Science.gov

Sample records for ags polarized beam

  1. Commissioning the polarized beam in the AGS

    SciTech Connect

    Ratner, L.G.; Brown, H.; Chiang, I.H.; Courant, E.; Gardner, C.; Lazarus, D.; Lee, Y.Y.; Makdisi, Y.; Sidhu, S.; Skelly, J.

    1985-01-01

    After the successful operation of a high energy polarized proton beam at the Argonne Laboratory Zero Gradient Synchrotron (ZGS) was terminated, plans were made to commission such a beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS). On February 23, 1984, 2 ..mu..A of polarized H/sup -/ was accelerated through the Linac to 200 MeV with a polarization of about 65%. 1 ..mu..A was injected into the AGS and acceleration attempts began. Several relatively short runs were then made during the next three months. Dedicated commissioning began in early June, and on June 26 the AGS polarized beam reached 13.8 GeV/c to exceed the previous ZGS peak momentum of 12.75 GeV/c. Commissioning continued to the point where 10/sup 10/ polarized protons were accelerated to 16.5 GeV/c with 40% polarization. Then, two experiments had a short polarized proton run. We plan to continue commissioning efforts in the fall of this year to reach higher energy, higher intensity, and higher polarization levels. We present a brief description of the facility and of the methods used for preserving the polarization of the accelerating beam.

  2. Polarized beams at the ZGS and the AGS

    SciTech Connect

    Ratner, L.G.

    1989-01-01

    I have had, and still do, a feeling of deja Vu as I have gone through the development of the polarized beam at the AGS. There were many similarities both scientifically and sociologically, and of course, some significant differences between the AGS and the ZGS. We traded the 12 GeV ZGS for the 28 GeV AGS, we traded Ron Martin for Derek Lowenstein, but having the lowest energy, high energy machine did not change. Paraphrasing some remarks of Bob Sachs, the AGS replaced the ZGS as the tail of the dog, and it appears that now the tail loppers are again on the loose. You will probably see them again somewhere in the world using body english to help polarize a beam. Basically, I would like to describe a little of the progression of events and the hardware in both accelerators that allowed Kent and his colleagues to do a great deal of very interesting spin physics. 6 refs., 30 figs.

  3. Current-induced spin polarization in transition metals and Bi/Ag bilayers observed by spin-polarized positron beam

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjun; Yamamoto, Shunya; Fukaya, Yuki; Maekawa, Masaki; Li, Hui; Kawasuso, Atsuo; Seki, Takeshi; Saitoh, Eiji; Takanashi, Koki; JAEA Team; Tohoku Team

    2015-03-01

    Current-induced spin polarization (CISP) on the outermost surfaces of Au, Cu, Pt, Pd, Ta, and W films were studied by spin-polarized positron beam (SPPB). The Au and Cu surfaces showed no significant CISP. In contrast, the Pt, Pd, Ta, and W films exhibited large CISP (3 ~ 15% per charge current of 105 A/cm2) and the CISP of Ta and W were opposite to those of Pt and Pd. The sign of the CISP obeys the same rule in spin Hall effect suggesting that the spin-orbit coupling is mainly responsible for the CISP. The outermost spin poalrization of Bi/Ag/Al2O3andAg/Bi/Al2O3 (charge currents directly connected to Ag layers) were probed by SPPB. The opposite outermost spin polarization of Bi/Ag/Al2O3andAg/Bi/Al2O3 clarified the charge-to-spin conversion in Bi/Ag bilayers. Nevertheless, the magnitudes of the outermost spin polarization of Bi(0.3 ~5)/Ag(25)/Al2O3 (numbers in parentheses denote thickness in nm) and Ag(25 ~500)/Bi(8)/Al2O3 decrease exponentially with increasing Bi thickness and Ag thickness, respectively. This provides probably the first direct evidence for spin diffusion mechanism. Financial support from JSPS Kakenhi Grant 24310072.

  4. Polarization preservation in the AGS

    SciTech Connect

    Ratner, L.G.

    1983-01-01

    The successful operation of a high energy polarized beam at the Argonne Zero Gradient Synchrotron (ZGS) with the concommitant development of depolarizing resonance correction techniques has led to the present project of commissioning such a beam at the Brookhaven Alternating Gradient Synchrotron (AGS). A description of the project was presented at the 1981 National Accelerator Conference. I would like to now present a more detailed description of how we plan to preserve the polarization during acceleration, and to present our game plan for tuning through some 50 resonances and reaching our goal of a 26 GeV polarized proton beam with greater than 60% polarization.

  5. AGS polarized proton operation in run 8.

    SciTech Connect

    Huang,H.; Ahrens, L.; Bai, M.; Brown, K.A.; Gardner, C.; Glenn, J.W.; Lin, F.; Luccio, A.U.; MacKay, W.W.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zeno, K.

    2008-06-23

    Dual partial snake scheme has been used for the Brookhaven AGS (Alternating Gradient Synchrotron) polarized proton operation for several years. It has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for RHIC spin program. There is still residual polarization loss. Several schemes such as putting horizontal tune into the spin tune gap, and injection-on-the-fly were tested in the AGS to mitigate the loss. This paper presents the experiment results and analysis.

  6. Polarized beams at RHIC

    SciTech Connect

    Roser, T.

    1995-11-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 {times} 10{sup 32} cm{sup {minus}2} s{sup {minus}1}. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes, which will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production.

  7. Polarized proton beams in RHIC

    SciTech Connect

    Zelenski, A.

    2010-10-04

    The polarized beam for RHIC is produced in the optically-pumped polarized H{sup -} ion source and then accelerated in Linac to 200 MeV for strip-injection to Booster and further accelerated 24.3 GeV in AGS for injection in RHIC. In 2009 Run polarized protons was successfully accelerated to 250 GeV beam energy. The beam polarization of about 60% at 100 GeV beam energy and 36-42% at 250 GeV beam energy was measured with the H-jet and p-Carbon CNI polarimeters. The gluon contribution to the proton spin was studied in collisions of longitudinally polarized proton beams at 100 x 100 GeV. At 250 x 250 GeV an intermediate boson W production with the longitudinally polarized beams was studied for the first time.

  8. Nondiffracting transversally polarized beam.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-09-01

    Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250

  9. Acceleration of polarized proton at the AGS

    SciTech Connect

    Lee, Y Y

    1980-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A collaborative effort is underway by the groups in Argonne, Michigan, Rice, Yale and Brookhaven to improve and modify the AGS to accelerate polarized protons. With the appropriate funding the first polarized proton acceleration at the AGS should be possible by 1983.

  10. Fighting the Residual Polarization Loss in the AGS

    SciTech Connect

    Huang, H.; Ahrens, L. A.; Bai, M.; Brown, K.; Gardner, C.; Glenn, J. W.; Lin, F.; Luccio, A. U.; MacKay, W. W.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2009-08-04

    A dual partial snake scheme has been used for AGS polarized proton operation for several years. It has provided polarized proton beams with 1.5x10{sup 11} protons per bunch and 65% polarization for the RHIC spin program. There is still residual polarization loss due to both snake resonances and horizontal resonances as shown in the data. Several schemes were tested or proposed in the AGS to mitigate the loss, such as putting horizontal tune into the spin tune gap, injection into a accelerating bucket, and tune jump across the horizontal resonances. This paper presents the experiment and simulation results and analyses.

  11. THOUGHTS AND ''FACTS'' FROM THE AGS POLARIZED PROTON RUNS DURING THE 1980S.

    SciTech Connect

    AHRENS,L.

    2002-11-06

    This workshop's focus is on considering ways for improving the proton beam polarization that the AGS delivers to the RHIC. This talk attempts to review the first decade of AGS polarization--the 1980's; to briefly describe some aspects of the machine situation, the depolarization avoidance strategies employed and the success achieved in AGS from the perspective of one of those involved.

  12. POLARIZED PROTON ACCELERATION IN AGS AND RHIC.

    SciTech Connect

    ROSER,T.

    2007-09-10

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  13. Polarized proton acceleration at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.

    1986-01-01

    At the conclusion of polarized proton commissioning in February 1986, protons with an average polarization of 45%, momentum of 21.7 GeV/c, and intensity of 2 x 10/sup 10/ protons per pulse, were extracted to an external polarimeter at the Brookhaven AGS. In order to maintain this polarization, five intrinsic and nearly forty imperfection depolarizing resonances had to be corrected. An apparent interaction between imperfection and intrinsic resonances occurring at very nearly the same energy was observed and the correction of imperfection resonances using ''beat'' magnetic harmonics discovered in the previous AGS commissioning run was further confirmed.

  14. An overview of Booster and AGS polarized proton operation during Run 15

    SciTech Connect

    Zeno, K.

    2015-10-20

    This note is an overview of the Booster and AGS for the 2015 Polarized Proton RHIC run from an operations perspective. There are some notable differences between this and previous runs. In particular, the polarized source intensity was expected to be, and was, higher this year than in previous RHIC runs. The hope was to make use of this higher input intensity by allowing the beam to be scraped down more in the Booster to provide a brighter and smaller beam for the AGS and RHIC. The RHIC intensity requirements were also higher this run than in previous runs, which caused additional challenges because the AGS polarization and emittance are normally intensity dependent.

  15. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  16. Laser beam splitting by polarization encoding.

    PubMed

    Wan, Chenhao

    2015-03-20

    A scheme is proposed to design a polarization grating that splits an incident linearly polarized beam to an array of linearly polarized beams of identical intensity distribution and various azimuth angles of linear polarization. The grating is equivalent to a wave plate with space-variant azimuth angle and space-variant phase retardation. The linear polarization states of all split beams make the grating suitable for coherent beam combining architectures based on Dammann gratings. PMID:25968540

  17. Tau physics with polarized beams

    SciTech Connect

    Daoudi, M.

    1995-11-01

    We present the first results on tau physics using polarized beams. These include measurements of the {tau} Michel parameters {xi} and {xi}{delta} and the {tau} neutrino helicity h{sub {nu}}. The measurements were performed using the SLD detector at the Stanford Linear Collider (SLC).

  18. The beam quality parameter of spirally polarized beams

    NASA Astrophysics Data System (ADS)

    Ramírez-Sánchez, V.; Piquero, G.

    2008-12-01

    Starting from the expression for the quality parameter of a superposition of two general fields, the case of beams that can be written in terms of the polarization basis introduced by Gori is investigated. Different types of this class of beam are studied and compared. In particular, spirally polarized beams are considered. As an example, polarized Bessel-Gauss beams are analyzed in detail.

  19. Opportunities with polarized beam & target

    NASA Astrophysics Data System (ADS)

    Miyachi, Yoshiyuki

    2014-09-01

    Single spin asymmetries in Drell-Yan (DY) scattering, which are going to be measured in the present and planned polarized DY experiments, gain further insight into the internal structure of the nucleon. For the novel Sivers distribution function, the possible sign change in DY and Semi-Inclusive Deep-Inelastic-Scattering (SIDIS) may be confirmed for the first time, which is a critical test of the transverse momentum dependent (TMD) factorization in QCD, and precise information on the sea quarks, which are less sensitive in DIS, will be obtained. Since DY is one of the cleanest hard scattering processes, where no hadron fragmentation involved, it does not require information on hadron fragmentation functions (FF) to extract TMD PDF from the observed azimuthal amplitudes, where TMD PDF appears along with a corresponding FF in the case of SIDIS. Various azimuthal amplitudes of un-polarized cross section and singly-polarized or doubly-polarized cross section asymmetries in SIDIS have been measured. Double spin asymmetry in DY where beam and target are polarized is another unique tool to study TMD PDFs directly and it is a complementary measurement to SIDIS toward the complete description of the nucleon. Single spin asymmetries of the W-production cross section in the polarized proton-proton collision, recently measured at the RHIC/spin program, indicate the possible quark flavor symmetry violation in the polarized light-sea. Similar flavor asymmetry in the un-polarized light-sea, known as violation of the Gottfried sum rule, is currently studied at the on-going DY experiment SeaQuest at Fermilab. The observed flavor asymmetries can be a key to understand non-perturbative structure of the nucleon. With double spin asymmetry measurements in longitudinally polarized DY the flavor asymmetry in the polarized sea can be confirmed. In the presentation, physics cases which can be studied in doubly polarized DY and related topics will be discussed.

  20. New AGS slow external beam switchyard

    SciTech Connect

    Brown, H; Brown, R; Chimienti, L

    1981-01-01

    The original switchyard for the Slow External Proton Beam at the AGS of Brookhaven National Laboratory incorporated two current carrying, copper septa to split the beam into three parts. These septa were each .05 mm thick and intercepted a substantial amount of beam when, as often occurs, it was necessary to split the beam across its densest region. To adjust splitting ratios and optimize losses, a complex time consuming pattern of steering adjustments using various magnets was necessary. When the question of providing a fourth beam to a new target station arose, it was clear that adding a third copper septum in the very constrained space available would lead to unacceptable increases in the radiation and control problems. In order to circumvent these difficulties, it was decided to rebuild the switchyard using much thinner electrostatic septa as splitters and to provide a greater degree of independence of the various beam segments.

  1. AGS RESONANT EXTRACTION WITH HIGH INTENSITY BEAMS.

    SciTech Connect

    AHRENS,L.; BROWN,K.; GLENN,J.W.; ROSER,T.; TSOUPAS,N.; VANASSELT,W.

    1999-03-29

    The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams.[1] Learning to extract and transport these higher intensity beams has required a process of careful modeling and experimentation. We have had to learn how to correct for various instabilities and how to better match extraction and the transport lines to the higher emittance beams being accelerated in the AGS. Techniques employed include ''RF'' methods to smooth out momentum distributions and fine structure. We will present results of detailed multi-particle tracking modeling studies which enabled us to develop a clear understanding of beam loss mechanisms in the transport and extraction process. We will report on our status, experiences, and the present understanding of the intensity limitations imposed by resonant extraction and transport to fixed target stations.

  2. Polarized proton beams since the ZGS

    SciTech Connect

    Krisch, A.D.

    1994-12-31

    The author discusses research involving polarized proton beams since the ZGS`s demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world`s first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970`s; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE.

  3. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    SciTech Connect

    HUANG,H.; AHRENS,L.; BAI,M.; ET AL.

    2005-05-16

    The RHIC spin program requires 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is no space for a full snake to overcome numerous depolarizing resonances. An ac dipole and a partial snake have been used to preserve beam polarization in the past few years. Two helical snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the setup and preliminary results.

  4. QCD tests with polarized beams

    SciTech Connect

    Maruyama, Takashi; SLD Collaboration

    1996-09-01

    The authors present three QCD studies performed by the SLD experiment at SLAC, utilizing the highly polarized SLC electron beam. They examined particle production differences in light quark and antiquark hemispheres, and observed more high momentum baryons and K{sup {minus}}`s than antibaryons and K{sup +}`s in quark hemispheres, consistent with the leading particle hypothesis. They performed a search for jet handedness in light q- and {anti q}-jets. Assuming Standard Model values of quark polarization in Z{sup 0} decays, they have set an improved upper limit on the analyzing power of the handedness method. They studied the correlation between the Z{sup 0} spin and the event-plane orientation in polarized Z{sup 0} decays into three jets.

  5. CONTINUOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE.

    SciTech Connect

    GLENN,J.W.; TSOUPAS,N.; BROWN,K.A.; BIRYUKOV,V.M.

    2001-06-18

    A method to split off a few percent of the 6 x 10{sup 13} AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given.

  6. A multi-wire beam profile monitor in the AGS

    SciTech Connect

    Huang, H.; Buxton, W.; Castillo, V.; Glenn, J.W.

    1997-07-01

    A multi-wire beam profile monitor which can be used to directly monitor and control the optical matching between the Booster and AGS rings has been installed and tested in the AGS. Placement of a multi-wire monitor directly in the AGS provides profile measurements taken upon injection and the first two or more revolutions of the beam. The data from such measurements can be used to determine the optical properties of the beam transport line leading into the AGS.

  7. Rf beam control for the AGS Booster

    SciTech Connect

    Brennan, J.M.

    1994-09-26

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

  8. Time purified/separated antiproton beam at the AGS

    SciTech Connect

    Bachman, M.; Barlett, M.L.; Bonner, B.; Borenstein, S.; Bridges, D.; Brown, H.; Buchanan, J.; Clement, J.C.; Daftari, I.; Debbe, R.

    1984-01-01

    A 1 km antiproton beam has been designed for construction at the AGS. The momentum band can be varied between +-0.3% to +-1.0%, and the resolution for tagged particles will be deltap/p approx. 10/sup -4/ at beam rates as high as 10/sup 6/ anti p/s. Separation by decay purification will be on the order of 1 anti p/10(..pi../sup -/+..mu../sup -/). This beam will be used in a detailed investigation of Charmonium including a measurement of the chi widths. We will also search for expected but as yet unseen states, and search for possible I=1 events which would imply the existence of four quark states. This facility will also lend itself to a wide variety of exciting physics such as the proton form factor including both e/sup +/e/sup -/ and ..gamma gamma.. final states, two-body hadron final states, anti-nucleus yields, and possibly tagged hadron beams (i.e., Lambda, E, etc.). When heavy ions become available at the AGS, one can measure various long lived particle yields. Finally, with as many as 10/sup 7/ polarized muons in the beam, one has the possibility to use them for nuclear structure studies.

  9. Experiments with Fermilab polarized proton and polarized antiproton beams

    SciTech Connect

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the {pi}{degree} production at high p{sub {perpendicular}} and in the {Lambda} ({Sigma}{degree}), {pi}{sup {plus minus}}, {pi}{degree} production at large x{sub F}, and {Delta}{sigma}{sub L}(pp, {bar p}p) measurements. 18 refs.

  10. Global beam shaping with nonuniformly polarized beams: a proposal.

    PubMed

    Ramírez-Sánchez, V; Piquero, G

    2006-12-10

    A procedure for global beam shaping by modifying some global spatial parameters characteristic of the beam is proposed. This method is based on the generation of a nonuniformly polarized beam using a Mach-Zehnder system with two suitably shaped intensity transmittances and orthogonal linear polarizers. The changes in beam quality and kurtosis parameters after a linear polarizer placed at the output of the system are investigated. PMID:17119590

  11. Global beam shaping with nonuniformly polarized beams: a proposal

    NASA Astrophysics Data System (ADS)

    Ramírez-Sánchez, V.; Piquero, G.

    2006-12-01

    A procedure for global beam shaping by modifying some global spatial parameters characteristic of the beam is proposed. This method is based on the generation of a nonuniformly polarized beam using a Mach-Zehnder system with two suitably shaped intensity transmittances and orthogonal linear polarizers. The changes in beam quality and kurtosis parameters after a linear polarizer placed at the output of the system are investigated.

  12. High energy polarized beams from hyperon decays

    SciTech Connect

    Underwood, D.G.

    1986-01-01

    The use of various ways to utilize lambda decays to obtain polarized beams of protons and antiprotons is emphasized. Examples described are the Fermilab polarized beam, now under construction, and the use of similar techniques at other energies. Beam transport, spin precession and reversal systems, and polarimeters are also discussed. 8 refs., 4 figs.

  13. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  14. Antiproton beam polarizer using a dense polarized target

    SciTech Connect

    Wojtsekhowski, Bogdan

    2011-05-01

    We describe considerations regarding the spin filtering method for the antiproton beam. The proposed investigation of the double polarization cross section for antiproton to nucleon interaction is outlined. It will use a single path of the antiproton beam through a dense polarized target, e.g. 3He or CH2, followed by a polarimeter.

  15. Topological aspects of polarization structured beams

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Viswanathan, Nirmal K.

    2014-02-01

    Polarization structured optical beams have half-integer topological structures: star, lemon, monstar in π-symmetric polarization ellipse orientation tensor field and integer-index topological structures: saddle, spiral, node in 2π-symmetric Poynting vector field. Topological approach to study the polarization structured optical beams is carried out and presented here in some detail. These polarization structured light beams are demonstrated to be the best platform to explore the topological interdependencies. The dependence of one type of topological structure on the other is used to control the Poynting vector density distribution and locally enhance the angular momentum density as compared to its constituent beam fields.

  16. The AGS Booster beam loss monitor system

    SciTech Connect

    Beadle, E.R.; Bennett, G.W.; Witkover, R.L.

    1991-01-01

    A beam loss monitor system has been developed for the Brookhaven National Laboratory Booster accelerator, and is designed for use with intensities of up to 1.5 {times} 10{sup 13} protons and carbon to gold ions at 50-3 {times} 10{sup 9} ions per pulse. This system is a significant advance over the present AGS system by improving the sensitivity, dynamic range, and data acquisition. In addition to the large dynamic range achievable, it is adaptively shifted when high losses are detected. The system uses up to 80 argon filled ion chambers as detectors, as well as newly designed electronics for processing and digitizing detector outputs. The hardware simultaneously integrates each detector output, interfaces to the beam interrupt systems, and digitizes all 80 channels to 21 bits at 170 KHz. This paper discuses the design, construction, and operation of the system. 4 refs., 2 figs.

  17. The AGS Booster Beam Position Monitor system

    SciTech Connect

    Ciardullo, D.J.; Abola, A.; Beadle, E.R.; Smith, G.A.; Thomas, R.; Van Zwienen, W.; Warkentien, R.; Witkover, R.L.

    1991-01-01

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 {times} 10{sup 10} to 1.5 {times} 10{sup 13} particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with {plus minus} 0.1 mm resolution. The design goal of {plus minus} 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 {degree}C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs.

  18. Non-polarizing beam splitter design

    NASA Astrophysics Data System (ADS)

    Qi, H. J.; Shao, J. D.; Hong, R. J.; Yi, K.; Fan, Z. X.

    2004-09-01

    In this paper a non-polarizing beam splitter design concept is presented using anisotropic thin films. Transmittance of s- and p-polarized waves can be dealt with separately. This concept can be applied to non-polarizing beam splitter designs of single wavelength and broad-band spectrum at oblique incidence. A few examples of non-polarizing beam splitters (50:50) at the design wavelength of 1064 nm and over the visible spectrum (420 nm 680 nm) are elaborated. Besides, the angular performance of these designs is examined.

  19. Partially polarized Gaussian Schell-model beams

    NASA Astrophysics Data System (ADS)

    Gori, F.; Santarsiero, M.; Piquero, G.; Borghi, R.; Mondello, A.; Simon, R.

    2001-01-01

    We consider a class of beams that are both partially polarized and partially coherent from the spatial standpoint. They are characterized by a correlation matrix whose elements have the same form as the mutual intensity of a Gaussian Schell-model beam. We focus our attention on those beams that would appear identical to ordinary Gaussian Schell-model beams in a scalar treatment. After establishing some inequalities that limit the choice of the matrix parameters, we study the main effects of propagation. Starting from the source plane, in which the beam is assumed to be uniformly polarized, we find that in the course of propagation the degree of polarization generally becomes non-uniform across a typical section of the beam. Furthermore, we find that the intensity distribution at the output of an arbitrarily oriented linear polarizer is Gaussian shaped at the source plane whereas it can be quite different at other planes.

  20. Bessel beams with spatial oscillating polarization

    NASA Astrophysics Data System (ADS)

    Fu, Shiyao; Zhang, Shikun; Gao, Chunqing

    2016-08-01

    Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail.

  1. Bessel beams with spatial oscillating polarization.

    PubMed

    Fu, Shiyao; Zhang, Shikun; Gao, Chunqing

    2016-01-01

    Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174

  2. Bessel beams with spatial oscillating polarization

    PubMed Central

    Fu, Shiyao; Zhang, Shikun; Gao, Chunqing

    2016-01-01

    Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174

  3. Accelerating and storing polarized hadron beams

    SciTech Connect

    Teng, L.C.

    1990-10-01

    Polarization hadron experiments at high energies continue to generate surprises. Many questions remain unanswered or unanswerable within the frame work of QCD. These include such basic questions as to why at high energies the polarization analyzing power in pp elastic scattering remains high, why hyperons are produced with high polarizations etc. It is, therefore, interesting to investigate the possibilities of accelerating and storing polarized beams in high energy colliders. On the technical side the recent understanding and confirmation of the actions of partial and multiple Siberian snakes made it possible to contemplate accelerating and storing polarized hadron beams to multi-TeV energies. In this paper, we will examine the equipment, the operation and the procedure required to obtain colliding beams of polarized protons at TeV energies.

  4. Terahertz reflectarray as a polarizing beam splitter.

    PubMed

    Niu, Tiaoming; Withayachumnankul, Withawat; Upadhyay, Aditi; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Sriram, Sharath; Fumeaux, Christophe

    2014-06-30

    A reflectarray is designed and demonstrated experimentally for polarization-dependent beam splitting at 1 THz. This reflective component is composed of two sets of orthogonal strip dipoles arranged into interlaced triangular lattices over a ground plane. By varying the length and width of the dipoles a polarization-dependent localized phase change is achieved on reflection, allowing periodic subarrays with a desired progressive phase distribution. Both the simulated field distributions and the measurement results from a fabricated sample verify the validity of the proposed concept. The designed terahertz reflectarray can efficiently separate the two polarization components of a normally incident wave towards different predesigned directions of ±30°. Furthermore, the measured radiation patterns show excellent polarization purity, with a cross-polarization level below -27 dB. The designed reflectarray could be applied as a polarizing beam splitter for polarization-sensitive terahertz imaging or for emerging terahertz communications. PMID:24977867

  5. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  6. Physics perspectives at JLab with a polarized positron beam

    SciTech Connect

    Voutier, Eric J.-M.

    2014-06-01

    Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.

  7. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  8. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-08-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  9. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  10. ACCELERATION OF POLARIZED BEAMS USING MULTIPLE STRONG PARTIAL SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.AHRENS,L.BAI,M.ET AL.

    2004-07-05

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20-30% partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction.

  11. The RHIC p-Carbon CNI Polarimeter Upgrade For The Beam Polarization And Intensity Measurements

    SciTech Connect

    Zelenski, A.; Bazilevski, A.; Bunce, G.; Gill, R.; Huang, H.; Mahler, G.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, T.; Steski, D.; Sivertz, M.

    2009-08-04

    Proton polarization measurements in the AGS and RHIC (Relativistic Heavy Ion Collider at the beam energies 24-250 GeV) are based on proton-carbon and proton-proton elastic scattering in the Coulomb Nuclear Interference (CNI) region. Polarimeter operation in the scanning mode also gives polarization profile and beam intensity profile (beam emittance) measurements. Bunch by bunch emittance measurement is a very powerful tool for machine setup. Presently, the polarization and beam intensity profile measurements (in both vertical and horizontal planes) are restricted by the long target switching time and possible target destruction during this complicated motion. The RHIC polarimeters were operated near the limit of the counting rate for present silicon strip detectors. The ongoing polarimeter upgrade for the 2009 run will address all these problems. The upgrade should allow significant reduction of the polarization measurement errors by making feasible the complete polarization measurements, which includes polarization profiles in both the horizontal and vertical planes.

  12. Opportunities with Polarized Hadron Beams

    NASA Astrophysics Data System (ADS)

    Lorenzon, Wolfgang

    2016-02-01

    Spin physics at future hadron facilities provide unique opportunities for the study of QCD well beyond those available at existing facilities. Opportunities with polarized protons in the Fermilab Main Injector are discussed that encompass polarized Drell-Yan scattering of unprecedented precision and also enable measurements of transversity, helicty and other transverse momentum dependent distributions. Forthcoming measurements at COMPASS-II that aim to test fundamental predictions of non-perturbative QCD, and complementary studies at RHIC-Spin that address, among others, open puzzles such as the sharing of the nucleon spin among its constituents are also discussed.

  13. THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT

    SciTech Connect

    WENG,W.T.; DIWAN,M.; RAPARIA,D.

    2004-10-08

    After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must

  14. Analysis of periodic transient beam loading of the AGS

    SciTech Connect

    Zhang, S.Y.; Weng, W.T.

    1992-07-13

    In this note, we discuss the multi-batch bunched ;beam loading during the injection from the Booster to the AGS. The full intensity beam injection to the upgraded AGS RF system with beam phase and radial feedbacks will be studied. It is shown that a beam phase feed-back is necessary in order to guarantee a predictable beam behavior after the first batch injection, otherwise the initial phase deviation for the following batch injections cannot be controlled. However, the effectiveness of the phase feedback control of the transient beam loading is limited by the associated emittance blow-up in the process. It is shown that a fast power amplifier feedback with a moderate gain can significantly reduce the transient effect of the bunched beam injection.

  15. Confocal imaging with orthogonally polarized illumination beams

    NASA Astrophysics Data System (ADS)

    Kalita, Ranjan; Boruah, Bosanta R.

    2016-03-01

    In confocal microscopy the polarization of the illumination beam plays an important role in determining the orientation of the fluorescent molecules being illuminated. The efficiency of the excitation depends on the angle between the excitation electric field and the direction of the molecular dipole. In order to determine the orientation of the fluorescent molecules in the focal plane the molecules are to be excited using two mutually orthogonal electric fields. In this paper we show how a computer generated holography technique can be implemented using a ferroelectric liquid crystal spatial light modulator to conveniently obtain two images of the same target once with an X polarized illumination beam and another with a Y polarized illumination beam.

  16. Polarized muon beams for muon collider

    NASA Astrophysics Data System (ADS)

    Skrinsky, A. N.

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance.

  17. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, M.

    2013-11-07

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ∼ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  18. High Energy Polarized e+e‑ Beams

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu.; Koop, I.; Otboev, A.; Mane, S.

    2016-02-01

    Recently, the wide discussion about Higgs-factory design again returns to problem of high energy polarized electrons and positrons. It’s good known the radiative beam polarization at LEP-collider. It was obtained after spin resonance suppression at Z0 pick, but didn’t appear at energies above 70 GeV due to an enhancement of unavoidable depolarization effects. We examine in this paper various ideas for radiative polarization at TLEP/FCC-ee and formulate some estimates for the polarization buildup time and the asymptotic polarization. Using wigglers, a useful degree of polarization (for energy calibration), with a time constant of about 1 h, may be possible up to the threshold of W pair production. At higher energies such as the threshold of Higgs production, attaining a useful level of polarization may be difficult in a planar ring. With Siberian Snakes, wigglers and some imagination, polarization of reasonable magnitude, with a reasonable time constant (of not more than about 1 h), may be achievable at very high energies.

  19. Asymmetric chemical reactions by polarized quantum beams

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044

  20. Polarized proton beam for eRHIC

    SciTech Connect

    Huang, H.; Meot, F.; Ptitsyn, V.; Roser, T.

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  1. Beam scanning reflectarray antenna with circular polarization

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor); Pogorzelski, Ronald J. (Inventor)

    2000-01-01

    A novel means of scanning a circularly polarized reflectarray antenna. The reflectarray is an array of metallic elements arranged on a surface designed to compensate for the various path lengths of the optical rays from an illuminating feed to the reflecting surface and then to the antenna aperture. With appropriate design, the phase in the aperture can be made to vary linearly in any desired direction and also to produce a radiated beam normal to the constant phase surface. In the case of circular polarization, this path length compensation can be accomplished by rotation of the individual elements.

  2. Spin polarization and additional magneto-optical activity of nonmagnetic layers in Fe/Ag CMF

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Zhai, H. R.; Lu, M.; Jin, Q. Y.; Miao, Y. Z.

    1992-08-01

    The experimental magneto-optical Kerr rotation spectra of Fe/Ag compositionally modulated films reported by Katayama et al. are studied theoretically. It is found that the free electrons of Ag are spin polarized. The magnitude of the polarization is about 1% with a direction opposite to that of Fe. The polarized Ag also gives rise to an additional magneto-optical activity as in Pt and Pd.

  3. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

  4. Polarization of a stored electron beam

    SciTech Connect

    Chao, A.W.

    1981-07-01

    Synchrotron radiation by a point charge is a familiar subject in classical electrodynamics. Perhaps less familiar are some quantum mechanical corrections to the classical results. Some of those quantum aspects of synchrotron radiation are described. One of the quantum effects leads to the expectation that electrons in a storage ring will polarize themselves to 92% - a surprisingly high value. A semi-classical derivation of the quantum effects is given. An effort has been made to minimize the need of using quantum mechanics. Results are put together to derive a final expression of beam polarization. Conditions under which the expected 92% polarization is destroyed are found and attributed to depolarization resonances. The various depolarization mechanisms are first illustrated by an idealized example and then systematically treated by a matrix formalism. It is shown that the strength of depolarization is specified by a key quantity called the spin chromaticity. Finally as an application of the obtained results, an estimate of the achievable level of beam polarization for two existing electron storage rings, SPEAR and PEP, is given.

  5. SLC polarized beam source electron optics design

    SciTech Connect

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10{sup {minus}11}-Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2{1/2}-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs.

  6. Beam Polarization at the ILC: Physics Case and Realization

    NASA Astrophysics Data System (ADS)

    Vauth, Annika; List, Jenny

    2016-02-01

    The International Linear Collider (ILC) is a proposed e+e‑ collider, focused on precision measurement of the Standard Model and new physics beyond. Polarized beams are a key element of the ILC physics program. The physics studies are accompanied by an extensive R&D program for the creation of the polarized beams and the measurement of their polarization. This contribution will review the advantages of using beam polarization and its technical aspects and realization, such as the creation of polarized beams and the measurement of the polarization.

  7. STED microscopy based on axially symmetric polarized vortex beams

    NASA Astrophysics Data System (ADS)

    Zhehai, Zhou; Lianqing, Zhu

    2016-03-01

    A stimulated emission depletion (STED) microscopy scheme using axially symmetric polarized vortex beams is proposed based on unique focusing properties of such kinds of beams. The concept of axially symmetric polarized vortex beams is first introduced, and the basic principle about the scheme is described. Simulation results for several typical beams are then shown, including radially polarized vortex beams, azimuthally polarized vortex beams, and high-order axially symmetric polarized vortex beams. The results indicate that sharper doughnut spots and thus higher resolutions can be achieved, showing more flexibility than previous schemes based on flexible modulation of both phase and polarization for incident beams. Project supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 61475021), the Natural Science Foundation of Beijing, China (Grant No. 4152015), the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-13-0667), and the Top Young Talents Support Program of Beijing, China (Grant No. CIT&TCD201404113).

  8. The HERMES Polarized Atomic Beam Source

    SciTech Connect

    Nass, A.

    2003-07-30

    The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 {center_dot} 1016H-vector/s (hydrogen in two hyperfine substates) and 6.0 {center_dot} 1016D-vector/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHz has been developed and installed into the HERMES-ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte-Carlo simulations were successfully used to describe the gas expansion between nozzle, skimmer and collimator. A new type of beam monitor was used to study the beam formation after the nozzle.

  9. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    SciTech Connect

    Alj, Domenico; Caputo, Roberto Umeton, Cesare; Paladugu, Sathyanarayana; Volpe, Giovanni

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  10. Ion beam induced nanosized Ag metal clusters in glass

    NASA Astrophysics Data System (ADS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-04-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam.

  11. Primary aberrations in focused radially polarized vortex beams

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  12. General classification of partially polarized partially coherent beams

    NASA Astrophysics Data System (ADS)

    Martinez-Herrero, Rosario; Piquero, Gemma; Mejias, Pedro M.

    2003-05-01

    The behavior of the so-called generalized degree of polarization of partially coherent partially polarized beams upon free propagation is investigated. On the basis of this parameter a general classification scheme of partially polarized beams is proposed. The results are applied to certain classes of fields of special interest.

  13. Notes on dumping gold beam in the AGS

    SciTech Connect

    Gardner, C.J.; Ahrens, L.; Thieberger, P.

    2010-08-01

    Localized losses of gold beam in the AGS during RHIC Run 8 produced vacuum leaks which required the replacement of several vacuum chambers. A review of what happened and why was given by Leif Ahrens at the Run 8 Retreat. The following notes trace the subsequent development of clean dumping of gold beam on the beam dump in the J10 straight. The novel idea of stripping Au77+ ions in order to put them directly into the upstream face of the dump was introduced by Leif Ahrens and developed by all three of us. George Mahler made the actual stripping device and Dave Gassner developed its control. Leif Ahrens successfully commissioned the device with gold beam during Run 10. The reader may find it helpful to first view the figures herein and then refer to the text for details.

  14. Gaussian Schell-model beams propagating through polarization gratings.

    PubMed

    Piquero, G; Borghi, R; Santarsiero, M

    2001-06-01

    The effects of polarization gratings on partially coherent beams are investigated by studying a Gaussian Schell-model beam impinging on a linear polarizer whose transmission axis varies periodically along one transverse direction. Analytical expressions for the beam polarization-coherence matrix after the grating are obtained. In particular, the evolution of the degree of polarization upon propagation is analyzed. Different behaviors of the output beam, depending on the beam parameters and on the period of the grating, are exhibited. In particular, it is shown that, by suitably choosing the latter quantities, it is possible to obtain not only any desirable value of the degree of polarization of the output beam but also particular distributions of such parameters across the transverse sections of the beam. PMID:11393633

  15. Polarized antiproton beam at U-70 accelerator of IHEP

    NASA Astrophysics Data System (ADS)

    Nurushev, S. B.; Chetvertkov, M. A.; Chetvertkova, V. A.; Garkusha, V. I.; Meschanin, A. P.; Mochalov, V. V.; Nurusheva, M. B.; Rykov, V. L.; Semenov, P. A.; Strikhanov, M. N.; Vasiliev, A. N.; Zapolsky, V. N.

    2016-02-01

    The polarized proton and antiproton beam channel is currently under development at the U-70 accelerator of IHEP, Protvino, Russia. An availability of the both, polarized protons and antiprotons provides an exciting opportunity for the comparative studies of spin effects induced by polarized protons and antiprotons in a variety of hadronic reactions. While the proton and antiproton beams are formed by essentially the same method, there is the specific in the antiproton beam shaping and properties compared to protons. In this report, we address some technical details of forming the polarized antiproton beam and describe its main properties.

  16. Commissioning of polarized-proton and antiproton beams at Fermilab

    SciTech Connect

    Yokosawa, A.

    1988-05-04

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US).

  17. The AGS New Fast Extracted Beam System orbit bump pulser

    SciTech Connect

    Chang, J.S.; Soukas, A.V.

    1993-01-01

    The AGS New Fast Extracted Beam System (New FEB) is designed for RHIC injection and the g-2 experiment, performing single bunch multiple extraction at the prf of 20 to 100 Hz up to 12 times per AGS cycle. Capacitor-discharge pulsers are required to produce local orbit bumps at the fast kicker and ejector magnet locations. These pulsers have to deliver half-sine current pulses at 1 KA peak with a base width of 5 msec. The discharge voltage will require approximately 800V with a [plus minus]0.1% accuracy. Direct charging will require a charger too costly and difficult to build because of the high prf. An alternative charging system is being developed to take advantage of the 1.5 sec idle time between each group of pulses. The charger power supply ratings and regulation requirements are thus greatly reduced. The system analysis and results from a prototype will be presented.

  18. The AGS New Fast Extracted Beam System orbit bump pulser

    SciTech Connect

    Chang, J.S.; Soukas, A.V.

    1993-06-01

    The AGS New Fast Extracted Beam System (New FEB) is designed for RHIC injection and the g-2 experiment, performing single bunch multiple extraction at the prf of 20 to 100 Hz up to 12 times per AGS cycle. Capacitor-discharge pulsers are required to produce local orbit bumps at the fast kicker and ejector magnet locations. These pulsers have to deliver half-sine current pulses at 1 KA peak with a base width of 5 msec. The discharge voltage will require approximately 800V with a {plus_minus}0.1% accuracy. Direct charging will require a charger too costly and difficult to build because of the high prf. An alternative charging system is being developed to take advantage of the 1.5 sec idle time between each group of pulses. The charger power supply ratings and regulation requirements are thus greatly reduced. The system analysis and results from a prototype will be presented.

  19. Polarization buildup in stored p and p-bar beams interacting with a polarized target

    SciTech Connect

    Strakhovenko, V.

    2008-04-30

    The kinetics of the polarization buildup in the interaction of stored protons or antiprotons with a polarized target is considered. It is demonstrated that for events where a projectile remains in the beam the polarization buildup is completely due to the spin-flip transitions. However, the corresponding effect turns out to be negligibly small for a hydrogen gas target as well as for a pure electron target. For the latter, the filtering mechanism also does not provide a noticeable beam polarization.

  20. Subwavelength polarization beam splitter with controllable splitting ratio based on surface plasmon polaritons.

    PubMed

    Chen, Yuanyuan; Song, Gang; Xiao, Jinghua; Yu, Li; Zhang, Jiasen

    2013-01-14

    We propose a novel V-shaped Ag nanowire structure as a subwavelength polarization beam splitter. When an incident light is focused onto the junction of the two branches, two surface plasmon polaritons (SPPs) are launched and propagate along the two branches. The polarizations of the emission light from the two ends are always parallel to the directions of the branches and the splitting ratio can be adjusted by changing the polarization of the incident light. The polarization characteristic originates from the fact that only single plasmonic waveguide mode exists in the thin nanowire and high order modes are cutoff. The near-field coupling between the two branches dominates the SPPs launching and the splitting ratio, which are very different with the single nanowire case. The V-shaped nanowire structure will have many potential applications in the integration of plasmonic devices, such as plasmonic router or polarizer. PMID:23388925

  1. Cross polarization in beam waveguide-fed Cassegrain reflector antennas

    NASA Astrophysics Data System (ADS)

    Houshmand, Bijan

    1991-02-01

    The sensitivity of the cross-polarization level to a deviation from the geometrical condition derived by Mizusawa and Kitsuregawa (1973) for different geometrical configurations is studied. This condition restricts the number of possible beam waveguide configurations for beam waveguide-fed Cassegrain reflector (BFCR) antennas. For a symmetrical feed, this condition results in a symmetrical aperture distribution with no cross-polarized component. By examining a number of beam waveguide configurations satisfying the condition, it was observed that for linearly polarized feed, the cross-polarization level is very sensitive to a deviation from this condition. For circularly polarized feed, deviation from this condition does not increase the cross-polarization level; however, it results in the squinting of the beam for BFCRs.

  2. Quantum analysis of polarization properties of optical beams

    SciTech Connect

    Lahiri, Mayukh; Wolf, Emil

    2010-10-15

    We present a quantum treatment of polarization of optical beams and discuss some properties of beams of any state of polarization. The analysis is based on quantum-mechanical interpretation of a canonical experiment that is used to elucidate polarization properties of stochastic fields in classical optics. Our work shows how to apply some ideas and techniques, commonly used in the classical theory, for fields that cannot be treated classically.

  3. Beam moments and angular momentum in non-uniformly polarized beams

    NASA Astrophysics Data System (ADS)

    Serna, Julio; Piquero, Gemma

    2009-05-01

    The angular momentum of non-uniformly totally polarized beams is investigated using methods from the beam characterization approach. The relationship between the elements of the beam matrix for the two components of the field and the angular momentum is given. The unconventional distribution of the polarization across the beam profile could result in contributions to both the spin and orbital terms of the angular momentum. To illustrate this, a particular example with a vortex beam is considered.

  4. Determination of the polarization states of an arbitrary polarized terahertz beam: Vectorial vortex analysis

    PubMed Central

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J. Scott; Otani, Yukitoshi

    2015-01-01

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1–1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams. PMID:25799965

  5. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media.

    PubMed

    Gu, Bing; Wen, Bo; Rui, Guanghao; Xue, Yuxiong; Zhan, Qiwen; Cui, Yiping

    2016-04-01

    Light fields with structured polarization distribution interacting with structured media will result in many novel optical effects in both the linear and nonlinear regimes. In this work, we report a theoretical investigation of both vectorial self-diffraction behaviors and polarization evolution characteristics of a radially polarized beam induced by anisotropic Kerr nonlinearity. By taking the polarization-orientation dependence of the third-order refractive nonlinearity, we study the far-field vectorial self-diffraction patterns of the radially polarized beam using the vectorial Rayleigh-Sommerfeld formulas. Numerical results reveal that the self-diffraction patterns with a four-fold rotational symmetry exhibit hybrid states of polarization. Moreover, the interaction of radially polarized beams with the anisotropic nonlinear Kerr media leads to the redistribution of the spin angular momentum (SAM) flux in the far-field plane. The presented work opens up new avenues for varying polarization and SAM through anisotropic optical nonlinearity. PMID:27192288

  6. Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface.

    PubMed

    Zhang, Fei; Yu, Honglin; Fang, Jiawen; Zhang, Ming; Chen, Sicheng; Wang, Jian; He, Anguo; Chen, Junyan

    2016-03-21

    We propose a single layer all-dielectric metasurface lens to simultaneously convert and focus an incident linear polarization into a radial beam with high efficiency and high numerical aperture (NA). It shows a better focusing property compared with the linearly polarized metasurface lens for high NA. A tight spot size (0.502λ) is achieved for the NA = 0.94. Additionally, the emergent polarization can in principle be switched flexibly between radially and azimuthally polarized beams by the adjustment of incident polarization direction. It is expected that our scheme may have potential value in microscopy, material processing, medicine, particles accelerating and trapping, and so on. PMID:27136854

  7. Dynamic plasmonic beam shaping by vector beams with arbitrary locally linear polarization states

    SciTech Connect

    Man, Zhongsheng; Zhang, Yuquan; Zhang, Chonglei; Du, Luping; Min, Changjun E-mail: xcyuan@szu.edu.cn; Yuan, X.-C. E-mail: xcyuan@szu.edu.cn; Zhu, Siwei; Paul Urbach, H.

    2014-07-07

    Vector beams, which have space-variant state of polarization (SOP) comparing with scalar beams with spatially homogeneous SOP, are used to manipulate surface plasmon polarizations (SPPs). We find that the excitation, orientation, and distribution of the focused SPPs excited in a high numerical aperture microscopic configuration highly depend on the space-variant polarization of the incident vector beam. When it comes to vector beam with axial symmetry, multi-foci of SPPs with the same size and uniform intensity can be obtained, and the number of foci is depending on the polarization order n. Those properties can be of great value in biological sensor and plasmonic tweezers applications.

  8. Converter of laser beams with circular polarization to cylindrical vector beams based on anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Paranin, Vyacheslav D.; Karpeev, Sergey V.; Kazanskiy, Nikolay L.; Krasnov, Andrey P.

    2016-03-01

    The optical system for converting laser beams with circular polarization to cylindrical vector beams on the basis of anisotropic crystals has been developed. The experimental research of beam formation quality has been carried out on the both polarization and structural characteristics. The research showed differences in the formation of the azimuthal and radial polarizations for Gaussian modes and Bessel beams. The boundaries of changes of the optical system parameters to form different types of polarizations with different amplitude and phase distributions have been identified.

  9. Parametric characterization of non-uniformly polarized beams

    NASA Astrophysics Data System (ADS)

    Movilla, J. M.; Piquero, G.; Martínez-Herrero, R.; Mejías, P. M.

    1998-04-01

    A new overall parameter is defined, namely, the generalized degree of polarization, which involves the spatial distribution of the polarization of a light beam. This parameter is introduced on the basis of a general treatment recently proposed [Optics Lett. 22 (1997) 206] to characterize partially polarized fields, which extends the Stokes-Mueller formalism to describe the intensity moments of a quasimonochromatic beam. The main properties and the physical meaning of this parameter with regard to the spatial inhomogeneities of the polarization state are analysed, and a general measurement procedure is proposed.

  10. Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams

    NASA Astrophysics Data System (ADS)

    Martínez-Herrero, R.; Mejías, P. M.; Piquero, G.; Ramírez-Sánchez, V.

    2008-04-01

    Several global parameters are proposed to characterize the radial and azimuthal polarization content of non-uniformly totally polarized beams. Such figures of merit can be written and measured in terms of two Stokes parameters, and also from the data at the output of either a radial or an azimuthal dichroic polarizer, integrated throughout the beam profile. The measurability of the proposed parameters has also been experimentally checked.

  11. MINI-BUNCHED AND MICRO-BUNCHED SLOW EXTRACTED BEAMS FROM THE AGS.

    SciTech Connect

    BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.SIVERTZ,M.KOSCIELNIAK,S.R.

    2004-07-05

    Brookhaven National Laboratory's (BNLs) Alternating Gradient Synchrotron (AGS) has a long history of providing slow extracted proton beams to fixed target experiments. This program of providing high quality high intensity beams continues with two new experiments currently being designed for operation at the AGS. Both experiments require slow extracted beam, but with an added requirement that those beams be bunched. Bunched beam slow extraction techniques have been developed for both experiments and initial tests have been performed. In this report we describe the beam requirements for the two experiments, and present results of detailed simulations and initial beam tests.

  12. Do Unpolarized Electrons Affect the Polarization of a Stored Beam?

    SciTech Connect

    Rathmann, Frank

    2009-08-04

    We present a short overview of the PAX physics case for polarized antiprotons. In order to progress towards a stored polarized antiproton beam, it is crucial to understand the interaction of polarized protons with unpolarized electrons. Therefore investigations that address in particular the contributions of electrons to the polarization buildup of a stored proton beam are presented here in more detail. The measurement of the depolarizing p-vectore cross section settled a long-standing controversy about the role of electrons in the polarization buildup of a stored beam by spin-filtering. Instead of studying the buildup of polarization in an initially unpolarized beam, here the inverse situation was investigated by observation of the depolarization of an initially polarized beam. For the first time, electrons in the electron cooler have been used as a target to study their depolarizing effect on a 49.3 MeV proton beam orbiting in COSY. The foreseen spin-filtering experiments at COSY-Juelich and at the AD of CERN are briefly discussed as well.

  13. ATOMIC BEAM POLARIZATION MEASUREMENT OF THE RHIC POLARIZED H-JET TARGET.

    SciTech Connect

    MAKDISI,Y.; NASS,A.; GRAHAM,D.; KPONOU,A.; MAHLER,G.; MENG,W.; RITTER,J.; ET AL.

    2005-01-28

    The RHIC polarized H-Jet measures the polarization of the RHIC proton beam via elastic scattering off a nuclear polarized atomic hydrogen beam. The atomic beam is produced by a dissociator, a beam forming system and sextupole magnets. Nuclear polarization is achieved by exchanging occupation numbers of hyperfine states using high frequency transitions. The polarization was measured using a modified form of a Breit-Rabi polarimeter including focusing magnets and another set of high frequency transitions. The sampling of a large part of the beam and low noise electronics made it possible to measure the polarization to a high degree of accuracy in a very short time period (1 min). Using this system, we measured no depolarization of the atomic beam due to the RF fields of the bunched proton beam. Time-of-Flight measurements were done using a fast chopper and a QMA at the position of the RHIC interaction point to determine the areal density of the atomic beam seen by the RHIC beam.

  14. The Pancharatnam-Berry phase in polarization singular beams

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Viswanathan, Nirmal K.

    2013-04-01

    Space-variant inhomogeneously polarized field formed due to superposition of orthogonally polarized Gaussian (LG00) and Laguerre-Gaussian (LG01) beams results in polarization singular beams with different morphology structures such as lemon, star and dipole patterns around the C-point in the beam cross-section. The Pancharatnam-Berry phase plays a critical role in the formation and characteristics of these spatially inhomogeneous fields. We present our experimental results wherein we measure the variable geometric phase by tracking the trajectory of the component vortices in the beam cross-section, by interfering with selective polarization states and by tracking different latitudes on the Poincaré sphere without the effect of a dynamic phase.

  15. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    SciTech Connect

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M A; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  16. Performance and measurements of the AGS and Booster beams

    SciTech Connect

    Weng, W.T.

    1996-06-01

    In May 1995, the AGS reached its upgrade intensity goal of 6{times}10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2{times}10{sup 13} ppp surpassing the design goal of 1.5{times}10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The critical accelerator manipulations, such as resonance stopband corrections, second harmonics cavity, direct rf feedback, gamma-transition jump, longitudinal phase space dilution, and transverse instability damping, will be described as well as some beam measurements. Possible future intensity and brightness upgrades will also be reported. {copyright} {ital 1996 American Institute of Physics.}

  17. Modeling of forming radially polarized beams on the basis of refractive elements with interference polarizer

    NASA Astrophysics Data System (ADS)

    Paranin, Vyacheslav D.; Karpeev, Sergey V.; Khonina, Svetlana N.

    2016-03-01

    The calculation and simulation of interference polarizer to generate radially polarized light is made. The method is based on converting the conical wavefront passing through the interference polarizer. The multilayer optical coating can be applied on the surface of the axicon. It is shown that in this way we noticeably reduce both the operating angle of incidence and achieve practically significant degree of polarization of the beam generated at much lower energy losses.

  18. Quasideuteron effect with a polarized {gamma}{searrow}-ray beam

    SciTech Connect

    Babusci, D.; Bellini, V.; Capogni, M.; Casano, L.; Curro Dossi, B.; DAngelo, A.; De Lima, D.A.; Ghio, F.; Girolami, B.; Hu, L.; Leidemann, W.; Lugaresi, F.; Moricciani, D.; Orlandini, G.; Picozza, P.; Schaerf, C.

    1996-10-01

    The {sup 28}Si({gamma}{searrow},{ital np}){ital X} reaction has been studied using the Ladon polarized and tagged {gamma}-ray beam, in the energy region between 50 and 75 MeV. The data have been compared with the {ital quasideuteron} mechanism. At the highest photon energy the applied model leads to a satisfactory description of both the unpolarized cross section and beam polarization asymmetry. {copyright} {ital 1996 The American Physical Society.}

  19. FIDDLING CARBON STRINGS WITH POLARIZED PROTON BEAMS.

    SciTech Connect

    HUANG, H.; KURITA, K.

    2006-05-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region was first tested in the Brookhaven AGS successfully. CNI Polarimeters were then installed in the AGS and both RHIC rings. The polarimeter consists of ultra-thin carbon targets and silicon strip detectors. The waveform digitizers are used for signal readout, which allows deadtime-less data processing on the fly. Polarimeters are crucial instrumentation for the RHIC spin physics program. This paper summarizes the polarimeter design issues and operation results.

  20. Radially and azimuthally polarized nonparaxial Bessel beams made simple

    NASA Astrophysics Data System (ADS)

    Ornigotti, Marco; Aiello, Andrea

    2014-05-01

    We present a method for the realization of radially and azimuthally polarized nonparaxial Bessel beams in a rigorous but simple manner. This result is achieved by using the concept of Hertz vector potential to generate exact vector solutions of Maxwell's equations from scalar Bessel beams. The scalar part of the Hertz potential is built by analogy with the paraxial case as a linear combination of Bessel beams carrying a unit of orbital angular momentum. In this way we are able to obtain spatial and polarization patterns analogous to the ones exhibited by the standard cylindrically polarized paraxial beams. Applications of these beams are discussed. This work has been carried out while this author was still affiliated with Max Planck Institute for the Science of Light.

  1. Recent developments in stored polarized electron positron beams

    NASA Astrophysics Data System (ADS)

    Rossmanith, R.

    1992-01-01

    In nearly all electron or positron storage rings the beams are polarized vertically by the Sokolov-Ternov effect. The existence of polarized beams was established both in low energy rings such as ACO (the first storage ring in which the Sokolov-Ternov polarization effect was measured), BESSY, and VEPP2 and in high energy rings such as TRISTAN, HERA, and LEP. As a result beam polarization seems to be an inherent property of electron-positron rings. It should be noted that this free polarization was never used for high energy experiments except in those instances in which exact energy calibration measurements were performed. Proposals for using stored polarized beams for internal target experiments are fairly new. Experiments with polarized longitudinal beams in LEP are still in the stage of planning. The efforts of the last few years are summarized in order to arrive at a better understanding of the spin dynamics in electron positron storage rings and to compare the experimental results with the theory. Polarimeters are not discussed.

  2. Radially polarized Bessel-Gauss beams: decentered Gaussian beam analysis and experimental verification.

    PubMed

    Schimpf, Damian N; Putnam, William P; Grogan, Michael D W; Ramachandran, Siddharth; Kärtner, Franz X

    2013-07-29

    We derive solutions for radially polarized Bessel-Gauss beams in free-space by superimposing decentered Gaussian beams with differing polarization states. We numerically show that the analytical result is applicable even for large semi-aperture angles, and we experimentally confirm the analytical expression by employing a fiber-based mode-converter. PMID:23938719

  3. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    SciTech Connect

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  4. Polarizing mechanisms for stored and beams interacting with a polarized target.

    PubMed

    Milstein, A I; Strakhovenko, V M

    2005-12-01

    The kinetics of the polarization buildup during the interaction of stored protons (antiprotons) with a polarized target is considered. It is demonstrated that for small scattering angles, when a projectile remains in the beam, the polarization buildup is completely due to the spin-flip transitions. The corresponding cross sections turn out to be negligibly small for a hydrogen gas target as well as for a pure electron target. For the latter, the filtering mechanism also does not provide a noticeable beam polarization. PMID:16486071

  5. A long-range polarization-controlled optical tractor beam

    NASA Astrophysics Data System (ADS)

    Shvedov, Vladlen; Davoyan, Arthur R.; Hnatovsky, Cyril; Engheta, Nader; Krolikowski, Wieslaw

    2014-11-01

    The laser beam has become an indispensable tool for the controllable manipulation and transport of microscopic objects in biology, physical chemistry and condensed matter physics. In particular, ‘tractor’ laser beams can draw matter towards a laser source and perform, for instance, all-optical remote sampling. Recent advances in lightwave technology have already led to small-scale experimental demonstrations of tractor beams. However, the realization of long-range tractor beams has not gone beyond the realm of theoretical investigations. Here, we demonstrate the stable transfer of gold-coated hollow glass spheres against the power flow of a single inhomogeneously polarized laser beam over tens of centimetres. Additionally, by varying the polarization state of the beam we can stop the spheres or reverse the direction of their motion at will.

  6. Polarization of a stored beam by spin-filtering

    NASA Astrophysics Data System (ADS)

    Augustyniak, W.; Barion, L.; Barsov, S.; Bechstedt, U.; Benati, P.; Bertelli, S.; Carassiti, V.; Chiladze, D.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Dymov, S.; Engels, R.; Erwen, W.; Fiorini, M.; Gaisser, M.; Gebel, R.; Goslaswski, P.; Grigoriev, K.; Guidoboni, G.; Kacharava, A.; Khoukaz, A.; Kulikov, A.; Kleines, H.; Langenberg, G.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Macharashvili, G.; Maier, R.; Marianski, B.; Martin, S.; Mchedlishvili, D.; Merzliakov, S.; Meshkov, I. N.; Meyer, H. O.; Mielke, M.; Mikirtychiants, M.; Mikirtychiants, S.; Nass, A.; Nekipelov, M.; Nikolaev, N.; Nioradze, M.; Oellers, D.; Papenbrock, M.; Pappalardo, L.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Sarkadi, J.; Smirnov, A.; Seyfarth, H.; Shmakova, V.; Statera, M.; Steffens, E.; Stein, H. J.; Stockhorst, H.; Straatman, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Thörngren-Engblom, P.; Trusov, S.; Trzcinski, A.; Valdau, Yu.; Vasiliev, A.; von Würtemberg, K. M.; Weidemann, Chr.; Wüstner, P.; Zupranski, P.

    2012-11-01

    The PAX Collaboration has successfully performed a spin-filtering experiment with protons at the COSY-ring. The measurement allowed the determination of the spin-dependent polarizing cross section, that compares well with the theoretical prediction from the nucleon-nucleon potential. The test confirms that spin-filtering can be adopted as a method to polarize a stored beam and that the present interpretation of the mechanism in terms of the proton-proton interaction is correct. The outcome of the experiment is of utmost importance in view of the possible application of the method to polarize a beam of stored antiprotons.

  7. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  8. A beam waveguide linearly polarized KU band feed system

    NASA Astrophysics Data System (ADS)

    Flannery, J. B.

    The linearly polarized KU band beam waveguide feed system considered was designed for use with large Cassegrain antennas typical of those associated with satellite comunications earth stations. The beam waveguide technique permits fixed ground installations of the transmitters and low noise receivers and eliminates the large equipment room usually mounted behind the reflector vertex. The feed system consists of a tapered corrugated wall horn, a matching network, a TE21 mode coupler, three differential phase shifters, a choke coupled rotatable, orthogonal mode transducer, and a servo amplifier system. Attention is given to TE21 mode coupler operation, TE21 mode coupling and directivity, a horn description, a beam wave description, and polarization control.

  9. Polarimetry for Stored Polarized Hadron Beams

    NASA Astrophysics Data System (ADS)

    Stephenson, E. J.

    2016-02-01

    Feasibility studies using 0.97-GeV/c polarized deuterons to determine the suitability of storage rings in the search for intrinsic electric dipole moments have led to new developments in storage ring polarimeters. Efficiency has increased with the use of thick carbon targets. The calibration of the effects of geometric and rate-dependent errors has made possible the subtraction of these systematic errors, resulting in sensitivities at or below 10‑5 to polarization changes during the time of the store. Tagging polarimeter events with the clock time had made available the turn number for each event, making possible longitudinal profile and horizontal polarization measurements. These have been used to explore the correction of second-order contributions to decoherence using sextupole fields, yielding horizontal polarization lifetimes as long as 20 minutes. Such studies may be extended to protons and 3He.

  10. Polarization singularities in nondiffracting Mathieu-Poincaré beams

    NASA Astrophysics Data System (ADS)

    Garcia-Gracia, H.; Gutiérrez-Vega, J. C.

    2016-01-01

    We introduce a new family of nondiffracting full Poincaré beams based on a superposition of nondiffracting Mathieu beams, which we call the Mathieu-Poincaré beams (MPBs). We studied the polarization structure of the MPBs and how it is traced on the Poincaré sphere, and found that the first region mapping the Poincaré sphere is contained within an ellipse of circular polarization of constant size for all beam orders m for a given semi-focal distance and as expected a higher order m\\gt 1 beam covers the Poincaré sphere m-fold in a nonuniform way given the noncircular symmetry of the Mathieu beams. Finally, we looked into the polarization singularities along the inter-focal line and observed that the all m C-points have a star (lemon) morphology for even (odd) beam order m when we used positive helical Mathieu beams to synthesize the MPBs, and that this relationship is reversed when we switched to a negative helical Mathieu beam.

  11. Generation of valley-polarized electron beam in bilayer graphene

    SciTech Connect

    Park, Changsoo

    2015-12-28

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents.

  12. Detection of partial polarization of light beams with dipolar nanocubes.

    PubMed

    Leppänen, Lasse-Petteri; Saastamoinen, Kimmo; Lehtolahti, Joonas; Friberg, Ari T; Setälä, Tero

    2016-01-25

    We confirm experimentally that the degree and state of polarization of a random, partially polarized electromagnetic beam can be obtained by probing the field with a nanoscatterer. We use a gold nanocube on silicon substrate as a local scatterer and detect the polarization characteristics of the scattered far field, which enables us to deduce the state of partial polarization of the field at the nanoprobe site. In contrast to previous beam characterization methods where spatial resolution is limited by the pixel size of the detector, the accuracy of the current technique is specified by the particle size. Our work is the first step towards polarization-state detection of random optical near fields for which the use of nanoprobes is required. PMID:26832527

  13. Thermoelectric Generators from AgBiTe and AgSbTe Thin Films Modified by High-Energy Beam

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Muntele, C.; Ila, D.

    2015-06-01

    The ternary chalcogenides AgBiTe2 and AgSbTe2 belong to the family of semiconductors with disordered NaCl cubic structure in which Ag and Sb occupy metal sublattices. Both compounds are very interesting due to their thermoelectric properties. We have grown single-layer AgBiTe and AgSbTe thin films on silicon (Si) and fused silica (Suprasil) substrates using electron beam deposition. High-energy (MeV) Si-ion bombardment was performed on the thin-film samples at five different fluences between 5 × 1013 ions/cm2 and 7 × 1015 ions/cm2. We have measured the thermoelectric efficiency (figure of merit, ZT) of the fabricated thermoelectric devices by measuring the cross-plane thermal conductivity using the third-harmonic (3 ω) method, the cross-plane Seebeck coefficient, and the in-plane electrical conductivity using the van der Pauw method before and after MeV Si-ion bombardment. Rutherford backscattering spectrometry and the Rutherford Universal Manipulation Program (RUMP) simulation package were used to analyze the elemental composition and thickness of the deposited materials on the substrates. The RUMP simulation gave thicknesses for the AgBiTe and AgSbTe thin films of 270 nm and 188 nm, respectively. The figure of merit for AgBiTe started to decrease from the value of 0.37 for the virgin sample after bombardment. We saw similar decreasing behavior for the AgSbTe thin-film system. The figure of merit for AgSbTe started to decrease from the value of 0.88 for the virgin sample after bombardment. MeV Si-ion bombardment caused changes in the thermoelectric properties of the thin films.

  14. Microstrip Antenna Generates Circularly Polarized Beam

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1986-01-01

    Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.

  15. Process and apparatus for measuring degree of polarization and angle of major axis of polarized beam of light

    DOEpatents

    Decker, Derek E.; Toeppen, John S.

    1994-01-01

    Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.

  16. Estimation of p-bar beam polarization due to spin filtering by a polarized hydrogen target

    SciTech Connect

    Strakhovenko, V.

    2008-04-30

    The polarization buildup in a p-bar beam due to the interaction of stored antiprotons with polarized protons of a hydrogen target is considered. The corresponding cross section is calculated in the energy interval 20polarization in a time comparable with the beam lifetime.

  17. Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays

    NASA Astrophysics Data System (ADS)

    Han, Chunrui; Tam, Wing Yim

    2015-02-01

    We propose ultra-broadband reflective and absorptive polarizers in the visible range using multi-scaled Ag nano wire-slit arrays. The nano arrays can be tuned from reflective to absorptive by incorporating Ag wires/strips with different lengths/widths. The ultra-broadband nature of the absorptive array, with averaged absorption as high as ˜80%, is due to collective excitations of plasmonic resonances in the Ag wires/strips with different length scales. The nano arrays are realized experimentally by using a simple two-times shadowing vapor deposition method. They exhibit broadband transmission difference, in good agreement with simulations. Our multi-scaled nano array design has potential applications as broadband linear polarizers and anti-reflective materials in both optics and photovoltaics.

  18. Characterization of non-uniformly totally polarized beams

    NASA Astrophysics Data System (ADS)

    Martinez-Herrero, R.; Mejías, P. M.; Piquero, G.

    2006-02-01

    Several overall parameters are introduced to characterize the linear or circular polarization content of a non-uniformly totally polarized beam over the region of its wavefront where the irradiance is significant. These parameters are determined from the values of the Stokes parameters. Experimental examples are also given to check both, the physical meaning of the proposed parameters and the validity of the measurement procedure.

  19. Multi-focus of modulated polarized Airy beam

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyang; Lin, Jie; Tan, Jiubin; Jin, Peng

    2016-07-01

    The focusing performance of a modulated polarized Airy beam is explored by using the Richards and Wolf vectorial diffraction model in a high numerical aperture system. The multiple foca appeared on the focal plane or along the optical axis when a complex amplitude modulating function was introduced. Two focusing spots with long-focal-depth were additionally observed due to the Airy beam and complex amplitude modulation. The distance between the focuses were changed from 1.15λ to 3.56λ with FWHM of 0.9λ for one-dimensional linear polarized incident beam and from 1.15λ to 3.64λ for two-dimensional beam. The multiple focusing spots are expected to apply in the field of optical trapping and particle acceleration.

  20. Beam Squint Due to Circular Polarization in a Beam-Waveguide Antenna

    NASA Astrophysics Data System (ADS)

    Cwik, T.; Jamnejad, V.

    1996-10-01

    A short study was performed to demonstrate the beam-squint effect due to the circular polarization in the beam-waveguide system of DSS 24 and to obtain quantitative values for this squint. Beam squint occurs when a circularly polarized feed illuminates a reflector system in an asymmetric or offset manner. It occurs in the plane transverse to the plane of asymmetry, and its direction changes with the sense of polarization. The beam-squint effect for the nonbeam-waveguide DSN antennas is minimal or nonexistent in the nearly symmetrical configuration of the reflectors. In the beam-waveguide systems, however, there are three asymmetric or offset-fed mirrors, M5, M3, and M2, that cause beam squint. It is shown that the squint is caused primarily by the M5 mirror, and the squint caused by the M3{M2 pair of mirrors is mostly canceled due to their mirror-image symmetry. The maximum amount of the calculated squint in the beam-waveguide system is about 2.75 mdeg, and this translates into a swing value of 5.5 mdeg when a feed switch from right to left polarization is made. The resulting beam-pointing error can cause a gain loss of about 0.07 dB and must be taken into account in the beam-calibration procedures. Suggestions are made for future work on the ways to either reduce or entirely remove the squint effects.

  1. Random sources for beams with azimuthally varying polarization properties.

    PubMed

    Wang, Fei; Korotkova, Olga

    2016-07-11

    We develop analytical model for statistically stationary sources that radiate beam-like far fields with polarization properties separately controllable in both radial and azimuthal variables. In particular, we demonstrate that for a suitable choice of source parameters a vortex-like far-field distribution of the degree of polarization (DOP) can be obtained. Furthermore, we report the experimental generation of such sources using an optical setup with Mach-Zehnder interferometer having two independent spatial light modulators in its branches. The experimental results agree well with the theoretical predictions. The new class of sources may find uses in imaging, communication and sensing applications based on source polarization diversity. PMID:27410819

  2. Chemical patterning of Ag(111): Spatially confined oxide formation induced by electron beam irradiation

    SciTech Connect

    Guenther, S.; Reichelt, R.; Wintterlin, J.; Barinov, A.; Mentes, T. O.; Nino, M. A.; Locatelli, A.

    2008-12-08

    Low energy electron irradiation of a Ag(111) surface during NO{sub 2} adsorption at 300 K induces formation of Ag oxide. Using a spatially confined electron beam, small Ag{sub 2}O spots could be grown with a sharp, {approx}100 nm wide, boundary to the nonirradiated metallic surface. Since the structure size will mainly depend on the sharpness of the irradiating electron beam, this process has the potential of a single step nanostructuring process. Temperature treatment offers an easy way to manipulate the boundary between oxide and metallic silver by steering a chemical front.

  3. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller.

    PubMed

    Jofre, M; Anzolin, G; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W

    2012-05-21

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than ∼ 20 ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust. PMID:22714214

  4. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  5. AgI microplate monocrystals with polar {0001} facets: spontaneous photocarrier separation and enhanced photocatalytic activity.

    PubMed

    Kuang, Qin; Zheng, Xiaoli; Yang, Shihe

    2014-02-24

    Elucidating the facet-dependent photocatalytic activity of semiconductor photocatalysts is important in improving the overall efficiency of photocatalysis. Furthermore, combining facet control with selective deposition of oxidation and/or reduction cocatalysts on specific faces of semiconductor photocatalysts is potentially an effective strategy to synergistically optimize the functionality of photocatalysts. In the present study, high-purity wurtzite-type β-AgI platelet microcrystals with polar {0001} facets were prepared by a facile polyvinylpyrrolidone-assisted precipitation reaction. The polar-faceted AgI microplates were used as archetypes to demonstrate preferential diametric migration (i.e., effective separation) of photogenerated electrons and holes along the c axis. Such vectorial electron-hole separation stems from the asymmetric surface structures, which give rise to distinct photoexcited reaction behaviors on the ±(0001) polar facets of wurtzite-type semiconductors. Furthermore, on selective deposition of Ag and MnOx (1.5AgI microplates in degrading organic pollutants was dramatically enhanced thanks to the broad light-absorption range, strong dye-adsorption ability, and effective spatial separation of photocarriers. PMID:24449437

  6. Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Nemanich, Robert J.

    2011-05-01

    This research addresses the wavelength dependence of the fabrication of Ag nanostructures through photoinduced deposition using single crystal ferroelectric lithium niobate as a template. The photoinduced deposition involves ultraviolent light illumination of polarity patterned lithium niobate while immersed in a AgNO3 solution. The results focus on the differences of the Ag nanostructure formation process on the positive and negative domains and domain boundaries. The results indicate that for below-band-gap excitation, a very low density of nanostructures is observed. However, for all above-gap-excitation wavelengths, deposition occurs on both polarity surfaces and at the domain boundaries. The density is greatest at the domain boundaries and reduced densities of smaller nanostructures are observed to form on both the positive and negative domains. The deposition on the domain surfaces is greatest for the shortest wavelengths, whereas the domain selectivity is increased for wavelengths just above the band gap. The external screening and weak band bending of single crystal lithium niobate introduces an enhanced electric field at the domain boundary. The enhanced electric field leads to migration of electrons to the domain boundary and consequently enhanced formation of Ag nanoparticles along the boundary. The variation in the reduction rate versus illumination wavelength is attributed to the light absorption depth and the competition between the photochemical and photoelectric deposition processes. To explore the transition from surface to bulk screening of the polarization charge, oxygen implanted PPLN surfaces were prepared and used for the Ag photoinduced deposition. Consistent with the transition to internal (bulk) screening, the Ag nanoparticle formation on the oxygen implanted PPLN surfaces showed suppressed boundary nanowire formation.

  7. Stability of H(+) beams in the polar wind

    NASA Technical Reports Server (NTRS)

    Barakat, A. R.; Schunk, R. W.

    1989-01-01

    The effect of energetic H(+) beams on the stability of the polar wind in the classical model is studied with regard to the excitation of electrostatic waves. Consideration is given to cases covering a wide range of electron-to-background temperature ratios and beam-to-background ion density ratios, assuming a relatively cold beam. The minimum beam drift velocity required to destabilize the plasma is determined by a combination of the Nyquist technique and a direct solution of the plasma dispersion equation. It is found that the plasma can be destabilized for relative drift energies less than about 1 eV. Also, it is shown that the plasma is less stable for large electron temperatures and for comparable ion and beam densities.

  8. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    SciTech Connect

    HUANG, H.; AHRENS, L.A.; BAI, M.; BRAVAR, A.; BROWN, K.; COURANT, E.D.; GARDNER, C.; GLENN, J.W.; LUCCIO, A.U.; MACKAY, W.W.; PTITSYN, V.; ROSER, T.; TEPIKIAN, S.; TSOUPAS, N.; WOOD, J.; YIP, K.; ZELENSKI, A.; ZENO, K.

    2006-06-26

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  9. Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes

    SciTech Connect

    Huang, H.; Ahrens, L. A.; Bai, M.; Bravar, A.; Brown, K.; Courant, E. D.; Gardner, C.; Glenn, J. W.; Luccio, A. U.; MacKay, W. W.; Ptitsyn, V.; Roser, T.; Tepikian, S.; Tsoupas, N.; Wood, J.; Yip, K.; Zelenski, A.; Zeno, K.; Lin, F.; Okamura, M.

    2007-06-13

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  10. Measurement of turbulences influence on the laser beam polarization state

    NASA Astrophysics Data System (ADS)

    Latal, Jan; Vitasek, Jan; Hajek, Lukas; Koudelka, Petr; Siska, Petr; Hejduk, Stanislav; Vanderka, Ales; Vasinek, Vladimir

    2015-07-01

    This article is dealing with evaluation of air turbulences in uence on the laser beam in the simulation box with regards to change of beam polarization state. For measurement the laser optical source LDM1550 operating at 1550 nm and polarimeter PAX5710 were used. The laser source was placed in front of simulation box that served for generation of stable turbulent environment. The simulation of turbulent environment was generated by high-speed ventilators PMD1212PMB1-A. The thermal turbulences were created by Empire CTH-5000 and Solac TH 8325 heaters. All heaters were placed along the side of simulation box. With the help of polarimeter and detector PAN5710IR3 were then subsequently recorded changes of polarization state of the optical beam with regards to changes of turbulence condition within the box. The results are then discussed and interpreted with the help of statistic methods in the end of the article.

  11. Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration

    NASA Astrophysics Data System (ADS)

    Minkovski, N.; Petrov, G. I.; Saltiel, S. M.; Albert, O.; Etchepare, J.

    2004-09-01

    Nonlinear polarization rotation and generation of a polarization component orthogonal to the input beam were observed along fourfold axes of YVO4 and BaF2 crystals. We demonstrate experimentally that in both crystals the angle of rotation is proportional, at low intensities, to the square of the product of the input intensity and the crystal length and is the result of simultaneous action of two third-order processes. This type of nonlinear polarization rotation is driven by the real part of the cubic susceptibility. The recorded energy exchange between the two orthogonal components can exceed 10%. It is to our knowledge the highest energy-conversion efficiency achieved in a single beam nonresonant χ(3) interaction. A simple theoretical model is elaborated to describe the dependence of nonlinear polarization rotation and orthogonal polarization generation on the intensity of the input beam at both low- and high-intensity levels. It reveals the potential contributions from the real and the imaginary parts of the susceptibility tensor. Moreover, this kind of measurement is designed to permit the determination of the magnitude and the sign of the anisotropy of the real part of third-order nonlinearity in crystals with cubic or tetragonal symmetry on the basis of polarization-rotation measurements. The χxxxx(3) component of the third-order susceptibility tensor and its anisotropy sign and amplitude value for BaF2 and YVO4 crystals are estimated and discussed.

  12. Compact terahertz wave polarization beam splitter using photonic crystal.

    PubMed

    Mo, Guo-Qiang; Li, Jiu-Sheng

    2016-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of a terahertz wave polarization state exhibits tremendous potential in developing applications of terahertz science and technology. We propose an approach to efficiently split transverse-electric and transverse-magnetic polarized terahertz waves into different propagation directions over the frequency range from 0.9998 to 1.0007 THz. Both the plane wave expansion method and the finite-difference time-domain method are used to calculate and analyze the transmission characteristics of the proposed device. The present device is very compact and the total size is 1.02  mm×0.99  mm. This polarization beam splitter performance indicates that the structure has a potential application for forthcoming terahertz-wave integrated circuit fields. PMID:27607286

  13. Polarization of the Sigma Minus Hyperon Produced by a Polarized Neutral Particle Beam

    NASA Astrophysics Data System (ADS)

    Nguyen, An Nhatton

    A spin transfer technique has been tried in an attempt to produce a beam of polarized hyperons. The method makes use of a two-stage targeting scheme where unpolarized protons from Fermilab's Tevatron incident on target number one (Cu) at production angles of +/-2.0 mrad would produce a beam of particles containing polarized Lambdas and Xis as well as neutrons and Ks. This secondary beam would then be swept magnetically to retain only neutral particles and brought to bear on target number two (Cu) at 0.0 mrad, producing a tertiary beam of hyperons. The polarization of some 1.3 millions reconstructed Sigma^{-} to npi^{-} events in this tertiary beam (the Sigma^{ -} having been produced in the inclusive reaction neutrals + Cu to Sigma^{ -} + X) has been measured at average Sigma^{-} momenta 320 GeV/c (1.14 millions events) and 410 GeV/c (135,000 events) and found to be |P| = 3.9 +/- 3.2 +/- 1.8% and |P| = 13.9 +/- 8.1 +/- 2.0% respectively, where the first uncertainty is statistical and the second systematic. These polarizations are small and consistent with zero, and preclude a meaningful measurement of the Sigma^{-} magnetic moment by the spin precession method. The sign of the polarizations at the target is ambiguous, giving rise to two possible different solutions for the magnetic moment--one of which distinctly disagrees with the world average value for the moment. However, this solution fits the data slightly better than the other. This inconsistency would not exist if the polarization is, in fact, zero.

  14. Excitation of plasmons in Ag/Fe/W structure by spin-polarized electrons

    SciTech Connect

    Samarin, Sergey N.; Kostylev, Mikhail; Williams, J. F.; Artamonov, Oleg M.; Baraban, Alexander P.; Guagliardo, Paul

    2015-09-07

    Using Spin-polarized Electron-Energy Loss Spectroscopy (SPEELS), the plasmon excitations were probed in a few atomic layers thick Ag film deposited on an Fe layer or on a single crystal of W(110). The measurements were performed at two specular geometries with either a 25° or 72° angle of incidence. On a clean Fe layer (10 atomic layers thick), Stoner excitation asymmetry was observed, as expected. Deposition of a silver film on top of the Fe layer dramatically changed the asymmetry of the SPEELS spectra. The spin-effect depends on the kinematics of the scattering: angles of incidence and detection. The spin-dependence of the plasmon excitations in the silver film on the W(110) surface and on the ferromagnetic Fe film is suggested to arise from the spin-active Ag/W or Ag/Fe interfaces.

  15. Interaction of a converging laser beam with a Ag colloidal solution during the ablation of a Ag target in water.

    PubMed

    Resano-Garcia, Amandine; Battie, Yann; Naciri, Aotmane En; Chaoui, Nouari

    2016-05-27

    We studied the nanosecond laser-induced shape modifications of Ag colloids exposed to a converging laser beam during the ablation of a Ag target in water. To this end, we performed a series of laser ablation experiments in which the laser energy was varied while all other parameters were kept constant. In addition to transmission electron microscopy (TEM), the shape distribution of the Ag nanoparticles was determined by modelling the extinction spectra of the final colloidal solutions using theoretical calculations based on shape distributed effective medium theory (SDEMT). From these calculations, two physical parameters named sphericity and dispersity were introduced and used to gauge the evolution of the shape distribution of the particles. As the laser energy on the target was increased from 5 to 20 mJ/pulse, an apparently abrupt modification of the shape distribution of the particles was evidenced by both TEM and SDEMT calculations. This change is explained in terms of competitive fragmentation, growth and reshaping processes. On the basis the heating-melting-vaporization model, we demonstrate how the competition between these processes, occurring at different locations of the converging beam, determines the shape distribution of the final product. We highlight the relevance of the fluence gradient along the beam path and the laser interaction volume on the laser-induced modifications of the suspended particles during the ablation process. PMID:27095289

  16. Interaction of a converging laser beam with a Ag colloidal solution during the ablation of a Ag target in water

    NASA Astrophysics Data System (ADS)

    Resano-Garcia, Amandine; Battie, Yann; Naciri, Aotmane En; Chaoui, Nouari

    2016-05-01

    We studied the nanosecond laser-induced shape modifications of Ag colloids exposed to a converging laser beam during the ablation of a Ag target in water. To this end, we performed a series of laser ablation experiments in which the laser energy was varied while all other parameters were kept constant. In addition to transmission electron microscopy (TEM), the shape distribution of the Ag nanoparticles was determined by modelling the extinction spectra of the final colloidal solutions using theoretical calculations based on shape distributed effective medium theory (SDEMT). From these calculations, two physical parameters named sphericity and dispersity were introduced and used to gauge the evolution of the shape distribution of the particles. As the laser energy on the target was increased from 5 to 20 mJ/pulse, an apparently abrupt modification of the shape distribution of the particles was evidenced by both TEM and SDEMT calculations. This change is explained in terms of competitive fragmentation, growth and reshaping processes. On the basis the heating–melting–vaporization model, we demonstrate how the competition between these processes, occurring at different locations of the converging beam, determines the shape distribution of the final product. We highlight the relevance of the fluence gradient along the beam path and the laser interaction volume on the laser-induced modifications of the suspended particles during the ablation process.

  17. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    SciTech Connect

    Leng Jian; Yu Zhinong; Xue Wei; Zhang Ting; Jiang Yurong; Zhang Jie; Zhang Dongpu

    2010-10-15

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 {Omega}/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32x10{sup -2} {Omega}{sup -1}, an average transmittance over 92% and a sheet resistance of 7.1 {Omega}/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  18. Arbitrary polarized beams generated and detected by one phase-only LC-SLM

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Qi, Junli; Wang, Weihua; Chen, Yu; Gu, Guohua; Chu, Delin; Zhang, Qianghua; Deng, Haifei; Zhao, Sugui; Han, Jiajia; Wang, Rongfei

    2014-09-01

    Arbitrary polarized beams, including homogeneously polarized beams and cylindrical vector beams, have been generated by an experimental setup with one phase-only liquid crystal spatial light modulator, and a four-path method was demonstrated to measure the polarization degree of detected beams. Besides, another method was proposed to measure the polarization directions of cylindrical vector beams. The polarized states can be calculated by controlling the spatial light modulator and optical intensity obtained from a CCD. The generation setup and detection methods have simple structure and low cost, and they are available for multi wavelength input beams, and the detection methods can realize real-time and on-line measurement.

  19. Higher-order polarization singularitites in tailored vector beams

    NASA Astrophysics Data System (ADS)

    Otte, E.; Alpmann, C.; Denz, C.

    2016-07-01

    Higher-order polarization singularities embedded in tailored vector beams are introduced and experimentally realized. As holographic modulation allows to define order and location of any vectorial singularity, the surrounding vector field can be dynamically shaped. We demonstrate light fields associated with flowers or spider webs due to regular and even irregular patterns of the orientation of polarization ellipses. Beyond that, not yet investigated hybrid structures are introduced that allow generating networks of flowers and webs in very close vicinity. Our results pave the way to applications of singular optics in spatially extended, optimized optical tweezing and high-resolution imaging.

  20. Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sohn, Jong Hwa; Pham, Long Quoc; Kang, Hyun Suk; Park, Ji Hyun; Lee, Byung Cheol; Kang, Young Soo

    2010-11-01

    Conducting silver paste was prepared by using Ag nanoparticles which were synthesized by e-beam irradiation method (from KAERI); its conductivity was comparatively determined with Ag nanoparticles which were prepared by thermolysis method (commercial). The silver nanoparticles with the diameter of approximately 150 nm size prepared by e-beam irradiation were mixed with glass frit and sintered for 1 h at 500 °C. It is presumably concluded that the wt% of silver nanoparticle, size distribution and homogenous dispersibility of Ag nanoparticles in the pastes are the critical factors for the high conductivity of the paste. Among the various wt% of silver nanoparticle in the conducting silver pastes, silver paste with 90 wt% of silver nanoparticle has the highest conductivity as 1.6×10 4 S cm -1. This conductivity value is 1.6 times higher than the Ag pastes which were prepared with silver nanoparticles obtained by thermolysis method.

  1. Comment on "effect of a polarized hydrogen target on the polarization of a stored proton beam".

    PubMed

    MacKay, W W; Montag, C

    2006-02-01

    Meyer [Phys. Rev. E 50, 1485 (1994)] analyzed the filtering mechanism of polarizing a stored beam by scattering from an internal polarized target. We noticed in Meyer's derivation of Eq. (4) of that paper that he had added a new twist to an old argument [W. Brückner, Physics with Antiprotons at LEAR in the ACOL Era: Proceedings of the Third LEAR Workshop, Tignes, Savoie, France, January 19-26, 1985 (Editions Frontières, Gif-sur-Yvette, France, 1985), p. 245] by allowing some particles that are spin flipped to be kept in the beam. We show that this invalidates the old result and leads to a more complicated expression for the buildup of polarization. PMID:16605487

  2. Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction.

    PubMed

    Ao, Xianyu; He, Sailing

    2005-08-15

    A two-dimensional metallo-dielectric photonic crystal of negative refraction was designed for the application of polarization beam splitters. To match the refractive index of air, the effective refractive index of the designed photonic crystal is -1 for TE polarization and +1 for TM polarization. Two types of polarization beam splitter are presented. PMID:16127940

  3. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  4. Polarizing Grids, their Assemblies and Beams of Radiation

    NASA Technical Reports Server (NTRS)

    Houde, Martin; Akeson, Rachel L.; Carlstrom, John E.; Lamb, James W.; Schleuning, David A.; Woody, David P.

    2001-01-01

    This article gives an analysis of the behavior of polarizing grids and reflecting polarizers by solving Maxwell's equations, for arbitrary angles of incidence and grid rotation, for cases where the excitation is provided by an incident plane wave or a beam of radiation. The scattering and impedance matrix representations are derived and used to solve more complicated configurations of grid assemblies. The results are also compared with data obtained in the calibration of reflecting polarizers at the Owens Valley Radio Observatory (OVRO). From these analysis, we propose a method for choosing the optimum grid parameters (wire radius and spacing). We also provide a study of the effects of two types of errors (in wire separation and radius size) that can be introduced in the fabrication of a grid.

  5. Effects of Polarization Azimuth of Writing Beams on Diffraction Properties in Vector Holograms Using Radially Polarized Light

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Matsumoto, Taro; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro

    2012-06-01

    It is very important for realizing the polarization-multiplex holographic memory to clarify the optical properties of vector holograms recorded using the inhomogeneous polarized beams. In the present paper we present a simple yet useful method using the radially polarized writing beams to systematically investigate the optical properties of complicated vector holograms and preliminary data about effects of polarization azimuth of writing beams on diffraction properties. The diffraction properties of the vector holograms written in the azobenzene-containing polymers were strongly dependent on the angle between the grating vector and polarization azimuth of the writing beam. Considering the above-mentioned dependence, the theoretical calculation on the basis of Jones calculus revealed optical properties of the vector holograms written by various types of radially polarized beams.

  6. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    NASA Astrophysics Data System (ADS)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  7. Far field of beams generated by quasi-homogeneous sources passing through polarization gratings

    NASA Astrophysics Data System (ADS)

    Piquero, G.; Borghi, R.; Mondello, A.; Santarsiero, M.

    2001-08-01

    We analyze the polarization features of the beam, generated by a class of partially polarized quasi-homogeneous sources, which propagates through a polarization grating. Analytical expressions in the far zone for the beam coherence polarization matrix, the degree of polarization and the Stokes parameters are given. In particular, it is shown that, under some hypotheses, it is possible to completely and uniformly depolarize the beam in the far field. The influence of source parameters, such as the state of polarization, intensity and degree of coherence, on the degree of polarization and the Stokes parameters is also investigated.

  8. Highly accurate servo control of reference beam angle in holographic memory with polarized servo beam

    NASA Astrophysics Data System (ADS)

    Hosaka, Makoto; Ogata, Takeshi; Yamada, Kenichiro; Yamazaki, Kazuyoshi; Shimada, Kenichi

    2016-09-01

    We propose a new servo technique for controlling the reference beam angle in angular multiplexing holographic memory to attain higher capacity and higher speed data archiving. An orthogonally polarized beam with an incident angle slightly different from that of the reference beam is newly applied to the optics. The control signal for the servo is generated as the difference between the diffracted light intensities of these two beams from a hologram. The incident angle difference between the beams to the medium was optimized as sufficient properties of the control signal were obtained. The high accuracy of the control signal with an angle error lower than 1.5 mdeg was successfully confirmed in the simulations and experiments.

  9. Enhanced sensitivity of the Z-scan technique on saturable absorbers using radially polarized beams

    NASA Astrophysics Data System (ADS)

    Liu, Dahui; Gu, Bing; Ren, Boxiao; Lu, Changgui; He, Jun; Zhan, Qiwen; Cui, Yiping

    2016-02-01

    We develop the Z-scan technique on a saturable absorber under the excitation of radially polarized beams. It is shown that the sensitivity of the Z-scan measurements on a saturable absorber using radially polarized beams has the great improvement compared with those using the scalar light beams such as Gaussian beams, Laguerre-Gaussian beams, and top-hat beams. As the experimental evidence, we investigate the saturable absorption properties of layered WS2 nanosheets in aqueous suspension by performing the radially polarized-beam Z-scan measurements with femtosecond laser pulses in the near infrared region.

  10. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    SciTech Connect

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers.

  11. The growth of α-sexithiophene films on Ag(111) studied by means of PEEM with linearly polarized light.

    PubMed

    Wagner, Thorsten; Ghanbari, Ebrahim; Huber, Daniel; Zeppenfeld, Peter

    2015-12-01

    In this study, we used photo electron emission microscopy (PEEM) to investigate the growth of α-sexithiophene (α-6 T) on Ag(111) surfaces. The experiments were carried out with linearly polarized ultraviolet-light (Hg lamp with hν=4.9 eV) in order to probe the alignment of the molecules on the surface. In particular, we acquired images before, during, and after growth while changing the polarization in a stepwise manner. For the stationary states of the clean and the α-6 T covered surfaces, we monitored the local electron yield and the intensity of the ultraviolet C-light (100-280 nm) reflected from the whole sample using PEEM and a photodiode, respectively. Due to the high ionization potential (IP>5 eV), there is no direct photoelectron emission from the organic crystallites. However, the photoelectron emission of the metal/organic interface is influenced by anisotropic absorption of the incident light beam, since the adsorbed molecules act as dichroic filters with distinct orientations. PMID:26150140

  12. Formation of Ag Nanoparticles on β-Ag2WO4 through Electron Beam Irradiation: A Synergetic Computational and Experimental Study.

    PubMed

    Roca, Roman A; Gouveia, Amanda F; Lemos, Pablo S; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-09-01

    In the present work, a combined theoretical and experimental study was performed on the structure, optical properties, and growth of Ag nanoparticles in metastable β-Ag2WO4 microcrystals. This material was synthesized using the precipitation method without the presence of surfactants. The structural behavior was analyzed using X-ray diffraction and Raman and infrared spectroscopy. Field-emission scanning electron microscopy revealed the presence of irregular spherical-like Ag nanoparticles on the β-Ag2WO4 microcrystals, which were induced by electron beam irradiation under high vacuum conditions. A detailed analysis of the optimized β-Ag2WO4 geometry and theoretical results enabled interpretation of both the Raman and infrared spectra and provided deeper insight into rationalizing the observed morphology. In addition, first-principles calculations, within the quantum theory of atoms in molecules framework, provided an in-depth understanding of the nucleation and early evolution of Ag nanoparticles. The Ag nucleation and formation is the result of structural and electronic changes of the [AgO6] and [AgO5] clusters as a constituent building block of β-Ag2WO4, which is consistent with Ag metallic formation. PMID:27533109

  13. np Elastic-scattering experiments with polarized neutron beams

    SciTech Connect

    Chalmers, J.S.; Ditzler, W.R.; Hill, D.; Hoftiezer, J.; Johnson, K.; Shima, T.; Shimizu, H.; Spinka, H.; Stanek, R.; Underwood, D.

    1985-01-01

    Measurements of the spin transfer parameters, K/sub NN/ and K/sub LL/, at 500, 650, and 800 MeV are presented for the reaction p-vector d ..-->.. n-vector pp at 0/sup 0/. The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction is a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV. Measurements of np elastic scattering observables C/sub LL/ and C/sub SL/ covering 35/sup 0/ to 172/sup 0/ are performed using a polarized neutron beam at 500, 650, and 800 MeV. Preliminary results are presented. 3 refs., 6 figs.

  14. Parametric characterization of the spatial structure of partially coherent and partially polarized beams

    NASA Astrophysics Data System (ADS)

    Martínez-Herrero, R.; Piquero, G.; Mejías, P. M.

    2004-03-01

    On the basis of the second-order intensity moments formalism, the relationship between the spatial structure and the overall polarization characteristics of partially polarized Gaussian Schell-model beams of a certain kind has been investigated. More specifically, attention has been focused on a type of source that cannot be distinguished from ordinary Gaussian Schell-model fields when polarization measurements are disregarded. For this class of beams several general properties have been obtained that enable us to link the beam coherence polarization matrix and the beam quality parameter with certain polarization degrees recently introduced in the literature.

  15. Amplification of cylindrically polarized laser beams in single crystal fiber amplifiers.

    PubMed

    Piehler, Stefan; Délen, Xavier; Rumpel, Martin; Didierjean, Julien; Aubry, Nicolas; Graf, Thomas; Balembois, Francois; Georges, Patrick; Ahmed, Marwan Abdou

    2013-05-01

    Yb:YAG single crystal fiber (SCF) amplifiers have recently drawn much attention in the field of amplification of ultra-short pulses. In this paper, we report on the use of SCF amplifiers for the amplification of cylindrically polarized laser beams, as such beams offer promising properties for numerous applications. While the amplification of cylindrically polarized beams is challenging with other amplifier designs due to thermally induced depolarization, we demonstrate the amplification of 32 W cylindrically polarized beams to an output power of 100 W. A measured degree of radial polarization after the SCF of about 95% indicates an excellent conservation of polarization. PMID:23669994

  16. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  17. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  18. A 20 GHz circularly polarized, fan beam slot array antenna

    NASA Astrophysics Data System (ADS)

    Weikle, D. C.

    1982-03-01

    An EHF waveguide slot array was developed for possible use as a receive-only paging antenna for ground mobile terminals. The design, fabrication, and measured performance of this antenna are presented. The antenna generates a circularly polarized fan beam that is narrow in azimuth and broad in elevation. When mechanically rotated in azimuth, it can receive a 20 GHz satellite transmission independent of mobile terminal direction. Azimuth plane sidelobe levels, which are typically <-40 dB from the main lobe, provide for discrimination against ground and airborne jammers.

  19. Production of intense beams of polarized negative hydrogen ions by double charge exchange in alkali vapour

    NASA Astrophysics Data System (ADS)

    Gruëbler, W.; Schmelzbach, P. A.

    1983-07-01

    The intensity of the polarized negative hydrogen ion beam of the ETHZ atomic beam polarized ion source has been substantially improved by a new double charge exchange device. Increasing the diameter of the charge exchange canal to 1.4 cm results in a beam output of the source of 6 μA of polarized negative hydrogen ions. Further improvements of the charge exchanger are proposed and discussed. With an updated design of the atomic beam apparatus, beams of 0.5 mA polarized negative hydrogen ions may be obtained from such a source.

  20. Explore the possibility of accelerating polarized He-3 beam in RHIC

    SciTech Connect

    Bai M.; Courant, E.; Fischer, W.; Ptitsyn, V.; Roser, T.

    2012-05-20

    As the world's first high energy polarized proton collider, RHIC has made significant progresses in measuring the proton spin structure in the past decade. In order to have better understanding of the contribution of up quarks and down quarks to the proton spin structure, collisions of high energy polarized neutron beams are required. Polarized He-3 beams offer an effectiveway to provide polarized neutron beams. In this paper, we present studies of accelerating polarized He-3 in RHIC with the current dual snake configuration. Possibilities of adding two more pairs of snakes for accelerating polarized He-3 were explored. Results of six snake configuration in RHIC are also reported in the paper.

  1. Compensation of Beam Line Polarizing Effects at UE112 of BESSY II

    SciTech Connect

    Bahrdt, J.; Follath, R.; Frentrup, W.; Gaupp, A.; Scheer, M.

    2010-06-23

    Reflections in synchrotron radiation beam lines tend to change the state of polarization of the radiation. This effect is more pronounced for steep angle of incidence, i.e. at low photon energy (say below 100 eV) beam lines. The APPLE II undulator UE112 at BESSY has all four magnetic rows shiftable and thus generates any state of polarization. To provide any intended polarization state at the sample we perform polarization measurements based on simple and fast linear polarization analysis that together with calculations of the undulator radiation predicts undulator settings that cancel beam line polarization effects.

  2. GPD physics with polarized muon beams at COMPASS-II

    SciTech Connect

    Ferrero, Andrea [CEA-Saclay, DSM Collaboration: COMPASS Collaboration

    2013-04-15

    A major part of the future COMPASS program is dedicated to the investigation of the nucleon structure through Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP). COMPASS will measure DVCS and DVMP reactions with a high intensity muon beam of 160 GeV and a 2.5 m-long liquid hydrogen target surrounded by a new TOF system. The availability of muon beams with high energy and opposite charge and polarization will allow to access the Compton form factor related to the dominant GPD H and to study the x{sub B}-dependence of the t-slope of the pure DVCS cross section and to study nucleon tomography. Projections on the achievable accuracies and preliminary results of pilot measurements will be presented.

  3. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  4. Effect of the atmospheric turbulence on a special correlated radially polarized beam on propagation

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Wei, Cun; Zhang, Yongtao; Wang, Fei; Cai, Yangjian

    2015-11-01

    A special correlated radially polarized beam (Phys. Rev. A 89, 013801, 2014) was introduced and demonstrated in experiment recently. In this paper, we investigate the statistical properties of a special correlated radially polarized (SCRP) beam in atmospheric turbulence. Analytical formulas for the average intensity distribution (AID), degree of polarization (DOP) and degree of coherence (DOC) are derived by adopting a beam coherence-polarization (BCP) matrix. With the help of the derived formulas, the evolutions of the AID, DOP and DOC of the SCRP beam in turbulent atmosphere are illustrated through numerical examples in detail, and the results are compared to those of a partially coherent radially polarized (PCRP) beam under equivalent condition. It reveals that the propagation properties of the SCRP beam is much different from those of the PCRP beam in atmosphere, and closely related to the strength of the turbulence and the beam parameters.

  5. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter.

    PubMed

    Khonina, Svetlana N; Karpeev, Sergey V; Alferov, Sergey V

    2012-06-15

    We propose a new approach to generating a pair of initial beams for a polarization converter that operates by summing up two opposite-sign circularly polarized beams. The conjugated pairs of vortex beams matched with laser modes are generated using binary diffractive optical elements (DOEs). The same binary element simultaneously serves two functions: a beam shaper and a beam splitter. Two proposed optical arrangements are compared in terms of alignment complexity and energy efficiency. The DOEs in question have been designed and fabricated. Natural experiments that demonstrate the generation of vector higher-order cylindrical beams have been conducted. PMID:22739916

  6. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  7. TOPOLOGY FOR A DSP BASED BEAM CONTROL SYSTEM IN THE AGS BOOSTER.

    SciTech Connect

    DELONG,J.BRENNAN,J.M.HAYES,T.LE,T.N.SMITH,K.

    2003-05-12

    The AGS Booster supports beams of ions and protons with a wide range of energies on a pulse-by-pulse modulation basis. This requires an agile beam control system highly integrated with its controls. To implement this system digital techniques in the form of Digital Signal Processors, Direct Digital Synthesizers, digital receivers and high speed Analog to Digital Converters are used. Signals from the beam and cavity pick-ups, as well as measurements of magnetic field strength in the ring dipoles are processed in real time. To facilitate this a multi-processor topology with high bandwidth data links is being designed.

  8. Propagation properties of partially polarized Gaussian Schell-model beams through an astigmatic lens

    NASA Astrophysics Data System (ADS)

    Pan, Liuzhan; Wang, Beizhan; Lu, Baida

    2005-09-01

    Based on the beam coherent-polarization (BCP) matrix approach and propagation law of partially coherent beams, analytical propagation equations of partially polarized Gaussian Schell-model (PGSM) beams through an astigmatic lens are derived, which enables us to study the propagation-induced polarization changes and irradiance distributions at any propagation distance of PGSM beams through an astigmatic lens within the framework of the paraxial approximation. Detailed numerical results for a PGSM beam passing through an astigmatic lens are presented. A comparison with the aberration-free case is made, and shows that the astigmatism affects the propagation properties of PGSM beams.

  9. Creation of polarization gradients from superposition of counter propagating vector LG beams.

    PubMed

    Vyas, Sunil; Kozawa, Yuichi; Miyamoto, Yoko

    2015-12-28

    We present a detailed theoretical analysis of the formation of standing waves using cylindrically polarized vector Laguerre-Gaussian (LG) beams. It is shown that complex interplay between the radial and azimuthal polarization state can be used to realize different kinds of polarization gradients with cylindrically symmetric polarization distribution. Expressions for four different cases are presented and local dynamics of spatial polarization distribution is studied. We show cylindrically symmetric Sisyphus and corkscrew type polarization gradients can be obtained from vector LG beams. The optical landscape presented here with spatially periodic polarization patterns may find important applications in the field of atom optics, atom interferometry, atom lithography, and optical trapping. PMID:26832055

  10. SLC polarized beam source ultra-high-vacuum design

    SciTech Connect

    Lavine, T.L.; Clendenin, J.E.; Garwin, E.L.; Hoyt, E.W.; Hoyt, M.W.; Miller, R.H.; Nuttall, J.A.; Schultz, D.C.; Wright, D.

    1991-05-01

    This paper describes the design of the ultra-high vacuum system for the beam-line from the 160-kV polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10{sup {minus}11}-Torr-range pressure for adequate quantum efficiency and longevity. The photo-cathode is illuminated by 3-nsec-long laser pulses. Photo-cathode maintenance and improvements require occasional substitution of guns with rapid restoration of UHV conditions. Differential pumping is crucial since the pressure in the injector is more than 10 times greater than the photocathode can tolerate, and since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line contains a differential pumping region isolated by a pair of valves. Exchange of guns requires venting only this isolated region which can be restored to UHV rapidly by baking. The differential pumping is performed by non-evaporable getters (NEGs) and an ion pump. 3 refs., 3 figs.

  11. Surface treatment with linearly polarized laser beam at oblique incidence

    NASA Astrophysics Data System (ADS)

    Gutu, I.; Petre, C.; Mihailescu, I. N.; Taca, M.; Alexandrescu, E.; Ivanov, I.

    2002-07-01

    An effective method for surface heat treatment with 10.6 μm linear polarized laser beam at oblique incidence is reported. A circular focused laser spot on the workpiece surface, simultaneously with 2.2-4 times increasing of the absorption are obtained in the 70-80° range of the incidence angle. The main element of the experimental setup is the astigmatic focusing head which focalize the laser beam into an elliptical spot of ellipticity ɛ>3 at normal incidence. At a proper incidence angle (obtained by the focusing head tilting) the focused laser spot on the work piece surface gets a circular form and p-state of polarization is achieved. We performed laser heat treatment (transformation hardening, surface remelting) of the uncoated surface, as well as the alloying and cladding processes by powder injection. An enhancement of the processing efficiency was obtained; in this way the investment and operation costs for surface treatment with CO 2 laser can be significantly reduced. Several technical advantages concerning the pollution of the focusing optical components, powder jet flowing and reflected radiation by the work piece surface are obtained.

  12. Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition.

    PubMed

    Zhao, J; Cai, X M; Tang, H Q; Liu, T; Gu, H Q; Cui, R Z

    2009-12-01

    Nanoscale TiN/Ag multilayered films of thickness 500 nm were synthesized on AISI317 stainless steel by ion beam assisted deposition (IBAD) with the modulation period of 4, 5, 6, 7.5, and 12 nm. The bactericidal and biocompatible properties of TiN/Ag multilayered films were investigated through Gram negative E. coli bacteria and L929 cells (mice fibroblast) as well as human umbilical vein endothelial cells (HUVEC). The results show that the TiN/Ag multilayered films with the modulation period of 7.5 nm possess the strongest bactericidal property. The cytotoxicity grade of TiN/Ag multilayered coating with the modulation periods of 7.5 nm, 12 nm is in 0-1 scope, which indicates this film has no cytotoxicity to L929. HUVEC on TiN/Ag multilayered film grows well and shows good cellularity. Auger electronic spectroscopy reveals the relationship between the structure of TiN/Ag multilayered film and the biomedical properties. PMID:18553178

  13. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    NASA Astrophysics Data System (ADS)

    Long, Yongbing; Li, Yuanxing; Su, Runmei

    2014-08-01

    Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE) polarized and transverse-magnetic(TM) polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  14. Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology

    SciTech Connect

    Urbanczyk, Adam; Noetzel, Richard

    2012-12-15

    We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

  15. Multiple Partial Siberian Snakes in the AGS

    SciTech Connect

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.; Hattori, T.; Lin, F.

    2007-06-13

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  16. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    NASA Astrophysics Data System (ADS)

    Balandikov, N. I.; Ershov, V. P.; Fimushkin, V. V.; Kulikov, M. V.; Pilipenko, Yu. K.; Shutov, V. B.

    1995-09-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented.

  17. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam

    PubMed Central

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light–matter interaction. PMID:22893122

  18. The RHIC polarized H- ion source

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  19. The RHIC polarized H⁻ ion source.

    PubMed

    Zelenski, A; Atoian, G; Raparia, D; Ritter, J; Steski, D

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H(-) ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H(-) ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC. PMID:26932068

  20. Collisional pumping for the production of intense spin-polarized neutral beams: target considerations. Revision

    SciTech Connect

    Stearns, J.W.; Burrell, C.F.; Kaplan, S.N.; Pyle, R.V.; Ruby, L.; Schlachter, A.S.

    1985-04-01

    Polarized beams at intensity levels heretofore not considered feasible have recently been proposed for heating and fueling fusion plasmas. Polarized-beam fueling could increase fusion rates by 50% as well as allow control of the directionality of the fusion products. A process which we have recently described, and called collisional pumping, promises to produce beams of polarized ions vastly more intense than producible by current methods.

  1. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    SciTech Connect

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  2. Highly anisotropic metasurface: a polarized beam splitter and hologram

    PubMed Central

    Zheng, Jun; Ye, Zhi-Cheng; Sun, Nan-Ling; Zhang, Rui; Sheng, Zheng-Ming; Shieh, Han-Ping D.; Zhang, Jie

    2014-01-01

    Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications. PMID:25262791

  3. Highly anisotropic metasurface: a polarized beam splitter and hologram.

    PubMed

    Zheng, Jun; Ye, Zhi-Cheng; Sun, Nan-Ling; Zhang, Rui; Sheng, Zheng-Ming; Shieh, Han-Ping D; Zhang, Jie

    2014-01-01

    Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications. PMID:25262791

  4. Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition.

    PubMed

    Ying, Zhoufeng; Wang, Guanghui; Zhang, Xuping; Ho, Ho-pui; Huang, Ying

    2015-05-01

    An ultracompact and broadband polarization beam splitter (PBS) based on the polarization-dependent critical guiding condition of an asymmetrical directional coupler is proposed. The device consists of a pair of silicon waveguides with different height and width. Due to the different cutoff conditions for the TE and TM polarization modes, it is possible to have the TM mode guided in one waveguide while the TE mode is supported in both. Therefore, only the phase-matching condition for the cross-coupling of the TE mode needs to be considered. This approach not only simplifies the design procedures but also significantly improves device performance with smaller total length and larger bandwidth. Finally, regardless of the contribution of S-bend waveguides, our proposed PBS has a coupling region as short as 0.2 μm, which is the shortest reported until now. The simulation result shows that the extinction ratios for the TE and TM polarization are 13.5 and 16.6 dB at their respective output ports, and their insertion losses are 0.29 and 0.13 dB, respectively. Numerical simulations also show that the device offers a very large bandwidth (∼140  nm) with large extinction ratio (>10  dB) and low insertion loss (<1  dB). PMID:25927804

  5. Synthesis and characterization of partially coherent beams with propagation-invariant transverse polarization pattern

    NASA Astrophysics Data System (ADS)

    Ramírez-Sánchez, Victoria; Piquero, Gemma; Santarsiero, Massimo

    2010-11-01

    Partially coherent beams, whose transverse polarization pattern remains invariant upon paraxial propagation, are synthesized and characterized. Synthesis is performed by imposing a spiral-like polarization profile to a rotationally symmetric partially coherent light source. Irradiance and polarization profiles of the propagated beam are detected at different transverse planes, both in the near and in the far zone, and are compared to the theoretical ones. Furthermore, overall parameters, measuring the circular, radial and azimuthal polarization contents across the beam profile, are used to characterize the generated beam from a global point of view.

  6. Polarization changes at Lyot depolarizer output for different types of input beams.

    PubMed

    de Sande, J Carlos G; Piquero, Gemma; Teijeiro, Cristina

    2012-03-01

    Lyot depolarizers are optical devices made of birefringent materials used for producing unpolarized beams from totally polarized incident light. The depolarization is produced for polychromatic input beams due to the different phase introduced by the Lyot depolarizer for each wavelength. The effect of this device on other types of incident fields is investigated. In particular two cases are analyzed: (i) monochromatic and nonuniformly polarized incident beams and (ii) incident light synthesized by superposition of two monochromatic orthogonally polarized beams with different wavelengths. In the last case, it is theoretically and experimentally shown that the Lyot depolarizer increases the degree of polarization instead of depolarizes. PMID:22472758

  7. Generation of radially polarized beam with a segmented spiral varying retarder.

    PubMed

    Lai, W J; Lim, B C; Phua, P B; Tiaw, K S; Teo, H H; Hong, M H

    2008-09-29

    We convert a linearly polarized Gaussian beam into a radially polarized doughnut beam with an eight-segment spirally varying retarder (SVR) at wavelength of 808 nm. The SVR is designed based on the linear birefringence of alpha-barium borate (alpha-BBO) crystal and fabricated using a dry etching process. Radially polarized light of high purity (> 96% at far-field distribution) was generated experimentally using the segmented SVR positioned between two quarter waveplates with orthogonal slow axes. The emergent polarization can be switched between radially and azimuthally polarized cylindrical vector beams with a pair of half-wave plates. PMID:18825207

  8. Relativistic attosecond electron pulses from cascaded acceleration using ultra-intense radially polarized laser beams

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Fortin, Pierre-Louis; Piché, Michel

    Attosecond electron pulses with peak energy above 200 MeV could be produced with ultrafast 100-TW radially polarized laser beams in a two-stage configuration. Such electron beams would be collimated and potentially quasi-monoenergetic.

  9. Proposals for the generation of angular momentum from non-uniformly polarized beams

    NASA Astrophysics Data System (ADS)

    Alonso, Mara; Piquero, Gemma; Serna, Julio

    2012-04-01

    Several optical arrangements using non-uniformly polarized fields are proposed for generating beams with spin and/or orbital angular momentum. By choosing adequately the input beam polarization and the characteristics of the different proposed set-ups we can control the overall angular momentum of the output beam at will. The orbital angular momentum is analyzed with the beam moments theory and the spin term is evaluated using the averaged s3 Stokes parameter.

  10. Generation and self-healing of a radially polarized Bessel-Gauss beam

    NASA Astrophysics Data System (ADS)

    Wu, Gaofeng; Wang, Fei; Cai, Yangjian

    2014-04-01

    We report experimental generation of a radially polarized Bessel-Gauss (RPBG) beam of order 1 with the help of a spatial light modulator, a spiral phase plate, and a radial polarization converter. Furthermore, we carry out a comparative study of the self-healing properties of a RPBG beam and a linearly polarized Bessel-Gauss (LPBG) beam which are blocked by a sector-shaped opaque obstacle both experimentally and numerically. Our results clearly show that the self-healing ability of a RPBG beam indeed is superior to that of a LPBG beam, and some physical interpretations are given. Our results will be useful for particle trapping and microscopy.

  11. Parametric characterization of the spatial structure of non-uniformly polarized laser beams

    NASA Astrophysics Data System (ADS)

    Mejías, P. M.; Martínez-Herrero, R.; Piquero, G.; Movilla, J. M.

    We present an approach for describing the spatial structure of partially polarized light fields. Unlike the treatments usually encountered in the literature, in which the polarization state is represented by position-dependent functions, the formalism shown here characterizes the polarization by means of a family of measurable overall parameters averaged over the transverse spatial region where the beam intensity reaches significant values. Generalized degrees of polarization are introduced to evaluate the uniformity of the spatial distribution of the polarization state of the beam-like field. The possibility of improvement and optimization of the quality of a polarized laser beam (understood as the general usefulness of such field for collimation and focussing) is analyzed by employing first-order optical systems. Finally, attention is briefly devoted to non-paraxial electromagnetic vector beams, whose parametric description of their polarization properties constitutes, at present, a challenge for theoreticians.

  12. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    PubMed

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology. PMID:24787839

  13. Guided ion beam and theoretical studies of the reaction of Ag{sup +} with CS{sub 2}: Gas-phase thermochemistry of AgS{sup +} and AgCS{sup +} and insight into spin-forbidden reactions

    SciTech Connect

    Armentrout, P. B.; Kretzschmar, Ilona

    2010-01-14

    The gas-phase reactivity of the atomic transition metal cation, Ag{sup +}, with CS{sub 2} is investigated using guided-ion beam mass spectrometry. Endothermic reactions forming AgS{sup +} and AgCS{sup +} are observed but are quite inefficient. This observation is largely attributed to the stability of the closed shell Ag{sup +}({sup 1}S,4d{sup 10}) ground state, but is also influenced by the fact that the reactions producing ground state AgS{sup +} and AgCS{sup +} products are both spin forbidden. Analysis of the kinetic energy dependence of the cross sections for formation of these two products yields the 0 K bond energies of D{sub 0}(Ag{sup +}-S)=1.40{+-}0.12 eV and D{sub 0}(Ag{sup +}-CS)=1.98{+-}0.14 eV. Quantum chemical calculations are used to investigate the electronic structure of the two product ions as well as the potential energy surfaces for reaction. The primary mechanism involves oxidative addition of a CS bond to the metal cation followed by simple Ag-S or Ag-CS bond cleavage. Crossing points between the singlet and triplet surfaces are located near the transition states for bond activation. Comparison with analogous work on other late second-row transition metal cations indicates that the location of the crossing points bears directly on the efficiency of these spin-forbidden processes.

  14. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.

    PubMed

    Yin, Xia; Zhang, Licheng

    2016-07-01

    Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system. PMID:27409692

  15. Low Emittance Guns for the ILC Polarized Electron Beam

    SciTech Connect

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; /SLAC

    2006-12-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {ge}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {ge}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.

  16. Low Emittance Guns for the ILC Polarized Electron Beam

    SciTech Connect

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-06-13

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {>=}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {>=}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.

  17. THE METHODS OF PRODUCING AND ANALYZING POLARIZED NEUTRON BEAMS FOR HYSPEC AT THE SNS.

    SciTech Connect

    SHAPIRO, S.M.; PASSELL, L.; ZALIZNYAK, A.; GHOSH, V.J.; LEONHARDT, W.L.; HAGEN, M.E.

    2005-04-25

    The Hybrid Spectrometer (HYSPEC), under construction at the SNS on beam line 14B, is the only inelastic scattering instrument designed to enable polarization of the incident and the scattered neutron beams. A Heusler monochromator will replace the graphite crystal for producing polarized neutrons. In the scattered beam it is planned to use a collimator--multi-channel supermirror bender array to analyze the polarization of the scattered beam over the final energy range from 5-20 meV. Other methods of polarization analysis under consideration such as transmission filters using He{sup 3}, Sm, and polarized protons are considered. Their performance is estimated and a comparison of the various methods of polarization is made.

  18. Executive Summary of the Workshop on Polarization and Beam Energy Measurements at the ILC

    SciTech Connect

    Aurand, B.; Bailey, I.; Bartels, C.; Blair, G.; Brachmann, A.; Clarke, J.; Deacon, L.; Duginov, V.; Ghalumyan, A.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Lyapin, A.; Marchesini, I.; Melikian, R.; Monig, K.; Moeit, K.C.; /Bonn U. /Cockcroft Inst. Accel. Sci. Tech. /DESY /DESY, Zeuthen /Royal Holloway, U. of London /SLAC /Daresbury /Dubna, JINR /Yerevan Phys. Inst /Oxford U., JAI /Iowa State U. /Durham U., IPPP /Michigan U. /University Coll. London /Novosibirsk, IYF /Minsk, Inst. Phys. /Oregon U.

    2008-07-25

    This note summarizes the results of the 'Workshop on Polarization and Beam Energy Measurements at the ILC', held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (1) physics requirements, (2) polarized sources and low energy polarimetry, (3) BDS polarimeters, (4) BDS energy spectrometers, and (5) physics-based measurements of beam polarization and beam energy from collider data. Discussions focused on the current ILC baseline program as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarization of P{sub e{sup -}} {approx}> 80% and positron polarization of P{sub e{sup +}} {approx}> 30% are part of the baseline configuration of the machine. Energy and polarization measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed.

  19. Heavy ion beam polarization produced by the multi-tilted-foil interaction

    NASA Astrophysics Data System (ADS)

    Bendahán, J.; Broude, C.; Hass, M.; Dafni, E.; Goldring, G.; Gerl, J.; Habs, D.; Körten, W.; Schwalm, D.

    1988-09-01

    Nuclear polarization of the 7/2- ground-state of51V was produced via the Multi-Tilted-Foil (MTF) interaction with a V beam. The induced polarization was determined by measuring the left-right asymmetry of Coulomb excited51V nuclei and, for a51V beam at E=100 MeV, was measured to be P I =0.012(2). The nuclear polarization was also induced at E=50 MeV and, after further acceleration, determined at E=195 MeV to be PI=0.010(1). These experiments demonstrate the feasibility of polarizing a great variety of heavy-ion beams at arbitrary velocities with subsequent acceleration and passage through magnetic beam-optics elements. Such polarization, albeit small, can be utilized for the determination of electromagnetic moments of exotic beams and separated reaction products.

  20. Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses

    NASA Astrophysics Data System (ADS)

    Piquero, Gemma; Vargas-Balbuena, Javier

    2004-11-01

    We provide a simple theoretical study of beams non-uniformly polarized across their transverse sections which can be introduced in undergraduate optics courses. In order to generate such beams we propose to use a slightly convergent (or divergent) linearly and uniformly polarized beam impinging on an anisotropic uniaxial material with the beam propagation direction along the optic axis. Analytical expressions for the Jones vector, Stokes parameters, ellipticity and azimuth at each point of the transverse section, perpendicular to the propagation direction, are obtained at the output of this system. By means of these parameters a detailed description of the state of polarization across the transverse profile is given.

  1. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry

    SciTech Connect

    S. Escoffier; P.Y. Bertin; M. Brossard; E. Burtin; C. Cavata; N. Colombel; C.W. de Jager; A. Delbart; D. Lhuillier; F. Marie; J. Mitchell; D. Neyret; T. Pussieux

    2005-05-01

    A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6 GeV and a beam current of 40 uA, a total relative uncertainty of 1.5% is typically achieved within 40 min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements.

  2. Incident beam polarization for laser Doppler velocimetry employing a sapphire cylindrical window

    NASA Technical Reports Server (NTRS)

    Lock, J. A.; Schock, H. J.

    1985-01-01

    For laser Doppler velocimetry studies employing sapphire windows as optical access ports, the birefringency of sapphire produces an extra beam intersection volume which serves to effectively smear the acquired velocity flow field data. It is shown that for a cylindrical window geometry, the extra beam intersection volume may be eliminated with minimal decrease in the fringe visibility of the remaining intersection volume by suitably orienting the polarizations of the initial laser beams. For horizontally incident beams, these polarizations were measured at three intersection locations within the cylinder. It was found that the measured polarization angles agreed with the theoretical predictions.

  3. Method for determining the position, angle and other injection parameters of a short pulsed beam in the Brookhaven AGS

    SciTech Connect

    Gardner, C.; Ahrens, L.

    1985-01-01

    As part of the effort to improve the monitoring of the injection process at the Brookhaven Alternating Gradient Synchrotron (AGS), we have developed a beam diagnostics package which processes the signals from the plates of a pick-up electrode (PUE) located near the injection region of the AGS and provides measurements of the position and angle (with respect to the equilibrium orbit) of the injected beam at the stripping foil where the incident H/sup -/ beam is converted into protons. In addition the package provides measurements of the tune and chromaticity of the AGS at injection, and a measurement of the momentum spread of the injected beam. Since these parameters are obtained for a short-pulsed beam at injection we shall refer to the diagnostics package as PIP which stands for Pulsed Injection Parameters.

  4. Tunable polarization beam splitting based on a symmetrical metal-cladding waveguide structure.

    PubMed

    Wang, Yi; Cao, Zhuangqi; Li, Honggen; Shen, Qishun; Yuan, Wen; Xiao, Pingping

    2009-08-01

    Electrical tuning of polarization beam splitting is demonstrated in the structure of symmetrical metal-cladding waveguide by introducing optically nonlinear material into both the coupling prism and the guiding layer. Due to the anisotropy of the coupling material, different excitation conditions for TE and TM modes are obtained, which results in polarization-dependent reflections and transmissions. And the splitting effect of the two orthogonally polarized beams can be manipulated through an electrical modulation of the guiding layer properties. PMID:19654735

  5. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization.

    PubMed

    Kraus, Martin; Ahmed, Marwan Abdou; Michalowski, Andreas; Voss, Andreas; Weber, Rudolf; Graf, Thomas

    2010-10-11

    A linear to radial and/or azimuthal polarization converter (LRAC) has been inserted into the beam delivery of a micromachining station equipped with a picosecond laser system. Percussion drilling and helical drilling in steel have been performed using radially as well as azimuthally polarized infrared radiation at 1030 nm. The presented machining results are discussed on the basis of numerical simulations of the polarization-dependent beam propagation inside the fabricated capillaries. PMID:20941131

  6. MICRO AND MINI-BUNCHING OF THE SLOW EXTERNAL BEAM AT THE AGS.

    SciTech Connect

    GLENN,J.W.; BRENNAN,M.; BROWN,K.A.; MAJKA,D.; MINCER,A.

    1999-03-29

    The AGS's prime function when RHIC comes on line will be as a heavy ion injector, free time will exist for unique operation that can be tailored and dedicated to users. Many of the next generation of experiments require RF time structure in the spill as it is extracted to time events or assure no background during decay times. Two methods have been developed to meet these needs. Micro-bunching where the beam is forced between empty buckets producing bursts at arbitrary integer harmonics of rotation period [1], and mini-bunching where the beam is kept bunched to provide high extinction between bursts [2]. With an RF dipole the period may be increased to three times the rotation period of the beam. Further modeling and test results with beam will be presented. At high beam currents above transition, tight clusters of beam form causing severe random spike structure in the spill. Forcing the beam between empty buckets before extraction breaks up these clusters with minimal modulation of the spill at the RF frequency. Results of spill structure and loss reduction will be given.

  7. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers.

    PubMed

    Ogata, Toshiyuki; Uehara, Kazuyuki; Nakayama, Masao; Tsudou, Shinji; Masutani, Takashi; Okayama, Takanobu

    2016-07-01

    In this study, we aimed to compare the polarity correction factor in ionization chambers for flattening filter free (FFF) photon beams and flattening filter (FF) beams. Measurements were performed with both 6 and 10 MV FFF and FF beams. Five commercial ionization chambers were evaluated: PTW TN30013; IBA Dosimetry CC01, CC04, and CC13; and Exradin A12S. Except for the CC01 ionization chamber, the other four chambers showed less than a 0.3 % difference in the polarity effect between the FFF and the FF beams. The CC01 chamber showed a strong field-size-dependence, unlike the other chambers. The polarity effect for all chambers with FFF beams did not change with the dose rate. Except in the case of the CC01 chamber, the difference in the polarity effect between FFF and FF beams was not significant. PMID:26873138

  8. Commissioning the new high power rf system for the AGS with high intensity beam

    SciTech Connect

    Brennan, J.M.; Ciardullo, D.J.; Deng, D.P; Hayes, T.; Onillon, E.; Otis, A.; Sanders, R.T.; Zaltsman, A.

    1994-08-01

    A new high power rf system has been installed in the AGS in order to raise the beam loading limit to beyond 6 {times} 10{sup 13} protons per pulse. The old system was limited to 2.2 {times} 10{sup l3} ppp by: available real power, multi-loop instability, and transient beam loading during batch filling from the Booster. The key components of the new system are: new power amplifiers in the tunnel using the Thomson-CSF TH573 300kW tetrode, rf feedback around the power stage, and reduction of the 10 cavities` R/Q by 1.8 by additional gap capacitors. Commissioning of the new rf system with high intensity beam is described. The intensity goal for the 1994 running period is 4 {times} 10{sup 13} ppp. To date, 3.7 {times} 10{sup 13} ppp has been achieved.

  9. MICRO-BUNCHING OF THE AGS SLOW EXTRACTED BEAM FOR A RARE KAON DECAY SEARCH.

    SciTech Connect

    GLENN,J.; SIVERTZ,M.; CHIANG,I.; LAZARUS,D.; KOSCIELNIAK,S.

    2001-06-18

    The AGS Slow Extracted Beam (SEB) must be chopped with 250 ps bursts every 40 ns to permit time-of-flight (ToF) measurement of the secondary K{sup 0} beam. Standard techniques to produce this level of bunching would require excessive rf voltage, thus we have developed a ''Micro-Bunching'' technique of extracting the beam as it is forced between empty rf buckets. A specification of the required rf system will be given. Four-dimensional model simulations of particle dynamics for the planned rf and extraction systems will be shown. Simulations of previous tests along with the test measurements are also presented. Measurement of tight bunching requires dedicated instrumentation. The design of a detector system to measure bunch widths and the extinction factor between bunches will be given; considerations include the various particles produced and transported, timing precision and background.

  10. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-12-31

    A beam position monitor system has been developed and used in the commissioning of Brookhaven`s Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  11. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  12. Rms characterization of Bessel Gauss beams: Correspondence between polar and Cartesian representations

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Gay, David; Piché, Michel

    2006-09-01

    A recent analysis [G. Rousseau, D. Gay and M. Piché, One-dimensional description of cylindrically symmetric laser beams: application to Bessel-type nondiffracting beams, J. Opt. Soc. Am. A, 22 (2005) 1274] has shown that any cylindrically symmetric laser beam can be synthesized from a single wave called a constituent wave. This representation allows the introduction of one-dimensional Cartesian root-mean-square (rms) parameters to describe the conical structure of cylindrically symmetric laser beams. In this paper, we compare the rms characterization of Bessel-Gauss beams in polar coordinates with that of their respective constituent waves in Cartesian coordinates. Numerical results reveal an asymptotic correspondence between polar and Cartesian rms parameters of Bessel-Gauss beams propagating in a nondiffracting regime. Such a correspondence eliminates misleading interpretations about the propagation factor and the Rayleigh range of nondiffracting Bessel-type beams characterized in terms of polar rms parameters.

  13. Communication: Global minimum search of Ag{sub 10}{sup +} with molecular beam optical spectroscopy

    SciTech Connect

    Shayeghi, A. Schäfer, R.; Johnston, R. L.

    2014-11-14

    The present study is focused on the optical properties of the Ag{sub 10}{sup +} cluster in the photon energy range ℏω = 1.9–4.4 eV. Absorption spectra are recorded by longitudinal molecular beam depletion spectroscopy and compared to optical response calculations using time-dependent density functional theory. Several cluster isomers obtained by the new pool-based parallel implementation of the Birmingham Cluster Genetic Algorithm, coupled with density functional theory, are used in excited state calculations. The experimental observations, together with additional simulations of ion mobilities for the several geometries found within this work using different models, clearly identify the ground state isomer of Ag{sub 10}{sup +} to be composed of two orthogonal interpenetrating pentagonal bipyramids, having overall D{sub 2d} symmetry.

  14. High-intensity pulsed source of polarized protons with an atomic beam

    SciTech Connect

    Belov, A.S.; Esin, S.K.; Kubalov, S.A.; Kuzik, V.E.; Stepanov, A.A.; Yakushev, V.P.

    1985-10-25

    A source of polarized protons with a beam current up to 2.5 mA in the pulse, a degree of polarization 0.78 +- 0.01, a current pulse length of 120 ..mu..s, and a repetition frequency of 1 Hz is described. This is the first source of polarized protons which makes use of the charge exchange of polarized hydrogen atoms with ions of a deuterium plasma.

  15. RF Guns for Generation of Polarized Electron Beams

    SciTech Connect

    Clendenin, J.E.; Brachmann, A.; Dowell, D.H.; Garwin, E.L.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Prescott, C.Y.; Prepost, R.; /Wisconsin U., Madison

    2005-11-09

    Several accelerators, including the SLC, JLAB, Mainz, Bates/MIT, and Bonn have successfully operated for medium and high energy physics experiments using polarized electron beams generated by dc-biased guns employing GaAs photocathodes. Since these guns have all used a bias on the order of 100 kV, the longitudinal emittance of the extracted bunch is rather poor. Downstream rf bunching systems increase the transverse emittance. An rf gun with a GaAs photocathode would eliminate the need for separate rf bunchers, resulting in a simpler injection system. In addition, the thermal emittance of GaAs-type cathodes is significantly lower than for other photocathode materials. The environmental requirements for operating activated GaAs photocathodes cannot be met by rf guns as currently designed and operated. These requirements, including limits on vacuum and electron back bombardment, are discussed in some detail. Modifications to actual and proposed rf gun designs that would allow these requirements to be met are presented.

  16. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    SciTech Connect

    Gong, Lei; Liu, Weiwei; Wang, Meng; Zhong, Mincheng; Wang, Ziqiang; Li, Yinmei; Ren, Yuxuan

    2014-11-14

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves the way for optical microscopy, trapping, and communication.

  17. Test beam results of a high granularity LuAG fibre calorimeter prototype

    NASA Astrophysics Data System (ADS)

    Benaglia, A.; Lucchini, M.; Pauwels, K.; Tully, C.; Medvedeva, T.; Heering, A.; Dujardin, C.; Kononets, V.; Lebbou, K.; Aubry, N.; Faraj, S.; Ferro, G.; Lecoq, P.; Auffray, E.

    2016-05-01

    The progresses in the micropulling-down technique allow heavy scintillating crystals to be grown directly into a fibre geometry of variable shape, length and diameter. Examples of materials that can be grown with this technique are Lutetium Aluminum Garnets (LuAG, Lu3Al5O12) and Yttrium Aluminum Garnets (YAG, Y3Al5O12). Thanks to the flexibility of this approach, combined with the high density and good radiation hardness of the materials, such a technology represents a powerful tool for the development of future calorimeters. As an important proof of concept of the application of crystal fibres in future experiments, a small calorimeter prototype was built and tested on beam. A grooved brass absorber (dimensions 26cm×7cm×16cm) was instrumented with 64 LuAG fibres, 56 of which were doped with Cerium, while the remaining 8 were undoped. Each fibre was readout individually using 8 eightfold Silicon Photomultiplier arrays, thus providing a highly granular description of the shower development inside the module as well as good tracking capabilities. The module was tested at the Fermilab Test Beam Facility using electrons and pions in the 2–16 GeV energy range. The module performance as well as fibre characterization results from this beam test are presented.

  18. Quantum polarization fluctuations of partially coherent dark hollow beams in non-Kolmogorov turbulence atmosphere

    NASA Astrophysics Data System (ADS)

    Yan, Xiang; Zhang, Peng-Fei; Zhang, Jing-Hui; Qiao, Chun-Hong; Fan, Cheng-Yu

    2016-08-01

    Non-classical polarization properties of dark hollow beams propagating through non-Kolmogorov turbulence are studied. The analytic equation for the polarization degree of the quantization partially coherent dark hollow beams is obtained. It is found that the polarization fluctuations of the quantization partially coherent dark hollow beams are dependent on the turbulence factors and beam parameters with the detection photon numbers. Furthermore, an investigation of the changes in the on-axis propagation point and off-axis propagation point shows that the polarization degree of the quantization partially coherent dark hollow beams presents oscillation for a short propagation distance and gradually returns to zero for a sufficiently long distance. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 61405205).

  19. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  20. Capture and sorting of multiple cells by polarization-controlled three-beam interference

    NASA Astrophysics Data System (ADS)

    Hou, Yu; Wang, Zuobin; Hu, Yaowei; Li, Dayou; Qiu, Renxi

    2016-03-01

    For the capture and sorting of multiple cells, a sensitive and highly efficient polarization-controlled three-beam interference set-up has been developed. With the theory of superposition of three beams, simulations on the influence of polarization angle upon the intensity distribution and the laser gradient force change with different polarization angles have been carried out. By controlling the polarization angle of the beams, various intensity distributions and different sizes of dots are obtained. We have experimentally observed multiple optical tweezers and the sorting of cells with different polarization angles, which are in accordance with the theoretical analysis. The experimental results have shown that the polarization angle affects the shapes and feature sizes of the interference patterns and the trapping force.

  1. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-08-01

    We propose an approach to the generation of nondiffracting quasi-circularly polarized beams by a highly focusing azimuthally polarized beam using an amplitude modulated spiral phase hologram. Numerical verifications are implemented in the calculation of the electromagnetic fields and Poynting vector field near the focus based on the vector diffraction theory, and the polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the electric field, magnetic field, and Poynting vector field can simultaneously be uniform and nondiverging over a relatively long axial range of ~7.23λ. In the transverse plane, the ellipticity and azimuthal angle of the local polarization ellipse varies from point to point. No polarization singularity and phase singularity are found at the beam center, which makes the bright spot possible. PMID:21811334

  2. Polarity dependence of the electrical characteristics of Ag reflectors for high-power GaN-based light emitting diodes

    SciTech Connect

    Park, Jae-Seong; Seong, Tae-Yeon; Han, Jaecheon; Ha, Jun-Seok

    2014-04-28

    We report on the polarity dependence of the electrical properties of Ag reflectors for high-power GaN-based light-emitting diodes. The (0001) c-plane samples become ohmic after annealing in air. However, the (11–22) semi-polar samples are non-ohmic after annealing, although the 300 °C-annealed sample shows the lowest contact resistivity. The X-ray photoemission spectroscopy (XPS) results show that the Ga 2p core level for the c-plane samples experiences larger shift toward the valence band than that for the semi-polar samples. The XPS depth profile results show that unlike the c-plane samples, the semi-polar samples contain some amounts of oxygen at the Ag/GaN interface regions. The outdiffusion of Ga atoms is far more significant in the c-plane samples than in the semi-polar samples, whereas the outdiffusion of N atoms is relatively less significant in the c-plane samples. On the basis of the electrical and XPS results, the polarity dependence of the electrical properties is described and discussed.

  3. Numerical simulation of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wu, Xingxing; Yun, Maojin; Wang, Mei; Liu, Chao; Li, Kai; Qin, Xiheng; Kong, Weijin; Dong, Lifeng

    2015-12-01

    A kind of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays is designed and simulated. In the employed structure transverse-electric (TE) light is confined in the line defect with photonic band gap effect, while transverse-magnetic (TM) light is guided through it with extremely low diffraction. The performance of the designed polarization beam splitter is evaluated by utilizing optical properties of multi-walled carbon nanotubes, finite element modeling of wave propagation and transmission through periodic arrays. Simulation results indicate that the designed polarization beam splitter has low loss and less cross talk, and thereby may have practical applications in the integrated optical field.

  4. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas.

    PubMed

    Winnerl, S; Zimmermann, B; Peter, F; Schneider, H; Helm, M

    2009-02-01

    We report on emission and detection of pulsed terahertz radiation of radial and azimuthal polarization by microstructured photoconductive antennas. To this end the electrode geometry of the emitter is inverse to the desired THz field pattern and a second periodic structure prevents destructive interference effects. Beam profiles of freely propagating THz waves are studied for divergent and refocused beams. They can be well described as the lowest order Bessel-Gauss modes with a divergence comparable to linearly polarized Gaussian beams. Additionally, mode sensitive detection is demonstrated for radially polarized radiation. PMID:19188986

  5. Radially and azimuthally polarized laser beams by thin-disk laser.

    PubMed

    Aghbolaghi, Reza; Charehjolo, Habib Sahebghoran

    2016-05-01

    The generation of radially and azimuthally polarized beams is theoretically investigated in thin-disk laser configurations by writing Jones matrices for optical elements. Higher modes are omitted by aperture and the mode-selection operation is done by discontinuous phase elements. Two modes, TEM01x and TEM01y, are combined to generate the radially and azimuthally polarized laser beam. The polarization of the output beams is studied by the extended Jones matrices. In addition, the output power of the thin-disk laser is numerically estimated by solving the rate equations in ytterbium-doped materials. PMID:27140363

  6. Nondiffracting Bessel beams with polarization state that varies with propagation distance.

    PubMed

    Moreno, Ignacio; Davis, Jeffrey A; Sánchez-López, María M; Badham, Katherine; Cottrell, Don M

    2015-12-01

    We generate nondiffracting Bessel beams whose polarization state varies with propagation distance. We use a reflective geometry where a single parallel-aligned spatial light modulator device is used to spatially modulate two orthogonal linear polarizations with two axicon phase profiles. Then, by adding an extra phase retardation radial profile between these linear states, we are able to modulate the state of polarization along the line focus of the axicon. We provide experimental results that demonstrate the polarization axial control with zero-order and higher order Bessel beams. PMID:26625023

  7. Microstructure and anodic polarization behavior of experimental Ag-18Cu-15Pd-12Au alloy in aqueous sulfide solution.

    PubMed

    Endo, Kazuhiko; Ohno, Hiroki; Asakura, Shukuji

    2003-05-01

    The anodic corrosion behavior of an experimental Ag-15Pd-18Cu-12Au alloy in 0.1% Na(2)S solution in relation to its microstructure was investigated using potentiodynamic and potentiostatic polarization techniques with analyses of corrosion products by X-ray diffractometry, Auger electron spectroscopy, and X-ray photoelectron spectroscopy. The role of Pd in improvement of the corrosion resistance was also investigated. In the potential/current density curve, three distinct current peaks, at -520 mV (peak I), -425 mV (peak II) and -175 mV (peak III), were observed. The Ag-rich alpha(2) matrix with coarse Cu and Pd-rich lamellae was the most corrosion-susceptible region, and this region was preferentially corroded at peak I with the formation of granular deposits of Ag(2)S. A small amount of Ag-Cu mixed sulfide deposited on the Cu and Pd-rich coarse particles and dissolution of Ag as AgO(-) might have occurred in parallel with Ag(2)S formation at peak II. Enrichment of Pd on the alloy surface occurred at peak III due to preferential dissolution of Ag and Cu. A high level of corrosion resistance was attained with the formation of a thin Pd-rich sulfide film, which enhanced the passivity of the alloy in an alkaline sulfide solution. It was found that passivity is an important phenomenon not only for base metal alloys but also for noble metal alloys to maintain high levels of resistance to corrosion and tarnishing in sulfide environments. PMID:15348446

  8. Twist phase-induced polarization changes in electromagnetic Gaussian Schell-model beams

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Korotkova, O.

    2009-08-01

    Electromagnetic Gaussian Schell-model (EGSM) beam with twist phase (i.e., twisted EGSM beam) is introduced as an extension of its scalar version based on the unified theory of coherence and polarization. We show how analytical paraxial propagation formulae of isotropic and anisotropic EGSM beams passing through a general astigmatic ABCD optical system can be modified in the presence of the twist phase. Numerical examples demonstrate that the twist phase affects the spectral density, the state of coherence, and the degree of polarization of EGSM beams on propagation.

  9. Progress on producing polarized negative hydrogen ions by the ETHZ polarized ion source using the atomic beam method

    NASA Astrophysics Data System (ADS)

    Schmelzbach, P. A.; Grüebler, W.

    1983-03-01

    The progress on the ETHZ polarized negative hydrogen ion source, based on the atomic beam method, is described. Particular improvements have been made in the double charge exchange from positive to negative hydrogen ions. At present the source produces over 100 μA H+ ions, which yields 5-6 μA polarized negative hydrogen ions. These ions have been accelerated, in a EN tandem accelerator. A record current of 2-3 μA of polarized deuterons with 89% polarization could be focused through a 3 mm diameter collimator on a target. Further improvements incorporating presently available techniques are discussed. It is shown that 50-100 μA of polarized H- and D- ions can be produced with this type of source.

  10. Polarized Neutron Beam at the SANS Diffractometer KWS2 of the JCNS

    NASA Astrophysics Data System (ADS)

    Ioffe, A.; Feoktystov, A.; Staringer, S.; Radulescu, A.; Babcock, E.; Salhi, Z.

    This article describes a high-efficiency transmission polarizer that has been installed at the high-intensity SANS diffractometer KWS2 of the Jülich Centre for Neutron Science. The polarizer is primarily designed to be used in the low resolution/high Q-range mode of this diffractometer for the purpose of the separation of coherent scattering on biological objects from an intrinsic background caused by incoherent scattering on their hydrogen atoms. The polarizer operates with a rather divergent incident beam and is placed at about 2m from the sample (upstream in the beam). The diffuse spin-flip scattering that would become critical for such geometry is suppressed due to the use of a strong, about 0.14T, magnetic field. The polarizer has been characterized by a 3He neutron spin filter and provides very high polarization - 93% at 4.5 Å and 99.7% for neutrons with wavelength above 6 Å - for the SANS collimation 4m. The polarizer transmission at 4.5 Å amounts to 94% of the desired spin component. The polarizer is placed in the collimation base of the instrument and can be easily put in and out of the beam thus allowing for "an instant" switch between polarized and non-polarized neutron beams.

  11. Polarization spectroscopy of x-ray transitions from beam-excited highly charged ions

    SciTech Connect

    Beiersdorfer, P.; Lopez-Urrutia, J.C.; Decaux, V.; Widmann, K.; Neill, P.

    1997-01-01

    Polarization spectroscopy of x-ray lines represents a diagnostic tool to ascertain the presence of electron beams in high-temperature plasmas. Making use of the Livermore electron beam ion trap, which optimizes the linear x-ray line polarization by exciting highly charged ions with a monoenergetic electron beam, we have begun to develop polarization diagnostics and test theoretical models. Our measurement relies on the sensitivity of crystal spectrometers to the linear polarization of x-ray lines which depends on the value of the Bragg angle. We employed two spectrometers with differing analyzing crystals and simultaneously recorded the K-shell emission from heliumlike Fe{sup 24+} and lithiumlike Fe{sup 23+} ions at two different Bragg angles. A clear difference in the relative intensities of the dominant transitions is observed, which is attributed to the amount of linear polarization of the individual lines. {copyright} {ital 1997 American Institute of Physics.}

  12. Vectorial approach to studying second harmonic generation in collagen using linearly and radially polarized beams

    NASA Astrophysics Data System (ADS)

    Yew, Elijah Y. S.; Sheppard, Colin J. R.

    2006-08-01

    The study of second harmonic generation (SHG) has been examined using a vectorial approach for both linearly and radially polarized beams. This approach is necessary for situations when the beam is tightly focused such as in a microscope. Using the vectorial approach, the result of including the y and z components of the electric field is that previously ignored 'cross-component' terms are now found to have an influence on the SHG polarization and the radiation patterns obtained. Since SHG is dependent on the susceptibility tensor, the inclusion of these 'cross-component' terms can help to identify structural changes in biological materials simply by studying the changes in the tensor via the SHG polarization. In particular, we calculate the second harmonic polarization induced in collagen for both linearly and radially polarized beams.

  13. Generation of a controllable multifocal array from a modulated azimuthally polarized beam.

    PubMed

    Mu, Tingkui; Chen, Zeyu; Pacheco, Shaun; Wu, Rengmao; Zhang, Chunmin; Liang, Rongguang

    2016-01-15

    In this Letter, the focal spot areas of an azimuthally polarized beam modulated with a vortex-0-2π-phase plate or a π-phase-step plate are numerically found to be smaller than a radially polarized beam for three pupil functions with uniform, Gaussian, and Bessel-Gauss profiles. Several types of multizone phase plates are theoretically designed and numerically simulated for generating tight multifocal arrays from the azimuthally polarized beams for what we believe is the first time. The positions and polarization states of the multifocal arrays can be controlled simply by varying the pattern of the multizone plates. The produced multifocal array with controllable position and polarization is beneficial to parallel optical recording and parallel optical imaging. PMID:26766689

  14. Icositetrahedral and icosahedral atomic configurations observed in the Nb-Ag metallic glasses synthesized by ion beam mixing

    SciTech Connect

    Tai, K. P.; Gao, N.; Dai, X. D.; Li, J. H.; Lai, W. S.; Liu, B. X.

    2006-08-28

    Metallic glasses are obtained in an immiscible Nb-Ag system by ion beam mixing and an atomic configuration in the amorphous structure is discovered, i.e., an icositetrahedral ordering, which, together with an icosahedral ordering also observed in the Nb-Ag metallic glasses and in some previously reported systems, helps in formulating a structural spectrum of the amorphous solids. The experimental characterization and atomistic modeling with an ab initio derived Nb-Ag potential demonstrate the significance of structural heredity, i.e., the crystalline structures of the constituent metals play a decisive role in determining the atomic structure of the metallic glasses in the system.

  15. Anisotropic pure-phase plates for quality improvement of partially coherent, partially polarized beams.

    PubMed

    Martínez-Herrero, Rosario; Mejías, Pedro M; Piquero, Gemma

    2003-03-01

    From a theoretical point of view, the use of anisotropic pure-phase plates (APP) is considered in order to improve the quality parameter of certain partially coherent, partially polarized beams. It is shown that, to optimize the beam-quality parameter, the phases of the two Cartesian components of the field at the output of the APP plate should be identical and should exhibit a quadratic dependence on the radial polar coordinate. PMID:12630845

  16. Anisotropic pure-phase plates for quality improvement of partially coherent, partially polarized beams

    NASA Astrophysics Data System (ADS)

    MartíNez-Herrero, Rosario; MejíAs, Pedro M.; Piquero, Gemma

    2003-03-01

    From a theoretical point of view, the use of anisotropic pure-phase plates (APP) is considered in order to improve the quality parameter of certain partially coherent, partially polarized beams. It is shown that, to optimize the beam-quality parameter, the phases of the two Cartesian components of the field at the output of the APP plate should be identical and should exhibit a quadratic dependence on the radial polar coordinate.

  17. Polarization state modifications in the propagation of high azimuthal order annular beams.

    PubMed

    Lapucci, A; Ciofini, M

    2001-12-01

    Using a vector Fresnel diffraction propagator we investigate the far-field distributions obtained from guided annular modes with different polarization states. Furthermore we demonstrate that a pure azimuthal polarization transforms into a mainly radial one in the propagation of annular beams with azimuthal mode number higher than 0. This property could enhance the performance of a laser metal-cutting system based on these kind of beams. PMID:19424296

  18. Second-harmonic generation in shear wave beams with different polarizations

    SciTech Connect

    Spratt, Kyle S. Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  19. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    SciTech Connect

    Tokuoka, Y.; Seto, Y.; Kato, T.; Iwata, S.

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5 nm) and FePd-Ag (5 nm) films were grown on MgO (001) substrate at temperatures of 250–400 °C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 10–20 at. % was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with the reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.

  20. Generation of controllabe and tighter multifocal array from the modulated azimuthally polarized beam

    PubMed Central

    MU, TINGKUI; CHEN, ZEYU; WU, RENGMAO; PACHECO, SHAUN; ZHANG, CHUNMIN; LIANG, RONGGUANG

    2016-01-01

    Comparisons of the focusing properties for the radially and azimuthally polarized beams with different pupil functions, such as uniform, Gaussian and Bessel-Gauss profiles, are presented. The results show that, for any pupil function, the spot sizes of the azimuthally polarized beam modulated with the vortex-0-2π-phase plate or the π-phase-step plate are smaller than that of the radially polarized beam encoded with or without these two types of plates. Then a type of multi-zone phase plate for generating tighter multifocal arrays from azimuthally polarized beams is proposed. The position and the linear polarization of the multifocal spots can be controlled by varying the pattern of the multi-zone phase plate and rotating the direction of the π-phase-step plate. In addition, for the radially polarized beam with Gaussian or Bessel-Gauss profiles and with the specified ratio of pupil diameter to beam diameter, the focal spot can be further reduced after modulated with the vortex-0-2π-phase plate, and the focal spot will be split into two after modulated with the π-phase-step plate. The latter property can be used to double the efficiency of parallel micro-manipulation. PMID:26766689

  1. The effect of atomic structure on interface spin-polarization of half-metallic spin valves: Co{sub 2}MnSi/Ag epitaxial interfaces

    SciTech Connect

    Nedelkoski, Zlatko; Hasnip, Philip J.; Kuerbanjiang, Balati; Higgins, Edward; Lazarov, Vlado K.; Sanchez, Ana M.; Bell, Gavin R.; Oogane, Mikihiko; Hirohata, Atsufumi

    2015-11-23

    Using density functional theory calculations motivated by aberration-corrected electron microscopy, we show how the atomic structure of a fully epitaxial Co{sub 2}MnSi/Ag interfaces controls the local spin-polarization. The calculations show clear difference in spin-polarization at Fermi level between the two main types: bulk-like terminated Co/Ag and Mn-Si/Ag interfaces. Co/Ag interface spin-polarization switches sign from positive to negative, while in the case of Mn-Si/Ag, it is still positive but reduced. Cross-sectional atomic structure analysis of Co{sub 2}MnSi/Ag interface, part of a spin-valve device, shows that the interface is determined by an additional layer of either Co or Mn. The presence of an additional Mn layer induces weak inverse spin-polarisation (−7%), while additional Co layer makes the interface region strongly inversely spin-polarized (−73%). In addition, we show that Ag diffusion from the spacer into the Co{sub 2}MnSi electrode does not have a significant effect on the overall Co{sub 2}MnSi /Ag performance.

  2. Study of the effect of scattering from turbid water on the polarization of a laser beam

    NASA Technical Reports Server (NTRS)

    Henderson, R. G.; Hovanlou, A. H.

    1978-01-01

    A Monte Carlo simulation method was used to determine the effect of scattering from turbid water on the polarization of a backscattered beam of laser light. The relationship between the polarization and the type and amount of suspended particulates in the water was investigated.

  3. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  4. Overall parameters for the characterization of non-uniformly totally polarized beams

    NASA Astrophysics Data System (ADS)

    Martínez-Herrero, R.; Mejías, P. M.; Piquero, G.

    2006-09-01

    Several overall parameters are introduced to characterize the linear or circular polarization content of a non-uniformly totally polarized beam over the region of its wavefront where the irradiance is significant. These figures of merit are determined from the values of the Stokes parameters. The physical meaning of the proposed parameters is tested by computing some numerical examples, and their measurability is checked by considering non-uniformly totally polarized fields generated after propagation through uniaxial anisotropic materials.

  5. Timelike deeply virtual Compton scattering with a linearly polarized real (or quasi-real) photon beam

    NASA Astrophysics Data System (ADS)

    Goritschnig, A.; Pire, B.; Wagner, J.

    We calculate timelike virtual Compton scattering amplitudes in the generalized Bjorken scaling regime and focus on a new polarization asymmetry in the scattering process with a linearly polarized photon beam in the medium energy range, which will be studied intensely at JLab12 experiments. We demonstrate that new observables help us to access the polarized quark and gluon generalized parton distributions $\\tilde H(x, \\xi, t)$ and $ \\tilde E(x, \\xi, t)$.

  6. Influence of electron beam irradiation on structural and optical properties of α-Ag2WO4 nanoparticles.

    PubMed

    A, Sreedevi; K P, Priyanka; K K, Babitha; S, Ganesh; Varghese, T

    2016-09-01

    The influence of 8MeV electron beam irradiation on the structural and optical properties of silver tungstate (α-Ag2WO4) nanoparticles synthesized by chemical precipitation method was investigated. The dose dependent effect of electron irradiation was investigated by various characterization techniques such as, X-ray diffraction, scanning electron microscopy, UV-vis absorption spectroscopy, photoluminescence and Raman spectroscopy. Systematic studies confirm that electron beam irradiation induces non-stoichiometry, defects and particle size variation on α-Ag2WO4, which in turn results changes in optical band gap, photoluminescence spectra and Raman bands. PMID:27223824

  7. Experimental results on spin physics at the AGS

    SciTech Connect

    Makdisi, Y.I.

    1986-01-01

    The AGS ran with polarized protons towards the end of 1985 and through the first two months of 1986. This comprised commissioning periods interleaved with two runs for physics at 13.5 GeV/c with beam polarization of 50 to 60%, and 18.5 GeV/c with an average beam polarization of 40%. Later, the AGS polarized beam reached peak energy of 22 GeV/c and polarization of 46%. This article describes the various spin related experimental efforts since the VI Symposium at Marseille. These will be grouped into those using unpolarized beams and the rest are the polarized proton beam users. Afterwards the future of the program is described as extensions of current experiments in addition to other measurements that are yet to be proposed.

  8. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  9. The AGS-Booster lattice

    SciTech Connect

    Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.

    1987-01-01

    The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.

  10. Polarization independent beam fanning using a multi-domain liquid crystal cell.

    PubMed

    Ren, Hongwen; Wu, Shin-Tson

    2009-07-01

    Polarization independent beam fanning using a multi-domain liquid crystal (LC) cell is demonstrated experimentally. In the neighboring domains, the LC directors are aligned in orthogonal directions. To prove concepts, two hybrid-aligned LC cells with four and six domains were fabricated. Applying a voltage across the LC layer will change the phase difference between the neighboring domains. When the phase difference is 2mpi (m is an integer), the LC cell will not disturb the incident beam. However, if the phase shift is (2m + 1)pi, the outgoing beam will fan out into several beams; the number of fanout beams is equal to the domain number. PMID:19582068

  11. Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam.

    PubMed

    Dai, Lin; Li, Jian-Xing; Zang, Wei-Ping; Tian, Jian-Guo

    2011-05-01

    Electron acceleration in vacuum driven by a tightly focused radially polarized Gaussian beam has been studied in detail. Weniger transformation method is used to eliminate the divergence of the radially polarized electromagnetic field derived from the Lax series approach. And, electron dynamics in an intense radially polarized Gaussian beam is analyzed by using the Weniger transformation field. The roles of the initial phase of the electromagnetic field and the injection angle, position and energy of electron in energy gain of electron have been studied in detail. PMID:21643185

  12. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam

    PubMed Central

    Tian, Nian; Fu, Ling; Gu, Min

    2015-01-01

    We extend the subtractive imaging method to label-free second harmonic generation (SHG) microscopy to enhance the spatial resolution and contrast. This method is based on the intensity difference between two images obtained with circularly polarized Gaussian and doughnut-shaped beams, respectively. By characterizing the intensity and polarization distributions of the two focused beams, we verify the feasibility of the subtractive imaging method in polarization dependent SHG microscopy. The resolution and contrast enhancement in different biological samples is demonstrated. This work will open a new avenue for the applications of SHG microscopy in biomedical research. PMID:26364733

  13. Probing Valence Quark's Sivers' Distribution with Polarized-Beam Drell-Yan

    NASA Astrophysics Data System (ADS)

    Reimer, Paul E.

    2014-09-01

    The E-906/SeaQuest experiment at Fermilab is collecting unpolarized Drell-Yan and J / Φ data. These data will elucidate aspects of the antiquark distributions in nucleon and nuclear structure, including the the flavor asymmetry in the light quark sea and the EMC effect in the sea distributions. Presently, neither the beam nor the target is polarized in SeaQuest. With little or no modification to the spectrometer, the addition of either a polarized target or beam will unleash exciting new opportunities to examine the spin structure of the valence (polarized beam) and sea (polarized target) quark structure of the proton, including the valence and sea quark Sivers' distributions. QCD predicts that the Sivers' distribution measured with polarized Drell-Yan is equal in magnitude but opposite in sign to the Sivers' distribution measured by semi-inclusive DIS. After a review of SeaQuest's current physics program and spectrometer status, this talk will focus on the achievements that will be made with the addition of a polarized beam from the Fermilab Main Injector, including a precise determination of the Sivers' distribution of a wide range of xBj necessary for this comparison. The E-906/SeaQuest experiment at Fermilab is collecting unpolarized Drell-Yan and J / Φ data. These data will elucidate aspects of the antiquark distributions in nucleon and nuclear structure, including the the flavor asymmetry in the light quark sea and the EMC effect in the sea distributions. Presently, neither the beam nor the target is polarized in SeaQuest. With little or no modification to the spectrometer, the addition of either a polarized target or beam will unleash exciting new opportunities to examine the spin structure of the valence (polarized beam) and sea (polarized target) quark structure of the proton, including the valence and sea quark Sivers' distributions. QCD predicts that the Sivers' distribution measured with polarized Drell-Yan is equal in magnitude but opposite in sign

  14. Measurement of Electron Beam Polarization from Unstrained Bulk GaAs via Two Photon Photoemission

    SciTech Connect

    J L McCarter, T J Gay, J Hansknecht, M Poelker, M L Stutzman

    2011-06-01

    This paper describes measurements of the beam polarization and quantum efficiency for photoemission using two-photon excitation from unstrained bulk GaAs illuminated with pulsed, high intensity 1560nm laser light. Quantum efficiency is linearly proportional to 1560nm peak laser intensity, which was varied in three independent ways, indicating that the emitted electrons are promoted from the valence to the conduction band via two-photon absorption. Beam polarization was measured using a microMott polarimeter, with a value of 16.8(4)% polarization at 1560nm, which is roughly half the measured value of 33.4(8)% using 778 nm light.

  15. Broadband active tuning of unidirectional scattering from nanoantenna using combined radially and azimuthally polarized beams.

    PubMed

    Xi, Z; Wei, L; Adam, A J L; Urbach, H P

    2016-01-01

    We propose an approach to actively tune the scattering pattern of a Mie-type spherical antenna. The scheme is based on separate control over the induced electric dipole and induced magnetic dipole using two coherent focused beams of radial polarization and azimuthal polarization, respectively. By carefully tuning the amplitude and phase relation of the two beams, a broadband unidirectional scattering can be achieved, even at the antenna's resonant wavelength where the antenna scatters efficiently. By moving the focus of one beam, a drastic switch of the unidirectional scattering can be observed. Such a scheme enables the design of ultra-compact optical switches and directional couplers based on nanoantennas. PMID:26696151

  16. SHG microscopy excited by polarization controlled beam for three-dimensional molecular orientation measurement

    NASA Astrophysics Data System (ADS)

    Yoshiki, K.; Hashimoto, M.; Araki, T.

    2006-08-01

    We have developed a second-harmonic-generation (SGH) microscope to observe the three-dimensional molecular orientation with three-dimensional high spatial resolution using a polarization mode converter. The mode converter consists of a parallel-aligned nematic-liquid-crystal spatial-light-modulator (PAL-SLM) and quarter-waveplates, and converts a incident linearly polarized beam to orthogonal linearly polarized beams or radially polarized beam. We combined the mode converter with SHG microscope to obtain the local information of the three-dimensional molecular orientation. We demonstrated the detection of three-dimensional molecular orientation of collagen fiber in human Achilles' tendon. For high precision three-dimensional molecular orientation measurement, we propose a technique to calibrate the dependence of SHG detection efficiencies on molecular orientation using a liposome.

  17. Elastic scattering polarimeter for a polarized antiproton beam at U-70 accelerator of IHEP

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. A.; Chetvertkov, M. A.; Chetvertkova, V. A.; Garkusha, V. I.; Meschanin, A. P.; Mochalov, V. V.; Nurusheva, M. B.; Nurushev, S. B.; Ridiger, A. V.; Rykov, V. L.; Semenov, P. A.; Strikhanov, M. N.; Vasiliev, A. N.; Zapolsky, V. N.

    2016-02-01

    The absolute polarimeter based on the elastic p¯p-scattering in the diffraction kinematic regions with the total momentum transfer squared coverage of 0.1 < - t < 0.3 (GeV/c)2 is proposed for the polarized antiproton beam at the U-70 proton synchrotron of IHEP. It is shown that it would take ˜200-400 hours for measuring the beam polarization at the statistical errors of ΔPB/PB ≃10-15%. These time estimates include also the time which is necessary for the measurements of an analyzing power AN, using a polarized target. Besides the measurements of beam polarizations, the proposed polarimeter provides an opportunity for carrying out the experimental studies of the small momentum transfers physics which would be a valuable enrichment of the SPASCHARM experiment capabilities and its physics program.

  18. Experimental generation of tripartite polarization entangled states of bright optical beams

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Yan, Zhihui; Liu, Yanhong; Deng, Ruijie; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2016-04-01

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.

  19. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    NASA Astrophysics Data System (ADS)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  20. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    NASA Astrophysics Data System (ADS)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  1. Fan analyzer of neutron beam polarization on REMUR spectrometer at IBR-2 pulsed reactor

    NASA Astrophysics Data System (ADS)

    Nikitenko, Yu. V.; Ul'yanov, V. A.; Pusenkov, V. M.; Kozhevnikov, S. V.; Jernenkov, K. N.; Pleshanov, N. K.; Peskov, B. G.; Petrenko, A. V.; Proglyado, V. V.; Syromyatnikov, V. G.; Schebetov, A. F.

    2006-08-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation in the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multiplayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Å. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (fan-like polarization analyzer) with a solid angle of neutron detection of 2.2×10 -4 rad. This article describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of its tests on a polarized neutron beam.

  2. Opportunities for Polarized He-3 in RHIC and EIC

    SciTech Connect

    Aschenauer E.; Deshpande, A.; Fischer, W.; Derbenev, S.; Milner, R.; Roser, T.; Zelenski, A.

    2011-10-01

    The workshop on opportunities for polarized He-3 in RHIC and EIC was targeted at finding practical ways of implementing and using polarized He-3 beams. Polarized He-3 beams will provide the unique opportunity for first measurements, i.e, to a full quark flavor separation measuring single spin asymmetries for p{sup +}, p{sup -} and p{sup 0} in hadron-hadron collisions. In electron ion collisions the combination of data recorded with polarized electron proton/He-3 beams allows to determine the quark flavor separated helicity and transverse momentum distributions. The workshop had sessions on polarized He-3 sources, the physics of colliding polarized He-3 beams, polarimetry, and beam acceleration in the AGS Booster, AGS, RHIC, and ELIC. The material presented at the workshop will allow making plans for the implementation of polarized He-3 beams in RHIC.

  3. A high-pressure polarized 3He gas target for nuclear-physics experiments using a polarized photon beam

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Laskaris, G.; Chen, W.; Gao, H.; Zheng, W.; Zong, X.; Averett, T.; Cates, G. D.; Tobias, W. A.

    2010-04-01

    Following the first experiment on three-body photodisintegration of polarized 3He utilizing circularly polarized photons from High-Intensity Gamma Source (HI γ S) at Duke Free Electron Laser Laboratory (DFELL), a new high-pressure polarized 3He target cell made of pyrex glass coated with a thin layer of sol-gel doped with aluminum nitrate nonahydrate has been built in order to reduce the photon beam-induced background. The target is based on the technique of spin exchange optical pumping of hybrid rubidium and potassium and the highest polarization achieved is ˜ 62% determined from both NMR-AFP and EPR polarimetries. The phenomenological parameter that reflects the additional unknown spin relaxation processes, X , is estimated to be ˜ 0.10 and the performance of the target is in good agreement with theoretical predictions. We also present beam test results from this new target cell and the comparison with the GE180 3He target cell used previously at HI γ S. This is the first time that the sol-gel coating technique has been used in a polarized 3He target for nuclear-physics experiments.

  4. Forming-free, bi-directional polarity conductive-bridge memory devices with Ge2Sb2Te5 solid-state electrolyte and Ag active electrode

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Hsien; Chen, Hsuan-An; Wu, Hsin-Han; Hsieh, Tsung-Eong

    2015-01-01

    Preparation and characteristics of conductive-bridge random access memory devices containing Ge2Sb2Te5 (GST) chalcogenide as the solid-state electrolyte, Ag as the active electrode, and W-Ti as the counter electrode are presented. As revealed by the electrical measurement, only the samples containing crystalline GST exhibited the resistive switching behaviors. With an insertion of ZnS-SiO2 dielectric layer at the Ag/GST interface and a postannealing at 100 °C for 1 min, the sample exhibited the best electrical performance with satisfactory cycleability and retention properties. Moreover, the forming-free and bi-directional polarity features were observed in such a sample type. Microstructure and composition analyses found the finely dispersed nano-scale Ag clusters in GST and, when electrical bias is applied, the migrating Ag ions may build up the connections in between neighboring Ag clusters. Moreover, grain boundaries in polycrystalline GST might be the main paths for Ag migration. The thread-like conduction channels in GST hence form, leading to the low resistance state of sample. On the contrary, the depletion of Ag in GST broke the connections in between Ag clusters when the electrical bias is reversed. This led to the rupture of conduction channels and, hence, the high resistance state of sample. The low operational voltage, forming-free, and bi-directional polarity features observed in (AZGW)T sample might also originated from the fine dispersion of Ag clusters in GST electrolyte.

  5. Phase-conjugation and self-oscillation with copropagating cross-polarized beams

    NASA Astrophysics Data System (ADS)

    Vallet, M.; Pinard, M.; Grynberg, G.

    1991-03-01

    We present the result of an experiment on optical phase conjugation made with a probe beam propagating in the same direction as the forward pump beam but having an orthogonal polarization. Using the difference of polarization, we separate the reflected beam from the backward pump beam. Is is shown that the amplitude of the reflected beam is the sum of two components, one proportional to the conjugate of the probe and one proportional to the amplitude of the probe. The experiment is done in sodium vapor and reflectivities larger than 350% have been observed near the D 1 transition. Weaker reflectivities due to a less efficient optical pumping are obtained near the D 2 line. We also describe the characteristics of the cw oscillation that appears between the Na cell and a mirror.

  6. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    SciTech Connect

    Bernauer, Jan; Milner, Richard

    2013-11-07

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  7. Statistical properties in Young's interference pattern formed with a radially polarized beam with controllable spatial coherence.

    PubMed

    Zhu, Shijun; Wang, Fei; Chen, Yahong; Li, Zhenhua; Cai, Yangjian

    2014-11-17

    Experimental generation of a radially polarized (RP) beam with controllable spatial coherence (i.e., partially coherent RP beam) was reported recently [Appl. Phys. Lett. 100, 051108 (2012)]. In this paper, we carry out theoretical and experimental studies of the statistical properties in Young's two-slit interference pattern formed with a partially coherent RP beam. An approximate analytical expression for the cross-spectral density matrix of a partially coherent RP beam in the observation plane is obtained, and it is found that the statistical properties, such as the intensity, the degree of coherence and the degree of polarization, are strongly affected by the spatial coherence of the incident beam. Our experimental results are consistent with the theoretical predictions, and may be useful in some applications, where light field with special statistical properties are required. PMID:25402110

  8. All-fiber Raman oscillator for the generation of radially and azimuthally polarized beams

    NASA Astrophysics Data System (ADS)

    Jocher, Christoph; Jauregui, Cesar; Becker, Martin; Rothhardt, Manfred; Limpert, Jens; Tünnermann, Andreas

    2014-03-01

    In this paper we demonstrate a Raman fiber oscillator for the generation of radially and azimuthally polarized beams. The Raman fiber oscillator comprises a high NA fiber and two Fiber-Bragg Gratings (FBGs). Due to the high NA of the fiber, radially and azimuthally polarized modes are guided with their own effective refractive indexes, i.e. they are not degenerated. Therefore, the FBGs reflect these modes at different wavelengths. The mode that oscillates in the resonator can be selected by controlling the coupling lens and the polarization of the pump beam. Unfortunately, at the output of the fiber oscillator the output beams exhibit a non-circularly symmetric intensity profile as a result of a slightly elliptical fiber core. Consequently, the impact of elliptical cores on the polarization degeneracy has been analyzed in detail. In order to compensate for the elliptical core we applied a transverse force on the last few cm of the fiber. With this force the waveguide characteristic of the fiber is changed in such a way that a radially or azimuthally polarized doughnutshaped beam profile is observed. Thereby an output power of 480mW (400mW) was reached for the azimuthal (radial) polarization. The presented concept is wavelength agile and suitable for all-fiber microscopic setups, especially for STED-microscopy.

  9. Spin coherence time studies of a horizontally polarized deuteron beam at COSY

    NASA Astrophysics Data System (ADS)

    G Guidoboni JEDI Collaboration

    2015-11-01

    The measurement of a non-zero electric dipole moment (EDM) aligned along the spin of sub-atomic particles would probe new physics beyond the standard model. It has been proposed to search for the EDM of charged particles using a storage ring and a longitudinally polarized beam. The EDM signal would be a rotation of the polarization from the horizontal plane toward the vertical direction as a consequence of the radial electric field always present in the particle frame. This experiment requires ring conditions that can ensure a lifetime of the in-plane polarization (spin coherence time, SCT) up to 1000 s. A study has begun at the COoler SYnchrotron (COSY) located at the Forschungszentrum Jülich to examine the effects of emittance and momentum spread on the SCT of a polarized deuteron beam at 0.97 GeV c-1. A special Data AcQuisition has been developed in order to provide a direct measurement of a rapidly rotating horizontal polarization as a function of time. The set of data presented here shows how second-order effects from emittance and momentum spread of the beam affect the lifetime of the horizontal polarization of a bunched beam. It has been demonstrated that sextupole fields can be used to correct for these depolarizing sources and increase the SCT up to hundreds of seconds.

  10. Improving the trapping capability using radially polarized narrow-width annular beam

    NASA Astrophysics Data System (ADS)

    Xu, Hua-Feng; Zhang, Wei-Jun; Qu, Jun; Huang, Wei

    2016-03-01

    A novel optical-trap method for improving the trapping capability using a radially polarized narrow-width annular beam (NWAB) has been proposed. In this paper, we theoretically study the tight focusing properties of a radially polarized NWAB, formed by subtly blocking the central portion of a radially polarized Bessel-Gaussian beam (the original doughnut beam), through a high-numerical aperture objective. It is shown that a sub-wavelength focal spot (?) with a quite long depth of focus (about ?) can be formed in the vicinity of the focus. Furthermore, the optical trapping forces acting on a metallic Rayleigh particle are calculated for the case where a radially polarized annular beam is applied. Numerical results show that the radially polarized NWAB can largely enhance the transverse trap stiffness and broaden the longitudinal trap range compared with the usage of the original doughnut beam. The influence of the annular factor δ on the focusing properties and the trap stiffness is investigated in detail.

  11. Polarized Atomic Hydrogen Beam Tests in the Mark-II Ultra-Cold Jet Target.

    NASA Astrophysics Data System (ADS)

    Luppov, V. G.; Blinov, B. B.; Gladycheva, S. E.; Kageya, T.; Kantsyrev, D. Yu.; Krisch, A. D.; Murray, J. R.; Neumann, J. J.; Raymond, R. S.; Borisov, N. S.; Kleppner, D.; Davidenko, A. M.; Grishin, V. N.

    2000-04-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms (Mark-II). The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam; an rf transition unit then converts this into a proton-spin-polarized beam, which is focused by a superconducting sextupole into the interaction region. Recently, the Jet produced a measured electron-spin-polarized atomic hydrogen beam of about 10^15 H s-1 into a 0.3 cm^2 area at the detector. This intensity corresponds to the free jet density of about 10^11 H cm-3 with a proton polarization of about 50%. So far, the intensity is limited by the high insulation vacuum pressure due to the evaporation of the separation cell's helium film. The beam's angular and radial distributions were measured. A test of a new superfluid-^4He-coated parabolic mirror, attached to the separation cell, appeared to increase the beam intensity by a factor of about 3, as expected.

  12. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    SciTech Connect

    Laine, Vivien E.

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  13. POLARIZED HYDROGEN JET TARGET FOR MEASUREMENT OF RHIC PROTON BEAM POLARIZATION.

    SciTech Connect

    MAKDISI,Y.; WISE,T.; CHAPMAN,M.; GRAHAM,D.; KPONOU,A.; MAHLER,G.; MENG,W.; NASS,A.; RITTER,J.

    2005-01-28

    The performance and unique features of the RHIC polarized jet target and our solutions to the important design constraints imposed on the jet by the RHIC environment are described. The target polarization and thickness were measured to be 0.924 {+-} 2% and 1.3 {+-} 0.2 x 10{sup 12} atoms/cm{sup 2} respectively.

  14. Polarization effects induced by a two-mirror laser beam scanner

    NASA Astrophysics Data System (ADS)

    Gimbal, Scott; Li, Qiaochu; Petrova-Mayor, Anna

    2012-10-01

    The polarization lidar technique requires that the transmitted laser beam in the atmosphere is linearly polarized so that a depolarization ratio from hydrometeors and aerosol particles can be detected. This is easily achieved in vertically pointing lidars used to study clouds. However, in scanning lidars, which are of interest for wind and pollution studies, stand-off detection and biodefense, the state of polarization of the laser beam is modified upon reflection by the mirrors of the scanner. We study experimentally the effect of a two-mirror scanner, or beam steering unit (BSU), on the polarization state of a linearly polarized beam at 1.54 micron wavelength. We built a miniature BSU in the lab and used a polarimeter to map the state of polarization (SOP) for all combinations of azimuth-elevation angles. We found that the linear polarization is preserved for a horizontal scan (elevation angle is 0°) but it rotates as a function of azimuth angle. There are a few more pointing directions in which the SOP is linear. Overall, the transmit beam is elliptically polarized for a non-zero elevation angle. The ellipticity and orientation of the ellipses is not constant. However, we found a period of repeatability of 180° in both azimuth and elevation angles. When comparing two different coatings, we note that the ellipticity is a function of the type of coating. We propose a method to eliminate the induced ellipticity by the BSU mirrors for all scan directions by means of altering the incident SOP on the BSU.

  15. Z-scan characterization of optical nonlinearities of an imperfect sample profits from radially polarized beams

    NASA Astrophysics Data System (ADS)

    Gu, Bing; Liu, Dahui; Wu, Jia-Lu; He, Jun; Cui, Yiping

    2014-12-01

    We present the Z-scan technique using azimuthal-variant vector beams for characterizing the nonlinear refractive index of an isotropic nonlinear medium. Compared with the conventional Z-scan measurements, the reliability of the vector beam Z-scan is improved because the focused azimuthal-variant vector beam exhibits a uniform-intensity focal ring instead of a focal spot. Experimentally, our investigation demonstrates that the Z-scan using radially polarized beams is a preferable technique for characterizing the optical nonlinearity of an imperfect sample.

  16. A Plasmonic based Ultracompact Polarization Beam Splitter on Silicon-on-Insulator Waveguides

    PubMed Central

    Tan, Qilong; Huang, Xuguang; Zhou, Wen; Yang, Kun

    2013-01-01

    An ultracompact polarization beam splitter (PBS) is designed on silicon-on-insulator (SOI) platform based on the localized surface plasmons (LSPs) excited by particular polarization light. The device uses nanoscale silver cylinders as the polarization selection between two silicon waveguides of a directional coupler. The transverse-magnetic (TM) polarization light excites localized surface plasmons and is coupled into the cross port of the directional coupler with a low insert loss, while the transverse-electric (TE) polarization light is under restriction. The PBS has a coupling layer with 50 nm width and 1.1 μm length supporting broadband operation. The simulation calculations show that 22.06dB and 23.06dB of extinction ratios for the TE and TM polarizations were obtained, together with insertion losses of 0.09dB and 0.40dB. PMID:23856635

  17. Thomson scattering of polarized photons in an intense laser beam

    SciTech Connect

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  18. p-Carbon CNI polarimetry in the AGS and RHIC.

    SciTech Connect

    Huang,H.; Alekseev, I.; Bazilevsky, A.; Bravar, A.; Bunce, G.; Dhawan, S.; Gill, R.; Makdisi, Y.; Morozov, B.; Roser, T.; Steski, D.; Sivertz, M.; Svirida, D.; Wood, J.; Yip, K.; Zelenski, A.

    2008-06-23

    Proton polarization measurements in the AGS (Alternate Gradient Synchrotron) and RHIC (Relativistic Heavy Ion Collider) are based on proton-carbon(pC) and proton-proton elastic scattering in the Coulomb Nuclear Interference (CNI) region. The CNI polarimeters are the essential tools for polarized proton acceleration setup and operation. High intensity recoil nuclei from the scattering of the circulating proton beam in the thin carbon target is efficiently utilized in the silicon strip detectors and data acquisition system, which is capable to analyze the event rate up to a few millions/second. This makes it possible for the fast, practically non-destructive polarization measurements. The polarization measurement on the beam energy ramp was implemented in AGS and RHIC, providing locations of polarization losses. Polarimeter operation in the scanning mode also gives polarization profile and beam profile (including bunch by bunch values for the later one). This paper summarizes the recent modifications. Results of polarization measurements are also discussed.

  19. Radiative production of sneutrinos in e+e- annihilation with polarized beams

    NASA Astrophysics Data System (ADS)

    Franke, F.; Fraas, H.

    1994-04-01

    We give for the process e++e--->ν~+ν~¯+γ of radiative sneutrino production with polarized beams the complete analytic expression for the transition amplitude. For beam energies between 100 and 500 GeV the total cross section, the photon energy spectrum, and photon angular distribution as well as the respective longitudinal polarization asymmetries are computed in representative gaugino-Higgsino mixing scenarios with the sneutrino decaying only into the lightest neutralino. Comparing the results with those for the competing standard process of radiative neutrino production we show that with the expected luminosity for a 500-GeV e+e- collider it would be difficult to identify a sneutrino lighter than both the chargino and the second lightest neutralino. The use of longitudinally polarized beams especially would not facilitate identification of the sneutrino in this mass region.

  20. Modeling superposition of 3- and N-polarized beams on an isotropic photo detector

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar; Ambroselli, Michael

    2015-09-01

    In a previous paper [SPIE Proc.Vol.7063, paper #4 (2008)], we have attempted to model possible modes of excitations that detecting dipoles carry out during the interaction process with EM waves before absorbing a quantum cupful of energy out of the two simultaneously stimulating EM waves along with experimental validations. Those experiments and analyses basically corroborate the law of Malus. For these two-beam cases, the cosθ-factor, (θ being the angle between the two polarization vectors), is too symmetric and too simple a case to assure that we are modeling the energy absorption process definitively. Accordingly, this paper brings in asymmetry in the interaction process by considering 3-beam and N-beam cases to find out whether there are more subtleties behind the energy absorption processes when more than two beams are simultaneous stimulating a detector for the transfer of EM energy from these multiple beams. We have suggested a possible experimental set up for a three-polarized beam experiment that we plan to carry out in the near future. We also present analyses for 3-beam and simplified Nbeam cases and computed curves for some 3-beam cases. The results strengthen what we concluded in our two beam experimental paper. We also recognize that the mode of mathematical analyses, based upon traditional approach, may not be sufficient to extract any more details of the invisible light-dipole interaction processes going on in nature.

  1. Mechanical, spin polarized electronic and magnetic properties of TmX(X = Cu, Ag): First principle study

    NASA Astrophysics Data System (ADS)

    Chand, Satish; Singh, R. P.; Govindan, A.; Singh, S. K.

    2015-10-01

    To study the mechanical, spin polarized electronic and magnetic behavior of TmX(X = Cu, Ag), full-potential linear augmented plane wave plus local orbital method has been used. The lattice parameter (a0), bulk modulus (B0) and its first-order pressure derivative (B0') have been calculated using optimization method. Mechanical properties have been studied in terms of elastic constants (Cij), Young's modulus (Y), shear modulus (G) and Poisson's ratio (v) at ambient temperature and pressure which are found to be consistent with available experimental/theoretical values. Electronic properties have been investigated in terms of band structure and density of state histograms for spin up and spin down channel. Electronic and magnetic behavior of TmX shows that studied materials are metallic ferromagnets with high spin polarization in which Tm-f state electrons are contributed mainly.

  2. Beam transport and polarization at TOPAS, the thermal time-of-flight spectrometer with polarization analysis

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Babcock, E.; Brückel, T.

    2010-02-01

    We present the design for the polarization analysis of the future thermal time-of-flight spectrometer at the Juelich Centre for Neutron Science (JCNS) at the FRM II. TOPAS is a time-of-flight spectrometer covering a range of incident energies 20 meV < Ei < 160 meV and an angular range -3° < 2θ < 150°. A set of Fermi choppers selects the incoming energy Ei with a resolution up to 3 %. The instrument is optimized for a high flux on small samples using an elliptical neutron guide. The special feature of TOPAS is the polarization analysis. The incident polarization will be realized by means of a 3He continuously pumped polarizer, which is a downscaled version of the device developed for small angle applications at JCNS. The polarization analysis over a wide angular range demands either short distances between the sample and the analyzer or a large volume of polarized 3He. Here we propose the latter alternative to allow the study of magnetic samples and modest magnetic fields at the sample position.

  3. Precise spectrum reconstruction of the Fourier transforms imaging spectrometer based on polarization beam splitters.

    PubMed

    Ren, Wenyi; Zhang, Chunmin; Jia, Chenling; Mu, Tingkui; Li, Qiwei; Zhang, Lin

    2013-04-15

    A method was proposed to precisely reconstruct the spectrum from the interferogram taken by the Fourier transform imaging spectrometer (FTIS) based on the polarization beam splitters. Taken the FTISs based on the Savart polariscope and Wollaston prism as examples, the distorted spectrums were corrected via the proposed method effectively. The feasibility of the method was verified via simulation. The distorted spectrum, recovered from the interferogram taken by the polarization imaging spectrometer developed by us, was corrected. PMID:23595463

  4. Interaction of Cotton-Mouton and Faraday effect under different initial polarization state of incident beam

    NASA Astrophysics Data System (ADS)

    Chrzanowski, J.; Kravtsov, Yu. A.

    2010-12-01

    The evolution of polarization along the ray in homogeneous plasma is analyzed in situation when Faraday and Cotton-Mouton effects are not small and comparable with each other. On the basis of the quasi-isotropic approximation of geometrical optics method authors find the numerical solution for azimuthal and ellipticity angles of polarization ellipse and analyze how the initial state of the incident beam affects obtained results. Numerical modeling is performed for plasma parameters comparable with those acceptable for the ITER project.

  5. Radially polarized annular beam generated through a second-harmonic-generation process.

    PubMed

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius. PMID:19838261

  6. Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations

    NASA Astrophysics Data System (ADS)

    Khonina, Svetlana N.; Ustinov, Andrey V.; Volotovsky, Sergey G.

    2014-08-01

    We consider the shaping of spherical intensity distributions based on the interference of counter-propagating tightly focused vortex beams with different polarizations. The formation of 3D distributions is performed using a simple method of optimization of the width and position of the single annular aperture. The optimum parameters for the narrow aperture are calculated analytically. In addition the wide aperture parameters are numerically adjusted. It is shown that depending on the polarization, the additional vortex phase and/or phase shift in the beams allow to form either solid light balls or light spheres of subwavelength radius. They consist of the various electric field components.

  7. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    PubMed

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given. PMID:17411211

  8. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask.

    PubMed

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  9. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    PubMed Central

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  10. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    NASA Astrophysics Data System (ADS)

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories.

  11. Synchronous-digitization for Video Rate Polarization Modulated Beam Scanning Second Harmonic Generation Microscopy

    PubMed Central

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan M.; Simpson, Garth J.

    2016-01-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen. PMID:27041788

  12. Polarized Atomic Hydrogen Beam Tests in the Michigan Ultra-Cold Jet Target

    NASA Astrophysics Data System (ADS)

    Kageya, T.; Blinov, B. B.; Denbow, J. M.; Kandes, M. C.; Krisch, A. D.; Kulkarni, D. A.; Lehman, M. A.; Luppov, V. G.; Morozov, V. S.; Murray, J. R.; Peters, C. C.; Raymond, R. S.; Ross, M. R.; Yonehara, K.; Borisov, N. S.; Fimushkin, V. V.; Kleppner, D.; Grishin, V. N.; Mysnik, A. L.

    2001-04-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms (Michigan Jet Target). The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam; an rf transition unit then converts this into a proton-spin-polarized beam, which is focused by a superconducting sextupole into the interaction region. The Jet produced, at the detector, a spin-polarized atomic hydrogen beam with a measured intensity of about 1.7 10^15 H s-1 and a FWHM area of less than 0.13 cm^2. This intensity corresponds to a free jet density of about 1.3 10^12 H cm-3 with a proton polarization of about 50%. When the transition RF unit is installed, we expect a proton polarization higher than 90%.

  13. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  14. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    PubMed Central

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-01-01

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures. PMID:24022688

  15. R_transport_matrices of the Fast Extraction Beam (FEB) of the AGS, and Beam Parameters at the Starting point of the AtR Line

    SciTech Connect

    Tsoupas,N.; MacKay, W.W.; Satogata, T.; Glenn, W.; Ahrens, L.; Brown, K.; Gardner, C.; Tanaka, S.

    2008-01-01

    As part of the task to improve and further automate the 'AtR BPM Application' we provide the theoretically calculated R-transport-matrices for the following beam line sections, which are shown schematically in Figure 1: (a) the Fast Extraction Beam section (FEB) of the AGS synchrotron. The FEB section starts at the middle of the GlO-kicker and ends at the middle of the H1 0{_}septum. (b) the Drift Extraction Channel (DEC) section of the AGS synchrotron. The DEC section starts at the middle of the H10{_}septum, continues along the fringe field region of the H11,H12, and H13 AGS main magnets, and ends at the starting point of the AtR line. The knowledge of these R-transport-matrices are needed in order to calculate the beam parameters at the beginning of the AtR line, which in turn, are required to calculate the magnet settings of the U{_}line, that match the U{_}line into the W{_}line. Also by incorporating these R{_}matrices into the model of the AtR line, the G10 kicker and the H10 septum are included in the AtR model therefore one can investigate any 'jitter' of either the GlO{_}kicker or HlO{_}septum by looking at the trajectory of the beam in the AtR line.

  16. Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light.

    PubMed

    Ye, Huapeng; Wan, Chao; Huang, Kun; Han, Tiancheng; Teng, Jinghua; Ping, Yeo Swee; Qiu, Cheng-Wei

    2014-02-01

    We propose a single-beam generation scheme to obtain a bottle-hollow (BH) beam using a binary phase mask and a focusing lens. The resulting BH beam is shown to possess an open bottle-shaped null intensity region, which has two hollow tube-shaped null intensity regions located on two opposite sides of this bottle. It is found that this scheme works identically under incident illumination with radial or azimuthal polarization. Another advantage of this scheme is that the same binary mask can be employed as a focusing lens with different choices of numerical aperture (NA). Furthermore, we observe that the length of the BH beam is inversely proportional to NA2 while the diameters of both the bottle and hollow regions are inversely proportional to NA; thereby leading to an adjustable BH beam. This BH beam may find attractive applications in noninvasive manipulation of microscopic particles over large distances. PMID:24487883

  17. Beam quality changes of radially and azimuthally polarized fields propagating through quartic phase plates

    NASA Astrophysics Data System (ADS)

    Martínez-Herrero, R.; Piquero, G.; Mejías, P. M.

    2008-02-01

    In terms of the so-called irradiance moments of a light field, the beam quality change, Δ Q, of radially and azimuthally polarized beams caused by propagation through a quartic phase plate (as occurs, for example, in strongly pumped laser rods used in high-power solid-state lasers) is studied. Analytical expressions for Δ Q are given, and a comparison between the scalar and vectorial regimes is also shown. The results are applied to several cases of interest.

  18. Multi-Wavelength, Multi-Beam, and Polarization-Sensitive Laser Transmitter for Surface Mapping

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Ramos-Izquierdo, Luis; Harding, David; Huss, Tim

    2011-01-01

    A multi-beam, multi-color, polarized laser transmitter has been developed for mapping applications. It uses commercial off-the-shelf components for a lowcost approach for a ruggedized laser suitable for field deployment. The laser transmitter design is capable of delivering dual wavelengths, multiple beams on each wavelength with equal (or variable) intensities per beam, and a welldefined state of polarization. This laser transmitter has been flown on several airborne campaigns for the Slope Imaging Multi-Polarization Photon Counting Lidar (SIMPL) instrument, and at the time of this reporting is at a technology readiness level of between 5 and 6. The laser is a 1,064-nm microchip high-repetition-rate laser emitting energy of about 8 microjoules per pulse. The beam was frequency-doubled to 532 nm using a KTP (KTiOPO4) nonlinear crystal [other nonlinear crystals such as LBO (LiB3O5) or periodically poled lithium niobiate can be used as well, depending on the conversion efficiency requirements], and the conversion efficiency was approximately 30 percent. The KTP was under temperature control using a thermoelectric cooler and a feedback monitoring thermistor. The dual-wavelength beams were then spectrally separated and each color went through its own optical path, which consisted of a beam-shaping lens, quarterwave plate (QWP), and a birefringent crystal (in this case, a calcite crystal, but others such as vanadate can be used). The QWP and calcite crystal set was used to convert the laser beams from a linearly polarized state to circularly polarized light, which when injected into a calcite crystal, will spatially separate the circularly polarized light into the two linear polarized components. The spatial separation of the two linearly polarized components is determined by the length of the crystal. A second set of QWP and calcite then further separated the two beams into four. Additional sets of QWP and calcite can be used to further split the beams into multiple

  19. Siberian Snake solenoid for the AGS

    SciTech Connect

    Ratner, L. G.

    1991-01-01

    Recent experiments at the Indiana University Cyclotron Facility (IUCF) have demonstrated that Siberian Snakes'' can be used to preserve the polarization of an accelerated polarized beam in a circular accelerator. Retrofitting full snakes into accelerators such as the Alternating Gradient Synchrotron (AGS) at Brookhaven is almost impossible due to space limitations, but a partial snake that can correct depolarization due to imperfection resonances with 1/20 to 1/30 of a full strength snake seems to present a viable option. We describe such a device for the AGS and give the design criteria in terms of simplicity of accelerator operation and level of achievable polarization. 2 refs., 5 figs., 1 tab.

  20. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  1. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  2. Demonstration of large-angle nonmechanical laser beam steering based on LC polymer polarization gratings

    NASA Astrophysics Data System (ADS)

    Kim, Jihwan; Miskiewicz, Matthew N.; Serati, Steve; Escuti, Michael J.

    2011-05-01

    Polarization gratings (PGs) as polarization sensitive diffractive optical elements work in broadband (UV to Mid- IR) with nearly 100% diffraction efficiency. We have introduced and utilized the PGs in different types of beam steering modules presented in our previous papers. Here, we describe and demonstrate a nonmechanical beam steering device based on passive gratings, liquid crystal (LC) polymer PGs. The device covers a large-angle Field-Of-Regard (FOR) with high efficiency, and is based on a stack of alternating LC half-wave plates and LC polymer PGs. The half-wave plates are switchable and are used to select the handedness of the circularly polarized input beam. The polymer PGs diffract the input beam to either of the first diffraction orders based on the circular handedness of the beam previously selected. When compared with conventional beam steering methods based on active gratings (ternary and quasi-ternary designs), this technique is experimentally able to steer an equivalent number of angles with similar efficiency, but fewer LC cells, and hence, fewer transparent electrodes and lower absorption. We successfully demonstrate the ability to steer 80° FOR with roughly 2.6° resolution at 1064 nm wavelength.

  3. Measurements of ECH absorption on ATF using a polarization-controlled beam launcher

    SciTech Connect

    Bigelow, T.S.; Schaich, C.R.; White, T.L.

    1989-01-01

    Electron cyclotron heating (ECH) is used on the Advanced Toroidal Facility (ATF) experiment at ORNL for plasma formation and heating. A 53.2 GHz gyrotron generates 200 kW cw which is transported to ATF in 6.35 cm evacuated waveguide. Power is launched into ATF using a recently completed polarization controlled beam launcher which can launch a linear polarized beam with a /minus/20 dB diameter of 12 cm at the plasma center. The launcher consists of a Vlasov mode converting antenna, a Teflon-copper laminate polarization rotating grating, and a spherical focusing mirror. The plane of polarization can be remotely adjusted by rotating the grating with a motorized vacuum feedthrough. First pass plasma absorption is monitored in two planes of polarization using a dual-polarized detector looking through a dome shaped scattering cut-off screen. During plasma operation, the detected signals indicate that absorption under ideal conditions is nearly complete. With low density or a shifted resonance zone, absorption is small and there are cases where there is mode coupling to the perpendicular polarization. This is presumably due to shear in the ATF magnetic field. 2 refs., 3 figs.

  4. Ultrashort coherence times in partially polarized stationary optical beams measured by two-photon absorption.

    PubMed

    Shevchenko, Andriy; Roussey, Matthieu; Friberg, Ari T; Setälä, Tero

    2015-11-30

    We measure the recently introduced electromagnetic temporal degree of coherence of a stationary, partially polarized, classical optical beam. Instead of recording the visibility of intensity fringes, the spectrum, or the polarization characteristics, we introduce a novel technique based on two-photon absorption. Using a Michelson interferometer equipped with polarizers and a specific GaAs photocount tube, we obtain the two fundamental quantities pertaining to the fluctuations of light: the degree of coherence and the degree of polarization. We also show that the electromagnetic intensity-correlation measurements with two-photon absorption require that the polarization dynamics, i.e., the time evolution of the instantaneous polarization state, is properly taken into account. We apply the technique to unpolarized and polarized sources of amplified spontaneous emission (Gaussian statistics) and to a superposition of two independent, narrow-band laser beams of different mid frequencies (non-Gaussian statistics). For these two sources femtosecond-range coherence times are found that are in good agreement with the traditional spectral measurements. Although previously employed for laser pulses, two-photon absorption provides a new physical principle to study electromagnetic coherence phenomena in classical and quantum continuous-wave light at extremely short time scales. PMID:26698754

  5. Tunable polarization in a beam splitter based on two-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Rothe, D. G.; Hankiewicz, E. M.

    2014-01-01

    The typical bulk model describing 2D topological insulators (TI) consists of two types of spin-orbit terms, the so-called Dirac term, which induces out-of-plane spin polarization, and the Rashba term, which induces in-plane spin polarization. We show that for some parameters of the Fermi energy, the beam splitter device built on 2D TIs can achieve higher in-plane spin polarization than the one built on materials described by the Rashba model itself. Further, due to high tunability of the electron density and the asymmetry of the quantum well, spin polarization in different directions can be obtained. While in the normal (topologically trivial) regime the in-plane spin polarization would dominate, in the inverted regime, the out-of-plane polarization is more significant not only in the band gap but also for small Fermi energies above the gap. Further, we suggest a double beam splitter scheme to measure in-plane spin current all-electrically. Although we consider here as an example HgTe/CdTe quantum wells, this scheme could be also promising for InAs/GaSb QWs where the in- and out-of-plane polarization could be achieved in a single device.

  6. Measuring A{sub b} with polarized beams at SLC

    SciTech Connect

    Junk, T.R.; SLD Collaboration

    1994-05-01

    We present the first direct measurement of the left-right asymmetry of b-quarks from the decay of Z{sup 0} bosons produced in the annihilation of longitudinally polarized electrons and unpolarized positrons in the SLD at the SLC. Two complementary techniques are presented: (1) Z{sup 0} {yields} b{bar b} decays are tagged using track impact parameters measured with a CCD-based vertex detector with b {minus} {bar b} discrimination provided by momentum-weighted track charge; (2) Semileptonic b-decays are tagged using high (P, P{sub T}) muons and electrons with b {minus} {bar b} discrimination provided by the lepton charge. In our 1993 sample of {approximately}50,000 Z{sup 0} decays having a luminosity-weighted average e{sup {minus}} polarization of (62.6{plus_minus}1.2)%, we find the following preliminary results: A{sub b}(track charge) = 1.01{plus_minus}0.12(stat) {plus_minus}0.14(sys), A{sub b}(muons) = 0.94{plus_minus}0.25(stat){plus_minus}0.11(sys), and A{sub b}(electrons) 0.99{plus_minus}0.27(stat){plus_minus} 0.19(sys).

  7. Quadrupolar second-harmonic generation by helical beams and vectorial vortices with radial or azimuthal polarization

    NASA Astrophysics Data System (ADS)

    Mandujano, Miguel G.; Maytorena, Jesús A.

    2013-08-01

    We study the optical second-harmonic radiation (SHG) generated by scattering from a homogeneous centrosymmetric thin composite material illuminated by higher-order Gaussian laser beams. The induced second-order source polarization is taken as of quadrupolar type (E·∇)E, which depends on the inhomogeneity of the incident electric field E. This nonlinear source has the same form as that responsible of the SH signal observed in a composite made of Si nanocrystals embedded uniformly in a SiO2 matrix and that calculated for a thin disordered array of nanospheres. We calculate the SH radiation angular patterns generated by several incident combinations of spatial modes and states of polarizations. In particular, excitation with radially and azimuthally polarized doughnut modes and helical beams carrying orbital angular momentum with linear or circular polarization are considered. We found that this quadrupolar SHG depends sensitively on the transverse structure and polarization of the driving field. The response to ∇E introduces a factor E(E·K) in the Fourier component of the SH scattering amplitude, absent in electric-dipole-allowed SHG, that can give additional nodal lines or rings in the SH angular patterns, changes of the state of polarization, or additional azimuthal phases in the harmonic radiation. For circularly polarized beams with helical phase wave front, we found a selection rule according to which the nonlinear scattering of an optical vortex with charge lω and spin σ=±1 induces a SH vortex field with a spin-dependent charge doubling l2ω=2lω+σ. These features may be useful to identify SHG processes of quadrupolar nature and suggest a way to produce scattered SH radiation with a desired angular pattern and state of polarization.

  8. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    DOEpatents

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  9. PIC code KARAT simulation of different types of polarization radiation generated by relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.

    2012-05-01

    Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.

  10. High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions

    SciTech Connect

    Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

    2011-03-28

    Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

  11. Simulation of a polarized laser beam reflected at the sea surface: modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric

    2015-05-01

    A 3-D simulation of the polarization-dependent reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation considers polarized or unpolarized laser sources and calculates the polarization states upon reflection at the sea surface. It is suitable for the radiance calculation of the scene in different spectral wavebands (e.g. near-infrared, SWIR, etc.) not including the camera degradations. The simulation also considers a bistatic configuration of laser source and receiver as well as different atmospheric conditions. In the SWIR, the detected total power of reflected laser light is compared with data collected in a field trial. Our computer simulation combines the 3-D simulation of a maritime scene (open sea/clear sky) with the simulation of polarized or unpolarized laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the input of a camera equipped with a linear polarizer, the polarized sea surface radiance must be calculated for the specific waveband. The s- and p-polarization states are calculated for the emitted sea surface radiance and the specularly reflected sky radiance to determine the total polarized sea surface radiance of each component. The states of polarization and the radiance of laser light specularly reflected at the wind-roughened sea surface are calculated by considering the s- and p- components of the electric field of laser light with respect to the specular plane of incidence. This is done by using the formalism of their coherence matrices according to E. Wolf [1]. Additionally, an analytical statistical sea surface BRDF (bidirectional reflectance distribution function) is considered for the reflection of laser light radiances. Validation of the simulation results is required to ensure model credibility and applicability to maritime laser applications. For validation purposes, field measurement data (images and

  12. Polarization and collision-induced coherence in the beam-foil light source

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Bashkin, S.; Church, D. A.

    1974-01-01

    Monatomic systems were excited by the beam-foil method in order to re-examine the possibility that a particular magnetic substate was preferentially populated. O II, Ar II and He I levels were used. The results reveal that: (1) with a tilted foil substantial polarization (up to 15%) may be achieved, (2) the polarization is due to the foil, (3) the foil induces coherence among Zeeman substates with the appearance of quantum beats among these substates and that their coherence is due to the externally applied magnetic field perpendicular to the beam direction, and (4) the angular momentum of the emitted photon is perpendicular to the ion velocity. The possibility for detecting separate effects of alignment and polarization is noted.

  13. Measurement of electron beam polarization from unstrained GaAs via two-photon photoemission

    SciTech Connect

    McCarter, James L.; Afanasev, A.; Gay, T. J.; Hansknecht, John C.; Kechiantz, A.; Poelker, B. Matthew

    2014-02-01

    Two-photon absorption of 1560 nm light was used to generate polarized electron beams from unstrained GaAs photocathodes of varying thickness: 625 {mu}m, 0.32 {mu}m, and 0.18 {mu}m. For each photocathode, the degree of spin polarization of the photoemitted beam was less than 50%, contradicting earlier predictions based on simple quantum mechanical selection rules for spherically-symmetric systems but consistent with the more sophisticated model of Bhat et al. (Phys. Rev. B 71 (2005) 035209). Polarization via two-photon absorption was the highest from the thinnest photocathode sample and comparable to that obtained via one-photon absorption (using 778 nm light), with values 40.3 +- 1.0% and 42.6 +- 1.0%, respectively.

  14. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.

    PubMed

    Pavone, S C; Ettorre, M; Casaletti, M; Albani, M

    2016-05-16

    In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity. PMID:27409933

  15. Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet.

    PubMed

    Tsang, T; Bellavia, S; Connolly, R; Gassner, D; Makdisi, Y; Russo, T; Thieberger, P; Trbojevic, D; Zelenski, A

    2008-10-01

    A gas fluorescence beam profile monitor has been implemented at the relativistic heavy ion collider (RHIC) using the polarized atomic hydrogen gas jet, which is part of the polarized proton polarimeter. RHIC proton beam profiles in the vertical plane of the accelerator are obtained as well as measurements of the width of the gas jet in the beam direction. For gold ion beams, the fluorescence cross section is sufficiently large so that profiles can be obtained from the residual gas alone, albeit with long light integration times. We estimate the fluorescence cross sections that were not known in this ultrarelativistic regime and calculate the beam emittance to provide an independent measurement of the RHIC beam. This optical beam diagnostic technique, utilizing the beam induced fluorescence from injected or residual gas, offers a noninvasive particle beam characterization and provides visual observation of proton and heavy ion beams. PMID:19044742

  16. A Polarimeter for GeV Linearly-polarized Photon Beams

    NASA Astrophysics Data System (ADS)

    Wood, M. H.; Tedeschi, D.; Wojtsekhowski, B.; Abbott, D.; Nelyubin, V.; Vlahovic, B.; Asai, J.; Feldman, G.; O'Rielly, G.; Khandaker, Mahbub; Hotta, T.; Kohri, H.; Matsumura, T.; Mibe, T.; Nakano, T.; Yorita, T.; Rudge, A.; Weilhammer, P.; Zegers, R.

    2003-04-01

    We have built a polarimeter for linearly-polarized photon beams in the few GeV photon-energy range. The technique is to detect an electron-positron pair produced from a photon incident on a thin converter. The orientation and the distance separating the e^+ and e^- are measured accurately with silicon-microstrip detectors. The polarimeter was calibrated at the SPring-8 facility using a compton-backscattered photon beam in the energy range of 1.5 GeV ≤ E_γ ≤ 2.4 GeV. This measurement was the first made for the process at these energies. Results will be presented of the measured asymmetry between horizontally and vertically polarized beams.

  17. Manipulation of polarization and spatial properties of light beams with chiral metafilms.

    PubMed

    Klimov, V V; Zabkov, I V; Pavlov, A A; Shiu, R-C; Chan, H-C; Guo, G Y

    2016-03-21

    Two-dimensional lattices of chiral nanoholes in a plasmonic film with lattice constants being slightly larger than light wavelength are proposed for effective control of polarization and spatial properties of light beams. Effective polarization conversion and strong circular dichroism in non-zero diffraction orders in these chiral metafilms are demonstrated by electromagnetic simulations. These interesting effects are found to result from interplay between radiation pattern of single chiral nanohole and diffraction pattern of the planar lattice, and can be manipulated by varying wavelength and polarization of incoming light as well as period of metastructure and refractive indexes of substrate and overlayer. Therefore, this work offers a novel paradigm for developing planar chiral metafilm-based optical devices with controllable polarization state, spatial orientation and intensity of outgoing light. PMID:27136811

  18. SLAC's polarized electron source laser system and minimization of electron beam helicity correlations for the E-158 parity violation experiment

    NASA Astrophysics Data System (ADS)

    Humensky, T. B.; Alley, R.; Brachmann, A.; Browne, M. J.; Cates, G. D.; Clendenin, J.; deLamare, J.; Frisch, J.; Galetto, T.; Hughes, E. W.; Kumar, K. S.; Mastromarino, P.; Sodja, J.; Souder, P. A.; Turner, J.; Woods, M.

    2004-04-01

    SLAC E-158 is an experiment designed to make the first measurement of parity violation in M øller scattering. E-158 will measure the right-left cross-section asymmetry, ALRM øller , in the elastic scattering of a 45-GeV polarized electron beam from unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of ˜10 -7 to an accuracy of better than 10 -8. To make this measurement, the photoemission-based polarized electron source requires an intense circularly polarized laser beam and the ability to quickly switch between right- and left-helicity polarization states with minimal right-left helicity-correlated asymmetries in the resulting beam parameters (intensity, position, angle, spot size, and energy), beamALR's. This laser beam is produced by a unique SLAC-designed flashlamp-pumped Ti:Sapphire laser and is directed through a carefully designed set of polarization optics. We analyze the transport of nearly circularly polarized light through the optical system and identify several mechanisms that generate beamALR's. We show that the dominant effects depend linearly on particular polarization phase shifts in the optical system. We present the laser system design and a discussion of the suppression and control of beamALR's. We also present results on beam performance from engineering and physics runs for E-158.

  19. Run05 Proton Beam Polarization Measurements by pC-Polarimeter (ver. 1.1)

    SciTech Connect

    Nakagawa,I.; Alekseev, I.; Bazilevsky, A.; Bravar, A.; Bunce, G.; Dhawan, S.; Eyser, K.O.; Gill, R.; Haeberli, W.; Huang, H.; Makdisi, Y.; Nass, A.; Okada, H.; Stephenson, E.; Svirida, D.N.; Wise, T.; Wood, J.; Yip, K.; Zelenski, A.

    2008-07-01

    The polarization of the proton beams [1, 2] at the Relativistic Heavy Ion Collider (RHIC)[3] RHIC ring. The H-Jet polarimeter is located at the collision point allowing measurements of absolute normalization is provided by the hydrogen polarimeter, which measures over 1 {approx} 2 another measurement rather than measuring the absolute polarization. both beams. Two identical pC-polarimeters are equipped in the yellow and blue rings, where carbon ribbon target, providing fast feedback to beam operations and experiments. The days to obtain {approx} 5% statistical uncertainty (in Run05). Thus, the operation of the carbon is measured using both an atomic beam source hydrogen gas jet (H-Jet)[4, 5] and proton-carbon polarimeters was focused on better control of relative stability between one measurement to statistical accuracy within 20 to 30 seconds using an ultra-thin (typically 6 {approx} 8 {micro}g/cm{sup 2}) the rings are separated. The pC-polarimeter measures relative polarization to a few percent.

  20. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.

    PubMed

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Zhang, Peng

    2016-09-01

    Focusing fields of optical vortex (OV) beams with circular or radial polarizations carry both spin angular momentum (SAM) and orbital angular momentum (OAM), and can realize non-axial spinning and orbiting motion of absorptive particles. Using the T-matrix method, we evaluate the optical forces and torques exerted on micro-sized particles induced by the OV beams. Numerical results demonstrate that the particle is trapped on the circle of intensity maxima, and experiences a transverse spin torque along azimuthal direction, a longitudinal spin torque, and an orbital torque, respectively. The direction of spinning motion is not only related to the sign of topological charge of the OV beam, but also to the polarization state. However, the topological charge controls the direction of orbiting motion individually. Optically induced rotations of particles with varying sizes and absorptivity are investigated in OV beams with different topological charges and polarization states. These results may be exploited in practical optical manipulation, especially for optically induced rotations of micro-particles. PMID:27607664

  1. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  2. AN EXPERIMENTAL PROPOSAL TO STUDY HEAVY-ION COOLING IN THE AGS DUE TO BEAM GAS OR THE INTRABEAM SCATTERING.

    SciTech Connect

    TRBOJEVIC, D.; AHERNS, L.; ROSER, T.; MACKAY, W.; BRENNAN, J.; BLASKIEWICZ,M.; PARZEN, G.; BEEBE-WANG, J.

    2006-06-23

    Low emittance of not-fully-stripped gold (Z=79) Au{sup +77} Helium-like ion beams from the AGS (Alternating Gradient Synchrotron) injector to the Relativistic Heavy Ion Collider (RHIC) could be attributed to the cooling phenomenon due to inelastic intrabeam scattering [1,2] or due to electron de-excitations from collisions with the residual gas [3]. The low emittance gold beams have always been observed at injection in the Relativistic Heavy Ion Collider (RHIC). There have been previous attempts to attribute the low emittance to a cooling due to the exchange of energy between ions during the inelastic intrabeam scattering. The Fano-Lichten theory [4] of electron promotion might be applied during inelastic collisions between helium like gold ions in the AGS. The two K-shell electrons in gold Au{sup +77} could get promoted if the ions reach the critical distance of the closest approach during intra-beam scattering or collisions with the residual gas. During collisions if the ion energy is large enough, a quasi-molecule could be formed, and electron excitation could occur. During de-excitations of electrons, photons are emitted and a loss of total bunch energy could occur. This would lead to smaller beam size. We propose to inject gold ions with two missing electrons into RHIC, at injection energy, and study the beam behavior with bunched and de-bunched beam, varying the RF voltage and the beam intensity. If the ''cooling'' is observed additional X-ray detectors could be installed to observe emitted photons.

  3. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.

    PubMed

    Mohapatra, Satyabrata

    2016-02-01

    Nanocomposite thin films containing Ag nanoparticles embedded in the GeO2-SiO2 matrix were synthesized by the atom beam co-sputtering technique. The structural, optical and plasmonic properties and the chemical composition of the nanocomposite thin films were studied by transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), UV-visible absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). UV-visible absorption studies on Ag-SiO2 nanocomposites revealed the presence of a strong localized surface plasmon resonance (LSPR) peak characteristic of Ag nanoparticles at 413 nm, which showed a blue shift of 26 nm (413 to 387 nm) along with a significant broadening and drastic decrease in intensity with the incorporation of 16 at% of Ge into the SiO2 matrix. TEM studies on Ag-GeO2-SiO2 nanocomposite thin films confirmed the presence of Ag nanoparticles with an average size of 3.8 nm in addition to their aggregates with an average size of 16.2 nm. Thermal annealing in air resulted in strong enhancement in the intensity of the LSPR peak, which showed a regular red shift of 51 nm (from 387 to 438 nm) with the increase in annealing temperature up to 500 °C. XPS studies showed that annealing in air resulted in oxidation of excess Ge atoms in the nanocomposite into GeO2. Our work demonstrates the possibility of controllably tuning the LSPR of Ag nanoparticles embedded in the GeO2-SiO2 matrix by single-step thermal annealing, which is interesting for optical applications. PMID:26766559

  4. Disentangling the unparticles with polarized beams at e{sup +}e{sup -} colliders

    SciTech Connect

    Huitu, Katri; Rai, Santosh Kumar

    2008-02-01

    A recently proposed idea of unparticles arising due to a scale invariant sector in the theory can give rise to effective operators with different Lorentz structures. We show that, by using the different polarization options at the future linear e{sup +}e{sup -} colliders, the nature of these effective operators can be easily understood. The unique feature of a complex phase in the propagator of the unparticle can also be understood distinctively for the different spins by exploiting the initial beam polarizations at the International Linear Collider.

  5. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  6. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-13

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  7. High-power spectral beam combining of linearly polarized Tm:fiber lasers.

    PubMed

    Shah, Lawrence; Sims, R Andrew; Kadwani, Pankaj; Willis, Christina C C; Bradford, Joshua B; Sincore, Alex; Richardson, Martin

    2015-02-01

    To date, high-power scaling of Tm:fiber lasers has been accomplished by maximizing the power from a single fiber aperture. In this work, we investigate power scaling by spectral beam combination of three linearly polarized Tm:fiber MOPA lasers using dielectric mirrors with a steep transition from highly reflective to highly transmissive that enable a minimum wavelength separation of 6 nm between individual laser channels within the wavelength range from 2030 to 2050 nm. Maximum output power is 253 W with M(2)<2, ultimately limited by thermal lensing in the beam combining elements. PMID:25967785

  8. Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse

    SciTech Connect

    Payeur, S.; Fourmaux, S.; Schmidt, B. E.; MacLean, J. P.; Tchervenkov, C.; Legare, F.; Kieffer, J. C.; Piche, M.

    2012-07-23

    The generation of an electron beam through longitudinal field acceleration from a tightly focused radially polarized (TM{sub 01}) laser mode is reported. The longitudinal field is generated by focusing a TM{sub 01} few-cycle laser pulse (1.8 {mu}m, 550 {mu}J, 15 fs) with a high numerical aperture parabola. The created longitudinal field in the focal region is intense enough to ionize atoms and accelerate electrons to 23 keV of energy from a low density oxygen gas. The characteristics of the electron beam are presented.

  9. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  10. A comparison of laser-induced-damage-threshold of two types of dielectric polarizing beam splitters

    NASA Astrophysics Data System (ADS)

    Å koda, Václav

    2013-11-01

    Laser-induced-damage-threshold (LIDT) of polarizing Brewster-angle beam splitters based on two different layer system designs was measured using a laser apparatus working at 1060 nm wavelength with 10 ns pulse length and 1-on-1 test mode. Two sets of samples with different design of layer system using TiO2/SiO2 coating materials were examined. Both BK7 and fused silica substrate materials were used for manufacturing of samples. The measured damage thresholds in S- and P-polarization were compared with computed values of the internal electric field inside of the layer system and with computed values of absorption as a measure of integral interaction of laser beam throughout the layer system.

  11. Production of charm and beauty in e{sup +}e{sup -} with polarized electron beam

    SciTech Connect

    Su, D.

    1995-09-01

    The test of the Standard Model through the measurements of Z{sup 0} to fermion couplings can benefit from much enhanced sensitivity by using longitudinally polarized electron beams. This report reviews preliminary electroweak measurements from SLD on heavy quark production at the Z{sup 0}, using 150,000 hadronic Z{sup 0} decays accumulated during the 93-95 runs with high electron beam polarization. The parity violating parameters A{sub b} and A{sub c} of the Zbb and Zcc couplings are measured directly from the left-right forward-backward asymmetries. A measurement of R{sub b} with a lifetime double tag and a summary of the preliminary measurement of A{sub LR} from the 93-95 SLD data are also included in this report.

  12. Anomalous WWγ couplings with beam polarization at the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Arı, V.; Billur, A. A.; İnan, S. C.; Köksal, M.

    2016-05-01

    We study the anomalous WWγ couplings at the Compact Linear Collider through the processes e+e- →W+W-, e-e+ →e-γ*e+ →e+νeW- and e-e+ →e-γ*γ*e+ →e-W+W-e+ (γ* is the Weizsacker-Williams photon). We give the 95% confidence level limits for unpolarized and polarized electron (positron) beam on the anomalous couplings for various values of the integrated luminosities and center-of-mass energies. We show that the obtained limits on the anomalous couplings through these processes can highly improve the current experimental limits. In addition, our limits with beam polarization are approximately two times better than the unpolarized case.

  13. Utra-thin anisotropic transmitting metasurface for polarization beam splitter application

    NASA Astrophysics Data System (ADS)

    Guo, Wen-Long; Wang, Guang-Ming; Ding, Shan-Shan; Li, Hai-Peng; Cai, Tong

    2016-08-01

    We report a polarization beam splitter based on phase gradient metasurface for microwave frequency region. The metasurface is constructed by anisotropic cells with independent phase response for differently-polarized waves. Through putting different gradient phases for orthogonally-polarized waves on a focusing metasurface, the anisotropic sample has the ability to enhance gain and split orthogonally-polarized waves. The simulation results indicate that the incident spherical waves are converted into plane waves and split into an x-polarized wave with a refraction angle of ‑24° and a y-polarized wave with a refraction angle of 37.6° in the y direction. For verification, a metasurface sample with a size of 102.5 mm ×102.5 mm is fabricated and measured. The consistence between numerical and experimental results validates the improved gain of 10.5-dB against the feed source and the splitting effect. Moreover, the thickness of the proposed metasurface is 3 mm which is ultra-thin against the wavelength at 15 GHz. The proposed prescription opens a new route to the applications of anisotropic metasurface in microwave band. Project supported by the National Natural Science Foundation of China (Grant No. 61372034).

  14. Polarized Positive and Negative Muon Beams to perform DVCS Measurements at COMPASS

    SciTech Connect

    D'Hose, Nicole

    2009-09-02

    The high energies available at CERN, and the option of using either positive or negative polarized muon beams, make the fixed-target COMPASS set-up a unique place for studying GPDs, through Deeply Virtual Compton Scattering (DVCS). A GPD program is part of the Medium and Long Term Plans at COMPASS [1]. This contribution presents the methodology and the goal of such experiments.

  15. Polarization of quantization Gaussian Schell-beams through anisotropic non-Kolmogorov turbulence of marine-atmosphere

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhang; Zhang, Yixin; Hu, Zhengda; Li, Ye; Wang, Donglin

    2016-07-01

    Polarization and spatial coherence of quantization Gaussian Schell-beams propagating through the anisotropic non-Kolmogorov turbulence of marine-atmosphere channel are studied based on the quantized Huygens-Fresnel principle and the degree of quantum polarization. The spatial coherence length and the polarization degree of linearly polarization quantization Gaussian Schell-beams are developed. The effects of outer scale on the lateral coherence length are not obvious as same as the effects of wavelength on the degree of polarization. The degree of polarization decreases as the source transverse coherent width, anisotropic factor, the number of received photons, spectral index, the inner scale of turbulent eddies and source transverse radius decrease or generalized refractive-index structure parameter increases. The refractive-index structure parameter, spectral index and inner scale have also effect on the changes of lateral coherence length. Those results can be used to improve the performance of a polarization-encoded quantum communication system.

  16. A semiconductor metasurface with multiple functionalities: A polarizing beam splitter with simultaneous focusing ability

    SciTech Connect

    Lee, Jun Hyung; Jin Jung, Myoung; Ho Song, Seok; Woong Yoon, Jae; Magnusson, Robert; Kyun Hong, Jong

    2014-06-09

    We propose a semiconductor metasurface that simultaneously performs two independent functions: focusing and polarization filtering. The wavefronts of the reflected and transmitted light distributions are precisely manipulated by spatial parametric variation of a subwavelength thin-film Si grating, which inherently possesses polarization filtering properties. We design a 12-μm-wide metasurface containing only nineteen Si grating ridges. Under a 10-μm-wide unpolarized Gaussian beam incidence at wavelength of 1.55 μm, the resulting device shows promising theoretical performance with high power efficiency exceeding 80% and polarization extinction ratio of ∼10 dB with focal spot diameters near 1–2 μm.

  17. Theoretical polarization-dependent X-ray spectra of Be-like Fe calculated for different electron beam densities

    NASA Astrophysics Data System (ADS)

    Shlyaptseva, Alla; Mancini, Roberto

    1998-05-01

    We study theoretically the polarization properties of X-ray spectra of Be-like Fe ions excited through resonant capture by an electron beam with different electron densities. Our previous work in this area was related to the study of polarization of dielectronic satellite lines of Fe ions excited by a low-density electron beam. (A.S. Shlyaptseva, R.C. Mancini, P. Neill, P. Beiersdorfer, J.R. Crespo López-Urrutia, and K. Widmann, Phys. Rev. A, 57), 888 (1998) Here we extend our work to the case of higher-density electron beams. As the density of the electron beam increases, new channels of electron capture appear. Thus the atomic and polarization characteristics of the satellite lines change. Moreover, additional X-ray satellite lines will appear. Using the density matrix formalism, we calculate the polarization characteristics and polarization-dependent spectra of dielectronic satellite lines of Be-like Fe produced at different energies and densities of the electron beam. We compare the results of the present work with our previous ones for low-density electron beams. These results are relevant to the identification of X-ray polarization-dependent spectral features and for X-ray line polarization spectroscopy.

  18. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    NASA Technical Reports Server (NTRS)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  19. Analysis of the far-field characteristics of hybridly polarized vector beams from the vectorial structure

    NASA Astrophysics Data System (ADS)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2016-01-01

    Based on the angular spectrum representation of electromagnetic beams, analytical expressions are derived for the TE term, TM term and the whole energy fluxes of a hybridly polarized vector (HPV) beam propagating in the far field. It is shown that both the TE and TM terms of the energy fluxes are strongly dependent of the truncation radius of the circular aperture. By choosing the truncation radius as a certain value, it is found that the far-zone distributions of TE and TM terms exhibit four-petal patterns with surrounding side-lobes displaying oscillating intensities. Interestingly, such phenomenon becomes extremely obvious particularly when the truncation radius is comparable with the wavelength of the propagating beam.

  20. Geometric spin Hall effect of light in tightly focused polarization-tailored light beams

    NASA Astrophysics Data System (ADS)

    Neugebauer, Martin; Banzer, Peter; Bauer, Thomas; Orlov, Sergej; Lindlein, Norbert; Aiello, Andrea; Leuchs, Gerd

    2014-01-01

    Recently, it was shown that a nonzero transverse angular momentum manifests itself in a polarization-dependent intensity shift of the barycenter of a paraxial light beam [Aiello et al., Phys. Rev. Lett. 103, 100401 (2009), 10.1103/PhysRevLett.103.100401]. The underlying effect is phenomenologically similar to the spin Hall effect of light but does not depend on the specific light-matter interaction and can be interpreted as a purely geometric effect. Thus, it was named the geometric spin Hall effect of light. Here, we experimentally investigate the appearance of this effect in tightly focused vector beams. We use an experimental nanoprobing technique in combination with a reconstruction algorithm to verify the relative shifts of the components of the electric energy density and the shift of the intensity in the focal plane. By that, we experimentally demonstrate the geometric spin Hall effect of light in a highly nonparaxial beam.

  1. The +3187A/G HLA-G polymorphic site is associated with polar forms and reactive reaction in leprosy

    PubMed Central

    Lucena-Silva, N; Teixeira, M A G; Ramos, A de L; de Albuquerque, R S; Diniz, G T N; Mendes-Junior, C T; Castelli, E C; Donadi, E A

    2013-01-01

    Considering that variability in immune response genes has been associated with susceptibility to leprosy and with disease severity, leprosy presents clinicopathological variants that are highly associated with the immune response, HLA-G has a well-recognized role in the modulation of the immune response, and polymorphisms at the 3′ untranslated region (UTR) of the HLA-G gene may influence HLA-G production, we studied the polymorphic sites at the 3′ UTR of the HLA-G gene in leprosy and their association with disease severity. We evaluated by sequencing analysis the allele, genotype, and haplotype frequencies of the 3′ UTR HLA-G polymorphic sites (14-bpINDEL/+3003C-T/+3010C-G/+3027A-C/+3035C-T/+3142C-G/+3187A-G/+3196C-G) in 146 individuals presenting reactive leprosy from a highly endemic area, and associated with bacillary load and the type of reactive leprosy. A total of 128 healthy subjects were also studied. Allele, genotype, and haplotype frequencies for the 3′ UTR HLA-G polymorphisms in leprosy patients did not differ from those observed in healthy donors. The +3187A allele was responsible for protection against the development of multibacillary leprosy in a dominant model (AA + AG)/GG, OR = 0.11, P = 0.018), and the +3187A allele and +3187A-A genotype were overrepresented in type II reactive leprosy reaction. The effect of genetic factors on leprosy susceptibility may be hidden by environmental components in highly endemic areas. The HLA-G + 3187A polymorphic site, which is related to unstable mRNA production, was associated with the development of polar forms of leprosy and reactive leprosy reaction. PMID:24498610

  2. Broadband polarization gratings for efficient liquid crystal display, beam steering, spectropolarimetry, and Fresnel zone plate

    NASA Astrophysics Data System (ADS)

    Oh, Chulwoo

    Efficient control of light polarization is essential in any optical systems where polarized light is used or polarization information is of interest. In addition to intensity and wavelength, polarization of light gives a very useful/powerful tool to control light itself and observe many interesting optical phenomena in nature and applications. Most available light sources, however, produce unpolarized or weakly polarized light except some of fancy lasers. Therefore, efficient polarization control/generation is important to improve/advance existing or emerging technologies utilizing polarized light. It is also true that polarization can be used to control another properties of light (i.e., intensity, direction). We have introduced and demonstrated achromatic polarization gratings (PGs) as broadband polarizing beam splitters performing ˜100% theoretical efficiency over a wide spectral range. The novel design of achromatic PGs and their effective fabrication method will be presented. Experimental demonstration will show that practically 100% efficient diffraction is achieved by achromatic PGs embodied as thin liquid crystal (LC) layers patterned by holographic photoalignment techniques. Non-ideal diffraction behaviors of the PGs also have been investigated beyond the paraxial limitations via numerical analysis based on the finite-difference time-domain method. We, first, study the effect of the grating regime for this special type of anisotropic diffraction gratings with the minimum assumptions. Optical properties of the PGs at oblique incidence angles and in a finite pixel are numerically predicted and confirmed by experiments. Design and fabrication of small-period PGs are discussed to show how to achieve high diffraction efficiency and large diffraction angles at the same time. Three key innovative technologies utilizing the unique diffraction properties of the PGs have been introduced and experimentally demonstrated. The first application for light-efficient LC

  3. A universal compensator for polarization changes induced by non-reciprocal circular birefringence on a retracing beam

    NASA Astrophysics Data System (ADS)

    Martinelli, Mario; Martelli, Paolo; Fasiello, Annalaura

    2016-05-01

    In this communication we recognize that it is possible to cancel out the effects of the non-reciprocal circular birefringence on a retracing beam. The experimental results demonstrate that a linearly polarized beam is returned into an orthogonal state after retracing through a variable Faraday rotator, by exploiting the reflective action of a Porro prism with edge at 45° with respect to the initial polarization axis, for any amount of non-reciprocal Faraday rotation.

  4. RHIC Polarized proton operation

    SciTech Connect

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  5. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave

    PubMed Central

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-01-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light. PMID:27157123

  6. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave

    NASA Astrophysics Data System (ADS)

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-05-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light.

  7. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave.

    PubMed

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-01-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light. PMID:27157123

  8. Fabrication and characterization of the Ag-based high technologymodel nanocluster catalyst for ethylene epoxidation manufactured byelectron beam lithography

    SciTech Connect

    Avoyan, Armen; Rupprechter, Gunther; Eppler, Aston; Somorjai,Gabor A.

    1999-06-01

    Nanocluster catalysis is an area where greater fundamental knowledge is needed to understand the behavior of aggregates of metal atoms in determining product selectivity of chemical reactions. While catalysis is practiced industrially with economic success there is still a great need to eliminate wasteful side-reactions which hurt overall yields. Here we report on fabrication of a Ag-based high-technology model nanocluster catalyst by using electron beam lithography (EBL) designed for systematic studies of the ethylene epoxidation reaction. The catalyst is made of a square array of cylinder-shaped Ag nanoclusters that are 200 Angstrom in diameter, deposited on a four inch silicon wafer, precovered with a 100 Angstrom thick film of alpha-alumina. The height of the particles and interparticle distance can vary, and were chosen to be 150-300 and 1000 Angstrom, respectively. The high technology catalyst was characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The thermal stability of Ag nanoclusters in vacuo was investigated.

  9. Vector meson and associated strangeness production using a linearly polarized photon beam at Jefferson Lab

    SciTech Connect

    Philip L. Cole

    2004-09-01

    The set of experiments forming the g8a run took place in the summer of 2001 in Hall B of Jefferson Lab. The g8a run was the commissioning experiment for the linearly-polarized photon beam at CLAS. The aim of these experiments is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. A beam of tagged and collimated linearly polarized photons (energy range 1.8-2.2 GeV) in conjunction with the large solid angle coverage of CLAS make possible the extraction of the differential cross-sections and polarization observables for the photoproduction of vector mesons and kaons. The reaction channels are under investigation to search for possibly missing nucleon resonances. An overview of the experiment and preliminary results on the measurement of the photon asymmetries of the aforementioned reactions will be presented in this paper.

  10. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, J. P.; Bingham, C. R.; van den Brandt, B.; Galindo-Uribarri, A.; Gómez del Campo, J.; Hautle, P.; Konter, J. A.; Padilla-Rodal, E.; Schmelzbach, P. A.

    2007-08-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20-200 μm thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3He-4He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12C by protons in inverse kinematics are presented.

  11. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings

    NASA Astrophysics Data System (ADS)

    Kim, Jihwan; Oh, Chulwoo; Escuti, Michael J.; Hosting, Lance; Serati, Steve

    2008-08-01

    We introduce and demonstrate a compact, nonmechanical beam steering device based on liquid Crystal (LC) Polarization Gratings (PGs). Directional control of collimated light is essential for free-space optical communications, remote sensing, and related technologies. However, current beam steering methods often require moving parts, or are limited to small angle operation, offer low optical throughput, and are constrained by size and weight. We employ multiple layers of LCPGs to achieve wide-angle (> +/-40°), coarse beam steering of 1550 nm light in a remarkably thin package. LCPGs can be made in switchable or polymer materials, and possess a continuous periodic birefringence profile, that renders several compelling properties (experimentally realized): ~ 100% experimental diffraction efficiency into a single order, high polarization sensitivity, and very low scattering. Light may be controlled within and between the zero- and first-diffraction orders by the handedness of the incident light and potentially by voltage applied to the PG itself. We implement a coarse steering device with several LCPGs matched with active halfwave LC variable retarders. Here, we present the preliminary experimental results and discuss the unique capability of this wide-angle steering.

  12. Two orthogonally polarized optical beams in a family of Kerr-law nonlinear shifted parabolic graded-index rod lenses

    NASA Astrophysics Data System (ADS)

    Li, Y.

    1996-08-01

    The field, the propagation and the imaging characteristics of two Gaussian optical beams with orthogonal polarization passing through a family of Kerr-law nonlinear shifted parabolic graded-index rod lenses are investigated. The coupled differential equations of the dimensionless beam-width parameters of two Gaussian optical beams are derived by using a variational approach and then solved. It is concluded that there are two regimes of propagation and that the power, the incident waist radius and the position of one beam have large effects on the field, the propagation and the imaging characteristics of the other beam.

  13. Development of Polarized Solid Targets for Spectroscopic Studies with Radioactive Ion Beams.

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, J. P.; Galindo-Uribarri, A.; van den Brandt, B.

    2005-04-01

    Exciting new findings with radioactive ion beams (RIBs) in nuclear spectroscopy have resulted in a growing interest in this field. In order to fully exploit the potential of RIBs it is necessary to develop appropriate experimental tools. We are investigating the possibility of introducing polarization observables in spectroscopic studies with RIBs, at energies around the Coulomb barrier, through polystyrene targets of polarized protons and deuterons in the thickness range between 20 and 100μm. The operation of such target systems requires a cooling scheme where the target is situated in the isolation vacuum of a cryostat in open connection to the vacuum of the beamline. This can be achieved by using two parallel polarized foils mounted on a copper tube, serving also as the NMR coil (for sampling the polarization), to form together a closed volume. Cooling of the foils is then achieved by a liquid helium bath (^4He or ^3He) via the copper tube, and subsequently via a superfluid ^4He film that can be added through the hollow NMR coil. The first tests of this proposed geometry are discussed and a status of the project is delivered.

  14. CMB polarization systematics due to beam asymmetry: Impact on inflationary science

    SciTech Connect

    Shimon, Meir; Keating, Brian; Ponthieu, Nicolas; Hivon, Eric

    2008-04-15

    Cosmic microwave background (CMB) polarization provides a unique window into cosmological inflation; the amplitude of the B-mode polarization from last scattering is uniquely sensitive to the energetics of inflation. However, numerous systematic effects arising from optical imperfections can contaminate the observed B-mode power spectrum. In particular, systematic effects due to the coupling of the underlying temperature and polarization fields with elliptical or otherwise asymmetric beams yield spurious systematic signals. This paper presents a nonperturbative analytic calculation of some of these signals. We show that results previously derived in real space can be generalized, formally, by including infinitely many higher-order corrections to the leading order effects. These corrections can be summed and represented as analytic functions when a fully Fourier-space approach is adopted from the outset. The formalism and results presented in this paper were created to determine the susceptibility of CMB polarization probes of the primary gravitational wave signal but can be easily extended to the analysis of gravitational lensing of the CMB.

  15. Status of the Jefferson Lab Polarized Beam Physics Program and Preparations for Upcoming Parity Experiments

    SciTech Connect

    J. Grames; P. Adderley; M. Baylac; J. Clark; A. Day; J. Hansknecht; M. Poelker; M. Stutzman

    2003-07-01

    An ambitious nuclear physics research program continues at Jefferson Lab with Users at three experiment halls receiving reliable, highly polarized electrons at currents to 100 {micro}A. The polarized photoguns and drive lasers that contribute to Jefferson Lab's success will be described as well as significant events since PES2000. Typical of conditions at accelerators worldwide, success brings new challenges. Beam quality specifications continue to become more demanding as Users conduct more challenging experiments. In the months that follow this workshop, two parity violation experiments will begin at Jefferson Lab, G0 and HAPPEx2. The photogun requirements for these experiments will be discussed as well as our plans to eliminate/minimize systematic errors. Recent efforts to construct high power Ti-Sapphire drive lasers for these experiments also will be discussed.

  16. Patterns of broad-beam antennas of different polarizations next to simple Hangar models

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.

    1977-01-01

    Broad-beam antennas of different polarizations radiating next to simple hangar models are investigated. Expressions that represent the elevation-plane patterns of slots in and 1/4 wavelength monopoles on a finite rectangular ground plane upon which a rectangular scattering object was placed were derived using geometrical theory of diffraction. These expressions were obtained by superposing the infinite ground plane solutions, reflected field solutions from the scattering object and diffracted field solutions in their respective regions of validity. Patterns for a 1/2 wavelength slot and 1/4 wavelength electric monopole are verified experimentally for a number of source locations. Data pertaining to the polarization question in regard to the multipath problem are presented.

  17. Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength.

    PubMed

    Xiang, Jin; Li, Jinxiang; Li, Hui; Zhang, Chengyun; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2016-05-30

    A metasurface composed of regularly arranged silicon (Si) nanospheres (NSs) with coupling was investigated both theoretically and numerically based on the Mie theory, the simple Lorentz line shape model and the finite-difference time-domain technique. By deliberately controlling the coupling strength between Si NSs through the design of the lattice constants of a rectangular lattice, polarization beam splitters, converters and analyzers with good performance can be successfully constructed. A square lattice as well as a large incidence angle was employed to build the polarization beam splitters and converters. At an incidence angle of 80°, the polarization beam splitters can completely reflect the s-polarized light and transmit the p-polarized light in a wavelength region of 510-620 nm. For a circularly polarized light incident on the polarization converters, one can get s-polarized light in the reflection direction and p-polarized light in the transmission direction. For the polarization beam analyzers, a rectangular lattice with deliberately chosen lattice constants was employed and the transmissivity of a linearly polarized light can be continuously adjusted from 0 to ~0.90 by simply rotating the metasurface. We revealed that the broadening of either the electric dipole resonance or the magnetic dipole resonance or both of them, which is induced by the asymmetric coupling of Si NSs, is responsible for the modification in the transmissivity spectrum of the metasurface. Our findings provide a guideline for designing photonic devices based on the metasurfaces composed of Si NSs with controllable coupling strength. PMID:27410070

  18. Emission and propagation of Saturn kilometric radiation: Magnetoionic modes, beaming pattern, and polarization state

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Cecconi, B.; Zarka, P.; Canu, P.; Schippers, P.; Kurth, W. S.; Mutel, R. L.; Gurnett, D. A.; Menietti, D.; Louarn, P.

    2011-04-01

    The Cassini mission crossed the source region of the Saturn kilometric radiation (SKR) on 17 October 2008. On this occasion, the Radio and Plasma Wave Science (RPWS) experiment detected both local and distant radio sources, while plasma parameters were measured in situ by the magnetometer and the Cassini Plasma Spectrometer. A goniopolarimetric inversion was applied to RPWS three-antenna electric measurements to determine the wave vector k and the complete state of polarization of detected waves. We identify broadband extraordinary (X) mode as well as narrowband ordinary (O) mode SKR at low frequencies. Within the source region, SKR is emitted just above the X mode cutoff frequency in a hot plasma, with a typical electron-to-wave energy conversion efficiency of ˜1% (2% peak). The knowledge of the k vector is then used to derive the locus of SKR sources in the kronian magnetosphere, which shows X and O components emanating from the same regions. We also compute the associated beaming angle at the source θ‧ = (k, -B) either from (1) in situ measurements or a model of the magnetic field vector (for local to distant sources) or (2) polarization measurements (for local sources). Obtained results, similar for both modes, suggest quasi-perpendicular emission for local sources, whereas the beaming pattern of distant sources appears as a hollow cone with a frequency-dependent constant aperture angle: θ‧ = 75° ± 15° below 300 kHz, decreasing at higher frequencies to reach θ‧ (1000 kHz) = 50° ± 25°. Finally, we investigate quantitatively the SKR polarization state, observed to be strongly elliptical at the source, and quasi-purely circular for sources located beyond approximately two kronian radii. We show that conditions of weak mode coupling are achieved along the raypath, under which the magnetoionic theory satisfactorily describes the evolution of the observed polarization. These results are analyzed comparatively with the auroral kilometric radiation at

  19. Condition for Gaussian Schell-model beam to maintain the state of polarization on the propagation in free space.

    PubMed

    Zhao, Xinhui; Yao, Yong; Sun, Yunxu; Liu, Chao

    2009-09-28

    In the free space optical communication system with circle polarization shift keying (CPolSK) modulation, the changes of polarization state of light beam have significant influence on the system performance. Keeping the state of polarization (SOP) unchanged on propagation can reduce the bit error rate. Based on the unified theory of coherence and polarization, we derive the sufficient condition for Gaussian Schell-model (GSM) beam to keep the SOP unchanged. We found that when the three spectral correlation widths (delta(xx), delta(yy) and delta(xy)) equal to each other and sigma(x) = sigma(y), the GSM beam maintains the SOP on propagation. This conclusion can be helpful for the design of the transmitter in the CPolSK system. PMID:19907577

  20. Characterization of the Absolute Crystal Polarity across Twin Boundaries in Gallium Phosphide Using Convergent-Beam Electron Diffraction.

    PubMed

    Cohen; McKernan; Carter

    1999-05-01

    : The measurement of absolute crystal polarity is crucial to understanding the structural properties of many planar defects in compound semiconductors. Grain boundaries, including twin boundaries, in the sphalerite lattice are uniquely characterized by the crystallographic misorientation of individual grains and the direction of the crystal polarity in domains adjoining the grain boundary. To evaluate crystal polarity in gallium phosphide (GaP), asymmetrical interference contrast in convergent-beam electron-diffraction (CBED) patterns was used to ascertain the nature and direction of polar bonds. The direction of the asymmetry in the electron diffraction reflections was correlated with the crystal polarity of a sample with known polarity. The CBED technique was applied to determine the polar orientation of grains adjoining Sigma = 3 coherent and lateral twin boundaries in polycrystalline GaP. PMID:10383990

  1. First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory

    SciTech Connect

    Maud Baylac; E. Burtin; C. Cavata; S. Escoffier; B. Frois; D. Lhuillier; F. Marie; J. Martino; D. Neyret; T. Pussieux; P.Y. Bertin; Kees de Jager; J. Mitchell

    2002-03-01

    A Compton polarimeter has been installed in Hall A at Jefferson Laboratory. This letter reports on the first electron beam polarization measurements performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an average current of 40 muA. The heart of this device is a Fabry-Perot cavity which increased the luminosity for Compton scattering in the interaction region so much that a 1.4% statistical accuracy could be obtained within one hour, with a 3.3% total error.

  2. Phase-diversity phase-sensitive amplification in fiber loop with polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    2015-10-01

    In this paper, we propose a parametric amplification scheme based on phase-sensitive amplification in an optical fiber. The proposed system consists of a nonlinear fiber and a dispersive medium in a loop configuration with a polarization beam splitter, where phase-sensitive amplification occurs bi-directionally. The dispersive medium shifts the relative phase between signal and pump lights, due to which the amplified signal light is always obtained regardless of the signal input phase, i.e., a phase-diversity operation is achieved, while the output phase is digitized as in conventional phase-sensitive amplifiers.

  3. High Precision Electron Beam Polarization Measurement with Compton Polarimetry at Jefferson Laboratory

    SciTech Connect

    Marie, Frederic; Burtin, Etienne; Cavata, Christian; Escoffier, Stephanie; Lhuillier, David; Neyret, Damian; Pussieux, Thierry; Bertin, Pierre

    2003-07-01

    Since 1999, a Compton polarimeter based on a Fabry-Perot cavity to amplify the laser light is operational in the hall A of the Jefferson Laboratory. In 2000, the beam polarization has been continuously measured during N â Delta and Gep experiment providing a relative total uncertainty of 1.4% in 40 mn at 4.5 GeV. These unprecedented results have been obtained thanks to a scattered electron detector which has allowed to determine the response function of the photon calorimeter.

  4. Proposal for direct measurement of a pure spin current by a polarized light beam.

    PubMed

    Wang, Jing; Zhu, Bang-Fen; Liu, Ren-Bao

    2008-02-29

    The photon helicity may be mapped to a spin-1/2, whereby we put forward an intrinsic interaction between a polarized light beam as a "photon spin current" and a pure spin current in a semiconductor, which arises from the spin-orbit coupling in valence bands as a pure relativity effect without involving the Rashba or the Dresselhaus effect due to inversion asymmetries. The interaction leads to linear and circular optical birefringence, which are similar to the Voigt effect and the Faraday rotation in magneto-optics but nevertheless involve no net magnetization. The birefringence effects provide a direct, nondemolition measurement of pure spin currents. PMID:18352646

  5. SPIN DYNAMICS IN AGS AND RHIC.

    SciTech Connect

    Mackay, W W; Bai, M; Courant, E D; Brown, K; Glenn, W; Huang, H; Luccio, A; Ptitsyn, V; Roser, T; Satogata, T; Ltepikian, S; Tsoupas, N; Zelenski, A

    2003-05-12

    A fundamental aspect of particle physics is the spin of the particles. With polarized beams, the internal structure of the proton may be probed in ways that are unattainable with unpolarized beams. The Relativistic Heavy Ion Collider (RHIC) has the unique capability of colliding protons with both transverse and longitudinal polarization at center-of-mass energies up to 500 GeV. In this paper we examine the methods used to accelerate and manipulate polarized proton beams in RHIC and its injectors. Special techniques include the use of a partial Siberian snake and an ac dipole in the AGS. In RHIC we use four superconducting helical Siberian snakes (two per ring) for acceleration, and eight superconducting helical rotators for independent control of polarization directions at two interaction regions.

  6. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    PubMed Central

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-01-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc. PMID:26635228

  7. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection

    NASA Astrophysics Data System (ADS)

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-12-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc.

  8. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection.

    PubMed

    Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang

    2015-01-01

    Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc. PMID:26635228

  9. Microstructural investigation of the oxidation behavior of Cu in Ag-coated Cu films using a focused ion beam transmission electron microscopy technique

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hwan; Lee, Jong-Hyun

    2016-06-01

    With the aim of elucidating a detailed mechanism for the oxidation behavior in submicron Cu particles coated with a thin Ag layer, the dewetting of Ag and the oxidation behavior of Cu in Ag-coated Cu films upon heating were investigated with a focused ion beam transmission electron microscopy technique. A slight dewetting of the Ag layer began at approximately 200 °C and aggregates of Cu2O particles were formed on the Ag layer, indicating that the initial Cu2O phase was formed on the thin Ag layer. Voids were formed in the Cu layer because of Cu atoms diffusing through the thin Ag layer to be oxidized in the upper Cu2O aggregates. After being heated to 250 °C, the Ag layer became more irregular, and in some regions, it disappeared because of intensive dewetting. The number and average size of the voids also increased. At 300 °C, a hollow structure with a Cu2O shell was formed. Pillar-like structures of unoxidized Cu and large voids were found under the Cu2O layer.

  10. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution.

    PubMed

    Sivashanmugan, Kundan; Liao, Jiunn-Der; Liu, Bernard Haochih; Yao, Chih-Kai

    2013-10-24

    A well-ordered Au-nanorod array with a controlled tip ring diameter (Au_NRsd) was fabricated using the focused ion beam method. Au_NRsd was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au_NRsd and Ag NPs/Au_NRsd was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au_NRsd was estimated by an enhancement factor of ≈10(7) in magnitude, which increased ≈10(12) in magnitude for that on Ag NPs/Au_NRsd. A highly SERS-active Ag NPs/Au_NRsd was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10(-3) to 10(-12)M) in water or milk solution upon Au_NRsd or Ag NPs/Au_NRsd were well distinguished. The peaks at 680 and 702 cm(-1) for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm(-1) was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au_NRsd) or Ag (i.e., Ag NPs/Au_NRsd) surface. At the interface of Ag NPs/Au_NRsd and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/Au_NRsd is very promising to be used as a fast and sensitive tool for screening MEL in complex matrices such as adulteration in e.g., food and pharmaceutical products. PMID:24120168

  11. Stable isotope ratio analysis at trace concentrations using degenerate four-wave mixing with a circularly polarized pulsed probe beam.

    PubMed

    Wu, Z Q; Tong, W G

    1991-05-01

    Stable isotope analysis based on vectorial optical-phase conjugation by resonant degenerate four-wave mixing (D4WM) is reported by using a D4WM method with vertically polarized pump beams and a circularly polarized probe beam. Since the polarization of the signal beam is different from that of the pump beams, the background radiation is suppressed more effectively. Excellent sensitivity, high spectral resolution, and efficient optical detection make this an effective and unusually convenient nonlinear spectrometric method for the analysis of trace amounts of stable isotopes. Using an excimer-pumped pulsed dye laser, the fine structures of lithium are examined. A detection limit of 2.5 ng/mL lithium is observed while a Doppler-free resolution is maintained by using transient "coherent-grating" based D4WM spectroscopy. PMID:1858982

  12. Generation of solid-density ultraintense ion beams by a picosecond laser pulse of circular polarization.

    PubMed

    Jablonski, S; Badziak, J

    2012-02-01

    This contribution reports particle-in-cell numerical studies of deuteron beam acceleration by a picosecond laser pulse of circular polarization. The effect of laser wavelength λ and the I(L)λ(2) product (I(L) is laser intensity) on the ion beam parameters is investigated. It is shown that at the I(L)λ(2) product fixed, the beam parameters (, I(i), F(i)) as well as the laser-ions energy conversion efficiency quickly increase with a decrease in the laser wavelength and the best results are achieved for a KrF laser (λ = 0.248 μm). In particular, a 2-ps KrF laser pulse of I(L)λ(2) ∼ 2 × 10(20) Wcm(-2) μm(2) interacting with a 10-μm deuteron target produces a quasi-monoenergetic, solid-density deuteron beam of parameters approaching those required for inertial confinement fusion fast ignition. PMID:22380262

  13. Generation of solid-density ultraintense ion beams by a picosecond laser pulse of circular polarization

    SciTech Connect

    Jablonski, S.; Badziak, J.

    2012-02-15

    This contribution reports particle-in-cell numerical studies of deuteron beam acceleration by a picosecond laser pulse of circular polarization. The effect of laser wavelength {lambda} and the I{sub L}{lambda}{sup 2} product (I{sub L} is laser intensity) on the ion beam parameters is investigated. It is shown that at the I{sub L}{lambda}{sup 2} product fixed, the beam parameters (, I{sub i}, F{sub i}) as well as the laser-ions energy conversion efficiency quickly increase with a decrease in the laser wavelength and the best results are achieved for a KrF laser ({lambda}= 0.248 {mu}m). In particular, a 2-ps KrF laser pulse of I{sub L}{lambda}{sup 2}{approx} 2 x 10{sup 20} Wcm{sup -2} {mu}m{sup 2} interacting with a 10-{mu}m deuteron target produces a quasi-monoenergetic, solid-density deuteron beam of parameters approaching those required for inertial confinement fusion fast ignition.

  14. Simulations on the AGS horizontal tune jump mechanism

    SciTech Connect

    Lin,F.; Huang, H.; Luccio, A. U.; Roser, T.

    2009-05-04

    A new horizontal tune jump mechanism has been proposed to overcome the horizontal intrinsic resonances and preserve the polarization of the proton beam in the Alternating Gradient Synchrotron (AGS) during the energy ramp. An adiabatic change of the AGS lattice is needed to avoid the emittance growth in both horizontal and vertical planes, as the emittance growth can deteriorate the polarization of the proton beam. Two critical questions are necessary to be answered: how fast can the lattice be changed and how much emittance growth can be tolerated from both optics and polarization points of view? Preliminary simulations, using a realistic AGS lattice and acceleration rate, have been carried out to give a first glance of this mechanism. Results with different optics are presented in this paper.

  15. Polarity inversion of N-face GaN by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Wong, M.H.; Mishra, Umesh K.; Wu Feng; Mates, Thomas E.; Speck, James S.

    2008-11-01

    The polarity of GaN grown by plasma-assisted molecular beam epitaxy was inverted from N-face to Ga-face by simultaneously exposing the surface to Mg and activated N fluxes during a growth interruption at a reduced substrate temperature. Growth studies suggested that a Mg{sub x}N{sub y} compound was responsible for inverting the crystal. The change in polarity was verified in situ by reflection high energy electron diffraction via GaN surface reconstructions, and ex situ by convergent beam electron diffraction and KOH etch studies. The surface of the inverted material showed smooth step flow features. Ga-face high electron mobility transistors with good dc and small signal performance were fabricated on the inverted epilayers. A drain-source current of 0.84 A/mm was measured at a gate-source voltage of +1 V. Current-gain cutoff and maximum oscillation frequencies of 22 and 53 GHz, respectively, were measured in these devices. The device performance is similar to that of Ga-face transistors with comparable dimensions.

  16. Distinguishing new physics scenarios at a linear collider with polarized beams

    SciTech Connect

    Pankov, A.A.; Tsytrinov, A.V.; Paver, N.

    2006-06-01

    Numerous nonstandard dynamics dominated by very high mass exchanges are described at current and future accelerator energies by appropriate contactlike effective interactions among the standard model particles. Correspondingly, they can manifest themselves only through deviations of the cross sections from the standard model predictions. If one such deviation were observed, it would be important to definitely identify, to a given confidence level, the actual source among the various possible nonstandard interactions that, in principle, can explain it. Here we estimate the identification reach on different new physics effective interactions, obtainable from angular distributions of lepton pair production processes at the planned electron-positron International Linear Collider with polarized beams. For each nonstandard model, such an identification reach defines the range in the relevant heavy mass scale parameter where it can be unambiguously distinguished from the other nonstandard models as the source of corrections to the standard model cross sections, in case these are observed. The effective interactions for which we estimate the expected identification reach are the interactions based on gravity in large extra dimensions, in TeV{sup -1} extra dimensions and the compositeness-inspired four-fermion contact interactions. The availability of both beams polarized at the International Linear Collider turns out, in many cases, to dramatically enhance the identification sensitivity.

  17. Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids

    SciTech Connect

    Tran, P.X.; Soong, Yee; Chyu, M.K.

    2007-12-01

    Multi-pulse laser ablation of silver in deionized water was studied. The laser beams were arranged in a cross-beam configuration. In our experiments, two single-mode, Q-switched Nd-Yag lasers operating at 1064 nm, pulse duration of 5.5 ns and 10 Hz rep rate were used. The laser fluence of the second beam was 0.265 J/cm2 for all tests. Two levels of the laser fluences were used for the ablating beam: 0.09 and 0.265 J/cm2 (11,014 and 33,042 J/cm2 at the focal point, respectively). The silver target was at 50mm from the cell window and 10mm deep. The second beam was aligned parallelly with the silver target and focused at 2mm in front of the focal point of the ablating beam. For all cases, the delay time between the ablating beam and the cross-beam was 40 ms. In general, the ablated particles were almost all spherical. For fluence of 0.09 J/cm 2 and single-beam approach, the mean particle size was about 29 nm. The majority of the particles, however, were in 19–35nm range and there were some big ones as large as 50–60nm in size. For double-beam approach, the particles were smaller with the average size of about 18nm and the majority of the particles were in 9–21nm range with few big one as large as 40 nm. For the beam fluence of 0.265 J/cm2 and single-beam configuration, the particle sizes were smaller, the mean particles size was about 18nm and the majority of the particles were in the range of 10–22nm with some big one as large as 40 nm. For double-beam approach, the mean particle size was larger (24.2 nm) and the majority of the particle were distributed from 14 to 35nm with some big particles can be found with sizes as big as 70 nm. Preliminary measurements of the thermal conductivity and viscosity of the produced samples showed that the thermal conductivity increased about 3–5% and the viscosity increased 3.7% above the base fluid viscosity even with the particle volume concentration as low as 0.01%.

  18. Enhanced optical limiting effects in a double-decker bis(phthalocyaninato) rare earth complex using radially polarized beams

    SciTech Connect

    Wu, Jia-Lu; Gu, Bing Liu, Dahui; Cui, Yiping; Sheng, Ning

    2014-10-27

    Optical limiting (OL) effects can be enhanced by exploiting various limiting mechanisms and by designing nonlinear optical materials. In this work, we present the large enhancement of OL effects by manipulating the polarization distribution of the light field. Theoretically, we develop the Z-scan and nonlinear transmission theories on a two-photon absorber under the excitation of cylindrical vector beams. It is shown that both the sensitivity of Z-scan technique and the OL effect using radially polarized beams have the large enhancement compared with that using linearly polarized beams (LPBs). Experimentally, we investigate the nonlinear absorption properties of a double-decker Pr[Pc(OC{sub 8}H{sub 17}){sub 8}]{sub 2} rare earth complex by performing Z-scan measurements with femtosecond-pulsed radially polarized beams at 800 nm wavelength. The observed two-photon absorption process, which originates from strong intramolecular π–π interaction, is exploited for OL application. The results demonstrate the large enhancement of OL effects using radially polarized beams instead of LPBs.

  19. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  20. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  1. Source of slow polarized positrons using the brilliant gamma beam at ELI-NP. Converter design and simulations

    NASA Astrophysics Data System (ADS)

    Djourelov, Nikolay; Oprisa, Andreea; Leca, Victor

    2016-01-01

    Simulations of slow positron (es+) source based on interaction of a circularly polarized gamma beam with a W converter were performed. The aim of the study was to propose a converter geometry and to determine the expected slow positron beam intensity and its spot size, and the degree of positron spin polarization, as well. The Monte Carlo simulations by means of GEANT4 were used to estimate the fast positron production and the moderation efficiency of the converter working as a self-moderator, as well. Finite element analysis by means of COMSOL Multiphysics was applied to calculate the fraction of extracted moderated positrons from the converter cells and the quality of the beam formation by focusing. Using the low energy (<3.5 MeV) gamma beam at ELI-NP with intensity of 2.4×1010γ/s the production of a slow positron beam with intensity of 1-2×106 es+/s is predicted. For the optimized converter geometry and in case of 100% circular polarization of the gammas the degree of spin polarization of the slow positron beam is expected to be 33%.

  2. Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope

    SciTech Connect

    Kuwahara, Makoto Saitoh, Koh; Tanaka, Nobuo; Kusunoki, Soichiro; Nambo, Yoshito; Ujihara, Toru; Asano, Hidefumi; Jin, Xiuguang; Takeda, Yoshikazu

    2014-11-10

    The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 10{sup 7 }A cm{sup −2 }sr{sup −1} for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 10{sup 8 }A cm{sup −2 }sr{sup −1} for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10{sup −5 }rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had a high degeneracy of electron wavepacket of 4 × 10{sup −6}. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect.

  3. Generation of intense and cold beam of Pt-Ag bi-element cluster ions having single-composition

    NASA Astrophysics Data System (ADS)

    Yasumatsu, H.

    2011-07-01

    An intense beam of bi-element Pt-Ag cluster ions with a single atomic-composition has been gained toward development of new-functional materials of the clusters fixed on a solid surface. Mass production of the bi-element cluster ions has been achieved by operating dual magnetron-sputtering devices independently in a gas aggregation cell, and the ions having a single composition are filtered out by passing through a quadrupole mass filter. The kinetic energies of the cluster ions have been reduced by collision with cold helium in order for low-energy cluster-impact deposition of the clusters on the surface. The cooling process was examined further by means of molecular-dynamics simulation.

  4. 3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips.

    PubMed

    Ahn, J S; Kihm, H W; Kihm, J E; Kim, D S; Lee, K G

    2009-02-16

    We have measured local electric field polarization vectors in 3-dimensional space on the nanoscale. A radial polarized light is generated by using a radial polarization converter and focused by an objective lens. Gold nanoparticle functionalized tips are used to scatter the focused field into the far-field region. Two different methods, rotational analyzer ellipsometry and Stokes parameters, are used in determining the polarization state of the scattered light. Two methods give consistent results with each other. Three dimensional local polarization vectors could be reconstructed by applying back transformation of the fully characterized polarizability tensor of the tip. PMID:19219131

  5. Generating Polarized High-Brightness Muon Beams With High-Energy Gammas

    SciTech Connect

    Yakimenko, Vitaly

    2009-01-22

    Hadron colliders are impractical at very high energies as effective interaction energy is a fraction of the energies of the beams and luminosity must rise as energy squared. Further, the prevailing gluon-gluon background radiation makes it difficult to sort out events. e{sup +}e{sup -} colliders, on other hand, are constrained at TeV energies by beamstrahlung radiation and also by cost as long linacs are required to avoid synchrotron radiation in the rings. A muon collider will have the same advantages in energy reach as an e{sup +}e{sup -} collider, but without prohibitive beamstrahlung- and synchrotron- radiation. Generation of the high-brightness polarized muon ({mu}{sup -}{mu}{sup +}) beams through gamma conversion into pairs in the nuclei field is considered in this paper. The dominant effect in the interaction of the high-energy photons with the solid target will be the production of electron-positron pairs. The low-phase space of the resulting muon beams adequately compensates for the small probability of generating a {mu}{sup -}{mu}{sup +} pair.

  6. The AGS with four helical magnets

    SciTech Connect

    Tsoupas, N.; Huang, H.; MacKay, W.W.; Roser, T.; Trbojevic, D.

    2010-02-25

    The idea of using multiple partial helical magnets was applied successfully to the AGS synchrotron, to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. This modification provides many advantages over the present setup of the AGS that uses two partial helical magnets. First, it provides a larger 'spin tune gap' for the placement of the vertical betatron tune of the AGS during acceleration, second, the vertical spin direction during the beam injection and extraction is closer to vertical, third, the symmetric placement of the snakes allows for a better control of the AGS optics, and for reduced values of the beta and eta functions, especially near injection, fourth, the optical properties of the helical magnets also favor the placement of the horizontal betatron tune in the 'spin tune gap', thus eliminating the horizontal spin resonances. In this paper we provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and we compare these results with the present setup of the AGS that uses two partial helical magnets.

  7. Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal.

    PubMed

    Thirugnanasambandam, Manasadevi P; Senatsky, Yuri; Ueda, Ken-ichi

    2011-01-31

    We demonstrated the operation of cw diode-pumped Yb:YAG laser in radial or azimuthal polarized (RP or AP) beams using a combination of birefringent uniaxial crystal (c-cut YVO4 or α-BBO) and lens as intra-cavity elements. RP and AP doughnut modes (M2 = 2-2.5, polarization extinction ratio 50-100:1) with output power up to 60 mW were generated. Apart from doughnut modes, RP or AP ring-like off-axis oscillations and multi-ring beams with mixed RP and AP were also observed at the output of this laser scheme. Using intra-cavity short focus lenses with spherical aberrations AP or RP modes of higher orders was obtained. Mechanism of mode selection in the laser is discussed. The large variety of beams with axially symmetric polarizations from the output of the proposed laser scheme may find applications in different fields. PMID:21369005

  8. Beam Transport of 4 GeV Protons from AGS to the Proton Interrogation Target of the Neutrino Line (Z_line) and Effect of the Air on the Transported Beam

    SciTech Connect

    Tsoupas,N.; Ahrens, L.; Pile, P.; Thieberger, P.; Murray, M.M.

    2008-10-01

    As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along the drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.

  9. A new medium energy beam transport line for the proton injector of AGS-RHIC

    SciTech Connect

    Okamura, M.; Briscoe, B.; Fite, J.; LoDestro, V.; Raparia, D.; Ritter, J.; Hayashizaki, N.

    2010-09-12

    In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupole magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.

  10. Study of pion photo-production using a TPC detector to determine beam asymmetries from polarized HD

    NASA Astrophysics Data System (ADS)

    Kizilgul, Serdar A.

    The Laser Electron Gamma Source facility (LEGS) provides intense, polarized, tagged gamma-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the NSLS at BNL, Upton, NY. A series of double-polarization experiments (beam and target) has been completed to study the helicity structure of the nucleon. Neutral-pion measurements were completed in 2005 by using the Spin ASYmmetry detector system (SASY) which covers a large solid angle and allows for detection of a large range of neutral pions. Charged-pion experiments were completed in 2006. This new experiment yields data on the beam asymmetry Sigma for a polarized Hydrogen Deuterium (HD) target from the 2006 data. A Time Projection Chamber (TPC), surrounded by two-Tesla magnet, was built and incorporated into SASY to identify the pion charge and so separate neutron and proton reactions. The TPC provides snap-shots of ionizing tracks of particles produced by 300-422 MeV polarized photons on a polarized HD target. A polarized HD target was developed and used in these experiments.

  11. Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence.

    PubMed

    Wang, Jing; Zhu, Shijun; Wang, Haiyan; Cai, Yangjian; Li, Zhenhua

    2016-05-30

    Recently, we introduced a new class of radially polarized cosine-Gaussian correlated Schell-model (CGCSM) beams of rectangular symmetry based on the partially coherent electromagnetic theory [Opt. Express23, 33099 (2015)]. In this paper, we extend the work to study the second-order statistics such as the average intensity, the spectral degree of coherence, the spectral degree of polarization and the state of polarization in anisotropic turbulence based on an extended von Karman power spectrum with a non-Kolmogorov power law α and an effective anisotropic parameter. Analytical formulas for the cross-spectral density matrix elements of a radially polarized CGCSM beam in anisotropic turbulence are derived. It is found that the second-order statistics are greatly affected by the source correlation function, and the change in the turbulent statistics induces relatively small effect. The significant effect of anisotropic turbulence on the beam parameters mainly appears nearα=3.1, and decreases with the increase of the anisotropic parameter. Furthermore, the polarization state exhibits self-splitting property and each beamlet evolves into a radially polarized structure in the far field. Our work enriches the classical coherence theory and may be important for free-space optical communications. PMID:27410089

  12. The spectral-angular and polarization characteristics of radiation from an electron beam traversing an inhomogeneous electromagnetic wave

    SciTech Connect

    Koltsov, A.V.; Serov, A.V.

    1995-12-31

    The generation of frequency harmonics of a radiation when the electron beam traverse the inhomogeneous electromagnetic wave was investigated. The electromagnetic wave are linearly polarized. The plane beam of particles enters the wave at right angle with respect to the direction of propogation of the wave and the vector E of the wave. The spartial distribution of radiation from the higher harmonics and the power density contours are caculated.

  13. Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam.

    PubMed

    Wong, Liang Jie; Kärtner, Franz X

    2010-11-22

    We study the direct acceleration of a free electron in infinite vacuum along the axis of a pulsed radially-polarized laser beam. We find that net energy transfer from laser pulse to electron is maximized with the tightest focusing. We show that the net energy gain of an electron initially moving at a relativistic velocity may exceed more than half the theoretical limit of energy transfer, which is not possible with an initially stationary electron in the parameter space studied. We determine and analyze the power scaling of maximum energy gain, extending our study to include a relatively unexplored regime of low powers and revealing that substantial acceleration is already possible without the use of petawatt peak-power laser technology. PMID:21164849

  14. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    SciTech Connect

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.

  15. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization.

    PubMed

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2014-02-10

    We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam. Trajectories, in both the transverse plane and the longitudinal direction, are analyzed showing that the behavior of the optical conveyor can be optimized by conveniently choosing the configuration of the mask of the two annular pupils (inner and outer radius of the two rings) in order to trap and transport all particles at the focal plane. PMID:24663619

  16. Tight focusing of a double-ring-shaped, azimuthally polarized beam through a dielectric interface.

    PubMed

    Shu, Jianhua; Chen, Ziyang; Pu, Jixiong; Liu, Yongxin

    2014-06-01

    We investigate the tight focusing properties of a double-ring-shaped, azimuthally polarized vector beam (DRS-APVB) by use of vectorial Debye theory. It is shown that a dark channel with an ultralong depth of focus (~106λ) and subwavelength focal holes (~0.5λ) can be generated by focusing a DRS-APVB through a dielectric interface with an annular high-numerical aperture (NA) objective lens. The influence of the NA of the objective, the relative refractive indices of two dielectric media, and the probe depth of the system on the focusing properties of the dark channel has been studied in detail. Such a non-diffracting dark channel could find potential applications in atom optical experiments, such as with atomic lenses, atom traps, and atom switches. PMID:24977354

  17. Polarization-independent beam focusing by high-contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zheng, Gaige; Jiang, Liyong; Li, Xiangyin

    2014-08-01

    A kind of high-contrast grating (HCG) reflector for beam focusing has been proposed. We design a planar grating structure with a parabolic surface and numerical simulations using a finite different time domain (FDTD) method to verify that the structure has the capability of focusing both transverse-magnetic (TM) and transverse-electric (TE) polarized lights. Finally, we expand the design structure into a three-dimensional (3D) case. Numerical results demonstrate that the power intensities at the focal point are all greater than 8.5 dB compared with incident intensity, which means the structure has a better focusing effect. Further analysis of incident wavelength sensitivity (1.55, 1.79 and 2 μm) reveals that the proposed structure has a wide range of working wavelength.

  18. Investigations of electron helicity in optically active molecules using polarized beams of electrons and positrons

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.

    1981-01-01

    A positronium-formation experiment with a high sensitivity to a possible relation between the helicity of beta particles emitted in nuclear beta decay and the optical asymmetry of biological molecules is presented. The experiment is based on a mechanism in which the electrons in optically active molecules possess a helicity of less than 0.001, too weak to detect in radiolysis experiments, the sign of which depends on the chirality of the isomer. A helicity-dependent asymmetry is sought in the formation of the triplet ground state of positronium when a low-energy beam of polarized positrons of reversible helicity interacts with an optically active substance coating a channel electron multiplier. Asymmetries between positronium decays observed at positive and negative helicities for the same substance can thus be determined with a sensitivity of 0.0001, which represents a factor of 100 improvement over previous positronium experiments.

  19. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    SciTech Connect

    Mohanmurthy, Prajwal; Dutta, Dipangkar

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  20. Polarization and propagation characteristics of switchable first-order azimuthally asymmetric beam generated in dual-mode fiber.

    PubMed

    Khan, Saba N; Chatterjee, Sudip K; Chaudhuri, Partha Roy

    2015-02-20

    We report here the controlled generation of a linearly polarized first-order azimuthally asymmetric beam (F-AAB) in a dual-mode fiber (DMF) by appropriate superposition of selectively excited zeroth-order vector modes that are doughnut-shaped azimuthally symmetric beams (D-ASBs). We first demonstrate continually switching polarization mode structures having an identical two-lobe intensity profile (i.e., intra-F-AAB conversion). Then, under a distinct launching state, we generate mode structures progressively toggling between the doughnut-shaped profile and two-lobe pattern having dissimilar polarization orientations (i.e., F-AAB to D-ASB conversion). Interestingly, a decentralized elliptical Gaussian beam possessing homogenous spatial polarization is obtained by enhancing the contribution of the fundamental mode (HE11/LP01) in selectively excited F-AAB. A smoothly varying azimuth of the input beam in this situation resulted in redistribution of transverse energy procuring a unique and exciting unconventional two-grain T-polarized beam having mutually orthogonal state of polarization (SOP). All of the above three were achieved under a given set of launching conditions (tilt/offset) of a Gaussian mode (TEM00) devised with changing SOP of the input beam. A strong modulation in the output beam characteristics was also observed with the variation in propagation distance (for a fixed input SOP) owing to the large difference in propagation constants of the participating modes (LP01 and one of the F-AABs). Finally, this particular study led to a design for a low-cost highly sensitive strain measuring device based on tracking the centroid movement of the output intensity pattern. Each of our experimentally observed intensity/polarization distributions is theoretically mapped on a one-to-one basis considering a linear superposition of appropriately excited LP basis modes of the waveguide toward a complete understanding of the

  1. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide.

    PubMed

    Chang, Ken-Wei; Huang, Chia-Chien

    2016-01-01

    We propose an ultracompact broadband polarization beam splitter (PBS) based on a combined hybrid plasmonic waveguide (HPW). The proposed PBS separates transverse-electric (TE) and transverse-magnetic (TM) modes using a bent lower HPW with vertical nanoscale gaps and a straight upper HPW with a horizontal nanoscale gap, respectively, without relying on an additional coupling region. This design considerably reduces the length of the PBS to the submicron scale (920 nm, the shortest PBS reported to date) while offering polarization extinction ratios (PERs) of ~19 dB (~18 dB) and insertion losses (ILs) of ~0.6 dB (~0.3 dB) for the TE (TM) mode over an extremely broad band of 400 nm (from λ = 1300 nm to 1700 nm, covering entirely second and third telecom windows). The length of the designed PBS can be reduced further to 620 nm while still offering PERs of 15 dB, realizing a densely photonic integrated circuit. Considering the fabrication tolerance, the designed PBS allows for large geometrical deviations of ± 20 nm while restricting PER variations to within 1 dB, except for those in the nanoscale gaps smaller than 10nm. Additionally, we also address the input and ouput coupling efficiencies of the proposed PBS. PMID:26786972

  2. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide

    PubMed Central

    Chang, Ken-Wei; Huang, Chia-Chien

    2016-01-01

    We propose an ultracompact broadband polarization beam splitter (PBS) based on a combined hybrid plasmonic waveguide (HPW). The proposed PBS separates transverse-electric (TE) and transverse-magnetic (TM) modes using a bent lower HPW with vertical nanoscale gaps and a straight upper HPW with a horizontal nanoscale gap, respectively, without relying on an additional coupling region. This design considerably reduces the length of the PBS to the submicron scale (920 nm, the shortest PBS reported to date) while offering polarization extinction ratios (PERs) of ~19 dB (~18 dB) and insertion losses (ILs) of ~0.6 dB (~0.3 dB) for the TE (TM) mode over an extremely broad band of 400 nm (from λ = 1300 nm to 1700 nm, covering entirely second and third telecom windows). The length of the designed PBS can be reduced further to 620 nm while still offering PERs of 15 dB, realizing a densely photonic integrated circuit. Considering the fabrication tolerance, the designed PBS allows for large geometrical deviations of ±20 nm while restricting PER variations to within 1 dB, except for those in the nanoscale gaps smaller than 10nm. Additionally, we also address the input and ouput coupling efficiencies of the proposed PBS. PMID:26786972

  3. Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating

    NASA Astrophysics Data System (ADS)

    Guan, Heyuan; Jin, Yunxia; Liu, Shijie; Wang, Jianpeng; Kong, Fanyu; Du, Yin; Shao, Jianda

    2013-01-01

    In this paper, a reflecting polarizing beam splitter (RPBS) with a metal-multilayer dielectric grating (MMDG) structure is designed by using a genetic algorithm and the Fourier mode method. The proposed RPBS grating can be operated at a central wavelength of 1053 nm. Moreover, this grating can reflect the transverse electric wave in the -1st order and the transverse magnetic wave in the 0th order. The optimized RPBS grating has high extinction ratios of over 20 dB from 1030 nm to 1076 nm at angles ranging from 48.6° to 55.1°. At 1053 nm, the highest efficiency of over 98%, as well as polarization extinction ratios of the 0th order and -1st order at 62.2 dB and 48.8 dB, respectively, is obtained. The optimized MMDG structure shows acceptable tolerances for grating fabrication. This MMDG may be a potential RPBS candidate for use in different optical systems.

  4. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Chang, Ken-Wei; Huang, Chia-Chien

    2016-01-01

    We propose an ultracompact broadband polarization beam splitter (PBS) based on a combined hybrid plasmonic waveguide (HPW). The proposed PBS separates transverse-electric (TE) and transverse-magnetic (TM) modes using a bent lower HPW with vertical nanoscale gaps and a straight upper HPW with a horizontal nanoscale gap, respectively, without relying on an additional coupling region. This design considerably reduces the length of the PBS to the submicron scale (920 nm, the shortest PBS reported to date) while offering polarization extinction ratios (PERs) of ~19 dB (~18 dB) and insertion losses (ILs) of ~0.6 dB (~0.3 dB) for the TE (TM) mode over an extremely broad band of 400 nm (from λ = 1300 nm to 1700 nm, covering entirely second and third telecom windows). The length of the designed PBS can be reduced further to 620 nm while still offering PERs of 15 dB, realizing a densely photonic integrated circuit. Considering the fabrication tolerance, the designed PBS allows for large geometrical deviations of ±20 nm while restricting PER variations to within 1 dB, except for those in the nanoscale gaps smaller than 10nm. Additionally, we also address the input and ouput coupling efficiencies of the proposed PBS.

  5. Integration of a photonic crystal polarization beam splitter and waveguide bend.

    PubMed

    Zheng, Wanhua; Xing, Mingxin; Ren, Gang; Johnson, Steven G; Zhou, Wenjun; Chen, Wei; Chen, Lianghui

    2009-05-11

    In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 degrees waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20 dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future. PMID:19434199

  6. Measurement of spin parameters in inclusive. Lambda. and K sub S production using a polarized proton beam

    SciTech Connect

    Tonse, S.R.

    1988-01-01

    A polarized proton beam incident on a Beryllium target was used for inclusive {Lambda}(1116 meV) production at beam momenta of 13.3 GeV and 18.5 GeV. The beam polarization was transverse to the beam direction with magnitude 0.63(0.40) at 13.3(18.5) GeV. The trigger condition favored forward produced {Lambda}'s with moderately high p{sub T}(p{sub T} {approximately} 1GeV). The {Lambda} polarization was measured and found to be in agreement with results from earlier experiments which used unpolarized proton beams. Analyzing power (A) and depolarization (D{sub NN}) of the {Lambda}'s were both measured and compared with a hyperon polarization model in which the polarization arises from a Thomas precession effect. There is good agreement with its predictions: A = 0 and D{sub NN} = 0. In particular, our measurement of D{sub NN} = {minus}0.009 {plus minus} 0.015 supports the idea that the valence quarks carry all of the hadron spin, since this assumption is implicit in the model's use of SU(6) wave functions to form final state hadrons from beam fragments and sea quarks. The analyzing power of K{sub s} was also measured at 13.3(18.5)GeV and found to be {minus}0.094 {plus minus} 0.012 ({minus}0.076 {plus minus} 0.015). We use the same model to predict A of K{sub s}, taking into account K{sub s} production from various sources (K{degree}, K{degree} and K*) and find good agreement with the data. Finally a small sample of {Lambda} was isolated form the 18.5 GeV sample and was found to have A = 0.03 {plus minus} 0.1, consistent with the model's prediction of zero.

  7. Correlation of auroral hiss and upward electron beams near the polar cusp

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Burch, J. L.; Shawhan, S. D.; Gurnett, D. A.

    1984-01-01

    Data were obtained from the DE-1 high-altitude plasma instrument (HAPI) and plasma wave instrument (PWI) during outbound passes through the polar cusp near local noon. The observed distribution functions of electron beams are fitted by drifting Maxwellian functions and the observed distribution functions of hot background electrons by isotropic Maxwellian functions. In addition, the cold plasma density is inferred from knowledge of the electron plasma frequency and the measured density of the warm plasma, including the electron beam distribution. The empirically fitted plasma parameters, including density, temperature and drifting energy, are used to solve the linear dispersion equation for the resulting whistler mode emissions. Because the whistler mode becomes quasi-electrostatic for wave-normal angles near the resonance cone, the electrostatic approximation is used for the whistler mode dispersion relation. The results of wave instability analyses are then compared with the wave observations. A ray tracing of cusp hiss emission is conducted to locate the wave source region (at about one earth-radius).

  8. Focusing a beam of ultracold spin-polarized hydrogen atoms with a helium-film-coated quasiparabolic mirror

    SciTech Connect

    Luppov, V.G. Joint Institute for Nuclear Research, Dubna ); Kaufman, W.A.; Hill, K.M.; Raymond, R.S.; Krisch, A.D. )

    1993-10-11

    We formed the first atomic-optics'' beam of electron-spin-polarized hydrogen atoms using a quasiparabolic polished copper mirror coated with a hydrogen-atom-reflecting film of superfluid [sup 4]He. The mirror was located in the gradient of an 8-T solenoidal magnetic field and mounted on an ultracold cell at 350 mK. After the focusing by the mirror surface, the beam was again focused with a sextupole magnet. The mirror, which was especially designed for operation in the magnetic field gradient of our solenoid, increased the focused beam intensity by a factor of about 7.5.

  9. Recoil polarization and beam-recoil double polarization measurement of eta electroproduction on the proton in the region of the S11(1535) resonance.

    PubMed

    Merkel, H; Achenbach, P; Ayerbe Gayoso, C; Bernauer, J C; Böhm, R; Bosnar, D; Cheymol, B; Distler, M O; Doria, L; Fonvieille, H; Friedrich, J; Janssens, P; Makek, M; Müller, U; Nungesser, L; Pochodzalla, J; Potokar, M; Sánchez Majos, S; Schlimme, B S; Sirca, S; Tiator, L; Walcher, Th; Weinriefer, M

    2007-09-28

    The beam-recoil double polarization P(x')(h) and P(z')(h) and the recoil polarization P(y') were measured for the first time for the p(e,e'p)eta reaction at a four-momentum transfer of Q(2) = 0.1 GeV(2)/c(2) and a center of mass production angle of theta = 120 degrees at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeVpolarized-target asymmetry. PMID:17930579

  10. Systematic investigations of low energy Ar ion beam sputtering of Si and Ag

    NASA Astrophysics Data System (ADS)

    Feder, R.; Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B.

    2013-12-01

    Ion beam sputter deposition (IBD) delivers some intrinsic features influencing the growing film properties, because ion properties and geometrical process conditions generate different energy and spatial distributions of the sputtered and scattered particles. Even though IBD has been used for decades, the full capabilities are not investigated systematically and specifically used yet. Therefore, a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the generated secondary particles and backscattered ions and the deposited films needs to be done.A vacuum deposition chamber has been set up which allows ion beam sputtering of different targets under variation of geometrical parameters (ion incidence angle, position of substrates and analytics in respect to the target) and of ion beam parameters (ion species, ion energy) to perform a systematic and comprehensive analysis of the correlation between the properties of the ion beam, the properties of the sputtered and scattered particles, and the properties of the deposited films. A set of samples was prepared and characterized with respect to selected film properties, such as thickness and surface topography. The experiments indicate a systematic influence of the deposition parameters on the film properties as hypothesized before. Because of this influence, the energy distribution of secondary particles was measured using an energy-selective mass spectrometer. Among others, experiments revealed a high-energetic maximum for backscattered primary ions, which shifts with increasing emission angle to higher energies. Experimental data are compared with Monte Carlo simulations done with the well-known Transport and Range of Ions in Matter, Sputtering version (TRIM.SP) code [J.P. Biersack, W. Eckstein, Appl. Phys. A: Mater. Sci. Process. 34 (1984) 73]. The thicknesses of the films are in good agreement with those calculated from simulated particle fluxes. For the positions of the

  11. REVIEW ARTICLE: Optical pumping-induced spatio-temporal modifications to propagation, polarization and intensity of laser beams in sodium vapour

    NASA Astrophysics Data System (ADS)

    Holzner, R.; Dangel, S.

    1998-02-01

    Circularly polarized laser beams propagating through sodium vapour and tuned to the buffer-gas-broadened atomic 1355-5111/10/1/003/img1 transition can optically pump sodium atoms into a non-absorbing ground state. This causes an intensity-dependent refractive index gradient along as well as transverse to the laser beam propagation direction, giving rise to a number of nonlinear spatio-temporal intensity and polarization pattern creating processes. In the case of a single circularly polarized laser beam we have observed self-focusing and defocusing, the transformation of the incident Gaussian beam intensity profiles into ring profiles, a large shift of about 5 GHz of the maximum of the absorption profile when suitable magnetic fields are applied and the deflection of a beam by the inhomogeneous transverse magnetic field of a current-carrying wire. When two beams of opposite circular polarization are superimposed, astonishing effects such as the mutual deflection of both beams (beam bouncing), the mutual extinction of both beams (beam switching), the separation of initially overlapping beams (beam splitting) and the mutual attraction of both beams (beam attraction) can be observed. While most of the effects can be well described for the stationary state by a 1355-5111/10/1/003/img2 to 1355-5111/10/1/003/img3 atomic transition model, the correct description of the dynamics requires the consideration of all hyperfine states.

  12. Energetic electrons driven in the polarization direction of an intense laser beam incident normal to a solid target

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Hudson, L. T.; Pereira, N.; Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P.; Chen, Hui; Williams, G. J.; Park, J.

    2016-06-01

    Experiments were performed at the LLNL Titan laser to measure the propagation direction of the energetic electrons that were generated during the interaction of the polarized laser beam with solid targets in the case of normal incidence. The energetic electrons propagated through vacuum to spectator metal wires in the polarization direction and in the perpendicular direction, and the K shell spectra from the different wire materials were recorded as functions of the distance from the laser focal spot. It was found that the fluence of the energetic electrons driven into the spectator wires in the polarization direction compared to the perpendicular direction was larger and increased with the distance from the focal spot. This indicates that energetic electrons are preferentially driven in the direction of the intense oscillating electric field of the incident laser beam in agreement with the multiphoton inverse Bremsstrahlung absorption process.

  13. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates

    SciTech Connect

    Chen, Peng; Ji, Wei; Wei, Bing-Yan; Hu, Wei Lu, Yan-Qing; Chigrinov, Vladimir

    2015-12-14

    Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promising optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices.

  14. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Ji, Wei; Wei, Bing-Yan; Hu, Wei; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-01

    Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promising optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices.

  15. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-01

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams. These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.

  16. A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Hohl, Georg-Friedrich; Hihara, Takehiko; Sakurai, Masaki; Oishi, Takashi; Wakoh, Kimio; Sumiyama, Kenji; Suzuki, Kenji

    1994-03-01

    Ag clusters were formed by a sputter-gas-aggregation process [H. Haberland et al..: J. Vac. Sci. Technol. A 10 (1992) 3266] and the ionized cluster beam (ICB) [T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy (Noyes, Park Ridge, 1988)] technique. The Ag clusters deposited on collodion-coated microgrids were investigated by high-resolution transmission electron microscopy. The diameter of those clusters, d, ranges from 1 nm up to about 10 nm for specimens produced by the sputter-gas aggregation technique, depending on the sputter condition and the deposition time. Comparable times of the ICB deposition lead to a broader distribution up to d≈20 nm, suggesting the formation of islands with extremely flat shapes. High percentages of crystalline particles obtained by both techniques are either single crystals or multiple twins with clear lattice images.

  17. Determination of the Linear Polarization of the Hall-B Tagged Photon Beam at Jefferson Lab

    SciTech Connect

    Sabintsev, A. A.; Livingston, K.

    2011-10-24

    The JLab CLAS g9a/FROST experiments are double polarization measurements that have accumulated photo-production data using linearly polarized, tagged photons incident on a longitudinally polarized, frozen spin butanol target. The analysis of the resulting coherent peaks was used to determine the photon polarization, which is in agreement with phenomenological calculations.

  18. Determination of the linear polarization of the Hall-B tagged photon beam at Jefferson Lab

    SciTech Connect

    A.A. Sabintsev, K. Livingston

    2011-10-01

    The JLab CLAS g9a/FROST experiments are double polarization measurements that have accumulated photo-production data using linearly polarized, tagged photons incident on a longitudinally polarized, frozen spin butanol target. The analysis of the resulting coherent peaks was used to determine the photon polarization, which is in agreement with phenomenological calculations.

  19. Ferromagnetic resonance of ultrathin Co /Ag superlattices on Si(111)

    NASA Astrophysics Data System (ADS)

    Kakazei, G. N.; Martin, P. P.; Ruiz, A.; Varela, M.; Alonso, M.; Paz, E.; Palomares, F. J.; Cebollada, F.; Rubinger, R. M.; Carmo, M. C.; Sobolev, N. A.

    2008-04-01

    Ferromagnetic resonance (FMR) is used to probe the magnetic properties of Co /Ag superlattices (SLs) with ultrathin Co layers (2-6Å). Different series of 5×[Ag/Co] multilayers have been grown by molecular beam epitaxy on Si(111) substrates, monitoring the growth by reflection high energy electron diffraction. Cross-section transmission electron microscopy confirms the growth of local areas with the designed SL periodicity, a sharp compositional modulation, well defined Ag-Co interfaces, and a perfect fcc (111) stacking. FMR spectra have been recorded at various polar angles in the 0°-90° range. A single and extremely broad resonance peak is observed in all cases. While SLs with Ag layers thinner than 10Å exhibit similar values of the perpendicular anisotropy, a clear reduction is observed for samples with Ag layers about 14Å thick. Possible causes for this change are discussed.

  20. An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer

    SciTech Connect

    Chen, Benyong Zhang, Enzheng; Yan, Liping; Liu, Yanna

    2014-10-15

    Correct return of the measuring beam is essential for laser interferometers to carry out measurement. In the actual situation, because the measured object inevitably rotates or laterally moves, not only the measurement accuracy will decrease, or even the measurement will be impossibly performed. To solve this problem, a novel orthogonal return method for linearly polarized beam based on the Faraday effect is presented. The orthogonal return of incident linearly polarized beam is realized by using a Faraday rotator with the rotational angle of 45°. The optical configuration of the method is designed and analyzed in detail. To verify its practicability in polarization interferometry, a laser heterodyne interferometer based on this method was constructed and precision displacement measurement experiments were performed. These results show that the advantage of the method is that the correct return of the incident measuring beam is ensured when large lateral displacement or angular rotation of the measured object occurs and then the implementation of interferometric measurement can be ensured.

  1. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    NASA Astrophysics Data System (ADS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-08-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 23 S→23 P0,1,2 (D0, D1, and D2) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D2 line.

  2. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  3. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    SciTech Connect

    Rahman, O.; Ben-Zvi, I.; Degen, C.; Gassner, D. M.; Lambiase, R.; Meng, W.; Pikin, A.; Rao, T.; Sheehy, B.; Skaritka, J.; Wang, E.; Pietz, J.; Ackeret, M.; Yeckel, C.; Miller, R.; Dobrin, E.; Thompson, K.

    2015-05-03

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  4. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  5. Polarization effect on the relativistic nonlinear dynamics of an intense laser beam propagating in a hot magnetoactive plasma.

    PubMed

    Sepehri Javan, N; Adli, F

    2013-10-01

    Nonlinear dynamics of an intense circularly polarized laser beam interacting with a hot magnetized plasma is investigated. Using a relativistic fluid model, a modified nonlinear Schrödinger equation is derived based on a quasineutral approximation, which is valid for hot plasma. Using a three-dimensional model, spatial-temporal development of the laser pulse is investigated. The occurrence of some nonlinear phenomena such as self-focusing, self-modulation, light trapping, and filamentation of the laser pulse is discussed. Also the effect of polarization and external magnetic field on the nonlinear evolution of these phenomena is studied. PMID:24229288

  6. Backscatter Reduction Using Combined Spatial, Temporal, and Polarization Beam Smoothing in a Long-Scale-length Laser Plasma

    SciTech Connect

    Moody, J. D.; MacGowan, B. J.; Rothenberg, J. E.; Berger, R. L.; Divol, L.; Glenzer, S. H.; Kirkwood, R. K.; Williams, E. A.; Young, P. E.

    2001-03-26

    Spatial, temporal, and polarization smoothing schemes are combined for the first time to reduce to a few percent the total stimulated backscatter of a NIF-like probe laser beam (2x10{sup 15} W/cm{sup 2}, 351 nm, f/8) in a long-scale-length laser plasma. Combining temporal and polarization smoothing reduces simulated Brillouin scattering and simulated Raman scattering (SRS) up to an order of magnitude although neither smoothing scheme by itself is uniformly effective. The results agree with trends observed in simulations performed with the laser-plasma interaction code F3D simulations [R.L. Berger et al., Phys. Plasma 6, 1043 (1999)].

  7. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-10-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  8. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-01-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  9. Second harmonic generation by propagation of a p-polarized obliquely incident laser beam in underdense plasma

    SciTech Connect

    Jha, Pallavi; Agrawal, Ekta

    2014-05-15

    An analytical study of second harmonic generation due to interaction an intense, p-polarized laser beam propagating obliquely in homogeneous underdense plasma, in the mildly relativistic regime, has been presented. The efficiency of the second harmonic radiation as well as its detuning length has been obtained and their variation with the angle of incidence is analyzed. It is shown that, for a given plasma electron density, the second harmonic efficiency increases with the angle of incidence while the detuning length decreases. The second harmonic amplitude vanishes at normal incidence of the laser beam.

  10. Domain switching by electron beam irradiation of Z{sup +}-polar surface in Mg-doped lithium niobate

    SciTech Connect

    Shur, V. Ya. Chezganov, D. S.; Smirnov, M. M.; Alikin, D. O.; Neradovskiy, M. M.; Kuznetsov, D. K.

    2014-08-04

    The appearance of the static domains with depth above 200 μm in the bulk of MgO-doped lithium niobate single crystals as a result of focused electron beam irradiation of Z{sup +}-polar surface was demonstrated. The created domain patterns were visualized by high-resolution methods including piezoresponse force microscopy, scanning electron microscopy, and confocal Raman microscopy. The main stages of the domain structure formation were revealed and explained in terms of the original model.

  11. Studies of transition metal and overlayers dynamics and magnetism by HE and spin-polarized metastable HE beam spectroscopies

    SciTech Connect

    El-Batanouny, M.

    1992-01-16

    Experimental results for the investigation of quantum delocalization of hydrogen on the Pd(111) surface; the investigation of the structural and dynamical trends in the growth of Cu overlayers on Pd(111) surface; and the investigation of the magnetic structure of the NiO(111) surface using spin-polarized metastable He beam scattering are included in this paper. Planned research is also discussed.

  12. Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization

    SciTech Connect

    Li Chunfang

    2009-12-15

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that originates from the former part is spin, and the angular momentum that originates from the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin and orbital angular momentum defined this way are used to investigate the angular momentum of nonparaxial beams that are described in a recently published paper [Phys. Rev. A 78, 063831 (2008)]. It is found that the orbital angular momentum depends, apart from an l-dependent term, on two global quantities, the polarization represented by a generalized Jones vector and another characteristic represented by a unit vector I, though the spin depends only on the polarization. The polarization dependence of orbital angular momentum through the effect of I is obtained and discussed. Some applications of the result obtained here are also made. The fact that the spin originates from the part of momentum density that has no contribution to the net momentum is used to show that there does not exist the paradox on the spin of circularly polarized plane wave. The polarization dependence of both spin and orbital angular momentum is shown to be the origin of conversion from the spin of a paraxial Laguerre-Gaussian beam into the orbital angular momentum of the focused beam through a high numerical aperture.

  13. Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes through complex ABCD optical systems.

    PubMed

    Hanson, Steen G; Wang, Wei; Jakobsen, Michael L; Takeda, Mitsuo

    2008-09-01

    The change of coherence and polarization of an electromagnetic beam modulated by a random anisotropic phase screen passing through any optical system is found within the framework of complex ABCD-matrix theory This means that the formalism can treat imaging and Fourier transform and free-space optical systems, as well as fractional Fourier transform systems, with finite-size limiting apertures of Gaussian transmission shape. Thus, the current paper shall be considered as a continuation, extension, and generalization of a previous work by Shirai and Wolf [J. Opt. Soc. Am. A21, 1907 (2004)]. It will be shown that the inclusion of apertures in the optical system strongly influences not only the propagation of spatial coherence but also the degree of polarization of a propagating field. Analytical expressions of coherence and polarization propagation will be given in terms of the matrix elements for any complex optical system. PMID:18758562

  14. Measurement of the beam-recoil polarization in low-energy virtual Compton scattering from the proton

    NASA Astrophysics Data System (ADS)

    Doria, L.; Janssens, P.; Achenbach, P.; Ayerbe Gayoso, C.; Baumann, D.; Bensafa, I.; Benali, M.; Beričič, J.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Correa, L.; D'Hose, N.; Defaÿ, X.; Ding, M.; Distler, M. O.; Fonvieille, H.; Friedrich, J.; Friedrich, J. M.; Laveissière, G.; Makek, M.; Marroncle, J.; Merkel, H.; Mihovilovič, M.; Müller, U.; Nungesser, L.; Pasquini, B.; Pochodzalla, J.; Postavaru, O.; Potokar, M.; Ryckbosch, D.; Sánchez Majos, S.; Schlimme, B. S.; Seimetz, M.; Širca, S.; Tamas, G.; Van de Vyver, R.; Van Hoorebeke, L.; Van Overloop, A.; Walcher, Th.; Weinriefer, M.; A1 Collaboration

    2015-11-01

    Double-polarization observables in the reaction e ⃗p →e'p ⃗'γ have been measured at Q2=0.33 (GeV/c ) 2 . The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function PLT ⊥ is extracted for the first time, with the value (-15.4 ±3 .3(stat .)-2.4+1.5(syst.)) GeV-2 , using the low-energy theorem for virtual Compton scattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.

  15. Generation of azimuthally polarized beams in fast axial flow CO2 laser with hybrid circular subwavelength grating mirror.

    PubMed

    Zhao, Jiang; Li, Bo; Zhao, Heng; Wang, Wenjin; Hu, Yi; Liu, Sisi; Wang, Youqing

    2014-06-10

    A hybrid circular subwavelength grating mirror is proposed and fabricated as a rear mirror in a fast axial flow CO2 laser system to generate azimuthally polarized beams (APBs). This grating mirror, with particular gold-covered ridges and nanopillar-stuffed grooves, performs wideband TE wave reflectivity and high polarization selectivity. It shows that the polarization selectivity mechanism lies in the gold ridge's high reflectivity to the TE wave and the lower TM wave reflectivity, which are the result of the mode leaking into substrate through the dielectric-like nanopillar layer. Finally, a high-quality 550 W APB is obtained in subsequent experiments, which provides potential applications in drilling and welding. PMID:24921136

  16. Ferroelectric polarization and resistive switching characteristics of ion beam assisted sputter deposited BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Silva, J. P. B.; Kamakshi, Koppole; Sekhar, K. C.; Moreira, J. Agostinho; Almeida, A.; Pereira, M.; Gomes, M. J. M.

    2016-05-01

    In this work, 150 nm thick polycrystalline BaTiO3 (BTO) films were deposited on Pt/TiO2/SiO2/Si substrate by ion beam assisted sputter deposition technique. The bias voltage dependent resistive switching (RS) and ferroelectric polarization characteristics of Au/BTO/Pt devices are investigated. The devices display the stable bipolar RS characteristics without an initial electroforming process. Fittings to current-voltage (I-V) curves suggest that low and high resistance states are governed, respectively, by filamentary model and trap controlled space charge limited conduction mechanism, where the oxygen vacancies act as traps. Presence of oxygen vacancies is evidenced from the photoluminescence spectrum. The devices also display P-V loops with remnant polarization (Pr) of 5.7 μC/cm2 and a coercive electric field (Ec) of 173.0 kV/cm. The coupling between the ferroelectric polarization and RS effect in BTO films is demonstrated.

  17. Conductive and transparent multilayer films for low-temperature TiO2/Ag/SiO2 electrodes by E-beam evaporation with IAD

    PubMed Central

    2014-01-01

    Conductive and transparent multilayer thin films consisting of three alternating layers (TiO2/Ag/SiO2, TAS) have been fabricated for applications as transparent conducting oxides. Metal oxide and metal layers were prepared by electron-beam evaporation with ion-assisted deposition, and the optical and electrical properties of the resulting films as well as their energy bounding characteristics and microstructures were carefully investigated. The optical properties of the obtained TAS material were compared with those of well-known transparent metal oxide glasses such as ZnO/Ag/ZnO, TiO2/Ag/TiO2, ZnO/Cu/ZnO, and ZnO/Al/ZnO. The weathering resistance of the TAS film was improved by using a protective SiO2 film as the uppermost layer. The transmittance spectra and sheet resistance of the material were carefully measured and analyzed as a function of the layer thickness. By properly adjusting the thickness of the metal and dielectric films, a low sheet resistance of 6.5 ohm/sq and a high average transmittance of over 89% in the 400 to 700 nm wavelength regions were achieved. We found that the Ag layer played a significant role in determining the optical and electrical properties of this film. PMID:24433437

  18. Generation of polarized 4He ion beam by optical pumping using circularly and linearly polarized radiation tuned to D0 line (He metastables 2S1→2P0)

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Yamauchi, Y.

    2007-06-01

    It is demonstrated that simultaneous optical pumping (OP) by circularly and linearly polarized 1083 nm radiation tuned to the D0 line (He metastables 23S1→23P0 transition) substantially improves the polarization of the He+ ion beam, compared with conventional OP by the circularly polarized D1 ( 23S1→23P1) or D2 ( 23S1→23P2) line.

  19. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  20. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  1. Recoil Polarization and Beam-Recoil Double Polarization Measurement of {eta} Electroproduction on the Proton in the Region of the S{sub 11}(1535) Resonance

    SciTech Connect

    Merkel, H.; Achenbach, P.; Ayerbe Gayoso, C.; Bernauer, J. C.; Boehm, R.; Distler, M. O.; Doria, L.; Friedrich, J.; Mueller, U.; Nungesser, L.; Pochodzalla, J.; Sanchez Majos, S.; Schlimme, B. S.; Tiator, L.; Walcher, Th.; Weinriefer, M.; Bosnar, D.; Makek, M.; Cheymol, B.; Fonvieille, H.

    2007-09-28

    The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeVpolarized-target asymmetry.

  2. Variable-reflectance thin-film polarization-independent beam splitters for 0.6328- and 10.6-microm laser light.

    PubMed

    Azzam, R M

    1985-03-01

    Truly polarization-independent beam splitters for 0.6328- and 10.6-microm (He-Ne and CO(2)) laser radiation are designed using single-layer-coated (Cleartran) ZnS and Ge prisms. These devices are found to be reasonably achromatic, their reflectance (beam-splitting ratio) can be varied over a wide range with little accompanying polarization error, and they are tolerent to small film-thickness and film refractive-index errors. PMID:19724362

  3. Theoretical explanation of the polarization-converting system achieved by beam shaping and combination technique and its performance under high power conditions

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-10-01

    The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.

  4. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    NASA Astrophysics Data System (ADS)

    Kolmogorov, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Ritter, J.; Stupishin, N.; Zelenski, A.

    2014-02-01

    The RHIC polarized H- ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ˜0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  5. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    SciTech Connect

    Kolmogorov, A. Stupishin, N.; Atoian, G.; Ritter, J.; Zelenski, A.; Davydenko, V.; Ivanov, A.

    2014-02-15

    The RHIC polarized H{sup −} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  6. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade.

    PubMed

    Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A

    2014-02-01

    The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench. PMID:24593468

  7. Vector Laguerre–Gauss beams with polarization-orbital angular momentum entanglement in a graded-index medium

    NASA Astrophysics Data System (ADS)

    Petrov, Nikolai I.

    2016-07-01

    It is shown that the vector-vortex Laguerre-Gauss modes with polarization-orbital angular momentum (OAM) entanglement are the vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly polarized vortex light beams with nonzero azimuthal and radial indices in a cylindrical graded-index medium is investigated. The wave shape variation with distance taking into account the spin-orbit and nonparaxial effects is analyzed. Effect of long-term periodical revival of wave packets due to mode interference in a graded-index cylindrical optical waveguide is demonstrated. High efficiency transfer of a strongly focused spot through an optical waveguide over large distances takes place with a period of revival.

  8. Creation of vector beams from a polarization diffraction grating using a programmable liquid crystal spatial light modulator and a q-plate

    NASA Astrophysics Data System (ADS)

    Badham, Katherine Emily

    This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.

  9. Easy adjustment structure and method for realizing InP based polarization beam splitter via Pockels effect dependence on crystal orientation

    NASA Astrophysics Data System (ADS)

    Watanabe, Kei; Nasu, Yusuke; Ohiso, Yoshitaka; Iga, Ryuzo

    2016-08-01

    We propose a novel adjustment structure and method for an InP-based polarization beam splitter/combiner by using the characteristic whereby the sign at the front of this term changes depending on the light propagation direction. To confirm the proposed principle of adjustment for our InP-based Mach–Zehnder interferometer polarization beam splitter/combiner, we fabricated a test sample that had an npin high-mesa waveguide structure with InGaAlAs/InAlAs multiple quantum wells. By using the test sample, we demonstrated the easy adjustment of an InP-based polarization beam splitter/combiner with the individual modulation of the TE and TM modes and showed that we can output TE/TM polarization at any port as desired.

  10. A simple model for the rotation of a trapped chiral nematic droplet under the action of a linearly polarized laser beam.

    PubMed

    Mosallaeipour, Marjan; Ananthamurthy, Sharath; Madhusudana, N V

    2013-08-01

    There have been recent reports of continuous rotation of chiral nematic droplets in restricted ranges of diameter/pitch (d /p) values, trapped by a linearly polarized laser beam. We have developed a simple model to calculate the distortion in the helical structure of a set of flat layers, caused by the action of the strong electric field of the propagating laser beam on the dielectric anisotropy of the medium. The resulting change in the polarization state of the beam passing through the sample is then used to calculate the torque on the sample as a function of the azimuthal angle of the first layer. The main results are: i) the torque tends to zero even with circularly polarized beam for samples with thicknesses around integral multiples of 0.5p ; ii) the undistorted sample takes an equilibrium orientation for linearly polarized beam, which jumps by π/2 rad at the same sample thicknesses; iii) these samples will have a nonzero torque at all azimuthal angles of the first slice when the helical structure is distorted by the linearly polarized beam. The calculations show that a propagating accordion mode, in which the helical pitch alternately expands and contracts, gives rise to the nonzero torque. The theoretical predictions are in broad agreement with experimental results. PMID:23989758

  11. Calculation of polarization effects

    SciTech Connect

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful.

  12. Progress in the AGS upgrade projects

    SciTech Connect

    Sluyters, T.J.

    1989-01-01

    The objectives of the AGS Upgrade Project are to prepare the AGS for Booster injection with an increase in the proton intensity to 6 {times} 10{sup 13} particles per pulse for a new generation of experiments on rare K decay, neutrino physics, the (g-2) value of the muon, and many other areas; to increase polarized proton intensity to 10{sup 12} particles per pulse for multi-target spin physics; to accelerate heavy ions up to Au for heavy ion physics; and, of course, to improve the flexibility and reliability of the AGS. High priority has been given to those projects which will reduce, at an early stage, beam losses during injection and acceleration, such as a fast electrostatic beam chopper and a high frequency dilution cavity. Other upgrade programs in progress are: a vacuum overhaul to reduce the AGS operating pressure by a factor of 100; an upgrade of the low and high field magnet correction system; automation of the Siemens main magnet power supply, etc. 3 refs., 2 figs.

  13. Growth of polar and non-polar nitride semiconductor quasi-substrates by hydride vapor phase epitaxy for the development of optoelectronic devices by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Moldawer, Adam Lyle

    The family of nitride semiconductors has had a profound influence on the development of optoelectronics for a large variety of applications. However, as of yet there are no native substrates commercially available that are grown by liquid phase methods as with Si and GaAs. As a result, the majority of electronic and optoelectronic devices are grown heteroepitaxially on sapphire and SiC. This PhD research addresses both the development of polar and non-polar GaN and AIN templates by Hydride Vapor Phase Epitaxy (HVPE) on sapphire and SiC substrates, as well as the growth and characterization of optoelectronic devices on these templates by molecular beam epitaxy (MBE). Polar and non-polar GaN templates have been grown in a vertical HVPE reactor on the C- and R-planes of sapphire respectively. The growth conditions have been optimized to allow the formation for thick (50um) GaN templates without cracks. These templates were characterized structurally by studying their surface morphologies by SEM and AFM, and their structure through XRD and TEM. The polar C-plane GaN templates were found to be atomically smooth. However, the surface morphology of the non-polar GaN films grown on the R-plane of sapphire were found to have a facetted surface morphology, with the facets intersecting at 120° angles. This surface morphology reflects an equilibrium growth, since the A-plane of GaN grows faster than the M-planes of GaN due to the lower atomic density of the plane. For the development of deep-UV optoelectronics, it is required to grow AIGaN quantum wells on AIN templates. However, since AIN is a high melting point material, such templates have to be grown at higher temperatures, close to half the melting point of the material (1500 °C). As these temperatures cannot be easily obtained by traditional furnace heating, an HVPE reactor has been designed to heat the substrate inductively to these temperatures. This apparatus has been used to grow high-quality, transparent AIN films

  14. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Brubaker, Matt D.; Rourke, Devin M.; Sanford, Norman A.; Bertness, Kris A.; Bright, Victor M.

    2011-09-01

    Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

  15. Compact and broadband circularly polarized ring antenna with wide beam-width for multiple global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Lin; Hu, Bin-Jie; Zhang, Xiu-Yin

    2012-02-01

    A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two modified L-probes with quadrature phase difference. It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth, because of the orthogonal L-probes with 90° phase difference. The measured peak gain of the antenna is 3.9 dBic. It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x—z and y—z planes, achieving a cross-polarization level of larger than 25 dB. Noticeably, the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas. It can be used in hand-held navigation devices of multiple GNSS such as COMPASS, Galileo, GPS and GLONASS.

  16. Revealing the large extra dimension effective interaction at an e{sup +}e{sup -} collider with polarized beams

    SciTech Connect

    Pankov, A. A.; Tsytrinov, A. V.; Paver, N.

    2007-05-01

    Several types of new physics scenarios are represented by contactlike effective interactions. An example is the exchange of nonstandard quanta of very large mass scales, beyond the kinematical limit for direct production set by the available collider energy. This kind of interactions can be revealed only through deviations of observables from the standard model predictions. If such deviations were observed, the relevant source should be identified among the possible models that could explain them. Here, we assess the expected 'identification reach' on the ADD model of gravity in large compactified extra dimensions, against the compositeness-inspired four-fermion contact interaction. As basic observables we take the differential cross sections for fermion-pair production at a 0.5-1 TeV electron-positron linear collider with both beams longitudinally polarized. For the four-fermion contact interaction, we assume a general linear combination of the individual models with definite chiralities, with arbitrary coupling constants. In this sense, the estimated identification reach on the ADD model can be considered as 'model independent'. In the analysis, we give estimates also for the expected 'discovery reaches' on the various scenarios. We emphasize the substantial role of beams polarization in enhancing the sensitivity to the contactlike interactions under consideration.

  17. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    SciTech Connect

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-12-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H{sup -} sources with good monochromatization. With one electron of H{sup -} stripped by a laser, the remained electron is excited to upper state (2P{sup 3/2} and 2P{sup 1/2}) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  18. Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides.

    PubMed

    Xu, Yin; Xiao, Jinbiao

    2016-01-20

    A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20  dB. In addition, fabrication tolerances and field evolution are also presented. PMID:26835937

  19. Tailoring of polar and nonpolar ZnO planes on MgO (001) substrates through molecular beam epitaxy

    PubMed Central

    2012-01-01

    Polar and nonpolar ZnO thin films were deposited on MgO (001) substrates under different deposition parameters using oxygen plasma-assisted molecular beam epitaxy (MBE). The orientations of ZnO thin films were investigated by in situ reflection high-energy electron diffraction and ex situ X-ray diffraction (XRD). The film roughness measured by atomic force microscopy evolved as a function of substrate temperature and was correlated with the grain sizes determined by XRD. Synchrotron-based X-ray absorption spectroscopy (XAS) was performed to study the conduction band structures of the ZnO films. The fine structures of the XAS spectra, which were consistent with the results of density functional theory calculation, indicated that the polar and nonpolar ZnO films had different electronic structures. Our work suggests that it is possible to vary ZnO film structures from polar to nonpolar using the MBE growth technique and hence tailoring the electronic structures of the ZnO films. PACS: 81; 81.05.Dz; 81.15.Hi. PMID:22405056

  20. Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna.

    PubMed

    Rui, Guanghao; Chen, Weibin; Abeysinghe, Don C; Nelson, Robert L; Zhan, Qiwen

    2012-08-13

    Coupling nanoscale emitters via optical antennas enables comprehensive control of photon emission in terms of intensity, directivity and polarization. In this work we report highly directional emission of circularly polarized photons from quantum dots coupled to a spiral optical antenna. The structural chirality of the spiral antenna imprints spin state to the emitted photons. Experimental results reveal that a circular polarization extinction ratio of 10 is obtainable. Furthermore, increasing the number of turns of the spiral gives rise to higher antenna gain and directivity, leading to higher field intensity and narrower angular width of emission pattern in the far field. For a five-turn Archimedes' spiral antenna, field intensity increase up to 70-fold simultaneously with antenna directivity of 11.7 dB has been measured in the experiment. The highly directional circularly polarized photon emission from such optically coupled spiral antenna may find important applications in single molecule sensing, quantum optics information processing and integrated photonic circuits as a nanoscale spin photon source. PMID:23038571

  1. Modelling of the AGS using Zgoubi - Status

    SciTech Connect

    Meot F.; Ahrens, L.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Schoefer, V.; Tsoupas, N.

    2012-05-20

    This paper summarizes the progress achieved so far, and discusses various outcomes, regarding the development of a model of the Alternating Gradient Synchrotron at the RHIC collider. The model, based on stepwise ray-tracing methods, includes beam and polarization dynamics. This is an on-going work, and a follow-on of code developments and particle and spin dynamics simulations that have been subject to earlier publications at IPAC and PAC [1, 2, 3]. A companion paper [4] gives additional informations, regarding the use of the measured magnetic field maps of the AGS main magnets.

  2. Collinear Photon Exchange in the Beam Normal Polarization Asymmetry of Elastic Electron-Proton Scattering

    SciTech Connect

    Andrei Afanasev; N.P. Merenkov

    2004-07-01

    The parity-conserving single-spin beam asymmetry of elastic electron-proton scattering is induced by an absorptive part of the two-photon exchange amplitude. We demonstrate that this asymmetry has logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. An optical theorem is used to evaluate the asymmetry in terms of the total photoproduction cross section on the proton, predicting its magnitude at 20-30 parts per million for high electron beam energies and small scattering angles. At fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  3. Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters.

    PubMed

    Guo, Hanming; Weng, Xiaoyu; Jiang, Man; Zhao, Yanhui; Sui, Guorong; Hu, Qi; Wang, Yang; Zhuang, Songlin

    2013-03-11

    When the pupil filters are used to improve the performance of the imaging system, the conversion efficiency is a critical characteristic for real applications. Here, in order to take full advantage of the subwavelength focusing property of the radially polarized higher-order Laguerre-Gaussian (LG) beam, we introduce the multi-zone binary phase pupil filters into the imaging system to deal with the problem that the focal spot is split along the z axis for the small size parameter of the incident LG beam. We provide an easy-to-perform procedure for the design of multi-zone binary phase pupil filters, where the zone numbers of π phase are uncertain when the optimizing procedure starts. Based on this optimizing procedure, we successfully find the set of optimum structures of a seventeen-belt binary phase pupil filters and generate the excellent focal spot, where the depth of focus, the focal spot transverse size, the Strehl ratio, and the sidelobe intensity are 9.53λ, 0.41λ, 41.75% and 16.35% in vacuum, respectively. Most importantly, even allowing the power loss of the incident LG beam truncated by the pupil of the imaging system, the conversion efficiency is still as high as 37.3%. Theoretical calculations show that we succeed to have sufficient conversion efficiency while utilizing the pupil filters to decrease the focal spot and extend the depth of focus. PMID:23482107

  4. Oblique incidence effect on steering efficiency of liquid crystal polarization gratings used for optical phased array beam steering amplification

    NASA Astrophysics Data System (ADS)

    Xiangjie, Zhao; Jiazhu, Duan; Dayong, Zhang; Cangli, Liu; Yongquan, Luo

    2016-07-01

    A liquid crystal polarization grating (LCPG) is proposed that amplifies the steering angle of a liquid crystal optical phased array for non-mechanical beam steering, taking advantage of its high steering efficiency under normal incidence. However, oblique incidence may play an important role in the overall steering efficiency. The effect of oblique incidence on steering efficiency of a LCPG was analyzed by numerically solving the extended Jones matrix and considering propagation crosstalk. The results indicate that the outgoing laser beam is amplitude-modulated under the effect of oblique incidence and behaves as a sinusoidal-modulated amplitude grating, which diffracts certain energies to non-blazed orders. Over-oblique incidence may even eliminate the steering effect of the incident beam. The modulation depth of the induced amplitude grating was found to be proportional to the product of sinusoidal value of oblique incidence angle and the LC layer thickness, and inversely proportional to the periodic pitch length of the LCPG. Both in-plane incidence and out-of-plane incidence behave similarly to influence the steering efficiency. Finally, the overall steering efficiency for cascaded LCPGs was analyzed and a difference of up to 11 % steering efficiency can be induced between different LCPG configurations, even without considering the over-oblique incidence effect. Both the modulation depth and final steering efficiency can be optimized by varying the LC birefringence and layer thickness.

  5. Epitaxial growth and optical properties of Al- and N-polar AlN films by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, X. W.; Jia, C. H.; Chen, Y. H.; Wang, H. T.; Zhang, W. F.

    2014-03-01

    Epitaxial aluminum nitride (AlN) films with c-axis orientation were grown on both (1 1 1) MgO and c-sapphire substrates by laser molecular beam epitaxy. The in-plane epitaxial relationships were determined to be [1 1 \\bar{{2}} 0]AlN‖[0 \\bar{{1}} 1]MgO and [1 \\bar{{1}} 0 0]AlN‖[1 1 \\bar{{2}} 0]sapphire, and the lattice mismatch was 4.2% and 13.2% for AlN films on MgO and sapphire, respectively. The AlN films were shown to be Al- and N-polar on MgO and sapphire, respectively. The former is assumed to be caused by the centre of inversion symmetry of (1 1 1) MgO substrate, while the latter is due to the O polarity of sapphire. The full-width at half-maximum of the ω-scanning spectrum for AlN film on (1 1 1) MgO substrate is smaller than that on the c-sapphire substrate. The optical band-gap energies for AlN films grown on MgO and sapphire were found to be 5.93 and 5.84 eV, close to the standard band gap of 6.2 eV, and the calculated Urbach energies were 0.27 eV and 0.53 eV, respectively. These results indicate a lower amorphous content and/or less defects/impurities in Al-polar than N-polar AlN.

  6. Growth of periodic nano-layers of nano-crystals of Au, Ag, Cu by ion beam

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Zheng, B.; Muntele, C. I.; Muntele, I. C.; Ila, D.

    2005-01-01

    Multilayered thin films of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/, were grown by deposition. We have previously shown that MeV ion Bombardment of multi-nano-layers of SiO2/AU+ SiO2/ produces Au nanocrystals in the AU+ SiO2 layers. An increased number of nano-layers followed by MeV ion bombardment produces a wide optical absorption band, of which its FWHM depends on the number of nano-layers of SiO2/AU+ SiO2/. We have successfully repeated this process for nano-layers of SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/. In this work we used 5 MeV Si as the post deposition bombardment ion and monitored the location as well as the optical absorption's FWHM for each layered structure using Optical Absorption Photospectrometry. The concentration and location of the metal nano-crystals were measured by Rutherford Backscattering Spectrometry. We will report on the results obtained for nano-layered structures produced by post deposition bombardment of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/ layered systems as well as the results obtained from a system containing a periodic combination of SiO2/AU+ SiO2/, SiO2/Ag+ SiO2/, and SiO2/Cu+ SiO2/.

  7. Operation of polarized 15NH3 and 15ND3 targets in a high intensity electron beam: SLAC-E143 target report

    NASA Astrophysics Data System (ADS)

    Averett, T.

    1995-09-01

    Several radiation doped targets have recently been used in a polarized target experiment (E143) at the Stanford Linear Accelerator Center using a 29 GeV electron beam (5.0×1011e-/sec). The targets used were 15NH3 and 15ND3 that were pre-irradiated under liquid argon by electrons with energies of 35-350 MeV. Microwaves were used to dynamically polarize the nucleons in a 5 T superconducting magnet. Temperatures of ˜1.0 K were achieved by means of a high cooling power 4He evaporation refrigerator. After in-situ 1.0 K irradiation by 29 GeV electrons, polarizations up to ˜75% and ˜40% with beam on target were achieved for protons and deuterons respectively. Detailed polarization results, radiation damage and anneaning characteristics, and general target performance will0be presented here.

  8. Polarity-inverted ScAlN film growth by ion beam irradiation and application to overtone acoustic wave (000-1)/(0001) film resonators

    SciTech Connect

    Suzuki, Masashi; Yanagitani, Takahiko; Odagawa, Hiroyuki

    2014-04-28

    Polarity inversion in wurtzite film is generally achieved by the epitaxial growth on a specific under-layer. We demonstrate polarity inversion of c-axis oriented ScAlN films by substrate ion beam irradiation without using buffer layer. Substrate ion beam irradiation was induced by either sputtering a small amount of oxide (as a negative ion source) onto the cathode or by applying a RF bias to the substrate. Polarity of the films was determined by a press test and nonlinear dielectric measurement. Second overtone thickness extensional mode acoustic resonance and suppression of fundamental mode resonance, indicating complete polarity inversion, were clearly observed in bilayer highly oriented (000-1)/(0001) ScAlN film.

  9. Holographic binary grating liquid crystal cells fabricated by one-step exposure of photocrosslinkable polymer liquid crystalline alignment substrates to a polarization interference ultraviolet beam.

    PubMed

    Kawai, Kotaro; Sasaki, Tomoyuki; Noda, Kohei; Sakamoto, Moritsugu; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2015-07-01

    Holographic binary grating liquid crystal (LC) cells, in which the optical anisotropy was rectangularly modulated even as the grating was fabricated using holographic exposure, were fabricated by one-step polarization holographic exposure of an empty glass cell, the interior of which was coated with a photocrosslinkable polymer LC (PCLC). The present study is of great significance in that three types of holographic binary grating LC cells containing twisted alignments can be fabricated by simultaneous exposure of two PCLC substrates to the UV interference beams, which are sinusoidally modulated. The polarization conversion properties of the diffracted beams are explained well by theoretical analysis based on Jones calculus. PMID:26193145

  10. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam

    SciTech Connect

    Khonina, S. N. Savelyev, D. A.

    2013-10-15

    Diffraction of uniformly polarized laser beams with vortex phase singularity is theoretically analyzed using the plane wave expansion. It is shown that for a high numerical aperture, an intense longitudinal electric field component is formed on the optical axis in this case. It is numerically demonstrated that an analogous effect is ensured for diffraction of a conventional Gaussian beam from asymmetric binary axicons. The field intensity on the optical axis can be varied either by rotating the optical element or by changing the direction of polarization of radiation.

  11. Dynamic polarization grating based on a dye-doped liquid crystal controllable by a single beam in a homeotropic-planar geometry.

    PubMed

    Kim, Hak-Rin; Jang, Eunje; Kim, Jiyoon; Joo, Kyung-Il; Lee, Sin-Doo

    2012-12-20

    We present a dynamic polarization grating based on a dye-doped liquid crystal cell that is controllable by a single pump beam in a binary homeotropic-planar configuration produced through selective rubbing. Upon single pump beam irradiation, the azo dyes in the liquid-crystal (LC) layer diffuse and adsorb onto the planar LC-anchoring surface due to trans-cis photo-isomerization. It is found that the dynamic polarization grating effect results mainly from the photo-induced easy axis reorientation by the amount of dye molecules adsorbed on the planar LC-alignment surface in a single-beam control scheme. The initial LC-anchoring conditions and the dynamic behavior of the dye adsorption strongly influence the repetitive writing-erasing processes by the single pump beam. PMID:23262590

  12. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    NASA Astrophysics Data System (ADS)

    Narayan, Amrendra

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (~1GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  13. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    SciTech Connect

    Narayan, Amrendra

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  14. 200 MeV Ag15+ ion beam irradiation effects on spray deposited 5 wt% `Li' doped V2O5 thin film

    NASA Astrophysics Data System (ADS)

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Sendilkumar, A.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2016-05-01

    Lithium 5 wt% doped V2O5 thin film was deposited onto ITO substrate by spray pyrolysis technique. The substrate temperature was kept at 450 °C. 200 MeV Ag15+ ion beams at a fluence of 5×1012 ions/cm2 was irradiated on 5 wt% `Li' doped V2O5 film of thickness 1367 nm. The XRD pattern confirms that the pristine film is non stoichiometry with orthorhombic structure and upon irradiation the crystallinity decreased and an obvious textured growth along (020) plane is induced. Raman peak observed at 917 cm-1 is due to oxygen deficiency. Upon irradiation, the optical transparency and band gap of the film decreased. Electrical transport property study shows that the resistivity increased by one order for the irradiated film.

  15. Generation of a spin-polarized electron beam by multipole magnetic fields.

    PubMed

    Karimi, Ebrahim; Grillo, Vincenzo; Boyd, Robert W; Santamato, Enrico

    2014-03-01

    The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin-magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. PMID:24440895

  16. Design of second order grating couplers to detect the angle and polarization of the laser beam

    NASA Astrophysics Data System (ADS)

    Saha, Tapas Kumar; Lu, Mingyu; Zhao, Deyin; Ma, Zhenqiang; Zhou, Weidong

    2012-03-01

    On-chip laser beam tracking finds innumerable applications. Popularly adopted quadrant photodiodes can only detect laser beam's angle variation up to 0.2° reliably. In this paper, a novel angle detector is designed based on grating coupling. It consists of a grating layer on top of a silicon-on-insulator slab waveguide. The incident light is coupled into guided modes within the waveguide via the grating layer, and then, the incident light's angle can be determined by reading the outputs of light detectors within the waveguide. Performance of the laser angle detector in this paper is demonstrated by full-wave finite-difference-time-domain simulations. Numerical results show that, the detectable angle range can be adjusted by several design parameters and can reach [-4°, 4°]. The device structure in this paper can be straightforwardly extended to two-dimensional photonic crystal configurations.

  17. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime.

    PubMed

    Yan, X Q; Lin, C; Sheng, Z M; Guo, Z Y; Liu, B C; Lu, Y R; Fang, J X; Chen, J E

    2008-04-01

    A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations. PMID:18517963

  18. Polarity control and transport properties of Mg-doped (0001) InN by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Choi, Soojeong; Wu Feng; Bierwagen, Oliver; Speck, James S.

    2013-05-15

    The authors report on the plasma-assisted molecular beam epitaxy growth and carrier transport of Mg-doped In-face (0001) InN. The 1.2 {mu}m thick InN films were grown on GaN:Fe templates under metal rich conditions with Mg concentration from 1 Multiplication-Sign 10{sup 17}/cm{sup 3} to 3 Multiplication-Sign 10{sup 20}/cm{sup 3}. A morphological transition, associated with the formation of V-shape polarity inversion domains, was observed at Mg concentration over 7 Multiplication-Sign 10{sup 19}/cm{sup 3} by atomic force microscopy and transmission electron microscopy. Seebeck measurements indicated p-type conductivity for Mg-concentrations from 9 Multiplication-Sign 10{sup 17}/cm{sup 3} to 7 Multiplication-Sign 10{sup 19}/cm{sup 3}, i.e., as it exceeded the compensating (unintentional) donor concentration.

  19. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  20. Joint effect of polarization and the propagation path of a light beam on its intrinsic structure

    NASA Astrophysics Data System (ADS)

    Abdulkareem, Sarkew; Kundikova, Nataliya

    2016-08-01

    The well-known effects of the spin-orbit interaction of light are manifestations of pair mutual influence of the three types of the angular momentum of light, namely, the spin angular momentum, the extrinsic orbital angular momentum and the intrinsic orbital angular momentum. Here we propose the convenient classification of the effects of the spin-orbit interaction of light and we observe one of the new effects in the frame of this classification, which is determined by the joint influence of two types of the angular momentum on the third type of the angular momentum, namely, the influence of the spin angular momentum and the extrinsic orbital angular momentum on the intrinsic orbital angular momentum. We experimentally studied the propagation of circularly polarized light through an optical fiber coiled into a helix. We have found that the spin angular momentum and the helix parameters affect the spatial structure of the radiation transmitted through the optical fiber. We found out that the structure of the light field rotates when changing the sign of circular polarization. The angle of rotation depends on the parameters of the helix. The results can be used to develop the general theory of spinning particles and can find application in metrology methods and nanooptics devices.

  1. Joint effect of polarization and the propagation path of a light beam on its intrinsic structure.

    PubMed

    Abdulkareem, Sarkew; Kundikova, Nataliya

    2016-08-22

    The well-known effects of the spin-orbit interactions of light are manifestations of the pair's mutual influence of the three types of angular momentum (AM) of light, namely, the spin AM, the extrinsic orbital AM and the intrinsic orbital AM. Here we propose a convenient classification of the effects of the spin-orbit interactions of light and we observe one of the new effects in the frame of this classification, which is determined by the joint influence of two types of the AM on the third type of the AM, namely, the influence of the spin AM and the extrinsic orbital AM on the intrinsic orbital AM. We experimentally studied the propagation of circularly polarized light through an optical fiber coiled into a helix. We have found that the spin AM and the helix parameters affect the spatial structure of the radiation transmitted through the optical fiber. We found out that the structure of the light field rotates when changing the sign of circular polarization. The angle of rotation depends on the parameters of the helix. The results can be used to develop the general theory of spinning particles and can find application in metrology methods and nanooptics devices. PMID:27557195

  2. Formation and stability of polarization sheaths of a cross-field beam

    NASA Technical Reports Server (NTRS)

    Cai, Dong S.; Buneman, Oscar

    1992-01-01

    A simple description is presented for a pure ion sheath formed on one side and a pure electron sheath formed on the other side of a neutral plasma beam. Both the ion and the electron sheath are found to be one-dimensionally stable and two-dimensionally unstable in a mode known as magnetron, slipping stream, and diocotron. This mode connects with the Kelvin-Helmholtz instability in neutral matter. The analytical results are confirmed both qualitatively and quantitatively by numerical simulations. The simulations help define the linear behavior of the long-wave instability generated in the electron (or ion) sheath, including a strong shear.

  3. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  4. A laser accelerator. [interaction of polarized light beam with electrons in magnetic field

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1979-01-01

    It is shown that a laser can efficiently accelerate charged particles if a magnetic field is introduced to improve the coupling between the particle and the wave. Solving the relativistic equations of motion for an electron in a uniform magnetic field and superposed, circularly polarized electromagnetic wave, it is found that in energy-position phase space an electron traces out a curtate cycloid: it alternately gains and loses energy. If, however, the parameters are chosen so that the electron's oscillations in the two fields are resonant, it will continually accelerate or decelerate depending on its initial position within a wavelength of light. A laboratory accelerator operating under these resonant conditions appears attractive: in a magnetic field of 10,000 gauss, and the fields of a 5 x 10 to the 12th W, 10 micron wavelength laser, an optimally positioned electron would accelerate to 700 MeV in only 10 m.

  5. Trapping metallic particles under resonant wavelength with 4π tight focusing of radially polarized beam.

    PubMed

    Cui, Wenjing; Song, Feng; Song, Feifei; Ju, Dandan; Liu, Shujing

    2016-09-01

    Here we propose a new method for trapping the resonant metallic particles with the 4π tight focusing (high numerical-aperture (NA)) system, which is illuminated by radial polarization light. Numerical simulations have indicated the maximum total optical force is 16.1pN while with nearly zero scattering force under axis trapping, which keeps the gradient force predominant. Furthermore, the distribution of total force is centrosymmetric and odd. We also gain stable 3D trap with an equilibrium point along z axis and r axis as in normal optical tweezers. What's more, we obtain the nearly pure longitudinal field. The maximum transverse intensity is only 2.3 × 10-3 and the transverse spot size reaches 0.36λ, which is below Abbe's diffraction limit. PMID:27607615

  6. Impulsive solar X-ray bursts. 3: Polarization and directivity of bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    The spectrum, directivity and state of polarization is presented of the bremsstrahlung radiation expected from a beam of high energy electrons spiraling along radial magnetic field lines toward the photosphere. The results are used for calculation of the characteristics of the reflected plus direct flux.

  7. Polarization of Lambda0 and anti-Lambda0 inclusively produced by 610-GeV/c Sigma- and 525-GeV/c proton beams

    SciTech Connect

    Sanchez-Lopez, J.L.; Nelson, K.D.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Ayan, A.S.; Balatz, M.Y.; Blanco-Covarrubias, A.; Bondar, N.F.; /Ball State U. /Bogazici U. /Carnegie Mellon U. /Rio de Janeiro, CBPF /Fermilab /Serpukhov, IHEP /Beijing, Inst. High Energy Phys. /Moscow, ITEP /Heidelberg, Max Planck Inst. /Moscow State U. /St. Petersburg, INP

    2007-06-01

    We have measured the polarization of {Lambda}{sup 0} and {bar {Lambda}{sup 0}} inclusively produced by 610 GeV/c {Sigma}{sup -} and 525 GeV/c proton beams in the experiment SELEX during the 1996/7 fixed target run at Fermilab. The polarization was measured as a function of the {Lambda} longitudinal momentum fraction x{sub F} and transverse momentum p{sub t}. For the {Lambda}{sup 0} produced by {Sigma}{sup -} the polarization is increasing with x{sub F} , from slightly negative at x{sub F} {approx} 0 to about 15% at large x{sub F} ; it shows a non-monotonic behavior as a function of p{sub t}. For the proton beam, the {Lambda}{sup 0} polarization is negative and decreasing as a function of x{sub F} and p{sub t}. The {bar {Lambda}{sup 0}} polarization is compatible with 0 for both beam particles over the full kinematic range. The target dependence was examined but no statistically significant difference was found.

  8. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam.

    PubMed

    Li, Xiangping; Venugopalan, Priyamvada; Ren, Haoran; Hong, Minghui; Gu, Min

    2014-10-15

    We report on the experimental demonstration of super-resolved pure-transverse focal fields through focusing an azimuthally polarized first-order vortex (FOV) beam. The optimized confinement of focal fields by creating constructive interference through the superposition of the FOV on an azimuthally polarized beam is observed by both a scanning near-field microscope and a two-photon fluorescence microscope. An enhanced peak intensity of the focal spot by a factor of 1.8 has been observed compared with that of the unmodulated azimuthally polarized beam. The super-resolved and pure-transverse focal fields with a 31% reduced focal area determined by the full-width at half-maximum compared to that of tightly focused circular polarization is experimentally corroborated. This superiority over the circular polarization stands for any numerical aperture greater than 0.4. This technique holds the potential for applications requiring subwavelength resolution and pure-transverse fields such as high-density optical data storage and high-resolution microscopy. PMID:25361130

  9. Polarization of the light from the 3P(1)-2S(1) transition in proton beam excited helium. Ph.D. Thesis; [target gas pressure effects

    NASA Technical Reports Server (NTRS)

    Weinhous, M. S.

    1973-01-01

    Measurements of the polarization of the light from the 3 1p-2 1s transition in proton beam excited Helium have shown both a proton beam energy and Helium target gas pressure dependence. Results for the linear polarization fraction range from +2.6% at 100 keV proton energy to -5.5% at 450 keV. The zero crossover occurs at approximately 225 keV. This is in good agreement with other experimental work in the field, but in poor agreement with theoretical predictions. Measurements at He target gas pressures as low as .01 mtorr show that the linear polarization fraction is still pressure dependent at .01 mtorr.

  10. Optimal design and fabrication method for antireflection coatings for P-polarized 193 nm laser beam at large angles of incidence (68°-74°).

    PubMed

    Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Chang, Yanhe

    2013-09-01

    Most of the optical axes in modern systems are bent for optomechanical considerations. Antireflection (AR) coatings for polarized light at oblique incidence are widely used in optical surfaces like prisms or multiform lenses to suppress undesirable reflections. The optimal design and fabrication method for AR coatings with large-angle range (68°-74°) for a P-polarized 193 nm laser beam is discussed in detail. Experimental results showed that after coating, the reflection loss of a P-polarized laser beam at large angles of incidence on the optical surfaces is reduced dramatically, which could greatly improve the output efficiency of the optical components in the deep ultraviolet vacuum range. PMID:24323257

  11. Self-polarization smoothing technique based on 2×2 beam array and type II+II third-harmonic generation system.

    PubMed

    Fuquan, Li; Fang, Wang; Wei, Han; Bin, Feng; Lidan, Zhou

    2013-05-10

    Polarization smoothing (PS) is highly desired for inertial confinement fusion, high-power laser facilities. A self-PS technique based on 2×2 beam array and type II+II third-harmonic generation (THG) system is proposed in this paper. This scheme takes advantage of a type II+II THG system, which induces a 35° angle between the polarization states of output third-harmonic laser and input fundamental laser. It rotates two THG systems in a 2×2 beam array by 180° to obtain a 70° polarization angle between two sets of output lasers. Simulation results show that the intensity contrast of the overlapped focal spot can be reduced at 1.34× without inserting any additional optics. This approaches the maximum value of various PS techniques (i.e., 1.41×). PMID:23669860

  12. Fabrication and tests of 3He and 2H targets for beam polarization measurement

    PubMed

    Naqvi; Aksoy; Nagadi; Al-Ohali; Kidwai; Fageeha

    2000-09-01

    3He and 2H targets were fabricated through implantation of 3He and 2H ions in 0.2-0.3 mm thick tantalum and titanium foils. The energy of 3He and 2H ions was 45-100 and 78 keV, respectively. Ions beams with typical current of 90-300 microA were used for implantation. Stability tests of 3He and 2H targets were carried out by monitoring the yield of 3He(d, p)4He and 2H(d, p)3H reactions. For the 3He target, the reaction yield was stable for both tantalum and titanium foils but the most stabilized maximum yield was observed for the 100 keV tantalum target. In the case of 2H targets, the yield increased with increasing total dose implanted on the target. PMID:10972150

  13. OVERCOMING DEPOLARIZING RESONANCES IN THE AGS WITH TWO HELICAL PARTIAL SNAKES

    SciTech Connect

    HUANG,H.; AHRENS, L.; BAI, M.; BROWN, K.A.; GARDNER, C.J.; ET AL.

    2007-06-25

    Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.

  14. Tunable beam displacer

    SciTech Connect

    Salazar-Serrano, Luis José; Valencia, Alejandra; Torres, Juan P.

    2015-03-15

    We report the implementation of a tunable beam displacer, composed of a polarizing beam splitter (PBS) and two mirrors, that divides an initially polarized beam into two parallel beams whose separation can be continuously tuned. The two output beams are linearly polarized with either vertical or horizontal polarization and no optical path difference is introduced between them. The wavelength dependence of the device as well as the maximum separation between the beams achievable is limited mainly by the PBS characteristics.

  15. Photon-drag in single-walled carbon nanotube and silver-palladium films: the effect of polarization

    NASA Astrophysics Data System (ADS)

    Mikheev, Konstantin G.; Saushin, Aleksandr S.; Zonov, Ruslan G.; Nasibulin, Albert G.; Mikheev, Gennady M.

    2016-03-01

    Polarization influence on the photovoltaic current raised due to the photon-drag effect in the single-walled carbon nanotube (SWNT) films and nanostructured silver-palladium (Ag/Pd) resistive films is examined at the wavelengths of 532 and 1064 nm of nanosecond laser pulses. The SWNT films were synthesized by the aerosol chemical vapor deposition technique. Ag/Pd films, consisting of AgPd alloy and palladium oxide (PdO), were prepared by burning a special paste on a ceramic substrate. The films obtained were characterized by Raman spectroscopy. It is shown that the Ag/Pd films Raman spectra consist of PdO peak that moves from 650 cm-1 to 628 cm-1 as the excitation He-Ne laser power increases. The photocurrent was measured at the oblique incidence of the laser beam on the film in the direction perpendicular to the plane of incidence. It is found that the transverse photocurrent in the SWNT films at circular polarization is absent and does not depend on the direction of the electric field vector rotation (the sign of the circular polarization) of the incident irradiation. The photocurrent in the Ag/Pd films at circular polarized irradiation is significant and depends on the circular polarization sign. The results obtained demonstrate the potential applications of the Ag/Pd resistive films as a sensor of the circular polarization sign of the incident light pulse in a wide wavelength range.

  16. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  17. Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors.

    PubMed

    Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; Susner, Michael A; McGuire, Michael A; Joy, David; Jesse, Stephen; Rondinone, Adam J; Kalinin, Sergei V; Ovchinnikova, Olga S

    2016-03-23

    Rapid advances in nanoscience rely on continuous improvements of material manipulation at near-atomic scales. Currently, the workhorse of nanofabrication is resist-based lithography and its various derivatives. However, the use of local electron, ion, and physical probe methods is expanding, driven largely by the need for fabrication without the multistep preparation processes that can result in contamination from resists and solvents. Furthermore, probe-based methods extend beyond nanofabrication to nanomanipulation and to imaging which are all vital for a rapid transition to the prototyping and testing of devices. In this work we study helium ion interactions with the surface of bulk copper indium thiophosphate CuM(III)P2X6 (M = Cr, In; X= S, Se), a novel layered 2D material, with a Helium Ion Microscope (HIM). Using this technique, we are able to control ferrielectric domains and grow conical nanostructures with enhanced conductivity whose material volumes scale with the beam dosage. Compared to the copper indium thiophosphate (CITP) from which they grow, the nanostructures are oxygen rich, sulfur poor, and with virtually unchanged copper concentration as confirmed by energy-dispersive X-ray spectroscopy (EDX). Scanning electron microscopy (SEM) imaging contrast as well as scanning microwave microscopy (SMM) measurements suggest enhanced conductivity in the formed particles, whereas atomic force microscopy (AFM) measurements indicate that the produced structures have lower dissipation and are softer as compared to the CITP. PMID:26918591

  18. Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors

    DOE PAGESBeta

    Belianinov, Alex; Iberi, Vighter; Tselev, Alexander; Susner, Michael A.; McGuire, Michael A.; Joy, David; Jesse, Stephen; Rondinone, Adam J.; Kalinin, Sergei V.; Ovchinnikova, Olga S.

    2016-02-23

    Rapid advanced in nanoscience rely on continuous improvements of matter manipulation at near atomic scales. Currently, well characterized, robust, resist-based lithography carries the brunt of the nanofabrication process. However, use of local electron, ion and physical probe methods is also expanding, driven largely by their ability to fabricate without the multi-step preparation processes that can result in contamination from resists and solvents. Furthermore, probe based methods extend beyond nanofabrication to nanomanipulation and imaging, vital ingredients to rapid transition to prototyping and testing of layered 2D heterostructured devices. In this work we demonstrate that helium ion interaction, in a Helium Ionmore » Microscope (HIM), with the surface of bulk copper indium thiophosphate CuMIIIP2X6 (M = Cr, In; X= S, Se), (CITP) results in the control of ferroelectric domains, and growth of cylindrical nanostructures with enhanced conductivity; with material volumes scaling with the dosage of the beam. The nanostructures are oxygen rich, sulfur poor, and with the copper concentration virtually unchanged as confirmed by Energy Dispersive X-ray (EDX). Scanning Electron Microscopy (SEM) imaging contrast as well as Scanning Microwave Microscopy (SMM) measurements suggest enhanced conductivity in the formed particle, whereas Atomic Force Microscopy (AFM) measurements indicate that the produced structures have lower dissipation and a lower Young s modulus.« less

  19. Polarization developments

    SciTech Connect

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist.

  20. Polarization Independent Electro-Optic Modulator

    NASA Technical Reports Server (NTRS)

    Yao, Xiao-Tian Steve (Inventor)

    1997-01-01

    A polarization insensitive electro-optic modulator is constructed by providing a polarization beamsplitter to separate an incoming light beam into two orthogonally plane polarized beams. Each of the polarized beams passes through a separate electro-optic modulator where each beam is modulated by the same data signal. After modulation the beams are combined to yield a modulated beam having modulated components that are orthogonally polarized. Not only is this device insensitive to changes in polarization of the input beam, the final modulated beam can be detected by optical receivers without regard to polarization alignment of the modulated beam and the receiver.