    Although the field of hypernuclear research is over 30 years old, progress in exploring the detailed behavior of hypernuclei has been slow. This fact is due mainly to the technical problems of producing and studying these strange objects. Indeed each step in the improvement of technique has been accompanied by a breakthrough in our understanding of this fascinating subject. In this paper, the aim is to describe the evolution of hypernuclear research, stressing especially the contributions of the program based on the Brookhaven AGS. 23 references, 17 figures, 1 table.

  11. Solution structure of peptide AG4 used to form silver nanoparticles

    SciTech Connect

    Lee, Eunjung; Kim, Dae-Hee; Woo, Yoonkyung; Hur, Ho-Gil; Lim, Yoongho

    2008-11-21

    The preparation of silver nanoparticles (AgNPs) is of great interest due to their various biological activities, such as observed in their antimicrobial and wound healing actions. Moreover, the formation of AgNPs using silver-binding peptide has certain advantages because they can be made in aqueous solution at ambient temperature. The solution structure of the silver-binding peptide AG4 was determined using nuclear magnetic resonance spectroscopy, and the site of the AG4 interaction with AgNPs was elucidated.

  12. Abrupt change of rotation axis in {sup 109}Ag

    SciTech Connect

    Datta, P.; Pal, S.; Chattopadhyay, S.; Bhattacharya, S.; Goswami, A.; Sarkar, M. Saha; Sun, Y.; Rao, P. V. Madhusudhana; Bhowmik, R. K.; Kumar, R.; Madhavan, N.; Muralithar, S.; Singh, R. P.; Jain, H. C.; Joshi, P. K.; Amita

    2008-08-15

    The electromagnetic transition rates for all the high spin levels of the yrast sequence of {sup 109}Ag have been measured. The observed behavior of the magnetic dipole transition rates as a function of angular momentum establishes that there is a sudden change in rotation axis associated with rotational alignment of two neutrons. The projected shell model calculations give a consistent picture of the observed phenomena in {sup 109}Ag.

  13. Near integer tune for polarization preservation in the AGS

    SciTech Connect

    Tsoupas N.; Ahrens, L.; Bai, M.; Brown, K.; Glenn, J.W.; Huang, H.; MacKay, W.W.; Roser, T.; Schoefer, V.; Zeno, K.

    2012-05-20

    The high energy (T = 250 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the beam. In order to preserve the polarization of the proton beam, during the acceleration in the AGS, which is the pre-injector to RHIC, we have installed in AGS two partial helical magnets which minimize the loss of the beam polarization caused by the various intrinsic spin resonances occurring during the proton acceleration. The minimization of the polarization loss during the acceleration cycle, requires that the vertical tune of the AGS is between the values of 8.97 and 8.985 during the acceleration. With the AGS constrained to run at near integer tune {approx}8.980, the perturbations to the beam caused by the partial helical magnets are large and also result in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have installed in specified straight sections of the AGS compensation quads and we have also generated a beam bump at the location of the cold partial helix. In this paper we present the beam optics of the AGS which ameliorates the adverse effect of the two partial helices on the beam optics.

  14. Geometry optimization and structural distribution of silver clusters from Ag 170 to Ag 310

    NASA Astrophysics Data System (ADS)

    Shao, Xueguang; Yang, Xiaoli; Cai, Wensheng

    2008-07-01

    Silver clusters in the size range of 170-310 were optimized with a modified dynamic lattice search (DLS) method. Considering the computational complexity, only 21 clusters of several tens and magic numbers of atoms were investigated. The interaction of silver atoms is modeled by the Gupta potential. Results show that, between the 21 clusters, nine fcc and twelve m-Dh structures are obtained. Compared with the structures adopted by Ag 13 to Ag 160, the main motif is still m-Dh in the range of Ag 170-Ag 310, but the ratio of fcc structures obviously increases. It can, therefore, be deduced that the fcc motif is more stable for larger size silver clusters.

  15. Strong H...F hydrogen bonds as synthons in polymeric quantum magnets: structural, magnetic, and theoretical characterization of [Cu(HF2)(pyrazine)2]SbF6, [Cu2F(HF)(HF2)(pyrazine)4](SbF6)2, and [CuAg(H3F4)(pyrazine)5](SbF6)2.

    PubMed

    Manson, Jamie L; Schlueter, John A; Funk, Kylee A; Southerland, Heather I; Twamley, Brendan; Lancaster, Tom; Blundell, Stephen J; Baker, Peter J; Pratt, Francis L; Singleton, John; McDonald, Ross D; Goddard, Paul A; Sengupta, Pinaki; Batista, Cristian D; Ding, Letian; Lee, Changhoon; Whangbo, Myung-Hwan; Franke, Isabel; Cox, Susan; Baines, Chris; Trial, Derek

    2009-05-20

    Three Cu(2+)-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF(2))(pyz)(2)]SbF(6) (pyz = pyrazine) (1a), [Cu(2)F(HF)(HF(2))(pyz)(4)](SbF(6))(2) (1b), and [CuAg(H(3)F(4))(pyz)(5)](SbF(6))(2) (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz)(2)](n+) that are linked in the third dimension by either HF(2)(-) (1a and 1b) or H(3)F(4)(-) (2). The resulting 3D frameworks contain charge-balancing SbF(6)(-) anions in every void. Compound 1b is a defective polymorph of 1a, with the difference being that 50% of the HF(2)(-) links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d(x(2))(-y(2)) orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in chi at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for 1a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B(c), of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M(sat), suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although chi vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were applied to the magnetic data of 1a to afford g = 2.14, J = -13.4 K (Cu-pyz-Cu), and J(perpendicular) = -0.20 K (Cu

  16. Strong H...F hydrogen bonds as synthons in polymeric quantum magnets: structural, magnetic, and theoretical characterization of [Cu(HF2)(pyrazine)2]SbF6, [Cu2F(HF)(HF2)(pyrazine)4](SbF6)2, and [CuAg(H3F4)(pyrazine)5](SbF6)2.

    PubMed

    Manson, Jamie L; Schlueter, John A; Funk, Kylee A; Southerland, Heather I; Twamley, Brendan; Lancaster, Tom; Blundell, Stephen J; Baker, Peter J; Pratt, Francis L; Singleton, John; McDonald, Ross D; Goddard, Paul A; Sengupta, Pinaki; Batista, Cristian D; Ding, Letian; Lee, Changhoon; Whangbo, Myung-Hwan; Franke, Isabel; Cox, Susan; Baines, Chris; Trial, Derek

    2009-05-20

    Three Cu(2+)-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF(2))(pyz)(2)]SbF(6) (pyz = pyrazine) (1a), [Cu(2)F(HF)(HF(2))(pyz)(4)](SbF(6))(2) (1b), and [CuAg(H(3)F(4))(pyz)(5)](SbF(6))(2) (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz)(2)](n+) that are linked in the third dimension by either HF(2)(-) (1a and 1b) or H(3)F(4)(-) (2). The resulting 3D frameworks contain charge-balancing SbF(6)(-) anions in every void. Compound 1b is a defective polymorph of 1a, with the difference being that 50% of the HF(2)(-) links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d(x(2))(-y(2)) orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in chi at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for 1a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B(c), of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M(sat), suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although chi vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were applied to the magnetic data of 1a to afford g = 2.14, J = -13.4 K (Cu-pyz-Cu), and J(perpendicular) = -0.20 K (Cu

  17. Ag(nic)2 (nic = nicotinate): a spin-canted quasi-2D antiferromagnet composed of square-planar S = 1/2 Ag(II) ions.

    PubMed

    Manson, Jamie L; Woods, Toby J; Lapidus, Saul H; Stephens, Peter W; Southerland, Heather I; Zapf, Vivien S; Singleton, John; Goddard, Paul A; Lancaster, Tom; Steele, Andrew J; Blundell, Stephen J

    2012-02-20

    Square-planar S = 1/2 Ag(II) ions in polymeric Ag(nic)(2) are linked by bridging nic monoanions to yield 2D corrugated sheets. Long-range magnetic order occurs below T(N) = 11.8(2) K due to interlayer couplings that are estimated to be about 30 times weaker than the intralayer exchange interaction.

  18. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  19. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    PubMed Central

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  20. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    NASA Astrophysics Data System (ADS)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  1. The first example of a mixed valence ternary compound of silver with random distribution of Ag(I) and Ag(II) cations.

    PubMed

    Mazej, Zoran; Michałowski, Tomasz; Goreshnik, Evgeny A; Jagličić, Zvonko; Arčon, Iztok; Szydłowska, Jadwiga; Grochala, Wojciech

    2015-06-28

    The reaction between colourless AgSbF6 and sky-blue Ag(SbF6)2 (molar ratio 2 : 1) in gaseous HF at 323 K yields green Ag3(SbF6)4, a new mixed-valence ternary fluoride of silver. Unlike in all other Ag(I)/Ag(II) systems known to date, the Ag(+) and Ag(2+) cations are randomly distributed on a single 12b Wyckoff position at the 4̄ axis of the I4̄3d cell. Each silver forms four short (4 × 2.316(7) Å) and four long (4 × 2.764(6) Å) contacts with the neighbouring fluorine atoms. The valence bond sum analysis suggests that such coordination would correspond to a severely overbonded Ag(I) and strongly underbonded Ag(II). Thorough inspection of thermal ellipsoids of the fluorine atoms closest to Ag centres reveals their unusual shape, indicating that silver atoms must in fact have different local coordination spheres; this is not immediately apparent from the crystal structure due to static disorder of fluorine atoms. The Ag K-edge XANES analysis confirmed that the average oxidation state of silver is indeed close to +1⅓. The optical absorption spectra lack features typical of a metal thus pointing out to the semiconducting nature of Ag3(SbF6)4. Ag3(SbF6)4 is magnetically diluted and paramagnetic (μ(eff) = 1.9 μ(B)) down to 20 K with a very weak temperature independent paramagnetism. Below 20 K weak antiferromagnetism is observed (Θ = -4.1 K). Replacement of Ag(I) with potassium gives K(I)2Ag(II)(SbF6)4 which is isostructural to Ag(I)2Ag(II)(SbF6)4. Ag3(SbF6)4 is a genuine mixed-valence Ag(I)/Ag(II) compound, i.e. Robin and Day Class I system (localized valences), despite Ag(I) and Ag(II) adopting the same crystallographic position. PMID:25815902

  2. Impedance studies of the cell Ag/AgI/Ag beta alumina/AgI/Ag. Technical report No. 15, August 1987-August 1988

    SciTech Connect

    Breiter, M.W.; Drstak, H.; Maly-Schreiber, M.

    1988-07-01

    The construction of the cell Ag/AgI/Ag beta alumina/AgI/Ag is described. The impedance of this cell was measured between .001 and 10000 Hz at temperatures between 20 and 550 C. At temperatures below 100 C the cell impedance is determined to a large extent by the bulk resistance of the AgI layer and to a smaller extent by the impedance of the interface Ag/Agi. At temperatures between 160 and 350 C the impedance is controlled by the bulk resistance of the Ag beta alumina and an impedance due to contact problems between Ag and AgI. The bulk resistance of the beta' alumina becomes predominant between 350 and 550 C. A hindrance due to the transfer of silver ions from AgI to Ag beta' alumina was not observable in the whole temperature range.

  3. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios.

    PubMed

    Gokcekaya, Ozkan; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2015-08-01

    Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca+Ag)/P and Ag/(Ca+Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca+Ag) atomic ratio in solution and was lower than the charged Ag/(Ca+Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, β-TCP (tricalcium phosphate), α-TCP, and β-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the β-TCP phase, and the distribution of Ag in β-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019-0.0061 (Ag/(Ca+Ag)) atomic ratio, which was lower than that in β-TCP (higher than 0.0536) and higher than that of β-CPP (below the detection limit of analyses). PMID:26042697

  4. Adsorption of sulfur on Ag(100)

    SciTech Connect

    Russell, Selena M.; Shen, Mingmin; Liu, Da-Jiang; Thiel, Patricia A.

    2010-12-17

    We have used scanning tunneling microscopy and density Functional theory to investigate the structures formed by sulfur on Ag(100). As indicated by previous low-energy electron diffraction studies, the main phases have unit cells of p(2 x 2) and ({radical}17 x {radical}17)R14{sup o}. We show that the latter is a reconstruction. The favored structural model is one in which 5 Ag atoms are missing from the (100) surface plane per unit cell. The ejected Ag atoms combine with sulfur to form islands of the reconstructed phase on the terraces. The ({radical}17 x {radical}17)R14{sup o} phase coexists with the p(2 x 2), at sulfur coverages slightly above 0.25 monolayers. In addition, chain-like structures are observed in STM, both at room temperature (where they are dynamic) and below (where they are not). These results are compared with relevant literature for copper surfaces.

  5. RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires

    SciTech Connect

    Li, Pei; Ye, L.; Jiang. J., Jiang. J.; Shen, T.

    2015-08-19

    The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg) wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  6. Tuning the transmittance of colloidal solution by changing the orientation of Ag nanoplates in ferrofluid.

    PubMed

    Mao, Yiwu; Liu, Jing; Ge, Jianping

    2012-09-11

    Ag nanoplates and Fe(3)O(4) nanoparticle-based ferrofluids were utilized to fabricate a magnetic field controlled optic switch. The changing of light transmittance (LT) is caused by the rotation of Ag nanoplates, whose long axis always follows the orientation of external magnetic field to minimize the potential energy. The sensitivity of switching was optimized by choosing Ag nanoplates with appropriate size and concentration. The switching of transmission is proved to be fast and fully reversible. This phenomenon not only indicates an effective method to adjust the propagation of optical signals, but also reveals the possibility and great potential to develop magnetic controlled functional devices. PMID:22873949

  7. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Zanjanchi, M. A.; Razavi, M.

    2014-09-01

    Metal-semiconductor compounds, such as Ag/AgX (X = Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that rad O2- and rad OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  8. Analysis of resonance-driving imperfections in the AGS Booster

    SciTech Connect

    Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.

    1994-08-01

    At the design intensity of 1.5 {times} 10{sup 13} ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given.

  9. Spin glass in semiconducting KFe1.05Ag0.88Te2 single crystals

    DOE PAGES

    Ryu, H.; Lei, H.; Klobes, B.; Warren, J. B.; Hermann, R. P.; Petrovic, C.

    2015-05-26

    We report discovery of KFe1.05Ag0.88Te2 single crystals with semiconducting spin glass ground state. Composition and structure analysis suggest nearly stoichiometric I4/mmm space group but allow for the existence of vacancies, absent in long range semiconducting antiferromagnet KFe1.05Ag0.88Te2. The subtle change in stoichometry in Fe/Ag sublattice changes magnetic ground state but not conductivity, giving further insight into the semiconducting gap mechanism.

  10. The mechanism of Ag top layer on the coercivity enhancement of FePt thin films

    SciTech Connect

    Zhao, Z.L.; Ding, J.; Yi, J.B.; Chen, J.S.; Zeng, J.H.; Wang, J.P.

    2005-05-15

    The magnetic properties of the FePt thin films with a Ag top layer prepared by magnetron sputtering have been studied. With 4 nm Ag layer deposited right after the deposition of FePt layer, the ordering temperature of the L1{sub 0} FePt phase decreased to 350 deg. C or below. X-ray photoelectron spectroscopy results indicate that Ag has diffused into the FePt layer when Ag was deposited at 350 deg. C, while Ag remains on the top of the FePt when Ag was deposited at room temperature. The Ag top layer deposited at 350 deg. C was also found to protect the FePt layer from oxidation.

  11. Room temperature synthesis and photocatalytic property of AgO/Ag{sub 2}Mo{sub 2}O{sub 7} heterojunction nanowires

    SciTech Connect

    Hashim, Muhammad; Hu, Chenguo; Wang, Xue; Wan, Buyong; Xu, Jing

    2012-11-15

    Graphical abstract: The AgO nanoparticles are attached on the surface of the Ag{sub 2}Mo{sub 2}O{sub 7} nanowires to form a heterojunction structure. The AgO nanoparticles start embedding into the nanowires with increasing reaction temperature or time. Highlights: ► AgO/Ag{sub 2}Mo{sub 2}O{sub 7} heterojunction NWs were synthesized at room temperature for the first time. ► AgO particles embed into the Ag{sub 2}Mo{sub 2}O{sub 7} NWs with increase in reaction time and temperature. ► The heterojunction NWs display much better photocatalytic activity than the none-heterojunction NWs. ► The catalytic mechanism was proposed. -- Abstract: AgO/Ag{sub 2}Mo{sub 2}O{sub 7} heterojunction nanowires were synthesized at temperatures of 25 °C, 50 °C, 80 °C, and 110 °C, under magnetic stirring in solution reaction. The catalytic activity of AgO/Ag{sub 2}Mo{sub 2}O{sub 7} nanowires was evaluated by the degradation of Rhodmine B dye under the irradiation of the simulated sunlight. The synthesized samples were characterized by X-ray diffractometer, energy dispersive spectrometry, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. The results show that the AgO nanoparticles are attached on the surface of the Ag{sub 2}Mo{sub 2}O{sub 7} nanowires to form a heterojunction structure. The length of the nanowires is up to 10 μm and the size of the AgO nanoparticles is 10–20 nm. The length of nanowires increases with increasing reaction time and temperature while the AgO particles are gradually embedded into the nanowires. The photocatalytic activity is greatly improved for the AgO/Ag{sub 2}Mo{sub 2}O{sub 7} heterojunction nanowires compared with that of the pure Ag{sub 2}Mo{sub 2}O{sub 7} nanowires, indicating a remarkable role of AgO particles on the Ag{sub 2}Mo{sub 2}O{sub 7} nanowires in the photodegradation.

  12. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    SciTech Connect

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-28

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  13. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    NASA Astrophysics Data System (ADS)

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-01

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  14. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2.

    PubMed

    Damay, F; Petit, S; Rols, S; Braendlein, M; Daou, R; Elkaïm, E; Fauth, F; Gascoin, F; Martin, C; Maignan, A

    2016-01-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K(-1).m(-1) at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag(+) ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag(+) oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid. PMID:27000414

  15. Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2

    PubMed Central

    Damay, F.; Petit, S.; Rols, S.; Braendlein, M.; Daou, R.; Elkaïm, E.; Fauth, F.; Gascoin, F.; Martin, C.; Maignan, A.

    2016-01-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K−1.m−1 at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag+ ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag+ oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid. PMID:27000414

  16. Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2

    NASA Astrophysics Data System (ADS)

    Damay, F.; Petit, S.; Rols, S.; Braendlein, M.; Daou, R.; Elkaïm, E.; Fauth, F.; Gascoin, F.; Martin, C.; Maignan, A.

    2016-03-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K‑1.m‑1 at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag+ ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag+ oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid.

  17. Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones.

    PubMed

    Neukum, Christoph; Braun, Anika; Azzam, Rafig

    2014-08-01

    Transport behavior and fate of engineered silver nanoparticles (AgNP) in the subsurface is of major interest concerning soil and groundwater protection in order to avoid groundwater contamination of vital resources. Sandstone aquifers are important groundwater resources which are frequently used for public water supply in many regions of the world. The objective of this study is to get a better understanding of AgNP transport behavior in partially fractured sandstones. We executed AgNP transport studies on partially fissured sandstone drilling cores in laboratory experiments. The AgNP concentration and AgNP size in the effluent were analyzed using flow field-flow fractionation mainly. We employed inverse mathematical models on the measured AgNP breakthrough curves to identify and quantify relevant transport processes. Physicochemical filtration, time-dependent blocking due to filling of favorable attachment sites and colloid-facilitated transport were identified as the major processes for AgNP mobility. Physicochemical filtration was found to depend on solute chemistry, mineralogy, pore size distribution and probably on physical and chemical heterogeneity. Compared to AgNP transport in undisturbed sandstone matrix reported in the literature, their mobility in partially fissured sandstone is enhanced probably due to larger void spaces and higher hydraulic conductivity.

  18. Immobilization of Highly Dispersed Ag Nanoparticles on Carbon Nanotubes Using Electron-Assisted Reduction for Antibacterial Performance.

    PubMed

    Yan, Xiaoliang; Li, Sha; Bao, Jiehua; Zhang, Nan; Fan, Binbin; Li, Ruifeng; Liu, Xuguang; Pan, Yun-Xiang

    2016-07-13

    Silver nanoparticles (Ag NPs) supported on certain materials have been widely used as disinfectants. Yet, to date, the antibacterial activity of the supported Ag NPs is still far below optimum. This is mainly associated with the easy aggregation of Ag NPs on the supporting materials. Herein, an electron-assisted reduction (EAR) method, which is operated at temperatures as low as room temperature and without using any reduction reagent, was employed for immobilizing highly dispersed Ag NPs on aminated-CNTs (Ag/A-CNTs). The average Ag NPs size on the EAR-prepared Ag/A-CNTs is only 3.8 nm, which is much smaller than that on the Ag/A-CNTs fabricated from the traditional thermal calcination (25.5 nm). Compared with Ag/A-CNTs fabricated from traditional thermal calcination, EAR-prepared Ag/A-CNTs shows a much better antibacterial activity to E. coli/S. aureus and antifouling performance to P. subcordiformis/T. lepidoptera. This is mainly originated from the significantly enhanced Ag(+) ion releasing rate and highly dispersed Ag NPs with small size on the EAR-prepared Ag/A-CNTs. The findings from the present work are helpful for fabricating supported Ag NPs with small size and high dispersion for efficient antibacterial process. PMID:27327238

  19. Adsorption and visible light-driven photocatalytic degradation of Rhodamine B in aqueous solutions by Ag@AgBr/SBA-15

    NASA Astrophysics Data System (ADS)

    Hu, Longxing; Yuan, Hang; Zou, Lianpei; Chen, Feiyan; Hu, Xing

    2015-11-01

    A novel composite, Ag@AgBr/SBA-15, was successfully synthesized by dispersion of AgBr on mesoporous silica SBA-15, characterized by several techniques, such as XRD, N2 adsorption-desorption, SEM & EDS, UV-vis spectrum and XPS, and utilized for visible light photocatalytic degradation of dye Rhodamine B (RhB) in aqueous solutions. The results showed that for the various AgBr loadings in the composites, RhB photocatalytic degradation efficiency arrived at the maximum of 77% at 50% loading, or with 50Ag@AgBr/SBA-15. Under the combined mode, the RhB removal reached 88% at 0.3 g/L of 50Ag@AgBr/SBA-15 dosage, 20 mg L-1 of initial RhB concentration, 4.28 of unadjusted initial pH and 20 °C. The RhB photocatalytic degradation followed well with the second-order kinetics, and the increase of the 50Ag@AgBr/SBA-15 dosage, the decrease of the initial RhB concentration and the optimal initial solution pH would be favorable to RhB photocatalytic degradation. The quenching tests demonstrated that the RhB photocatalytic degradation was mainly attributed to the generation of active species such as O2-,bigdot OH and h+. Moreover, the adsorption characteristics of 50Ag@AgBr/SBA-15 were investigated, with its pHpzc of 6.21 acquired and the conclusion that the RhB adsorption isotherm well followed Langmuir model drawn. Additionally, photocatalyst 50Ag@AgBr/SBA-15 can be effectively regenerated with the H2O2 solutions under visible light irradiation, and reused for up to five runs for the degradation of RhB in the presence of visible light, with RhB removal more than 75% and Ag+ leaching undetected for each run.

  20. Ag Division States Philosophy

    ERIC Educational Resources Information Center

    American Vocational Journal, 1976

    1976-01-01

    The discussion which took place during the American Vocational Association's (AVA) Agriculture Division meeting at the 1975 AVA Convention is summarized, and the statement of vo-ag education philosophy (including 13 key concepts), which was passed during the convention, is presented. (AJ)

  1. Surface plasmon enhanced photoluminescence in amorphous silicon carbide films by adjusting Ag island film sizes

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wang, Xin-Zhan; Dai, Wan-Lei; Lu, Wan-Bing; Liu, Yu-Mei; Fu, Guang-Sheng

    2013-05-01

    Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (α-SiC:H) films, and the influences of Ag island films on the optical properties of the α-SiC:H films are investigated. Atomic force microscope images show that Ag nanoislands are formed after Ag coating, and the size of the Ag islands increases with increasing Ag deposition time. The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained, and the resonance peak shifts toward longer wavelength with increasing Ag island size. The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands, and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min. Analyses show that the influence of surface plasmons on the PL of α-SiC:H is determined by the competition between the scattering and absorption of Ag islands, and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.

  2. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  3. Specific Heat and Electrical Transport Properties of Sn0.8Ag0.2Te Superconductor

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Yoshikazu; Yamada, Akira; Higashinaka, Ryuji; Matsuda, Tatsuma D.; Aoki, Yuji; Miura, Osuke; Nagao, Masanori

    2016-10-01

    Sn0.8Ag0.2Te is a new superconductor with Tc ~ 2.4 K. The superconducting properties of Sn0.8Ag0.2Te have been investigated by specific heat measurements under magnetic fields. Bulk nature of superconductivity was confirmed from the amplitude of the specific heat jump at the superconducting transition, and the amplitude is consistent with fully-gapped superconductivity. Upper critical field was estimated from specific heat and electrical resistivity measurements under magnetic fields. The Hall coefficient was positive, suggesting that the Ag acts as a p-type dopant in Sn0.8Ag0.2Te.

  4. A nanosized {Ag@Ag12} "molecular windmill" templated by polyoxometalates anions.

    PubMed

    Wang, Lei; Yang, Weiting; Zhu, Wei; Guan, Xingang; Xie, Zhigang; Sun, Zhong-Ming

    2014-11-01

    Reaction of multidentate 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (L) ligand with Ag(I) ions in the existence of H3PW12O40 as anionic template under hydrothermal conditions results in tridecanuclear silver cluster-polyoxometalates hybrid: {Ag13L12}{PW12O40}4·30H2O (1). X-ray single crystal diffraction analysis indicates that the main structural feature of 1 is a nanosized molecular windmill-shaped polynuclear Ag cluster with intriguing {M@M12}-type cuboctahedral topology. The as-synthesized compound exhibits effective photocatalytic activity in the photodegradation of Rhodamine-B (RhB) and antibacterial activity against Escherichia coli, respectively.

  5. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  6. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  7. ENGINEERING OF THE AGS SNAKE COIL ASSEMBLY.

    SciTech Connect

    ANERELLA,M.GUPTA,R.KOVACH,P.MARONE,A.PLATE,S.POWER,K.SCHMALZLE,J.WILLEN,E.

    2003-05-12

    A 30% Snake superconducting magnet is proposed to maintain polarization in the AGS proton beam, the magnetic design of which is described elsewhere. The required helical coils for this magnet push the limits of the technology developed for the RHIC Snake coils. First, fields must be provided with differing pitch along the length of the magnet. To accomplish this, a new 3-D CAD system (''Pro/Engineer'' from PTC), which uses parametric techniques to enable fast iterations, has been employed. Revised magnetic field calculations are then based on the output of the mechanical model. Changes are made in turn to the model on the basis of those field calculations. To ensure that accuracy is maintained, the final solid model is imported directly into the CNC machine programming software, rather than by the use of graphics translating software. Next, due to the large coil size and magnetic field, there was concern whether the structure could contain the coil forces. A finite element analysis was performed, using the 3-D model, to ensure that the stresses and deflections were acceptable. Finally, a method was developed using ultrasonic energy to improve conductor placement during coil winding, in an effort to minimize electrical shorts due to conductor misplacement, a problem that occurred in the RHIC helical coil program. Each of these activities represents a significant improvement in technology over that which was used previously for the RHIC snake coils.

  8. Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur

    SciTech Connect

    Shen, Mingmin; Russell, Selena M.; Liu, Da-Jiang; Thiel, Patricia A.

    2011-10-17

    Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS{sub 2} clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).

  9. Self-regulated route to ternary hybrid nanocrystals of Ag-Ag2S-CdS with near-infrared photoluminescence and enhanced photothermal conversion

    NASA Astrophysics Data System (ADS)

    Zhu, Guoxing; Bao, Chunlin; Liu, Yuanjun; Shen, Xiaoping; Xi, Chunyan; Xu, Zheng; Ji, Zhenyuan

    2014-09-01

    Developing hybrid nanocrystals is a hot topic in materials science. Herein, a ternary hybrid nanocrystal, Ag-Ag2S-CdS, combining near infrared emission and photothermal conversion properties was demonstrated. The ternary Ag-Ag2S-CdS hybrid nanocrystals with cubic shape and uniform size were synthesized by a simple one-pot and one-step colloidal method. The growth process is self-regulated with the formation order of Ag2S, Ag, and CdS, sequentially. The formation of Ag originates from the partial reduction of Ag2S, while the formation of CdS is through an Ag2S catalytic mechanism based on its superionic feature. The obtained ternary hybrid nanocrystals show near infrared emission and photothermal conversion properties in a lab-on-a-particle system. Importantly, an enhanced effect is observed for the photothermal conversion, which is mainly due to the presence of heterointerfaces among the crystals. This work will not only advance the synthesis chemistry of multi-component hybrid nanocrystals but also provide a possible route for the design of advanced multi-model materials used in bio-related fields.Developing hybrid nanocrystals is a hot topic in materials science. Herein, a ternary hybrid nanocrystal, Ag-Ag2S-CdS, combining near infrared emission and photothermal conversion properties was demonstrated. The ternary Ag-Ag2S-CdS hybrid nanocrystals with cubic shape and uniform size were synthesized by a simple one-pot and one-step colloidal method. The growth process is self-regulated with the formation order of Ag2S, Ag, and CdS, sequentially. The formation of Ag originates from the partial reduction of Ag2S, while the formation of CdS is through an Ag2S catalytic mechanism based on its superionic feature. The obtained ternary hybrid nanocrystals show near infrared emission and photothermal conversion properties in a lab-on-a-particle system. Importantly, an enhanced effect is observed for the photothermal conversion, which is mainly due to the presence of

  10. AGS preinjector improvement

    SciTech Connect

    Alessi, J.G.; Brennan, J.M.; Brown, H.N.; Brodowski, J.; Gough, R.; Kponou, A.; Prelec, K.; Staples, J.; Tanabe, J.; Witkover, R.

    1987-01-01

    In 1984, a polarized H/sup -/ source was installed to permit the acceleration of polarized protons in the AGS, using a low current, 750 keV RFQ Linear Accelerator as the preinjector. This RFQ was designed by LANL and has proved to be quite satisfactory and reliable. In order to improve the reliability and simplify maintenance of the overall AGS operations, it has been decided to replace one of the two 750 keV Cockcroft-Waltons (C-W) with an RFQ. The design of a new high current RFQ has been carried out by LBL and is also being constructed there. This paper describes the preinjector improvement project, centered around that RFQ, which is underway at BNL.

  11. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ju, Hongbo; Xu, Junhua

    2015-11-01

    Recently, the chameleon thin films were developed with the purpose of adjusting their chemistry at self-mating interfaces in response to environmental changes at a wide temperature range. However, very few studies have focused on what state the lubricious noble metal exists in the films and the tribological properties at room temperature (RT). Composite NbN-Ag films with various Ag content (Ag/(Nb + Ag)) were deposited using reactive magnetron sputtering to investigate the crystal structure, mechanical and tribological properties. A combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) analyses showed that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc silver coexisted in NbN-Ag films. The incorporation of soft Ag into NbN matrix led to the hardness decrease from 29.6 GPa at 0 at.% Ag to 11.3 GPa at 19.9 at.% Ag. Tribological properties of NbN-Ag films performed using dry pin-on-disc wear tests against Al2O3 depended on Ag content to a large extent. The average friction coefficient and wear rate of NbN-Ag films decreased as Ag content increased from 4.0 to 9.2 at.%. With a further increase of Ag content, the average friction coefficient further decreased, while the wear rate increased gradually. The optimal Ag content was found to be 9.2-13.5 at.%, which showed low average friction coefficient values of 0.46-0.40 and wear rate values of 1.1 × 10-8 to 1.7 × 10-8 mm3/(mm N). 3D Profiler and Raman spectroscopy measurements revealed that the lubricant tribo-film AgNbO3 detected on the surface of the wear tracks could lead to the friction coefficient curve stay constant and decrease the average friction coefficients. The decrease of wear rate was mainly attributed to the lubricant tribo-film AgNbO3 as Ag content increased from 4.0 to 9.2 at.%; with a further increase in Ag content, the wear rate increased with increasing Ag content in NbN-Ag films because a

  12. An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9}

    SciTech Connect

    Liang, Yinghua; Lin, Shuanglong; Liu, Li Hu, Jinshan; Cui, Wenquan

    2014-12-15

    Highlights: • The plasmatic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgCl greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The photocatalysts exhibited enhanced photocatalytic dye degradation. - Abstract: Nano-sized plasmonic Ag@AgCl surface-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (hereafter designated as Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9}) was synthesized via a facile oil-in-water self-assembly method. The photocatalytic activity of the prepared materials for RhB (Rhodamine B) degradation was examined under visible light irradiation. The results reveal that the size of Ag@AgCl, which evenly dispersed on the surface of K{sub 2}Ti{sub 4}O{sub 9}, distributes about 20–50 nm. The UV–vis diffuse reflectance spectra indicate that Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples have a significantly enhanced optical absorption in 380–700 nm. The photocatalytic activities of the Ag@AgCl/K{sub 2}Ti{sub 4}O{sub 9} samples increase first and then decrease with increasing amount of loading Ag@AgCl and the Ag@AgCl(20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} sample exhibits the best photocatalytic activity and 94.47% RhB was degraded after irradiation for 2 h. Additionally, studies performed using radical scavengers indicated that O{sub 2}·{sup −} and Cl{sup 0} acted as the main reactive species. The electronic interaction was systematically studied and confirmed by the photo-electrochemical measurements.

  13. Fabrication and characterization of Ag-clad Bi-2223 tapes.

    SciTech Connect

    Balachandran, U.

    1999-04-20

    The powder-in-tube (PIT) technique was used to fabricate multifilament (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes. Transport current properties of these tapes were enhanced by increasing the packing density of the precursor powder and improving the mechanical deformation condition. A critical current (I{sub c}) of > 35 A in long lengths (> 200 m) tapes has been achieved. In measuring the dependence of critical current density on magnetic field and temperature for the optimally processed tapes, we found a J{sub c} of > 10{sup 4} A/cm{sup 2} at 20 K in magnetic fields up to 3 T and parallel to the c-axis, which is of interest for use in refrigerator-cooled magnets. I{sub c} declined exponentially when an external field was applied perpendicular to the tape surface at 77 K. Mechanical stability was tested for tapes sheathed with pure Ag and Ag-Mg alloy. Tapes made with pure Ag sheathing can withstand a tensile stress of {approx}20 MPa with no detrimental effect on I{sub c} values. Mechanical performance was improved by using Ag-Mg alloy sheathing: values of transport critical current began to decrease at the tensile stress of {approx} 100 MPa. Transport current measurements on tapes wound on a mandrel of 3.81 cm (1.5 in.) diameter at 30{degree} to the longitudinal axis, showed a reduction of {approx} 10% in I{sub c} values for pure Ag-sheathed tapes and 5% reduction in I{sub c} values for Ag-Mg sheathed tapes, compared with the I{sub c} values of as-coiled tapes.

  14. Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation

    PubMed Central

    Zhang, Jianghao; Li, Yaobin; Zhang, Yan; Chen, Min; Wang, Lian; Zhang, Changbin; He, Hong

    2015-01-01

    Ag-based catalysts with different supports (TiO2, Al2O3 and CeO2) were prepared by impregnation method and subsequently tested for the catalytic oxidation of formaldehyde (HCHO) at low temperature. The Ag/TiO2 catalyst showed the distinctive catalytic performance, achieving the complete HCHO conversion at around 95 °C. In contrast, the Ag/Al2O3 and Ag/CeO2 catalysts displayed much lower activity and the 100% conversion was reached at 110 °C and higher than 125 °C, respectively. The Ag-based catalysts were next characterized by several methods. The characterization results revealed that supports have the dramatic influence on the Ag particle sizes and dispersion. Kinetic tests showed that the Ag based catalyst on the TiO2, Al2O3 or CeO2 supports have the similar apparent activation energy of 65 kJ mol−1, indicating that the catalytic mechanism keep immutability over these three catalysts. Therefore, Ag particle size and dispersion was confirmed to be the main factor affecting the catalytic performance for HCHO oxidation. The Ag/TiO2 catalyst has the highest Ag dispersion and the smallest Ag particle size, accordingly presenting the best catalytic performance for HCHO oxidation. PMID:26263506

  15. Magnetic remanence in single atoms.

    PubMed

    Donati, F; Rusponi, S; Stepanow, S; Wäckerlin, C; Singha, A; Persichetti, L; Baltic, R; Diller, K; Patthey, F; Fernandes, E; Dreiser, J; Šljivančanin, Ž; Kummer, K; Nistor, C; Gambardella, P; Brune, H

    2016-04-15

    A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier. PMID:27081065

  16. Stability of magic planar Ag clusters

    NASA Astrophysics Data System (ADS)

    Chiu, Y. P.; Ou, Y. S.; Chang, Y. R.; Wei, C. M.; Chang, C. S.; Tsong, Tien T.

    2007-03-01

    The spontaneous assembly of atoms and molecules in a system has attracted many research interests and created numerous potential applications. Utilizing the periodic pattern found on the Pb quantum islands, which are grown on the Si(111) surface, we have recently discovered that self-organized Ag planar clusters formed on these templates exhibit enhanced stability at some particular sizes [1]. Existence of the magic atom numbers in these clusters is mainly attributed to the electronic confinement effect. Here, we further explore the strength of these magic clusters subject to the temperature rise and oxygen exposure. Detailed calculations based on ab initio density functional theory have also been performed. The results help establish the relation between the physical and chemical stability of a magic Ag cluster and its size and shape. Ref:[1] Ya-Ping Chiu, Li-Wei Huang, Ching-Ming Wei, Chia-Seng Chang, and Tien-Tzou Tsong, Phys. Rev. Lett. 97, 165504 (2006).

  17. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  18. Studies on properties of Ag/Co0.05Ti0.95O2 random nanocomposite as metamaterials

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Gholipur, Reza; Bahari, Ali

    2016-10-01

    In this work, random metal-dielectric nanocomposites consisting of Ag nanorods embedded in Co0.05Ti0.95O2 are studied. The aspect ratio of Ag nanorods is about 15, and different contents of Ag nanorods are investigated. The nanocomposites with Ag content exceeding its percolation threshold, show metal-like behavior with negative permittivity. Moreover, in these nanocomposites, Ag nanorods form silver networks with diamagnetic response which combine with the magnetic resonance of ferromagnetic Co0.05Ti0.95O2 particles. The permeability spectra show that CTO-Ag15 33% nanocomposite has strongest diamagnetic behavior. These results indicate that the CTO-Ag15 33% sample is a promising candidate for the double negative materials.

  19. Development of a micro-step voltage-fed actuator with a novel stepper motor for automobile AGS systems.

    PubMed

    Rhyu, Se-Hyun; Lee, Jeong-Jong; Gu, Bon-Gwan; Choi, Byung-Dae; Lim, Jung-Hyuk

    2014-05-05

    This paper presents an improved micro-step voltage-fed actuator for an automobile active grill shutter (AGS) system. A novel structured stepper motor, which contains both the main and auxiliary teeth in the stator, is proposed for the actuator. In a normal permanent magnet (PM) motor coils are generally wound on all the stator teeth, however, in the proposed motor, the winding is only on the main teeth. Because of the absence of coils in the auxiliary teeth, the proposed stepper motor possesses the following advantages: simple structure, lighter weight, smaller volume, and less time consumption. The unique auxiliary poles in the stepper motor supply the flux path to increase the step resolution even without any coils. The characteristics of the proposed stepper motor were investigated using finite element analysis. In particular, the effect of the magnetization distribution of the PM on the motor performance was investigated during the analysis. Cogging torque, which causes noise and vibration issues, was minimized by the tooth-shape optimization. In addition, a micro-step voltage-fed algorithm was implemented for a high-resolution position control. By employing a current close to a sine wave using space vector pulse-width modulation, a high-quality current waveform with a high resolution was obtained. Finally, the proposed prototype was fabricated, and the cogging torque, back-electromotive force, and current characteristics were measured by mounting the prototype on the AGS system. Both the analysis and experimental results validate the performance improvement from the proposed motor and its possible application for the flap control of the AGS system.

  20. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  1. R_transport_matrices of the Fast Extraction Beam (FEB) of the AGS, and Beam Parameters at the Starting point of the AtR Line

    SciTech Connect

    Tsoupas,N.; MacKay, W.W.; Satogata, T.; Glenn, W.; Ahrens, L.; Brown, K.; Gardner, C.; Tanaka, S.

    2008-01-01

    As part of the task to improve and further automate the 'AtR BPM Application' we provide the theoretically calculated R-transport-matrices for the following beam line sections, which are shown schematically in Figure 1: (a) the Fast Extraction Beam section (FEB) of the AGS synchrotron. The FEB section starts at the middle of the GlO-kicker and ends at the middle of the H1 0{_}septum. (b) the Drift Extraction Channel (DEC) section of the AGS synchrotron. The DEC section starts at the middle of the H10{_}septum, continues along the fringe field region of the H11,H12, and H13 AGS main magnets, and ends at the starting point of the AtR line. The knowledge of these R-transport-matrices are needed in order to calculate the beam parameters at the beginning of the AtR line, which in turn, are required to calculate the magnet settings of the U{_}line, that match the U{_}line into the W{_}line. Also by incorporating these R{_}matrices into the model of the AtR line, the G10 kicker and the H10 septum are included in the AtR model therefore one can investigate any 'jitter' of either the GlO{_}kicker or HlO{_}septum by looking at the trajectory of the beam in the AtR line.

  2. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation.

    PubMed

    Mousavi, Mitra; Habibi-Yangjeh, Aziz; Abitorabi, Masoud

    2016-10-15

    In the present study, g-C3N4/Fe3O4/Ag3PO4/AgCl nanocomposites endowed with efficient photocatalytic activity under visible-light irradiation have been successfully prepared by a facile ultrasonic-irradiation method. The prepared samples were characterized by XRD, EDX, AAS, SEM, TEM, UV-vis DRS, FT-IR, TG, PL, and VSM techniques. Rhodamine B, methyl orange, fuchsine, and phenol were selected as pollutants to evaluate photocatalytic activity of the as-prepared samples. Among the samples, the g-C3N4/Fe3O4/Ag3PO4/AgCl (30%) nanocomposite displayed the highest photocatalytic activity. It was found that activity of this nanocomposite in degradation of rhodamine B is nearly 22, 6, and 7.5-times higher than those of the g-C3N4, g-C3N4/Fe3O4/Ag3PO4 (20%), and g-C3N4/Fe3O4/AgCl (30%) samples, respectively. The significant amount of saturation magnetization (8.78emug(-1)) for this nanocomposite indicated that the photocatalyst can be easily separated from the treated solution using a magnetic field. According to the trapping experiments, it was found that holes are main active species, driving the degradation reaction. This work suggests that the quaternary nanocomposite is promising photocatalyst for degradation of organic pollutants under visible-light illumination. PMID:27442149

  3. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation.

    PubMed

    Mousavi, Mitra; Habibi-Yangjeh, Aziz; Abitorabi, Masoud

    2016-10-15

    In the present study, g-C3N4/Fe3O4/Ag3PO4/AgCl nanocomposites endowed with efficient photocatalytic activity under visible-light irradiation have been successfully prepared by a facile ultrasonic-irradiation method. The prepared samples were characterized by XRD, EDX, AAS, SEM, TEM, UV-vis DRS, FT-IR, TG, PL, and VSM techniques. Rhodamine B, methyl orange, fuchsine, and phenol were selected as pollutants to evaluate photocatalytic activity of the as-prepared samples. Among the samples, the g-C3N4/Fe3O4/Ag3PO4/AgCl (30%) nanocomposite displayed the highest photocatalytic activity. It was found that activity of this nanocomposite in degradation of rhodamine B is nearly 22, 6, and 7.5-times higher than those of the g-C3N4, g-C3N4/Fe3O4/Ag3PO4 (20%), and g-C3N4/Fe3O4/AgCl (30%) samples, respectively. The significant amount of saturation magnetization (8.78emug(-1)) for this nanocomposite indicated that the photocatalyst can be easily separated from the treated solution using a magnetic field. According to the trapping experiments, it was found that holes are main active species, driving the degradation reaction. This work suggests that the quaternary nanocomposite is promising photocatalyst for degradation of organic pollutants under visible-light illumination.

  4. Flux pinning in Bi-2212/Ag-based wires and coils

    SciTech Connect

    Fabbricatore, P.; Priano, C.; Sciutti, A.; Gemme, G.; Musenich, R.; Parodi, R.; Goemoery, F.; Thompson, J.R. |

    1996-11-01

    This paper describes a study of pinning forces in Ag/Bi-based wires and small coils. The goal of this analysis is to characterize and to compare the main pinning mechanisms in wires (short samples) and prototype practical devices, e.g., coils (long samples). The effects of thermal activation were found to hinder the straightforward determination of the pinning parameters from the critical current data. However, we succeeded in extracting these parameters from the irreversibility line. The scaling law for the pinning force employing the irreversibility field in virtue of the scale for magnetic fields was derived theoretically. The best fit to the experimentally determined pinning forces gave the flux-creep model corresponding to the power-law current{emdash}voltage dependence {ital J}{proportional_to}{ital E}{sup {ital n}}. {copyright} {ital 1996 The American Physical Society.}

  5. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate.

    PubMed

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-09-02

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the "V"-shaped or "U"-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications.

  6. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    PubMed Central

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  7. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate.

    PubMed

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the "V"-shaped or "U"-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  8. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-09-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications.

  9. SIMULATION RESULTS OF RUNNING THE AGS MMPS, BY STORING ENERGY IN CAPACITOR BANKS.

    SciTech Connect

    MARNERIS, I.

    2006-09-01

    The Brookhaven AGS is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to equivalent maximum proton energy of 29 GeV. The AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-go00 Volts. The peak magnet power is 49.5 Mwatts. The power supply is fed from a motor/generator manufactured by Siemens. The motor is rated at 9 MW, input voltage 3 phase 13.8 KV 60 Hz. The generator is rated at 50 MVA its output voltage is 3 phase 7500 Volts. Thus the peak power requirements come from the stored energy in the rotor of the motor/generator. The rotor changes speed by about +/-2.5% of its nominal speed of 1200 Revolutions per Minute. The reason the power supply is powered by the Generator is that the local power company (LIPA) can not sustain power swings of +/- 50 MW in 0.5 sec if the power supply were to be interfaced directly with the AC lines. The Motor Generator is about 45 years old and Siemens is not manufacturing similar machines in the future. As a result we are looking at different ways of storing energy and being able to utilize it for our application. This paper will present simulations of a power supply where energy is stored in capacitor banks. The simulation program used is called PSIM Version 6.1. The control system of the power supply will also be presented. The average power from LIPA into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

  10. Structure and physical properties of RE{sub 2}AgGe{sub 3} (RE=Ce, Pr, Nd) compounds

    SciTech Connect

    Sarkar, Sumanta; Mumbaraddi, Dundappa; Halappa, Pramod; Kalsi, Deepti; Rayaprol, Sudhindra; Peter, Sebastian C.

    2015-09-15

    We have synthesized the compounds RE{sub 2}AgGe{sub 3} (RE =Ce, Pr, Nd) by arc melting. The crystal structure obtained from single crystal and powder X-ray diffraction suggests that these compounds crystallize in the α-ThSi{sub 2} structure type. The magnetic susceptibility data of Ce{sub 2}AgGe{sub 3} follows Curie–Weiss (CW) law above 25 K without any magnetic ordering down to 2 K. The effective magnetic moment (μ{sub eff}) was calculated as 2.53 μ{sub B}/Ce and negative Curie paramagnetic temperature (θ{sub p})=−2.4 K hint weak antiferromagnetic coupling among the adjacent spins. Pr{sub 2}AgGe{sub 3} shows a complex magnetic behavior wherein the magnetic susceptibility at field cooled and zero field cooled modes bifurcates at 11.5 K with the latter undergoing a cusp like maxima, probably due to weak ferromagnetic interaction. The θ{sub p} and μ{sub eff} obtained are 4 K and 4.33 μ{sub B}/Pr, respectively. Nd{sub 2}AgGe{sub 3} undergoes multiple magnetic transitions. Temperature dependent resistivity data reveals that three compounds are metallic in nature. - Graphical abstract: The compounds Ce{sub 2}AgGe{sub 3}, Pr{sub 2}AgGe{sub 3} and Nd{sub 2}AgGe{sub 3} have been synthesized by arc melting. X-ray diffraction suggests tetragonal α-ThSi{sub 2} type structure and diverse magnetic properties exhibited in the magnetic measurements. - Highlights: • Two new compounds Ce{sub 2}AgGe{sub 3}, Nd{sub 2}AgGe{sub 3} and known Pr{sub 2}AgGe{sub 3} synthesized by arc melting. • Crystal structure of the compounds derived from X-ray diffraction. • Ce{sub 2}AgGe{sub 3} and Pr{sub 2}AgGe{sub 3} exhibit antiferromagnetic ordering. • Nd{sub 2}AgGe{sub 3} shows multiple magnetic transition with ferrimagnetic like behavior.

  11. Communication: Structure, formation, and equilibration of ensembles of Ag-S complexes on an Ag surface

    SciTech Connect

    Russell, Selena M.; Kim, Yousoo; Liu, Da-Jiang; Evans, J. W.; Thiel, P. A.

    2013-02-15

    We have utilized conditions of very low temperature (4.7 K) and very low sulfur coverage to isolate and identify Ag-S complexes that exist on the Ag(111) surface. The experimental conditions are such that the complexes form at temperatures above the temperature of observation. These complexes can be regarded as polymeric chains of varying length, with an Ag4S pyramid at the core of each monomeric unit. Steps may catalyze the formation of the chains and this mechanism may be reflected in the chain length distribution.

  12. THE RHIC/AGS ONLINE MODEL ENVIRONMENT: DESIGN AND OVERVIEW.

    SciTech Connect

    SATOGATA,T.; BROWN,K.; PILAT,F.; TAFTI,A.A.; TEPIKIAN,S.; VAN ZEIJTS,J.

    1999-03-29

    An integrated online modeling environment is currently under development for use by AGS and RHIC physicists and commissioners. This environment combines the modeling efforts of both groups in a CDEV [1] client-server design, providing access to expected machine optics and physics parameters based on live and design machine settings. An abstract modeling interface has been designed as a set of adapters [2] around core computational modeling engines such as MAD and UAL/Teapot++ [3]. This approach allows us to leverage existing survey, lattice, and magnet infrastructure, as well as easily incorporate new model engine developments. This paper describes the architecture of the RHIC/AGS modeling environment, including the application interface through CDEV and general tools for graphical interaction with the model using Tcl/Tk. Separate papers at this conference address the specifics of implementation and modeling experience for AGS and RHIC.

  13. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  14. Structural and Critical Behaviors of Ag Rough Films Deposited on Liquid Substrates

    NASA Astrophysics Data System (ADS)

    Ye, Gao-xiang; Feng, Chun-mu; Zhang, Qi-rui; Ge, Hong-liang; Zhang, Xuan-jia

    1996-10-01

    A new Ag rough film system, deposited on silicone oil surfaces by rf-magnetron sputtering method, has been fabricated. The chrysanthemum-like surface morphology at micron length scale is observed. It is proposed that the anomalous critical behavior mainly results from the relative shift between the Ag atom clusters and the substrate. The discussion of the deposition mechanism is also presented.

  15. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  16. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  17. Formation Mechanism and Characterization of Ag-Metal Chelate Polymer Prepared by a Wet Chemical Process

    NASA Astrophysics Data System (ADS)

    Huang, Chueh-Jung; Lin, Jiang-Jen; Shieu, Fuh-Sheng

    2005-08-01

    In this study, a metal chelate polymer (MCP) contained Ag(0) was prepared from commercial polyvinyl acetate (PVAc) and silver nitrate (AgNO3) by a wet chemical method using concentrate formic acid (HCOOH) as solvent. The characterization of these MCP materials, and the formation mechanism that involved in the MCP system, were studied by the analyses of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM). The Ag(I) cations of silver nitrate (AgNO3) were found coordinated with polymer functional groups to form polymer-Ag(I) complexes. The XRD analysis revealed that these complexed Ag(I) ions were in-situ reduced to generate Ag(0) metal by HCOOH solvent in MCP system. The results of FTIR and NMR analyses demonstrated that there are hydrolyzed hydroxyl groups present in the MCP chains. The XPS analysis showed that the oxygen ligands that interacted with the Ag(0) were mostly contributed from the OH groups. The interaction between the reduced Ag(0) metal and the polymer chains was confirmed by transmission electron microscopy (TEM) investigation on the MCP materials.

  18. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  19. Observation of second spin reorientation transition within ultrathin region in Fe films on Ag(001) surface

    SciTech Connect

    Khim, T.-Y.; Shin, M.; Lee, H. E-mail: jhp@postech.ac.kr; Park, B.-G.; Park, J.-H. E-mail: jhp@postech.ac.kr

    2014-06-21

    We acquired direct measurements for in-plane and perpendicular-to-plane magnetic moments of Fe films using an x-ray magnetic circular dichroism technique with increase of the Fe thickness (up to 40 Å) on the Ag(001) surface. Epitaxial Fe/Ag(001) films were grown in situ with the thickness varying from 2 Å to 40 Å, and the magnetic anisotropy was carefully investigated as a function of the film thickness. We found re-entrance of the in-plane magnetic anisotropy of the Fe film in ultrathin region. The results manifest that the epitaxial Fe/Ag(001) film undergoes two distinct spin reorientation transitions from in-plane to out-of-plane at the film thickness t ≈ 9 Å and back to in-plane at t ≈ 18 Å as t increases.

  20. Nonmagnetic 2p-block elements (B, C, N, and O)-doped AgCl for potential halide spintronic applications: A first-principles perspective

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Lin; Dong, Shengjie; Zhou, Wei; Zhao, Hui; Wu, Ping

    2016-08-01

    The structural, electronic, and magnetic properties of 2p-block non-metallic elements (B, C, N, and O)-doped silver chloride were investigated by using ab initio approaches. The results indicate that B, C, N, and O substitution can produce magnetism and the magnetization is mainly from the 2p component of the 2p-block impurities. The total magnetic moments are 2.00, 3.00, 2.00, and 0.98 μB per 2 × 2 × 2 supercell for B, C, N, and O doping, respectively. Semiconducting, half-metallic, and nearly half-metallic magnetic states were generally observed in these cases. The ferromagnetic coupling was observed for B-, N-, and O-doped samples except for C-doped model. Thus, although the calculated magnetic moment of C-doped AgCl is 3.00 μB, the total net magnetic moment should be zero due to the antiferromagnetic order. Several possible explanations have been rationalized from the diversification of the electron count, the hole-mediated p- p and p- d interactions' coupling mechanisms, the elements' electronegativity and the relationship between guest and host atoms.

  1. Teaching Main Idea Comprehension.

    ERIC Educational Resources Information Center

    Baumann, James F., Ed.

    Intended to help classroom teachers, curriculum developers, and researchers, this book provides current information on theoretical and instructional aspects of main idea comprehension. Titles and authors are as follows: "The Confused World of Main Idea" (James W. Cunningham and David W. Moore); "The Comprehension of Important Information in…

  2. Antibacterial activity of graphene supported FeAg bimetallic nanocomposites.

    PubMed

    Ahmad, Ayyaz; Qureshi, Abdul Sattar; Li, Li; Bao, Jie; Jia, Xin; Xu, Yisheng; Guo, Xuhong

    2016-07-01

    We report the simple one pot synthesis of iron-silver (FeAg) bimetallic nanoparticles with different compositions on graphene support. The nanoparticles are well dispersed on the graphene sheet as revealed by the TEM, XRD, and Raman spectra. The antibacterial activity of graphene-FeAg nanocomposite (NC) towards Bacillus subtilis, Escherichia coli, and Staphylococcus aureus was investigated by colony counting method. Graphene-FeAg NC demonstrates excellent antibacterial activity as compared to FeAg bimetallic without graphene. To understand the antibacterial mechanism of the NC, oxidative stress caused by reactive oxygen species (ROS) and the glutathione (GSH) oxidation were investigated in the system. It has been observed that ROS production and GSH oxidation are concentration dependent while the increase in silver content up to 50% generally enhances the ROS production while ROS decreases on further increase in silver content. Graphene loaded FeAg NC demonstrates higher GSH oxidation capacity than bare FeAg bimetallic nanocomposite. The mechanism study suggests that the antibacterial activity is probably due to membrane and oxidative stress produced by the nanocomposites. The possible antibacterial pathway mainly includes the non-ROS oxidative stress (GSH oxidation) while ROS play minor role. PMID:27038914

  3. Ab initio study of He point defects in fcc Au-Ag alloys

    SciTech Connect

    Zhu, Zi Qiang; Yang, Li; Nie, JL; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Gao, Fei

    2013-04-25

    The relative stabilities of He defects in two fcc Au-Ag alloys (Au3Ag2 and AuAg) are investigated using ab initio method based on density functional theory. The results show that the stabilities of He defects in the two alloys mainly depend on the atomic arrangements of the nearest neighboring host metals. A He interstitial prefers to stay at a site with more Ag neighboring atoms, while the favorable substitutional site has more Au neighboring atoms in Au-Ag alloys. Moreover, the substitutional He defects are the most stable configurations in both the alloys, and the octahedral He interstitials are energetically more favorable than the tetrahedral interstitials. It is of interest to note that the properties of He defects slightly depend on the mass-density of Au-Ag alloys. The results also demonstrate that the relative stabilities of He defects are primarily attributed to the hybridization between metals d states and He p states.

  4. Progress and status of the AGS Booster project

    SciTech Connect

    Weng, W.T. )

    1989-01-01

    New physics opportunities, such as: rare K-decay, neutrino and heavy ion physics demand that a rapid-cycling high vacuum and high intensity Booster be built for the AGS at Brookhaven National Laboratory. The circumference of the Booster ring is one-quarter that of the AGS. Three modes of operation for various particles are envisioned. For unpolarized protons, four Booster pulses would be injected at a 7.5 Hz repetition rate within a 400 ms flat bottom of the AGS, enabling the present 1.5 {times} 10{sup 13} ppp to be increased to 6 {times} 10{sup 13} ppp. The protons would be accelerated to 1.5 GeV although the bending capability provided for heavy ions would eventually allow protons to be accelerated to 2.5 GeV. For heavy ions the rep rates is about 1 Hz and only one pulse would be injected into the AGS. For polarized protons 20 or so pulses can be stored in the Booster ring before injecting them into the AGS. Provisions for mixed modes of operation into a super cycle has been provided for future needs. In this paper, the lattice design and magnet characteristics will be briefly reviewed and major design issues will be discussed and design choices explained. Finally, the construction status and schedule will be presented. 9 refs., 3 figs.

  5. High Temperature Ferromagnetism in a GdAg2 Monolayer.

    PubMed

    Ormaza, M; Fernández, L; Ilyn, M; Magaña, A; Xu, B; Verstraete, M J; Gastaldo, M; Valbuena, M A; Gargiani, P; Mugarza, A; Ayuela, A; Vitali, L; Blanco-Rey, M; Schiller, F; Ortega, J E

    2016-07-13

    Materials that exhibit ferromagnetism, interfacial stability, and tunability are highly desired for the realization of emerging magnetoelectronic phenomena in heterostructures. Here we present the GdAg2 monolayer alloy, which possesses all such qualities. By combining X-ray absorption, Kerr effect, and angle-resolved photoemission with ab initio calculations, we have investigated the ferromagnetic nature of this class of Gd-based alloys. The Curie temperature can increase from 19 K in GdAu2 to a remarkably high 85 K in GdAg2. We find that the exchange coupling between Gd atoms is barely affected by their full coordination with noble metal atoms, and instead, magnetic coupling is effectively mediated by noble metal-Gd hybrid s,p-d bands. The direct comparison between isostructural GdAu2 and GdAg2 monolayers explains how the higher degree of surface confinement and electron occupation of such hybrid s,p-d bands promote the high Curie temperature in the latter. Finally, the chemical composition and structural robustness of the GdAg2 alloy has been demonstrated by interfacing them with organic semiconductors or magnetic nanodots. These results encourage systematic investigations of rare-earth/noble metal surface alloys and interfaces, in order to exploit them in magnetoelectronic applications. PMID:27247988

  6. Green and red luminescence in co-precipitation synthesized Pr:LuAG nanophosphor

    NASA Astrophysics Data System (ADS)

    Kumar, S. Arun; Kumar, K. Ashok; Gunaseelan, M.; Asokan, K.; Senthilselvan, J.

    2016-05-01

    Pr:LuAG nanophosphor is an effective candidate in magnetic resonance imaging coupled positron emission tomography (MRI-PET) for medical imaging and scintillator applications. LuAG:Pr (0.05, 0.15 mol%) nanoscale ceramic powders were synthesized by co-precipitation method using urea as precipitant. Effect of antisite defect on structure and luminescence behavior was investigated. Pr:LuAG nanoceramic powders are found crystallized in cubic structure by high temperature calcination at 1400 °C and it shows antisite defect. HR-SEM analysis revealed spherically shaped Pr:LuAG nanoceramic particulate powders with ˜100 nm size. By the excitation at 450 nm, Pr:LuAG nanophosphor exhibit green to red luminescence in the wavelength range of 520 to 680 nm, which is originated from multiplet transition of Pr3+ ions.

  7. In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)

    SciTech Connect

    Al-Mahboob A.; Vescovo, E.; Sadowski, J.T.

    2013-08-18

    Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth [1] of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film [2]. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy.

  8. The Effect of Ag-DOPING on the Critical Current Density of YBa2Cu3O7-δ Superconductors

    NASA Astrophysics Data System (ADS)

    Lue, Juh Tzeng; Kung, J. H.; Yen, H. H.; Chen, Y. C.; Wu, P. T.

    The superconducting state and the transition temperature Tc of the interstitially Ag-doped YBa2 Cu3 O7-δ are not changed even when the Ag concentration is increased up to 20%, whereas the substitutionally doped YBa2 Cu3-x Agx O7-δ system ceases to be superconductive when the contents x of Ag is over 1.2. Magnetic susceptibility measurement indicates that the interstitial Ag-doping yields higher diamagnetic signal and enhances the critical current density by 15 folds. Photoelectron emission and electron spin resonance spectroscopic studies elucidate that the copper ions change from diamagnetic to paramagnetic states at some doping levels.

  9. The Main Idea Organizer.

    ERIC Educational Resources Information Center

    Burke, Jim

    2003-01-01

    Presents the Main Idea Organizer (MIO) to help students who may struggle with writing, reading, and thinking--though in different ways and for different reasons. Describes many different ways the author uses the MIO. (SG)

  10. Bi-2212/Ag tape conductor and coil development

    SciTech Connect

    Albert, G.W.; Leung, E.M.; Zhou, R.; Salazar, K.V.

    1996-12-31

    This paper presents recent progress by Los Alamos National Laboratory/Superconductivity Technology Center (LANL/STC) and Lockheed Martin Corporation/Advanced Development Operations (LMQADO) Energy and Power Systems group to jointly develop and test high temperature superconductor coils for practical applications such as motors, generators, magnetic bearings, superconducting magnetic energy storage (SMES), MAGLEV trains, or electrical inductors. Critical currents of 105 A/cm{sup 2} have been achieved in a Bi-2212/Ag tape conductor using a patented Ag addition process to improve core morphology and uniformity. Results of testing to measure key conductor parameters are presented along with design and analysis details of a general-purpose multi-layer HTS coil.

  11. Magnetic induction hyperthermia

    NASA Astrophysics Data System (ADS)

    Nikiforov, V. N.

    2007-09-01

    A review of physical principles and experimental data on magnetic hyperthermia are presented. The main principles of magnetic hyperthermia are considered. Results of its application in the therapy of oncology diseases are presented.

  12. Physical properties of FePt nanocomposite doped with Ag atoms: First-principles study

    NASA Astrophysics Data System (ADS)

    Jia, Yong-Fei; Shu, Xiao-Lin; Xie, Yong; Chen, Zi-Yu

    2014-07-01

    L10 FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order—disorder transition temperature of the nanocomposite is higher than 600 °C, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters, formation energy, electronic structure, atomic magnetic moment and order—disorder transition temperature of L10 FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is 2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10 FePt. The special quasirandom structures (SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order—disorder transition temperatures are 1377 °C and 600 °C, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively, indicating that the magnetic property of the doped system is almost unchanged.

  13. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  14. Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  15. Matching the BtA line to the bare-AGS (Part 1)

    SciTech Connect

    Tsoupas,N.; Glenn, J. W.; Huan, H.; MacKay, W. W.; Raparia, D.; Zeno, K.

    2008-11-01

    The Booster to AGS (BtA) transfer line [Ref for BtA line] transports the beam bunches from the AGS-Booster to the AGS synchrotron, and also matches the beam parameters ({beta}{sub x,y}, {alpha}{sub x,y}) and dispersion functions ({eta}{sub x,y}, {eta}{prime}{sub x,y}) of the transported beam to the corresponding quantities of the circulating beam in AGS, at the AGS injection point. In this technical note we describe in details, the calculations of the matching procedure of the BtA line to the bare-AGS, and provide magnet settings for the MAD-model of the BtA transfer line which is 'matched' to the bare-AGS. In a separate but more concise technical note (Part II) we will present results on the beam optics of the BtA beam line which is 'matched' to the AGS with two helical snakes.

  16. Main Parachute Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is the testing of the Main Parachute for the Ares/CLV first stage in support of the Ares/Constellation program at the Yuma Proving Ground, Arizona. This image is extracted from high definition video and is the highest resolution available.

  17. Ladybugs of Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Color images are presented for the 57 species of Coccinellidae, commonly known as ladybugs, that are documented from Maine. Images are displayed in taxonomic order. Information on each species includes its genus-species name, length, and an actual-size silhouette beside a grid matched to the scale...

  18. Main features of meiosis

    SciTech Connect

    1993-12-31

    Chapter 17, outlines the main features of meiosis, beginning with its significance and proceeding through the meiotic stages. Meiosis is the most important modification of mitosis because it is the reduction division that gives rise to the haploid generation in the life cycle. 17 refs., 6 figs.

  19. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    PubMed

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  20. Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites.

    PubMed

    Prakash, Jai; Kumar, Promod; Harris, R A; Swart, Chantel; Neethling, J H; van Vuuren, A Janse; Swart, H C

    2016-09-01

    We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples. PMID:27456278

  1. Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Kumar, Promod; Harris, R. A.; Swart, Chantel; Neethling, J. H.; Janse van Vuuren, A.; Swart, H. C.

    2016-09-01

    We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples.

  2. Synthesis, characterization and multifunctional properties of plasmonic Ag-TiO2 nanocomposites.

    PubMed

    Prakash, Jai; Kumar, Promod; Harris, R A; Swart, Chantel; Neethling, J H; van Vuuren, A Janse; Swart, H C

    2016-09-01

    We report on the synthesis of multifunctional Ag-TiO2 nanocomposites and their optical, physio-chemical, surface enhanced Raman scattering (SERS) and antibacterial properties. A series of Ag-TiO2 nanocomposites were synthesized by sol-gel technique and characterized by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersed x-ray analysis, photoluminescence, UV-vis, x-ray photoelectron and Raman spectroscopy and Brunauer-Emmett-Teller method. The Ag nanoparticles (NPs) (7-20 nm) were found to be uniformly distributed around and strongly attached to TiO2 NPs. The novel optical responses of the nanocomposites are due to the strong electric field from the localized surface plasmon (LSP) excitation of the Ag NPs and decreased recombination of photo-induced electrons and holes at Ag-TiO2 interface providing potential materials for photocatalysis. The nanocomposites show enhancement in the SERS signals of methyl orange (MO) molecules with increasing Ag content attributed to the long-range electromagnetic enhancement from the excited LSP of the Ag NPs. To further understand the SERS activity, molecular mechanics and molecular dynamics simulations were used to study the geometries and SERS enhancement of MO adsorbed onto Ag-TiO2 respectively. Simulation results indicate that number of ligands (MO) that adsorb onto the Ag NPs as well as binding energy per ligand increases with increasing NP density and molecule-to-surface orientation is mainly flat resulting in strong bond strength between MO and Ag NP surface and enhanced SERS signals. The antimicrobial activity of the Ag-TiO2 nanocomposites was tested against the bacterium Staphylococcus aureus and enhanced antibacterial effect was observed with increasing Ag content explained by contact killing action mechanism. These results foresee promising applications of the plasmonic metal-semiconductor based nano-biocomposites for both chemical and biological samples.

  3. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.

    PubMed

    Liu, Bing; Ma, Zhanfang

    2011-06-01

    A simple synthetic route to prepare Ag(2) S-Ag nanoprisms consists of the facile addition of Na(2) S to a solution of triangular Ag nanoprisms. The resulting Ag(2) S-Ag nanoparticles are more stable in solution than the original Ag nanoprisms, and two surface plasmon resonance (SPR) bands of the original Ag nanoprisms still remain. In addition, the SPR bands of the Ag(2) S-Ag nanoprisms are tunable over a wide range. The Ag(2) S-Ag nanoprisms can be directly bioconjugated via well-established stable Ag(2) S surface chemistry with readily available sulfur coupling agents. The nanoprisms are used in the hybridization of functionalized oligonucleotides, and show promise as probes for future biosensing applications. PMID:21538868

  4. Magnetostructural phase transition assisted by temperature in Ag-αMnO2: a density functional theory study.

    PubMed

    Ochoa, Francisco Sánchez; Huang, Zhiwei; Tang, Xingfu; Cocoletzi, Gregorio Hernández; Springborg, Michael

    2016-03-14

    A crystalline material formed by parallel chains of silver atoms inside one-dimensional tunnels of hollandite manganese dioxide, Ag-αMnO2, is investigated through first-principles total energy calculations. Two different magnetic phases have been identified; one structure containing linear Ag chains with an antiferromagnetic ordering in the direction perpendicular to the MnO2 tunnels for T = 0 K (I4/m) and another configuration with zigzag Ag chains in a non-magnetic regime for higher temperatures (P21/c). According to phonon dispersions, both structures are stable. On the other hand, the structure with linear Ag chains in the non-magnetic state is unstable. A critical temperature of Tc≃ 125 K for the magnetostructural phase transition between the two stable structures I4/m and P21/c is predicted.

  5. Metal-containing ligands for mixed-metal polymers: novel Cu(II)-Ag(I) mixed-metal coordination polymers generated from [Cu(2-methylpyrazine-5-carboxylate)2(H2O)].3H2O and silver(I) salts.

    PubMed

    Dong, Y B; Smith, M D; zur Loye, H C

    2000-05-01

    One Cu(II)-containing ligand and two Cu(II)-Ag(I) mixed-metal coordination polymers have been synthesized. [Cu(2-methylpyrazine-5-carboxylate)2(H2O)].3H2O (1) was obtained as a molecular complex with two uncoordinated nitrogen donors by the reaction of 2-methylpyrazine-5-carboxylate sodium with CuCl(2).2H2O in water. Compound 1 crystallized in the triclinic space group P1, with a = 10.498(2) A, b = 11.000(2) A, c = 8.1424(16) A, alpha = 98.33(3) degrees, beta = 101.83(3) degrees, gamma = 66.68(3) degrees, and Z = 2. Reactions of 1 with silver(I) salts have been studied. Two Cu(II)-Ag(I) mixed-metal coordination polymers, namely, Ag[Cu(2-methylpyrazine-5-carboxylate)2.(H2O)2](BF4) (2) and Ag[Cu(2-methylpyrazine-5-carboxylate)2.(H2O)2](NO3) (3), have been generated by treating 1 with AgBF4 and AgNO3, respectively. Compound 2 crystallized in the monoclinic space group C2/c, with a = 25.827(5) A, b = 9.6430(19) A, c = 7.4525(15) A, beta = 94.74(3) degrees, and Z = 4. Compound 3 also crystallized in the monoclinic space group C2/c, with a = 25.855(5) A, b = 9.782(2) A, c = 7.1201(14) A, beta = 96.90(3) degrees, and Z = 4. The main structural feature in both 2 and 3 is a zigzag Cu(II)-Ag(I) mixed-metal chain, in which the alternating Cu(II) and Ag(I) centers are linked by 2-methylpyrazine-5-carboxylate spacers. The effect of the nitrate counterion was illustrated by compound 3, in which a novel [Ag+...NO3-] coordination chain has been found which acts as the connector to cross-link the one-dimensional zigzag chains into a three-dimensional network. In addition, an identical interchain O-H...O hydrogen bonding system has been found in both 2 and 3 and has been shown to play a significant role in directing the alignment of the one-dimensional mixed-metal polymer chains in the crystalline state. The magnetic susceptibilities of 2 and 3 were measured and found to follow the Curie law (mu eff = 1.85 for 2 and 1.83 for 3). PMID:11428114

  6. [Main Cellular Redox Couples].

    PubMed

    Bilan, D S; Shokhina, A G; Lukyanov, S A; Belousov, V V

    2015-01-01

    Most of the living cells maintain the continuous flow of electrons, which provides them by energy. Many of the compounds are presented in a cell at the same time in the oxidized and reduced states, forming the active redox couples. Some of the redox couples, such as NAD+/NADH, NADP+/NADPH, oxidized/reduced glutathione (GSSG/GSH), are universal, as they participate in adjusting of many cellular reactions. Ratios of the oxidized and reduced forms of these compounds are important cellular redox parameters. Modern research approaches allow setting the new functions of the main redox couples in the complex organization of cellular processes. The following information is about the main cellular redox couples and their participation in various biological processes.

  7. TCO/Ag/TCO transparent electrodes for solar cells application

    NASA Astrophysics Data System (ADS)

    Boscarino, S.; Crupi, I.; Mirabella, S.; Simone, F.; Terrasi, A.

    2014-09-01

    Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the nature of the top and bottom TCOs, mainly due to the change in the reflectivity of the multilayers. Structural, electrical and optical properties are studied to optimize the structure for very thin transparent electrodes suitable for photovoltaic applications.

  8. COBRA Main Engine Project

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim; Sides, Steve; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    The COBRA (CO-Optimized Booster for Reusable Applications) project include the following: 1. COBRA main engine project team. 2. COBRA and RLX cycles selected. 3. COBRA proto-type engine approach enables mission success. 4. COBRA provides quick, low cost demo of cycle and technologies. 5. COBRA cycle I risk reduction supports. 6. Achieving engine safety. 6. RLX cycle I risk reduction supports. 7. Flight qualification. 9. Life extension engine testing.

  9. Maine coast winds

    SciTech Connect

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  10. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  11. Synthesis and characterization of silver/lithium cobalt oxide (Ag/LiCoO2) nanofibers via sol-gel electrospinning

    NASA Astrophysics Data System (ADS)

    Aykut, Yakup; Pourdeyhimi, Behnam; Khan, Saad A.

    2013-11-01

    We report on the preparation and characterization of Ag/LiCoO2 nanofibers (NFs) via the sol-gel electrospinning (ES) technique. Ag nanoparticles (NPs) were produced in an aqueous polyvinyl pyrrolidone (PVP) solution by using AgNO3 precursor. A viscous lithium acetate/cobalt acetate/polyvinylalcohol/water (LiAc/(CoAc)2/PVA/water) solution was prepared separately. A Ag NPs/PVP/water solution was prepared and added to this viscous solution and magnetically stirred to obtain the final homogeneous electrospinning solution. After establishing the proper electrospinning conditions, as-spun precursor Ag/LiAc/Co(Ac)2/PVA/PVP NFs were formed and calcined in air at a temperature of 600 °C for 3 h to form well-crystallized porous Ag/LiCoO2 NFs. Various analytical characterization techniques such as UV-vis, SEM, TEM, TGA, XRD, and XPS were performed to analyze Ag NPs, as-spun and calcined NFs. It was established that Ag NPs in the precursor Ag/LiAc/Co(Ac)2/PVA/PVP NFs are highly self-aligned as a result of the behavior of Ag in the electric field of the electrospinning setup and the interaction of Ag ions with Li and Co ions in the NF. Ag/LiCoO2 NFs exhibit a nanoporous structure compared with un-doped LiCoO2 NFs because the atomic radius of Ag is larger than the radius of Co and Li ion; thus, no substitution between Ag and Li or Ag and Co atoms occurs, and Ag NPs are located at the interlayer of LiCoO2 while some are left in the fiber.

  12. Paleomagnetic Age for the World-class Century Zn-Pb-Ag Deposit, Australia

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Symons, D. T.; Dawborn, T.

    2009-05-01

    Paleomagnetic results are reported for the Century Zn-Pb-Ag SEDEX deposit in northwestern Queensland, Australia. The stratiform mineralization occurs in fine parallel lamellae in ˜1595 Ma siderite-rich siltstones and black shales of the upper Lawn Hill Formation in the Proterozoic McNamara Group. Galena from the deposit has given a Pb/Pb model age of ˜1575 Ma. Paleomagnetic analysis of 333 specimens from ore zones (15 sites), and hanging wall (4 sites) and footwall (5 sites) siltstones using mostly thermal and then alternating field step demagnetization, isolates a stable characteristic remanent magnetization (ChRM) for the ore sites only. Step demagnetization, rock magnetic tests and thermomagnetic analyses of ore, Zn and Pb concentrates and tailings show that the main remanence carriers are single- or pseudosingle-domain inclusions of titanomagnetite in sphalerite and gangue, and pyrrhotite in galena with modern goethite and/or hematite from the weathering of siderite. A paleomagnetic fold test using the ore sites is positive, showing that the ore ChRM predates D2 deformation in the ˜1595 to ˜1500 Ma Isan orogeny. The orogeny folded the main-stage mineralization, indicating that the ore retains a primary magnetization. The optimum 80% tilt-corrected unit mean ChRM direction for the ore gives a Mesoproterozoic paleopole at ˜1560 Ma on the northern Australian apparent polar wander path. Thus this result both constrains the timing of mineralization and provides an upper age limit for D2 deformation in the orogeny.

  13. Main Oxidizer Valve Design

    NASA Technical Reports Server (NTRS)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  14. Geomagnetic main field modeling with DMSP

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.; Lühr, H.; Redmon, R. J.; Rich, F.; Bowman, B.; O'Malley, S. M.

    2014-05-01

    The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Ørsted, and SAC-C. With the completion of the CHAMP mission in 2010, there has been a multiyear gap in satellite-based vector magnetic field measurements available for main field modeling. In this study, we calibrate the special sensor magnetometer instrument on board DMSP to create a data set suitable for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and nonorthogonality angles of the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 15 main field model to the data set and compare with the World Magnetic Model and Ørsted scalar measurements. We call this model DMSP-MAG-1, and its coefficients and software are available for download at http://geomag.org/models/dmsp.html. Our results indicate that the DMSP data set will be a valuable source for main field modeling for the years between CHAMP and the recently launched Swarm mission.

  15. Diamondoid Structure in a Metal-Organic Framework of Fe4 Single-Molecule Magnets.

    PubMed

    Rigamonti, Luca; Cotton, Carri; Nava, Andrea; Lang, Heinrich; Rüffer, Tobias; Perfetti, Mauro; Sorace, Lorenzo; Barra, Anne-Laure; Lan, Yanhua; Wernsdorfer, Wolfgang; Sessoli, Roberta; Cornia, Andrea

    2016-09-12

    A 3D metal-organic framework (MOF) having single-molecule magnet (SMM) linkers was prepared in crystalline form by using a tetrairon(III) complex functionalised with two divergent pyridyl groups, namely [Fe4 (pPy)2 (dpm)6 ] (1; H3 pPy=2-(hydroxymethyl)-2-(pyridin-4-yl)propane-1,3-diol, Hdpm=dipivaloylmethane). Reaction of 1 with silver(I) perchlorate afforded {[Fe4 (pPy)2 (dpm)6 ]2 Ag}ClO4 (2), which crystallises in a cubic face-centred lattice and exhibits two interlocked diamondoid networks. In 2, the SMMs act as linear ditopic synthons, and silver(I) ions as tetrahedral nodes coordinated by four pyridyl nitrogen atoms. The magnetic properties of 1 (S=5 and D≈-0.4 cm(-1) in the ground spin state) are largely preserved in 2, which shows slow magnetic relaxation with an anisotropy barrier of Ueff /kB =11.46(10) K in zero field and 14.25(8) K in an applied field of 1 kOe. However, crystal symmetry triggers highly noncollinear magnetic anisotropy contributions oriented at 109.47° from each other along the threefold axes of AgN4 tetrahedra, a unique scenario fully confirmed by a single-crystal cantilever torque magnetometry investigation. Magnetisation curves down to 0.03 K demonstrated the occurrence of a wide hysteresis loop when the magnetic field was swept along one of the four Ag-N bonds. By symmetry, the crystalline compound can then be persistently magnetised parallel or antiparallel to the four main diagonals of the unit cell, although the crystals have no overall second-order anisotropy. PMID:27356278

  16. Photoelectron spectroscopy of AgCl, AgBr, and AgI vapors

    SciTech Connect

    Berkowitz, J.; Batson, C.H.; Goodman, G.L.

    1980-06-01

    He I photoelectron spectra of AgCl, AgBr and AgI vapors have been obtained which differ significantly from earlier work. In each instance, the characteristic features of the diatomic molecule are prominent. The spectral features separate into a valence region, predominantly halogen p-like, and a deeper region, predominantly of Ag 4d character. The latter is split by spin--orbit and ligand field interactions, which are parametrized from the experimental data. Relativistic calculations of the X/sub ..cap alpha../--DVM--SCC type have been performed for these species. At the transition state level, they agree very well with the experimental peak positions. Nonrelativistic calculations of this type have been performed for CuCl and cyclic Cu/sub 3/Cl/sub 3/. Unlike the AgX species, the CuCl and Cu/sub 3/Cl/sub 3/ exhibit strong mixing of metal d and halogen p orbitals for the uppermost occupied orbital, and other Cu 3d-like orbitals above the Cl 3p-like orbitals. It is suggested that the occurrence of Cu 3d orbitals in the valence region may play a role in the anomalous diagmagnetic signal and large conductivity changes of CuCl condensed from the vapor.

  17. The AGS Booster control system

    SciTech Connect

    Frankel, R.; Auerbach, E.; Culwick, B.; Clifford, T.; Mandell, S.; Mariotti, R.; Salwen, C.; Schumburg, N.

    1988-01-01

    Although moderate in size, the Booster construction project requires a comprehensive control system. There are three operational modes: as a high intensity proton injector for the AGS, as a heavy ion accelerator and injector supporting a wide range of ions and as a polarized proton storage injector. These requirements are met using a workstation based extension of the existing AGS control system. Since the Booster is joining a complex of existing accelerators, the new system will be capable of supporting multiuser operational scenarios. A short discussion of this system is discussed in this paper.

  18. AG Draconis - a symbiotic mystery

    NASA Astrophysics Data System (ADS)

    Galis, R.; Hric, L.; Smelcer, L.

    2015-02-01

    Symbiotic system AG Draconis regularly undergoes quiescent and active stages which consist of the series of individual outbursts. The period analysis of new and historical photometric data, as well as radial velocities, confirmed the presence of the two periods. The longer one (~550 d) is related to the orbital motion and the shorter one (~355 d) could be due to pulsation of the cool component of AG Dra. In addition, the active stages change distinctively, but the outbursts are repeated with periods from 359 - 375 d.

  19. Role of the upper branch of the hour-glass magnetic spectrum in the formation of the main kink in the electronic dispersion of high-Tc cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Geffroy, Dominique; Chaloupka, Jiří; Dahm, Thomas; Munzar, Dominik

    2016-04-01

    We investigate the electronic dispersion of the high-Tc cuprate superconductors using the fully self-consistent version of the phenomenological model, where charge planar quasiparticles are coupled to spin fluctuations. The inputs we use, the underlying (bare) band structure and the spin susceptibility χ , are extracted from fits of angle-resolved photoemission and inelastic neutron scattering data of underdoped YBa2Cu3O6.6 by T. Dahm and coworkers [Nat. Phys. 5, 217 (2009), 10.1038/nphys1180]. Our main results are as follows: (i) We have confirmed the finding by Dahm and coworkers that the main nodal kink is, for the present values of the input parameters, determined by the upper branch of the hourglass of χ . We demonstrate that the properties of the kink depend qualitatively on the strength of the charge-spin coupling. (ii) The effect of the resonance mode of χ on the electronic dispersion strongly depends on its kurtosis in the quasimomentum space. A low (high) kurtosis implies a negligible (considerable) effect of the mode on the dispersion in the near-nodal region. (iii) The energy of the kink decreases as a function of the angle θ between the Fermi surface cut and the nodal direction, in qualitative agreement with recent experimental observations. We clarify the trend and make a specific prediction concerning the angular dependence of the kink energy in underdoped YBa2Cu3O6.6 .

  20. Preparation and photocatalytic properties of AgI–SnO{sub 2} nano-composites

    SciTech Connect

    Wen, Biao; Wang, Xiao-Hui; Lu, Juan; Cao, Jia-Lei; Wang, Zuo-Shan

    2013-05-15

    Highlights: ► AgI–SnO{sub 2} nano-composites have been successfully synthesized. ► As-prepared AgI–SnO{sub 2} nano-composites own the excellent visible light photocatalytic activity. ► As-prepared AgI–SnO{sub 2} nano-composites own the excellent stability. - Abstract: AgI doped SnO{sub 2} nano-composites were prepared by the chemical coprecipitation method and were characterized by the X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Results showed that main of the I{sup −} ions remained in the AgI lattice which is highly dispersed in the system. The photo-catalytic experiments performed under visible light irradiation using methylene blue as the pollutant revealed that not only the photo-catalytic activity but also the stability of SnO{sub 2} based photocatalyst could be improved by introduction of an appropriate amount of AgI, and the result was further supported by the UV–Vis diffuse reflection spectra and the electron spin-resonance spectra. Among all of the samples, AgI–SnO{sub 2} nano-composite with 2At% AgI exhibited the best catalytic efficiency and stability.

  1. Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.

    PubMed

    Shahjamali, Mohammad M; Zhou, Yong; Zaraee, Negin; Xue, Can; Wu, Jinsong; Large, Nicolas; McGuirk, C Michael; Boey, Freddy; Dravid, Vinayak; Cui, Zhifeng; Schatz, George C; Mirkin, Chad A

    2016-05-24

    Recently, Ag-Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag-Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag-Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag-Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag-Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)-anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism.

  2. Preliminary study of AC power feeders for AGS booster

    SciTech Connect

    Meth, M.

    1992-07-17

    It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO's substation.

  3. Preliminary study of AC power feeders for AGS booster

    SciTech Connect

    Meth, M.

    1992-07-17

    It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO`s substation.

  4. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S.

    2011-04-01

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses.

  5. Photoreduction of Ag+ in Ag/Ag2S/Au memristor

    NASA Astrophysics Data System (ADS)

    Mou, N. I.; Tabib-Azar, M.

    2015-06-01

    Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag2S/Au memristors using a green laser (473-523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from -0.8 V to -0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag2S may be used in three dimensional optical memories that can be electronically read and reset.

  6. Ag-Ag dispersive interaction and physical properties of Ag3Co(CN)6

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Dove, Martin T.; Refson, Keith

    2014-08-01

    We report a density functional theory (DFT) study of Ag3Co(CN)6, a material noted for its colossal positive and negative thermal expansion, and its giant negative linear compressibility. Here, we explicitly include the dispersive interaction within the DFT calculation, and find that it is essential to reproduce the ground state, the high-pressure phase, and the phonons of this material, and hence essential to understand this material's remarkable physical properties. New exotic properties are predicted. These include heat enhancement of the negative linear compressibility, a large reduction in the coefficient of thermal expansion on compression with change of sign of the mode Grüneisen parameters under pressure, and large softening of the material on heating. Our results suggest that these are associated with the weak Ag-Ag dispersive interactions acting with an efficient hinging mechanism in the framework structure.

  7. Laser-based synthesis of core Ag-shell AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Hua; Fan, Wai Yip

    2005-05-01

    A laser-controlled synthesis of silver iodide (AgI) nanoparticles with isolable AgI shell-Ag core stable intermediates is achieved via molecular iodine photodissociation in the presence of pure Ag nanoparticles dispersed in water. Ag nanoparticles were introduced into the solution containing sodium dodecylsulphate surfactants and iodine by ablating a piece of silver foil with a 532 nm pulsed Nd-YAG laser. Transmission electron microscopy images showed that different AgI shell-Ag core sizes could be achieved by controlling the photolysis of I 2 in solution. These nanoparticles were also found to catalyse an atom-economy Grignard-Barbier organic reaction.

  8. Optimization of the AGS superconducting helical partial snake strength.

    SciTech Connect

    Lin,F.; Huang, H.; Luccio, A.U.; Roser, T.

    2008-06-23

    Two helical partial snakes, one super-conducting (a.k.a cold snake) and one normal conducting (a.k.a warm snake), have preserved the polarization of proton beam up to 65% in the Brookhaven Alternating Gradient Synchrotron (AGS) at the extraction energy from 85% at injection. In order to overcome spin resonances, stronger partial snakes would be required. However, the stronger the partial snake, the more the stable spin direction tilted producing a stronger horizontal intrinsic resonance. The balance between increasing the spin tune gap generated by the snakes and reducing the tilted stable spin direction has to be considered to maintain the polarization. Because the magnetic field of the warm snake has to be a constant, only the cold snake with a maximum 3T magnetic field can be varied to find out the optimum snake strength. This paper presents simulation results by spin tracking with different cold snake magnetic fields. Some experimental data are also analyzed.

  9. AGS experiments: 1990, 1991, 1992. Ninth edition

    SciTech Connect

    Depken, J.C.

    1993-04-01

    This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ``as run``; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters.

  10. Microscopy investigation of Ag-TCNQ micro/nanostructures synthesized via two solution routes.

    PubMed

    Cao, Guanying; Fang, Fang; Ye, Chunnuan; Xing, Xiaoyan; Xu, Huahua; Sun, Dalin; Chen, Guorong

    2005-01-01

    The micro/nanostructures of metal-organic complex Ag-TCNQ were successfully synthesized by the reaction between Ag film and TCNQ dissolved in acetonitrile via two solution routes, i.e. immerging and dipping reaction. X-ray diffraction confirmed that the obtained Ag-TCNQ micro/nanostructures were crystalline. The morphology of the as-grown structures varied from straight nanowires and microtubes to complex fractals and dendrites. The growth mechanism of the mainly dendrites may be considered within the framework of DLA model. PMID:15725599

  11. Chemical patterning of Ag(111): Spatially confined oxide formation induced by electron beam irradiation

    SciTech Connect

    Guenther, S.; Reichelt, R.; Wintterlin, J.; Barinov, A.; Mentes, T. O.; Nino, M. A.; Locatelli, A.

    2008-12-08

    Low energy electron irradiation of a Ag(111) surface during NO{sub 2} adsorption at 300 K induces formation of Ag oxide. Using a spatially confined electron beam, small Ag{sub 2}O spots could be grown with a sharp, {approx}100 nm wide, boundary to the nonirradiated metallic surface. Since the structure size will mainly depend on the sharpness of the irradiating electron beam, this process has the potential of a single step nanostructuring process. Temperature treatment offers an easy way to manipulate the boundary between oxide and metallic silver by steering a chemical front.

  12. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  13. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min.

  14. AGS 20th anniversary celebration

    SciTech Connect

    Baggett, N.V.

    1980-05-22

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume.

  15. AGS experiments: 1985, 1986, 1987

    SciTech Connect

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987.

  16. Correcting the AGS depolarizing resonances

    SciTech Connect

    Ratner, L.G.

    1986-01-01

    For the 1986 AGS run, the technique of correcting an imperfection resonance using a beat harmonic instead of the direct harmonic was applied and found to be useful in achieving a 22 GeV/c polarized beam. Both conventional and modified techniques are explained. (LEW)

  17. What Is Ag-Ed?

    ERIC Educational Resources Information Center

    Linley, Judy; Mylne, Lee

    1998-01-01

    Ag-Ed, an agricultural education project for upper elementary students, was held in conjunction with the Toowoomba Show in Queensland, Australia. Agriculture industry representatives provided 20 interactive agricultural presentations for class groups, which were supplemented with a teacher resource-package containing a directory and 13 sections of…

  18. AGS experiments, 1988, 1989, 1990

    SciTech Connect

    Depken, J.C.

    1991-04-01

    This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters.

  19. Gilbert damping in magnetic layered systems

    NASA Astrophysics Data System (ADS)

    Barati, E.; Cinal, M.; Edwards, D. M.; Umerski, A.

    2014-07-01

    The Gilbert damping constant present in the phenomenological Landau-Lifshitz-Gilbert equation describing the dynamics of magnetization is calculated for ferromagnetic metallic films as well as Co/nonmagnet (NM) bilayers. The calculations are done within a realistic nine-orbital tight-binding model including spin-orbit coupling. The convergence of the damping constant expressed as a sum over the Brillouin zone is remarkably improved by introducing finite temperature into the electronic occupation factors and subsequent summation over the Matsubara frequencies. We investigate how the Gilbert damping constant depends on the ferromagnetic film thickness as well as on the thickness of the nonmagnetic cap in Co/NM bilayers (NM=Cu, Pd, Ag, Pt, and Au). The obtained theoretical dependence of the damping constant on the electron-scattering rate, describing the average lifetime of electronic states, varies substantially with the ferromagnetic film thickness and it differs significantly from the dependence for bulk ferromagnetic metals. The presence of nonmagnetic caps is found to largely enhance the magnetic damping in Co/NM bilayers in accordance with experimental data. Unlike Cu, Ag, and Au a particularly strong enhancement is obtained for Pd and Pt caps. This is attributed to the combined effect of the large spin-orbit couplings of Pd and Pt and the simultaneous presence of d states at the Fermi level in these two metals. The calculated Gilbert damping constant also shows an oscillatory dependence on the thicknesses of both ferromagnetic and nonmagnetic parts of the investigated systems which is attributed to quantum-well states. Finally, the expression for contributions to the damping constant from individual atomic layers is derived. The obtained distribution of layer contributions in Co/Pt and Co/Pd bilayers proves that the enhanced damping which affects the dynamics of the magnetization in the Co film originates mainly from a region within the nonmagnetic part of the

  20. Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Ji Dang; Yun, Hyosuk; Kim, Gwui Cheol; Lee, Chul Won; Choi, Hyun Chul

    2013-10-01

    A facile approach to the synthesis of novel CNT-Ag and GO-Ag antibacterial materials, in which thiol groups are utilized as linkers to secure silver (Ag) nanoparticles to the CNT and GO surfaces without agglomeration, is reported. The resulting CNT-Ag and GO-Ag samples were characterized by performing TEM, XRD, Auger, XPS, and Raman measurements, which revealed that in these antibacterial materials size-similar and quasi-spherical Ag nanoparticles are anchored to the CNT and GO surfaces. The Ag nanoparticles in CNT-Ag and GO-Ag have narrow size distributions with average diameters of 2.6 and 3.5 nm respectively. The antibacterial activities of CNT-Ag and GO-Ag against Escherichia coli were assessed with the paper-disk diffusion method and by determining the minimal inhibitory concentrations (MICs). CNT-Ag was found to have higher antibacterial activity than the reference Ag colloid. Moreover, both CNT-Ag and GO-Ag retain more than 50% of their original antibacterial activities after 20 washes with detergent, which indicates their potential as antibacterial materials for laboratory and medical purposes.

  1. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  2. Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)

    NASA Astrophysics Data System (ADS)

    Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee

    2014-05-01

    Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were

  3. Equivalent source modeling of the main field using Magsat data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress is reported on software development for equivalent dipole source modeling of the main magnetic field. This includes a spatial statistical output capability, a subroutine to compute the equivalent spherical harmonic representation from the dipole distribution, and capability to plot the global locations of the dipoles and the values of the source magnetization.

  4. Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials.

    PubMed

    Wang, Baoyu; Zhang, Min; Li, Weizhen; Wang, Linlin; Zheng, Jing; Gan, Wenjun; Xu, Jingli

    2015-05-01

    In this work, we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto Ag NWs in situ, which was conducted in a triethylene glycol (TREG) solution with iron acetylacetonate and Ag NWs as starting materials. The as-prepared Ag NW/Fe3O4 NP composites are well characterized by SEM, TEM, XRD, XPS, FT-IR, and VSM techniques. It was found that the mass ratio of iron acetylacetonate to Ag NWs plays a crucial role in controlling the amount of magnetite nanoparticles decorated on the Ag NWs. The resulting Ag NW/Fe3O4 NP composites exhibit superparamagnetic properties at room temperature, and can be well dispersed in aqueous and organic solutions, which is greatly beneficial for their application and functionality. Thus, the as-prepared magnetic silver nanowires show good catalytic activity, using the catalytic reduction of methylene blue (MB) as a model reaction. Furthermore, the Ag NW/Fe3O4 NP composites can be functionalized with polydopamine (Pdop), resorcinol-formaldehyde resin (PFR), and SiO2, respectively, in aqueous/ethanol solution. Meanwhile they can also be coated with polyphosphazene (PZS) in organic solution, resulting in a unique nanocable with well-defined core shell structures. Besides, taking Ag NW/Fe3O4@SiO2 as an example, a hollow magnetic silica nanotube can be obtained with the use of Ag NWs as physical templates and a solution of ammonium and H2O2. These can greatly improve the application of the Ag NW/Fe3O4 NP composites. The as-synthesized above nanocomposites have high potential for applications in the fields of polymers, wastewater treatment, sensors, and biomaterials.

  5. Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials.

    PubMed

    Wang, Baoyu; Zhang, Min; Li, Weizhen; Wang, Linlin; Zheng, Jing; Gan, Wenjun; Xu, Jingli

    2015-05-01

    In this work, we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto Ag NWs in situ, which was conducted in a triethylene glycol (TREG) solution with iron acetylacetonate and Ag NWs as starting materials. The as-prepared Ag NW/Fe3O4 NP composites are well characterized by SEM, TEM, XRD, XPS, FT-IR, and VSM techniques. It was found that the mass ratio of iron acetylacetonate to Ag NWs plays a crucial role in controlling the amount of magnetite nanoparticles decorated on the Ag NWs. The resulting Ag NW/Fe3O4 NP composites exhibit superparamagnetic properties at room temperature, and can be well dispersed in aqueous and organic solutions, which is greatly beneficial for their application and functionality. Thus, the as-prepared magnetic silver nanowires show good catalytic activity, using the catalytic reduction of methylene blue (MB) as a model reaction. Furthermore, the Ag NW/Fe3O4 NP composites can be functionalized with polydopamine (Pdop), resorcinol-formaldehyde resin (PFR), and SiO2, respectively, in aqueous/ethanol solution. Meanwhile they can also be coated with polyphosphazene (PZS) in organic solution, resulting in a unique nanocable with well-defined core shell structures. Besides, taking Ag NW/Fe3O4@SiO2 as an example, a hollow magnetic silica nanotube can be obtained with the use of Ag NWs as physical templates and a solution of ammonium and H2O2. These can greatly improve the application of the Ag NW/Fe3O4 NP composites. The as-synthesized above nanocomposites have high potential for applications in the fields of polymers, wastewater treatment, sensors, and biomaterials. PMID:25815705

  6. Synthesis of Ag nanoplates on GaAs wafers : evidence for growth mechanism.

    SciTech Connect

    Sun, Y.; Center for Nanoscale Materials

    2010-01-21

    Direct synthesis of Ag nanoplates on GaAs wafers has been developed in our group through a simple solution/solid interfacial reaction (SSIR) strategy, in which aqueous solutions of pure AgNO{sub 3} react with the GaAs wafers at room temperature [J. Phys. Chem. C 2009, 113, 6061; 2008, 112, 8928; Chem. Mater. 2007, 19, 5845]. However, a number of questions are still not clear yet regarding the roles of different possible pathways for reducing Ag{sup +} ions in the growth of Ag nanoplates. In this article, we try to answer these remaining questions by specifically designing experiments and extracting direct evidence from systematic characterizations of different samples. It is conclusive that growth of high-quality Ag nanoplates on GaAs wafers is ascribed to the good separation between nucleation and growth steps, which are driven by two different reduction pathways. At the nucleation step, fast reduction of Ag{sup +} ions with a high concentration of surface electrons is crucial for the formation of Ag nuclei with multiple (111) twin planes parallel to each other, and remaining the environment of a high concentration of surface electrons for a period long enough is also important to develop the Ag nuclei into stable seeds. At the growth step, a hole injection process is mainly responsible for reduction of Ag{sup +} ions to enlarge the stable seeds into Ag nanoplates with controlled sizes by tuning the growth time. The paralleled multiple (111) twin planes provide a crystalline confinement to guide the growth of the seeds into nanoplates.

  7. Crystal structure and properties of tetragonal EuAg{sub 4}In{sub 8} grown by metal flux technique

    SciTech Connect

    Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C.

    2015-03-15

    The compound EuAg{sub 4}In{sub 8} has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg{sub 4}In{sub 8} crystallizes in the CeMn{sub 4}Al{sub 8} structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg{sub 4}In{sub 8} is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg{sub 4}In{sub 8} was measured in the temperature range 2–300 K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg{sub 4}In{sub 8} is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg{sub 4}In{sub 8} has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg{sub 4}In{sub 8} phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg{sub 4}In{sub 8}. • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior.

  8. Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa; Pan, Chia-Chi

    2012-06-01

    Optical examination of a chaocogenide compound AgAlS2 which can spontaneously transfer to a AgAlO2 oxide has been investigated by thermoreflectance (TR) spectroscopy herein. The single crystals of AgAlS2 were grown by chemical vapor transport (CVT) method using ICl3 as a transport agent sealed in evacuated quartz tubes. The as-grown AgAlS2 crystals essentially possess a transparent and white color in vacuum. The crystal surface of AgAlS2 becomes darkened and brownish when putting AgAlS2 into atmosphere for reacting with water vapor or hydrogen gas. Undergoing the chemical reaction process, oxygen deficient AgAlO2-2x with brownish and reddish-like color on surface of AgAlS2 forms. The transition energy of deficient AgAlO2-2x was evaluated by TR experiment. The value was determined to be ˜2.452 eV at 300 K. If the sample is kept dry and moved away from moisture, AgAlS2 crystal can stop forming more deficient AgAlO2-2x surface oxides. The experimental TR spectra for the surface-reacted sample show clearly two transition features at EW=2.452 eV for deficient AgAlO2-2x and EU=3.186 eV for AgAlS2, respectively. The EU transition belongs to direct band-edge exciton of AgAlS2. Alternatively, for surface-oxidation process of AgAlS2 lasting for a long time, a AgAlO2 crystal with yellowish color will eventually form. The TR measurements show mainly a ground-state band edge exciton of E{}_{OX}^1 detected for AgAlO2. The energy was determined to be E{}_{OX}^1=2.792 eV at 300 K. The valence-band electronic structure of AgAlS2 has been detailed characterized using polarized-thermoreflectance (PTR) measurements in the temperature range between 30 and 340 K. Physical chemistry behaviors of AgAlS2 and AgAlO2 have been comprehensively studied via detailed analyses of PTR and TR spectra. Based on the experimental analyses, optical and chemical behaviors of the AgAlS2 crystals under atmosphere are realized. A possible optical-detecting scheme for using AgAlS2 as a humidity sensor has

  9. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.

    PubMed

    Guo, Huizhang; Chen, Yuanzhi; Chen, Xiaozhen; Wen, Ruitao; Yue, Guang-Hui; Peng, Dong-Liang

    2011-05-13

    Magnetically recyclable Ag-Ni core-shell nanoparticles have been fabricated via a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as a surfactant. As characterized by transmission electron microscopy (TEM), the as-synthesized Ag-Ni core-shell nanoparticles exhibit a very narrow size distribution with a typical size of 14.9 ± 1.2 nm and a tunable shell thickness. UV-vis absorption spectroscopy study shows that the formation of a Ni shell on Ag core can damp the surface plasmon resonance (SPR) of the Ag core and lead to a red-shifted SPR absorption peak. Magnetic measurement indicates that all the as-synthesized Ag-Ni core-shell nanoparticles are superparamagnetic at room temperature, and their blocking temperatures can be controlled by modulating the shell thickness. The as-synthesized Ag-Ni core-shell nanoparticles exhibit excellent catalytic properties for the generation of H(2) from dehydrogenation of sodium borohydride in aqueous solutions. The hydrogen generation rate of Ag-Ni core-shell nanoparticles is found to be much higher than that of Ag and Ni nanoparticles of a similar size, and the calculated activation energy for hydrogen generation is lower than that of many bimetallic catalysts. The strategy employed here can also be extended to other noble-magnetic metal systems.

  10. Direct Observation of Long-Term Durability of Superconductivity in YBa2Cu3O7-Ag2O Composites

    NASA Astrophysics Data System (ADS)

    Lin, Juhn-Jong; Lin, Yong-Han; Huang, Shiu-Ming; Lee, Tsang-Chou; Chen, Teng-Ming

    2003-10-01

    We report direct observation of long-term durability of superconductivity of several YBa2Cu3O7-Ag2O composites that were first prepared and studied almost fourteen years ago [J. J. Lin et al.: Jpn. J. Appl. Phys. 29 (1990) 497]. Remeasurements performed recently on both resistances and magnetizations indicate a sharp critical transition temperature at 91 K. We also find that such long-term environmental stability of high-temperature superconductivity can only be achieved in YBa2Cu3O7 with Ag2O addition, but not with pure Ag addition.

  11. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions.

    PubMed

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-05-21

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. PMID:24710730

  12. Photostimulated Luminescence and Dynamics of AgI and Ag Nanoclusters in Zeolites

    SciTech Connect

    Chen, Wei; Joly, Alan G.; Roark, Joel

    2002-06-15

    The photoluminescence and photostimulated luminescence of Ag and AgI nanoclusters formed in zeolite-Y are studied using fluorescence spectroscopy. The photoluminescence spectra of AgI nanoclusters show emission from both AgI and Ag nanoclusters, while the in the photostimulated luminescence, only the emission of Ag clusters is observed. While the photoluminescence from both Ag and AgI particles displays both sub-nanosecond and microsecond lifetimes, the emission from photostimulated luminescence shows very short, picosecond lifetimes. A model which ascribes the photostimulated luminescence to recombination of electrons trapped in the zeolite with Ag in close proximity to the trap site is proposed. The appearance of strong photostimulated luminescence with short decays in these systems demonstrates that nanoparticles have potential for digital storage and medical radiology applications.

  13. Chemically-inactive interfaces in thin film Ag/AgI systems for resistive switching memories

    PubMed Central

    Cho, Deok-Yong; Tappertzhofen, Stefan; Waser, Rainer; Valov, Ilia

    2013-01-01

    AgI nanoionics-based resistive switching memories were studied in respect to chemical stability of the Ag/AgI interface using x-ray absorption spectroscopy. The apparent dissolution of Ag films of thickness below some tens of nanometers and the loss of electrode/electrolyte contact was critically addressed. The results evidently show that there are no chemical interactions at the interface despite the high ionic mobility of Ag ions. Simulation results further show that Ag metal clusters can form in the AgI layer with intermediate-range order at least up to next-next nearest neighbors, suggesting that Ag can permeate into the AgI only in an aggregated form of metal crystallite. PMID:23378904

  14. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions

    NASA Astrophysics Data System (ADS)

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-04-01

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues.Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2

  15. Synthesis of Ag-ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue.

    PubMed

    Arab Chamjangali, M; Bagherian, G; Javid, A; Boroumand, S; Farzaneh, N

    2015-11-01

    In this study, the photo-decolorization of a mixture of methylene blue (MB) and methyl orange (MO) was investigated using Ag-ZnO multipods. The photo-catalyst used, ZnO multipods, was successfully synthesized. The surface of ZnO microstructure was modified by deposition of different amounts of Ag nanoparticles (Ag NPs) using the photo-reduction method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis and atomic absorption spectroscopy. The photo-catalytic efficiency of Ag-ZnO is mainly controlled by the amount of Ag NPs deposited on the ZnO surface. The results obtained suggest that Ag-ZnO containing 6.5% Ag NPs, has the highest photo-catalytic performance in the simultaneous photo-degradation of dyes at a shorter time.

  16. Advances in fabrication of Ag-clad Bi-2223 superconductors.

    SciTech Connect

    Balachandran, U.

    1998-09-04

    Powder-in-tube (PIT) processing was used to fabricate multifilamentary Ag-clad Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconductors for various electric power applications. Enhancements in the transport current properties of long lengths of multifilament tapes were achieved by increasing the packing density of the precursor powder, improving the mechanical deformation, and adjusting the cooling rate. The dependence of the critical current density on magnetic field and temperature for the optimally processed tapes was measured. J{sub c} was greater than 10{sup 4} (A/cm{sup 2}) at 20 K for magnetic field up to 3 T and parallel to the c-axis which is of interest for use in refrigerator coded magnets. An attempt was made to combine the good alignment of Bi-2223 grains in Ag-sheathed superconducting tapes to obtain high J{sub c} values at high temperature and low field, and good intrinsic pinning of YBa{sub 2}Cu{sub 3}O{sub 7{minus}d} (Y-123) thin film to maintain high J{sub c} values in high fields. A new composite multifilament tape was fabricated such that the central part contained Bi-2223 filaments, with the primary function of conducting the transport current. The central Bi-2223 filaments were surrounded by Y-123 thin film to shield the applied magnetic field and protect the Bi-2223 filaments. The J{sub c} values of the composite tape were better than those of an uncoated tape. In the case of 77 K applications, an I{sub c} of about 60 A was obtained in a 150 m long tape and zero applied magnetic field. In-situ strain characteristics of the mono- and multifilament tapes were conducted.

  17. Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity.

    PubMed

    Pirhashemi, Mahsa; Habibi-Yangjeh, Aziz

    2016-07-15

    Facile ultrasonic-irradiation method was applied for photosensitization of ZnO by combining with AgBr and Ag2CO3 particles through preparation of novel ternary nanocomposites. The prepared samples were characterized by XRD, SEM, TEM, EDX, UV-Vis DRS, FT-IR, BET, and PL techniques. Photocatalytic activity was investigated by degradation of rhodamine B under visible-light irradiation. It was found that photocatalytic activity of the ZnO was greatly enhanced by coupling with AgBr and Ag2CO3 particles, as narrow band gap semiconductors, through formation of tandem n-n heterojunctions. The nanocomposite with 20% of Ag2CO3 displayed the highest photocatalytic activity with the degradation rate constants which are nearly 122, 31, and 25 times higher than those of the ZnO, ZnO/AgBr, and ZnO/Ag2CO3 samples, respectively. Moreover, the trapping experiments confirmed that superoxide ion radicals and holes are the main active species responsible for the degradation reaction. Finally, it was also demonstrated that the ternary ZnO/AgBr/Ag2CO3 (20%) nanocomposite has enhanced activity in degradation of methylene blue and methyl orange. Hence, this work shows a great potential of the ternary photocatalyst for purification of contaminated water from organic pollutants.

  18. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    NASA Astrophysics Data System (ADS)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results

  19. Expression of yellow jacket and wasp venom Ag5 allergens in bacteria and in yeast.

    PubMed

    Monsalve, R I; Lu, G; King, T P

    1999-01-01

    Antigen 5 (Ag5), of unknown biological function, is one of the major venom allergens of vespids and fire ants. We have compared the expression of Ag5 in bacteria and in yeast. Recombinant Ag5 from bacteria formed an insoluble intracellular product, which was not properly folded, but that produced in Pichia pastoris was secreted to the extracellular medium. Immunochemical characterizations showed the secreted Ag5 to have the native structure of the natural protein. This is of interest since the B cell epitopes of Ag5 are mainly of the discontinuous type. These studies were made with Ag5s from yellow jacket (Vespula vulgaris) and paper wasp (Polistes annularis), and with hybrid Ag5 molecules that contained partial sequences of these two species. In vitro allergenicity studies with sera from yellow jacket-sensitive patients showed that some of these hybrid molecules had a greatly reduced allergenicity but retained the immunogenicity of the natural allergen. This could be of importance for immunotherapy of this type of allergy. PMID:11487873

  20. Microwave hydrothermal synthesis of AgInS{sub 2} with visible light photocatalytic activity

    SciTech Connect

    Zhang, Wenjuan; Li, Danzhen; Chen, Zhixin; Sun, Meng; Li, Wenjuan; Lin, Qiang; Fu, Xianzhi

    2011-07-15

    Highlights: {yields} AgInS{sub 2} nanoparticles were synthesized by a microwave hydrothermal method. {yields} This method involves no organic solvents, catalysts, or surfactants. {yields} AgInS{sub 2} showed higher activity for photocatalytic degradation MO than TiO{sub 2-x}N{sub x}. {yields} Holes, O{sub 2}{center_dot}{sup -}, and H{sub 2}O{sub 2} played an important role in the photocatalytic process. -- Abstract: AgInS{sub 2} nanoparticles with superior visible light photocatalytic activity were successfully synthesized by a microwave hydrothermal method. This method is a highly efficient and rapid route that involves no organic solvents, catalysts, or surfactants. The photocatalytic activity of AgInS{sub 2} nanoparticles was investigated through the degradation of dyes under visible light irradiation. Compared with TiO{sub 2-x}N{sub x}, AgInS{sub 2} has exhibited a superior activity for photocatalytic degradation MO under the same condition. The experiment results showed that superoxide radicals (O{sub 2}{center_dot}{sup -}), hydrogen peroxides (H{sub 2}O{sub 2}) and holes (h{sup +}) were the mainly active species for the degradation of organic pollutants over AgInS{sub 2}. Through the determination of flat band potential, the energy band structure of the sample was obtained. A possible mechanism for the degradation of organic pollutant over AgInS{sub 2} was proposed.

  1. Ag diffusion in cubic silicon carbide

    NASA Astrophysics Data System (ADS)

    Shrader, David; Khalil, Sarah M.; Gerczak, Tyler; Allen, Todd R.; Heim, Andrew J.; Szlufarska, Izabela; Morgan, Dane

    2011-01-01

    The diffusion of Ag impurities in bulk 3C-SiC is studied using ab initio methods based on density functional theory. This work is motivated by the desire to reduce transport of radioactive Ag isotopes through the SiC boundary layer in the Tristructural-Isotropic (TRISO) fuel pellet, which is a significant concern for the Very High Temperature Reactor (VHTR) nuclear reactor concept. The structure and stability of charged Ag and Ag-vacancy clusters in SiC are calculated. Relevant intrinsic SiC defect energies are also determined. The most stable state for the Ag impurity in SiC is found to be a Ag atom substituting on the Si sub-lattice and bound to a C vacancy. Bulk diffusion coefficients are estimated for different impurity states and values are all found to have very high activation energy. The impurity state with the lowest activation energy for diffusion is found to be the Ag interstitial, with an activation energy of approximately 7.9 eV. The high activation energies for Ag diffusion in bulk 3C-SiC cause Ag transport to be very slow in the bulk and suggests that observed Ag transport in this material is due to an alternative mechanism (e.g., grain boundary diffusion).

  2. Blood Clearance, Distribution, Transformation, Excretion, and Toxicity of Near-Infrared Quantum Dots Ag2Se in Mice.

    PubMed

    Tang, Huan; Yang, Sheng-Tao; Yang, Yi-Fan; Ke, Da-Ming; Liu, Jia-Hui; Chen, Xing; Wang, Haifang; Liu, Yuanfang

    2016-07-20

    As a novel fluorescent probe in the second near-infrared window, Ag2Se quantum dots (QDs) exhibit great prospect in in vivo imaging due to their maximal penetration depth and negligible background. However, the in vivo behavior and toxicity of Ag2Se QDs still largely remain unknown, which severely hinders their wide-ranging biomedical applications. Herein, we systematically studied the blood clearance, distribution, transformation, excretion, and toxicity of polyethylene glycol (PEG) coated Ag2Se QDs in mice after intravenous administration with a high dose of 8 μmol/kg body weight. QDs are quickly cleared from the blood with a circulation half-life of 0.4 h. QDs mainly accumulate in liver and spleen and are remarkably transformed into Ag and Se within 1 week. Ag is excreted from the body readily through both feces and urine, whereas Se is excreted hardly. The toxicological evaluations demonstrate that there is no overt acute toxicity of Ag2Se QDs to mice. Moreover, in regard to the in vivo stability problem of Ag2Se QDs, the biotransformation and its related metabolism are intensively discussed, and some promising coating means for Ag2Se QDs to avert transformation are proposed as well. Our work lays a solid foundation for safe applications of Ag2Se QDs in bioimaging in the future. PMID:27351208

  3. Thermoelectric Properties of CuAgSe doped with Co, Cr

    NASA Astrophysics Data System (ADS)

    Czajka, Peter; Yao, Mengliang; Opeil, Cyril

    Thermoelectric materials represent one way that reliable cooling below the boiling point of nitrogen can be realized. Current materials do not exhibit sufficiently high efficiencies at cryogenic temperatures, but significant progress is being made. One material that has generated significant interest recently is CuAgSe. It has been demonstrated (Ishiwata et al., Nature Mater. 2013) that doping CuAgSe with 10% Ni at the Cu sites increases the material's thermoelectric figure of merit (ZT) at 100 K from 0.02 to 0.10. This is intriguing not just because of the dramatic effect that the Ni doping produces, but also because CuAgSe is a semimetal and semimetals are not usually able to exhibit the kind of asymmetric carrier activation necessary for strong thermoelectric performance. In order to further investigate the unusual nature of thermoelectricity in CuAgSe and its strong dependence on chemical composition, we have synthesized and measured the thermoelectric properties of a series of CuAgSe samples doped with Co and Cr. Temperature-dependent magnetic and thermoelectric transport properties of CuAgSe as a function of Co and Cr doping will be discussed. This work is supported by the Department of Defense, AFOSR, MURI Program Contract # FA9550-10-1-0533 and the Trustees of Boston College.

  4. Charge Separation and Catalytic Activity of Fe3 O4 @Ag "Nanospheres".

    PubMed

    Hemmateenejad, Bahram; Shamsipur, Mojtaba; Jalili-Jahani, Naser

    2016-01-01

    Nanospheres of Ag-coated Fe3 O4 were successfully synthesized and characterized. Photocatalytic properties of Fe3 O4 @Ag composites have been investigated using steady-state studies and laser pulse excitations. Accumulation of the electrons in the Ag shell was detected from the shift in the surface plasmon band from 430 to 405 nm, which was discharged when an electron acceptor such as O2 , Thionine (TH) or C60 was introduced into the system. Charge equilibration with redox couple such as C60 (●-) /C60 indicated the ability of these core-shell structures to carry out photocatalytic reduction reactions. As well, outer Ag layer could boost charge separation in magnetic core through dual effects of Schottky junction and localized surface plasmonic resonance (LSPR)-powered band gap breaking effect under sunlight irradiation; resulted in higher photocatalytic degradation of diphenylamine (DPA). The maximum photocatalytic degradation rate was achieved at optimum amount of Ag-NP loading to products. Adsorption studies confirmed that degradation of DPA dominantly occurred in solution. Moderately renewability of the nanocatalysts under sunlight was due to oxidation and dissolution of the outer Ag layer.

  5. Biosorption behavior and mechanism of lead (II) from aqueous solution by aerobic granules (AG) and bacterial alginate (BA)

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Yu

    2012-12-01

    Lead (Pb) and its compounds are common pollutants in industrial wastewaters. To develop appropriate Pb2+ treatment technologies, aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions. The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption. In this paper, the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH, contact time, and initial Pb2+ concentration. The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150 mg L-1). The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass). When the initial pH was 5, the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1). During the process of Pb2+ biosorption, K+, Ca2+, and Mg2+ were released. The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA. This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG. At the same optimal pH, AG cultivated with different carbon source has different Pb2+ biosorption capacity. The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.

  6. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  7. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    PubMed

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water.

  8. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    PubMed

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water. PMID:24928455

  9. 28. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, LOOKING NORTH (LOCATION Q) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  10. 29. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. MAIN CONTROL ROOM, PANELS WEST OF MAIN CONTROL AREA, LOOKING SOUTH (LOCATION Q) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  11. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  12. Facile synthesis of S–Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S–Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70–160 nm and lengths of 200–360 nm. X-ray diffraction of the S–Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S–Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S–Ag nanocomposites with diameters of 10–40 nm were obtained. The formation mechanism of the S–Ag nanocomposites was studied by designing a series of experiments using ultraviolet–visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S–Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S–Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  13. Electronic structure and photoelectrical properties of Ag2In2SiSe6 and Ag2In2GeSe6

    NASA Astrophysics Data System (ADS)

    Khyzhun, O. Y.; Myronchuk, G. L.; Zamuruyeva, O. V.; Parasyuk, O. V.

    2014-12-01

    High-quality Ag2In2SiSe6 and Ag2In2GeSe6 single crystals have been successfully grown by the vertical Bridgman-Stockbarger method and the horizontal gradient freeze technique, respectively. For pristine and Ar+ ion-irradiated surfaces of the single crystals under study, X-ray photoelectron core-level and valence-band spectra have been measured. Results of these studies allow for concluding that the Ag2In2SiSe6 and Ag2In2GeSe6 single crystal surfaces are sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ ion-bombardment with energy of 3.0 keV during 5 min at an ion current density of 14 μA/cm2 has induced some modification in top surface layers leading to an increase of content of In atoms in the layers. Comparison on a common energy scale of the X-ray emission Se Kβ2 bands representing energy distribution of the Se 4p states and the X-ray photoelectron valence-band spectra reveal that the main contribution of the valence Se p states occur in the upper portion of the valence band, with also their significant contributions in other valence band regions of the Ag2In2SiSe6 and Ag2In2GeSe6 single crystals. In addition, for the single crystals under consideration, temperature dependences of specific dark conductivity and spectral distributions of photoconductivity have been explored. It has been established that the Ag2In2SiSe6 and Ag2In2GeSe6 single crystals are high-resistance semiconductors with value of the specific electrical conductivity σ ≈ 1.67 × 10-9 Ω-1 сm-1 (at Т = 300 K). The both compounds are materials with p-type conductivity.

  14. AgI/Ag{sub 3}PO{sub 4} hybrids with highly efficient visible-light driven photocatalytic activity

    SciTech Connect

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-03-15

    Highlights: • AgI/Ag{sub 3}PO{sub 4} hybrid was prepared via an in situ anion-exchange method. • AgI/Ag{sub 3}PO{sub 4} displays the excellent photocatalytic activity under visible light. • AgI/Ag{sub 3}PO{sub 4} readily transforms to be Ag@AgI/Ag{sub 3}PO{sub 4} system. • h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization over AgI/Ag{sub 3}PO{sub 4}. • The activity enhancement is ascribed to a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag{sub 3}PO{sub 4} hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag{sub 3}PO{sub 4} photocatalysts displayed the higher photocatalytic activity than pure Ag{sub 3}PO{sub 4} and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag{sub 3}PO{sub 4} with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag{sub 3}PO{sub 4} readily transformed to be Ag@AgI/Ag{sub 3}PO{sub 4} system while the photocatalytic activity of AgI/Ag{sub 3}PO{sub 4} remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag{sub 3}PO{sub 4} hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI, in which Ag nanoparticles act as the charge separation center.

  15. Magnetic particle-scanning for ultrasensitive immunodetection on-chip.

    PubMed

    Cornaglia, Matteo; Trouillon, Raphaël; Tekin, H Cumhur; Lehnert, Thomas; Gijs, Martin A M

    2014-08-19

    We describe the concept of magnetic particle-scanning for on-chip detection of biomolecules: a magnetic particle, carrying a low number of antigens (Ag's) (down to a single molecule), is transported by hydrodynamic forces and is subjected to successive stochastic reorientations in an engineered magnetic energy landscape. The latter consists of a pattern of substrate-bound small magnetic particles that are functionalized with antibodies (Ab's). Subsequationuent counting of the captured Ag-carrying particles provides the detection signal. The magnetic particle-scanning principle is investigated in a custom-built magneto-microfluidic chip and theoretically described by a random walk-based model, in which the trajectory of the contact point between an Ag-carrying particle and the small magnetic particle pattern is described by stochastic moves over the surface of the mobile particle, until this point coincides with the position of an Ag, resulting in the binding of the particle. This model explains the particular behavior of previously reported experimental dose-response curves obtained for two different ligand-receptor systems (biotin/streptavidin and TNF-α) over a wide range of concentrations. Our model shows that magnetic particle-scanning results in a very high probability of immunocomplex formation for very low Ag concentrations, leading to an extremely low limit of detection, down to the single molecule-per-particle level. When compared to other types of magnetic particle-based surface coverage assays, our strategy was found to offer a wider dynamic range (>8 orders of magnitude), as the system does not saturate for concentrations as high as 10(11) Ag molecules in a 5 μL drop. Furthermore, by emphasizing the importance of maximizing the encounter probability between the Ag and the Ab to improve sensitivity, our model also contributes to explaining the behavior of other particle-based heterogeneous immunoassays.

  16. Excitons in AgI-BASED-GLASSES and -

    NASA Astrophysics Data System (ADS)

    Fujishiro, Fumito; Mochizuki, Shosuke

    2007-01-01

    We summarize our recent optical studies on different pristine AgI films, different AgI-based glasses and different AgI-oxide fine particle composites. The exciton spectra of these specimens give useful information about the ionic and electronic structures at the AgI/glass and AgI/oxide particle interfaces.

  17. A multidisciplinary study on the Xiangshan uranium-bearing caldera structure: evidences from anisotropy of magnetic susceptibility and gravity modeling

    NASA Astrophysics Data System (ADS)

    Li, Guangrong; Guo, Fusheng; Wu, Changzhi

    2016-04-01

    As the world's third largest volcanic type uranium ore field, Xiangshan volcanic basin attracted scientific research as well as large amount of industry investment. Gradually, it came to reach a consensus that a "three-storeyed type" model: under the uranium mineralized volcanic rocks, there were still Pb-Zn and Ag. However, these research results and drill cores also brought hot debates which focus on the locations of volcanic calderas because researchers believed it related to the pathways of U-Pb-Zn-Ag-bearing fluid. Here we report the first systematic study of paleoflow of the two main uranium-bearing wall rocks, aiming to find the volcanic vents. This study integrates results of anisotropy of magnetic susceptibility (AMS) and magnetotelluric sounding (MT) in addition field geological observation. It shows that (1) rhyodacite and porphyritic lava are the main wall rock of uranium ore, which outcrop about 350km2 covering 80% of the Xiangshan basin; (2) magnetite and hematite are the main magnetic minerals; (3) the rhyodacite developed in the North-West-most of Xiangshan basin illustrated North-East magnetic lineation with low-angle-foliation, and those rhyodacite located a few kilometers to the East of the previews one displayed progressively North-West magnetic foliation with barely horizontal foliation. It indicated probably all these rhyodacite flowed from the South; (4) whereas to the porphyritic lava, it shows variable magnetic lineation around the basin, which may suggest five volcanic calderas. It is noteworthy that the AMS results are consistent with fielded lineation observation and MT; (4) finally, a gravity modeling has been conducted and the result shows that the bodies of rhyodacite and porphyritic lava are laccolithic with relative thick center that may interpret as feeder of magma.

  18. The cardiovascular response to the AGS

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.

    1993-01-01

    This paper reports the preliminary results of experiments on human subjects conducted to study the cardiovascular response to various g-levels and exposure times using an artificial gravity simulator (AGS). The AGS is a short arm centrifuge consisting of a turntable, a traction system, a platform and four beds. Data collection hardware is part of the communication system. The AGS provides a steep acceleration gradient in subjects in the supine position.

  19. Centre seeded infiltration and growth process for fabrication of large grain bulk YBCO/Ag superconducting composites

    NASA Astrophysics Data System (ADS)

    Parthasarathy, R.; Seshubai, V.

    2012-06-01

    We report the fabrication of a large grain bulk YBCO/Ag superconductor using a novel technique which we call Centre Seeded Infiltration and Growth Process (CSIGP). Using this technique, it has been made possible to get bulk YBCO/Ag composite sample with uniform grain growth textured along the c-axis. The resulting large grain sample has been found to have high critical current densities up to large magnetic fields. We correlate the improved superconducting and magnetic properties to the modified grain growth conditions employed in this fabrication technique.

  20. Obtention and characterization of YBCO/Ag/YBCO welds at different misorientation angles

    NASA Astrophysics Data System (ADS)

    Bozzo, B.; Bartolomé, E.; Granados, X.; Puig, T.; Obradors, X.

    2006-06-01

    The microstructural and magnetic properties of YBa2Cu3O7 (YBCO) welds with different crystallographic [001]-tilt misorientation, prepared by the Ag surface melting induced welding technique, have been studied. The inter- and intra-grain critical current densities have been simultaneously obtained by solving the Inverse Problem from the remanent local magnetization magnetic field maps measured by Hall Probe imaging. The obtained dependence of the inter-grain current density with the angle, JcGB(θ), is compared to previous results for thin-film bicrystals and bulk boundaries.

  1. AgRP Neurons Regulate Bone Mass.

    PubMed

    Kim, Jae Geun; Sun, Ben-Hua; Dietrich, Marcelo O; Koch, Marco; Yao, Gang-Qing; Diano, Sabrina; Insogna, Karl; Horvath, Tamas L

    2015-10-01

    The hypothalamus has been implicated in skeletal metabolism. Whether hunger-promoting neurons of the arcuate nucleus impact the bone is not known. We generated multiple lines of mice to affect AgRP neuronal circuit integrity. We found that mice with Ucp2 gene deletion, in which AgRP neuronal function was impaired, were osteopenic. This phenotype was rescued by cell-selective reactivation of Ucp2 in AgRP neurons. When the AgRP circuitry was impaired by early postnatal deletion of AgRP neurons or by cell autonomous deletion of Sirt1 (AgRP-Sirt1(-/-)), mice also developed reduced bone mass. No impact of leptin receptor deletion in AgRP neurons was found on bone homeostasis. Suppression of sympathetic tone in AgRP-Sirt1(-/-) mice reversed osteopenia in transgenic animals. Taken together, these observations establish a significant regulatory role for AgRP neurons in skeletal bone metabolism independent of leptin action. PMID:26411686

  2. Photocatalytic Performances of Ag3PO4 Polypods for Degradation of Dye Pollutant under Natural Indoor Weak Light Irradiation.

    PubMed

    Teng, Fei; Liu, Zailun; Zhang, An; Li, Min

    2015-08-18

    It is still a big challenge for Ag3PO4 to be applied in practice mainly because of its low stability resistant to photo corrosion, although it is an efficient photocatalyst. Herein, we have mainly investigated its activity and stability under indoor weak light for the degradation of dye pollutants. It is amazing that under indoor weak light irradiation, rhodamine B (RhB) can be completely degraded by Ag3PO4 polypods after 36 h, but only 18% of RhB by N-doped TiO2 after 120 h. It is found that under indoor weak light irradiation, the degradation rate (0.08099 h(-1)) of RhB over Ag3PO4 polypods are 46 times higher than that (0.00173 h(-1)) of N-doped TiO2. The high activity of Ag3PO4 polypods are mainly attributed to the three-dimensional branched nanostructure and high-energy {110} facets exposed. After three cycles, surprisingly, Ag3PO4 polypods show a high stability under indoor weak light irradiation, whereas Ag3PO4 have been decomposed into Ag under visible light irradiation with an artificial Xe light source. This natural weak light irradiation strategy could be a promising method for the other unstable photocatalysts in the degradation of environmental pollutants.

  3. Fermilab Main Injector Beam Position Monitor Upgrade

    SciTech Connect

    Banerjee, B.; Barker, W.; Bledsoe, S.; Boes, T.; Briegel, C.; Capista, D.; Deuerling, G.; Dysert, R.; Forster, R.; Foulkes, S.; Haynes, W.; Hendricks, B.; Kasza, T.; Kutschke, R.; Marchionni, A.; Olson, M.; Pavlicek, V.; Piccoli, L.; Prieto, P.; Rapisarda, S.; Saewert, A.; /Fermilab

    2006-05-01

    An upgrade of the Beam Position Monitor (BPM) signal processing and data acquisition system for the Fermilab Main Injector is described. The Main Injector is a fast cycling synchrotron that accelerates protons or antiprotons from 8 to 150 GeV. Each Main Injector cycle can have a totally different magnet ramp, RF frequency configuration, beam bunch structure, and injection/extraction pattern from the previous cycle. The new BPM system provides the capabilities and flexibility required by the dynamic and complex machine operations. The system offers measurement capability in the 2.5 MHz and 53 MHz channels to detect the range of bunch structures for protons and antiprotons in both wideband (turn-by-turn) and narrowband (closed-orbit) modes. The new BPM read-out system is based on the digital receiver concept and is highly configurable, allowing the signal processing of nearly all Main Injector beam conditions, including the detection of individual batches. An overview of the BPM system in the Main Injector operating environment, some technology details and first beam measurements are presented.

  4. Fermilab Main Injector Beam Position Monitor Upgrade

    SciTech Connect

    Banerjee, B.; Barker, W.; Bledsoe, S.; Boes, T.; Briegel, C.; Capista, D.; Deuerling, G.; Dysert, R.; Forster, R.; Foulkes, S.; Haynes, W.; Hendricks, B.; Kasza, T.; Kutschke, R.; Marchionni, A.; Olson, M.; Pavlicek, V.; Piccoli, L.; Prieto, P.; Rapisarda, S.

    2006-11-20

    An upgrade of the Beam Position Monitor (BPM) signal processing and data acquisition system for the Fermilab Main Injector is described. The Main Injector is a fast cycling synchrotron that accelerates protons or antiprotons from 8 to 150 GeV, Each Main Injector cycle can have a totally different magnet ramp, RF frequency configuration, beam bunch structure, and injection/extraction pattern from the previous cycle. The new BPM system provides the capabilities and flexibility required by the dynamic and complex machine operations. The system offers measurement capability in the 2.5 MHz and 53 MHz channels to detect the range of bunch structures for protons and antiprotons in both wideband (turn-by-turn) and narrowband (closed-orbit) modes. The new BPM read-out system is based on the digital receiver concept and is highly configurable, allowing the signal processing of nearly all Main Injector beam conditions, including the detection of individual batches. An overview of the BPM system in the Main Injector operating environment, some technology details and first beam measurements are presented.

  5. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO₃ via soil and food.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Morgan, A John; Kille, Peter; Svendsen, Claus; Jurkschat, Kerstin; Mosselmans, J Fred W; Soares, Amadeu M V M; Loureiro, Susana

    2016-03-01

    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment. PMID:26581474

  6. Characterization of the intermediate-range order in new superionic conducting AgI-Ag2S-AgPO3 glasses by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Kartini, E.; Kennedy, S. J.; Itoh, K.; Fukunaga, T.; Suminta, S.; Kamiyama, T.

    Superionic conducting glasses are of considerable technological interest because of their use in batteries, sensors, and displays. We have investigated the new ternary systems AgI-Ag2S-AgPO3 where the ratio AgI:Ag2S is 1:1. The system (AgI)x(Ag2S)x(AgPO3)1-2x, for a AgI+Ag2S fraction less than 82mol%, yields glasses. We have used a neutron-diffraction technique to obtain the total scattering structure factor S(Q) of this system at room temperature by using the HIT spectrometer at the High Energy Accelerator (KEK), Tsukuba, Japan. As for AgI-AgPO3 glasses, S(Q) shows a peak at anomalously low Q in the range from 0.6 to 0.9 Å-1. This peak is not observed in the corresponding glass Ag2S-AgPO3 or pure AgPO3. The peak depends strongly on the dopant salt. Its intensity increases as the amount of (AgI+Ag2S) increases and its position shifts to lower Q, while the number density of the glasses decreases with x. This peak can be associated with an intermediate structure of particles lying inside a continuous host with the characteristic length between 5 and 10 Å [1].

  7. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO₃ via soil and food.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Morgan, A John; Kille, Peter; Svendsen, Claus; Jurkschat, Kerstin; Mosselmans, J Fred W; Soares, Amadeu M V M; Loureiro, Susana

    2016-03-01

    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment.

  8. Evidence for surface Ag + complexes as the SERS-active sites on Ag electrodes

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Kawanami, O.; Honda, K.; Pettinger, B.

    1983-12-01

    Evidence is given that SERS-active sites at Ag electrodes are associated with Ag + ions, forming sparingly soluble surface complexes with ligands such as pyridine molecules and halide ions. Such surface Ag + complexes contribute a factor of >800 to the overall (10 7-fold) enhancement, possibly via a resonance Raman effect.

  9. Single step electrochemical synthesis of hydrophilic/hydrophobic Ag5 and Ag6 blue luminescent clusters.

    PubMed

    Santiago González, Beatriz; Blanco, M C; López-Quintela, M Arturo

    2012-12-21

    Well-defined Ag(5) and Ag(6) dodecanethiol/tetrabutyl ammonium-protected clusters were prepared by a one-pot electrochemical method. Ag clusters show bright and photostable emissions. The presence of a dual capping renders the silver clusters soluble in both organic and aqueous solvents.

  10. 78 FR 30965 - AG Valley Railroad, LLC-Operation Exemption-Ag Valley Holdings, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Surface Transportation Board AG Valley Railroad, LLC--Operation Exemption--Ag Valley Holdings, LLC AG... original and 10 copies of all pleadings, referring to Docket No. FD 35736, must be filed with the Surface.... Board decisions and notices are available on our Web site at www.stb.dot.gov . Decided: May 20, 2013....

  11. Surface plasmon resonances behavior in visible light of non-metal perovskite oxides AgNbO{sub 3}

    SciTech Connect

    Zhou, Fei; Zhu, Jingchuan Liu, Yong; Zhao, Xiaoliang; Lai, Zhonghong

    2014-12-08

    We investigate the surface plasmon resonances (SPRs) behavior of silver niobate (AgNbO{sub 3}) experimentally and theoretically. Result shows that the localized SPRs (LSPRs) of AgNbO{sub 3} combining with its interband transitions enlarge the absorption band across the whole ultraviolet-visible range. The LSPRs behavior in visible-light is mainly ascribed to the metal-like state of silver ion and self-assembled microstructures of AgNbO{sub 3} microcrystal. The ab initio density functional theory calculations are carried out to obtain the further insight of the SPRs behaviors. Theoretical study indicates that the Ag atoms are weakly bound in the perovskite structure, leading to a metal-like state, which was the key factor to SPRs behavior of AgNbO{sub 3}.

  12. Main field and recent secular variation.

    USGS Publications Warehouse

    Alldredge, L.R.

    1983-01-01

    As Cain (1979) indicated might happen in the last IUGG quadrennial report, added resources were made available during the past few years and a real impulse was added to the geomagnetic work in the US by the launching of the MAGSAT Satellite. This new effort paid off in terms of new charts, additional long wavelength studies, and external source studies. As before, however, the future funding for new starts in geomagnetism does not look bright at the present time. A single MAGSAT in orbit a little more than seven months did wonders for main field (M.F.) charting, but did little or nothing for secular variation (S.V.) charting. It would take a number of repeated MAGSATS to help the S.V. picture. Meanwhile, the world magnetic observatory net and surface repeat stations remain as the main source of S.V. data. -from Author

  13. Preserved entropy and fragile magnetism.

    PubMed

    Canfield, Paul C; Bud'ko, Sergey L

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  14. Preserved entropy and fragile magnetism

    NASA Astrophysics Data System (ADS)

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  15. Preserved entropy and fragile magnetism.

    PubMed

    Canfield, Paul C; Bud'ko, Sergey L

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples. PMID:27377181

  16. Stability of beam in the Fermilab Main Injector

    SciTech Connect

    Mishra, C.S.; Harfoush, F.A.

    1993-08-01

    The Fermilab Main Injector is a new 150 GeV protron synchrotron, designed to remove the limitations of the Main Ring in the delivery of high intensity protron and antiproton beams to the Tevatron. Extensive studies have been made to understand the performance of the Main Injector. In this paper, we present a study of the Main Injector lattice, which includes magnetic and misalignment errors. These calculations shows the Main Injector`s dynamical aperture is larger than its design value of 40{pi} mm mradian at injection.

  17. X-ray diffraction on (AgI)0.7- (NaPO3)0.3 and (AgI)0.8- (NaPO3)0.2 composites

    SciTech Connect

    Purwanto, A. . E-mail: purwanto@centrin.net.id; Kartini, E.; Sakuma, T.; Collins, M.F.; Kamiyama, T.

    2005-01-04

    We have identified the crystallographic phases of the melt-quenched superionic composites (AgI)0.7- (NaPO3)0.3 and (AgI)0.8- (NaPO3)0.2 by X-ray diffraction. Measurements were made in a temperature range from 300 to 630 deg. K. The materials have a glass phase and one or more crystalline phases. At 300 deg. K and at 350-bar K, the crystalline phase contains a 30:70 mixture of {beta}AgI and {gamma}AgI. Above 350 deg. K, the fraction of {beta}AgI increases and at 403-bar K it is the dominant phase with a {beta}{gamma} ratio of about 70:30 (slightly less in (AgI)0.8- (NaPO3)0.2). At 453, 523 and 623 deg. K the crystalline material is mainly {alpha}AgI. Crystalline 16-silver dodecaiodide diphosphate (Ag16I12P2O7) is also present between 373 and 523 deg. K at a 5-10% level. It disappears at 623-bar K because the crystal melts.

  18. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg.

    PubMed

    Cataldi, Amelia; Gallorini, Marialucia; Di Giulio, Mara; Guarnieri, Simone; Mariggiò, Maria Addolorata; Traini, Tonino; Di Pietro, Roberta; Cellini, Luigina; Marsich, Eleonora; Sancilio, Silvia

    2016-05-01

    Composite materials are increasingly used as dental restoration. In the field of biomaterials, infections remain the main reason of dental devices failure. Silver, in the form of nanoparticles (AgNPs), ions and salt, well known for its antimicrobial properties, is used in several medical applications in order to avoid bacterial infection. To reduce both bacterial adhesion to dental devices and cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new material, Chitlac-nAg, formed by stabilized AgNPs with a polyelectrolyte solution containing Chitlac. Here we analyzed the proliferative and adhesive ability of human gingival fibroblasts (HGFs) on BisGMA/TEGDMA thermosets uncoated and coated with AgNPs in a coculture model system with Streptococcus mitis. After 48 h, HGFs well adhered onto both surfaces, while S. mitis cytotoxic response was higher in the presence of AgNPs coated thermosets. After 24 h thermosets coated with Chitlac as well as those coated with Chitlac-nAg exerted a minimal cytotoxic effect on HGFs, while after 48 h LDH release raised up to 20 %. Moreover the presence of S. mitis reduced this release mainly when HGFs adhered to Chitlac-nAg coated thermosets. The reduced secretion of collagen type I was significant in the presence of both surfaces with the co-culture system even more when saliva is added. Integrin β1 localized closely to cell membranes onto Chitlac-nAg thermosets and PKCα translocated into nuclei. These data confirm that Chitlac-nAg have a promising utilization in the field of restorative dentistry exerting their antimicrobial activity due to AgNPs without cytotoxicity for eukaryotic cells.

  19. Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells

    NASA Astrophysics Data System (ADS)

    Li, Ying-Ying; Liu, Xiao-Li; Yang, Da-Jie; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-02-01

    We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.

  20. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    SciTech Connect

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  1. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid.

    PubMed

    Park, SungJun; Park, Hye Hun; Kim, Sung Yeon; Kim, Su Jung; Woo, Kyoungja; Ko, GwangPyo

    2014-04-01

    Silver nanoparticles (AgNPs) are considered to be a potentially useful tool for controlling various pathogens. However, there are concerns about the release of AgNPs into environmental media, as they may generate adverse human health and ecological effects. In this study, we developed and evaluated a novel micrometer-sized magnetic hybrid colloid (MHC) decorated with variously sized AgNPs (AgNP-MHCs). After being applied for disinfection, these particles can be easily recovered from environmental media using their magnetic properties and remain effective for inactivating viral pathogens. We evaluated the efficacy of AgNP-MHCs for inactivating bacteriophage ΦX174, murine norovirus (MNV), and adenovirus serotype 2 (AdV2). These target viruses were exposed to AgNP-MHCs for 1, 3, and 6 h at 25°C and then analyzed by plaque assay and real-time TaqMan PCR. The AgNP-MHCs were exposed to a wide range of pH levels and to tap and surface water to assess their antiviral effects under different environmental conditions. Among the three types of AgNP-MHCs tested, Ag30-MHCs displayed the highest efficacy for inactivating the viruses. The ΦX174 and MNV were reduced by more than 2 log10 after exposure to 4.6 × 10(9) Ag30-MHCs/ml for 1 h. These results indicated that the AgNP-MHCs could be used to inactivate viral pathogens with minimum chance of potential release into environment.

  2. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Jurkschat, Kerstin; Soares, Amadeu M V M; Loureiro, Susana

    2015-10-01

    The effects of Ag-NPs and AgNO3 on the isopod Porcellionides pruinosus were determined upon soil and dietary exposures. Isopods avoided Ag in soil, with EC50 values of ∼16.0 and 14.0 mg Ag/kg for Ag-NPs and AgNO3, respectively. Feeding inhibition tests in soil showed EC50s for effects on consumption ratio of 127 and 56.7 mg Ag/kg, respectively. Although similar EC50s for effects on biomass were observed for nanoparticulate and ionic Ag (114 and 120 mg Ag/kg dry soil, respectively), at higher concentrations greater biomass loss was found for AgNO3. Upon dietary exposure, AgNO3 was more toxic, with EC50 for effects on biomass change being >1500 and 233 mg Ag/kg for Ag-NPs and AgNO3, respectively. The difference in toxicity between Ag-NPs and AgNO3 could not be explained from Ag body concentrations. This suggests that the relation between toxicity and bioavailability of Ag-NPs differs from that of ionic Ag in soils.

  3. Study on the Lattice Dynamics of the Argyrodite Ag8GeTe6

    NASA Astrophysics Data System (ADS)

    Hitchcock, Dale; Thompson, Emily; He, Jian; Bredesen, Isaac; Keppends, Veelre; Mandrus, David

    2014-03-01

    Ag8GeTe6 was initially studied as a super ionic-electronic mixed conductor in the 1970s, and more recently has attracted new interest for its thermoelectric performance. A key to the desirable thermoelectric performance of Ag8GeTe6 is its exceptionally low lattice thermal conductivity (~ 0.25W/m*K at 300K), which is intimately related to its structure, consecutive structural instabilities, and unusual lattice dynamics (e.g., anharmonicity). In this work, we have studied Ag8GeTe6 by means of thermal conductivity, electrical conductivity, Seebeck coefficient, Hall coefficient, magnetic susceptibility, resonant ultrasound spectroscopy (RUS), photoacoustic spectroscopy, and synchrotron x-ray diffraction at low temperatures in order to further understand the coexistence of mixed conduction and high thermoelectric performance at elevated temperatures. This work is supported by NSF DMR 1307740.

  4. 18. MAIN FLOOR HOLDING TANKS Main floor, looking at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. MAIN FLOOR - HOLDING TANKS Main floor, looking at holding tanks against the west wall, from which sluice gates are seen protruding. Right foreground-wooden holding tanks. Note narrow wooden flumes through which fish were sluiced into holding and brining tanks. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  5. Oblique view, looking eastsoutheast, of main gatehouse, main entrance, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view, looking east-southeast, of main gatehouse, main entrance, and battery storage house. East side of canal wall in foreground - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  6. View of the main interior space facing east. The main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the main interior space facing east. The main entry is on the left hand side at the rear. The exit to the deck is to the right. - San Luis Yacht Club, Avila Pier, South of Front Street, Avila Beach, San Luis Obispo County, CA

  7. Tribological properties of ag-based amphiphiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most ag-based materials are amphiphilic because they comprise polar and non-polar groups within the same molecule. One of the major categories of amphiphilic ag-based materials are seed oils, which are actively investigated as substitutes for petroleum in a wide variety of consumer and industrial a...

  8. AgRISTARS documents tracking list report

    NASA Technical Reports Server (NTRS)

    Hawkins, J. L.

    1983-01-01

    A quarterly listing of documents issued and placed in the AgRISTARS tracking system is provided. The technical publications are arranged by type of documents. The reference AgRISTARS document number, title and date of publication, the issuing organization, and the National Technical Information Service reference number is given.

  9. Recent hypernuclear research at the Brookhaven AGS

    SciTech Connect

    Chrien, R.E.

    1985-01-01

    Recent AGS experiments contributing to our knowledge of hypernuclei are reviewed. These experiments have suggested new areas of research on hypernuclei. With the proper beam line facilities, the AGS will be able to perform experiments in these areas and provide a transition to the future era of ''kaon factories''. 20 refs., 14 figs.

  10. Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Allafchian, Alireza; Jalali, Seyed Amir Hossein; Bahramian, Hamid; Ahmadvand, Hossein

    2016-04-01

    We have described a facile fabrication of silver deposited on the TiO2, Poly Acrylonitrile Co Maleic Anhydride (PAMA) polymer and nickel ferrite composite (NiFe2O4/PAMA/Ag-TiO2) through a three-step procedure. A pre-synthesized NiFe2O4 was first coated with PAMA polymer and then Ag-TiO2 was deposited on the surface of PAMA polymer shell. After the characterization of this three-component composite by various techniques, such as FTIR, XRD, FESEM, BET, TEM and VSM, it was impregnated in standard antibiotic discs. The antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite was investigated against some gram positive and gram negative bacteria by employing disc diffusion assay and then compared with that of naked NiFe2O4, NiFe2O4/Ag, AgNPs and NiFe2O4/PAMA. The results demonstrated that the AgNPs, when embedded in TiO2 and combined with NiFe2O4/PAMA, became an excellent antibacterial agent. The NiFe2O4/PAMA/Ag-TiO2 nanocomposite could be readily separated from water solution after the disinfection process by applying an external magnetic field.

  11. Label-Free Detection of Ag+ Based on Gold Nanoparticles and Ag+-Specific DNA.

    PubMed

    Pu, Wendan; Zhao, Zhao; Wu, Liping; Liu, Yue; Zhao, Huawen

    2015-08-01

    A sensitive label-free method was presented for the determination of silver ion (Ag+) in this paper. Cytosine-rich DNA (C-DNA) was used as Ag+ specific DNA. Without Ag+ in the solution, fluorescence of fluorescein (FAM) is quenched by C-DNA stabilized gold nanoparticles (AuNPs) in high salt environment. When Ag+ is present in the solution, however, Ag+-mediated cytosine-Ag+-cytosine (C-Ag+-C) base pairs induced the C-DNA folding into a hairpin structure, which can not stabilize AuNPs in high salt environment, thus causing AuNPs aggregation. After centrifugation to remove the aggregated AuNPs, the quenching ability of the supernatant for FAM is decreased and the fluorescence intensity of solution increases with increasing the Ag+ concentration. Due to the highly specific interaction of the C-DNA towards Ag+ and the strong fluorescent quenching ability of AuNPs for FAM, the method has high selectivity and sensitivity for Ag+. Under the optimal conditions, the fluorescence intensity at 515 nm increased linearly with the concentration of Ag+ ranging from 15 nM to 700 nM, and the detection limit was determined as 6 nM based on 3 σ/slope. This method is simple, sensitive, and may be applied to other detection systems by selecting the appropriate DNA sequences. PMID:26369112

  12. Dose-response curve of a microfluidic magnetic bead-based surface coverage sandwich assay.

    PubMed

    Cornaglia, Matteo; Trouillon, Raphaël; Tekin, H Cumhur; Lehnert, Thomas; Gijs, Martin A M

    2015-09-25

    Magnetic micro- and nanoparticles ('magnetic beads') have been used to advantage in many microfluidic devices for sensitive antigen (Ag) detection. Today, assays that use as read-out of the signal the number count of immobilized beads on a surface for quantification of a sample's analyte concentration have been among the most sensitive and have allowed protein detection lower than the fgmL(-1) concentration range. Recently, we have proposed in this category a magnetic bead surface coverage assay (Tekin et al., 2013 [1]), in which 'large' (2.8μm) antibody (Ab)-functionalized magnetic beads captured their Ag from a serum and these Ag-carrying beads were subsequently exposed to a surface pattern of fixed 'small' (1.0μm) Ab-coated magnetic beads. When the system was exposed to a magnetic induction field, the magnet dipole attractive interactions between the two bead types were used as a handle to approach both bead surfaces and assist with Ag-Ab immunocomplex formation, while unspecific binding (in absence of an Ag) of a large bead was reduced by exploiting viscous drag flow. The dose-response curve of this type of assay had two remarkable features: (i) its ability to detect an output signal (i.e. bead number count) for very low Ag concentrations, and (ii) an output signal of the assay that was non-linear with respect to Ag concentration. We explain here the observed dose-response curves and show that the type of interactions and the concept of our assay are in favour of detecting the lowest analyte concentrations (where typically either zero or one Ag is carried per large bead), while higher concentrations are less efficiently detected. We propose a random walk process for the Ag-carrying bead over the magnetic landscape of small beads and this model description explains the enhanced overall capture probability of this assay and its particular non-linear dose response curves.

  13. DESIGN OF A THIN QUADRUPOLE TO BE USED IN THE AGS SYNCHROTRON

    SciTech Connect

    TSOUPAS,N.; AHRENS, L.; ALFORQUE, R.; BAI, M.; BROWN, K.; COURANT, E.; ET AL.

    2007-06-25

    The Alternating Gradient Synchrotron (AGS) employs two partial helical snakes[l] to preserve the polarization of the proton beam during acceleration. In order to compensate for the focusing effect of the partial helical snakes on the beam optics in the AGS during acceleration of the beam, we introduced eight quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection energies, the strength of each quad is set at a high value, and is ramped down to zero as the effect of the snakes diminishes by the square of beam's rigidity. Four of the eight compensation quadrupoles had to be placed in very short straight sections -30 cm in length, therefore the quadruples had be thin with an overall length of less than 30 cm. In this paper we will discus: (a) the mechanical and magnetic specifications of the ''thin'' quadrupole. (b) the method to minimize the strength of the dodecapole harmonic, (c) the method to optimize the thickness of the laminations that the magnet iron is made, (d) mechanical tolerances of the magnet, (e) comparison of the measured and calculated magnetic multipoles of the quadrupole.

  14. Sensitive and selective detection of Ag+ in aqueous solutions using Fe3O4@Au nanoparticles as smart electrochemical nanosensors.

    PubMed

    Yang, Huicui; Liu, Xiaoxiao; Fei, Ruihua; Hu, Yonggang

    2013-11-15

    Owing to the selective deposition reaction on the surface of magnetic nanoparticles, we reported a simple and selective magnetic electrochemical method for the detection of Ag(+) ions in aqueous solutions. The analyte deposited on the nanoparticles was brought to the surface of a homemade magnetic electrode and detected electrochemically in 0.1 mol/L KCl solution based on the reaction of Ag0 transferred to AgCl. Under the optimal conditions, the linear response range of Ag(+) ions was 0.117-17.7 μmol/L (R(2)=0.9909) with a detection limit of 59 nmol/L (S/N=3). A series of repeatability measurements 1.0 μmol/L Ag(+) gave reproducible results with a relative standard deviation (RSD) of 4.5% (n=11). The interference from other metal cations can be eliminated by adding EDTA as a co-additive to mask the metal cations. The recoveries ranging from 98.6% to 103.99% after standard additions demonstrate that this sensor has great potential in practical applications. The advantages of this developed method include remarkable simplicity, low cost, and no requirement for probe preparation, among others.

  15. Substantivity of Ag-Ca-Si mesoporous nanoparticles on dentin and its ability to inhibit Enterococcus faecalis.

    PubMed

    Fan, Wei; Wu, Yujie; Ma, Tengjiao; Li, Yanyun; Fan, Bing

    2016-01-01

    The main purpose of this study was to investigate the substantivity of Ag-Ca-Si mesoporous nanoparticles (Ag-MCSNs) on dentin and its residual antibacterial effects against Enterococcus faecalis. Ag-MCSNs were fabricated and characterized, ion release profile and pH were tested, and the ability to inhibit planktonic E. faecalis as well as the cytotoxicity was evaluated. Dentin slices were medicated with Ca(OH)2 paste, 2 % chlorhexidine gel and Ag-MCSNs paste for 7 days and then irrigated. Dentin slices were then immersed in E. faecalis suspension for 6 days and then transferred to fresh brain heart infusion solution. The optical density value within 10 h after immersing and transferring were measured and compared among groups. Results indicated that Ag-MCSNs showed high pH, sustained Ag(+)-Ca(2+)-SiO3 (2-) ion release, and high substantivity on dentin. The Ag-MCSNs exhibited strong antibacterial effects against planktonic E. faecalis and much better residual inhibition effects against E. faecalis growth on dentin than Ca(OH)2 paste (P < 0.05). The Ag-MCSNs showed excellent antibacterial ability against E. faecalis and high substantivity on dentin, which might be developed to a new effective intra-canal medicament for human teeth.

  16. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  17. Atomic-level observation of Ag-ion hopping motion in AgI

    NASA Astrophysics Data System (ADS)

    Sato, W.; Komatsuda, S.; Mizuuchi, R.; Irioka, N.; Kawata, S.; Ohkubo, Y.

    2015-04-01

    Applicability of the 111mCd(→111Cd) and 111In(→111Cd) probes to the study of dynamics in polycrystalline silver iodide (AgI) was examined by means of the time-differential perturbed angular correlation technique. It was found that the 111mCd(→111Cd) probe occupies a unique site in γ-AgI and exhibits nuclear relaxation caused by dynamic perturbation arising from Ag + hopping motion in α-AgI; while the residential sites of 111In(→111Cd) vary, suggesting that 111In ions can not settle themselves in a fixed site in the AgI crystal structure. We here demonstrate that 111mCd(→111Cd) can be a potential nucleus to probe the Ag +-ion dynamic motion in α-AgI.

  18. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-01

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations. PMID:26200921

  19. Graphene–Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Piao; Ma, Jin; Deng, Sha; Zeng, Kai; Deng, Dunying; Xie, Wei; Lu, Anxian

    2016-09-01

    Printed-electronics inks belong to a class of novel functional conductive inks that can be used to form high-precision conducting lines or circuits on various flexible substrates. Previous studies have reported conductive inks produced by the reduction and membrane separation method for use in flexible devices. However, it remains a challenge to synthesize conductive inks with high electrical properties at low sintering temperatures, which restricts their range of applications. Herein, we prepare inkjet-printed patterns of conductive inks consisting of Ag nanohexagonal platelets (AgNHPs) as the main component and containing graphene (GE) in different contents. It is found that GE improves the electrical conductivity of the patterns when sintering is done at relatively low temperatures. For instance, when the GE content is 0.15 mg ml‑1, the resistivity is the lowest. When sintering is done at 150 °C, the resistivity (2.7 × 10–6 Ω · cm) of the GE-AgNHPs conductive ink (GE: 0.15 mg ml‑1) is 14% of that of the AgNHPs conductive ink; on the other hand, after sintering at 50 °C, this ratio is 2%. It is also found that, with the increase in GE content, the resistivity of the GE-AgNHPs conductive ink increases. This study on GE-AgNHPs conductive inks sintered at low temperatures should further the development of flexible touch screens.

  20. Revisiting AgCrSe2 as a promising thermoelectric material.

    PubMed

    Wu, Di; Huang, Sizhao; Feng, Dan; Li, Bing; Chen, Yuexing; Zhang, Jian; He, Jiaqing

    2016-08-24

    We revisited and investigated a layer-structured thermoelectric material AgCrSe2, which has an extremely low thermal conductivity. After using both differential scanning calorimetry and a comparative laser flash method, we realized that the specific heat of this material, the main contributor to the reported low thermal conductivity, is unlikely to be way below the Dulong-Petit limit as revealed in the literature. Besides, our in situ X-ray diffraction pattern up to 873 K indicated the instability of AgCrSe2 over 723 K, where it begins to decompose into Cr2Se3 and Ag2Se. This unexpected decomposition phenomenon resulted in the gradual increment of specific heat and thermal diffusivity, hence the deterioration of the overall thermoelectric performance. We deliberately introduced Ag and Cr vacancies into the lattice for carrier concentration optimization and could achieve an optimal figure of merit of ZT ∼ 0.5 at 723 K in the nominal composition Ag0.96CrSe2 in the direction perpendicular to the sintering press. Our findings suggest that more thorough investigations are necessary to ensure that AgCrSe2 is a promising thermoelectric material.

  1. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.

    PubMed

    Liu, Piao; Ma, Jin; Deng, Sha; Zeng, Kai; Deng, Dunying; Xie, Wei; Lu, Anxian

    2016-09-23

    Printed-electronics inks belong to a class of novel functional conductive inks that can be used to form high-precision conducting lines or circuits on various flexible substrates. Previous studies have reported conductive inks produced by the reduction and membrane separation method for use in flexible devices. However, it remains a challenge to synthesize conductive inks with high electrical properties at low sintering temperatures, which restricts their range of applications. Herein, we prepare inkjet-printed patterns of conductive inks consisting of Ag nanohexagonal platelets (AgNHPs) as the main component and containing graphene (GE) in different contents. It is found that GE improves the electrical conductivity of the patterns when sintering is done at relatively low temperatures. For instance, when the GE content is 0.15 mg ml(-1), the resistivity is the lowest. When sintering is done at 150 °C, the resistivity (2.7 × 10(-6) Ω · cm) of the GE-AgNHPs conductive ink (GE: 0.15 mg ml(-1)) is 14% of that of the AgNHPs conductive ink; on the other hand, after sintering at 50 °C, this ratio is 2%. It is also found that, with the increase in GE content, the resistivity of the GE-AgNHPs conductive ink increases. This study on GE-AgNHPs conductive inks sintered at low temperatures should further the development of flexible touch screens.

  2. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.

    PubMed

    Liu, Piao; Ma, Jin; Deng, Sha; Zeng, Kai; Deng, Dunying; Xie, Wei; Lu, Anxian

    2016-09-23

    Printed-electronics inks belong to a class of novel functional conductive inks that can be used to form high-precision conducting lines or circuits on various flexible substrates. Previous studies have reported conductive inks produced by the reduction and membrane separation method for use in flexible devices. However, it remains a challenge to synthesize conductive inks with high electrical properties at low sintering temperatures, which restricts their range of applications. Herein, we prepare inkjet-printed patterns of conductive inks consisting of Ag nanohexagonal platelets (AgNHPs) as the main component and containing graphene (GE) in different contents. It is found that GE improves the electrical conductivity of the patterns when sintering is done at relatively low temperatures. For instance, when the GE content is 0.15 mg ml(-1), the resistivity is the lowest. When sintering is done at 150 °C, the resistivity (2.7 × 10(-6) Ω · cm) of the GE-AgNHPs conductive ink (GE: 0.15 mg ml(-1)) is 14% of that of the AgNHPs conductive ink; on the other hand, after sintering at 50 °C, this ratio is 2%. It is also found that, with the increase in GE content, the resistivity of the GE-AgNHPs conductive ink increases. This study on GE-AgNHPs conductive inks sintered at low temperatures should further the development of flexible touch screens. PMID:27518607

  3. Ag(0) nanoparticles containing cotton fabric: Synthesis, characterization, color data and antibacterial action.

    PubMed

    Emam, Hossam E; Zahran, M K

    2015-04-01

    The main objective of the current research was to successfully employ the reducing and stabilizing features of xanthan gum to synthesize nanosilver, then coating cotton fabrics with the net produced nanosilver in order to obtain finished fabrics valuable in medical applications. Pre-hydrolyzed xanthan gum was used to reduce Ag(+) to Ag(0) in nano size using a simple one-step rapid synthetic route. The reduction step was followed up by measuring the concentration of reducing sugars eliminated in the reaction medium. The optimum concentration of xanthan gum was 3g/L to reduce 1 mmol/L Ag(+), as 2.66 ± 0.4 g/L was the maximum concentration of reducing sugars obtained in the reaction. Transmission microscope images show that the AgNPs are spherical in shape with mean size 9.1 ± 4.8 nm. Cotton fabrics were then coated with the produced AgNPs using pad-dry-cure method. Well dispersed layer from Ag(0) on cotton surface was showed under electron microscope. The biocidal activities of the coated fabrics were tested against Staphylococcus aureus and showed excellent results for antibacterial even after 20 washing cycles. This method has the advantage of not necessitating aggressive conditions such as the presence of organic solvents to produce durable antibacterial cotton fabrics.

  4. Spectroscopic view on the outburst activity of the symbiotic binary AG Draconis

    NASA Astrophysics Data System (ADS)

    Leedjärv, L.; Gális, R.; Hric, L.; Merc, J.; Burmeister, M.

    2016-03-01

    Variations of the emission lines in the spectrum of the yellow symbiotic star AG Draconis (AG Dra) have been studied for over 14 yr (1997-2011), using more than 500 spectra obtained with the 1.5-m telescope at Tartu Observatory, Estonia. The time interval covered includes the major (cool) outburst of AG Dra that started in 2006. The main findings can be summarized as follows. (i) The cool and hot outbursts of AG Dra can be distinguished from the variations of optical emission lines. (ii) The Raman scattered emission line of O VI at λ6825 almost disappeared during the cool outburst. (iii) The lower excitation emission lines did not change significantly during the cool outburst, but they do vary in hot outbursts and also follow orbital motion. (iv) The similarity of variations in AG Dra to those in the prototypical symbiotic star Z Andromedae allows us to suggest that a combination nova model proposed for the latter object might also be responsible for the outburst behaviour of AG Dra.

  5. Short Communication: Reassessing the Origin of the HIV-1 CRF02_AG Lineages Circulating in Brazil.

    PubMed

    Delatorre, Edson; Velasco-De-Castro, Carlos A; Pilotto, José H; Couto-Fernandez, José Carlos; Bello, Gonzalo; Morgado, Mariza G

    2015-12-01

    HIV-1 CRF02_AG is responsible for at least 8% of the HIV-1 infections worldwide and is distributed mainly in West Africa. CRF02_AG has recently been reported in countries where it is not native, including Brazil. In a previous study including 10 CRF02_AG Brazilian samples, we found at least four independent introductions and two autochthonous transmission networks of this clade in Brazil. As more CRF02_AG samples have been identified in Brazil, we performed a new phylogeographic analysis using a larger dataset than before. A total of 20 Brazilian (18 from Rio de Janeiro and two from São Paulo) and 1,485 African HIV-1 CRF02_AG pol sequences were analyzed using maximum likelihood (ML). The ML tree showed that the Brazilian sequences were distributed in five different lineages. The Bayesian phylogeographic analysis of the Brazilian and their most closely related African sequences (n = 212) placed the origin of all Brazilian lineages in West Africa, probably Ghana, Senegal, and Nigeria. Two monophyletic clades were identified, comprising only sequences from Rio de Janeiro, and their date of origin was estimated at around 1985 (95% highest posterior density: 1979-1992). These results support the existence of at least five independent introductions of the CRF02_AG lineage from West Africa into Brazil and further indicate that at least two of these lineages have been locally disseminated in the Rio de Janeiro state over the past 30 years.

  6. Revisiting AgCrSe2 as a promising thermoelectric material.

    PubMed

    Wu, Di; Huang, Sizhao; Feng, Dan; Li, Bing; Chen, Yuexing; Zhang, Jian; He, Jiaqing

    2016-08-24

    We revisited and investigated a layer-structured thermoelectric material AgCrSe2, which has an extremely low thermal conductivity. After using both differential scanning calorimetry and a comparative laser flash method, we realized that the specific heat of this material, the main contributor to the reported low thermal conductivity, is unlikely to be way below the Dulong-Petit limit as revealed in the literature. Besides, our in situ X-ray diffraction pattern up to 873 K indicated the instability of AgCrSe2 over 723 K, where it begins to decompose into Cr2Se3 and Ag2Se. This unexpected decomposition phenomenon resulted in the gradual increment of specific heat and thermal diffusivity, hence the deterioration of the overall thermoelectric performance. We deliberately introduced Ag and Cr vacancies into the lattice for carrier concentration optimization and could achieve an optimal figure of merit of ZT ∼ 0.5 at 723 K in the nominal composition Ag0.96CrSe2 in the direction perpendicular to the sintering press. Our findings suggest that more thorough investigations are necessary to ensure that AgCrSe2 is a promising thermoelectric material. PMID:27523166

  7. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Piao; Ma, Jin; Deng, Sha; Zeng, Kai; Deng, Dunying; Xie, Wei; Lu, Anxian

    2016-09-01

    Printed-electronics inks belong to a class of novel functional conductive inks that can be used to form high-precision conducting lines or circuits on various flexible substrates. Previous studies have reported conductive inks produced by the reduction and membrane separation method for use in flexible devices. However, it remains a challenge to synthesize conductive inks with high electrical properties at low sintering temperatures, which restricts their range of applications. Herein, we prepare inkjet-printed patterns of conductive inks consisting of Ag nanohexagonal platelets (AgNHPs) as the main component and containing graphene (GE) in different contents. It is found that GE improves the electrical conductivity of the patterns when sintering is done at relatively low temperatures. For instance, when the GE content is 0.15 mg ml-1, the resistivity is the lowest. When sintering is done at 150 °C, the resistivity (2.7 × 10-6 Ω · cm) of the GE-AgNHPs conductive ink (GE: 0.15 mg ml-1) is 14% of that of the AgNHPs conductive ink; on the other hand, after sintering at 50 °C, this ratio is 2%. It is also found that, with the increase in GE content, the resistivity of the GE-AgNHPs conductive ink increases. This study on GE-AgNHPs conductive inks sintered at low temperatures should further the development of flexible touch screens.

  8. Ablation and optical third-order nonlinearities in Ag nanoparticles

    PubMed Central

    Torres-Torres, Carlos; Peréa-López, Néstor; Reyes-Esqueda, Jorge Alejandro; Rodríguez-Fernández, Luis; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; Oliver, Alicia

    2010-01-01

    The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs) was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR) of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but non-linearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser-induced controlled explosions, with potential applications for biomedical photothermal processes. PMID:21187944

  9. Maine Agricultural Foods. Project SEED.

    ERIC Educational Resources Information Center

    Beaulieu, Peter; Ossenfort, Pat

    This paper describes an activity-based program that teaches students in grades 4-12 about the importance of Maine agriculture in their lives. Specifically, the goal is to increase student awareness of how the foods they eat are planted, harvested, and processed. The emphasis is on crops grown in Maine such as potatoes, broccoli, peas, blueberries,…

  10. Growth of various Au Ag nanocomposites from gold seeds in amino acid solutions

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Fen; Lin, Yang-Wei; Chang, Huan-Tsung

    2006-10-01

    In this paper, we describe an easy procedure for the preparation of differently shaped and sized Au-Ag nanocomposites from gold nanorod (AuNR) seeds in various amino acid solutions—arginine (Arg), cysteine (Cys), glycine (Gly), glutamate (Glu), glutamine (Gln), histidine (His), lysine (Lys), and methionine (Met), respectively—at values of pH ranging from 8.0 to 11.5. Our results suggest that the pH, the nature of the amino acid, and its concentration all have significant impact on the preparation of Au-Ag nanocomposites; these factors exhibit their effects mainly through control over the reducing ability of ascorbate and/or its recognition capability, as well as through control over the surface charges of the amino acids on the AuNRs. Depending on the value of pH, we were able to prepare I-shaped, dumbbell-shaped, and/or sphere-shaped Au-Ag nanocomposites in 0.1 M solutions of Arg, Gly, Glu, Gln, Lys, and Met. In His solutions at pH 8.0 and 9.0, we obtained peanut-shaped Au-Ag nanocomposites. Corn-shaped Au-Ag nanocomposites were prepared in 0.1 M Met solutions (pH 9.0 and 10.0). By controlling the Lys concentration at pH 10.0, we synthesized pearl-necklace-shaped Au-Ag nanoparticles and Au-Ag wires. Based on the TEM images, we conclude that this simple and reproducible synthetic approach allows preparation of high-quality (>87%, beside>77% in His solutions) Au-Ag nanocomposites with various shapes and sizes under different conditions.

  11. Main Propulsion Test Article (MPTA)

    NASA Technical Reports Server (NTRS)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  12. Pulsed laser deposition of Mg-Al layered double hydroxide with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Vlad, A.; Luculescu, C.; Epurescu, G.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2013-03-01

    Powdered layered double hydroxides (LDHs)—also known as hydrotalcite-like (HT)—compounds have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic or organic molecules. Assembling thin films of nano-sized LDHs onto flat solid substrates is an expanding area of research, with promising applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. The exploitation of LDHs as vehicles to carry dispersed metal nanoparticles onto a substrate is a new approach to obtain composite thin films with prospects for biomedical and optical applications. We report the deposition of thin films of Ag nanoparticles embedded in a Mg-Al layered double hydroxide matrix by pulsed laser deposition (PLD). The Ag-LDH powder was prepared by co-precipitation at supersaturation and pH = 10 using aqueous solutions of Mg and Al nitrates, Na hydroxide and carbonate, and AgNO3, having atomic ratios of Mg/Al = 3 and Ag/Al = 0.55. The target to be used in laser ablation experiments was a dry pressed pellet obtained from the prepared Ag-LDH powder. Three different wavelengths of a Nd:YAG laser (266, 532 and 1064 nm) working at a repetition rate of 10 Hz were used. X-Ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and secondary ions mass spectrometry (SIMS) were used to investigate the structure, surface morphology and composition of the deposited films.

  13. Ab-Initio Determination of Novel Crystal Structures of the Thermoelectric Material MgAgSb

    SciTech Connect

    Kirkham, Melanie J; Moreira Dos Santos, Antonio F; Rawn, Claudia J; Lara-Curzio, Edgar; Sharp, Jeff W.; Thompson, Alan

    2012-01-01

    Materials with the half-Heusler structure possess interesting electrical and magnetic properties, including potential for thermoelectric applications. MgAgSb is compositionally and structurally related to many half-Heusler materials, but has not been extensively studied. This work presents the high-temperature X-ray diffraction analysis of MgAgSb between 27 and 420 C, complemented with thermoelectric property measurements. MgAgSb is found to exist in three different structures in this temperature region, taking the half-Heusler structure at high temperatures, a Cu2Sb-related structure at intermediate temperatures, and a previously unreported tetragonal structure at room temperature. All three structures are related by a distorted Mg-Sb rocksalt-type sublattice, differing primarily in the Ag location among the available tetrahedral sites. Transition temperatures between the three phases correlate well with discontinuities in the Seebeck coefficient and electrical conductivity; the best performance occurs with the novel room temperature phase. For application of MgAgSb as a thermoelectric material, it may be desirable to develop methods to stabilize the room temperature phase at higher temperatures.

  14. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Li, Huimin; He, Xiaoxiao; Wang, Kemin; Hu, Jianbing; Tan, Weihong; Zhang, Shouchun; Yang, Xiaohai

    2007-07-01

    Bifunctional Fe3O4@Ag nanoparticles with both superparamagnetic and antibacterial properties were prepared by reducing silver nitrate on the surface of Fe3O4 nanoparticles using the water-in-oil microemulsion method. Formation of well-dispersed nanoparticles with sizes of 60 ± 20 nm was confirmed by transmission electron microscopy and dynamic light scattering. X-ray diffraction patterns and UV-visible spectroscopy indicated that both Fe3O4 and silver are present in the same particle. The superparamagnetism of Fe3O4@Ag nanoparticles was confirmed with a vibrating sample magnetometer. Their antibacterial activity was evaluated by means of minimum inhibitory concentration value, flow cytometry, and antibacterial rate assays. The results showed that Fe3O4@Ag nanoparticles presented good antibacterial performance against Escherichia coli (gram-negative bacteria), Staphylococcus epidermidis (gram-positive bacteria) and Bacillus subtilis (spore bacteria). Furthermore, Fe3O4@Ag nanoparticles can be easily removed from water by using a magnetic field to avoid contamination of surroundings. Reclaimed Fe3O4@Ag nanoparticles can still have antibacterial capability and can be reused.

  15. Transport and pinning properties of Ag-doped FeSe0.94

    NASA Astrophysics Data System (ADS)

    Nazarova, E.; Balchev, N.; Nenkov, K.; Buchkov, K.; Kovacheva, D.; Zahariev, A.; Fuchs, G.

    2015-02-01

    We investigated the superconducting transition and the pinning properties of undoped and Ag-doped FeSe0.94 at magnetic fields up to 14 T. We established that, due to Ag addition, the hexagonal phase formation in melted FeSe0.94 samples is suppressed and the grain connectivity is strongly improved. The obtained superconducting zero-field transition becomes sharp, with a transition width below 1 K. Tc and the upper critical field were found to increase, while the normal-state resistivity was significantly reduced, becoming comparable with that of FeSe single crystals. In addition, a considerable magnetoresistance was observed due to Ag doping. The resistive transition of undoped and Ag-doped FeSe0.94 is dominated by a thermally activated flux flow. From the activation energy U versus H dependence, we found a crossover from single-vortex pinning to a collective-creep pinning behavior by increasing the magnetic field.

  16. Room temperature ferromagnetism in ZnO using non-magnetic dopants

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Atri, Asha; Singh, Budhi; Ghosh, Subhasis

    2016-05-01

    We studied the magnetic properties of Ag and Cu doped ZnO thin films deposited by magnetron sputtering. Robust room temperature ferromagnetism is observed in the films. Comparative to Cu doped films Ag doped films shows significant increase in ferromagnetism. Spectroscopic ellipsometry studies are also done to see the change in band structure with different metal doping content.

  17. Ag(I)-binding to phytochelatins.

    PubMed

    Mehra, R K; Tran, K; Scott, G W; Mulchandani, P; Saini, S S

    1996-02-01

    Phytochelatins (PCs) are glutathione-derived peptides with the general structure (gamma-Glu-Cys)nGly, where n varies from 2 to 11. A variety of metal ions such as Cu(II), Cd(II), Pb(II), Zn(II), and Ag(I) induce PC synthesis in plants and some yeasts. It has generally been assumed that the inducer metals also bind PCs. However, very little information is available on the binding of metals other than Cu(I) and Cd(II) to PCs. In this paper, we describe the Ag(I)-binding characteristics of PCs with the structure (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly. The Ag(I)-binding stoichiometries of these three peptides were determined by (i) UV/VIS spectrophotometry, (ii) luminescence spectroscopy at 77 K, and (iii) reverse-phase HPLC. The three techniques yielded similar results. ApoPCs exhibit featureless absorption in the 220-340 nm range. The binding of Ag(I) to PCs induced the appearance of specific absorption shoulders. The titration end point was indicated by the flattening of the characteristic absorption shoulders. Similarly, luminescence at 77 K due to Ag(I)-thiolate clusters increased with the addition of graded Ag(I) equivalents. The luminescence declined when Ag(I) equivalents in excess of the saturating amounts were added to the peptides. At neutral pH, (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly, and (gamma-Glu-Cys)4Gly bind 1.0, 1.5, and 4.0 equivalents of Ag(I), respectively. The Ag(I)-binding capacity of (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly was increased at pH 5.0 and below so that Ag(I)/-SH ratio approached 1.0. A similar pH-dependent binding of Ag(I) to glutathione was also observed. The increased Ag(I)-binding to PCs at lower pH is of physiological significance as these peptides accumulate in acidic vacuoles. We also report lifetime data on Ag(I)-PCs. The relatively long decay-times (approximately 0.1-0.3 msec) accompanied with a large Stokes shift in the emission band are indicative of spin-forbidden phosphorescence. PMID

  18. Antibacterial, antifungal, phytotoxic, and genotoxic properties of two complexes of Ag(I) with sulfachloropyridazine (SCP): X-ray diffraction of [Ag(SCP)]n.

    PubMed

    Mosconi, Natalia; Giulidori, Cecilia; Velluti, Francesca; Hure, Estela; Postigo, Agustina; Borthagaray, Graciela; Back, Davi Fernando; Torre, María H; Rizzotto, Marcela

    2014-06-01

    We report the synthesis, characterization, antibacterial and antifungal activities, phytotoxicity, and genotoxicity of two new complexes of silver(I) with sulfachloropyridazine (SCP), one of which is heteroleptic with SCP and SCN(-) ligands (Ag-SCP-SCN), the other of which is homoleptic (Ag-SCP); furthermore, the crystal structure of the homoleptic complex is disclosed. The heterocyclic N atom nearest to the Cl atom and the N(sulfonamide) atom could be coordination sites for the silver ion in the Ag-SCP-SCN complex. The Ag-SCP complex is a polymeric compound with metal-metal bonds, and the heterocyclic and sulfonamide N atoms are points of coordination for Ag(I) . Both complexes showed activity against all the tested bacteria, and in the cases of Escherichia coli and Pseudomonas aeruginosa, the action was better than that of SCP. In all cases, both silver-SCP complexes showed better antifungal activity than SCP, which was inactive against the tested fungi. Notably, the activity against P. aeruginosa, a nosocomial multidrug-resistant pathogen, was better than that of the reference antibiotic cefotaxim. Both silver-sulfa complexes displayed moderate activity against the tested yeast, especially for C. neoformans, which is an important fact considering the incidence of cryptococcosis, mainly in immune-deficient patients. No chromosomal aberrations were observed with the Allium cepa test, which is auspicious for further study of these complexes as potential drugs.

  19. The distribution of Ag in Ag-doped YBa2Cu3O7-δ thin film prepared by dual-beam pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Zhou, W. Z.; Chua, D. H. C.; Xu, S. Y.; Ong, C. K.; Feng, Y. P.; Osipowicz, T.; Chen, M. S.

    1999-06-01

    The Ag distribution in Ag-doped YBa2Cu3O7-δ (YBCO) thin films fabricated by dual-beam pulsed-laser deposition on SrTiO3 (100) substrates has been studied by Auger electron spectroscopy, microproton-induced x-ray emission, atomic force microscopy and scanning electron microscopy. All the results consistently show that Ag aggregated in the bar-like structures observed in the film. These bars are aligned along the a-b-axis or at 45° to the a-b-axis of the YBCO thin film. The main body of the long bars aligned with the a-b-axes of the film was found to be a combination of metallic Ag with other precipitates of YBCO film that may grow from the substrate surface to the YBCO film surface. There were other precipitates aggregating as well at the surface of these bars, such as oxides of Cu and Ba. The short bars that aligned along 45° to the a-b-axes of the film were found to be deficient in Ag but rich in Cu, Ba and O, which could be oxide precipitates of YBCO. The growth mechanisms of the two types of bars seem quite different.

  20. The Pangenome of the Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV).

    PubMed

    Brito, Anderson Fernandes de; Braconi, Carla Torres; Weidmann, Manfred; Dilcher, Meik; Alves, João Marcelo Pereira; Gruber, Arthur; Zanotto, Paolo Marinho de Andrade

    2016-01-01

    The alphabaculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is the world's most successful viral bioinsecticide. Through the 1980s and 1990s, this virus was extensively used for biological control of populations of Anticarsia gemmatalis (Velvetbean caterpillar) in soybean crops. During this period, genetic studies identified several variable loci in the AgMNPV; however, most of them were not characterized at the sequence level. In this study we report a full genome comparison among 17 wild-type isolates of AgMNPV. We found the pangenome of this virus to contain at least 167 hypothetical genes, 151 of which are shared by all genomes. The gene bro-a that might be involved in host specificity and carrying transporter is absent in some genomes, and new hypothetical genes were observed. Among these genes there is a unique rnf12-like gene, probably implicated in ubiquitination. Events of gene fission and fusion are common, as four genes have been observed as single or split open reading frames. Gains and losses of genomic fragments (from 20 to 900 bp) are observed within tandem repeats, such as in eight direct repeats and four homologous regions. Most AgMNPV genes present low nucleotide diversity, and variable genes are mainly located in a locus known to evolve through homologous recombination. The evolution of AgMNPV is mainly driven by small indels, substitutions, gain and loss of nucleotide stretches or entire coding sequences. These variations may cause relevant phenotypic alterations, which probably affect the infectivity of AgMNPV. This work provides novel information on genomic evolution of the AgMNPV in particular and of baculoviruses in general. PMID:26615220

  1. The Pangenome of the Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV)

    PubMed Central

    de Brito, Anderson Fernandes; Braconi, Carla Torres; Weidmann, Manfred; Dilcher, Meik; Alves, João Marcelo Pereira; Gruber, Arthur; Zanotto, Paolo Marinho de Andrade

    2016-01-01

    The alphabaculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is the world’s most successful viral bioinsecticide. Through the 1980s and 1990s, this virus was extensively used for biological control of populations of Anticarsia gemmatalis (Velvetbean caterpillar) in soybean crops. During this period, genetic studies identified several variable loci in the AgMNPV; however, most of them were not characterized at the sequence level. In this study we report a full genome comparison among 17 wild-type isolates of AgMNPV. We found the pangenome of this virus to contain at least 167 hypothetical genes, 151 of which are shared by all genomes. The gene bro-a that might be involved in host specificity and carrying transporter is absent in some genomes, and new hypothetical genes were observed. Among these genes there is a unique rnf12-like gene, probably implicated in ubiquitination. Events of gene fission and fusion are common, as four genes have been observed as single or split open reading frames. Gains and losses of genomic fragments (from 20 to 900 bp) are observed within tandem repeats, such as in eight direct repeats and four homologous regions. Most AgMNPV genes present low nucleotide diversity, and variable genes are mainly located in a locus known to evolve through homologous recombination. The evolution of AgMNPV is mainly driven by small indels, substitutions, gain and loss of nucleotide stretches or entire coding sequences. These variations may cause relevant phenotypic alterations, which probably affect the infectivity of AgMNPV. This work provides novel information on genomic evolution of the AgMNPV in particular and of baculoviruses in general. PMID:26615220

  2. Spectroscopic Study on Eu3+ Doped Borate Glasses Containing Ag Nanoparticles and Ag Aggregates.

    PubMed

    Fu, Shaobo; Zheng, Hui; Zhang, Jinsu; Li, Xiangping; Sun, Jiashi; Hua, Ruinian; Dong, Bin; Xia, Haiping; Chen, Baojiu

    2015-01-01

    Transparent Eu(3+)-doped borate glasses containing Ag nanoparticles and Ag aggregates with composition (40 - x) CaO-59.5B2O3-0.5Eu2O3-xAgNO3 were prepared by a simple one-step melt-quenching technique. The X-ray diffraction (XRD) patterns of the glasses reveal amorphous structural properties and no diffraction peaks belonging to metal Ag particles. Ag particles and Ag aggregates were observed from the absorption spectra. Effective energy transfers from the Ag aggregates to the Eu3+ ions were observed in the excitation spectra from monitoring the intrinsic emission of Eu3+x .5D0 --> 7F2. The glasses with higher Ag content can be effectively excited by light in a wide wavelength region, indicating that these glasses have potential application in the solid state lighting driven by semiconductor light emitting diodes (LEDs). The emission spectra of the samples with higher Ag contents exhibit plenteous spectral components covering the full visible region from violet to red, thus indicating that these glass materials possess an excellent and tunable color rendering index. The color coordinates for all the glass samples were calculated by using the intensity-corrected emission spectra and the standard data issued by the CIE (Commission International de l' Eclairage) in 1931. It was found that the color coordinates for most samples with higher Ag contents fall into the white region in the color space. PMID:26328363

  3. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  4. EXHAUST MAIN PERSONNEL EXPOSURE CALCULATION

    SciTech Connect

    S. Su

    1999-09-29

    The purpose of this activity is to identify and determine potential radiation hazards in the service exhaust main due to a waste package leakage from an emplacement drift. This work supports the subsurface ventilation system design for the EDA II, which consists of an accessible service exhaust main for personnel, and an exhaust main for hot air flow. The objective is to provide the necessary radiation exposure calculations to determine if the service exhaust main is accessible following a waste package leak. This work includes the following items responsive to the stated purpose and objective: Calculate the limiting transient radiation exposure of personnel in the service exhaust main due to the passage of airborne radioactive material through the ventilation raise and connecting horizontal raise to the exhaust main in the event of a leaking waste package Calculate the potential exposures to maintenance workers in the service exhaust main from residual radioactive material deposited inside of the ventilation raise and connecting horizontal raise This calculation is limited to external radiation only, since the airborne and contamination sources will be contained in the ventilation raise and connecting horizontal raise.

  5. Evaluation of two new automated assays for hepatitis B virus surface antigen (HBsAg) detection: IMMULITE HBsAg and IMMULITE 2000 HBsAg.

    PubMed

    Weber, Bernard; Dengler, Thomas; Berger, Annemarie; Doerr, Hans Wilhelm; Rabenau, Holger

    2003-01-01

    In recent years the diagnostic industry has developed new automated immunoassays for the qualitative detection of hepatitis B virus (HBV) surface antigen (HBsAg) in serum and plasma samples that are performed on analyzers that permit a high-speed throughput, random access, and primary tube sampling. The aim of the present study was the evaluation of two new automated HBsAg screening assays, IMMULITE HBsAg and IMMULITE 2000 HBsAg, from Diagnostic Products Corporation. The new HBsAg assays were compared to well-established tests (Auszyme Monoclonal [overnight incubation, version B], IMx HBsAg, AxSYM HBsAg, and Prism HBsAg [all from Abbott] and Elecsys HBsAg [Roche Diagnostics]). In the evaluation were included seroconversion panels, sera from the acute and chronic phases of infection, dilution series of various HBsAg standards, HBV subtypes and S gene mutants. To challenge the specificity of the new assays, sera from HBsAg-negative blood donors, pregnant women, and dialysis and hospitalized patients and potentially cross-reactive samples were investigated. IMMULITE HBsAg and IMMULITE 2000 HBsAg, although not as sensitive as the Elecsys HBsAg assay, were equivalent to the AxSYM HBsAg assay and showed a higher sensitivity than the Auszyme Monoclonal B and IMx HBsAg systems for detection of acute infection in seroconversion panels. The specificities (100%) of both IMMULITE assays on unselected blood donors and potentially interfering samples were comparable to those of the alternative assays after repeated testing. In conclusion, the new IMMULITE HBsAg and IMMULITE 2000 HBsAg assays show a good sensitivity for HBsAg detection compared to other well-established tests. The specificity on repeatedly tested samples was equivalent to that of the alternative assays. The rapid turnaround time, primary tube sampling, and on-board dilution make it an interesting assay system for clinical laboratory diagnosis.

  6. The visible light photocatalytic activity enhancement of cotton cellulose nanofibers/In2S3/Ag-CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Li, Jing; Zhang, Xiufang; Zheng, Yingying; Cui, Can; Zhu, Zhiyan; Li, Chaorong

    2016-07-01

    Cotton cellulose nanofibers (CCNFs)/In2S3/Ag-CdS nanocomposites were prepared by a typical technical route which combined electrospinning and a chemical method. The results showed that the CCNFs/In2S3/Ag-CdS nanocomposites had a remarkable visible light photocatalytic property and cycling stability, which displayed a significant enhancement compared with that of pure In2S3. Through analysis, this enhancement could be mainly attributed to the multilevel structure of the composites.

  7. Realistic Cyclic Magnetic Universe

    NASA Astrophysics Data System (ADS)

    Medeiros, L. G.

    2012-09-01

    This work presents a complete cyclic cosmological scenario based on nonlinear magnetic field. It is constructed from a model composed of five fluids, namely baryonic matter, dark matter, radiation, neutrinos and a cosmological magnetic field. The first four fluids are treated in the standard way and the fifth fluid, the magnetic field, is described by a nonlinear electrodynamics. The free parameters are fitted by observational data (SNIa, CMB, extragalactic magnetic fields, etc.) and by simple theoretical considerations. As a result arises a cyclic cosmological model that preserves the main successes of the standard Big Bang model and solves some other problems such as the initial singularity, the present acceleration and the Big Rip.

  8. Demonstration and partial characterization of 22-nm HBsAg and Dane particles of subtype HBsAg/ady.

    PubMed

    Hess, G; Shih, J W; Arnold, W; Gerin, J L; zum Büschenfelde, K H

    1979-09-01

    The present paper describes the demonstration of d, y, w, and r HBsAg determinants in one serum. It was shown that there are two populations of HBsAg particles: HBsAg/ad and HBsAg/ady. All complete Dane particles were of subtype HBsAg/ady. Further characterization of HBsAg/ady particles did not reveal morphologic differences when they were compared with HBsAg/ad and HBsAg/ay particles. An HBsAg/ady phenotype may be the result of a double infection with hepatitis B viruses or exchanges of DNA sequences that determine HBsAg/ay and HBsAg/ad to form a new genotype. PMID:89163

  9. Demonstration and partial characterization of 22-nm HBsAg and Dane particles of subtype HBsAg/ady.

    PubMed

    Hess, G; Shih, J W; Arnold, W; Gerin, J L; zum Büschenfelde, K H

    1979-09-01

    The present paper describes the demonstration of d, y, w, and r HBsAg determinants in one serum. It was shown that there are two populations of HBsAg particles: HBsAg/ad and HBsAg/ady. All complete Dane particles were of subtype HBsAg/ady. Further characterization of HBsAg/ady particles did not reveal morphologic differences when they were compared with HBsAg/ad and HBsAg/ay particles. An HBsAg/ady phenotype may be the result of a double infection with hepatitis B viruses or exchanges of DNA sequences that determine HBsAg/ay and HBsAg/ad to form a new genotype.

  10. Investigation of current transport normal and parallel to the tape plane in BSCCO/Ag tapes

    SciTech Connect

    Maley, M.P.; Cho, J.H.; Willis, J.O.; Bulaevskii, L.N.

    1995-07-01

    We have performed transport, resistivity and critical current measurements on Bi-2223/Ag and Bi-2212/Ag tapes with current directions both parallel and perpendicular to the tape plane in magnetic fields up to 7 T and 50magnetic field and field orientation dependences similar to those for current flow along the tape plane. These results indicate that current flow along CuO{sub 2} planes dominates current transport even along the tape normal in highly textured tapes.

  11. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles

    PubMed Central

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(Co/C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  12. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles.

    PubMed

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(C o /C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  13. Space Shuttle Era: Main Engines

    NASA Video Gallery

    Producing 500,000 pounds of thrust from a package weighing only 7,500 pounds, the Space Shuttle Main Engines are one of the shining accomplishments of the shuttle program. The success did not come ...

  14. The characteristics of novel bimodal Ag-TiO2 nanoparticles generated by hybrid laser-ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Hamad, Abubaker; Li, Lin; Liu, Zhu; Zhong, Xiang Li; Burke, Grace; Wang, Tao

    2016-04-01

    Silver-titania (Ag-TiO2) nanoparticles with smaller Ag nanoparticles attached to larger TiO2 nanoparticles were generated by hybrid ultrasonic vibration and picosecond laser ablation of Ag and Ti bulk targets in deionised water, for the first time. The laser has a wavelength of 1064 nm and a pulse duration of 10 ps. It was observed that without the ultrasonic vibration, Ag and TiO2 nanoparticles did not combine, thus the role of ultrasonic vibration is essential. In addition, colloidal TiO2 and Ag nanoparticles were generated separately for comparison under the same laser beam characteristics and process conditions. The absorption spectra of colloidal Ag-TiO2 cluster nanoparticles were examined by UV-Vis spectroscopy, and size distribution was characterised using transmission electron microscopy. The morphology and composition of Ag-TiO2 nanoparticles were examined using scanning transmission electron microscopy in high-angle annular dark field, and energy-dispersive X-ray spectroscopy. The crystalline structures were investigated by X-ray diffraction. The size of larger TiO2 particles was in the range 30-150 nm, and the smaller-sized Ag nanoparticles attached to the TiO2 was mainly in the range of 10-15 nm. The yield is more than 50 % with the remaining nanoparticles in the form of uncombined Ag and TiO2. The nanoparticles generated had strong antibacterial effects as tested against E. coli. A discussion is given on the role of ultrasonic vibration in the formation of Ag-TiO2 hybrid nanoparticles by picosecond laser ablation.

  15. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  16. A FLYING WIRE SYSTEM IN THE AGS.

    SciTech Connect

    HUANG,H.; BUXTON,W.; MAHLER,G.; MARUSIC,A.; ROSER,T.; SMITH,G.; SYPHERS,M.; WILLIAMS,N.; WITKOVER,R.

    1999-03-29

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less depend on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system.

  17. Tuning the properties of ZnO, hematite, and Ag nanoparticles by adjusting the surface charge.

    PubMed

    Zhang, Jianhui; Dong, Guanjun; Thurber, Aaron; Hou, Yayi; Gu, Min; Tenne, Dmitri A; Hanna, C B; Punnoose, Alex

    2012-03-01

    A poly (acryl acid) (PAA) post-treatment method is performed to modify the surface charge of ZnO nanospheres, hematite nanocubes, and Ag nanoprisms from highly positive to very negative by adjusting the PAA concentration, to and greatly modify their photoluminescence, cytotoxicity, magnetism, and surface plasmon resonance. This method provides a general way to tune the nanoparticle properties for broad physicochemical and biological applications. PMID:22298490

  18. Electrodeposited Ag-Stabilization Layer for High Temperature Superconducting Coated Conductors: Preprint

    SciTech Connect

    Bhattacharya, R. N.; Mann, J.; Qiao, Y.; Zhang, Y.; Selvamanickam, V.

    2010-11-01

    We developed a non-aqueous based electrodepostion process of Ag-stabilization layer on YBCO superconductor tapes. The non-aqueous electroplating solution is non-reactive to the HTS layer thus does not detoriate the critical current capability of the superconductor layer when plated directly on the HTS tape. The superconducting current capabilities of these tapes were measured by non-contact magnetic measurements.

  19. Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe2O4-GO Nanocomposite.

    PubMed

    Ma, Shuanglong; Zhan, Sihui; Jia, Yanan; Zhou, Qixing

    2015-05-20

    Ag-CoFe2O4-graphene oxide (Ag-CoFe2O4-GO) nanocomposite was synthesized by doping silver and CoFe2O4 nanoparticles on the surface of GO, which was used to purify both bacteria and Pb(II) contaminated water. The Ag-CoFe2O4-GO nanomaterial was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman, X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), cyclic voltammetry (CV), and magnetic property tests. It can be found that Ag-CoFe2O4-GO nanocomposite exhibited excellent antibacterial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus compared with CoFe2O4, Ag-CoFe2O4, and CoFe2O4-GO composite. This superior disinfecting effect was possibly attributed to the combination of GO nanosheets and Ag nanoparticles. Several antibacterial factors including temperature, time, and pH were also investigated. It was obvious that E. coli was more susceptible than S. aureus toward all the four types of nanomaterials. The structural difference of bacterial membranes should be responsible for the resistant discrepancy. We also found that Ag-CoFe2O4-GO inactivated both bacteria in an irreversibly stronger manner than Ag-CoFe2O4 and CoFe2O4-GO. The Pb(II) removal efficiency with all the nanomaterials showed significant dependence on the surface area and zeta potential of the materials. In this work, not only did we demonstrate the simultaneous superior removal efficiency of bacteria and Pb(II) by Ag-CoFe2O4-GO but also the antibacterial mechanism was discussed to have a better understanding of the interaction between Ag-CoFe2O4-GO and bacteria. In a word, taking into consideration the easy magnetic separation, bulk availability, and irreversibly high antibacterial activity of Ag-CoFe2O4-GO, it is the very promising candidate material for advanced antimicrobial or Pb(II) contaminated water treatment.

  20. Spin glass in semiconducting KFe1.05Ag0.88Te2 single crystals

    SciTech Connect

    Ryu, H.; Lei, H.; Klobes, B.; Warren, J. B.; Hermann, R. P.; Petrovic, C.

    2015-05-26

    We report discovery of KFe1.05Ag0.88Te2 single crystals with semiconducting spin glass ground state. Composition and structure analysis suggest nearly stoichiometric I4/mmm space group but allow for the existence of vacancies, absent in long range semiconducting antiferromagnet KFe1.05Ag0.88Te2. The subtle change in stoichometry in Fe/Ag sublattice changes magnetic ground state but not conductivity, giving further insight into the semiconducting gap mechanism.

  1. Crystallization kinetics of {alpha}-AgI in AgI-based silver orthoborate glasses

    SciTech Connect

    Taniguchi, Akihiro; Tatsumisago, Masahiro; Minami, Tsutomu

    1995-02-01

    Kinetics for nucleation and growth of {alpha}-AgI crystals in AgI-based silver orthoborate glasses, in which only {alpha}-AgI crystals were found to crystallize in the heating process of the glasses, were studied by isothermal and nonisothermal measurements using differential scanning calorimetry and by observations of the microstructure of the glasses using scanning electron microscopy. The values of both n and m, dependent on the crystallization mechanism, were found to be 3, indicating that a constant number of nuclei of {alpha}-AgI precipitated in a glass matrix grew three-dimensionally. The preannealing of the glasses at temperatures between glass transition and crystallization did not affect the DSC isothermal curves in the crystal growth process, which suggested that the number of {alpha}-AgI nuclei would have been saturated in the glass when the glasses were prepared by quenching the AgI-based melts.

  2. Extranuclear dynamics of 111Ag(→111Cd) doped in AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Sato, W.; Mizuuchi, R.; Irioka, N.; Komatsuda, S.; Kawata, S.; Taoka, A.; Ohkubo, Y.

    2014-08-01

    Dynamic behavior of the extranuclear field relative to the 111Ag(→111Cd) probe nucleus introduced in a superionic conductor silver iodide (AgI) was investigated by means of the time-differential perturbed angular correlation technique. For poly-N-vinyl-2-pyrrolidone (PVP)-coated AgI nanoparticles, we observed nuclear spin relaxation of the probe at room temperature. This result signifies that Ag+ ions in the polymer-coated sample make hopping motion from site to site at this low temperature. The activation energy for the dynamic motion was successfully estimated to be 46(10) meV. The first atomic-level observation of the temperature-dependent dynamic behavior of Ag+ ions in the polymer-coated AgI is reported.

  3. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    NASA Astrophysics Data System (ADS)

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-01

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  4. Magnetic patterning: local manipulation of the intergranular exchange coupling via grain boundary engineering

    PubMed Central

    Huang, Kuo-Feng; Liao, Jung-Wei; Hsieh, Cheng-Yu; Wang, Liang-Wei; Huang, Yen-Chun; Wen, Wei-Chih; Chang, Mu-Tung; Lo, Shen-Chuan; Yuan, Jun; Lin, Hsiu-Hau; Lai, Chih-Huang

    2015-01-01

    Magnetic patterning, with designed spatial profile of the desired magnetic properties, has been a rising challenge for developing magnetic devices at nanoscale. Most existing methods rely on locally modifying magnetic anisotropy energy or saturation magnetization, and thus post stringent constraints on the adaptability in diverse applications. We propose an alternative route for magnetic patterning: by manipulating the local intergranular exchange coupling to tune lateral magnetic properties. As demonstration, the grain boundary structure of Co/Pt multilayers is engineered by thermal treatment, where the stress state of the multilayers and thus the intergranular exchange coupling can be modified. With Ag passivation layers on top of the Co/Pt multilayers, we can hinder the stress relaxation and grain boundary modification. Combining the pre-patterned Ag passivation layer with thermal treatment, we can design spatial variations of the magnetic properties by tuning the intergranular exchange coupling, which diversifies the magnetic patterning process and extends its feasibility for varieties of new devices. PMID:26156786

  5. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  6. Accretion onto Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Hartmann, Lee; Herczeg, Gregory; Calvet, Nuria

    2016-09-01

    Accretion through circumstellar disks plays an important role in star formation and in establishing the properties of the regions in which planets form and migrate. The mechanisms by which protostellar and protoplanetary disks accrete onto low-mass stars are not clear; angular momentum transport by magnetic fields is thought to be involved, but the low-ionization conditions in major regions of protoplanetary disks lead to a variety of complex nonideal magnetohydrodynamic effects whose implications are not fully understood. Accretion in pre-main-sequence stars of masses ≲1M⊙ (and in at least some 2–3-M⊙ systems) is generally funneled by the stellar magnetic field, which disrupts the disk at scales typically of order a few stellar radii. Matter moving at near free-fall velocities shocks at the stellar surface; the resulting accretion luminosities from the dissipation of kinetic energy indicate that mass addition during the T Tauri phase over the typical disk lifetime ˜3 Myr is modest in terms of stellar evolution, but is comparable to total disk reservoirs as estimated from millimeter-wave dust emission (˜10‑2 M⊙). Pre-main-sequence accretion is not steady, encompassing timescales ranging from approximately hours to a century, with longer-timescale variations tending to be the largest. Accretion during the protostellar phase—while the protostellar envelope is still falling onto the disk—is much less well understood, mostly because the properties of the central obscured protostar are difficult to estimate. Kinematic measurements of protostellar masses with new interfometric facilities should improve estimates of accretion rates during the earliest phases of star formation.

  7. Near-infrared emitting AgInTe2 and Zn-Ag-In-Te colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Langevin, Marc-Antoine; Pons, Thomas; Ritcey, Anna M.; Nì. Allen, Claudine

    2015-06-01

    The synthesis of AgInTe2 nanocrystals emitting between 1095 nm and 1160 nm is presented. Evolution of the Ag:In:Te ratio shows progressive incorporation of In3+ in Ag2Te, leading to the formation of orthorhombic AgInTe2. When zinc is added to the synthesis, the photoluminescence quantum yield reaches 3.4 %.

  8. Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages

    NASA Astrophysics Data System (ADS)

    Veronesi, G.; Aude-Garcia, C.; Kieffer, I.; Gallon, T.; Delangle, P.; Herlin-Boime, N.; Rabilloud, T.; Carrière, M.

    2015-04-01

    Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag+ ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag+ release than acute exposure; Ag-S bond lengths are 2.41 +/- 0.03 Å and 2.38 +/- 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag+. The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag+ ions in cellulo; the chemical environment of recombined Ag+ ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides

  9. ORFEUS-SPAS MAIN TELESCOPE

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the Multi-Payload Processing Facility (MPPF) at KSC, technicians hoist the orbiting and Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS) II main telescope to a vertical position prior to installing it atop the Astronomy Shuttle Pallet Satellite (ASTRO-SPAS) platform. Two spectrographs share the main telescope: the Extreme Ultraviolet Spectrograph (EUV) provided by the University of California at Berkeley, and the Far Ultraviolet Spectrograph (FUV) designed by German institutions the University of Tubingen and Landessternwarte Heidelberg and built by German company Kayser-Threde. The main telescope has a primary mirror approximately one yard (one meter) in diameter, coated with iridium to improve its light-gathering power in the ultraviolet. During the flight of ORFEUS-SPAS II on Space Shuttle Mission STS- 80, these two spectrographs -- along with a third installed separately on the ASTRO-SPAS -- will gather data about the life cycle of stars.

  10. New Main Ring control system

    SciTech Connect

    Seino, K.; Anderson, L.; Ducar, R.; Franck, A.; Gomilar, J.; Hendricks, B.; Smedinghoff, J.

    1990-03-01

    The Fermilab Main Ring control system has been operational for over sixteen years. Aging and obsolescence of the equipment make the maintenance difficult. Since the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab accelerators except the Main Ring. Modernization of the equipment and standardization of the hardware and software have thus become inevitable. The Tevatron CAMAC serial system has been chosen as a basic foundation in order to make the Main Ring control system compatible with the rest of the accelerator complex. New hardware pieces including intelligent CAMAC modules have been designed to satisfy unique requirements. Fiber optic cable and repeaters have been installed in order to accommodate new channel requirements onto the already saturated communication medium system. 8 refs., 2 figs.

  11. OVERVIEW OF THE AGS COLD SNAKE POWER SUPPLIES AND THE NEW RHIC SEXTUPOLE POWER SUPPLIES

    SciTech Connect

    BRUNO,D.; GANETIS, G.; SANDBERG, J.; LOUIE, W.

    2007-06-25

    The two rings in the Relativistic Heavy Ion Collider (RHIC) were originally constructed with 24 sextupole power supplies, 12 for each ring. Before the start of Run 7, 24 new sextupole power supplies were installed, 12 for each ring. Individual sextupole power supplies are now each connected to six sextupole magnets. A superconducting snake magnet and power supplies were installed in the Alternating Gradient Synchrotron (AGS) and commissioned during RHIC Run 5, and used operationally in RHIC Run 6. The power supply technology, connections, control systems and interfacing with the Quench Protection system for both these systems will be presented.

  12. AgRISTARS documents tracking list report

    NASA Technical Reports Server (NTRS)

    Hawkins, J. L.

    1982-01-01

    A quarterly listing of those documents and related publications that have been issued and placed in the AgRISTARS tracking system is presented. The Tracking List Report provides a catalog, by project, of technical publications arranged by type of document and gives the reference AgRISTARS document numbers, title and date of publication, the issuing organization, and the National Technical Information Service reference number.

  13. 20% PARTIAL SIBERIAN SNAKE IN THE AGS.

    SciTech Connect

    Huang, H; Bai, M; Brown, K A; Glenn, W; Luccio, A U; Mackay, W W; Montag, C; Ptitsyn, V; Roser, T; Tsoupas, N; Zeno, K; Ranjbar, V; Spinka, H; Underwood, D

    2002-11-06

    An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.

  14. Distribution of Ag in Cu-sulfides in Kupferschiefer deposit, SW Poland

    NASA Astrophysics Data System (ADS)

    Kozub, Gabriela A.

    2014-05-01

    The Cu-Ag Kupferschiefer deposit located at the Fore-Sudetic Monocline (SW Poland) is a world class deposit of stratabound type. The Cu-Ag mineralization in the deposit occurs in the Permian sedimentary rocks (Rotliegend and Zechstein) in three lithological types of ore: the dolomite, the black shale and the sandstone. Silver, next to copper, is the most important element in the Kupferschiefer deposit (Salamon 1979; Piestrzyński 2007; Pieczonka 2011). Although occurrence of the Ag-minerals such as native silver, silver amalgams, stromeyerite, jalpaite and mckinstryite, silver is mainly present in the deposit due to isomorphic substitutions in Cu-minerals such as chalcocite, bornite, tennantite, covellite and chalcopyrite. The aim of the study was to define distribution of silver in Cu-minerals and correlate occurrence of Ag-enriched Cu-sulfides with native silver and silver amalgams. Identification of minerals and textural observation were performed using field emission scanning electron microscope. Analyzes of chemical composition of Cu-sulfides were performed utilizing electron microprobe. Silver concentration in Cu sulfides ranges from 0.1 to 10.4 wt.% in chalcocite, 0.2-15.8 wt.% in bornite, 0.1-2.9 wt.% in tennantite, 0.05-0.3 wt.% in chalcopyrite and ca. 0.4 wt.% in covellite. In general, distribution of silver in Cu-minerals is irregular, as indicated by high variations of Ag concentration in each mineral. Content of Ag in Cu-sulphides, in samples where native silver and silver amalgams are not found, is lower than in samples, where native silver and silver amalgams are noted. The chemical analyzes of Ag-bearing Cu-minerals indicate decrease of Cu content in minerals with high Ag concentration. In such case, decrease of Fe content is also noted in bornite. Lack of micro-inclusions of the native silver or silver amalgams in the Cu-minerals indicates that presence of Ag is mainly related to the isomorphic substitutions. This is in agreement with previous

  15. Effect of Ti seed layers on structure of self-organized epitaxial face-centered-cubic-Ag(001) oriented nanodots

    SciTech Connect

    Kamiko, M.; Nose, K.; Suenaga, R.; Kyuno, K.; Koo, J.-W.; Ha, J.-G.

    2013-12-28

    The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed that the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.

  16. Promotion of Ag/H-BEA by Mn for lean NO reduction with propane at low temperature.

    PubMed

    Pan, Hua; Su, Qingfa; Chen, Jie; Ye, Qing; Liu, Yiting; Shi, Yao

    2009-12-15

    Effects of adding manganese to Ag/H-BEA for selective catalytic reduction of NO(x) with propane (C(3)H(8)-SCR) were investigated under a lean-burn condition. Mn addition significantly promotes the catalytic performance of Ag/H-BEA below 673 K. A Ag-Mn/H-BEA catalyst with equal metal weight of 3 wt % has the highest activity for C(3)H(8)-SCR among samples with a different bimetal loading. Manganese is mainly present in the 3+ and 4+ oxidation states in Ag-Mn/H-BEA catalysts. The major contributions of manganese suggested by the data presented in this paper are to catalyze the NO oxidation and stabilize silver in a dispersed Ag(+) state. The presence of silver enforces the transformation of a certain amount of Mn(3+) ions to Mn(4+) ions. The activity of Ag-Mn/H-BEA decreases slightly at low SO(2) concentrations (0-200 ppm) but decreases significantly at high SO(2) concentrations (400-800 ppm). In the presence of 10% H(2)O and 200 ppm SO(2), the inhibition of C(3)H(8)-SCR below 673 K is more significant than that at high temperature above 673 K. Ag-Mn/H-BEA is a promising catalyst for the removal of NO(x) from diesel engine exhaust.

  17. Metallic influence on the atomic structure and optical activity of ligand-protected nanoparticles: a comparison between Ag and Au.

    PubMed

    Hidalgo, Francisco; Noguez, Cecilia; Olvera de la Cruz, Monica

    2014-03-21

    Using time-perturbed density functional theory the optical activity of metal-thiolate compounds formed by highly symmetric Ag and Au nanoparticles (NPs) and a methyl-thiol molecule is studied after performing atomic optimizations and electronic calculations upon adsorption. Many different sites and orientations of the adsorbed molecule on icosahedral Ag and Au NPs of 55 atoms are considered. Upon molecular adsorption atomic distortions on Au NPs are induced while not on Ag, which causes higher molecular adsorption energies in Au than in Ag. Structural distortions and the specific molecular adsorption site and orientation result in chiral metal-thiolate NPs. Ag and Au compounds with similar chirality, according to Hausdorff chirality measurements, show different optical activity signatures, where circular dichroism spectra of Au NPs are more intense. These dissimilarities are attributed in part to the differences in the electronic density of states, which are a consequence of relativistic effects and the atomic distortion. It is concluded that the optical activity of Ag and Au compounds is due to different mechanisms, while in Au it is mainly due to the atomic distortion of the metallic NPs induced after molecular adsorption, in Ag it is defined by the adsorption site and molecular orientation with respect to the NP symmetry.

  18. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation

    NASA Astrophysics Data System (ADS)

    Zhu, Chaosheng; Zhang, Lu; Jiang, Bo; Zheng, Jingtang; Hu, Ping; Li, Sujuan; Wu, Mingbo; Wu, Wenting

    2016-07-01

    In this study, highly efficient visible-light-driven Ag3PO4/MoS2 composite photocatalysts with different weight ratios of MoS2 were prepared via the ethanol-water mixed solvents precipitation method and characterized by ICP, XRD, HRTEM, FE-SEM, BET, XPS, UV-vis DRS and PL analysis. Under visible-light irradiation, Ag3PO4/MoS2 composites exhibit excellent photocatalytic activity towards the degradation of organic pollutants in aqueous solution. The optimal composite with 0.648 wt% MoS2 content exhibits the highest photocatalytic activity, which can degrade almost all MB under visible-light irradiation within 60 min. Recycling experiments confirmed that the Ag3PO4/MoS2 catalysts had superior cycle performance and stability. The photocatalytic activity enhancement of Ag3PO4/MoS2 photocatalysts can be mainly ascribed to the efficient separation of photogenerated charge carriers and the stronger oxidation and reduction ability through a Z-scheme system composed of Ag3PO4, Ag and MoS2, in which Ag particles act as the charge separation center. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Ag3PO4 by transferring the photogenerated electrons of Ag3PO4 to MoS2. The evidence of the Z-scheme photocatalytic mechanism of the composite photocatalysts could be obtained from the active species trapping experiments and the photoluminescence technique.

  19. AgI/TiO2 nanocomposites: ultrasound-assisted preparation, visible-light induced photocatalytic degradation of methyl orange and antibacterial activity.

    PubMed

    Xue, Bin; Sun, Tao; Wu, Ji-Kui; Mao, Fang; Yang, Wei

    2015-01-01

    AgI/TiO2 nanocomposites were prepared by an ultrasound-assisted precipitation process and subsequent low-temperature (350°C) calcination. The crystal phase, morphology and optical properties of the AgI/TiO2 nanocomposites were characterized by X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. After calcination, the crystallite size of AgI nanoparticles in the AgI/TiO2 nanocomposites decreased, and visible light absorption intensity of the AgI/TiO2 nanocomposites was significantly enhanced. The AgI/TiO2 nanocomposites after calcination exhibited the superior photocatalytic activity for methyl orange degradation and killing of Escherichia coli under visible light irradiation. The improvement of photocatalytic activity could be attributed to two reasons, namely, reduced crystallite size and enhanced visible light absorption of AgI nanoparticles in calcined AgI/TiO2 nanocomposites. The trapping experiments demonstrated that superoxide radical (O2(-)) and holes (h(+)) were the main reactive species for the photodegradation of methyl orange under visible light irradiation. The ultrasound-assisted preparation approach is efficient and facile, which promotes large-scale production and application of AgI/TiO2 nanocomposites in photocatalytic degradation of organic pollutants, disinfection and other fields.

  20. Beam storage studies in the Fermilab main ring

    SciTech Connect

    MacLachlan, J.A.

    1982-05-06

    Bunched beams of 100 and 150 GeV have been stored in the Fermilab Main Ring for periods of up to one hour. The observations of beam current and beam profiles are analyzed for the effects of gas scattering, chromaticity and non-linear magnetic field.

  1. Beam-storage studies in the Fermilab main ring

    SciTech Connect

    MacLachlan, J.A.

    1982-05-06

    Bunched beams of 100 and 150 GeV have been stored in the Fermilab Main Ring for periods of up to one hour. The observations of beam current and beam profiles are analyzed for the effects of gas scattering, chromaticity and non-linear magnetic field.

  2. Architectural Portfolio 2001: Main Winners.

    ERIC Educational Resources Information Center

    American School & University, 2001

    2001-01-01

    Presents descriptions and photographs of the following two American School and University Architectural Portfolio main winners for 2001: Chesterton, Indiana's Chesterton High School and Lied Library at the University of Nevada, Las Vegas. Included are each project's vital statistics, the architectural firm involved, and a list of designers.(GR)

  3. Left Main Coronary Artery Aneurysm

    PubMed Central

    Doustkami, Hossein; Maleki, Nasrollah; Tavosi, Zahra

    2016-01-01

    Aneurysms of the left main coronary artery are exceedingly rare clinical entities, encountered incidentally in approximately 0.1% of patients who undergo routine angiography. The most common cause of coronary artery aneurysms is atherosclerosis. Angiography is the gold standard for diagnosis and treatment. Depending on the severity of the coexisting coronary stenosis, patients with left main coronary artery aneurysms can be effectively managed either surgically or pharmacologically. We herein report a case of left main coronary artery aneurysm in a 72-year-old man with a prior history of hypertension presenting to our hospital because of unstable angina. The electrocardiogram showed ST-segment depression and T-wave inversion in the precordial leads. All the data of blood chemistry were normal. Echocardiography showed akinetic anterior wall, septum, and apex, mild mitral regurgitation and ejection fraction of 45%. Coronary angiography revealed a saccular aneurysm of the left main coronary artery with significant stenosis in the left anterior descending, left circumflex, and right coronary artery. The patient immediately underwent coronary artery bypass grafting and ligation of the aneurysm. At six months’ follow-up, he remained asymptomatic. PMID:27403190

  4. Main tank injection pressurization program

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    Computer program predicts performance of fluorine-hydrogen main tank injection pressurization system for full range of liquid-hydrogen-fueled space vehicles. Analytical model includes provisions for heat transfer, injectant jet penetration, and ullage gas mixing. Analysis predicts GF2 usage, ullage gas and tank wall temperatures, and LH2 evaporation.

  5. Magnetic Spinner

    NASA Astrophysics Data System (ADS)

    Ouseph, P. J.

    2006-12-01

    A science toy sometimes called the "magnetic spinner" is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays above two triangular magnets fixed to the base. The magnetic repulsive force experienced by the circular magnets is independent of their orientation; therefore, the holder of these magnets can be rotated without affecting its stability. The holder with the circular magnets can be oscillated up and down as a horizontally suspended physical pendulum.

  6. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?

    SciTech Connect

    Isabella Van Rooyen

    2014-10-01

    The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particles It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.

  7. Investigation of the structure of a Ag/Pd/Ag( 1 1 1 ) trilayer by means of electronic spectroscopies

    NASA Astrophysics Data System (ADS)

    Dumont, J.; Ghijsen, J.; Sporken, R.

    2002-06-01

    The growth of the Ag/Pd/Ag system has been studied by X-ray photoelectron spectroscopy and low energy electron diffraction. No chemical reaction or interdiffusion was observed between the Pd and Ag layers. The growth of the Pd interlayer follows the Frank Van der Merwe mode but is not pseudomorphic on the Ag(1 1 1) substrate. The growth of the top Ag layer on the Pd interlayer is pseudomorphic and layer by layer but contains around 12% of voids.

  8. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.

    PubMed

    Zhang, Huai-Zhi; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Ou, Xiao-Ming; Huan, Shuang-Yan

    2016-06-01

    Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag. PMID:26994349

  9. Easily separated silver nanoparticle-decorated magnetic graphene oxide: Synthesis and high antibacterial activity.

    PubMed

    Zhang, Huai-Zhi; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Ou, Xiao-Ming; Huan, Shuang-Yan

    2016-06-01

    Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag.

  10. Stellar magnetic cycles

    NASA Astrophysics Data System (ADS)

    Baliunas, S. L.

    2004-05-01

    Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  11. Magnetic vacancies in antiferromagnetic RAg compounds—A PAC study

    NASA Astrophysics Data System (ADS)

    Forker, M.; Fernández van Raap, M. B.; Pasquevich, A. F.

    2007-02-01

    Magnetic vacancies have been introduced into the ( π, π,0)-type antiferromagnetic structure of cubic RX compounds (R=rare earths, X=Ag, Cu) by replacing magnetic R by non-magnetic Y atoms. The magnetic hyperfine interaction resulting from this break of symmetry at the X-site has been investigated in R 1-xY xAg; R= Gd, Tb, Dy for Y concentrations 0⩽x⩽0.3 and in Dy 0.8Y 0.2Cu by perturbed angular correlation (PAC) spectroscopy with 111Cd as probe nucleus. The magnetic hyperfine field produced at 111Cd by one uncompensated nearest neighbor 4f spin is roughly proportional to the spin projection Bhf ∼0.9 ( g-1) J [T]. The temperature dependence of the magnetic hyperfine fields reflects the interaction of the 4f charge distribution with the crystal electric field. For R=Gd and Tb, the fraction of probe nuclei with one nearest Y neighbor is much smaller than expected for a statistical distribution of Y on R sites, suggesting that in these R 1-xY xAg compounds the 111In/ 111Cd probe atoms favor Ag sites with eight nearest R neighbors.

  12. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope

    PubMed Central

    Salaheldin, Taher A.; Husseiny, Sherif M.; Al-Enizi, Abdullah M.; Elzatahry, Ahmed; Cowley, Alan H.

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  13. Preparation of vanadium oxide thin films modified with Ag using a hybrid deposition configuration

    NASA Astrophysics Data System (ADS)

    Gonzalez-Zavala, F.; Escobar-Alarcón, L.; Solís-Casados, D. A.; Rivera-Rodríguez, C.; Basurto, R.; Haro-Poniatowski, E.

    2016-04-01

    The application of a hybrid deposition configuration, formed by the interaction of a laser ablation plasma with a flux of atomic vapor, to deposit vanadium oxide thin films modified with different amounts of silver, is reported. The effect of the amount of Ag incorporated in the films on their structural, morphological, compositional and optical properties was studied. The obtained results reveal that films with variable Ag content from 11.7 to 24.6 at.% were obtained. Depending on the silver content, the samples show very different surface morphologies. Optical characterization indicates the presence of nanostructures of Ag. Thin films containing silver exhibit better photocatalytic performances than unmodified V2O5 films. Raman spectra reveal that as the silver content is increased, the signals associated with V2O5 disappear and new modes attributed mainly to silver vanadates appear suggesting the formation of ternary compounds.

  14. Interpreting plasmonic response of epitaxial Ag/Si(100) island ensembles

    SciTech Connect

    Kong, Dexin; Jiang, Liying; Drucker, Jeff

    2015-12-07

    Associating features in the experimentally measured optical response of epitaxial Ag islands grown on Si(100) with the localized surface plasmon resonances (LSPRs) hosted by the Ag islands is challenging due to the variation of the Si dielectric function over the energy range under consideration. However, it is possible to conclusively identify features in the experimental spectra with LSPR modes oscillating both parallel and perpendicular to the epitaxial interface by simulating the optical response. The Abeles matrix method is used to describe the composite layered system and the Ag islands are modeled using the thin island film model developed by Bedeaux and Vlieger. By incorporating island morphology parameters determined by quantitative analysis of electron micrographs, the simulation faithfully reproduces the main features of the experimental spectra. Individually zeroing the dipoles associated with the LSPR modes enables conclusive identification of their contribution to the optical response of the composite system.

  15. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope.

    PubMed

    Salaheldin, Taher A; Husseiny, Sherif M; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Cowley, Alan H

    2016-03-03

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity.

  16. Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles.

    PubMed

    Emam, Hossam E; Mowafi, Salwa; Mashaly, Hamada M; Rehan, Mohamed

    2014-09-22

    In situ incorporation technique was used for coloration and acquiring excellent antibacterial properties for viscose fibers by silver nanoparticles (AgNPs). AgNPs were prepared in situ and incorporated in viscose matrix directly without using any other reducing and stabilizing agents. The main objective of this research was to successfully employ the reducing and stabilizing features of cellulose to produce nanosilver-viscose composites. Coloration of fibers after in situ AgNPs incorporation is related to surface plasmon resonance of silver. Colorimetric data were recorded as a function of washings to characterize the final colored fibers. Fastness properties and silver release were all measured to study the washable and wear off properties. Depending on the silver concentration, yellowish colored fibers with different shades were produced. Good fastness properties were obtained after 20 washings without using any crosslinker or binder. The colored fibers had excellent antibacterial activities against Escherichia coli, even after 20 washings. PMID:24906741

  17. Facile aqueous synthesis of β-AgI nanoplates as efficient visible-light-responsive photocatalyst.

    PubMed

    Jiang, Wen; An, Changhua; Liu, Junxue; Wang, Shutao; Zhao, Lianming; Guo, Wenyue; Liu, Jinxiang

    2014-01-01

    Owing to far-ranging industrial applications and theoretical researches, tailored synthesis of well-defined nanocrystals has attracted substantial research interest. Herein, β-AgI nanoplates have been synthesized through a facile polyvinylpyrrolidone (PVP)-assisted-aqueous-solution (PAAS) method under mild conditions. The parametric studies on the effect of ratio of reactants, solvents and surfactants were performed, revealing that a molar ratio of I(-) to Ag(+) of 1.2 in deionized water and the presence of appropriate PVP as stabilizing agent can stimulate the preferred orientation growth of AgI nanoplates. The as-synthesized AgI nanoplates exhibit excellent photocatalytic activity and enhanced durability towards the degradation of organics, i.e., rhodamine B (RhB), under visible light illumination in comparison with corresponding bulk nanoparticles. A possible photocatalytic reaction mechanism was discussed, revealing O2˙(-) and h(+) are main reactive species and free ˙OH radicals in solution also contribute to the degradation reaction. The superior photocatalytic performance renders the as-achieved AgI nanoplates promising candidates for applications in the fields of environmental purification or water disinfection. The present work opens an avenue to the synthesis of other shaped silver halide nanophotocatalysts.

  18. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters.

    PubMed

    Cheng, Daojian; Wang, Wenchuan; Huang, Shiping

    2008-05-14

    Understanding the composition effect on the melting processes of bimetallic clusters is important for their applications. Here, we report the relationship between the melting point and the metal composition for the 55-atom icosahedral Ag-Pd bimetallic clusters by canonical Monte Carlo simulations, using the second-moment approximation of the tight-binding potentials (TB-SMA) for the metal-metal interactions. Abnormal melting phenomena for the systems of interest are found. Our simulation results reveal that the dependence of the melting point on the composition is not a monotonic change, but experiences three different stages. The melting temperatures of the Ag-Pd bimetallic clusters increase monotonically with the concentration of the Ag atoms first. Then, they reach a plateau presenting almost a constant value. Finally, they decrease sharply at a specific composition. The main reason for this change can be explained in terms of the relative stability of the Ag-Pd bimetallic clusters at different compositions. The results suggest that the more stable the cluster, the higher the melting point for the 55-atom icosahedral Ag-Pd bimetallic clusters at different compositions.

  19. Facile synthesis of sunlight-driven AgCI:Ag plasmonic nanophotocatalyst.

    SciTech Connect

    An, C.; Peng, S.; Sun, Y.; Center for Nanoscale Materials; Univ. of Illinois

    2010-06-18

    Highly efficient plasmonic photocatalysts of AgCl:Ag hybrid nanoparticles are successfully synthesized via a one-pot synthetic approach involving a precipitation reaction followed by polyol reduction. The as-synthesized nanoparticles exhibit high catalytic performance under visible light and sunlight for decomposing organics, such as methylene blue.

  20. Beet Juice-Induced Green Fabrication of Plasmonic AgCl/Ag Nanoparticles

    EPA Science Inventory

    A simple, green, and fast approach (complete within 5 min) was explored for the fabrication of hybrid AgCl/Ag plasmonic nanoparticles under microwave (MW) irradiation. In this method, beet juice served as a reducing reagent, which is an abundant sugar-rich agricultural produce. I...