Science.gov

Sample records for ags resonant extraction

  1. RESONANT EXTRACTION PARAMETERS FOR THE AGS BOOSTER.

    SciTech Connect

    BROWN,K.A.; CULLEN,J.; GLENN,J.W.; MAPES,M.; MARNERIS,I.; TSOUPAS,N.; SNYDSTRUP,L.; VAN ASSELT,W.

    2001-06-18

    Brookhaven's AGS Booster is the injector for the AGS. It is being modified to send resonant extracted heavy ions to a new beam line, the Booster Applications Facility (BAF). The design of the resonant extraction system for BAF was described in [1]. This note will give a more detailed description of the system and describe the predicted resonant beam time structure. We will describe tune space manipulations necessary to extract the resonant beam at the maximum Booster rigidity, schemes for performing resonant extraction, and describe the modifications required to perform bunched beam extraction to the BAF facility.

  2. AGS slow extracted beam improvement

    SciTech Connect

    Marneris, I.; Danowski, G.; Sandberg, J.; Soukas, A.

    1997-07-01

    The Brookhaven AGS is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to an equivalent proton energy of 29 GeV. Since the late 1960`s it has been serving high energy physics (HEP - proton beam) users of both slow and fast extracted beams. The AGS fixed target program presently uses primary proton and heavy ion beams (HIP) in slowly extracted fashion over spill lengths of 1.5 to 4.0 seconds. Extraction is accomplished by flattoping the main and extraction magnets and exciting a third integer resonance in the AGS. Over the long spill times, control of the subharmonic amplitude components up to a frequency of 1 kilohertz is very crucial. One of the most critical contributions to spill modulation is due to the AGS MMPS. An active filter was developed to reduce these frequencies and it`s operation is described in a previous paper. However there are still frequency components in the 60-720 Hz sub-harmonic ripple range, modulating the spill structure due to extraction power supplies and any remaining structures on the AGS MMPS. A recent scheme is being developed to use the existing tune-trim control horizontal quadrupole magnets and power supply to further reduce these troublesome noise sources. Feedback from an external beam sensor and overcoming the limitations of the quadrupole system by lead/lag compensation techniques will be described.

  3. Correcting the AGS depolarizing resonances

    SciTech Connect

    Ratner, L.G.

    1986-01-01

    For the 1986 AGS run, the technique of correcting an imperfection resonance using a beat harmonic instead of the direct harmonic was applied and found to be useful in achieving a 22 GeV/c polarized beam. Both conventional and modified techniques are explained. (LEW)

  4. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  5. Analysis of resonance-driving imperfections in the AGS Booster

    SciTech Connect

    Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.

    1994-08-01

    At the design intensity of 1.5 {times} 10{sup 13} ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given.

  6. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  7. Observation and correction of resonance stopbands in the AGS Booster

    SciTech Connect

    Gardner, C.; Shoji, Y.; Ahrens, L.; Glenn, J.W.; Lee, Y.Y.; Roser, T.; Soukas, A.; van Asselt, W.; Weng, W.T.

    1993-06-01

    At the design intensity of 1.5 {times} 10{sup 13} ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. Therefore, the beam is spread over may lower order resonance lines and the stopbands have to be corrected to minimize the amplitude growth by proper compensation of the driving harmonics resulting from random errors. The observation and correction of second and third order resonance stopbands in the AGS Booster, and the establishment of a favorable operating point at high intensity are discussed.

  8. AGS tune jump system to cross horizontal depolarization resonances overview

    SciTech Connect

    Glenn, J.W.; Ahrens, L.; Fu, W.; Mi, J.L.; Rosas, P.; Schoefer, V.; Theisen, C.; Altinbas, Z.

    2011-03-28

    Two partial snakes overcome the vertical depolarizing resonances in the AGS. But a new type of depolarizing intrinsic resonance from horizontal motion appeared. We reduce these using horizontal tune jumps timed to these resonances. We gain a factor of six in crossing rate with a tune jump of 0.05 in 100 {micro}s. Two quadrapoles, we described in 2009, pulse 42 times, the current matching beam energy. The power supplies for these quads are described in detail elsewhere in this conference. The controls for the Jump Quad system is based on a BNL designed Quad Function Generator. Two modules are used; one for timing, and one to supply reference voltages. Synchronization is provided by a proprietary serial bus, the Event Link. The AgsTuneJump application predicts the times of the resonances during the AGS cycle and calculates the power supply trigger times from externally collected tune and energy versus time data and the Low and High PS voltage functions from a voltage to current model of the power supply. The system was commissioned during runs 09 & 10 and is operational. Many beam effects are described elsewhere. The TuneJump system has worked well and has caused little trouble save for the perturbations in the lattice having such a large effect due to our need to run with the vertical tune within a few thousandths of the integer tune. As these problems were mostly sorted out by correcting the 6th harmonic orbit distortions which caused a large 18 theta beta wave. Also running with minimal chromaticity reduces emittance growth. There are still small beta waves which are being addressed. The timing of the pulses is still being investigated, but as each crossing causes minimal polarization loss, this is a lengthy process.

  9. Overcoming an intrinsic depolarizing resonance with a partial snake at the Brookhaven AGS.

    SciTech Connect

    Huang, H.; Ahrens, L.; Bai, M.; Brown, K. A.; Glenn, W.; Luccio, A. U.; MacKay, W. W.; Montag, C.; Ptitsyn, V.; Roser, T.; Tsoupas, N.; Zeno, K.; Ranjbar, V.; Cadman, R. V.; Spinka, H.; Underwood, D.; High Energy Physics; BNL; Indiana Univ.

    2004-06-01

    An 11.4% partial Siberian snake was used to successfully accelerate polarized protons through a strong intrinsic depolarizing spin resonance in the Alternating Gradient Synchrotron (AGS). No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS or other medium energy proton synchrotrons to overcome all weak and strong depolarizing spin resonances.

  10. Novel visible-light AgBr/Ag₃PO₄ hybrids photocatalysts with surface plasma resonance effects

    SciTech Connect

    Wang, Yunfang Li, Xiuli; Wang, Yawen; Fan, Caimei

    2013-06-01

    Three kinds of AgBr/Ag₃PO₄ hybrids were synthesised via an anion-exchange precipitation method and characterised by XRD, XPS, SEM, EDS, and UV–vis. The results showed that AgBr/Ag₃PO₄ hybrids displayed much higher photocatalytic activities than single Ag₃PO₄ or AgBr under visible light (λ>420 nm), and ·OH and h⁺ were the major active species during the degradation process. Considering interstitial ions Agᵢ⁺ on lattice gap of AgBr are easy to become sliver particle, we deduced the possible photocatalytic mechanism could be ascribed to the synergistic effects of the appropriate valence band position of Ag₃PO₄ and AgBr, surface plasmon resonance effect of Ag⁰, reactive radical species Br⁰, and the Ag vacancy on the surface of catalysts. - Graphical abstract: The optical absorption and structural morphology of the as-prepared AgBr@Ag₃PO₄ photocatalyst using an anion-exchange precipitation method are conductive to the photocatalytic degradation of organics in water. Highlights: • Novel AgBr/Ag₃PO₄ hybrids are synthesised by a facile method. •AgBr/Ag₃PO₄ hybrids show excellent photocatalytic activities under visible light. • Interstitial ions are in favour of the formation of Ag particle. • Surface plasmon resonance effect plays a key factor for light absorption. • The photocatalytic mechanism for AgBr/Ag₃PO₄ hybrids is studied.

  11. The electron paramagnetic resonance spectrum of Ag2 3

    NASA Astrophysics Data System (ADS)

    van der Pol, A.; Reijersen, E. J.; de Boer, E.; Wasowicz, T.; Michalik, J.

    A highly resolved EPR spectrum of the silver trimer 109Ag2+3, present in 109Ag1-NaA zeolite, has been measured. The spectrum is characterized by an axially symmetric spin Hamiltonian having and for each of the 109Ag nuclei tMPH0037_images.

  12. From Extraction of Nucleon Resonances to LQCD

    NASA Astrophysics Data System (ADS)

    Lee, T.-S. H.; Wu, Jia-jun; Kamano, Hiroyuki

    2016-10-01

    The intrinsic difficulties in extracting the hadron resonances from reaction data are illustrated by using several exactly soluble π π scattering models. The finite-volume Hamiltonian method is applied to predict spectra using two meson-exchange Hamiltonians of π N reactions. Within a three-channel model with π N, π Δ and σ N channels, we show the advantage of the finite-volume Hamiltonian method over the approach using the Lüscher formula to test Lattice QCD calculations aimed at predicting nucleon resonances. We discuss the necessary steps for using the ANL-Osaka eight-channel Hamiltonian to predict the spectra for testing the LQCD calculations for determining the excited nucleon states up to invariant mass W= 2 GeV.

  13. Octupole Resonance in the AGS at High Intensity: A SIMBAD study

    SciTech Connect

    Luccio, A.U.; D'Imperio, N.L.

    2005-06-08

    We studied the Octupole (Montague) resonance in the AGS, in its high intensity mode, by tracking with the PIC code SIMBAD. We calculated, turn-by-turn, the betatron tune footprint from the eigenvalues of the one-turn matrix. We show that one should exercise particular caution when the betatron tunes are close together, since the matrix gives ambiguous results at the resonance.

  14. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    NASA Astrophysics Data System (ADS)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  15. Strong coupling between Rhodamine 6G and localized surface plasmon resonance of immobile Ag nanoclusters fabricated by direct current sputtering

    NASA Astrophysics Data System (ADS)

    Fang, Yingcui; Blinn, Kevin; Li, Xiaxi; Weng, Guojun; Liu, Meilin

    2013-04-01

    We made clean silver nano-clusters (AgNCs) on glass substrates by DC magnetron sputtering of a high purity Ag target in a high vacuum chamber. The AgNCs film shows strong localized surface plasmon resonance (LSPR) due to the coupling among Ag nanoparticles in the AgNCs and the coupling between AgNCs. The LSPR indicates strong coupling with Rhodamine 6G (R6G) adsorbed on the AgNC surface, which enhances the R6G absorption intensity and broadens the absorption wavelength range. This result promotes plasmonic nanoparticles to be better used in solar cells.

  16. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials

    NASA Astrophysics Data System (ADS)

    Yallappa, S.; Manjanna, J.; Dhananjaya, B. L.

    2015-02-01

    A green chemistry approach for the synthesis of Au, Ag and Au-Ag alloy nanoparticles (NPs) using the corresponding metal precursors and Jasminum sambac leaves extract as both reducing and capping media, under microwave irradiation, is reported. During the formation, as expected, the reaction mixture shows marginal decrease in pH and an increase in solution potential. The formation of NPs is evident from their surface plasmon resonance (SPR) peak observed at ∼555 nm for Au, ∼435 nm for Ag and ∼510 nm for Au-Ag alloy. The XRD pattern shows fcc structure while the FTIR spectra indicate the presence of plant residues adsorbed on these NPs. Such a bio-capping of NPs is characterized by their weight loss, ∼35% due to thermal degradation of biomass, as observed in TG analysis. The colloidal dispersion of NPs is stable for about 6 weeks. The near spherical shape of NPs (ϕ20-50 nm) is observed by FE-SEM/TEM images and EDAX gives the expected elemental composition. Furthermore, these NPs showed enhanced antimicrobial activity (∼1-4-fold increase in zone of inhibition) in combination with antimicrobials against test strains. Thus, the phytosynthesized NPs could be used as effective growth inhibitors for various microorganisms.

  17. Localized surface plasmon resonance effect in organic light-emitting devices with Ag islands

    NASA Astrophysics Data System (ADS)

    Shimazaki, Noritaka; Naka, Shigeki; Okada, Hiroyuki

    2014-04-01

    We report on luminescence enhancement of organic light-emitting devices (OLEDs) with silver islands (i-Ag) by a localized surface plasmon resonance (LSPR) effect. The devices were fabricated using tetraphenylporphyrin (TPP) as the red emission material, bis[N-(1-naphthyl)-N-phenyl] benzidine (α-NPD) as the blue emission and hole transport material, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as the electron transport material. To clarify the position of emission enhancement by energy transfer from i-Ag, an ultrathin TPP layer located within the α-NPD layer. In the device with i-Ag and the TPP layer located over 10 nm from i-Ag, TPP emission was enhanced in comparison with the device without i-Ag. The enhancement of TPP emission was suggested to be the effect of the enhanced electric field resulting from LSPR excited by α-NPD emission.

  18. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  19. Surface plasmon resonance in nanostructured Ag incorporated ZnS films

    SciTech Connect

    Chalana, S. R.; Mahadevan Pillai, V. P.; Ganesan, V.

    2015-10-15

    Silver incorporated zinc sulfide thin films are prepared by RF magnetron sputtering technique and the influence of silver incorporation on the structural, optical and luminescence properties is analyzed using techniques like grazing incidence X-Ray diffraction (GIXRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), micro-Raman spectroscopy, UV-Vis spectroscopy and laser photoluminescence spectroscopy. XRD analysis presents hexagonal wurtzite structure for the films. A reduction of crystallinity of the films is observed due to Ag incorporation. The Raman spectral analysis confirms the reduction of crystallinity and increase of strain due to the Ag incorporation. AFM analysis reveals a rough surface morphology for the undoped film and Ag incorporation makes the films uniform, dense and smooth. A blue shift of band gap energy with increase in Ag incorporation is observed due to quantum confinement effect. An absorption band (450-650 nm region) due to surface plasmon resonance of the Ag clusters present in the ZnS matrix is observed for the samples with higher Ag incorporation. The complex dielectric constant, loss factor and distribution of volume and surface energy loss of the ZnS thin films are calculated. Laser photoluminescence measurements gives an intense bluish green emission from the ZnS films and a quenching of the PL emission is observed which can be due to the metal plasmonic absorption and non-radiative energy transfer due to Ag incorporation.

  20. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity.

    PubMed

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-28

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.

  1. Manipulation of the surface density of states of Ag(111) by means of resonators: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Moro-Lagares, María; Serrate, D.; Aligia, A. A.

    2016-08-01

    We show that the density of surface Shockley states of Ag(111) probed by the differential conductance G (V )=d I /d V by a scanning-tunneling microscope (STM) can be enhanced significantly at certain energies and positions introducing simple arrays of Co or Ag atoms on the surface, in contrast to other noble-metal surfaces. Specifically we have studied resonators consisting of two parallel walls of five atoms deposited on the clean Ag(111) surface. A simple model in which the effect of the adatoms is taken into account by an attractive local potential and a small hybridization between surface and bulk at the position of the adatoms explains the main features of the observed G (V ) and allows us to extract the proportion of surface and bulk states sensed by the STM tip. These results might be relevant to engineer the surface spectral density of states, to study the effects of surface states on the Kondo effect, and to separate bulk and surface contributions in STM studies of topological surface states.

  2. MINI-BUNCHED AND MICRO-BUNCHED SLOW EXTRACTED BEAMS FROM THE AGS.

    SciTech Connect

    BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.SIVERTZ,M.KOSCIELNIAK,S.R.

    2004-07-05

    Brookhaven National Laboratory's (BNLs) Alternating Gradient Synchrotron (AGS) has a long history of providing slow extracted proton beams to fixed target experiments. This program of providing high quality high intensity beams continues with two new experiments currently being designed for operation at the AGS. Both experiments require slow extracted beam, but with an added requirement that those beams be bunched. Bunched beam slow extraction techniques have been developed for both experiments and initial tests have been performed. In this report we describe the beam requirements for the two experiments, and present results of detailed simulations and initial beam tests.

  3. AGS Fast spin resonance jump, magnets and power supplies

    SciTech Connect

    Glenn,J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-05-04

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 {micro}s, hold flat for about 4 ms and fan to zero in 100 {micro}s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described.

  4. OVERCOMING DEPOLARIZING RESONANCES IN THE AGS WITH TWO HELICAL PARTIAL SNAKES

    SciTech Connect

    HUANG,H.; AHRENS, L.; BAI, M.; BROWN, K.A.; GARDNER, C.J.; ET AL.

    2007-06-25

    Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.

  5. Electron spin resonance and thermoluminescence studies in CaSO4: Dy,Ag phosphor

    NASA Astrophysics Data System (ADS)

    Dhabekar, Bhushan; Menon, Sanjeev; Kumar, Rajesh; Gundu Rao, T. K.; Bhatt, B. C.; Lakshmanan, A. R.

    2005-09-01

    The defect centres formed in the thermoluminescence (TL) phosphor CaSO4 : Dy,Ag are studied using the technique of electron spin resonance (ESR). The Ag co-doped phosphor exhibits three glow peaks around 130°C, 220°C and 375°C, in contrast to the two glow peaks observed in the CaSO4 : Dy phosphor at 130°C and 220°C, at gamma ray dose of 1 Gy when the TL measurements were carried out in the spectral region 300-650 nm. ESR studies show that the additional peak at 375°C correlates with a Ag2+ centre formed owing to γ-irradiation and observable below -170°C. The Ag2+ centre is characterized by an axial g-tensor with principal values g|| = 2.38 and gbottom = 2.41. ESR studies further indicate that the precursor to a centre observable at low temperature (-170°C) appears to act as the recombination centre for the TL peak at 375°C; this radical is characterized by the g-values g|| = 2.0023 and gbottom = 2.0038 and is assigned to the SO_{3}^{-} radical. It is observed that there is more incorporation of Ag in the CaSO4 : Dy system as compared with that in the pure CaSO4 system. The variation of Ag2 + ESR intensity with Ag concentration as well as with dose in the range 0.3-120 kGy is studied. The Ag2 + ESR signal and TL saturate at 2 × 104 Gy, but the intensity of the SO_{3}^{-} radical continues to increase up to the studied dose of 1.2 × 105 Gy. The intensity of the SO_{3}^{-} radical decreases with Ag concentration in CaSO4 : Dy,Ag, in agreement with the TL model proposed in this work.

  6. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3.

    PubMed

    Wei, Xuetuan; Luo, Mingfang; Li, Wei; Yang, Liangrong; Liang, Xiangfeng; Xu, Lin; Kong, Peng; Liu, Huizhou

    2012-01-01

    Silver nanoparticles (AgNPs) were obtained by solar irradiation of cell-free extracts of Bacillusamyloliquefaciens and AgNO3. Light intensity, extract concentration, and NaCl addition influenced the synthesis of AgNPs. Under optimized conditions (solar intensity 70,000 lx, extract concentration 3 mg/mL, and NaCl content 2 mM), 98.23±0.06% of the Ag+ (1 mM) was reduced to AgNPs within 80 min, and the ζ-potential of AgNPs reached -70.84±0.66 mV. TEM (Transmission electron microscopy) and XRD (X-ray diffraction) analysis confirmed that circular and triangular crystalline AgNPs with mean diameter of 14.6 nm were synthesized. Since heat-inactivated extracts also mediated the formation of AgNPs, enzymatic reactions are likely not involved in AgNPs formation. A high absolute ζ-potential value of the AgNPs, possibly caused by interaction with proteins likely explains the high stability of AgNPs suspensions. AgNPs showed antimicrobial activity against Bacillussubtilis and Escherichiacoli in liquid and solid medium.

  7. Methanolic Extract of Ganoderma lucidum Induces Autophagy of AGS Human Gastric Tumor Cells.

    PubMed

    Reis, Filipa S; Lima, Raquel T; Morales, Patricia; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2015-09-29

    Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement.

  8. A simple crunching of the AGS 'bare' machine ORM data - February 2007 - to extract some aspects of AGS transverse coupling at injection and extraction

    SciTech Connect

    Ahrens, L.

    2010-11-01

    The objective of this note is to (once again) explore the AGS 'ORM' (orbit response matrix) data taken (by Operations) early during the 2007 run with an AGS bare machine and gold beam. Indeed the present motivation is to extract as much information about the AGS inherent transverse coupling as possible - from general arguments and the copious ORM data. And taking this one step further, (though not accomplished yet) the goal really should be to tell the model how to describe this coupling. 'Bare' as used here means the AGS with no quadrupole, sextupole or octupole magnets powered. Only the main (combined-function) magnet string and dipole bumps necessary to optimize beam survival are powered. 'ORM data' means the systematic recording of the equilibrium orbit beam position monitor response to powering individual dipole corrector magnets. The 'matrix' results from looking at the effect of each of the (12 superperiods X 4 dipoles per superperiod) 'kicks' on each of the (12 X 6) pick up electrodes (pues) in each transverse plane. So then we have two (48 X 72) matrices of numbers from the ORM data. (Though 'pue' usually refers to the hardware in the vacuum chamber and 'bpm' to the beam position monitoring system, the two labels will be used casually here.) The exercise is carried out at two magnet rigidities, injection (AGS field {approx}434 Gauss) and extraction to RHIC ({approx}9730 Gauss), - a ratio of rigidities of about 22.4. Since we stick with a bare machine, we are also stuck with the bare tunes which means the tunes are rather close together and near 8.75. Injection: (h,v) {approx} (8.73, 8.76).

  9. Extracting Neutron Structure Functions in the Resonance Region

    SciTech Connect

    Yonatan Kahn

    2009-07-01

    A new iterative method is presented for extracting neutron structure functions from inclusive structure functions of nuclei, focusing specifically on the resonance region. Unlike earlier approaches, this method is applicable to both spin-averaged and spin-dependent structure functions. We show that in numerical tests, this method is able to reproduce known input functions of nearly arbitrary shape after only 5–10 iterations. We illustrate the method on extractions of F2n and g1,2n from data, and discuss the treatment of systematic errors from this extraction procedure.

  10. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity

    PubMed Central

    Prasad, TNVKV; Elumalai, EK

    2011-01-01

    Objective To formulate a simple rapid procedure for bioreduction of silver nanoparticles using aqueous leaves extract of Moringa oleifera (M. oleifera). Methods 10 mL of leaf extract was mixed to 90 mL of 1 mM aqueous of AgNO3 and was heated at 60 - 80 °C for 20 min. A change from brown to reddish color was observed. Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM) was performed. Results TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions M. oleifera demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). Biological methods are good competents for the chemical procedures, which are eco-friendly and convenient. PMID:23569809

  11. Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

    PubMed Central

    Pinotti, Daniele; Spadaro, Maria Chiara; Paolicelli, Guido; Grillo, Vincenzo; Valeri, Sergio; Pasquali, Luca; Bergamini, Luca; Corni, Stefano

    2015-01-01

    Summary Ag and Ag@MgO core–shell nanoparticles (NPs) with a diameter of d = 3–10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiOx (Si/SiOx). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation. PMID:25821680

  12. The IP6 micelle-stabilized small Ag cluster for synthesizing Ag-Au alloy nanoparticles and the tunable surface plasmon resonance effect

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wen, Ying; Wang, Yao; Zhang, Rui; Chen, Xiyao; Ling, Bo; Huan, Shuangyan; Yang, Haifeng

    2012-04-01

    The stable small Ag seeds (size in diameter < 10 nm) were obtained in the presence of inositol hexakisphosphoric (IP6) micelles. Then Ag-Au bimetallic nanoparticles were synthesized through a replacement reaction with the rapid interdiffusion process between such small Ag seeds in nanoclusters and HAuCl4. Adjusting the dosage of HAuCl4 resulted in different products, which possessed unique surface plasmon resonances (SPR). The morphologies of the as-made nanoparticles were observed using transmission electron microscopy and field emission scanning electron microscopy and their compositions were determined by energy-dispersive x-ray spectroscopy. Among them, the Ag-Au alloy nanoparticles with the cauliflower-like structure had a suitable SPR for highly sensitive Raman detection application as a surface-enhanced Raman scattering (SERS) substrate with a long-term stability of six months.

  13. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    SciTech Connect

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers.

  14. Surface plasmon resonances behavior in visible light of non-metal perovskite oxides AgNbO{sub 3}

    SciTech Connect

    Zhou, Fei; Zhu, Jingchuan Liu, Yong; Zhao, Xiaoliang; Lai, Zhonghong

    2014-12-08

    We investigate the surface plasmon resonances (SPRs) behavior of silver niobate (AgNbO{sub 3}) experimentally and theoretically. Result shows that the localized SPRs (LSPRs) of AgNbO{sub 3} combining with its interband transitions enlarge the absorption band across the whole ultraviolet-visible range. The LSPRs behavior in visible-light is mainly ascribed to the metal-like state of silver ion and self-assembled microstructures of AgNbO{sub 3} microcrystal. The ab initio density functional theory calculations are carried out to obtain the further insight of the SPRs behaviors. Theoretical study indicates that the Ag atoms are weakly bound in the perovskite structure, leading to a metal-like state, which was the key factor to SPRs behavior of AgNbO{sub 3}.

  15. Preliminaries toward studying resonant extraction from the Debuncher

    SciTech Connect

    Michelotti, Leo; Johnstone, John; /Fermilab

    2009-06-01

    A recent proposal to detect {mu} {yields} e direct conversion at Fermilab asks for slow extraction of protons from the antiproton source, specifically from the Debuncher. [1] A third-integer resonance originally was considered for this, partly because of the Debuncher's three-fold symmetry and partly because its operational horizontal tune, {nu}{sub x} {approx} 9.765, is already within 0.1 of {nu}{sub x} = 29/3. Using a half integer resonance, {nu}{sub x} = 19/2, though not part of the original proposal, has been suggested more recently because (a) Fermilab has had a good deal of experience with half-integer extraction from the Tevatron, the Main Injector and the erstwhile Main Ring, and (b) for reasons we shall examine later, it depopulates the entire bunch without an abort at the end. This memo presents considerations preliminary to studying both possibilities. It is meant only as a starting point for investigations to be carried out in the future. The working constraints and assumptions have oscillated between two extremes: (1) making minimal changes in the antiproton source to minimize cost and (2) building another machine in the same tunnel. In this memo we adopt an attitude aligned more toward the first. The assumed parameters are listed in Table 1. A few are not (easily) subject to change, such as those related to the beam's momentum and revolution frequency and the acceptance of the debuncher. Two resonance exemplars are presented in the next section, with an explanation of the analytic and semi-analytic calculations that can be done for each. Section 3 contains preliminary numerical work that was done to validate the exemplars within the context of extraction from the Debuncher. A final section contains a summary. Following the bibliography, appendices contain (a) a qualitative, conceptual discussion of extraction for the novice, (b) a telegraphic review of the perturbative incantations used to filter the exemplars as principal resonances of quadrupole

  16. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag(+).

    PubMed

    Hartmann, Georg; Baumgartner, Tanja; Schuster, Michael

    2014-01-01

    For the quantification of silver nanoparticles (Ag-NPs) in environmental samples using cloud point extraction (CPE) for selective enrichment, surface modification of the Ag-NPs and matrix effects can play a key role. In this work we validate CPE with respect to the influence of different coatings and naturally occurring matrix components. The Ag-NPs tested were functionalized with inorganic and organic compounds as well as with biomolecules. Commercially available NPs and NPs synthesized according to methods published in the literature were used. We found that CPE can extract almost all Ag-NPs tested with very good efficiencies (82-105%). Only Ag-NPs functionalized with BSA (bovine serum albumin), which is a protein with the function to keep colloids in solution, cannot be extracted. No or little effect of environmentally relevant salts, organic matter, and inorganic colloids on the CPE of AgNPs was found. Additionally we used CPE to observe the in situ formation of Ag-NPs produced by the reduction of Ag(+) with natural organic matter (NOM).

  17. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Gan, Bee Ling; Ibrahim, Shaliza; Saravanan, Pichiah

    2014-11-01

    Surface deposition of silver nanoparticles (Ag NPs) onto the 100% anatase titania (Ag/TiO2) for evolution of surface plasmon resonance (SPR) was achieved sustainably with the assistance of solar energy. The preparation resulted in Ag/TiO2 photocatalyst with varied Ag depositions (0.5 wt%, 1.0 wt%, 3.0 wt% and 5.0 wt%). All obtained photocatalysts were characterized for the evolution of SPR via crystalline phase analysis, morphology, lattice fringes, surface area and pore size characteristics, chemical composition with chemical and electronic state, Raman scattering, optical and photoluminescence properties. The deposition of synthesized Ag NPs exhibited high uniformity and homogeneity and laid pathway for effective utilization of the visible region of electromagnetic spectrum through SPR. The depositions also lead for suppressing recombination rates of electron-hole. The photocatalytic evaluation was carried out by adopting two different class of endocrine disturbing compound (EDC) i.e., amoxicillin (pharmaceutical) and 2,4-dichlorophenol (pesticide) excited with artificial visible light source. Ag/TiO2 with Ag > 0.5 wt% exhibited significant degradation efficiency for both amoxicillin and 2,4-dichlorophenol. Thus synthesized Ag/TiO2 revealed the implication of plasmonics on TiO2 for the enhanced visible light photocatalytic activity.

  18. Resonance properties of Ag-ZnO nanostructures at terahertz frequencies

    PubMed Central

    Sanchez, John E.; Díaz de León, Ramón; Mendoza-Santoyo, Fernando; González, Gabriel; José-Yacaman, Miguel; Ponce, Arturo; González, Francisco Javier

    2015-01-01

    Nanoantennas have been fabricated by scaling down traditional antenna designs using nanolithographic techniques and testing them at different optical wavelengths, these particular nanoantennas have shown responses in a broad range of frequencies going from visible wavelengths to the range of the terahertz. Some self-assembled nanostructures exist that exhibit similar shapes and properties to those of traditional antenna structures. In this work the emission and absorption properties of self-assembled nanostructures made of zinc oxide nanorods on silver nanowires, which resemble traditional dipole antennas, were measured and simulated in order to test their antenna performance. These structures show resonant properties in the 10-120 THz range, with the main resonance at 60 THz. The radiation pattern of these nanostructures was also obtained by numerical simulations, and it is shown that it can be tailored to increase or decrease its directivity as a function of the location of the energy source of excitation. Experimental measurements were performed by Raman spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) in order to show existing vibrational frequencies at the resonant frequencies of the nanostructures, measurements were made from ~9 to 103 THz and the results were in agreement with the simulations. These characteristics make these metal-semiconductor Ag/ZnO nanostructures useful as self-assembled nanoantennas in applications such as terahertz spectroscopy and sensing at terahertz frequencies. PMID:26406710

  19. Resonance properties of Ag-ZnO nanostructures at terahertz frequencies.

    PubMed

    Sanchez, John E; Díaz de León, Ramón; Mendoza-Santoyo, Fernando; González, Gabriel; José-Yacaman, Miguel; Ponce, Arturo; González, Francisco Javier

    2015-09-21

    Nanoantennas have been fabricated by scaling down traditional antenna designs using nanolithographic techniques and testing them at different optical wavelengths, these particular nanoantennas have shown responses in a broad range of frequencies going from visible wavelengths to the range of the terahertz. Some self-assembled nanostructures exist that exhibit similar shapes and properties to those of traditional antenna structures. In this work the emission and absorption properties of self-assembled nanostructures made of zinc oxide nanorods on silver nanowires, which resemble traditional dipole antennas, were measured and simulated in order to test their antenna performance. These structures show resonant properties in the 10-120 THz range, with the main resonance at 60 THz. The radiation pattern of these nanostructures was also obtained by numerical simulations, and it is shown that it can be tailored to increase or decrease its directivity as a function of the location of the energy source of excitation. Experimental measurements were performed by Raman spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) in order to show existing vibrational frequencies at the resonant frequencies of the nanostructures, measurements were made from ~9 to 103 THz and the results were in agreement with the simulations. These characteristics make these metal-semiconductor Ag/ZnO nanostructures useful as self-assembled nanoantennas in applications such as terahertz spectroscopy and sensing at terahertz frequencies. PMID:26406710

  20. Methanolic Extract of Ganoderma lucidum Induces Autophagy of AGS Human Gastric Tumor Cells.

    PubMed

    Reis, Filipa S; Lima, Raquel T; Morales, Patricia; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2015-01-01

    Ganoderma lucidum is one of the most widely studied mushroom species, particularly in what concerns its medicinal properties. Previous studies (including those from some of us) have shown some evidence that the methanolic extract of G. lucidum affects cellular autophagy. However, it was not known if it induces autophagy or decreases the autophagic flux. The treatment of a gastric adenocarcinoma cell line (AGS) with the mushroom extract increased the formation of autophagosomes (vacuoles typical from autophagy). Moreover, the cellular levels of LC3-II were also increased, and the cellular levels of p62 decreased, confirming that the extract affects cellular autophagy. Treating the cells with the extract together with lysossomal protease inhibitors, the cellular levels of LC3-II and p62 increased. The results obtained proved that, in AGS cells, the methanolic extract of G. lucidum causes an induction of autophagy, rather than a reduction in the autophagic flux. To our knowledge, this is the first study proving that statement. PMID:26426001

  1. Optical properties of local surface plasmon resonance in Ag/ITO sliced nanosphere by the discrete dipole approximation

    NASA Astrophysics Data System (ADS)

    Haiwei, Mu; Jingwei, Lv; Zhaoting, Liu; Shijie, Zheng; Lin, Yang; Tao, Sun; Qiang, Liu; Chao, Liu

    2016-04-01

    Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing.

  2. Thermal tuning of surface plasmon resonance: Ag gratings on barium strontium titanate thin films

    NASA Astrophysics Data System (ADS)

    Xin, J. Z.; Hui, K. C.; Wang, K.; Chan, H. L. W.; Ong, D. H. C.; Leung, C. W.

    2012-04-01

    Surface plasmon tuning via thermally induced refractive index changes in ferroelectrics is investigated. Epitaxial (Ba0.7Sr0.3)TiO3 (BST) thin films were deposited on MgO (001) substrates by pulsed laser deposition. The refractive index of BST thin films measured by the prism-coupling technique was found to increase from 2.3932 (TE)/1.9945 (TM) at room temperature to 2.3949 (TE)/1.9965 (TM) at 66°C. Then 30-nm-Ag gratings with periodicity 750 nm and width 300 nm were fabricated on BST by soft ultraviolet nanoimprint lithography and subsequent lift-off process. The reflection spectra from 500 to 1000 nm with incident angle from 5° to 60° were measured at room temperature and 66°C, with a collimated and p-polarized light incident perpendicularly to the grating direction. Several modes were observed from the spectra. At 66°C, a red shift of a dip at about 850 nm by 2 nm was obtained at an incident angle of 15°. Calculations confirmed that the observed modes belong to the (-1), (2), (-2) and (3) surface plasmon modes from the Ag and BST interfaces and localized mode; the red shift by thermal tuning is also confirmed. The results indicate the feasibility of active modulation in surface plasmon resonance in solid-state structures.

  3. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Gentle, A. R.; Yambem, S. D.; Burn, P. L.; Meredith, P.; Smith, G. B.

    2016-06-01

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  4. Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

    PubMed Central

    Hahm, Sahng-Wook; Park, Jieun; Park, Kun-Young; Son, Yong-Suk; Han, Hyungchul

    2016-01-01

    Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF (100 μg/mL) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF (200 μg/mL) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells. PMID:27069903

  5. Automated Brain Extraction from T2-weighted Magnetic Resonance Images

    PubMed Central

    Datta, Sushmita; Narayana, Ponnada A.

    2011-01-01

    Purpose To develop and implement an automated and robust technique to extract brain from T2-weighted images. Materials and Methods Magnetic resonance imaging (MRI) was performed on 75 adult volunteers to acquire dual fast spin echo (FSE) images with fat-saturation technique on a 3T Philips scanner. Histogram-derived thresholds were derived directly from the original images followed by the application of regional labeling, regional connectivity, and mathematical morphological operations to extract brain from axial late-echo FSE (T2-weighted) images. The proposed technique was evaluated subjectively by an expert and quantitatively using Bland-Altman plot and Jaccard and Dice similarity measures. Results Excellent agreement between the extracted brain volumes with the proposed technique and manual stripping by an expert was observed based on Bland-Altman plot and also as assessed by high similarity indices (Jaccard: 0.9825± 0.0045; Dice: 0.9912 ±0.0023). Conclusion Brain extraction using proposed automated methodology is robust and the results are reproducible. PMID:21448946

  6. Dyes at Ag colloids: The role of energy transfer processes for surface fluorescence and surface enhanced resonance raman scattering

    NASA Astrophysics Data System (ADS)

    Pettinger, B.; Gerolymatou, A.

    1985-06-01

    The comparison of Raman spectra of a pure water solution with those of an aqueous AG colloid reveals only very weak differences. This indicates, not unexpectedly, a low electromagnetic (EM) enhancement factor ( F ≈ 100) for the Raman scattering of water. Just in opposite to these weak effects, the addition of Ag sol to a {10 -10 M }/{l} rhodamine 6G solution causes the replacement of the former solution fluorescence by a similar intense surface enhanced resonance Raman scattering (SERRS). At higher dye concentrations (up to {10 -8 M }/{l}) it is replaced by both, by SERRS and surface fluorescence. The SERRS cross section is generally higher than 10 -20 cm 2 sr -1 molecule -1 photon -1. This indicates that a model based on a combination of weak EM resonances with molecular resonance Raman effects cannot explain a total enhancement by more than 10 orders of magnitude. An energy-transfer model seems to be more suitable.

  7. MICRO-BUNCHING OF THE AGS SLOW EXTRACTED BEAM FOR A RARE KAON DECAY SEARCH.

    SciTech Connect

    GLENN,J.; SIVERTZ,M.; CHIANG,I.; LAZARUS,D.; KOSCIELNIAK,S.

    2001-06-18

    The AGS Slow Extracted Beam (SEB) must be chopped with 250 ps bursts every 40 ns to permit time-of-flight (ToF) measurement of the secondary K{sup 0} beam. Standard techniques to produce this level of bunching would require excessive rf voltage, thus we have developed a ''Micro-Bunching'' technique of extracting the beam as it is forced between empty rf buckets. A specification of the required rf system will be given. Four-dimensional model simulations of particle dynamics for the planned rf and extraction systems will be shown. Simulations of previous tests along with the test measurements are also presented. Measurement of tight bunching requires dedicated instrumentation. The design of a detector system to measure bunch widths and the extinction factor between bunches will be given; considerations include the various particles produced and transported, timing precision and background.

  8. Facile biosynthesis of Ag-NPs using Otostegia limbata plant extract: Physical characterization and auspicious biological activities

    NASA Astrophysics Data System (ADS)

    Kausar, Rizwan; Shaheen, Muhammad Ashraf; Maqbool, Qaisar; Naz, Sania; Nazar, Mudassar; Abbas, Fazal; Hussain, Talib; Younas, Umer; Shams, Muhammad Fahad

    2016-09-01

    Silver nanoparticles (Ag-NPs) synthesized through reduction by Otostegia limbata green extract are, hereby, reported for the first time. It is very interesting to observe that in this case, O. limbata plant extract acts as a strong chelating agent in Ag-NPs formation through AgNO3. Scanning electron microscope (SEM) studies expose that Ag-NPs formation is highly homogenous and spherical with mean particle size of 32 ±0.8 nm. A typical Ag absorption peak has been observed at 419 nm by ultra violet (UV)-visible spectroscopy which have endorsed the successful formation of single phase Ag-NPs. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) examination further validates the crystalline pure phase structure of Ag-NPs. Promising results have been recorded against protein kinase inhibition assay and antibacterial assay having prominent pathogenic strains. Our present study explores that biosynthesized eco-friendly Ag-NPs have great potential, in the future, for anticancer drug development with wide range pharmaceutical applications.

  9. Localized surface plasmon resonance-based hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B

    NASA Astrophysics Data System (ADS)

    Zhu, Shaoli; Du, ChunLei; Fu, Yongqi

    2009-09-01

    A triangular hybrid Au-Ag nanoparticles array was proposed for the purpose of biosensing in this paper. Constructing the hybrid nanoparticles, an Au thin film is capped on the Ag nanoparticles which are attached on glass substrate. The hybrid nanoparticles array was designed by means of finite-difference and time-domain (FDTD) algorithm-based computational numerical calculation and optimization. Sensitivity of refractive index of the hybrid nanoparticles array was obtained by the computational calculation and experimental detection. Moreover, the hybrid nanoparticles array can prevent oxidation of the pure Ag nanoparticles from atmosphere environment because the Au protective layer was deposited on top of the Ag nanoparticles so as to isolate the Ag particles from the atmosphere. We presented a novel surface covalent link method between the localized surface plasmon resonance (LSPR) effect-based biosensors with hybrid nanoparticles array and the detected target molecules. The generated surface plasmon wave from the array carries the biological interaction message into the corresponding spectra. Staphylococcus aureus enterotoxin B (SEB), a small protein toxin was directly detected at nanogramme per milliliter level using the triangular hybrid Au-Ag nanoparticles. Hence one more option for the SEB detection is provided by this way.

  10. Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum

    NASA Astrophysics Data System (ADS)

    Moskovits, M.; Srnova-Sloufova, I.; Vlckova, B.

    2002-06-01

    We report an approach for extracting the optical constants of bimetallic Ag-Au nanoparticles from the measured surface-plasmon (SP) extinction spectra. The dielectric function of the metal is expressed as an analytic function of the wavelength in which the interband (and all other non-Drude) contributions to the dielectric function are represented by a sum of Lorentz functions. This expression is then used to fit the experimental extinction spectra to appropriate functions based on Mie theory. Three Lorentz functions (plus a Drude term) were found to be sufficient to reproduce the dielectric functions of Ag and Au [P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972)] over the entire 0.6-6.5 eV range reported. With functions of this type, an excellent multiparameter fit of the measured extinction spectrum of colloidal Ag was obtained. Extinction spectra of a series of (Ag)Au hydrosols, prepared by reducing a gold precursor in the presence of previously synthesized silver seed particles with Au mole fractions ranging from 0.1 to 0.8, were measured. The extinction spectra show a single band (attributed to the surface plasmon) for all of the colloids produced, suggesting alloy formation. Transmission electron microscopy (TEM) images, however, indicate clear core-shell contrast for nanoparticles with Au mole fractions 0.4 and higher. With a presumed particle structure consisting of Ag core and Ag/Au alloy shell, very good fits were obtained for all of the measured extinction spectra by using a fitting strategy that restricted the number of parameters allowed to vary freely in the aforementioned dielectric function. The values of the dielectric function of the presumed shells were extracted in this manner as a function of wavelength. For particles with Au mole fraction 0.1-0.3, the results suggest an incompletely formed shell. For particles with higher Au mole fractions, the dielectric function of the shell gradually approaches that of Au. Overall, the results

  11. Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay.

    PubMed

    Park, Chul-Soon; Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-02-16

    We present a highly efficient omnidirectional color filter that takes advantage of an Ag-TiO2-Ag nano-resonator integrated with a phase-compensating TiO2 overlay. The dielectric overlay substantially improves the angular sensitivity by appropriately compensating for the phase pertaining to the structure and suppresses unwanted optical reflection so as to elevate the transmission efficiency. The filter is thoroughly designed, and it is analyzed in terms of its reflection, optical admittance, and phase shift, thereby highlighting the origin of the omnidirectional resonance leading to angle-invariant characteristics. The polarization dependence of the filter is explored, specifically with respect to the incident angle, by performing experiments as well as by providing the relevant theoretical explanation. We could succeed in demonstrating the omnidirectional resonance for the incident angles ranging to up to 70°, over which the center wavelength is shifted by below 3.5% and the peak transmission efficiency is slightly degraded from 69%. The proposed filters incorporate a simple multi-layered structure and are expected to be utilized as tri-color pixels for applications that include image sensors and display devices. These devices are expected to allow good scalability, not requiring complex lithographic processes.

  12. Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay

    NASA Astrophysics Data System (ADS)

    Park, Chul-Soon; Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-02-01

    We present a highly efficient omnidirectional color filter that takes advantage of an Ag-TiO2-Ag nano-resonator integrated with a phase-compensating TiO2 overlay. The dielectric overlay substantially improves the angular sensitivity by appropriately compensating for the phase pertaining to the structure and suppresses unwanted optical reflection so as to elevate the transmission efficiency. The filter is thoroughly designed, and it is analyzed in terms of its reflection, optical admittance, and phase shift, thereby highlighting the origin of the omnidirectional resonance leading to angle-invariant characteristics. The polarization dependence of the filter is explored, specifically with respect to the incident angle, by performing experiments as well as by providing the relevant theoretical explanation. We could succeed in demonstrating the omnidirectional resonance for the incident angles ranging to up to 70°, over which the center wavelength is shifted by below 3.5% and the peak transmission efficiency is slightly degraded from 69%. The proposed filters incorporate a simple multi-layered structure and are expected to be utilized as tri-color pixels for applications that include image sensors and display devices. These devices are expected to allow good scalability, not requiring complex lithographic processes.

  13. Extracting kinetic rate constants from surface plasmon resonance array systems.

    PubMed

    Rich, Rebecca L; Cannon, Michelle J; Jenkins, Jerry; Pandian, Prabhakar; Sundaram, Shankar; Magyar, Rachelle; Brockman, Jennifer; Lambert, Jeremy; Myszka, David G

    2008-02-01

    Surface plasmon resonance imaging systems, such as Flexchip from Biacore, are capable of monitoring hundreds of reaction spots simultaneously within a single flow cell. Interpreting the binding kinetics in a large-format flow cell presents a number of potential challenges, including accounting for mass transport effects and spot-to-spot sample depletion. We employed a combination of computer simulations and experimentation to characterize these effects across the spotted array and established that a simple two-compartment model may be used to accurately extract intrinsic rate constants from the array under mass transport-limited conditions. Using antibody systems, we demonstrate that the spot-to-spot variability in the binding kinetics was <9%. We also illustrate the advantage of globally fitting binding data from multiple spots within an array for a system that is mass transport limited.

  14. Surface plasmon resonance enhancement of the magneto-optical Kerr effect in Cu/Co/Ag/SnO2 structure

    NASA Astrophysics Data System (ADS)

    Ghanaatshoar, Majid; Moradi, Mehrdad; Tohidi, Parsis

    2014-10-01

    In this paper, an Ag ultra thin layer was deposited on the Cu/Co film by thermal evaporation technique in the vacuum. The atomic force microscopy confirms that nanoparticles of Ag were formed on the Co magnetic layer, and subsequently, the longitudinal Kerr signal of Cu/Co/Ag was amplified more than 2 times. This enhancement is resulting from the overlap of the surface plasmon resonance in the silver with the electronic transition in the Co layer. Furthermore, we investigated the effect of transparent semiconductor SnO2 as a cap layer on the magnitude of longitudinal Kerr signal. To obtain the optimal thickness of cap layer, a numerical analysis was carried out using a 4 × 4 characteristic matrix, which takes into account multiple reflections from interfaces within the medium and light transmission through the layers.

  15. Apoptosis of AGS human gastric adenocarcinoma cells by methanolic extract of Dictamnus

    PubMed Central

    Park, Hyun Soo; Hong, Noo Ri; Ahn, Tae Seok; Kim, Hyungwoo; Jung, Myeong Ho; Kim, Byung Joo

    2015-01-01

    Background: The root bark of Dictamnus dasycarpus Turcz has traditionally been used in East Asia to treat skin diseases such as eczema, atopic dermatitis, and psoriasis. However, it has also been reported to exhibit an anti-proliferative effect on cancer cells. Objective: To investigate the anti-cancer effects of a methanol extract of Dictamnus dasycarpus root bark (MEDD) on AGS cells (a human gastric adenocarcinoma cell-line). Materials and Methods: An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium assay, a caspase activity assay, cell cycle analysis, mitochondrial membrane potential (MMP) measurements, and western blotting were used to investigate the anti-cancer effects of MEDD on AGS cells. Results: Treatment with MEDD significantly and concentration-dependently inhibited AGS cell growth. MEDD treatment in AGS cells led to increased accumulation of apoptotic sub-G1 phase cells in a concentration-dependent manner. Also, MEDD reduced the expressions of pro-caspase-3, -8 and -9, and increased the active form of caspase-3. Furthermore, subsequent Western blotting revealed elevated levels of poly (ADP-ribose) polymerase protein. MEDD treatment reduced levels of MMP and anti-apoptotic Bcl-2 and Bcl-xL proteins. Pretreatment with SB203580 (a specific inhibitor of p38 mitogen-activated protein kinases), SP600125 (a potent inhibitor of C-Jun N-terminal kinases), or PD98059 (a potent inhibitor of extracellular signal-regulated kinases) did not modify the effects of MEDD treatment. However, pretreatment with LY294002 (a specific inhibitor of Akt) significantly enhanced MEDD-induced cell death. Conclusion: These results suggest that MEDD-mediated cell death is associated with the intrinsic apoptotic pathway and that inhibition of Akt signaling contributes to apoptosis induction by MEDD. PMID:26664023

  16. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    PubMed Central

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  17. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  18. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure.

    PubMed

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-11

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  19. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure.

    PubMed

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  20. Antimicrobial kinetics of Alstonia scholaris bark extract-mediated AgNPs

    NASA Astrophysics Data System (ADS)

    Supraja, N.; Prasad, T. N. V. K. V.; David, E.; Giridhara Krishna, T.

    2016-06-01

    Nanobiotechnology is considered as one of the important branches of nanotechnology, and research on synthesis of nanoscale materials, silver in particular, using plant and plant parts has been progressing rapidly. Herein, we used bark extract of Alstonia scholaris one of the most important medicinal plants to synthesize silver nanoparticles (AgNPs) which exhibited excellent antimicrobial properties against biofilm formed in drinking water PVC pipes. The biosynthesis of silver nanoparticles was done by treating 90 mL of 1 mM AgNO3 aqueous solution with 10 mL of 5 % bark extract. As-prepared silver nanoparticles were characterized using the biophysical techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, and dynamic light scattering for the measurement of hydrodynamic diameter and zeta potential. The kinetics of the antimicrobial activity against PVC biofilm of prepared silver nanoparticles were done using comparative solution suspension time-killing assessments and which are evidenced in Epi-fluorescent microscopic observations.

  1. Comments on extracting the resonance strength parameter from yield data

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Favalli, Andrea

    2015-10-01

    The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to

  2. Influence of size, shape and core-shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiO x.

    PubMed

    D'Addato, Sergio; Pinotti, Daniele; Spadaro, Maria Chiara; Paolicelli, Guido; Grillo, Vincenzo; Valeri, Sergio; Pasquali, Luca; Bergamini, Luca; Corni, Stefano

    2015-01-01

    Ag and Ag@MgO core-shell nanoparticles (NPs) with a diameter of d = 3-10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiO x (Si/SiO x ). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation.

  3. Speciation of silver nanoparticles and Ag(I) species using cloud point extraction followed by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2014-11-01

    Silver nanoparticles in the presence of Triton-X114 were extracted into a micellar phase obtained after incubation at 40 °C for 10 min followed by centrifugation. After injection of an aliquot (30 μL) of the surfactant-rich phase into the electrothermal atomizer, the enrichment effect due to cloud point extraction allowed a detection limit of 2 ng L- 1 silver to be achieved. The preconcentration factor was 242, and the repeatability for ten measurements at a 50 ng L- 1 silver level was 4.6%. Ag(I) species were adsorbed onto the silver nanoparticles and were also extracted in the micellar phase. The incorporation of 0.01 mol L- 1 ammonium thiocyanate to the sample solution prevented the extraction of Ag(I) species. Speciation was carried out using two extractions, one in the absence and the other in the presence of thiocyanate, the concentration of Ag(I) species being obtained by difference. The procedure was applied to the determination of silver nanoparticles and Ag(I) species in waters and in lixiviates obtained from sticking plasters and cleaning cloths.

  4. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    NASA Astrophysics Data System (ADS)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  5. Resonant slow extraction in synchrotrons using anti-symmetric sextupole fields

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Jianquan

    2016-09-01

    This paper proposes a novel method for resonant slow extraction in synchrotrons by using special anti-symmetric sextupole fields, which can be produced by a special magnet structure. The method has potential in applications demanding very stable slow extraction from synchrotrons. Our studies show that slow extraction at the half-integer resonance by using an anti-symmetric sextupole field has some advantages compared to the standard sextupole field, which is widely used in the slow extraction method. One advantage is that it can work at a more distant tune from the resonance, so that it can reduce significantly the intensity variation of the extracted beam which is mainly caused by the ripples of magnet power supplies. Studies by both the Hamiltonian theory and numerical simulations show that the stable region near the half-integer resonance by anti-symmetric sextupole field is much smaller and flatter than the one by standard sextupole field at the third-order resonance. The particles outside the region will be driven out in two possible directions in quite a short transit time but with spiral steps similar to the third-order resonant extraction. By gradually increasing the field strength, the beam can be extracted with intensity more homogeneous than by the usual third-order resonant method, because of both smaller intensity variation and spike in the beginning spill. With the same field strength and tune distance to the resonance, the change in the stable region area due to the working point variation in the case of the anti-symmetric sextupole is about 1/14 of the one for the standard sextupole. Detailed studies including beam dynamic behaviors near other resonances, expression of the field in polynomial expansion, influence of 2-D field error, half-integer stop-band, and resonant slow extraction using a quadrupole field are also presented.

  6. Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing

    PubMed Central

    Im, Hyungsoon; Lee, Si Hoon; Wittenberg, Nathan J.; Johnson, Timothy W.; Lindquist, Nathan C.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2011-01-01

    Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing. PMID:21770414

  7. Investigations of 2.9-GHz Resonant Microwave-Sensitive Ag/MgO/Ge/Ag Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Khanfar, H. K.

    2013-12-01

    In this work, a resonant microwave-sensitive tunneling diode has been designed and investigated. The device, which is composed of a magnesium oxide (MgO) layer on an amorphous germanium (Ge) thin film, was characterized by means of temperature-dependent current ( I)-voltage ( V), room-temperature differential resistance ( R)-voltage, and capacitance ( C)-voltage characteristics. The device resonating signal was also tested and evaluated at 2.9 GHz. The I- V curves reflected weak temperature dependence and a wide tunneling region with peak-to-valley current ratio of ˜1.1. The negative differential resistance region shifts toward lower biasing voltages as temperature increases. The true operational limit of the device was determined as 350 K. A novel response of the measured R- V and C- V to the incident alternating-current (ac) signal was observed at 300 K. Particularly, the response to a 100-MHz signal power ranging from the standard Bluetooth limit to the maximum output power of third-generation mobile phones reflects a wide range of tunability with discrete switching property at particular power limits. In addition, when the tunnel device was implanted as an amplifier for a 2.90-GHz resonating signal of the power of wireless local-area network (LAN) levels, signal gain of 80% with signal quality factor of 4.6 × 104 was registered. These remarkable properties make devices based on MgO-Ge interfaces suitable as electronic circuit elements for microwave applications, bias- and time-dependent electronic switches, and central processing unit (CPU) clocks.

  8. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances.

    PubMed

    Guo, Tao; Tan, Yiwei

    2013-01-21

    In this work, one dimensional (1D) Ag-Au solid solution nanoalloys were synthesized by rapidly diffusing Ag into the preformed Au nanorod (AuNR) seeds at ambient temperature in aqueous solution. By varying the molar ratio of AgCl/AuNR (in gold atoms), two kinds of 1D Ag-Au alloy nanostructures with a narrow size distribution--AgAu nanowires and Ag(33)Au(67) nanorods--could be obtained in high yields when NaCl and polyvinylpyrrolidone (PVP) were used as an additive and capping reagent, respectively. Based on HRTEM imaging combined with a series of control experiments, it is conceivable that vacancy/defect-motivated interdiffusion of Ag and Au atoms coupled with oxidative etching is a crucial stage in the mechanism responsible for this room-temperature alloying process, and the subsequent conjugation of the fused Ag-Au alloyed nanostructures is associated with the formation of the AgAu nanowires. The resulting 1D Ag-Au nanoalloys form stable colloidal dispersions and show unique localized surface plasmon resonance (LSPR) peaks in the ensemble extinction spectra.

  9. Plasmonic resonance of Ag nanoclusters diffused in soda-lime glasses.

    PubMed

    Kumar, Promod; Mathpal, Mohan Chandra; Tripathi, Anand Kumar; Prakash, Jai; Agarwal, Arvind; Ahmad, M M; Swart, H C

    2015-04-14

    Silver nanoclusters were prepared in a soda-lime glass matrix through the ion-exchange (Ag(+)↔ Na(+)) method followed by thermal annealing in an air atmosphere. The nanoscale patterning of Ag nanoclusters embedded in a soda lime glass matrix in an air atmosphere at different annealing temperatures has been investigated. During annealing, Ag(+) is reduced to Ag(0) and subsequently forms silver nanoparticles inside the glass matrix. A blue shift of 20 nm has been observed as a function of the post annealing temperature. The photoluminescence intensity is highest for an annealing temperature of 500 °C for 1 h and continuously decreases as annealing temperature increases up to 600 °C. The presence of spherical nanoparticles with a maximum particle size of 7.2 nm has been observed after annealing at 600 °C for 1 hour, which is consistent with Mie theory based results.

  10. Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering

    SciTech Connect

    Fang Yingcui; Li Xiaxi; Blinn, Kevin; Mahmoud, Mahmoud A.; Liu Meilin

    2012-09-15

    Ag nanoparticles (AgNPs) were deposited onto silicon substrates by direct current (dc) magnetron sputtering. The influences of sputtering power and sputtering time on the AgNP film morphology were studied using atomic force microscopy. The particle size was successfully tuned from 19 nm to 53 nm by varying the sputtering time at a dc power of 10 W. When Rhodamine 6 G (R6G) was used as the probe molecule, the AgNP films showed significant surface enhanced Raman scattering effect. In particular, it is found that larger particles show stronger enhancement for lower concentrations of R6G while smaller particles display stronger enhancement for higher concentrations of R6G.

  11. Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network

    NASA Astrophysics Data System (ADS)

    Sharvani, S.; Upadhayaya, Kishor; Kumari, Gayatri; Narayana, Chandrabhas; Shivaprasad, S. M.

    2015-11-01

    The GaN nanowall network, formed by opening the screw dislocations by kinetically controlled MBE growth, possesses a large surface and high conductivity. Sharp apexed nanowalls show higher surface electron concentration in the band-tail states, in comparison to blunt apexed nanowalls. Uncapped silver nanoparticles are vapor deposited on the blunt and sharp GaN nanowall networks to study the morphological dependence of band-edge plasmon-coupling. Surface enhanced Raman spectroscopy studies performed with a rhodamine 6G analyte on these two configurations clearly show that the sharp nanowall morphology with smaller Ag nanoparticles shows higher enhancement of the Raman signal. A very large enhancement factor of 2.8 × 107 and a very low limit of detection of 10-10 M is observed, which is attributed to the surface plasmon resonance owing to the high surface electron concentration on the GaN nanowall in addition to that of the Ag nanoparticles. The significantly higher sensitivity with same-sized Ag nanoparticles confirms the unconventional role of morphology-dependent surface charge carrier concentration of GaN nanowalls in the enhancement of Raman signals.

  12. Nano-morphology induced additional surface plasmon resonance enhancement of SERS sensitivity in Ag/GaN nanowall network.

    PubMed

    Sharvani, S; Upadhayaya, Kishor; Kumari, Gayatri; Narayana, Chandrabhas; Shivaprasad, S M

    2015-11-20

    The GaN nanowall network, formed by opening the screw dislocations by kinetically controlled MBE growth, possesses a large surface and high conductivity. Sharp apexed nanowalls show higher surface electron concentration in the band-tail states, in comparison to blunt apexed nanowalls. Uncapped silver nanoparticles are vapor deposited on the blunt and sharp GaN nanowall networks to study the morphological dependence of band-edge plasmon-coupling. Surface enhanced Raman spectroscopy studies performed with a rhodamine 6G analyte on these two configurations clearly show that the sharp nanowall morphology with smaller Ag nanoparticles shows higher enhancement of the Raman signal. A very large enhancement factor of 2.8 × 10(7) and a very low limit of detection of 10(-10) M is observed, which is attributed to the surface plasmon resonance owing to the high surface electron concentration on the GaN nanowall in addition to that of the Ag nanoparticles. The significantly higher sensitivity with same-sized Ag nanoparticles confirms the unconventional role of morphology-dependent surface charge carrier concentration of GaN nanowalls in the enhancement of Raman signals. PMID:26502004

  13. Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films.

    PubMed

    Jia, Kun; Khaywah, Mohammad Y; Li, Yugang; Bijeon, Jean L; Adam, Pierre M; Déturche, Régis; Guelorget, Bruno; François, Manuel; Louarn, Guy; Ionescu, Rodica E

    2014-01-01

    In the present work, the standard monometallic localized surface plasmon resonance (LSPR) biosensing sensitivity is highly improved when using a new system based on glass substrates modified with high-temperature annealed gold/silver bimetallic nanoparticles (Au/Ag bimetallic NPs) coated with polydopamine films before biomolecule specific immobilization. Thus, different zones of bimetallic NPs are spatially created onto a glass support thanks to a commercial transmission electron microscopy (TEM) grid marker in combination with two sequential evaporations of continuous films of gold (4 nm) and silver (2 nm) and followed by annealing at 500 °C for 8 h. By using the scanning electron microscopy (SEM), it is found that annealed Au/Ag bimetallic NPs have uniform size and shape distribution that exhibited a sharper well-defined LSPR resonant peak when compared with that of monometallic Au NPs and thereby contributing to an improved sensitivity in LSPR biosensor application. The controlled micropatterns consisting of bimetallic particles are used in the construction of LSPR biochips for high-throughput detection of different concentrations of a model antigen named bovine serum albumin (BSA) on a single glass sample, with a lower limit of detection of 0.01 ng/mL under the optimized conditions.

  14. Generation of Localized Surface Plasmon Resonance Using Hybrid Au-Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection.

    PubMed

    Liu, Jing; Cai, Haoyuan; Chen, Chaoyang; Yang, Guangsong; Yang, Cheng-Fu

    2016-01-01

    In this study, the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs) were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs). First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA) numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS) nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au-Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si) substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77) by observing the wavelength to reveal the maximum extinction efficiency (λmax). We show that the adhesion of β-cyclodextrins (SH-β-CD) on the hybrid Au-Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs. PMID:27527188

  15. Generation of Localized Surface Plasmon Resonance Using Hybrid Au–Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection

    PubMed Central

    Liu, Jing; Cai, Haoyuan; Chen, Chaoyang; Yang, Guangsong; Yang, Cheng-Fu

    2016-01-01

    In this study, the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs) were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs). First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA) numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS) nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si) substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77) by observing the wavelength to reveal the maximum extinction efficiency (λmax). We show that the adhesion of β-cyclodextrins (SH-β-CD) on the hybrid Au–Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs. PMID:27527188

  16. Extraction of Meson Resonances from Three-pions Photo-production Reactions

    SciTech Connect

    S. X. Nakamura, H. Kamano, T.-S. H. Lee, T. Sato

    2012-12-01

    We have investigated the model dependence of meson resonance properties extracted from the Dalitz-plot analysis of the three-pions photoproduction reactions on the nucleon. Within a unitary model developed in Phys. Rev. D 84, 114019 (2011), we generate Dalitz-plot distributions as data to perform an isobar model fit that is similar to most of the previous analyses of three-pion production reactions. It is found that the resonance positions from the two models agree well when both fit the data accurately, except for the resonance poles near branch points. The residues of the resonant amplitudes extracted from the two models and by the usual Breit-Wigner procedure agree well only for the isolated resonances with narrow widths. For overlapping resonances, most of the extracted residues could be drastically different. Our results suggest that even with high precision data, the resonance extraction should be based on models within which the amplitude parametrization is constrained by three-particle unitarity condition.

  17. Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG.

    PubMed

    Zhang, Di; Sun, Ying; Wu, Qiong; Ma, Pinyi; Zhang, Hua; Wang, Yuanpeng; Song, Daqian

    2016-01-01

    A novel surface plasmon resonance (SPR) biosensor based on Ag nanocubes/chitosan composite was fabricated for mouse IgG detection. Ag nanocubes (AgNCs) were successfully synthesized with sulfide-mediated protocol. They were characterized with transmission electron microscopy (TEM) and UV-vis adsorption spectrum. AgNCs were etched by 3-Mercaptopropinic acid (MPA) and simply mixed with chitosan and glutaraldehyde. The Ag nanocubes/chitosan composite was deposited on Au film by the spin-coating. The electronic coupling between the AgNCs and the surface plasmon wave leads to the amplification of the SPR response, which results in the sensitivity enhancement of SPR biosensor. Moreover, antibody can be immobilized on Au film with aldehyde groups via Schiff alkali reaction. The traditional SPR biosensor based on MPA shows a response for mouse IgG in the concentration range of 2.50-40.00 μg mL(-1). The SPR biosensor based on AgNCs/chitosan composite shows a good response for mouse IgG in the concentration range of 0.60-40.00 μg mL(-1). The limit of quantification by the biosensor based on AgNCs/chitosan composite substrate is about 4 times lower than traditional biosensor, which has proved the SPR biosensor here proposed with more sensitivity and better performance than traditional SPR biosensor. PMID:26695276

  18. Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG.

    PubMed

    Zhang, Di; Sun, Ying; Wu, Qiong; Ma, Pinyi; Zhang, Hua; Wang, Yuanpeng; Song, Daqian

    2016-01-01

    A novel surface plasmon resonance (SPR) biosensor based on Ag nanocubes/chitosan composite was fabricated for mouse IgG detection. Ag nanocubes (AgNCs) were successfully synthesized with sulfide-mediated protocol. They were characterized with transmission electron microscopy (TEM) and UV-vis adsorption spectrum. AgNCs were etched by 3-Mercaptopropinic acid (MPA) and simply mixed with chitosan and glutaraldehyde. The Ag nanocubes/chitosan composite was deposited on Au film by the spin-coating. The electronic coupling between the AgNCs and the surface plasmon wave leads to the amplification of the SPR response, which results in the sensitivity enhancement of SPR biosensor. Moreover, antibody can be immobilized on Au film with aldehyde groups via Schiff alkali reaction. The traditional SPR biosensor based on MPA shows a response for mouse IgG in the concentration range of 2.50-40.00 μg mL(-1). The SPR biosensor based on AgNCs/chitosan composite shows a good response for mouse IgG in the concentration range of 0.60-40.00 μg mL(-1). The limit of quantification by the biosensor based on AgNCs/chitosan composite substrate is about 4 times lower than traditional biosensor, which has proved the SPR biosensor here proposed with more sensitivity and better performance than traditional SPR biosensor.

  19. Ag/Au bi-metallic film based color surface plasmon resonance biosensor with enhanced sensitivity, color contrast and great linearity.

    PubMed

    Li, Chung-Tien; Lo, Kun-Chi; Chang, Hsin-Yun; Wu, Hsieh-Ting; Ho, Jennifer H; Yen, Ta-Jen

    2012-01-01

    In wavelength surface plasmon resonance (SPR) biosensor, the manipulation of SPR dispersion relation by Ag/Au bi-metallic film was first time implemented. Due to the enhanced resonant wavelength shift and the sharper SPR slope of using Ag/Au bi-metallic film, the illuminated color of reflection shows one order of magnitude greater contrast than conventional SPR biosensors. Such an Ag/Au bi-metallic film based color SPR biosensor (CSPRB) allows the detail bio-interactions, for example 100 nM streptavidin, to be distinguished by directly observing the color change of reflection through naked eyes rather than the analysis of spectrometer. In addition to the enhanced sensitivity and color contrast, this CSPRB also possesses a great linear detection range up to 0.0254 RIU, which leading to the application of point-of-care tests. PMID:22560104

  20. Modulation of localized surface plasmon resonance for an array of Ag nanostructures layered with nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shang, Zhenzhen; Huang, Haishen; Wan, Yuan; Deng, Luogen

    2016-08-01

    Sensitivity of the localized surface plasmon resonance (LSPR) for an array of Ag (silver) nanostructures layered with nematic liquid crystals (NLC) is investigated. Calculations are made by using finite-difference time-domain (FDTD) method under different geometrical and environmental parameters. Results show that the LSPR wavelength in this array can be controlled and tuned to infrared wavelength range by the rotation of the NLC optical-axis. The rotation of the array and the modifications to height of the NLC layer, the size and periods of the array can affect the sensitivity of the LSPR. The sensitivity is higher when the optical-axis is in xoz plane, than that for the optical-axis in xoy plane. An improved sensitivity has been obtained in the simulation.

  1. Extracting Low-Lying Lambda Resonances Using Correlation Matrix Techniques

    SciTech Connect

    Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. S.

    2011-05-24

    The lowest-lying negative-parity state of the Lambda is investigated in (2+1)-flavour full-QCD on the PACS-CS configurations made available through the ILDG. We show that a variational analysis using multiple source and sink smearings can extract a state lying lower than that obtained by using a standard fixed smeared source and sink operator alone.

  2. Facile Synthesis of Ag Nanorods with No Plasmon Resonance Peak in the Visible Region by Using Pd Decahedra of 16 nm in Size as Seeds.

    PubMed

    Luo, Ming; Huang, Hongwen; Choi, Sang-Il; Zhang, Chao; da Silva, Robson Rosa; Peng, Hsin-Chieh; Li, Zhi-Yuan; Liu, Jingyue; He, Zhike; Xia, Younan

    2015-10-27

    This article describes a seed-mediated approach to the synthesis of Ag nanorods with thin diameters and tunable aspect ratios. The success of this method is built upon our recent progress in the synthesis of Pd decahedra as uniform samples, together with controllable sizes. When used as a seed, the Pd decahedron could direct the deposition of Ag atoms along the 5-fold axis to generate a nanorod, with its diameter being determined by the lateral dimension of the seed. We were able to generate Ag nanorods with uniform diameters down to 20 nm. Under the conditions we used for growth, symmetry breaking occurred as the Ag atoms were only deposited along one side of the Pd decahedral seed to generate a Ag nanorod with the Pd seed being positioned at one of its two ends. We also systematically investigated the localized surface plasmon resonance (LSPR) properties of the Ag nanorods. With the transverse mode kept below 400 nm, the longitudinal mode could be readily tuned from the visible to the near-infrared region by varying the aspect ratio. As an important demonstration, we obtained Ag nanorods with no LSPR peak in the visible spectrum (400-800 nm), which are attractive for applications related to the fabrication of touchscreen displays, solar films, and energy-saving smart windows. PMID:26372854

  3. Third interger resonance slow extraction schemem for a mu->e experiment at Fermilab

    SciTech Connect

    Nagaslaev, V.; Amundson, J.; Johnstone, J.; Michelotti, L.; Park, C.S.; Werkema, S.; Syphers, M.; /Michigan State U.

    2010-09-01

    The current design of beam preparation for a proposed mu->e conversion experiment at Fermilab is based on slow resonant extraction of protons from the Debuncher. The Debuncher ring will have to operate with beam intensities of 3 x 10{sup 12} particles, approximately four orders of magnitude larger than its current value. The most challenging requirements on the beam quality are the spill uniformity and low losses in the presence of large space charge and momentum spread. We present results from simulations of third integer resonance extraction assisted by RF knock-out (RFKO), a technique developed for medical accelerators. Tune spreads up to 0.05 have been considered.

  4. Radio frequency spectral characterization and model parameters extraction of high Q optical resonators

    PubMed Central

    Abdallah, Zeina; Boucher, Yann G.; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier

    2016-01-01

    A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor. PMID:27251460

  5. INVESTIGATION OF A RESIDUAL VERTICAL INSTRINSIC RESONANCES WITH DUAL PARTIAL SIBERIAN SNAKES IN THE AGS.

    SciTech Connect

    LIN,F.; LEE, S.Y.; AHRENS, L.A.; BAI, M.; BROWN, K.; COURANT, E.D.; ET AL.

    2007-06-25

    Two partial helical dipole snakes were found to be able to overcome all imperfection and intrinsic spin resonances provided that the vertical betatron tunes were maintained in the spin tune gap near the integer 9. Recent vertical betatron tune scan showed that the two weak resonances at the beginning of the acceleration cycle may be the cause of polarization loss. This result has been confirmed by the vertical polarization profile measurement, and spin tracking simulations. Possible cure of the remaining beam polarization is discussed.

  6. Extraction of the magnetohydrodynamic blood flow potential from the surface electrocardiogram in magnetic resonance imaging.

    PubMed

    Nijm, Grace M; Swiryn, Steven; Larson, Andrew C; Sahakian, Alan V

    2008-07-01

    The magnetohydrodynamic effect generates voltages related to blood flow, which are superimposed on the electrocardiogram (ECG) used for gating during cardiac magnetic resonance imaging (MRI). A method is presented for extracting the magnetohydrodynamic signal from the ECG. The extracted magnetohydrodynamic blood flow potential may be physiologically meaningful due to its relationship to blood flow. Removal of the magnetohydrodynamic voltages from the ECG can potentially lead to improved gating and diagnostically useful ECGs.

  7. Extraction of Electromagnetic Transition Form Factors for Nucleon Resonances within a Dynamical Coupled-Channels Model

    SciTech Connect

    N. Suzuki, T. Sato, T.-S. H. Lee

    2010-10-01

    We explain the application of a recently developed analytic continuation method to extract the electromagnetic transition form factors for the nucleon resonances ($N^*$) within a dynamical coupled-channel model of meson-baryon reactions.Illustrative results of the obtained $N^*\\rightarrow \\gamma N$ transition form factors, defined at the resonance pole positions on the complex energy plane, for the well isolated $P_{33}$ and $D_{13}$, and the complicated $P_{11}$ resonances are presented. A formula has been developed to give an unified representation of the effects due to the first two $P_{11}$ poles, which are near the $\\pi\\Delta$ threshold, but are on different Riemann sheets. We also find that a simple formula, with its parameters determined in the Laurent expansions of $\\pi N \\rightarrow \\pi N$ and $\\gamma N \\rightarrow\\pi N$ amplitudes, can reproduce to a very large extent the exact solutions of the considered model at energies near the real parts of the extracted resonance positions. We indicate the differences between our results and those extracted from the approaches using the Breit-Wigner parametrization of resonant amplitudes to fit the data.

  8. Resonance Raman scattering of butadiene: Vibronic activity of a bu mode demonstrates the presence of a 1Ag symmetry excited electronic state at low energy

    NASA Astrophysics Data System (ADS)

    Chadwick, Richard R.; Zgierski, Marek Z.; Hudson, Bruce S.

    1991-11-01

    Resonance Raman spectra of buta-1,3-diene-d0 and buta-1,3-diene-1,1,4,4-d4 have been obtained with ultraviolet excitation from 239.5 to 199.9 nm. Activity of the first overtone of mode 24, the bu symmetry CCC chain deformation mode, is observed with excitation energy below the origin of the 1 1Bu state. This vibronic activity of a nontotally symmetric mode is shown to be evidence of resonance with the 2 1Ag state of butadiene. A quantitative analysis of the ratio of intensities of 2ν24 to ν9, the ag symmetry CCC chain deformation mode, demonstrates that enhancement of 2ν24 cannot be due to resonance with the 1 1Bu state. The resonance enhancement behavior of this overtone band also shows that it is of vibronic origin rather than Franck-Condon allowed. The intensity pattern seen for the modes of bu symmetry is fully consistent with the results of a quantitative calculation of vibronic activity for the eight bu symmetry modes. The 2 1Ag electronic state is estimated to be ca. 0.25 eV below the 1 1Bu electronic state. Overtones of out-of-plane C-H bending and CH2 twisting modes are seen with excitation radiation near the peak of the transition to the 2 1Ag state, indicating that the 2 1Ag state of butadiene has appreciably lower resistance to deformation along out-of-plane coordinates than does the ground electronic state. This is consistent with the expectations of semiempirical calculations.

  9. Analysis of the optical extraction efficiency in gas-flow lasers with different types of resonator.

    PubMed

    Barmashenko, B D; Rosenwaks, S

    1996-12-20

    The celebrated Rigrod model [J. Appl. Phys. 34, 2602 (1963)] has recently been shown to be inadequate for calculating the output power of gas-flow lasers when the quenching of excited species is slow and the optical extraction efficiency is high [Opt. Lett. 20, 1480 (1995)]. The previous analysis of two-level systems is presented here in detail and extended to include the chemical oxygen-iodine laser (COIL). For both two-level systems and COIL's, we obtained simple analytic formulas for the output power, which should be used instead of the Rigrod model. We present the formulas for Fabry-Perot, stable, and unstable resonators. Both the saturation parameter and the extraction efficiency differ from those appearing in the Rigrod model. The highest extraction efficiency is achievable for both stable and unstable resonators with uniform intensity distribution over the resonator cross section and is greater than that calculated by the Rigrod model. A rather surprising conclusion is that the extraction efficiency of unstable resonators can be increased substantially if one increases the length of the part of the mirrors lying downstream of the optical axis. The derived formulas are applied to describe published experimental results of supersonic COIL's. The dependence of the power on the threshold gain is evaluated and from this the plenum yield of singlet oxygen is estimated. The value of the yield is in better agreement with experimental measurements than that obtained by the Rigrod model. PMID:21151313

  10. The Need for Polarization for Extracting Baryon Resonances and the NSTAR Program at CLAS

    SciTech Connect

    P.L. Cole

    2007-10-01

    We report on the NSTAR program in Hall B of JLab on using polarization observables to extract parameters of baryon resonances. The scientific purpose of the program is to improve the understanding of the underlying quark degrees of freedom, especially in the higher resonance regions, where we expect to uncover many of missing baryon resonances that mainly decay through multi-meson channels. With the high-quality beam of circularly- and linearly-polarized photons onto unpolarized and polarized proton and deteurium targets, and coupled with the nearly complete solid angle coverage of CLAS, we will extract the differential cross sections and associated polarization observables obtained by the photoproduction of vector mesons and kaons at center of mass energies of 1.7 to 2.2 GeV. The paper will primarily present the photon beam aspects of the excited baryon program.

  11. The Need for Polarization for Extracting Baryon Resonances and the NSTAR Program at CLAS

    SciTech Connect

    Cole, Philip L.

    2007-10-26

    We report on the NSTAR program in Hall B of JLab on using polarization observables to extract parameters of baryon resonances. The scientific purpose of the program is to improve the understanding of the underlying quark degrees of freedom, especially in the higher resonance regions, where we expect to uncover many of missing baryon resonances that mainly decay through multi-meson channels. With the high-quality beam of circularly- and linearly-polarized photons onto unpolarized and polarized proton and deteurium targets, and coupled with the nearly complete solid angle coverage of CLAS, we will extract the differential cross sections and associated polarization observables obtained by the photoproduction of vector mesons and kaons at center of mass energies of 1.7 to 2.2 GeV. The paper will primarily present the photon beam aspects of the excited baryon program.

  12. Same but Different: Dipole-Stabilized Shape Resonances in CuF(-) and AgF(.).

    PubMed

    Jagau, Thomas-C; Dao, Diep B; Holtgrewe, Nicholas S; Krylov, Anna I; Mabbs, Richard

    2015-07-16

    Electron attachment to closed-shell molecules is a gateway to various important processes in the gas and condensed phases. The properties of an electron-attached state, such as its energy and lifetime as well as the character of the molecular orbital to which the electron is attached, determine the fate of the anion. In this experimental and theoretical study of copper and silver fluoride anions, we introduce a new type of metastable anionic state. Abrupt changes in photoelectron angular distributions point to the existence of autodetaching states. Equation-of-motion coupled-cluster singles and doubles calculations augmented by a complex absorbing potential identify some of these states as Σ and Π dipole-stabilized resonances, a new type of shape resonance. In addition, these molecules support valence and dipole-bound states and a Σ resonance of charge-transfer character. By featuring five different types of anionic states, they provide a vehicle for studying fundamental properties of anions and for validating new theoretical approaches for metastable states.

  13. Antiadhesion and anti-inflammation effects of noni (Morinda citrifolia) fruit extracts on AGS cells during Helicobacter pylori infection.

    PubMed

    Huang, Hsin-Lun; Ko, Chien-Hui; Yan, Yeong-Yu; Wang, Chin-Kun

    2014-03-19

    Helicobacter pylori is a human gastric pathogen that adheres to host cells and injects cytotoxin-associated gene A (CagA) to induce interleukin-8 (IL-8), inducible nitric oxide (iNOS), and cyclooxygenase 2 (COX-2). Noni (Morinda citrifolia) is found to possess antibacteria, anti-inflammation, and antioxidation activities, but its effect on H. pylori infection is still unknown. Ethanol and ethyl acetate extracts of noni fruit were used in this study. The inhibitory effect on CagA and H. pylori-induced IL-8, iNOS, and COX-2 were determined. The coculture medium was collected for measuring neutrophil chemotaxis. Both extracts of noni fruit showed weak inhibition on H. pylori. Both ethanol and ethyl acetate extracts provided antiadhesion of H. pylori to AGS cells and down-regulation on the CagA, IL-8, COX-2, and iNOS expressions. Results also indicated both extracts relieved neutrophil chemotaxis. Noni fruit extracts down-regulated inflammatory responses during H. pylori infection, and the phenolic compounds play key role in antiadhesion.

  14. Efficient charge-carrier extraction from Ag2S quantum dots prepared by the SILAR method for utilization of multiple exciton generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M. J.

    2015-01-01

    The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the

  15. Synthesis, kinetics and photocatalytic study of "ultra-small" Ag-NPs obtained by a green chemistry method using an extract of Rosa 'Andeli' double delight petals.

    PubMed

    Suárez-Cerda, Javier; Alonso-Nuñez, Gabriel; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2015-11-15

    This paper reports the effect of different concentrations of Rosa 'Andeli' double delight petals aqueous extract (PERA) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. Its kinetics study and photocatalytic activity were also evaluated. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with 9.66% w/v, 7.25% w/v, and 4.20% w/v PERA as both reducing-stabilizing agent. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). TEM analysis shows spherical nanoparticles in shape and size between ∼0.5 and 1.4nm. A comparative study was done to determine which concentration was the best reducing-stabilizing agent, and we found out that "ultra-small" nanoparticles (0.5-1.1nm) were obtained with 9.66% w/v of PERA. The size of the Ag-NPs depends on the concentration of PERA and Ag(I). The reaction of formation of "ultra-small" Ag-NPs, proved to be first order for metallic precursor (silver) and second order for reducing-stabilizing agent (PERA). The Ag-NPs showed photocatalytic activity, in degradation of commercial dye with an efficiency of 95%. PMID:26218196

  16. Synthesis, kinetics and photocatalytic study of "ultra-small" Ag-NPs obtained by a green chemistry method using an extract of Rosa 'Andeli' double delight petals.

    PubMed

    Suárez-Cerda, Javier; Alonso-Nuñez, Gabriel; Espinoza-Gómez, Heriberto; Flores-López, Lucía Z

    2015-11-15

    This paper reports the effect of different concentrations of Rosa 'Andeli' double delight petals aqueous extract (PERA) in the synthesis of silver nanoparticles (Ag-NPs), using an easy green chemistry method. Its kinetics study and photocatalytic activity were also evaluated. The Ag-NPs were obtained using an aqueous silver nitrate solution (AgNO3) with 9.66% w/v, 7.25% w/v, and 4.20% w/v PERA as both reducing-stabilizing agent. The formation of the Ag-NPs was demonstrated by analysis of UV-vis spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). TEM analysis shows spherical nanoparticles in shape and size between ∼0.5 and 1.4nm. A comparative study was done to determine which concentration was the best reducing-stabilizing agent, and we found out that "ultra-small" nanoparticles (0.5-1.1nm) were obtained with 9.66% w/v of PERA. The size of the Ag-NPs depends on the concentration of PERA and Ag(I). The reaction of formation of "ultra-small" Ag-NPs, proved to be first order for metallic precursor (silver) and second order for reducing-stabilizing agent (PERA). The Ag-NPs showed photocatalytic activity, in degradation of commercial dye with an efficiency of 95%.

  17. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals, and phosphorus relaxation times.

    PubMed

    Cade-Menun, B J; Liu, C W; Nunlist, R; McColl, J G

    2002-01-01

    Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy is an excellent tool with which to study soil organic P, allowing quantitative, comparative analysis of P forms. However, for 31P NMR to be tative, all peaks must be completely visible, and in their correct relative proportions. There must be no line broadening, and adequate delay times must be used to avoid saturation of peaks. The objective of this study was to examine the effects of extractants on delay times and peak saturation. Two samples (a forest litter and a mineral soil sample) and three extractants (0.25 M NaOH, NaOH plus Chelex (Bio-Rad Laboratories, Hercules, CA), and NaOH plus EDTA) were used to determine the differences in the concentration of P and cations solubilized by each extractant, and to measure spin-lattice (T1) relaxation times of P peaks in each extract. For both soil and litter, NaOH-Chelex extracted the lowest concentrations of P. For the litter sample, T1 values were short for all extractants due to the high Fe concentration remaining after extraction. For the soil sample, there were noticeable differences among the extractants. The NaOH-Chelex sample had less Fe and Mn remaining in solution after extraction than the other extractants, and the longest delay times used in the study, 6.4 s, were not long enough for quantitative analysis. Delay times of 1.5 to 2 s for the NaOH and NaOH-EDTA were adequate. Line broadening was highest in the NaOH extracts, which had the highest concentration of Fe. On the basis of these results, recommendations for future analyses of soil and litter samples by solution 31P NMR spectroscopy include: careful selection of an extractant; measurement of paramagnetic ions extracted with P; use of appropriate delay times and the minimum number of scans; and measurement of T1 values whenever possible.

  18. Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference.

    PubMed

    Cacciato, Giuseppe; Bayle, Maxime; Pugliara, Alessandro; Bonafos, Caroline; Zimbone, Massimo; Privitera, Vittorio; Grimaldi, Maria Grazia; Carles, Robert

    2015-08-28

    Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices. PMID:26198669

  19. On the extraction of P11 resonances from πN data

    SciTech Connect

    Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung -Shung; Sato, Toru

    2010-06-22

    With the accuracy of the available P11 amplitudes of πΔ scattering, we show that two resonance poles near the pi Delta threshold, obtained in several analyses, are stable against large variations of parameters within a dynamical coupled-channels analysis. The number of poles in the 1.5 GeV < W < 2 GeV region could be more than one, depending on how the structure of the single-energy solution of SAID is fitted. Lastly, our results indicate the need of more accurate πN scattering data in the W > 1.6 GeV region for high precision resonance extractions.

  20. On the extraction of P11 resonances from πN data

    DOE PAGES

    Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung -Shung; Sato, Toru

    2010-06-22

    With the accuracy of the available P11 amplitudes of πΔ scattering, we show that two resonance poles near the pi Delta threshold, obtained in several analyses, are stable against large variations of parameters within a dynamical coupled-channels analysis. The number of poles in the 1.5 GeV < W < 2 GeV region could be more than one, depending on how the structure of the single-energy solution of SAID is fitted. Lastly, our results indicate the need of more accurate πN scattering data in the W > 1.6 GeV region for high precision resonance extractions.

  1. Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation.

    PubMed

    Centini, Marco; Benedetti, Alessio; Sibilia, Concita; Bertolotti, Mario

    2011-04-25

    We report results of second harmonic generation calculations performed on Silver coupled 2D-nanoresonators. Coupling is responsible for the creation of resonant modes that can be localized on small portions of the structure or distributed over the whole structure. Different field profiles can be obtained by varying the parameters of the input field (i.e. the wavelength). The second harmonic generation nonlinear process is enhanced by the excitation of coupled surface plasmon polaritons. The emitted field is strongly affected by the linear properties of the structure behaving as a nano antenna. We note that different configurations of the pump field lead to different second harmonic far-field emission patterns. Also, we show that the angular emission of the second harmonic field contains information about the spatial location of the pump field hot spots at different frequencies. Applications to a new class of nano sources for single molecule fluorescence and sensors are proposed.

  2. Enhancement of photo-response via surface plasmon resonance induced by Ag nano-particles embedded in ZnO

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Zhang, Jingwen; Chen, Guangde; Ye, Honggang; Duan, Xiangyang; Hou, Xun

    2016-09-01

    Surface plasmon resonance can be exploited to improve the performance of the photodetectors. However, it may cause the increase of dark current as a side effect. The enhancement of responsivity is highly dependent on the device structure involving SPR and the situations of the metal nano-particles. In this paper, we reported the responsivity enhancement of the ZnO UV detectors with SPR based on a structure in which Ag nano-particles are embedded in ZnO film, without the apparent increase of dark current. We found that the characteristic wavelength for SPR absorption is 380 nm, well predicted by Mie theory. And the spectral responsivity peak value increases from 472 mA/W to 10.522 A/W, by 22.3 times. The good matching between enhancement spectra and SPR absorption spectra confirms that the responsivity enhancement is resulted from SPR. Our results are of great importance in improving the photodetectors based on SPR effects, which may be widely used in light detection.

  3. Fabrication of Au- and Ag-SiO2 inverse opals having both localized surface plasmon resonance and Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Erola, Markus O. A.; Philip, Anish; Ahmed, Tanzir; Suvanto, Sari; Pakkanen, Tuula T.

    2015-10-01

    The inverse opal films of SiO2 containing metal nanoparticles can have both the localized surface plasmon resonance (LSPR) of metal nanoparticles and the Bragg diffraction of inverse opal crystals of SiO2, which are very useful properties for applications, such as tunable photonic structures, catalysts and sensors. However, effective processes for fabrication of these films from colloidal particles have rarely been reported. In our study, two methods for preparation of inverse opal films of SiO2 with three different crystal sizes and containing gold or silver nanoparticles (NPs) via self-assembly using electrostatic interactions and capillary forces are reported. The Bragg diffraction of inverse opal films of SiO2 in the presence and absence of the template was measured and predicted on the basis of with UV-vis spectroscopy and scanning electron microscopy. The preparation methods used provided good-quality inverse opal SiO2 films containing highly dispersed, plasmonic AuNPs or AgNPs and having both Bragg diffractions and LSPRs.

  4. Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference

    NASA Astrophysics Data System (ADS)

    Cacciato, Giuseppe; Bayle, Maxime; Pugliara, Alessandro; Bonafos, Caroline; Zimbone, Massimo; Privitera, Vittorio; Grimaldi, Maria Grazia; Carles, Robert

    2015-08-01

    Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices.Silver nanoparticles have been embedded at a few nanometer distance from the free surface of titania/silica multilayers using low energy ion beam synthesis. Transmission electron microscopy shows the presence of 3 nm-sized crystalline particles. Reflectance spectroscopy on these composite substrates shows an increase of the light capture efficiency in the visible range. This behaviour is interpreted as a synergistic effect between plasmon polariton resonance and Fabry-Perot interferences. Plasmon-resonant Raman spectroscopy is deeply used to analyze, on one hand confinement of vibrations and electronic excitations in Ag NPs, and on the other hand coupling of polar TiO2 phonons with injected photo-generated carriers. It is shown how these new Ag/TiO2 nanocomposite films appear as very promising to enhance the efficiency and enlarge the spectral sensitivity of plasmo-electronics devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02406d

  5. Optimization of Fe3O4@Ag nanoshells in magnetic field-enriched surface-enhanced resonance Raman scattering for malaria diagnosis.

    PubMed

    Yuen, Clement; Liu, Quan

    2013-11-01

    The great potential of magnetic field enriched surface enhanced resonance Raman spectroscopy (SERRS) for early malaria diagnosis has been demonstrated previously. This technique is able to detect β-hematin, which is equivalent to a malaria biomarker (hemozoin) in Raman features, at a concentration of 5 nM. In this study, we present the optimization of nanoparticles used in the magnetic field enriched SERRS by tuning the core size and shell thickness of nanoparticles with an iron oxide core and a silver shell (Fe3O4@Ag). The discrete dipole approximation (DDA) model was introduced to investigate the localized electromagnetic field distributions and extinction efficiencies of the aggregate of Fe3O4@Ag and β-hematin, in correlation with their magnetic field enriched SERRS performance. We find that the optimal core-shell size of Fe3O4@Ag leading to the effective aggregation of Fe3O4@Ag and β-hematin under an external magnetic field with superior extinction efficiencies is the key to realize highly augmented Raman signals in this strategy. Furthermore, it is noted that the optimized result differs from the case without the external magnetic field to that with the external magnetic field. Therefore, this work demonstrates experimentally and theoretically the potential of tuning the core-shell Fe3O4@Ag for achieving the efficient magnetic field-enriched SERRS detection of β-hematin for early malaria diagnosis.

  6. Efficient copper vapor laser using metal (Cu, Ag) chlorides in thermal insulation and performance with new prism resonator configurations.

    PubMed

    Singh, Bijendra

    2012-12-01

    A copper vapor laser based on the use of copper chloride and silver chloride mixture embedded inside the laser head thermal insulation is successfully demonstrated. The use of external HCl generator cell containing zirconium chloride normally used for its kinetically enhanced mode of operation is completely eliminated. With this new configuration laser power of ~70 W was achieved from a wide aperture ~47-50 mm bore discharge tube with input power of ~5 kW and overall high efficiency of ~1.4% without external supply of HCl vapors to the laser head. In a typical operational cycle the laser initially operates as low temperature CuCl laser with startup time of few minutes and output power of ~10 W during low tube temperature range of ~300-500 °C. Thereafter, the laser transforms itself into efficient kinetically enhanced copper vapor laser (CVL) at high temperature range of ~1200-1600 °C with maximum laser output power of ~70 W. This dual mode of operation observed in a single CVL system is unique and has not been reported so far in any high temperature copper vapor laser. New resonator configurations, namely, the prism resonator in stable and unstable form are successfully demonstrated for the first time in a copper vapor laser to achieve low divergence beam with dramatic increase in misalignment tolerance to ~25 mrad, which is an improvement of about ~50 times compared to standard CVLs with conventional spherical or plane-plane resonators. With these new resonator configurations the CVL functions almost as an "alignment free laser" system with significantly reduced beam divergence of ~0.2 mrad and high optical extraction efficiency of ~70%-80%. PMID:23277966

  7. Efficient copper vapor laser using metal (Cu, Ag) chlorides in thermal insulation and performance with new prism resonator configurations.

    PubMed

    Singh, Bijendra

    2012-12-01

    A copper vapor laser based on the use of copper chloride and silver chloride mixture embedded inside the laser head thermal insulation is successfully demonstrated. The use of external HCl generator cell containing zirconium chloride normally used for its kinetically enhanced mode of operation is completely eliminated. With this new configuration laser power of ~70 W was achieved from a wide aperture ~47-50 mm bore discharge tube with input power of ~5 kW and overall high efficiency of ~1.4% without external supply of HCl vapors to the laser head. In a typical operational cycle the laser initially operates as low temperature CuCl laser with startup time of few minutes and output power of ~10 W during low tube temperature range of ~300-500 °C. Thereafter, the laser transforms itself into efficient kinetically enhanced copper vapor laser (CVL) at high temperature range of ~1200-1600 °C with maximum laser output power of ~70 W. This dual mode of operation observed in a single CVL system is unique and has not been reported so far in any high temperature copper vapor laser. New resonator configurations, namely, the prism resonator in stable and unstable form are successfully demonstrated for the first time in a copper vapor laser to achieve low divergence beam with dramatic increase in misalignment tolerance to ~25 mrad, which is an improvement of about ~50 times compared to standard CVLs with conventional spherical or plane-plane resonators. With these new resonator configurations the CVL functions almost as an "alignment free laser" system with significantly reduced beam divergence of ~0.2 mrad and high optical extraction efficiency of ~70%-80%.

  8. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions.

    PubMed

    Sidorov, A; Dorf, M; Zorin, V; Bokhanov, A; Izotov, I; Razin, S; Skalyga, V; Rossbach, J; Spädtke, P; Balabaev, A

    2008-02-01

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be approximately 70 pi mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was approximately 25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.

  9. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    SciTech Connect

    Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.

    2008-02-15

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.

  10. Cryogenic resonant microwave compressors with energy extraction through "warm" interference switches

    NASA Astrophysics Data System (ADS)

    Artemenko, S. N.; Samoilenko, G. M.; Shlapakovski, A. S.; Yushkov, Yu. G.

    2016-01-01

    A method of switching cryogenic resonant microwave compressors from the energy accumulation mode to the energy release mode is proposed and analyzed. The switching process is based on the resonant transfer of the microwave energy from a cryogenic storage cavity to a room temperature commutation cavity. The transfer can be realized using a cascade interference microwave switch weakly coupled to the storage cavity and consisting of two H-plane waveguide tees connected in series. The tees are made of a normally conducting material, located outside the cryostat, and contain commuting units in shorted side arms. The length of the cascade input arm (from the storage cavity to the first tee) is non-resonant, while the space between the storage cavity and the second tee is resonant. The weak coupling of the storage cavity to the cascade and the non-resonant length of its input arm allow one to minimize losses during the energy accumulation phase. When the commuting unit in the first tee is ignited, the tee opens, and the non-resonant volume of the cascade input arm is transformed into the volume of the resonant commutation cavity. The microwave energy is then transferred in a resonant way from the storage cavity to the commutation cavity, and when the transfer is complete, the commuting unit in the second tee is ignited to extract the energy into a load. It is shown analytically that, at a certain value of the coupling (the cryogenic storage cavity to the normally conducting cascade of tees) and length of the cascade input arm, the power gain in the storage cavity can be kept high. It is also shown that the energy accumulated in the storage cavity can be effectively transferred to the commutation cavity and from the commutation cavity to the load.

  11. Extraction of $P_{11}$ Resonance from piN Data and Its Stability

    SciTech Connect

    Satoshi Nakamura

    2011-10-01

    We address a question about how much resonance poles and residues extracted from data depend on a model used for the extraction, and on the precision of data. We focus on the P{sub 11} {pi}-N scattering and use the dynamical coupled-channel (DCC) model developed in Excited Baryon Analysis Center (EBAC) at JLab. We examine the model-dependence of the poles by varying parameters largely within the EBAC-DCC model. We find that two poles associated with the Roper resonance are fairly stable against the variation. We also study the stability of the Roper poles against different analytic structure of the P{sub 11} amplitude below {pi}-N threshold by using a bare nucleon model. We again find a good stability of the Roper poles.

  12. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  13. Physical Design and Dynamical Analysis of Resonant-Antiresonant Ag/MgO/GaSe/Al Optoelectronic Microwave Devices

    NASA Astrophysics Data System (ADS)

    Kmail, Renal R. N.; Qasrawi, A. F.

    2015-11-01

    In this work, the design and optical and electrical properties of MgO/GaSe heterojunction devices are reported and discussed. The device was designed using 0.4- μm-thick n-type GaSe as substrate for a 1.6- μm-thick p-type MgO optoelectronic window. The device was characterized by means of ultraviolet-visible optical spectrophotometry in the wavelength region from 200 nm to 1100 nm, current-voltage ( I- V) characteristics, impedance spectroscopy in the range from 1.0 MHz to 1.8 GHz, and microwave amplitude spectroscopy in the frequency range from 1.0 MHz to 3.0 GHz. Optical analysis of the MgO/GaSe heterojunction revealed enhanced absorbing ability of the GaSe below 2.90 eV with an energy bandgap shift from 2.10 eV for the GaSe substrate to 1.90 eV for the heterojunction design. On the other hand, analysis of I- V characteristics revealed a tunneling-type device conducting current by electric field-assisted tunneling of charged particles through a barrier with height of 0.81 eV and depletion region width of 670 nm and 116 nm when forward and reverse biased, respectively. Very interesting features of the device are observed when subjected to alternating current (ac) signal analysis. In particular, the device exhibited resonance-antiresonance behavior and negative capacitance characteristics near 1.0 GHz. The device quality factor was ˜102. In addition, when a small ac signal of Bluetooth amplitude (0.0 dBm) was imposed between the device terminals, the power spectra of the device displayed tunable band-stop filter characteristics with maximum notch frequency of 1.6 GHz. The energy bandgap discontinuity, the resonance-antiresonance behavior, the negative capacitance features, and the tunability of the electromagnetic power spectra at microwave frequencies nominate the Ag/MgO/GaSe/Al device as a promising optoelectronic device for use in multipurpose operations at microwave frequencies.

  14. Position-dependent property of resonant dipole—dipole interaction mediated by localized surface plasmon of an Ag nanosphere

    NASA Astrophysics Data System (ADS)

    Xu, Dan; Wang, Xiao-Yun; Huang, Yong-Gang; Ouyang, Shi-Liang; He, Hai-Long; He, Hao

    2015-02-01

    We use the photon Green-function method to study the quantum resonant dipole-dipole interaction (RDDI) induced by an Ag nanosphere (ANP). As the distance between the two dipoles increases, the RDDI becomes weaker, which is accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode. Across a broad frequency range (above 0.05 eV), the transfer rate of the RDDI is nearly constant since the two dipoles are fixed at the proper position. In addition, this phenomenon still exists for slightly different radius of the ANPs. We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole as the other dipole and the ANP are kept fixed. In addition, the radius of ANP has little effect on this. When the two dipoles are far from the ANP, the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode. In contrast, when the two dipoles are close to the ANP, the higher-order modes come into effect and they will play a leading role in the RDDI if they match the transition frequency of the dipole. Our results may be used in a biological detector and have a certain guiding significance for further application. Project supported by the National Natural Science Foundation of China (Grant Nos. 11347215, 11464014, and 11104113), the Natural Science Foundation of Hunan Province, China (Grant Nos. 13JJ6059 and 13JJB015), and the Natural Science Foundation of Education Department of Hunan Province, China (Grant Nos. 13C750 and 13B091).

  15. Template-free fabrication of Ag nanowire arrays/Al2O3 assembly with flexible collective longitudinal-mode resonance and ultrafast nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Hui, Shuai; Gao, Junhua; Wu, Xingzhi; Li, Zhongguo; Zou, Yousheng; Song, Yinglin; Cao, Hongtao

    2016-06-01

    We utilized a co-sputtering technique without any templates, featuring growing and etching synchronously, to delicately fabricate dense and ultrafine Ag nanowire arrays/alumina matrix composite films. Both the diameter and separation distance of the Ag nanowire arrays in the composites are not only within the scope of sub-10 nm but also tunable, which is very hard to accomplish for the conventional optical lithography- or template-based method. It is exhibited that the collective longitudinal plasmon resonance of the composite films, covering a wide range from visible to the near infrared region, is extremely sensitive to the geometrical parameters of the Ag nanowires, owing to the strong plasmonic coupling among neighboring nanowires. The experimental observations were also theoretically supported by the near-field electromagnetic numerical simulation. More interestingly, the fabricated composite films demonstrated ultrafast nonlinear optical response in the visible light region under femtosecond laser excitation, possessing a short relaxation time of 1.45 ps for the longitudinal mode (L mode) resonance. These results indicate that the proposed composite films as a building block with exotic optical properties could provide an opportunity to construct integrated nanodevices for plasmonic optical applications.

  16. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.

    PubMed

    Zhou, F Y; Qiu, K J; Li, H F; Huang, T; Wang, B L; Li, L; Zheng, Y F

    2013-12-01

    In this study, the microstructures, mechanical properties, corrosion behaviors, in vitro cytocompatibility and magnetic susceptibility of Zr-1X alloys with various alloying elements, including Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi, were systematically investigated to explore their potential use in biomedical applications. The experimental results indicated that annealed Zr-1X alloys consisted entirely or primarily of α phase. The alloying elements significantly increased the strength and hardness of pure Zr and had a relatively slight influence on elastic modulus. Ru was the most effective enhancing element and Zr-1Ru alloy had the largest elongation. The results of electrochemical corrosion indicated that adding various elements to Zr improved its corrosion resistance, as indicated by the reduced corrosion current density. The extracts of the studied Zr-1X alloys produced no significant deleterious effects on osteoblast-like cells (MG 63), indicating good in vitro cytocompatibility. All except for Zr-1Ag alloy showed decreased magnetic susceptibility compared to pure Zr, and Zr-1Ru alloy had the lowest magnetic susceptibility value, being comparable to that of α' phase Zr-Mo alloy and Zr-Nb alloy and far lower than that of Co-Cr alloy and Ti-6Al-4V alloy. Among the experimental Zr-1X alloys, Zr-1Ru alloy possessing high strength coupled with good ductility, good in vitro cytocompatibility and low magnetic susceptibility may be a good candidate alloy for medical devices within a magnetic resonance imaging environment.

  17. A simple method for extracting material parameters of multilayered MEMS structures using resonance frequency measurements

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Zhou, Zai-Fa; Li, Wei-Hua; Huang, Qing-An

    2014-07-01

    Multilayered structures are increasingly used in MEMS. Based on the resonant frequency of the doubly-clamped multilayered beam, the Young’s modulus and residual stress for an individual layer have been measured by designing beam test structures for each layer with different widths. Taking into account the buckling or no buckling problem of the multilayered beam, this paper introduces a model for the resonant frequency of the beam. An approach to extract the Young’s modulus and residual stress for the individual layer is developed. The validity of this approach has been studied using finite element modeling. As a multilayered example, test structures for a gold/polysilicon bilayer beam were fabricated. A scanning laser Doppler vibrometer system was used to measure the resonant frequency of the beam. The extracted parameters are that the average value of Young’s modulus of polysilicon and gold are 133.7 GPa and 78.6 GPa with standard deviation being 4.2 GPa and 11.5 GPa, respectively; the average value of residual stress of polysilicon and gold are 13.9 MPa (compressive) and 19.7 MPa (tensile) with standard deviation being 0.47 MPa and 4.4 MPa, respectively.

  18. Investigation of magnetic field enriched surface enhanced resonance Raman scattering performance using Fe3O4@Ag nanoparticles for malaria diagnosis

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2014-03-01

    Recently, we have demonstrated the magnetic field-enriched surface-enhanced resonance Raman spectroscopy (SERRS) of β-hematin by using nanoparticles with iron oxide core and silver shell (Fe3O4@Ag) for the potential application in the early malaria diagnosis. In this study, we investigate the dependence of the magnetic field-enriched SERRS performance of β-hematin on the different core and shell sizes of the Fe3O4@Ag nanoparticles. We note that the core and shell parameters are critical in the realization of the optimal magnetic field-enrich SERRS β-hematin signal. These results are consistent with our simulations that will guide the optimization of the magnetic SERRS performance for the potential early diagnosis in the malaria disease.

  19. A novel green synthesis of Fe3O4-Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prathima, B.; Anitha, K.; Jyothi, N. V. V.

    2015-01-01

    We described a novel and eco-friendly method for preparing Fe3O4-Ag core shell nanoparticles (CSNPs) with high magnetism and potent antibacterial activity. The Fe3O4-Ag CSNPs were obtained using waste material of Vitis vinifera (grape) stem extract as the green solvent, reducing and capping agent. The result recorded from X-ray powder diffraction (XRD), UV-vis spectrum, energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) supports the biosynthesis and characterization of Fe3O4-Ag CSNPs. From transmission electron microscopy (TEM) the size of the Fe3O4-Ag nanoparticles was measured below 50 nm; high-resolution TEM (HRTEM) indicates the core shell structure; and selected area electron diffraction (SAED) has revealed polycrystalline nature. Vibrating sample magnetometer (VSM) shows the ferromagnetic nature of Fe3O4-Ag CSNPs at room temperature with saturation magnetization of 15.74 emu/g. Further, these biogenic nanoparticles were highly hazardous to microorganisms. The antibacterial activity of biogenic Fe3O4-Ag CSNPs showed potent inhibitory activity against both Gram-positive and Gram-negative pathogens. These nanoparticles may also be reusable because of its excellent ferromagnetic property.

  20. Effect of Sugar Beet Variety and Nonhost Plant on Rhizoctonia solani AG2-2IIIB Soil Inoculum Potential Measured in Soil DNA Extracts.

    PubMed

    Schulze, Sascha; Koch, Heinz-Josef; Märländer, Bernward; Varrelmann, Mark

    2016-09-01

    A direct soil DNA extraction method from soil samples (250 g) was applied for detection of the soilborne sugar-beet-infecting pathogen Rhizoctonia solani anastomosis group (AG) 2-2IIIB using a newly developed real-time polymerase chain reaction assay that showed specificity to AG2-2IIIB when tested against various R. solani AG. The assay showed a good relation between cycle threshold and amount of AG2-2IIIB sclerotia detected in three spiked field soils and was also able to detect the pathogen in naturally infested field soil samples. A field trial was conducted to quantify R. solani AG2-2IIIB soil inoculum potential (IP) before and after growing a susceptible and a resistant sugar beet variety as well as after subsequent growth of an expected nonhost winter rye. Plants of the susceptible sugar beet variety displayed a higher disease severity. A more than sixfold increase of the R. solani AG2-2IIIB soil IP was observed in contrast to the resistant variety that resulted in a constant IP. Growing winter rye significantly reduced soil IP to the initial level at sowing. Further research is required to better understand the interaction between disease occurrence and soil IP as well as the environmental influence on IP development.

  1. Effect of Sugar Beet Variety and Nonhost Plant on Rhizoctonia solani AG2-2IIIB Soil Inoculum Potential Measured in Soil DNA Extracts.

    PubMed

    Schulze, Sascha; Koch, Heinz-Josef; Märländer, Bernward; Varrelmann, Mark

    2016-09-01

    A direct soil DNA extraction method from soil samples (250 g) was applied for detection of the soilborne sugar-beet-infecting pathogen Rhizoctonia solani anastomosis group (AG) 2-2IIIB using a newly developed real-time polymerase chain reaction assay that showed specificity to AG2-2IIIB when tested against various R. solani AG. The assay showed a good relation between cycle threshold and amount of AG2-2IIIB sclerotia detected in three spiked field soils and was also able to detect the pathogen in naturally infested field soil samples. A field trial was conducted to quantify R. solani AG2-2IIIB soil inoculum potential (IP) before and after growing a susceptible and a resistant sugar beet variety as well as after subsequent growth of an expected nonhost winter rye. Plants of the susceptible sugar beet variety displayed a higher disease severity. A more than sixfold increase of the R. solani AG2-2IIIB soil IP was observed in contrast to the resistant variety that resulted in a constant IP. Growing winter rye significantly reduced soil IP to the initial level at sowing. Further research is required to better understand the interaction between disease occurrence and soil IP as well as the environmental influence on IP development. PMID:27143412

  2. Polarizability extraction for rapid computation of Fano resonance in nanoring lattices

    NASA Astrophysics Data System (ADS)

    Forcherio, Gregory T.; DeJarnette, Drew; Blake, Phillip; Roper, D. Keith

    2014-09-01

    Rapid modeling of far-field Fano resonance supported by lattices of complex nanostructures is possible with the coupled dipole approximation (CDA) using point, dipole polarizability extrapolated from a higher order discrete dipole approximation (DDA). Fano resonance in nanostructured metamaterials has been evaluated with CDA for spheroids, for which an analytical form of particle polarizability exists. For complex structures with non-analytic polarizability, such as rings, higher order electrodynamic solutions must be employed at the cost of computation time. Point polarizability is determined from the DDA by summing individual polarizable volume elements from the modeled structure. Extraction of single nanoring polarizability from DDA permitted CDA analysis of nanoring lattices with a 40,000-fold reduction in computational time over 1000 wavelengths. Maxima and minima of predicted Fano resonance energies were within 1% of full volume elements using the DDA. This modeling technique is amenable to other complex nanostructures which exhibit primarily dipolar and/or quadrupolar resonance behavior. Rapid analysis of coupling between plasmons and photon diffraction modes in lattices of nanostructures supports design of plasmonic enhancements in sustainable energy and biomedical devices.

  3. Extracting Information about the Rotator Cuff from Magnetic Resonance Images Using Deterministic and Random Techniques

    PubMed Central

    De Los Ríos, F. A.; Paluszny, M.

    2015-01-01

    We consider some methods to extract information about the rotator cuff based on magnetic resonance images; the study aims to define an alternative method of display that might facilitate the detection of partial tears in the supraspinatus tendon. Specifically, we are going to use families of ellipsoidal triangular patches to cover the humerus head near the affected area. These patches are going to be textured and displayed with the information of the magnetic resonance images using the trilinear interpolation technique. For the generation of points to texture each patch, we propose a new method that guarantees the uniform distribution of its points using a random statistical method. Its computational cost, defined as the average computing time to generate a fixed number of points, is significantly lower as compared with deterministic and other standard statistical techniques. PMID:25650281

  4. Optical extraction efficiency in lasers with high Fresnel number confocal unstable resonators.

    PubMed

    Chernin, D P

    1979-11-01

    Using the formulation of Moore and McCarthy for the equation describing the dominant mode in a positive branch confocal unstable resonator in the geometrical optics limit and a simple two-level kinetics model, we analyze the dependence of the optical extraction efficiency (eta) on resonator magnification (M), length (L), small signal gain (go), and (nonsaturable) background absorption (alpha). The model has cylindrical symmetry and spatially uniform small signal gain, absorption, and index of refraction. For fixed gamma= g(0)/alpha and M, a value of g(0)L that maximizes eta is found. For different gamma, the maximum obtainable value of al is found to be independent of M and to depend upon gamma in a simple way. PMID:20216651

  5. An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe

    2014-01-01

    A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.

  6. The negative effect of soy extract on erythrocyte membrane fluidity: an electron paramagnetic resonance study.

    PubMed

    Ajdžanović, Vladimir; Spasojević, Ivan; Sošić-Jurjević, Branka; Filipović, Branko; Trifunović, Svetlana; Sekulić, Milka; Milošević, Verica

    2011-02-01

    A decrease of erythrocyte membrane fluidity can contribute to the pathophysiology of hypertension. Soy products, which are used as alternative therapeutics in some cardiovascular conditions, contain various isoflavones (genistein, daidzein, and their glucosides, genistin and daidzin), which can incorporate cellular membrane and change its fluidity. The aim of this study was to examine the effects of soy extract (which generally corresponds to the soy products of isoflavone composition) on erythrocyte membrane fluidity at graded depths. We used electron paramagnetic resonance spectroscopy and fatty acid spin probes (5-DS and 12-DS), the spectra of which are dependent on membrane fluidity. After being treated with soy extract, erythrocytes showed a significant (P = 0.016) decrease of membrane fluidity near the hydrophilic surface, while there were no significant changes of fluidity in deeper hydrophobic membrane regions. These results suggest that soy products containing high levels of genistein and isoflavone glucosides may not be suitable for use in hypertension because they decrease erythrocyte membrane fluidity.

  7. Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability

    NASA Astrophysics Data System (ADS)

    DeJarnette, Drew; Blake, Phillip; Forcherio, Gregory T.; Keith Roper, D.

    2014-01-01

    Coupling and extinction of light among particles representable as point dipoles can be characterized using the coupled dipole approximation (CDA). The analytic form for dipole polarizability of spheroidal particles supports rapid electrodynamic analysis of nanoparticle lattices using CDA. However, computational expense increases for complex shapes with non-analytical polarizabilities which require discrete dipole (DDA) or higher order approximations. This work shows fast CDA analysis of assembled nanorings is possible using a single dipole nanoring polarizability extrapolated from a DDA calculation by summing contributions from individual polarizable volume elements. Plasmon resonance wavelengths of nanorings obtained using extracted polarizabilities blueshift as wall dimensions-to-inner radius aspect ratio increases, consistent with published theory and experiment. Calculated far-field Fano resonance energy maximum and minimum wavelengths were within 1% of full volume element results. Considering polarizability allows a more complete physical picture of predicting plasmon resonance location than metal dielectric alone. This method reduces time required for calculation of diffractive coupling more than 40 000-fold in ordered nanoring systems for 400-1400 nm incident wavelengths. Extension of this technique beyond nanorings is possible for more complex shapes that exhibit dipolar or quadrupole radiation patterns.

  8. Reducing Strength Prevailing at Root Surface of Plants Promotes Reduction of Ag+ and Generation of Ag0/Ag2O Nanoparticles Exogenously in Aqueous Phase

    PubMed Central

    Pardha-Saradhi, Peddisetty; Yamal, Gupta; Peddisetty, Tanuj; Sharmila, Peddisetty; Nagar, Shilpi; Singh, Jyoti; Nagarajan, Rajamani; Rao, Kottapalli S.

    2014-01-01

    Potential of root system of plants from wide range of families to effectively reduce membrane impermeable ferricyanide to ferrocyanide and blue coloured 2,6-dichlorophenol indophenol (DCPIP) to colourless DCPIPH2 both under non-sterile and sterile conditions, revealed prevalence of immense reducing strength at root surface. As generation of silver nanoparticles (NPs) from Ag+ involves reduction, present investigations were carried to evaluate if reducing strength prevailing at surface of root system can be exploited for reduction of Ag+ and exogenous generation of silver-NPs. Root system of intact plants of 16 species from 11 diverse families of angiosperms turned clear colorless AgNO3 solutions, turbid brown. Absorption spectra of these turbid brown solutions showed silver-NPs specific surface plasmon resonance peak. Transmission electron microscope coupled with energy dispersive X-ray confirmed the presence of distinct NPs in the range of 5–50 nm containing Ag. Selected area electron diffraction and powder X-ray diffraction patterns of the silver NPs showed Bragg reflections, characteristic of crystalline face-centered cubic structure of Ag0 and cubic structure of Ag2O. Root system of intact plants raised under sterile conditions also generated Ag0/Ag2O-NPs under strict sterile conditions in a manner similar to that recorded under non-sterile conditions. This revealed the inbuilt potential of root system to generate Ag0/Ag2O-NPs independent of any microorganism. Roots of intact plants reduced triphenyltetrazolium to triphenylformazon and impermeable ferricyanide to ferrocyanide, suggesting involvement of plasma membrane bound dehydrogenases in reduction of Ag+ and formation of Ag0/Ag2O-NPs. Root enzyme extract reduced triphenyltetrazolium to triphenylformazon and Ag+ to Ag0 in presence of NADH, clearly establishing potential of dehydrogenases to reduce Ag+ to Ag0, which generate Ag0/Ag2O-NPs. Findings presented in this manuscript put forth a novel, simple

  9. Tracking Simulation of Third-Integer Resonant Extraction for Fermilab's Mu2e Experiment

    SciTech Connect

    Park, Chong Shik; Amundson, James; Michelotti, Leo

    2015-02-13

    The Mu2e experiment at Fermilab requires acceleration and transport of intense proton beams in order to deliver stable, uniform particle spills to the production target. To meet the experimental requirement, particles will be extracted slowly from the Delivery Ring to the external beamline. Using Synergia2, we have performed multi-particle tracking simulations of third-integer resonant extraction in the Delivery Ring, including space charge effects, physical beamline elements, and apertures. A piecewise linear ramp profile of tune quadrupoles was used to maintain a constant averaged spill rate throughout extraction. To study and minimize beam losses, we implemented and introduced a number of features, beamline element apertures, and septum plane alignments. Additionally, the RF Knockout (RFKO) technique, which excites particles transversely, is employed for spill regulation. Combined with a feedback system, it assists in fine-tuning spill uniformity. Simulation studies were carried out to optimize the RFKO feedback scheme, which will be helpful in designing the final spill regulation system.

  10. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  11. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source.

    PubMed

    Spädtke, P; Lang, R; Mäder, J; Maimone, F; Rossbach, J; Tinschert, K

    2012-02-01

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  12. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    NASA Astrophysics Data System (ADS)

    Roychowdhury, P.; Mishra, L.; Kewlani, H.; Patil, D. S.; Mittal, K. C.

    2014-03-01

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10-3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  13. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  14. R_transport_matrices of the Fast Extraction Beam (FEB) of the AGS, and Beam Parameters at the Starting point of the AtR Line

    SciTech Connect

    Tsoupas,N.; MacKay, W.W.; Satogata, T.; Glenn, W.; Ahrens, L.; Brown, K.; Gardner, C.; Tanaka, S.

    2008-01-01

    As part of the task to improve and further automate the 'AtR BPM Application' we provide the theoretically calculated R-transport-matrices for the following beam line sections, which are shown schematically in Figure 1: (a) the Fast Extraction Beam section (FEB) of the AGS synchrotron. The FEB section starts at the middle of the GlO-kicker and ends at the middle of the H1 0{_}septum. (b) the Drift Extraction Channel (DEC) section of the AGS synchrotron. The DEC section starts at the middle of the H10{_}septum, continues along the fringe field region of the H11,H12, and H13 AGS main magnets, and ends at the starting point of the AtR line. The knowledge of these R-transport-matrices are needed in order to calculate the beam parameters at the beginning of the AtR line, which in turn, are required to calculate the magnet settings of the U{_}line, that match the U{_}line into the W{_}line. Also by incorporating these R{_}matrices into the model of the AtR line, the G10 kicker and the H10 septum are included in the AtR model therefore one can investigate any 'jitter' of either the GlO{_}kicker or HlO{_}septum by looking at the trajectory of the beam in the AtR line.

  15. Effective approach to strengthen plasmon resonance localized on top surfaces of Ag nanoparticles and application in surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhan, Zhibing; Xu, Rui; Zheng, Xianzheng; Fu, Qun; Wu, Minghong; Lei, Yong

    2016-11-01

    The spatial distribution of localized surface plasmon resonance (LSPR) plays a key role in many plasmonic applications. Based on the thermal stability of alumina templates, this work reports a novel approach to manipulate the distribution of LSPR and exhibits its significance for an important plasmonic application, the surface-enhanced Raman spectroscopy (SERS). A suitable thermal annealing sharpens the edges in top surfaces (far from the substrates) of Ag nanoparticles, which significantly strengthens the distal mode (DM) with the LSPR excited on the top surfaces. Because the top surface is the major place to adsorb probe molecules, this manipulation greatly improves the detection sensitivity of SERS. Our research provides a new way to improve the sensitivity of SERS, which also indicates that great care has to be taken on special LSPR mode which is largely responsible for a certain plasmonic application (e.g., the DM for SERS although it is not the major mode).

  16. Effective approach to strengthen plasmon resonance localized on top surfaces of Ag nanoparticles and application in surface-enhanced Raman spectroscopy.

    PubMed

    Zhan, Zhibing; Xu, Rui; Zheng, Xianzheng; Fu, Qun; Wu, Minghong; Lei, Yong

    2016-11-01

    The spatial distribution of localized surface plasmon resonance (LSPR) plays a key role in many plasmonic applications. Based on the thermal stability of alumina templates, this work reports a novel approach to manipulate the distribution of LSPR and exhibits its significance for an important plasmonic application, the surface-enhanced Raman spectroscopy (SERS). A suitable thermal annealing sharpens the edges in top surfaces (far from the substrates) of Ag nanoparticles, which significantly strengthens the distal mode (DM) with the LSPR excited on the top surfaces. Because the top surface is the major place to adsorb probe molecules, this manipulation greatly improves the detection sensitivity of SERS. Our research provides a new way to improve the sensitivity of SERS, which also indicates that great care has to be taken on special LSPR mode which is largely responsible for a certain plasmonic application (e.g., the DM for SERS although it is not the major mode).

  17. Effective approach to strengthen plasmon resonance localized on top surfaces of Ag nanoparticles and application in surface-enhanced Raman spectroscopy.

    PubMed

    Zhan, Zhibing; Xu, Rui; Zheng, Xianzheng; Fu, Qun; Wu, Minghong; Lei, Yong

    2016-11-01

    The spatial distribution of localized surface plasmon resonance (LSPR) plays a key role in many plasmonic applications. Based on the thermal stability of alumina templates, this work reports a novel approach to manipulate the distribution of LSPR and exhibits its significance for an important plasmonic application, the surface-enhanced Raman spectroscopy (SERS). A suitable thermal annealing sharpens the edges in top surfaces (far from the substrates) of Ag nanoparticles, which significantly strengthens the distal mode (DM) with the LSPR excited on the top surfaces. Because the top surface is the major place to adsorb probe molecules, this manipulation greatly improves the detection sensitivity of SERS. Our research provides a new way to improve the sensitivity of SERS, which also indicates that great care has to be taken on special LSPR mode which is largely responsible for a certain plasmonic application (e.g., the DM for SERS although it is not the major mode). PMID:27669458

  18. Determination of weight distribution ratios of Pa(V) and Np(V) with some extraction chromatography resins and the AG1-X8 resin.

    PubMed

    Mendes, M; Aupiais, J; Jutier, C; Pointurier, F

    2013-05-30

    Literature data on distribution ratios (Dw) of Np(V) and Pa(V) for the AG1-X8 resin are scarce whereas those related on resin capacity factors (k') values for TEVA, TRU and U/TEVA resins are absent. Therefore, batch extraction experiments for Pa(V) and Np(V) from HCl and HNO3 media were realized, at tracer scale, with AG1-X8 and EIChroM resins (TEVA, TRU and U/TEVA). Based on the new Dw and k' values obtained in this study, a new protocol for Pa/Np separation has been developed leading to a better separation factor of 10(5) and a chemical yield of 97±3% and 99±1% for Pa and Np, respectively. A separation of (231)Pa from uranium matrix was successfully tested.

  19. Determination of weight distribution ratios of Pa(V) and Np(V) with some extraction chromatography resins and the AG1-X8 resin.

    PubMed

    Mendes, M; Aupiais, J; Jutier, C; Pointurier, F

    2013-05-30

    Literature data on distribution ratios (Dw) of Np(V) and Pa(V) for the AG1-X8 resin are scarce whereas those related on resin capacity factors (k') values for TEVA, TRU and U/TEVA resins are absent. Therefore, batch extraction experiments for Pa(V) and Np(V) from HCl and HNO3 media were realized, at tracer scale, with AG1-X8 and EIChroM resins (TEVA, TRU and U/TEVA). Based on the new Dw and k' values obtained in this study, a new protocol for Pa/Np separation has been developed leading to a better separation factor of 10(5) and a chemical yield of 97±3% and 99±1% for Pa and Np, respectively. A separation of (231)Pa from uranium matrix was successfully tested. PMID:23680558

  20. Assignment of Milk Fat Fatty Acid Propyl Esters by GC-FID Analysis with the Aid of Ag-ion Solid-phase Extraction.

    PubMed

    Sasaki, Ryo; Umezawa, Masatoshi; Tsukahara, Satoru; Ishiguro, Takashi; Sato, Shinichi; Watanabe, Yomi

    2015-01-01

    The recovery of short-chain fatty acids (FAs) in milk fat (MF) is improved when the analysis of the FA composition of MF by gas chromatography (GC) is conducted with the propyl or butyl ester derivatives, instead of the methyl esters. However, this approach complicates the detection of minor FAs, such as the minor positional isomers of 16:1, which represent <0.2% of the total content. In addition, the standards of these minor esters are not commercially available. In this study, with the aim to identify minor FAs, the fatty acid propyl esters (FAPEs) of MF were fractionated by Ag-ion solid phase extraction (Ag(+)-SPE) and analyzed by GC using a DB-23 capillary column. FAPEs were successfully fractionated mainly according to the degree of unsaturation by adjusting the elution conditions of the Ag(+)-SPE, and the minor FAPEs were easily determined without the aid of standard compounds. For example, by comparison of the GC profile of the saturated Ag(+)-SPE fraction with that of the original MF, minor FAs, such as iso-, anteiso-, and saturated FAs of 15:0 and 17:0, were expected to be eluted in this order. In addition, 16:1 propyl ester was co-eluted with iso 17:0 propyl ester under the GC conditions used in this study, as confirmed by the detection of the corresponding molecular ions (296 and 312, respectively) by GC-MS. Moreover, 9c,11t-conjugated linoleic acid was found to elute between 18:3 and 20:0. To the best of our knowledge, this is the first report suggesting that the peak observed before that of cis-12:1 corresponds to trans-12:1. In conclusion, Ag(+)-SPE fractionation of FAPEs contributed to the identification of minor FAs in MF without the use of standard compounds.

  1. Exploiting jump-resonance hysteresis in silicon auditory front-ends for extracting speaker discriminative formant trajectories.

    PubMed

    Aono, Kenji; Shaga, Ravi K; Chakrabartty, Shantanu

    2013-08-01

    Jump-resonance is a phenomenon observed in non-linear circuits where the amplitude of the output signal exhibits an abrupt jump when the frequency of the input signal is varied. For [Formula: see text] filters used in the design of analog auditory front-ends (AFEs), jump-resonance is generally considered to be undesirable and several techniques have been proposed in literature to avoid or alleviate this artifact. In this paper we explore the use of jump-resonance based hysteresis in [Formula: see text] band-pass filters for encoding speech formant trajectories. Using prototypes of silicon AFEs fabricated in a 0.5 μm CMOS process, we demonstrate the benefits of the proposed approach for extracting speaker discriminative features. These benefits are validated using speaker recognition experiments where consistent improvements in equal-error-rates (EERs) are achieved using the jump-resonance based features as compared to conventional features.

  2. Ion beam extraction from electron cyclotron resonance ion sources and the subsequent low energy beam transport

    NASA Astrophysics Data System (ADS)

    Winklehner, Daniel

    Electron Cyclotron Resonance Ion Sources (ECRIS) are capable of delivering high currents of Highly Charged Ions (HCIs) to heavy ion accelerators (e.g.: to the future FRIB). The use of a sextupole magnet for confinement of the plasma inside the source imposes a unique triangular structure on the beam. This, together with the multitude of ion species that are extracted at the same time and the high axial magnetic field at the plasma aperture, resulting from additional confining solenoids, make the simulation and design of ECRIS extraction systems particularly challenging. The first objective of this thesis was to refine and test a semi-empirical simulation model of the formation and extraction of HCIs from ECR ion sources as well as their transport through the subsequent Low Energy Beam Transport (LEBT) system. To this end, a set of utility functions was written to simplify performing the simulations. In the LEBT system, another interesting, yet so far unanswered, question arises: The influence of space-charge effects on the beam and the level of space-charge compensation in the ECRIS beam line. This interesting topic quickly became the second main objective of the thesis. A Retarding Field Analyzer (RFA) was built and systematic measurements of the neutralization level in ECRIS LEBT systems were done for the first time as part of this thesis (this intensity and pressure regime was previously not well explored). The measured neutralization levels for typical ECRIS beams were found to be between 0% and 50% and agreed reasonably well with a simple formula developed by Gabovich et al. for highly neutralized proton and H- beams after it was re-derived and extended in this thesis for low neutralization and multiple species. Preliminary tests of the refined and integrated simulation model for the ECR ion sources VENUS and SuSI and their respective low energy beam transport systems include comparisons of measured beam currents, cross sections and emittances with the

  3. Investigation of soil vapor extraction mechanisms using magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Chu, Y.; Werth, C. J.; Valocchi, A. J.; Webb, A. G.

    2003-04-01

    Results from soil vapor extraction models have shown that mass removal rates for nonaqueous phase liquids are controlled by volatilization rates, vapor phase diffusion from unswept zones of low permeability, and/or diffusion through water-filled regions of the pore space. To test these findings magnetic resonance imaging (MRI) was used to measure the location and saturation of the nonaqueous phase liquid, decane, in columns packed with either uniform grain silica gel or a fine grain core surrounded by a coarse grain shell. Columns were first saturated with water, then drained under a constant suction head to residual water saturation. Next, columns were contaminated with decane and drained to different decane saturations. Each column was then continuously purged with water saturated nitrogen gas and images were taken intermittently. All images were taken using an inversion recovery spin-echo pulse sequence. This sequence allowed decane protons to be imaged independent of water protons. Results showed that in homogeneous columns at residual decane saturation a sharp volatilization front moved through the columns. Volatilization rates in these columns were fast relative to advection rates. In heterogeneous columns at residual decane saturation the volatilization front in the core lagged just behind the shell because flow was through the shell and decane in the core diffused outward to the shell. In heterogeneous columns above residual saturation, decane volatilization occurred near the inlet, and decane in the core flowed to the shell to replenish volatilized decane. These results indicate that NAPL trapped in low permeability zones can flow to replenish areas where NAPL is lost due to volatilization. However, when residual NAPL saturation is reached flow stops and diffusion limits removal from low permeability zones. Existing soil vapor extraction models assume NAPL is distributed as pools and/or as residual NAPL, and NAPL flow does not affect mass removal. These

  4. Automatic brain extraction methods for T1 magnetic resonance images using region labeling and morphological operations.

    PubMed

    Somasundaram, K; Kalaiselvi, T

    2011-08-01

    In this work we propose two brain extraction methods (BEM) that solely depend on the brain anatomy and its intensity characteristics. Our methods are simple, unsupervised and knowledge based. Using an adaptive intensity thresholding method on the magnetic resonance images of head scans, a binary image is obtained. The binary image is labeled using the anatomical facts that the scalp is the boundary between head and background, and the skull is the boundary separating brain and scalp. A run length scheme is applied on the labeled image to get a rough brain mask. Morphological operations are then performed to obtain the fine brain on the assumption that brain is the largest connected component (LCC). But the LCC concept failed to work on some slices where brain is composed of more than one connected component. To solve this problem a 3-D approach is introduced in the BEM. Experimental results on 61 sets of T1 scans taken from MRI scan center and neuroimage web services showed that our methods give better results than the popular methods, FSL's Brain Extraction Tool (BET), BrainSuite's Brain Surface Extractor (BSE) gives results comparable to that of Model-based Level Sets (MLS) and works well even where MLS failed. The average Dice similarity index computed using the "Gold standard" and the specificity values are 0.938 and 0.992, respectively, which are higher than that for BET, BSE and MLS. The average processing time by one of our methods is ≈1s/slice, which is smaller than for MLS, which is ≈4s/slice. One of our methods produces the lowest false positive rate of 0.075, which is smaller than that for BSE, BET and MLS. It is independent of imaging orientation and works well for slices with abnormal features like tumor and lesion in which the existing methods fail in certain cases. PMID:21724183

  5. Cerebral Glioma Grading Using Bayesian Network with Features Extracted from Multiple Modalities of Magnetic Resonance Imaging

    PubMed Central

    Wang, Huiting; Liu, Renyuan; Zhang, Xin; Li, Ming; Yang, Yongbo; Yan, Jing; Niu, Fengnan; Tian, Chuanshuai; Wang, Kun; Yu, Haiping; Chen, Weibo; Wan, Suiren; Sun, Yu; Zhang, Bing

    2016-01-01

    Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can potentially improve the grading process in glioma if combined properly. In this study, Bayesian Network, which is a powerful and flexible method for probabilistic analysis under uncertainty, is used to combine features extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and MR spectroscopic imaging. The networks were constructed using K2 algorithm along with manual determination and distribution parameters learned using maximum likelihood estimation. The grading performance was evaluated in a leave-one-out analysis, achieving an overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver operating characteristic analysis given all available features observed in the total 56 patients. Results and discussions show that Bayesian Network is promising in combining features from multiple modalities of MRI for improved grading performance. PMID:27077923

  6. Cerebral Glioma Grading Using Bayesian Network with Features Extracted from Multiple Modalities of Magnetic Resonance Imaging.

    PubMed

    Hu, Jisu; Wu, Wenbo; Zhu, Bin; Wang, Huiting; Liu, Renyuan; Zhang, Xin; Li, Ming; Yang, Yongbo; Yan, Jing; Niu, Fengnan; Tian, Chuanshuai; Wang, Kun; Yu, Haiping; Chen, Weibo; Wan, Suiren; Sun, Yu; Zhang, Bing

    2016-01-01

    Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can potentially improve the grading process in glioma if combined properly. In this study, Bayesian Network, which is a powerful and flexible method for probabilistic analysis under uncertainty, is used to combine features extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and MR spectroscopic imaging. The networks were constructed using K2 algorithm along with manual determination and distribution parameters learned using maximum likelihood estimation. The grading performance was evaluated in a leave-one-out analysis, achieving an overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver operating characteristic analysis given all available features observed in the total 56 patients. Results and discussions show that Bayesian Network is promising in combining features from multiple modalities of MRI for improved grading performance.

  7. Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes Separated via Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; Fagan, J. A.; Hight Walker, A. R.

    2014-03-01

    We report Resonance Raman Spectroscopy (RRS) measurements of single-wall carbon nanotube (SWCNT) samples dispersed in aqueous solutions via surfactant wrapping and separated using aqueous two-phase extraction (ATPE) into chirality-enriched semiconducting and metallic SWCNT species. ATPE provides a rapid, robust, and remarkably tunable separation technique that allows isolation of high-purity, individual SWCNT chiralities via modification of the surfactant environment. We report RRS measurements of individual SWCNT species of various chiral index including, armchair and zigzag metals. Raman provides a powerful technique to quantify the metallic SWCNTs in ATPE fractions separated for metallicity. We measure Raman spectra over a wide range of excitation wavelengths from 457 nm to 850 nm using a series of discrete and continuously tunable laser sources coupled to a triple-grating spectrometer with a liquid-nitrogen-cooled detector. The spectra reveal Raman-active vibrational modes, including the low-frequency radial breathing mode (RBM) and higher-order modes. SWCNT chiral vectors are determined from the Raman spectra, specifically the RBM frequencies and corresponding energy excitation profiles, together with input from theoretical models.

  8. Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes Separated via Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; Fagan, J. A.; Hight Walker, A. R.

    2015-03-01

    We report resonance Raman Spectroscopy measurements of single-wall carbon nanotube (SWCNT) samples dispersed in aqueous solutions via surfactant wrapping and separated using aqueous two-phase extraction (ATPE) into chirality-enriched semiconducting and metallic SWCNT species. ATPE provides a rapid, robust, and remarkably tunable separation technique that allows isolation of high-purity, individual SWCNT chiralities via modification of the surfactant environment. We report RRS measurements of individual SWCNT species of various chiral index including, semiconductors, armchair and zigzag metals. Raman provides a powerful technique to quantify the metallic SWCNTs in ATPE fractions separated for metallicity. We measure Raman spectra over a wide range of excitation wavelengths from (457 to 850) nm using a series of discrete and continuously tunable laser sources coupled to a triple-grating spectrometer. The spectra reveal Raman-active vibrational modes, including the low-frequency radial breathing mode (RBM) and higher-order modes. SWCNT chiral vectors are determined from Raman spectra, specifically the RBM frequencies and corresponding energy excitation profiles, together with input from theoretical models.

  9. Refined separation of combined Fe–Hf from rock matrices for isotope analyses using AG-MP-1M and Ln-Spec chromatographic extraction resins

    PubMed Central

    Cheng, Ting; Nebel, Oliver; Sossi, Paolo A.; Chen, Fukun

    2014-01-01

    A combined procedure for separating Fe and Hf from a single rock digestion is presented. In a two-stage chromatographic extraction process, a purified Fe fraction is first quantitatively separated from the rock matrix using AG-MP-1M resin in HCl. Hafnium is subsequently isolated using a modified version of a commonly applied method using Eichrom LN-Spec resin. Our combined method includes:•Purification of Fe from the rock matrix using HCl, ready for mass spectrometric analysis.•Direct loading of the matrix onto the resin that is used for Hf purification.•Collection of a Fe-free Hf fraction. PMID:26150946

  10. Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract

    NASA Astrophysics Data System (ADS)

    Ekar, S. U.; Khollam, Y. B.; Koinkar, P. M.; Mirji, S. A.; Mane, R. S.; Naushad, M.; Jadhav, S. S.

    2015-03-01

    Present study reports the biochemical synthesis of silver nanoparticles (Ag-NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag-NPs are prepared at room temperature by the reduction of Ag+ to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag-NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+ to Ag. The morphological features of Ag-NPs are evaluated from HRTEM. The spherical Ag-NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag-NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag-NPs.

  11. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  12. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  13. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work. PMID:26932095

  14. Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Chu, Yanjie; Werth, Charles J.; Valocchi, Albert J.; Yoon, Hongkyu; Webb, Andrew G.

    2004-09-01

    Soil vapor extraction (SVE) is commonly used to remediate nonaqueous phase liquids (NAPLs) from the vadose zone. This paper aims to determine the effect of grain size heterogeneity on the removal of NAPL in porous media during SVE. Magnetic resonance imaging (MRI) was used to observe and quantify the amount and location of NAPL in flow-through columns filled with silica gel grains. MRI is unique because it is nondestructive, allowing three-dimensional images to be taken of the phases as a function of space and time. Columns were packed with silica gel in three ways: coarse grains (250-550 μm) only, fine grains (32-63 μm) only, and a core of fine grains surrounded by a shell of coarse grains. Columns saturated with water were drained under a constant suction head, contaminated with decane, and then drained to different decane saturations. Each column was then continuously purged with water-saturated nitrogen gas and images were taken intermittently. Results showed that at residual saturation, a sharp volatilization front moved through the columns filled with either coarse-grain or fine-grain silica gel. In the heterogeneous columns, the volatilization front in the core lagged just behind the shell because gas flow was greater through the shell and decane in the core diffused outward to the shell. When decane saturation in the core was above residual saturation, decane volatilization occurred near the inlet, the relative decane saturation throughout the core dropped uniformly, and decane in the core flowed in the liquid phase to the shell to replenish volatilized decane. These results indicate that NAPL trapped in low-permeability zones can flow to replenish areas where NAPL is lost due to SVE. However, when residual NAPL saturation is reached, NAPL flow no longer occurs and diffusion limits removal from low-permeability zones.

  15. Magnetic Resonance Imaging of Nonaqueous Phase Liquid During Soil Vapor Extraction in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Chu, Y.; Werth, C. J.; Valocchi, A. J.; Webb, A.

    2002-12-01

    Soil vapor extraction (SVE) is commonly used to remediate nonaqueous phase liquids (NAPLs) from the vadose zone. This research aims to determine the effect of grain size heterogeneity on the removal of NAPL in porous media during SVE. Magnetic resonance imaging (MRI) was used to observe and quantify the amount and location of NAPL in flow through columns filled with silica gel grains. MRI is unique because it is non-destructive, allowing three-dimensional images to be taken of the phases as a function of space and time. Columns were packed with silica gel in three ways: coarse grains (250-550 mm) only, fine grains (32-63 mm) only, and a core of fine grains surrounded by a shell of coarse grains. Columns saturated with water were drained under a constant suction head, contaminated with decane, and then drained to different decane saturations. Each column was then continuously purged with water saturated nitrogen gas and images were taken intermittently. Results showed that at residual saturation a sharp volatilization front moved through the columns filled with either coarse or fine grain silica gel. In the heterogeneous column the volatilization front in the core lagged behind the shell because flow was through the shell and decane in the core diffused outward to the shell. When decane saturation in fine grains was above residual saturation, decane volatilization occurred near the inlet, and decane in the core moved to the shell to replenish volatilized decane. These results indicate that NAPL trapped in low permeability zones can spread to replenish areas where NAPL is lost due to SVE. However, when residual NAPL saturation is reached spreading no longer occurs and diffusion limits removal from low permeability zones.

  16. Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media.

    PubMed

    Chu, Yanjie; Werth, Charles J; Valocchi, Albert J; Yoon, Hongkyu; Webb, Andrew G

    2004-09-01

    Soil vapor extraction (SVE) is commonly used to remediate nonaqueous phase liquids (NAPLs) from the vadose zone. This paper aims to determine the effect of grain size heterogeneity on the removal of NAPL in porous media during SVE. Magnetic resonance imaging (MRI) was used to observe and quantify the amount and location of NAPL in flow-through columns filled with silica gel grains. MRI is unique because it is nondestructive, allowing three-dimensional images to be taken of the phases as a function of space and time. Columns were packed with silica gel in three ways: coarse grains (250-550 microm) only, fine grains (32-63 microm) only, and a core of fine grains surrounded by a shell of coarse grains. Columns saturated with water were drained under a constant suction head, contaminated with decane, and then drained to different decane saturations. Each column was then continuously purged with water-saturated nitrogen gas and images were taken intermittently. Results showed that at residual saturation, a sharp volatilization front moved through the columns filled with either coarse-grain or fine-grain silica gel. In the heterogeneous columns, the volatilization front in the core lagged just behind the shell because gas flow was greater through the shell and decane in the core diffused outward to the shell. When decane saturation in the core was above residual saturation, decane volatilization occurred near the inlet, the relative decane saturation throughout the core dropped uniformly, and decane in the core flowed in the liquid phase to the shell to replenish volatilized decane. These results indicate that NAPL trapped in low-permeability zones can flow to replenish areas where NAPL is lost due to SVE. However, when residual NAPL saturation is reached, NAPL flow no longer occurs and diffusion limits removal from low-permeability zones.

  17. Detection of trinitrotoluene (TNT) extracted from soil using a surface plasmon resonance (SPR)-based sensor platform

    NASA Astrophysics Data System (ADS)

    Strong, Anita A.; Stimpson, Donald I.; Bartholomew, Dwight U.; Jenkins, Thomas F.; Elkind, Jerome L.

    1999-08-01

    An antibody-based competition assay has been developed using a surface plasmon resonance (SPR) sensor platform for the detection of trinitrotoluene (TNT) in soil extract solutions. The objective of this work is to develop a sensor-based assay technology to use in the field for real- time detection of land mines. This immunoassay combines very simple bio-film attachment procedures and a low-cost SPR sensor design to detect TNT in soil extracts. The active bio-surface is a coating of bovine serum albumin that has been decorated with trinitrobenzene groups. A blind study on extracts from a large soil matrix was recently performed and result from this study will be presented. Potential interferant studied included 2,4-dinitrophenol, 2,4- dinitrotoluene, ammonium nitrate, and 2,4- dichlorophenoxyacetic acid. Cross-reactivity with dinitrotoluene will be discussed. Also, plans to reach sensitivity levels of 1ppb TNT in soil will be described.

  18. Surface plasmon resonances of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition at different compositions and temperatures

    SciTech Connect

    Verma, Shweta Rao, B. T.; Detty, A. P.; Kukreja, L. M.; Ganesan, V.; Phase, D. M.; Rai, S. K.; Bose, A.; Joshi, S. C.

    2015-04-07

    We studied localized surface plasmon resonances (LSPR) at different compositions, substrate temperatures, and mass thicknesses of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition. The LSPRs were pronounced at all compositions of the films grown at high substrate temperature of about 300 °C as compared to those grown at room temperature. The alloy formation and composition of the films were determined using X-ray photoelectron and energy dispersive spectroscopy. Films' mass thickness and compositional uniformity along the thickness were determined using X-ray reflectometry and secondary ion mass spectroscopy. Atomic force microscopic analysis revealed the formation of densely packed nanoparticles of increasing size with the number of laser ablation pulses. The LSPR wavelength red shifted with increasing either Au percentage or film mass thickness and corresponding LSPR tuning was obtained in the range of 450 to 690 nm. The alloy dielectric functions obtained from three different models were compared and the optical responses of the nanoparticle films were calculated from modified Yamaguchi effective medium theory. The tuning of LSPR was found to be due to combined effect of change in intrinsic and extrinsic parameters mainly the composition, morphology, particle-particle, and particle-substrate interactions.

  19. Preparation of surface plasmon resonance biosensor based on magnetic core/shell Fe3O4/SiO2 and Fe3O4/Ag/SiO2 nanoparticles.

    PubMed

    Wang, Liying; Sun, Ying; Wang, Jing; Wang, Jian; Yu, Aimin; Zhang, Hanqi; Song, Daqian

    2011-06-01

    In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.

  20. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.

    PubMed

    Liu, Bing; Ma, Zhanfang

    2011-06-01

    A simple synthetic route to prepare Ag(2) S-Ag nanoprisms consists of the facile addition of Na(2) S to a solution of triangular Ag nanoprisms. The resulting Ag(2) S-Ag nanoparticles are more stable in solution than the original Ag nanoprisms, and two surface plasmon resonance (SPR) bands of the original Ag nanoprisms still remain. In addition, the SPR bands of the Ag(2) S-Ag nanoprisms are tunable over a wide range. The Ag(2) S-Ag nanoprisms can be directly bioconjugated via well-established stable Ag(2) S surface chemistry with readily available sulfur coupling agents. The nanoprisms are used in the hybridization of functionalized oligonucleotides, and show promise as probes for future biosensing applications. PMID:21538868

  1. Control of the plasmon resonance from poly-dispersed silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Hyun, Jae Young; Yun, Changhun; Kim, Ki Hyun; Kim, Wan Ho; Jeon, Sie-Wook; Im, Won Bin; Kim, Jae Pil

    2015-02-01

    Poly-dispersed silver nanoparticles (AgNPs) were synthesized through a polyol reaction and separated by a centrifuging process to control the target plasmon resonance frequency. When the ratio between the polar side group of polyvinyl pyrrolidone and silver ions is less than 1, AgNPs of various sizes and a broad extinction spectrum can be obtained through a single process. Following the physical separation of the poly-dispersed AgNPs, both the plasmon resonance and the size distribution can be tuned depending on the centrifuging speed. Fitting the measured absorption spectrum using a Mie calculation confirms that the centrifuging method of poly-dispersed AgNPs is compatible with a simple and reliable form of fabrication for selectively extraction AgNPs with a desired size distribution.

  2. Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators.

    SciTech Connect

    Lentine, Anthony L.; Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2010-03-01

    We demonstrate 5 Gbs and 10 Gbs error free operation of silicon photonic microdisk resonant modulators to a distance of 70 km, measure dispersion power penalties and compare the experimental results with theoretically derived values.

  3. P_11 Resonance Extracted from pi-N Data and Its Stability

    SciTech Connect

    Satoshi Nakamura

    2012-04-01

    We study the stability of resonance poles in {pi}N P{sub 11} partial wave, particularly the Roper resonance, by varying parameters significantly within the EBAC dynamical coupled-channels model, keeping a good fit to the empirical amplitude. We find that two Roper poles are stable against the variation. However, for higher energies, the number of poles can change depending on how the parameters are fitted within error bars. We also developed a model with a bare nucleon which forms the physical nucleon by being dressed by the meson-cloud. We still find a good stability of the Roper poles.

  4. Spatially resolved charge-state and current-density distributions at the extraction of an electron cyclotron resonance ion source

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-09-15

    In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

  5. Poles as the only true resonant-state signals extracted from a worldwide collection of partial-wave amplitudes using only one, well controlled pole-extraction method

    SciTech Connect

    Hadzimehmedovic, M.; Osmanovic, H.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-09-15

    Each and every energy-dependent partial-wave analysis is parametrizing the pole positions in a procedure defined by the way the continuous energy dependence is implemented. These pole positions are, henceforth, inherently model dependent. To reduce this model dependence, we use only one, coupled-channel, unitary, fully analytic method based on the isobar approximation to extract the pole positions from each available member of the worldwide collection of partial-wave amplitudes, which are understood as nothing more but a good energy-dependent representation of genuine experimental numbers assembled in a form of partial-wave data. In that way, the model dependence related to the different assumptions on the analytic form of the partial-wave amplitudes is avoided, and the true confidence limit for the existence of a particular resonant state, at least in one model, is established. The way the method works and first results are demonstrated for the S{sub 11} partial wave.

  6. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  7. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  8. Control of Surface Plasmon Resonance of Au/SnO2 by Modification with Ag and Cu for Photoinduced Reactions under Visible-Light Irradiation over a Wide Range.

    PubMed

    Tanaka, Atsuhiro; Hashimoto, Keiji; Kominami, Hiroshi

    2016-03-18

    Gold particles supported on tin(IV) oxide (0.2 wt% Au/SnO2) were modified with copper and silver by the multistep photodeposition method. Absorption around λ=550 nm, attributed to surface plasmon resonance (SPR) of Au, gradually shifted to longer wavelengths on modification with Cu and finally reached λ=620 nm at 0.8 wt% Cu. On the other hand, the absorption shifted to shorter wavelength with increasing amount of Ag and reached λ=450 nm at 0.8 wt% Ag. These Cu- and Ag-modified 0.2 wt% Au/SnO2 materials (Cu-Au/SnO2 and Ag-Au/SnO2) and 1.0 wt% Au/SnO2 were used for mineralization of formic acid to carbon dioxide in aqueous suspension under irradiation with visible light from a xenon lamp and three kinds of light-emitting diodes with different wavelengths. The reaction rates for the mineralization of formic acid over these materials depend on the wavelength of light. Apparent quantum efficiencies of Cu-Au/SnO2, Au/SnO2, and Ag-Au/SnO2 reached 5.5% at 625 nm, 5.8% at 525 nm, and 5.1% at 450 nm, respectively. These photocatalysts can also be used for selective oxidation of alcohols to corresponding carbonyl compounds in aqueous solution under visible-light irradiation. Broad responses to visible light in formic acid mineralization and selective alcohol oxidation were achieved when the three materials were used simultaneously.

  9. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  10. Automatic bone segmentation and bone-cartilage interface extraction for the shoulder joint from magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Yang, Zhengyi; Fripp, Jurgen; Chandra, Shekhar S.; Neubert, Aleš; Xia, Ying; Strudwick, Mark; Paproki, Anthony; Engstrom, Craig; Crozier, Stuart

    2015-02-01

    We present a statistical shape model approach for automated segmentation of the proximal humerus and scapula with subsequent bone-cartilage interface (BCI) extraction from 3D magnetic resonance (MR) images of the shoulder region. Manual and automated bone segmentations from shoulder MR examinations from 25 healthy subjects acquired using steady-state free precession sequences were compared with the Dice similarity coefficient (DSC). The mean DSC scores between the manual and automated segmentations of the humerus and scapula bone volumes surrounding the BCI region were 0.926  ±  0.050 and 0.837  ±  0.059, respectively. The mean DSC values obtained for BCI extraction were 0.806  ±  0.133 for the humerus and 0.795  ±  0.117 for the scapula. The current model-based approach successfully provided automated bone segmentation and BCI extraction from MR images of the shoulder. In future work, this framework appears to provide a promising avenue for automated segmentation and quantitative analysis of cartilage in the glenohumeral joint.

  11. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented. PMID:26932084

  12. Automatic segmentation of the bone and extraction of the bone cartilage interface from magnetic resonance images of the knee

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2007-03-01

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.

  13. Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee.

    PubMed

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K; Ourselin, Sébastien

    2007-03-21

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.

  14. High intensity beams from electron cyclotron resonance ion sources: A study of efficient extraction and transport system (invited)

    NASA Astrophysics Data System (ADS)

    Gammino, S.; Ciavola, G.; Celona, L.; Andò, L.; Passarello, S.; Zhang, X. Zh.; Spädtke, P.; Winkler, M.

    2004-05-01

    A study of the design of extraction and transport system for high intensity beams that will be produced by the next generation electron cyclotron resonance ion source (ECRIS) was carried out in the frame of a European collaboration devoted to the definition of the main parameters of third generation ECRIS. High intensity production tests carried out in the previous years at INFN-LNS have shown evidence for the need to review the main concepts of the beam analysis and transport when high currents of low energy highly charged ions are extracted from the source. The transport of such low energy beams becomes critical as soon as the total current exceeds a few mA. The study reported here is based on the calculated parameters for the GyroSERSE source and the computer simulations have been carried out to obtain low emittance beams. The design of the extraction system was carried out by means of the KOBRA (three dimensional) code. The study of the beam line has been carried out with the codes GIOS, GICO, and TRANSPORT by taking into account both the phase space growth due to space charge and to the aberrations inside the magnets. The description of some different beam line options will be also given.

  15. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  16. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C4+ beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C4+ was almost 14 μA at 15 kV extraction voltage. To get higher current of the C4+ beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10-7 mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C4+ beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed.

  17. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute.

    PubMed

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C(4+) beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C(4+) was almost 14 μA at 15 kV extraction voltage. To get higher current of the C(4+) beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10(-7) mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C(4+) beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed. PMID:24593482

  18. Evidence for surface Ag + complexes as the SERS-active sites on Ag electrodes

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Kawanami, O.; Honda, K.; Pettinger, B.

    1983-12-01

    Evidence is given that SERS-active sites at Ag electrodes are associated with Ag + ions, forming sparingly soluble surface complexes with ligands such as pyridine molecules and halide ions. Such surface Ag + complexes contribute a factor of >800 to the overall (10 7-fold) enhancement, possibly via a resonance Raman effect.

  19. Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, Hoskote Anand; Mandal, Badal Kumar; Mohan Kumar, Kesarla; Maddinedi, Sireesh babu; Sai Kumar, Tammina; Madhiyazhagan, Pavithra; Ghosh, Asit Ranjan

    2014-09-01

    The present study reports the use of Mimusops elengi (M. elengi) fruit extract for the synthesis of silver nanoparticles (Ag NPs). The synthesized Ag NPs was initially noticed through visual color change from yellow to reddish brown and further confirmed by surface plasmonic resonance (SPR) band at 429 nm using UV-Visible spectroscopy. Morphology and size of Ag NPs was determined by Transmission Electron Microscopy (TEM) analysis. X-ray Diffraction (XRD) study revealed crystalline nature of Ag NPs. The prolonged stability of Ag NPs was due to capping of oxidized polyphenols which was established by Fourier Transform Infrared Spectroscopy (FTIR) study. The polyphenols present in M. elengi fruit extract was analyzed by High Pressure Liquid Chromatography (HPLC) and the results revealed the presence of ascorbic acid, gallic acid, pyrogallol and resorcinol. In order to study the role of these polyphenols in reducing Ag+ ions to Ag NPs, analyses of extracts before reduction and after reduction were carried out. In addition, the synthesized Ag NPs were tested for antibacterial and antioxidant activities against Staphylococcus aureus (S. Aureus) and Escherichia coli (E. coli). Ag NPs showed good antimicrobial activity against both gram positive (S. aureus) and gram negative (E. coli) bacteria. It also showed good antioxidant activity as compared to ascorbic acid as standard antioxidant.

  20. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water.

    PubMed

    Atarod, Monireh; Nasrollahzadeh, Mahmoud; Mohammad Sajadi, S

    2016-01-15

    This work reports a facile and green synthesis of Ag/TiO2 nanocomposite by extract of leaves of Euphorbia heterophylla without any stabilizer or surfactant. The green synthesized Ag/TiO2 nanocomposite was characterized by field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDS), fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD) and UV-vis. The Ag/TiO2 nanocomposite was found to be effective catalyst for reduction of various dyes, such as 4-nitrophenol (4-NP), Methyl orange (MO), Congo red (CR) and Methylene blue (MB) in the presence of NaBH4 in water at room temperature. Catalysis reactions were monitored by employing UV-vis spectroscopy. Catalysis reactions followed pseudo-first order rate equation. The catalyst can be recovered and reused several times without significant loss of its catalytic activity. PMID:26469545

  1. Resolution of the multichannel anomaly in the extraction of S-matrix resonance-pole parameters

    SciTech Connect

    Ceci, Sasa; Stahov, Jugoslav; Svarc, Alfred; Zauner, Branimir; Watson, Shon

    2008-06-01

    Within the framework of a mathematically well-defined coupled-channel T-matrix model we have improved the existing multichannel pole-extraction procedure based on the numerical analytic continuation of the channel propagator, and for the first time we present the full set of pole parameters for already published amplitudes. Standard single-channel pole-extraction method (speed plot) was then applied to those amplitudes and resulting sets of T-matrix poles were inspected. The anomaly has been established that in some partial waves the pole values extracted using the standard single-channel methods differ not only from the values obtained using the analytic continuation method, but also change from one reaction to another. Inspired by this peculiarity, we have developed a new single-channel pole-extraction method based solely on the assumption of the partial wave analyticity. Since the speed plot turns out to be the lowest order term of the proposed method, the anomaly is understood and resolved.

  2. Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells

    NASA Astrophysics Data System (ADS)

    Li, Ying-Ying; Liu, Xiao-Li; Yang, Da-Jie; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-02-01

    We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.

  3. A femtogram resolution mass sensor platform, based on SOI electrostatically driven resonant cantilever. Part I: electromechanical model and parameter extraction.

    PubMed

    Teva, J; Abadal, G; Torres, F; Verd, J; Pérez-Murano, F; Barniol, N

    2006-01-01

    A microcantilever based platform for mass detection in the femtogram range has been integrated in the doped top silicon layer of a SOI substrate. The on-plane fundamental resonance mode of the cantilever is excited electrostatically and detected capacitively by means of two parallel placed electrodes in a two port configuration. An electromechanical model of the cantilever-electrodes transducer and its implementation in a SPICE environment are presented. The model takes into account non-linearities from variable cantilever-electrode gap, fringing field contributions and real deflection shape of the cantilever for the calculation of the driving electrostatic force. A fitting of the model to the measured S(21) transmitted power frequency response is performed to extract the characteristic sensor parameters as Young modulus, Q factor, electrical parasitics and mass responsivity.

  4. Extracting meson-baryon contributions to the electroexcitation of the N (1675)-5/2 nucleon resonance

    DOE PAGES

    Aznauryan, Inna G.; Burkert, Volker D.

    2015-07-01

    We report on the determination of the electrocouplings for the transition from the proton to the N (1675)-5/2 resonance state using recent differential cross section data on ep → eπ+n by the CLAS collaboration at 1.8 ≤ Q² < 4.5GeV². The data have been analyzed using two different approaches, the unitary isobar model and fixed-t dispersion relations. The extracted γ*p → N (1675)-5/2 helicity amplitudes show considerable coupling through the AP1/2 amplitude, that is significantly larger than predicted three-quark contribution to this amplitude. The amplitude AP3/2 is much smaller. Both results are consistent with the predicted sizes of the meson-baryonmore » contributions at Q² ≥ 1.8 GeV² from the dynamical coupled-channel model.« less

  5. Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab

    SciTech Connect

    Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

    2011-03-01

    The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

  6. Extracting paramagnon excitations from resonant inelastic x-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Lamsal, Jagat; Montfrooij, Wouter

    2016-06-01

    Resonant x-ray scattering experiments on high-temperature superconductors and related cuprates have revealed the presence of intense paramagnon scattering at high excitation energies, of the order of several hundred meV. The excitation energies appear to show very similar behavior across all compounds, ranging from magnetically ordered, via superconductors, to heavy fermion systems. However, we argue that this apparent behavior has been inferred from the data through model fitting which implicitly imposes such similarities. Using model fitting that is free from such restrictions, we show that the paramagnons are not nearly as well defined as has been asserted previously, and that some paramagnons might not represent propagating excitations at all. Our work indicates that the data published previously in the literature will need to be reanalyzed with proper models.

  7. Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.

    PubMed

    Shahjamali, Mohammad M; Zhou, Yong; Zaraee, Negin; Xue, Can; Wu, Jinsong; Large, Nicolas; McGuirk, C Michael; Boey, Freddy; Dravid, Vinayak; Cui, Zhifeng; Schatz, George C; Mirkin, Chad A

    2016-05-24

    Recently, Ag-Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag-Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag-Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag-Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag-Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)-anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism.

  8. Sequential application of viscous opening and lower leveling for three-dimensional brain extraction on magnetic resonance imaging T1

    NASA Astrophysics Data System (ADS)

    Mendiola-Santibañez, Jorge Domingo; Gallegos-Duarte, Martín; Arias-Estrada, Miguel Octavio; Santillán-Méndez, Israel Marcos; Rodríguez-Reséndiz, Juvenal; Terol-Villalobos, Iván Ramón

    2014-05-01

    A composition of the viscous opening and the lower leveling is introduced to extract brain in magnetic resonance imaging T1. The innovative transformation disconnects chained components and has better control on the reconstruction process of the marker inside of the original image. However, the sequential operator requires setting several parameters, making its application difficult. Due to this situation, a simplification is carried out on it to obtain a more practical method. The proposed morphological transformations were tested with the Internet Brain Segmentation Repository (IBSR) database, which is used as a benchmark among the community. The results are compared using the Jaccard and Dice indices with respect to (i) manual segmentations obtained from the IBSR, (ii) mean indices reported in the current literature, and (iii) segmentations obtained from the Brain Extraction Tool, since this is one of the most popular algorithms used for brain segmentation. The average indices of Jaccard and Dice indicate that the reduced transformation produces similar results to the other methods reported in the literature while the sequential operator presents a better performance.

  9. Nuclear resonant inelastic x-ray scattering: Methodology and extraction of vibrational properties of minerals

    NASA Astrophysics Data System (ADS)

    Hu, M. Y.; Alp, E. E.; Bi, W.; Sturhahn, W.; Toellner, T. S.; Zhao, J.

    2013-12-01

    Nuclear resonant inelastic x-ray scattering (NRIXS) is a synchrotron radiation based experimental method [1]. Since its introduction almost 20 years ago [2], NRIXS has found an expanding range of applications of studying lattice dynamics in condensed matter physics, materials science, high-pressure research, geosciences, and biophysics. After the first high pressure application in geophysics of measuring sound velocity of iron up to 153 GPa [3], it has become a widely used method to investigate deep earth compositions through sound velocity measurements [4,5]. Thermodynamic properties are also explored, in particular Grueneisen parameters [6]. Later, it was realized that isotope fractionaton factors can be derived from NRIXS measurements [7,8]. Sum rules and moments of NRIXS is a critical part of this methodology [9,10]. We will discuss this and in general the data analysis of NRIXS which enables the above mentioned applications. [1] Alp et al. Hyperfine Interactions 144/145, 3 (2002) [2] Sturhahn et al., PRL 74, 3832 (1995) [3] Mao et al., Science 292, 914 (2001) [4] Hu et al., PRB 67, 094304 (2003) [5] Sturhahn & Jackson, GSA special paper 421 (2007) [6] Murphy et al., Geophys. Res. Lett. 38, L24306 (2011) [7] Polyakov, Science 323, 912 (2009) [8] Dauphas et al., Geochimica et Cosmochimica Acta 94, 254 (2012) [9] Lipkin, PRB 52, 10073 (1995) [10] Hu et al., PRB 87, 064301 (2013)

  10. Extracting the resonance parameters from experimental data on scattering of charged particles

    NASA Astrophysics Data System (ADS)

    Vaandrager, P.; Rakityansky, S. A.

    2016-02-01

    A new parametrization of the multi-channel S-matrix is used to fit scattering data and then to locate the resonances as its poles. The S-matrix is written in terms of the corresponding “in” and “out” Jost matrices which are expanded in the Taylor series of the collision energy E around an appropriately chosen energy E0. In order to do this, the Jost matrices are written in a semi-analytic form where all the factors (involving the channel momenta and Sommerfeld parameters) responsible for their “bad behavior” (i.e., responsible for the multi-valuedness of the Jost matrices and for branching of the Riemann surface of the energy) are given explicitly. The remaining unknown factors in the Jost matrices are analytic and single-valued functions of the variable E and are defined on a simple energy plane. The expansion is done for these analytic functions and the expansion coefficients are used as the fitting parameters. The method is tested on a two-channel model, using a set of artificially generated data points with typical error bars and a typical random noise in the positions of the points.

  11. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis

    NASA Astrophysics Data System (ADS)

    Basu, Shibani; Maji, Priyankar; Ganguly, Jhuma

    2016-01-01

    The present study explores that the aqueous extract of the seeds of Nyctanthes arbor-tristis (aka night jasmine) is very efficient for the synthesis of stable AgNPs from aqueous solution of AgNO3. The extract acts as both reducing (from Ag+ to Ag0) and capping agent in the aqueous phase. The constituents in extract are mainly biomolecules like carbohydrates and phenolic compounds, which are responsible for the preparation of stable AgNPs within 20 min of reaction time at 25 °C using without any severe conditions. The synthesized silver nanoparticles were characterized with UV-Visible spectroscopy, FT-IR, XRD and SEM. UV-Vis spectroscopy analysis showed peak at 420 nm, which corresponds to the surface plasmon resonance of AgNPs. XRD results showed peaks at (111), (200), (220), which confirmed the presence of AgNPs with face-centered cubic structure. The uniform spherical nature of the AgNPs and size (between 50 and 80 nm) were further confirmed by SEM analysis.

  12. Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from pyridine on Au, Ag and Cu electrodes

    NASA Astrophysics Data System (ADS)

    Pettinger, B.; Wenning, U.; Wetzel, H.

    1980-12-01

    The strong dependence of the surface Raman intensity on the exciting frequency and on the angle of incidence for pyridine molecules adsorbed on Au, Ag and Cu electrodes after a weak oxidation/reduction cycle is evidence for a surface plasmon enhanced Raman scattering (SPERS).

  13. Automated Feature Extraction in Brain Tumor by Magnetic Resonance Imaging Using Gaussian Mixture Models

    PubMed Central

    Chaddad, Ahmad

    2015-01-01

    This paper presents a novel method for Glioblastoma (GBM) feature extraction based on Gaussian mixture model (GMM) features using MRI. We addressed the task of the new features to identify GBM using T1 and T2 weighted images (T1-WI, T2-WI) and Fluid-Attenuated Inversion Recovery (FLAIR) MR images. A pathologic area was detected using multithresholding segmentation with morphological operations of MR images. Multiclassifier techniques were considered to evaluate the performance of the feature based scheme in terms of its capability to discriminate GBM and normal tissue. GMM features demonstrated the best performance by the comparative study using principal component analysis (PCA) and wavelet based features. For the T1-WI, the accuracy performance was 97.05% (AUC = 92.73%) with 0.00% missed detection and 2.95% false alarm. In the T2-WI, the same accuracy (97.05%, AUC = 91.70%) value was achieved with 2.95% missed detection and 0.00% false alarm. In FLAIR mode the accuracy decreased to 94.11% (AUC = 95.85%) with 0.00% missed detection and 5.89% false alarm. These experimental results are promising to enhance the characteristics of heterogeneity and hence early treatment of GBM. PMID:26136774

  14. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity.

    PubMed

    Murugan, Kasi; Senthilkumar, Balakrishnan; Senbagam, Duraisamy; Al-Sohaibani, Saleh

    2014-01-01

    The immense potential of nanobiotechnology makes it an intensely researched field in modern medicine. Green nanomaterial synthesis techniques for medicinal applications are desired because of their biocompatibility and lack of toxic byproducts. We report the toxic byproducts free phytosynthesis of stable silver nanoparticles (AgNPs) using the bark extract of the traditional medicinal plant Acacia leucophloea (Fabaceae). Visual observation, ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM) were used to characterize the synthesized AgNPs. The visible yellow-brown color formation and surface plasmon resonance at 440 nm indicates the biosynthesis of AgNP. The TEM images show polydisperse, mostly spherical AgNP particles of 17-29 nm. Fourier transform infrared spectroscopy revealed that primary amines, aldehyde/ketone, aromatic, azo, and nitro compounds of the A. leucophloea extract may participate in the bioreduction and capping of the formed AgNPs. X-ray diffraction confirmed the crystallinity of the AgNPs. The in vitro agar well diffusion method confirmed the potential antibacterial activity of the plant extract and synthesized AgNPs against the common bacterial pathogens Staphylococcus aureus (MTCC 737), Bacillus cereus (MTCC 1272), Listeria monocytogenes (MTCC 657), and Shigella flexneri (MTCC 1475). This research combines the inherent antimicrobial activity of silver metals with the A. leucophloea extract, yielding antibacterial activity-enhanced AgNPs. This new biomimetic approach using traditional medicinal plant (A. leucophloea) barks to synthesize biocompatible antibacterial AgNPs could easily be scaled up for additional biomedical applications. These polydisperse AgNPs green-synthesized via A. leucophloea bark extract can readily be used in many applications not requiring high uniformity in particle size or shape.

  15. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity

    PubMed Central

    Murugan, Kasi; Senthilkumar, Balakrishnan; Senbagam, Duraisamy; Al-Sohaibani, Saleh

    2014-01-01

    The immense potential of nanobiotechnology makes it an intensely researched field in modern medicine. Green nanomaterial synthesis techniques for medicinal applications are desired because of their biocompatibility and lack of toxic byproducts. We report the toxic byproducts free phytosynthesis of stable silver nanoparticles (AgNPs) using the bark extract of the traditional medicinal plant Acacia leucophloea (Fabaceae). Visual observation, ultraviolet–visible spectroscopy, and transmission electron microscopy (TEM) were used to characterize the synthesized AgNPs. The visible yellow-brown color formation and surface plasmon resonance at 440 nm indicates the biosynthesis of AgNP. The TEM images show polydisperse, mostly spherical AgNP particles of 17–29 nm. Fourier transform infrared spectroscopy revealed that primary amines, aldehyde/ketone, aromatic, azo, and nitro compounds of the A. leucophloea extract may participate in the bioreduction and capping of the formed AgNPs. X-ray diffraction confirmed the crystallinity of the AgNPs. The in vitro agar well diffusion method confirmed the potential antibacterial activity of the plant extract and synthesized AgNPs against the common bacterial pathogens Staphylococcus aureus (MTCC 737), Bacillus cereus (MTCC 1272), Listeria monocytogenes (MTCC 657), and Shigella flexneri (MTCC 1475). This research combines the inherent antimicrobial activity of silver metals with the A. leucophloea extract, yielding antibacterial activity-enhanced AgNPs. This new biomimetic approach using traditional medicinal plant (A. leucophloea) barks to synthesize biocompatible antibacterial AgNPs could easily be scaled up for additional biomedical applications. These polydisperse AgNPs green-synthesized via A. leucophloea bark extract can readily be used in many applications not requiring high uniformity in particle size or shape. PMID:24876776

  16. Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts

    PubMed Central

    Lutz, Norbert W.; Béraud, Evelyne; Cozzone, Patrick J.

    2014-01-01

    Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor

  17. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction.

    PubMed

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-01

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO2(2+)-Sal1] and [UO2(2+)-Sal2]. Among them, [UO2(2+)-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO2(2+)-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO2(2+)-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57ngmL(-1), the linear regression equation was ΔF=438.0 c (ngmL(-1))+175.6 with the correlation coefficient r=0.9981. The limit of detection was 0.066ngmL(-1). The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed.

  18. Green synthesis of silver nanoparticles as antibacterial agent using Rhodomyrtus tomentosa acetone extract

    NASA Astrophysics Data System (ADS)

    Voravuthikunchai, Supayang P.; Chorachoo, Julalak; Jaiswal, Lily; Shankar, Shiv

    2013-12-01

    The capability of Rhodomyrtus tomentosa acetone extract (RAE) for the production of silver nanoparticles (AgNPs) has been explored for the first time. Silver nanoparticles with a surface plasmon resonance band centered at 420-430 nm were synthesized by reacting RAE with AgNO3. Reaction time, temperature, concentration of AgNO3 and RAE could accelerate the reduction rate of Ag+ and affect AgNPs size. The nanoparticles were found to be 10-30 nm in size and spherical in shape. XRD data demonstrated crystalline nature of AgNPs dominated by (200) facets. FTIR results showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 indicating the involvement of O-H, carbonyl group and C=C stretching with the formation of AgNPs with RAE, respectively. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the nanoparticles. High negative zeta potential values confirmed the stability of AgNPs in water. In vitro antibacterial activity of AgNPs was tested against Staphylococcus aureus using broth microdilution method. AgNPs capped with RAE demonstrated profound antibacterial activity against the organisms with minimum inhibitory concentration and minimum bactericidal concentration in the range between 3.1-6.2 and 6.2-50 μgmL-1, respectively. The synthesized nanoparticles could be applied as an effective antimicrobial agent against staphylococcal infections.

  19. Fe3O4@Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One.

    PubMed

    Liu, Zhigang; Wang, Yi; Deng, Rong; Yang, Liyuan; Yu, Shihua; Xu, Shuping; Xu, Weiqing

    2016-06-01

    A multifunctional magnetic graphene surface-enhanced Raman scattering (SERS) substrate was fabricated successfully by the layer-by-layer assembly of silver and graphene oxide (GO) nanoparticles (NPs) on the magnetic ferroferric oxide particles (Fe3O4@GO@Ag). This ternary particle possesses magnetic properties, SERS activity, and adsorption ability simultaneously. Owing to the multifunction of this Fe3O4@GO@Ag ternary complex, we put forward a new method called a surface magnetic solid-phase extraction (SMSPE) technique, for the SERS detections of pesticide residues on the fruit peels. SMSPE integrates many sample pretreatment procedures, such as surface extraction, separation sample, and detection, all-in-one. So this method shows great superiority in simplicity, rapidity, and high efficiency above other standard methods. The whole detection process can be finished within 20 min including the sample pretreatment and SERS detection. Owing to the high density of Ag NPs, the detection sensitivity is high enough that the lowest detectable concentrations are 0.48 and 40 ng/cm(2) for thiram and thiabendazole, which are much lower than the maximal residue limits in fruit prescribed by the U.S. Environmental Protection Agency. This multifunctional ternary particle and its corresponding analytical method have been proven to be applicable for practical samples and also valuable for other surface analysis. PMID:27191584

  20. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    SciTech Connect

    Zhen, Aigong; Ma, Ping Zhang, Yonghui; Guo, Enqing; Tian, Yingdong; Liu, Boting; Guo, Shikuan; Shan, Liang; Wang, Junxi; Li, Jinmin

    2014-12-22

    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal could improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically.

  1. Extracting S-matrix poles for resonances from numerical scattering data: Type-II Padé reconstruction

    NASA Astrophysics Data System (ADS)

    Sokolovski, D.; Akhmatskaya, E.; Sen, S. K.

    2011-02-01

    We present a FORTRAN 77 code for evaluation of resonance pole positions and residues of a numerical scattering matrix element in the complex energy (CE) as well as in the complex angular momentum (CAM) planes. Analytical continuation of the S-matrix element is performed by constructing a type-II Padé approximant from given physical values (Bessis et al. (1994) [42]; Vrinceanu et al. (2000) [24]; Sokolovski and Msezane (2004) [23]). The algorithm involves iterative 'preconditioning' of the numerical data by extracting its rapidly oscillating potential phase component. The code has the capability of adding non-analytical noise to the numerical data in order to select 'true' physical poles, investigate their stability and evaluate the accuracy of the reconstruction. It has an option of employing multiple-precision (MPFUN) package (Bailey (1993) [45]) developed by D.H. Bailey wherever double precision calculations fail due to a large number of input partial waves (energies) involved. The code has been successfully tested on several models, as well as the F + H 2 → HF + H, F + HD → HF + D, Cl + HCl → ClH + Cl and H + D 2 → HD + D reactions. Some detailed examples are given in the text. Program summaryProgram title: PADE II Catalogue identifier: AEHO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 959 No. of bytes in distributed program, including test data, etc.: 158 380 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Any computer equipped with a FORTRAN 90 compiler Operating system: UNIX, LINUX RAM: 256 Mb Classification: 16.8 External routines: NAG Program Library ( http://www.nag.co.uk/numeric/fl/FLdescription.asp) Nature of problem: The package extracts the positions and

  2. 20% PARTIAL SIBERIAN SNAKE IN THE AGS.

    SciTech Connect

    Huang, H; Bai, M; Brown, K A; Glenn, W; Luccio, A U; Mackay, W W; Montag, C; Ptitsyn, V; Roser, T; Tsoupas, N; Zeno, K; Ranjbar, V; Spinka, H; Underwood, D

    2002-11-06

    An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.

  3. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based untargeted metabolic profiling.

    PubMed

    Anwar, Muzaffar A; Vorkas, Panagiotis A; Li, Jia V; Shalhoub, Joseph; Want, Elizabeth J; Davies, Alun H; Holmes, Elaine

    2015-11-21

    Human vein tissue is an important matrix to examine when investigating vascular diseases with respect to understanding underlying disease mechanisms. Here, we report the development of an extraction protocol for multi-platform metabolic profiling of human vein tissue. For the first stage of the optimization, two different ratios of methanol/water and 5 organic solvents--namely dichloromethane, chloroform, isopropanol, hexane and methyl tert-butyl ether (MTBE) solutions with methanol--were tested for polar and organic compound extraction, respectively. The extraction output was assessed using (1)H Nuclear Magnetic Resonance (NMR) spectroscopy and a panel of Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) methodologies. On the basis of the reproducibility of extraction replicates and metabolic coverage, the optimal aqueous (methanol/water) and organic (MTBE/methanol) solvents identified from the first stage were used in a sequential approach for metabolite extraction, altering the order of solvent-mixture addition. The combination of organic metabolite extraction with MTBE/methanol (3 : 1) followed by extraction of polar compounds with methanol/water (1 : 1) was shown to be the best method for extracting metabolites from human vein tissue in terms of reproducibility and number of signals detected and could be used as a single extraction procedure to serve both NMR and UPLC-MS analyses. Molecular classes such as triacylglycerols, phosphatidylcholines, phosphatidylethanolamines, sphingolipids, purines, and pyrimidines were reproducibly extracted. This study enabled an optimal extraction protocol for robust and more comprehensive metabolome coverage for human vein tissue. Many of the physiological and pathological processes affecting the composition of human vein tissue are common to other tissues and hence the extraction method developed in this study can be generically applied.

  4. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties

    NASA Astrophysics Data System (ADS)

    Miri, Abdolhossein; Sarani, Mina; Rezazade Bazaz, Mahere; Darroudi, Majid

    2015-04-01

    "Green" synthesis of metal nanoparticles has become a promising synthetic strategy in nanoscience and nanotechnology in recent years. In this work, silver nanoparticles (Ag-NPs) were synthesized from extract of Prosopis farcta at room temperature. Formation of Ag-NPs at 1 mM concentration of AgNO3 gave spherical shape nanoparticles with mean diameter about 10.8 nm. The formation of nanoparticle was confirmed by the surface Plasmon resonance (SPR) band illustrated in UV-vis spectrophotometer. The morphology and size of the Ag-NPs were determined using high magnification transmission electron microscopy (TEM). The crystalline structure of obtained nanoparticles was investigated using the powder X-ray diffraction (PXRD) pattern. In addition, these green synthesized Ag-NPs were found to show higher antibacterial activity against multi drug resistant clinical isolates.

  5. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties.

    PubMed

    Miri, Abdolhossein; Sarani, Mina; Rezazade Bazaz, Mahere; Darroudi, Majid

    2015-04-15

    "Green" synthesis of metal nanoparticles has become a promising synthetic strategy in nanoscience and nanotechnology in recent years. In this work, silver nanoparticles (Ag-NPs) were synthesized from extract of Prosopis farcta at room temperature. Formation of Ag-NPs at 1 mM concentration of AgNO3 gave spherical shape nanoparticles with mean diameter about 10.8 nm. The formation of nanoparticle was confirmed by the surface Plasmon resonance (SPR) band illustrated in UV-vis spectrophotometer. The morphology and size of the Ag-NPs were determined using high magnification transmission electron microscopy (TEM). The crystalline structure of obtained nanoparticles was investigated using the powder X-ray diffraction (PXRD) pattern. In addition, these green synthesized Ag-NPs were found to show higher antibacterial activity against multi drug resistant clinical isolates.

  6. Multiple Partial Siberian Snakes in the AGS

    SciTech Connect

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.; Hattori, T.; Lin, F.

    2007-06-13

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  7. Observation of surface plasmon resonance of silver particles and enhanced third-order optical nonlinearities in AgCl doped Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} ternary glasses

    SciTech Connect

    Xu, Tiefeng; Chen, Feifei; Shen, Xiang; Dai, Shixun; Nie, Qiuhua; Wang, Xunsi

    2010-10-15

    Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} ternary glasses embedded with Ag nanoparticles were prepared by introducing AgCl into the bismuthate glasses using conventional melt quenching method and characterized by several experimental techniques. Scanning electron microscopic studies indicated the formation of Ag contained nanoclusters which crack and become regular with increase of AgCl content in these composites. Optical absorption spectra of the nanocomposites showed the presence of absorption band of surface plasmon resonance (SPR) due to Ag nanoparticles at {approx}600 nm. Z-scan measurement with femtosecond laser was used to investigate third-order optical nonlinearities of the nanocomposites. The results show that the nonlinear refraction {gamma} was dramatically increased up to 30 times by the appearance of Ag nanoparticles when excited within its SPR region, while nonlinear absorption due to two-photon absorption exhibited opposite tendency or even saturated behavior. The calculation of figure of merit suggests that the Ag particle embedded Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} glass composites are promising candidates for optoelectronic devices.

  8. Extraction of chili, black pepper, and ginger with near-critical CO2, propane, and dimethyl ether: analysis of the extracts by quantitative nuclear magnetic resonance.

    PubMed

    Catchpole, Owen J; Grey, John B; Perry, Nigel B; Burgess, Elaine J; Redmond, Wayne A; Porter, Noel G

    2003-08-13

    Ginger, black pepper, and chili powder were extracted using near-critical carbon dioxide, propane, and dimethyl ether on a laboratory scale to determine the overall yield and extraction efficiency for selected pungent components. The temperature dependency of extraction yield and efficiency was also determined for black pepper and chili using propane and dimethyl ether. The pungency of the extracts was determined by using an NMR technique developed for this work. The volatiles contents of ginger and black pepper extracts were also determined. Extraction of all spice types was carried out with acetone to compare overall yields. Subcritical dimethyl ether was as effective at extracting the pungent principles from the spices as supercritical carbon dioxide, although a substantial amount of water was also extracted. Subcritical propane was the least effective solvent. All solvents quantitatively extracted the gingerols from ginger. The yields of capsaicins obtained by supercritical CO(2) and dimethyl ether were similar and approximately double that extracted by propane. The yield of piperines obtained by propane extraction of black pepper was low at approximately 10% of that achieved with dimethyl ether and CO(2), but improved with increasing extraction temperature.

  9. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  10. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Reddy, P. Sreedhara

    2014-03-01

    In this paper we report the green synthesis of silver nanoparticles (Ag NPs) using Tephrosia purpurea leaf extract. The biomolecules present in the leaf extract are responsible for the formation of Ag NPs and they found to play dual role of both reducing as well as capping agents. The high crystallinity of Ag NPs is evident from bright circular spot array of SAED pattern and diffraction peaks in XRD profile. The synthesized Ag NPs are found to be nearly spherical ones with size approximately ∼20 nm. FTIR spectrum evidences the presence of different functional groups of biomolecules participated in encapsulating Ag NPs and the possible mechanism of Ag NPs formation was also suggested. Appearance of yellow color and surface plasmon resonance (SPR) peak at 425 nm confirms the Ag NPs formation. PL spectra showed decrement in luminescence intensity at higher excitation wavelengths. Antimicrobial activity of Ag NPs showed better inhibitory activity towards Pseudomonas spp. and Penicillium spp. compared to other test pathogens using standard Kirby-Bauer disc diffusion assay.

  11. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract

    NASA Astrophysics Data System (ADS)

    Gavade, N. L.; Kadam, A. N.; Suwarnkar, M. B.; Ghodake, V. P.; Garadkar, K. M.

    2015-02-01

    Herein, we are reporting for the first time one step biogenic synthesis of silver nanoparticles (AgNPs) at room temperature by using Ziziphus Jujuba leaf extract as a reducing and stabilizing agent. The process of nanoparticles preparation is green, rapid, environmentally benign and cost effective. The synthesized AgNPs were characterized by means of UV-Vis., XRD, FT-IR, TEM, DLS and Zeta potential. The absorption band centered at λmax 434 nm in UV-Vis. reflects surface plasmon resonance (SPR) of AgNPs. XRD analysis revealed, that biosynthesized AgNPs are crystalline in nature with the face centered cubic structure. FT-IR analysis indicates that nanoparticles were capped with the leaf extract. TEM images shows the synthesized nanoparticles are having different shapes with 20-30 nm size. The data obtained from DLS that support the hydrodynamic size of 28 nm. Zeta potential of -26.4 mV indicates that the nanoparticles were highly stable in colloidal state. The effect of pH, quantity of leaf extract and concentrations of AgNO3 were also studied to attend control over the particle size and stability. The synthesized AgNPs shows highly efficient catalytic activity towards the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) and Methylene Blue (MB) for environmental protection. Synthesized AgNPs also exhibited good antimicrobial activity against Escherichia coli.

  12. Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae.

    PubMed

    Khamhaengpol, Arunrat; Siri, Sineenat

    2016-10-01

    Alternative to crude plant extracts, a crude protein extract derived from animal cells is one of the potential sources of biomolecules for mediating a reduction of silver ions and a formation of silver nanoparticles (AgNPs) under a mild condition, which very few works have been reported. This work demonstrated a use of the protein extract of weaver ant larvae as a bio-facilitator for a simple, green synthesis of AgNPs under fluorescent light at room temperature. The protein extract of weaver ant larvae exhibited the reducing and antioxidant activities, which assisted a formation of AgNPs in the reaction containing only silver nitrate under light exposure. Transmission electron microscopy images revealed the dispersed, spherical AgNPs with an average size of 7.87±2.54nm. The maximum surface plasmon resonance (SPR) band of the synthesized AgNPs was at 435nm. The energy-dispersive X-ray analysis revealed that silver was a major element of the particles. The identity of AgNPs was confirmed by X-ray diffraction pattern, selected area electron diffraction and high resolution transmission electron microscopy analyses, which demonstrated the planes of face centered cubic silver. The synthesized AgNPs showed antibacterial activity against both Escherichia coli and Staphylococcus aureus with the minimum bactericidal concentration (MBC) values equally at 250μg/ml, suggesting their potential application as an effective antibacterial agent. PMID:27614244

  13. Spin coating of Ag nanoparticles: Effect of reduction

    SciTech Connect

    Ansari, A. A. Sartale, S. D.

    2014-04-24

    A surfactant free method for the growth of Ag nanoparticles on glass substrate by spin coating of Ag ions solution followed by chemical reduction in aqueous hydrazine hydrate (HyH) solution has been presented. Appearance of surface plasmon resonance confirms the formation of Ag nanoparticles. Morphology and absorbance spectra of Ag nanoparticles films are used to examine effect of hydrazine concentration on the growth of Ag nanoparticles. SEM images show uniformly distributed Ag nanoparticles. Rate constant was found to be dependent on HyH concentration as a consequence influence particle size.

  14. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine ( Pinus sylvestris) wood . Part I: Lipophilic compounds

    NASA Astrophysics Data System (ADS)

    Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Sundberg, A.; Vuorinen, T.

    2004-11-01

    The wood resin in Scots pine ( Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm -1. Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at ˜1650 cm -1 due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.

  15. A UV resonance Raman (UVRR) spectroscopic study on the extractable compounds of Scots pine (Pinus sylvestris) wood. Part I: lipophilic compounds.

    PubMed

    Nuopponen, M; Willför, S; Jääskeläinen, A-S; Sundberg, A; Vuorinen, T

    2004-11-01

    The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.

  16. Optimization of the AGS superconducting helical partial snake strength.

    SciTech Connect

    Lin,F.; Huang, H.; Luccio, A.U.; Roser, T.

    2008-06-23

    Two helical partial snakes, one super-conducting (a.k.a cold snake) and one normal conducting (a.k.a warm snake), have preserved the polarization of proton beam up to 65% in the Brookhaven Alternating Gradient Synchrotron (AGS) at the extraction energy from 85% at injection. In order to overcome spin resonances, stronger partial snakes would be required. However, the stronger the partial snake, the more the stable spin direction tilted producing a stronger horizontal intrinsic resonance. The balance between increasing the spin tune gap generated by the snakes and reducing the tilted stable spin direction has to be considered to maintain the polarization. Because the magnetic field of the warm snake has to be a constant, only the cold snake with a maximum 3T magnetic field can be varied to find out the optimum snake strength. This paper presents simulation results by spin tracking with different cold snake magnetic fields. Some experimental data are also analyzed.

  17. Preliminary results of the ion extraction simulations applied to the MONO1000 and SUPERSHyPIE electron cyclotron resonance ion sources.

    PubMed

    Pierret, C; Maunoury, L; Biri, S; Pacquet, J Y; Tuske, O; Delferriere, O

    2008-02-01

    The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICA coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.

  18. Preliminary results of the ion extraction simulations applied to the MONO1000 and SUPERSHyPIE electron cyclotron resonance ion sourcesa)

    NASA Astrophysics Data System (ADS)

    Pierret, C.; Maunoury, L.; Biri, S.; Pacquet, J. Y.; Tuske, O.; Delferriere, O.

    2008-02-01

    The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICA coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.

  19. Preliminary results of the ion extraction simulations applied to the MONO1000 and SUPERSHyPIE electron cyclotron resonance ion sources

    SciTech Connect

    Pierret, C.; Maunoury, L.; Biri, S.; Pacquet, J. Y.; Tuske, O.; Delferriere, O.

    2008-02-15

    The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICA coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.

  20. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  1. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  2. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP. PMID:24593475

  3. New opportunities of the application of natural herb and spice extracts in plant oils: application of electron paramagnetic resonance in examining the oxidative stability.

    PubMed

    Kozłowska, Mariola; Szterk, Arkadiusz; Zawada, Katarzyna; Ząbkowski, Tomasz

    2012-09-01

    The aim of this study was to establish the applicability of natural water-ethanol extracts of herbs and spices in increasing the oxidative stability of plant oils and in the production of novel food. Different concentrations (0, 100, 300, 500, and 700 ppm) of spice extracts and butylated hydroxyanisole (BHA) (100 ppm) were added to the studied oils. The antioxidant activity of spice extracts was determined with electron paramagnetic resonance (EPR) spectroscopy using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. The study showed that the extracts significantly increased the oxidative stability of the examined oils when compared to one of the strongest synthetic antioxidants--BHA. The applied simple production technology and addition of herb and spice extracts to plant oils enabled enhancement of their oxidative stability. The extracts are an alternative to the oils aromatized with an addition of fresh herbs, spices, and vegetables because it did not generate additional flavors thus enabling the maintenance of the characteristic ones. Moreover, it will increase the intake of natural substances in human diet, which are known to possess anticarcinogenic properties.

  4. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  5. Direct assessment by electron spin resonance spectroscopy of the antioxidant effects of French maritime pine bark extract in the maxillofacial region of hairless mice

    PubMed Central

    Yoshida, Ayaka; Yoshino, Fumihiko; Tsubata, Masahito; Ikeguchi, Motoya; Nakamura, Takeshi; Lee, Masaichi-Chang-il

    2011-01-01

    Flavangenol, one of extract of French maritime pine bark, is a complex mixture of bioflavonoids with oligometric proanthocyanidins as the major constituents. These constituents, catechin and procyanidin B1, are water-soluble derivatives of flavangenol. In this study, we investigated the antioxidant effects of flavangenol on reactive oxygen species such as hydroxyl radical, superoxide anion and singlet oxygen using electron spin resonance and spin trapping. The effect of flavangenol on oxidative stress in the skin from the maxillofacial region of hairless mice was investigated using an in vivo L-band electron spin resonance imaging system. Flavangenol attenuated oxidative stress in the maxillofacial skin by acting as a reactive oxygen species scavenger, as demonstrated by in vitro and in vivo electron spin resonance imaging analysis. The absorption and metabolism of flavangenol were also examined. After oral administration of flavangenol in human and rat, most of the catechin in plasma was in the conjugated form, while 45% to 78% of procyanidin B1 was unconjugated, indicating that non-conjugated procyanidin B1 would be active in the circulation. The ability of flavangenol to reduce reactive oxygen species levels in the circulation of the maxillofacial region suggests that this extract may be beneficial for skin protection from exposure to ultraviolet irradiation. PMID:21980222

  6. Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay

    NASA Astrophysics Data System (ADS)

    Parveen, Mehtab; Ahmad, Faheem; Malla, Ali Mohammed; Azaz, Shaista

    2016-02-01

    The biosynthesis of nanoparticles has been proposed as a cost effective and environmentally benevolent alternative to chemical and physical methods. In the present study, microwave assisted synthesis of silver nanoparticles (AgNPs) has been demonstrated using leaf extract of Fraxinus excelsior reducing aqueous AgNO3 solution. The synthesized nanoparticles have been characterized on the basis of fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis. The presence of a characteristic surface plasmon resonance (SPR) absorption band at 425 nm in UV-Vis reveals the reduction of silver metal ions into silver nanoparticles. FT-IR analysis was carried out to probe the possible functional group involved in the synthesis of AgNPs. Further leaf extracts and AgNPs were evaluated for antiradical scavenging activity by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay.

  7. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar.

    PubMed

    Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2016-01-15

    Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.

  8. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar.

    PubMed

    Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2016-01-15

    Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots. PMID:26824530

  9. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation

    NASA Astrophysics Data System (ADS)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.

    2016-11-01

    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  10. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod)

    NASA Astrophysics Data System (ADS)

    Kumar, Vemu Anil; Uchida, Takashi; Mizuki, Toru; Nakajima, Yoshikata; Katsube, Yoshihiro; Hanajiri, Tatsuro; Maekawa, Toru

    2016-03-01

    Phytosynthesis of nanomaterials is advantageous since it is economical, ecofriendly, and simple, and, what is more, in the synthetic protocols, nontoxic chemicals and biocompatible materials are used. Here, a green synthetic methodology of nanoparticles (NPs) composed of silver (Ag) and silver chloride (AgCl) NPs is developed using a leaf extract of Solidago altissima as a reducing agent for the first time. Utilization of a terrestrial weed for the synthesis of Ag and AgCl NPs is a novel environmentally friendly approach considering that no toxic chemicals, external halide source, or elaborate experimental procedures are included in the process. The optical properties and elemental compositions of as-synthesized Ag and AgCl NPs are well characterized, and the degradation of an organic dye, i.e., rhodamine B (RhB), is investigated using the Ag and AgCl NPs. We find that degradation of RhB is effectively achieved thanks to both surface plasmon resonance and semiconductor properties of Ag and AgCl NPs. The surface-enhanced Raman scattering and antibacterial activities are also examined. The present approach to the synthesis of NPs using a weed may encourage the utilization of hazardous plants for the creation of novel nanomaterials.

  11. AGS II

    SciTech Connect

    Palmer, R.B.

    1984-01-01

    Interest in rare K decays, neutrino oscillations and other fields have generated an increasing demand for running, and improved intensity and duty cycle, at the AGS. Current projects include acceleration of polarized protons and light ions (up to mass 32). Future plans are for a booster to increase intensity and allow heavy ions (up to mass 200), and a stretcher to give 100% duty cycle. A later upgrade could yield an average current of 32 ..mu.. amps. 6 figures, 2 tables.

  12. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Seifi, A.

    2016-11-01

    The Ag/ZnO-MMT nanocomposite was prepared using urtica dioica leaf extract. To improve the photocatalytic properties of ZnO-MMT nanocomposite, silver metal nanoparticles was deposited over nanocomposite. Zn(CH3COO)2, AgNO3 and Urtica dioica leaf extract were used as a zinc, silver precursor and reducing agent, respectively. The nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed that Ag/ZnO nanoparticles located on the surface MMT layers. The diffuse reflectance spectra of nanocomposite indicated a strong surface plasmon resonance (SPR) absorption band in the visible region, resulting from metallic Ag nanoparticles. TEM image demonstrated the presence of silver nanoparticles with an average size of 2-4 nm over both MMT and flower-shape ZnO. The photocatalytic activity of nanocomposite was studied for destructive reaction methylene blue dye under visible light. In addition, the effects of different parameters such as amount of nanocomposite, concentration of the dye and pH of the solution were studied. The results showed that modiffication of ZnO-MMT nanocomposite with silver nanoparticles increased the percentage of discoloration methylene blue (MB) from 38.95 to 91.95. MMT matrix showed an important role in the reduction of recombination of electron-hole in nanocomposite.

  13. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Qingyao; Qiao, Jianlei; Jin, Rencheng; Xu, Xiaohui; Gao, Shanmin

    2015-03-01

    Plasmonic photosensitizer AgBr/Ag nanospheres supported on TiO2 nanotube arrays (TiO2 NTs) are prepared by successive ionic layer adsorption and reaction (SILAR) technique followed by photoreduction methods. The structural and surface morphological properties of AgBr/Ag nanoparticles sensitized TiO2 NTs and their photoelectrochemical performance are investigated and discussed. A detailed formation mechanism of the TiO2 NTs/AgBr/Ag is proposed. The TiO2 NTs/AgBr/Ag exhibit excellent photocurrent and photoelectrocatalytic activities under visible light irradiation. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant visible light response and surface plasmon resonance of Ag nanoparticles. This finding indicates that the high photosensitivity of the TiO2 NTs-based surface plasmon resonance materials could be applied toward the development of new plasmonic visible-light-sensitive photovoltaic fuel cells and photocatalysts.

  14. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan.

  15. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Tfaily, Malak M; Hodgkins, Suzanne; Podgorski, David C; Chanton, Jeffrey P; Cooper, William T

    2012-08-01

    We compare two methods, solid-phase extraction (SPE) and dialysis, commonly used for extraction and concentration of dissolved organic matter (DOM) prior to molecular characterization by electrospray ionization (ESI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Spectra of DOM samples from Minnesota and Sweden peatlands that were extracted with styrene divinyl benzene polymer SPE sorbents included ions with formulas that had higher oxygen to carbon (O/C) ratios than spectra of DOM from the same samples after de-salting by dialysis. The SPE method was not very effective in extracting several major classes of DOM compounds that had high ESI efficiencies, including carboxylic acids and organo-sulfur compounds, and that out-competed other less-functionalized compounds (e.g., carbohydrates) for charge in the ESI source. The large abundance of carboxylic acids in the dialysisextracted DOM, likely the result of in situ microbial production, makes it difficult to see other (mainly hydrophilic) compounds with high O/C ratios. Our results indicate that, while dialysis is generally preferable for the isolation of DOM, for samples with high microbial inputs, the use of both isolation methods is recommended for a more accurate molecular representation.

  16. Biosynthesis, characterisation and antimicrobial activity of silver nanoparticles using Hibiscus rosa-sinensis petals extracts.

    PubMed

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Nayak, Bismita

    2015-10-01

    Green synthesis of metallic nanoparticles has lured the world from the chemical and physical approaches owing to its rapid, non-hazardous and economic aspect of production mechanism. In this study, silver nanoparticles (AgNPs) were synthesised using petal extracts of Hibiscus rosa-sinensis. The AgNPs displayed characteristic surface plasmon resonance peak at around 421 nm having a mean particle size of 76.25±0.17 nm and carried a charge of -41±0.2 mV. The X-ray diffraction patterns displayed typical peaks of face centred cubic crystalline silver. The surface morphology was characterised by scanning electron microscopy and atomic force microscopy. Fourier transform infrared spectroscopy studies confirmed the surface modifications of the functional groups for the synthesis of AgNPs. Furthermore, the synthesised AgNPs displayed proficient antimicrobial activity against pathogenic strains of Vibrio cholerae, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. PMID:26435282

  17. Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts.

    PubMed

    Kongstad, Kenneth T; Özdemir, Ceylan; Barzak, Asmah; Wubshet, Sileshi G; Staerk, Dan

    2015-03-01

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective α-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for α-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 μg/mL. Subsequently, high-resolution α-glucosidase profiling was used in combination with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the α-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main α-glucosidase inhibitors in A. ascalonicum peel, whereas (E)-piceatannol 3'-O-β-D-glucopyranoside (5), (E)-rhapontigenin 3'-O-β-D-glucopyranoside (6), (E)-piceatannol (8), and emodin (12) were identified as main α-glucosidase inhibitors in R. palmatum root.

  18. Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts.

    PubMed

    Kongstad, Kenneth T; Özdemir, Ceylan; Barzak, Asmah; Wubshet, Sileshi G; Staerk, Dan

    2015-03-01

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective α-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for α-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 μg/mL. Subsequently, high-resolution α-glucosidase profiling was used in combination with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the α-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main α-glucosidase inhibitors in A. ascalonicum peel, whereas (E)-piceatannol 3'-O-β-D-glucopyranoside (5), (E)-rhapontigenin 3'-O-β-D-glucopyranoside (6), (E)-piceatannol (8), and emodin (12) were identified as main α-glucosidase inhibitors in R. palmatum root. PMID:25652946

  19. Effect of Ag+ and PO43‑ ratios on the microstructure and photocatalytic activity of Ag3PO4

    NASA Astrophysics Data System (ADS)

    Qin, Jiaqian; Zhang, Xinyu; Yang, Chengwu; Song, Aijun; Zhang, Bing; Rajendran, Saravanan; Ma, Mingzhen; Liu, Riping

    2016-09-01

    In this work, the catalyst silver phosphate (Ag3PO4) with different initial ratios of Ag+ and PO43‑ in aqueous solution was synthesized by a simple precipitation method from AgNO3 and NH4H2PO4 which were used as the precursor. After that, the prepared samples were characterized by different techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy (UV-DRS) and decomposition evolution of rhodamine B (RhB) solution. The results indicate that the initial ratios of Ag+/PO43‑ in aqueous solution can modify the morphology and also it can significantly affect the photocatalytic performance. During photocatalytic process, the rich Ag+ ion Ag3PO4 can form the surface plasmon resonance (SPR) of Ag nanoparticles, which inhibit the reduction of Ag3PO4 resulting in higher photocatalytic activity and stability.

  20. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties

    PubMed Central

    Ashour, Asmaa A; Raafat, Dina; El-Gowelli, Hanan M; El-Kamel, Amal H

    2015-01-01

    Background The growing threat of microbial resistance against traditional antibiotics has prompted the development of several antimicrobial nanoparticles (NPs), including silver NPs (AgNPs). In this article, a simple and eco-friendly method for the synthesis of AgNPs using the cranberry powder aqueous extract is reported. Materials and methods Cranberry powder aqueous extracts (0.2%, 0.5%, and 0.8% w/v) were allowed to interact for 24 hours with a silver nitrate solution (10 mM) at 30°C at a ratio of 1:10. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy and their concentrations were determined using atomic absorption spectroscopy. The prepared NPs were evaluated by transmission electron microscopy, measurement of ζ-potential, and Fourier-transform infrared spectroscopy. The in vitro antimicrobial properties of AgNPs were then investigated against several microbial strains. Finally, in vivo appraisal of both wound-healing and antimicrobial properties of either plain AgNPs (prepared using 0.2% extract) or AgNP-Pluronic F-127 gel was conducted in a rat model after induction of a Staphylococcus aureus ATCC 6538P wound infection. Results The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy, where a surface-plasmon resonance absorption peak was observed between 432 and 438 nm. Both size and concentration of the formed AgNPs increased with increasing concentration of the extracts. The developed NPs were stable, almost spherical, and polydisperse, with a size range of 1.4–8.6 nm. The negative ζ-potential values, as well as Fourier-transform infrared spectroscopy analysis, indicated the presence of a capping agent adsorbed onto the surface of the particles. In vitro antimicrobial evaluation revealed a size-dependent activity of the AgNPs against the tested organisms. Finally, AgNPs prepared using 0.2% extract exhibited a substantial in vivo healing potential for full-thickness excision wounds in rats. Conclusion AgNPs were

  1. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  2. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties

    PubMed Central

    Salehi, Soheil; Shandiz, Seyed Ataollah Sadat; Ghanbar, Farinaz; Darvish, Mohammad Raouf; Ardestani, Mehdi Shafiee; Mirzaie, Amir; Jafari, Mohsen

    2016-01-01

    A rapid phytosynthesis of silver nanoparticles (AgNPs) using an extract from the aerial parts of Artemisia marschalliana Sprengel was investigated in this study. The synthesized AgNPs using A. marschalliana extract was analyzed by UV–visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy and further characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, and energy-dispersive spectroscopy. Characteristic absorption bands of AgNPs were found near 430 nm in the UV–vis spectrum. Energy-dispersive spectroscopy analysis of AgNPs in the energy range 2–4 keV confirmed the silver signal due to surface plasmon resonance. Scanning electron microscopy and transmission electron microscopy results revealed that the AgNPs were mostly spherical with an average size ranging from 5 nm to 50 nm. The zeta potential value of −31 mV confirmed the stability of the AgNPs. AgNPs produced using the aqueous A. marschalliana extract might serve as a potent in vitro antioxidant, as revealed by 2,2-diphenyl-1-picryl hydrazyl assay. The present study demonstrates the anticancer properties of phytosynthesized AgNPs against human gastric carcinoma AGS cells. AgNPs exerted a dose-dependent inhibitory effect on the viability of cells. Real-time polymerase chain reaction was used for the investigation of Bax and Bcl-2 gene expression in cancer and normal cell lines. Our findings show that the mRNA levels of pro-apoptotic Bax gene expression were significantly upregulated, while the expression of anti-apoptotic Bcl-2 was declined in cells treated with AgNPs compared to normal cells. In addition, flow cytometric analysis showed that the number of early and late apoptotic AGS cells was significantly enhanced following treatment with AgNPs as compared to untreated cells. In addition, the AgNPs showed strong antibacterial properties against tested pathogenic bacteria such as Staphylococcus aureus, Bacillus cereus

  3. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.

    PubMed

    Salehi, Soheil; Shandiz, Seyed Ataollah Sadat; Ghanbar, Farinaz; Darvish, Mohammad Raouf; Ardestani, Mehdi Shafiee; Mirzaie, Amir; Jafari, Mohsen

    2016-01-01

    A rapid phytosynthesis of silver nanoparticles (AgNPs) using an extract from the aerial parts of Artemisia marschalliana Sprengel was investigated in this study. The synthesized AgNPs using A. marschalliana extract was analyzed by UV-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy and further characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, and energy-dispersive spectroscopy. Characteristic absorption bands of AgNPs were found near 430 nm in the UV-vis spectrum. Energy-dispersive spectroscopy analysis of AgNPs in the energy range 2-4 keV confirmed the silver signal due to surface plasmon resonance. Scanning electron microscopy and transmission electron microscopy results revealed that the AgNPs were mostly spherical with an average size ranging from 5 nm to 50 nm. The zeta potential value of -31 mV confirmed the stability of the AgNPs. AgNPs produced using the aqueous A. marschalliana extract might serve as a potent in vitro antioxidant, as revealed by 2,2-diphenyl-1-picryl hydrazyl assay. The present study demonstrates the anticancer properties of phytosynthesized AgNPs against human gastric carcinoma AGS cells. AgNPs exerted a dose-dependent inhibitory effect on the viability of cells. Real-time polymerase chain reaction was used for the investigation of Bax and Bcl-2 gene expression in cancer and normal cell lines. Our findings show that the mRNA levels of pro-apoptotic Bax gene expression were significantly upregulated, while the expression of anti-apoptotic Bcl-2 was declined in cells treated with AgNPs compared to normal cells. In addition, flow cytometric analysis showed that the number of early and late apoptotic AGS cells was significantly enhanced following treatment with AgNPs as compared to untreated cells. In addition, the AgNPs showed strong antibacterial properties against tested pathogenic bacteria such as Staphylococcus aureus, Bacillus cereus, Acinetobacter

  4. Biosynthesis and Characterization of Silver Nanoparticles from Methanol Leaf Extract of Cassia didymobotyra and Assessment of Their Antioxidant and Antibacterial Activities.

    PubMed

    Akhtar, Mohd Sayeed; Swamy, Mallappa Kumara; Umar, Ahmad; Al Sahli, Abdulaziz Abdullah

    2015-12-01

    The biosynthesis of silver nanoparticles (AgNPs) was achieved for the first time using methanol leaf extract of C. didymobotyra and their in vitro antioxidant and antibacterial activities were also evaluated. Methanol leaf extracts of C. didymobotyra after mixing with AgNO3 solution showed the change in color from light brown to dark yellowish brown within 1 hour. UV-visible spectroscopy study showed the surface plasmon resonance at around 420 nm clearly indicating the biosynthesis of AgNPs. Transmission Electron Microscopy (TEM) analysis proved the presence of biosynthesized AgNPs in spherical shape with huge disparity in sizes. The average size of biosynthesized nanoparticle was about 18 nm. The occurrence of face centered cubic shapes of nanoparticles was established by X-ray diffraction (XRD) patterns. Further, Fourier transform infrared spectroscopy (FTIR) study showed the possible capping of AgNPs because of the active biomolecules present in the methanol leaf extract of C. didymobotyra. The antioxidant activities of biosynthesized AgNPs were evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay and found that AgNPs demonstrated a strong antioxidant properties compared to methanol leaf extract. Nevertheless, the biosynthesized AgNPs exhibited a strong antibacterial activity against all the tested human pathogenic bacterial strains compared to crude methanol leaf extract of C. didymobotyra. Thus, it is concluded that these biosynthesized AgNPs are cost effective, eco-friendly in nature and could be applied for developing new antibacterial drugs and other biomedical applications in near future. PMID:26682418

  5. Extracellular Polymeric Substances (EPS) of Freshwater Biofilms Stabilize and Modify CeO2 and Ag Nanoparticles

    PubMed Central

    Kroll, Alexandra; Behra, Renata; Kaegi, Ralf; Sigg, Laura

    2014-01-01

    Streams are potential receiving compartments for engineered nanoparticles (NP). In streams, NP may remain dispersed or settle to the benthic compartment. Both dispersed and settling NP can accumulate in benthic biofilms called periphyton that are essential to stream ecosystems. Periphytic organisms excrete extracellular polymeric substances (EPS) that interact with any material reaching the biofilms. To understand the interaction of NP with periphyton it is therefore crucial to study the interaction of NP with EPS. We investigated the influence of EPS on the physicochemical properties of selected NP (CeO2, Ag) under controlled conditions at pH 6, 7.6, 8.6 and light or dark exposure. We extracted EPS from five different periphyton communities, characterized the extracts, and exposed CeO2 and carbonate-stabilized Ag NP (0.5 and 5 mg/L, both 25 nm primary particle size) and AgNO3 to EPS (10 mg/L) over two weeks. We measured NP size distribution, shape, primary particle size, surface plasmon resonance, and dissolution. All EPS extracts were composed of biopolymers, building blocks of humic substances, low molecular weight (Mr) acids, and small amphiphilic or neutral compounds in varying concentrations. CeO2 NP were stabilized by EPS independent of pH and light/dark while dissolution increased over time in the dark at pH 6. EPS induced a size increase in Ag NP in the light with decreasing pH and the formation of metallic Ag NP from AgNO3 at the same conditions via EPS-enhanced photoreduction. NP transformation and formation were slower in the extract with the lowest biopolymer and low Mr acid concentrations. Periphytic EPS in combination with naturally varying pH and light/dark conditions influence the properties of the Ag and CeO2 NP tested and thus the exposure conditions within biofilms. Our results indicate that periphytic organisms may be exposed to a constantly changing mixture of engineered and naturally formed Ag NP and Ag+. PMID:25333364

  6. Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol

    SciTech Connect

    Li, Tingting; Luo, Shenglian; Yang, Lixia

    2013-10-15

    Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area, strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O{sub 2}·{sup −}, Br{sup 0} and photogenerated h{sup +} play key roles in the photocatalytic degradation process.

  7. Determination of rhodium by resonance light-scattering technique coupled with solid phase extraction using Rh(III) ion-imprinted polymers as sorbent.

    PubMed

    Yang, Bing; Zhang, Ting; Tan, Wenxiang; Liu, Peng; Ding, Zhongtao; Cao, Qiue

    2013-02-15

    A resonance light-scattering method (RLS) for the determination of Rh(III) was initially developed, based on the reaction among Rh(III), WO4(2-) and ethylrhodamine B. The method possesses high sensitivity, but lacks selectivity. Therefore, a Rh(III) ion-imprinted polymer (IIP), prepared by precipitation polymerization using 2-(allylthio)nicotinic acid (ANA) as functional monomer, was used as sorbent to construct a ion-imprint based solid-phase extraction (IIP-SPE) method for separation of rhodium from complicated matrices prior to its determination by RLS. The experimental parameters affecting the extraction efficiency and selectivity of IIP-SPE were studied carefully. Under the optimal conditions, the IIP-SPE column with the enrichment factor (EF) of 10 could be used at least 20 times without decreasing its extraction recovery (above 90%) significantly. The calibration graph for the determination of rhodium by RLS coupled with IIP-SPE procedure was linear in the range of 0.06-1.5 ng mL(-1) with the detection limit of 0.024 ng mL(-1). There is no metal ions tested at the concentration below 10 ng mL(-1) interfered in the determination of 0.8 ng mL(-1) Rh(III). The proposed IIP-SPE-RLS method was successfully applied to the extraction and measurement of trace rhodium in catalyst, water and geochemical samples with the relative standard deviation (RSD) of less than 4.0% (n=4).

  8. Hyphenation of solid-phase extraction with liquid chromatography and nuclear magnetic resonance: application of HPLC-DAD-SPE-NMR to identification of constituents of Kanahia laniflora.

    PubMed

    Clarkson, Cailean; Staerk, Dan; Hansen, Steen Honoré; Jaroszewski, Jerzy W

    2005-06-01

    The introduction of on-line solid-phase extraction (SPE) in HPLC-NMR has dramatically enhanced the sensitivity of this technique by concentration of the analytes in a small-volume NMR flow cell and by increasing the amount of the analyte by multiple peak trapping. In this study, the potential of HPLC-DAD-SPE-NMR hyphenation was demonstrated by structure determination of complex constituents of flower, leaf, root, and stem extracts of an African medicinal plant Kanahia laniflora. The technique was shown to allow acquisition of high-quality homo- and heteronuclear 2D NMR data following analytical-scale HPLC separation of extract constituents. Four flavonol glycosides [kaempferol 3-O-(6-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside; kaempferol 3-O-(2,6-di-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside; quercetin 3-O-(2,6-di-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside (rutin); and isorhamnetin, 3-O-(6-O-alpha-l-rhamnopyranosyl)-beta-d-glucopyranoside] and three 5alpha-cardenolides [coroglaucigenin 3-O-6-deoxy-beta-d-allopyranoside; coroglaucigenin 3-O-(4-O-beta-d-glucopyranosyl)-6-deoxy-beta-d-glucopyranoside; 3'-O-acetyl-3'-epiafroside] were identified, with complete assignments of 1H and 13C resonances based on HSQC and HMBC spectra whenever required. Confirmation of the structures was provided by HPLC-MS data. The HPLC-DAD-SPE-NMR technique therefore speeds up the dereplication of complex mixtures of natural origin significantly, by characterization of individual extract components prior to preparative isolation work. PMID:15924388

  9. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  10. Structure Determination of an Ag(I) -Mediated Cytosine-Cytosine Base Pair within DNA Duplex in Solution with (1) H/(15) N/(109) Ag NMR Spectroscopy.

    PubMed

    Dairaku, Takenori; Furuita, Kyoko; Sato, Hajime; Šebera, Jakub; Nakashima, Katsuyuki; Kondo, Jiro; Yamanaka, Daichi; Kondo, Yoshinori; Okamoto, Itaru; Ono, Akira; Sychrovský, Vladimír; Kojima, Chojiro; Tanaka, Yoshiyuki

    2016-09-01

    The structure of an Ag(I) -mediated cytosine-cytosine base pair, C-Ag(I) -C, was determined with NMR spectroscopy in solution. The observation of 1-bond (15) N-(109) Ag J-coupling ((1) J((15) N,(109) Ag): 83 and 84 Hz) recorded within the C-Ag(I) -C base pair evidenced the N3-Ag(I) -N3 linkage in C-Ag(I) -C. The triplet resonances of the N4 atoms in C-Ag(I) -C demonstrated that each exocyclic N4 atom exists as an amino group (-NH2 ), and any isomerization and/or N4-Ag(I) bonding can be excluded. The 3D structure of Ag(I) -DNA complex determined with NOEs was classified as a B-form conformation with a notable propeller twist of C-Ag(I) -C (-18.3±3.0°). The (109) Ag NMR chemical shift of C-Ag(I) -C was recorded for cytidine/Ag(I) complex (δ((109) Ag): 442 ppm) to completed full NMR characterization of the metal linkage. The structural interpretation of NMR data with quantum mechanical calculations corroborated the structure of the C-Ag(I) -C base pair. PMID:27505707

  11. Structure Determination of an Ag(I) -Mediated Cytosine-Cytosine Base Pair within DNA Duplex in Solution with (1) H/(15) N/(109) Ag NMR Spectroscopy.

    PubMed

    Dairaku, Takenori; Furuita, Kyoko; Sato, Hajime; Šebera, Jakub; Nakashima, Katsuyuki; Kondo, Jiro; Yamanaka, Daichi; Kondo, Yoshinori; Okamoto, Itaru; Ono, Akira; Sychrovský, Vladimír; Kojima, Chojiro; Tanaka, Yoshiyuki

    2016-09-01

    The structure of an Ag(I) -mediated cytosine-cytosine base pair, C-Ag(I) -C, was determined with NMR spectroscopy in solution. The observation of 1-bond (15) N-(109) Ag J-coupling ((1) J((15) N,(109) Ag): 83 and 84 Hz) recorded within the C-Ag(I) -C base pair evidenced the N3-Ag(I) -N3 linkage in C-Ag(I) -C. The triplet resonances of the N4 atoms in C-Ag(I) -C demonstrated that each exocyclic N4 atom exists as an amino group (-NH2 ), and any isomerization and/or N4-Ag(I) bonding can be excluded. The 3D structure of Ag(I) -DNA complex determined with NOEs was classified as a B-form conformation with a notable propeller twist of C-Ag(I) -C (-18.3±3.0°). The (109) Ag NMR chemical shift of C-Ag(I) -C was recorded for cytidine/Ag(I) complex (δ((109) Ag): 442 ppm) to completed full NMR characterization of the metal linkage. The structural interpretation of NMR data with quantum mechanical calculations corroborated the structure of the C-Ag(I) -C base pair.

  12. Extracting partial decay rates of helium from complex rotation: autoionizing resonances of the one-dimensional configurations

    NASA Astrophysics Data System (ADS)

    Zimmermann, Klaus; Lugan, Pierre; Jörder, Felix; Heitz, Nicolai; Schmidt, Maximilian; Bouri, Celsus; Rodriguez, Alberto; Buchleitner, Andreas

    2015-01-01

    Partial autoionization rates of doubly excited one-dimensional helium in the collinear Zee and eZe configuration are obtained by means of the complex rotation method. The approach presented here relies on a projection of back-rotated resonance wave functions onto singly ionized H{{e}+} channel wave functions and the computation of the corresponding particle fluxes. In spite of the long-range nature of the Coulomb potential between the electrons and the nucleus, an asymptotic region where the fluxes are stationary is clearly observed. Low-lying doubly excited states are found to decay predomintantly into the nearest single-ionization continuum. This approach paves the way for a systematic analysis of the decay rates observed in higher-dimensional models, and of the role of electronic correlations and atomic structure in recent photoionization experiments.

  13. Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Tian, Baozhu; Zhang, Jinlong; Xiong, Tianqing; Wang, Tingting

    2014-02-01

    Porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts were synthesized by a multistep route, including a dealloying method to prepare porous Ag, a transformation from Ag to AgBr and AgBrI, and a photo-reduction process to form Ag nanoparticles on the surface of AgBr and AgBrI. It was found that the porous structure kept unchanged during Ag was transferred into AgBr, AgBrI, AgBr@Ag, and AgBrI@Ag. Both porous AgBr@Ag and porous AgBrI@Ag showed much higher visible-light photocatalytic activity than cubic AgBr@Ag for the degradation of methyl orange, which is because the interconnected pore channels not only provide more reactive sites but also favor the transportation of photo-generated electrons and holes. For AgBrI@Ag, AgBrI solid solution formed at the interface of AgBr and AgI, and the phase junction can effectively separate the photo-generated electrons and holes, favorable to the improvement of photocatalytic activity. The optimal I content for obtaining the highest activity is ∼10 at.%.

  14. Acceleration of polarized protons in the AGS

    SciTech Connect

    Tsoupas, N.; Ahrens, L.; Bai, M.; Brown, K.; Courant, E.; Glenn, J.W.; Huang, H.; Luccio, A.; MacKay, W.W.; Roser, T.; Schoefer, V.; Zeno, K.

    2010-02-25

    The high energy (s{sup 1/2} = 500 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the proton beam. With the AGS used as the pre-injector to RHIC, one of the main tasks is to preserve the polarization of the proton beam, during the beam acceleration in the AGS. The polarization preservation is accomplished by the two partial helical magnets [1,2,3,4,5,6,7] which have been installed in AGS, and help overcome the imperfection and the intrinsic spin resonances which occur during the acceleration of protons. This elimination of the intrinsic resonances is accomplished by placing the vertical tune Q{sub y} at a value close to 8.98, within the spin-tune stop-band created by the snake. At this near integer tune the perturbations caused by the partial helical magnets is large resulting in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have introduced compensation quads[2] in the AGS. In this paper we present the beam optics of the AGS which ameliorates this effect of the partial helices.

  15. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis.

    PubMed

    Jiang, Jing; Li, Hao; Zhang, Lizhi

    2012-05-14

    Noble metal nanoparticles (NPs) are often used as electron scavengers in conventional semiconductor photocatalysis to suppress electron-hole (e(-)-h(+) ) recombination and promote interfacial charge transfer, and thus enhance photocatalytic activity of semiconductors. In this contribution, it is demonstrated that noble metal NPs such as Ag NPs function as visible-light harvesting and electron-generating centers during the daylight photocatalysis of AgBr@Ag. Novel Ag plasmonic photocatalysis could cooperate with the conventional AgBr semiconductor photocatalysis to enhance the overall daylight activity of AgBr@Ag greatly because of an interesting synergistic effect. After a systematic investigation of the daylight photocatalysis mechanism of AgBr@Ag, the synergistic effect was attributed to surface plasmon resonance induced local electric field enhancement on Ag, which can accelerate the generation of e(-)-h(+) pairs in AgBr, so that more electrons are produced in the conduction band of AgBr under daylight irradiation. This study provides new insight into the photocatalytic mechanism of noble metal/semiconductor systems as well as the design and fabrication of novel plasmonic photocatalysts.

  16. Metabonomic analysis of water extracts from different angelica roots by ¹H-nuclear magnetic resonance spectroscopy.

    PubMed

    Chan, Pui Hei; Zhang, Wendy L; Lau, Chung-Ho; Cheung, Chi Yuen; Keun, Hector C; Tsim, Karl W K; Lam, Henry

    2014-01-01

    Angelica Radix, the roots of the genus Angelica, has been used for more than 2,000 years as a traditional medicine in Eastern Asia. The Chinese Pharmacopoeia records more than 100 herbal formulae containing Angelica roots. There are two common sources of Angelica roots, Angelica sinensis from China and A. gigas from Korea. The two species of Angelica roots differ in their chemical compositions, pharmacological properties and clinical efficacy. ¹H-NMR metabolic profiling has recently emerged as a promising quality control method for food and herbal chemistry. We explored the use of ¹H-NMR metabolic profiling for the quality control of Angelica Radix. Unlike previous work, we performed the metabolic profiling on hot water extracts, so as to mimic the clinically relevant preparation method. Unsupervised principle component analyses of both the full spectral profile and a selection of targeted molecules revealed a clear differentiation of three types of Angelica roots. In addition, the levels of 13 common metabolites were measured. Statistically significant differences in the levels of glucose, fructose and threonine were found between different sources of Angelica. Ferulic acid, a marker commonly used to evaluate Angelica root, was detected in our samples, but the difference in ferulic acid levels between the samples was not statistically significant. Overall, we successfully applied ¹H-NMR metabolic profiling with water extraction to discriminate all three sources of Angelica roots, and obtained quantitative information of many common metabolites. PMID:24658570

  17. Metabonomic analysis of water extracts from different angelica roots by ¹H-nuclear magnetic resonance spectroscopy.

    PubMed

    Chan, Pui Hei; Zhang, Wendy L; Lau, Chung-Ho; Cheung, Chi Yuen; Keun, Hector C; Tsim, Karl W K; Lam, Henry

    2014-03-20

    Angelica Radix, the roots of the genus Angelica, has been used for more than 2,000 years as a traditional medicine in Eastern Asia. The Chinese Pharmacopoeia records more than 100 herbal formulae containing Angelica roots. There are two common sources of Angelica roots, Angelica sinensis from China and A. gigas from Korea. The two species of Angelica roots differ in their chemical compositions, pharmacological properties and clinical efficacy. ¹H-NMR metabolic profiling has recently emerged as a promising quality control method for food and herbal chemistry. We explored the use of ¹H-NMR metabolic profiling for the quality control of Angelica Radix. Unlike previous work, we performed the metabolic profiling on hot water extracts, so as to mimic the clinically relevant preparation method. Unsupervised principle component analyses of both the full spectral profile and a selection of targeted molecules revealed a clear differentiation of three types of Angelica roots. In addition, the levels of 13 common metabolites were measured. Statistically significant differences in the levels of glucose, fructose and threonine were found between different sources of Angelica. Ferulic acid, a marker commonly used to evaluate Angelica root, was detected in our samples, but the difference in ferulic acid levels between the samples was not statistically significant. Overall, we successfully applied ¹H-NMR metabolic profiling with water extraction to discriminate all three sources of Angelica roots, and obtained quantitative information of many common metabolites.

  18. Facile synthesis of ternary Ag/AgBr-Ag2CO3 hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light.

    PubMed

    Zhang, Anchao; Zhang, Lixiang; Lu, Hao; Chen, Guoyan; Liu, Zhichao; Xiang, Jun; Sun, Lushi

    2016-08-15

    A novel technique for photocatalytic removal of elemental mercury (Hg(0)) using visible-light-driven Ag/AgBr-Ag2CO3 hybrids was proposed. The ternary Ag/AgBr-Ag2CO3 hybrids were synthesized by a simple modified co-precipitation method and characterized by N2 adsorption-desorption, scanning electron microscope (SEM), X-ray diffraction (XRD), UV-vis diffused reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) techniques. The effects of AgBr content, fluorescent lamp (FSL) irradiation, solution temperature, SO2 and NO on Hg(0) removal were investigated in detail. Furthermore, a possible reaction mechanism for higher Hg(0) removal was proposed, and the simultaneous removal of Hg(0), SO2 and NO was studied. The results showed that a high efficiency of Hg(0) removal was obtained by using Ag/AgBr-Ag2CO3 hybrids under fluorescent lamp irradiation. The AgBr content, FSL irradiation, solution temperature, and SO2 all exhibited significant effects on Hg(0) removal, while NO had slight effect on Hg(0) removal. The addition of Ca(OH)2 demonstrated a little impact on Hg(0) removal and could significantly improve the SO2-resistance performance of Ag/AgBr(0.7)-Ag2CO3 hybrid. The characterization results exhibited that hydroxyl radical (OH), superoxide radical (O2(-)), hole (h(+)), and Br(0), were reactive species responsible for removing Hg(0), and the h(+) played a key role in Hg(0) removal. PMID:27135702

  19. Neuroimaging measures of error-processing: Extracting reliable signals from event-related potentials and functional magnetic resonance imaging.

    PubMed

    Steele, Vaughn R; Anderson, Nathaniel E; Claus, Eric D; Bernat, Edward M; Rao, Vikram; Assaf, Michal; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A

    2016-05-15

    Error-related brain activity has become an increasingly important focus of cognitive neuroscience research utilizing both event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI). Given the significant time and resources required to collect these data, it is important for researchers to plan their experiments such that stable estimates of error-related processes can be achieved efficiently. Reliability of error-related brain measures will vary as a function of the number of error trials and the number of participants included in the averages. Unfortunately, systematic investigations of the number of events and participants required to achieve stability in error-related processing are sparse, and none have addressed variability in sample size. Our goal here is to provide data compiled from a large sample of healthy participants (n=180) performing a Go/NoGo task, resampled iteratively to demonstrate the relative stability of measures of error-related brain activity given a range of sample sizes and event numbers included in the averages. We examine ERP measures of error-related negativity (ERN/Ne) and error positivity (Pe), as well as event-related fMRI measures locked to False Alarms. We find that achieving stable estimates of ERP measures required four to six error trials and approximately 30 participants; fMRI measures required six to eight trials and approximately 40 participants. Fewer trials and participants were required for measures where additional data reduction techniques (i.e., principal component analysis and independent component analysis) were implemented. Ranges of reliability statistics for various sample sizes and numbers of trials are provided. We intend this to be a useful resource for those planning or evaluating ERP or fMRI investigations with tasks designed to measure error-processing.

  20. Determination of oxygen extraction fraction using magnetic resonance imaging in canine models with internal carotid artery occlusion.

    PubMed

    Chang, Fei-Yan; Xiao, Jiang-Xi; Xie, Sheng; Yu, Lei; Zhang, Zhen-Xia; Wang, Wu; Luo, Jie; Zhang, Zhong-Ping; Guo, Hua

    2016-01-01

    Perfusion of the penumbra tissue below the flow threshold for functional disturbance but above that for the maintenance of morphological integrity is the target for therapy in acute ischaemic stroke. The measurement of the oxygen extraction fraction (OEF) may provide a direct assessment of tissue viability, so that irreversible tissue damage and penumbra can be reliably identified. By using an asymmetric spin echo single-shot echo planar imaging (ASE-SSEPI) sequence, the quantitative OEF was obtained in the ischaemic brain tissues of canine models with internal carotid artery occlusion. TTC staining, which delineated the regions of infarct and penumbra, was used for defining the corresponding regions on OEF maps. The threshold of the OEF to discriminate the infarct cores and penumbral tissues was then determined according to the OEF values at different times. With repeated-measures ANOVA, the OEF of the infarcted regions was found to be time dependent. An OEF greater than 0.48 best predicted cortical infarction at 1.5 hr, with an area under the receiving operating characteristic curve of 0.968, a sensitivity of 97.5%, and a specificity of 92.5%. Our results may be helpful in the evaluation of tissue viability during stroke events.

  1. Determination of oxygen extraction fraction using magnetic resonance imaging in canine models with internal carotid artery occlusion

    PubMed Central

    Chang, Fei-Yan; Xiao, Jiang-Xi; Xie, Sheng; Yu, Lei; Zhang, Zhen-Xia; Wang, Wu; Luo, Jie; Zhang, Zhong-Ping; Guo, Hua

    2016-01-01

    Perfusion of the penumbra tissue below the flow threshold for functional disturbance but above that for the maintenance of morphological integrity is the target for therapy in acute ischaemic stroke. The measurement of the oxygen extraction fraction (OEF) may provide a direct assessment of tissue viability, so that irreversible tissue damage and penumbra can be reliably identified. By using an asymmetric spin echo single-shot echo planar imaging (ASE-SSEPI) sequence, the quantitative OEF was obtained in the ischaemic brain tissues of canine models with internal carotid artery occlusion. TTC staining, which delineated the regions of infarct and penumbra, was used for defining the corresponding regions on OEF maps. The threshold of the OEF to discriminate the infarct cores and penumbral tissues was then determined according to the OEF values at different times. With repeated-measures ANOVA, the OEF of the infarcted regions was found to be time dependent. An OEF greater than 0.48 best predicted cortical infarction at 1.5 hr, with an area under the receiving operating characteristic curve of 0.968, a sensitivity of 97.5%, and a specificity of 92.5%. Our results may be helpful in the evaluation of tissue viability during stroke events. PMID:27443195

  2. The partial Siberian snake experiment at the Brookhaven AGS

    SciTech Connect

    Huang, H.; Caussyn, D.D.; Ellison, T.; Jones, B.; Lee, S.Y.; Schwandt, P.; Ahren, L.; Alessi, J.; Bleser, E.J.; Bunce, G.; Cameron, P.; Courant, E.D.; Foelsche, H.W.; Gardner, C.J.; Geller, J.; Lee, Y.Y.; Makdisi, Y.I.; Mane, S.R.; Ratner, L.; Reece, K.; Roser, T.; Skelly, J.F.; Soukas, A.; Tepikian, S.; Thern, R.E.; van Asselt, W.; Spinka, H.; Teng, L.; Underwood, D.G.; Yokosawa, A.; Wienands, U.; Bharadwaj, V.; Hsueh, S.; Hiramatsu, S.; Mori, Y.; Sato, H.; Yokoya, K.

    1992-12-31

    We are building a 4.7 Tesla-meter room temperature solenoid to be installed in a 10-foot long AGS straight section. This experiment will test the idea of using a partial snake to correct all depolarizing imperfection resonances and also test the feasibility of betatron tune jump in correction intrinsic resonances in the presence of a partial snake.

  3. Crystalline Silver Nanoparticles by Using Polygala tenuifolia Root Extract as a Green Reducing Agent.

    PubMed

    Jun, Sang Hui; Cha, Song-Hyun; Kim, Jinwoong; Cho, Seonho; Park, Youmie

    2015-02-01

    Due to the emergence of multidrug-resistant bacteria, silver nanoparticles (AgNPs) have found interest as a new category of antibacterial agents. The toxicity of the chemicals involved in the commonly employed chemical methods for synthesizing AgNPs present limitations for subsequent pharmaceutical and biomedical applications. In this report, 70% aqueous ethanol extracts of Polygala tenuifolia root were used to reduce Ag+1 ions for AgNPs synthesis. The as-synthesized AgNPs were characterized via UV-Visible spectrophotometry, high resolution transmission electron microscopy, atomic force microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. A strong surface plasmon resonance band was observed at 414 nm. Images from the high resolution transmission electron microscopy and atomic force microscopy demonstrated the spherical and irregular shapes of the AgNPs were synthesized. The AgNP crystalline structure was confirmed by the strong diffraction peaks in the X-ray diffraction results and by the bright circular spots observed in selected-area electron diffraction, whose average diameter was measured to be 17.97 8.63 nm or 15.12 nm via high resolution transmission electron microscopy images or X-ray diffraction analysis, respectively. The as-synthesized AgNPs exerted the highest antibacterial activity against Escherichia coli among the tested Gram-positive and Gram-negative bacteria. The current method is eco-friendly, straightforward, cost-effective, biocompatible, and easily scaled up to produce of AgNPs for applications in the treatment of bacterial infections. PMID:26353692

  4. Aniline chlorination by in situ formed Ag-Cl complexes under simulated solar light irradiation.

    PubMed

    Hu, Xuefeng; Wang, Xiaowen; Dong, Liuliu; Chang, Fei; Luo, Yongming

    2015-01-01

    Ag speciation in a chloride medium was dependent upon the Cl/Ag ratio after releasing into surface water. In this study, the photoreaction of in situ formed Ag-Cl species and their effects on aniline photochlorination were systematically investigated. Our results suggested that formation of chloroaniline was strongly relevant to the Cl/Ag ratio and could be interpreted using the thermodynamically expected speciation of Ag in the presence of Cl-. AgCl was the main species responsible for the photochlorination of aniline. Both photoinduced hole and •OH drove the oxidation of Cl- to radical •Cl, which promoted the chlorination of aniline. Ag0 formation was observed from the surface plasmon resonance absorption during AgCl photoreaction. This study revealed that Ag+ released into Cl--containing water may result in the formation of chlorinated intermediates of organic compounds under solar light irradiation.

  5. Fighting the Residual Polarization Loss in the AGS

    SciTech Connect

    Huang, H.; Ahrens, L. A.; Bai, M.; Brown, K.; Gardner, C.; Glenn, J. W.; Lin, F.; Luccio, A. U.; MacKay, W. W.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2009-08-04

    A dual partial snake scheme has been used for AGS polarized proton operation for several years. It has provided polarized proton beams with 1.5x10{sup 11} protons per bunch and 65% polarization for the RHIC spin program. There is still residual polarization loss due to both snake resonances and horizontal resonances as shown in the data. Several schemes were tested or proposed in the AGS to mitigate the loss, such as putting horizontal tune into the spin tune gap, injection into a accelerating bucket, and tune jump across the horizontal resonances. This paper presents the experiment and simulation results and analyses.

  6. Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of Brassica oleracea L. and studies on their physicochemical and biological properties.

    PubMed

    Kuppusamy, Palaniselvam; Ichwan, Solachuddin J A; Parine, Narasimha Reddy; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Govindan, Natanamurugaraj

    2015-03-01

    In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.

  7. Direct proof by 13C-nuclear magnetic resonance of semi-purified extract and isolation of ent-Catechin from leaves of Eucalyptus cinerea

    PubMed Central

    Silva, Sayonara Mendes; Abe, Simone Yae; Bueno, Fernanda Giacomini; Lopes, Norberto Peporine; de Mello, João Carlos Palazzo; Nakashima, Tomoe

    2014-01-01

    Background: Eucalyptus cinerea F. Muell. ex Benth. is native to Australia and acclimatized to Southern Brazil. Its aromatic leaves are used for ornamental purposes and have great potential for essential oil production, although reports of its use in folk medicine are few. Objective: This study evaluated the composition of E. cinerea leaves using the solid state 13C-nuclear magnetic resonance (NMR) and isolation of the compound from the semipurified extract (SE). Materials and Methods: The SE of E. cinerea leaves was evaluated in the solid state by 13C-NMR spectrum, and the SE was chromatographed on a Sephadex LH-20 column, followed by high-speed counter-current chromatography to isolate the compound. The SE was analyzed by 13C-NMR and matrix-assisted laser desorption/ionization-time-of-flight spectra. Results: Flavan-3-ol units were present, suggesting the presence of proanthocyanidins as well as a gallic acid unit. The uncommon ent-catechin was isolated. Conclusion: The presence of ent-catechin is reported for the first time in this genus and species. PMID:25210302

  8. Extracting meson-baryon contributions to the electroexcitation of the N (1675)-5/2 nucleon resonance

    SciTech Connect

    Aznauryan, Inna G.; Burkert, Volker D.

    2015-07-01

    We report on the determination of the electrocouplings for the transition from the proton to the N (1675)-5/2 resonance state using recent differential cross section data on ep → eπ+n by the CLAS collaboration at 1.8 ≤ Q² < 4.5GeV². The data have been analyzed using two different approaches, the unitary isobar model and fixed-t dispersion relations. The extracted γ*p → N (1675)-5/2 helicity amplitudes show considerable coupling through the AP1/2 amplitude, that is significantly larger than predicted three-quark contribution to this amplitude. The amplitude AP3/2 is much smaller. Both results are consistent with the predicted sizes of the meson-baryon contributions at Q² ≥ 1.8 GeV² from the dynamical coupled-channel model.

  9. Polarized proton acceleration program at the AGS

    SciTech Connect

    Lee, Y.Y.

    1981-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A multi-university/laboratory collaborative effort involving Argonne, Brookhaven, Michigan, Rice and Yale is underway to improve and modify to accelerate polarized protons. From the experience at the ZGS and careful studies made us confident of the feasibility of achieving a polarization of over 60 percent up to 26 GeV/c with an intensity of 10/sup 11/ approx. 10/sup 12/ per pulse. The first polarized proton acceleration at the AGS is expected in 1983.

  10. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Zanjanchi, M. A.; Razavi, M.

    2014-09-01

    Metal-semiconductor compounds, such as Ag/AgX (X = Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that rad O2- and rad OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  11. Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori

    PubMed Central

    Amin, Muhammad; Anwar, Farooq; Janjua, Muhammad Ramzan Saeed Ashraf; Iqbal, Muhammad Awais; Rashid, Umer

    2012-01-01

    A green synthesis route for the production of silver nanoparticles using methanol extract from Solanum xanthocarpum berry (SXE) is reported in the present investigation. Silver nanoparticles (AgNps), having a surface plasmon resonance (SPR) band centered at 406 nm, were synthesized by reacting SXE (as capping as well as reducing agent) with AgNO3 during a 25 min process at 45 °C. The synthesized AgNps were characterized using UV–Visible spectrophotometry, powdered X-ray diffraction, and transmission electron microscopy (TEM). The results showed that the time of reaction, temperature and volume ratio of SXE to AgNO3 could accelerate the reduction rate of Ag+ and affect the AgNps size and shape. The nanoparticles were found to be about 10 nm in size, mono-dispersed in nature, and spherical in shape. In vitro anti-Helicobacter pylori activity of synthesized AgNps was tested against 34 clinical isolates and two reference strains of Helicobacter pylori by the agar dilution method and compared with AgNO3 and four standard drugs, namely amoxicillin (AMX), clarithromycin (CLA), metronidazole (MNZ) and tetracycline (TET), being used in anti-H. pylori therapy. Typical AgNps sample (S1) effectively inhibited the growth of H. pylori, indicating a stronger anti-H. pylori activity than that of AgNO3 or MNZ, being almost equally potent to TET and less potent than AMX and CLA. AgNps under study were found to be equally efficient against the antibiotic-resistant and antibiotic-susceptible strains of H. pylori. Besides, in the H. pylori urease inhibitory assay, S1 also exhibited a significant inhibition. Lineweaver-Burk plots revealed that the mechanism of inhibition was noncompetitive. PMID:22949839

  12. Conversion of Ag nanowires to AgCI nanowires decorated with Au nanoparticles and their photocatalytic activity.

    SciTech Connect

    Sun, Y.; Center for Nanoscale Materials

    2010-02-11

    A two-step approach has been developed to synthesize AgCl nanowires decorated with Au nanoparticles by using Ag nanowires as chemical templates. In the first step, the Ag nanowires are oxidized with FeCl{sub 3} followed by a simultaneous precipitation reaction between Ag{sup +} and Cl{sup -} ions at room temperature, resulting in conversion of the Ag nanowires to AgCl nanowires as well as reduction of Fe{sup 3+} to Fe{sup 2+} ions. In the second step, the Fe{sup 2+} ions generated in the first step reduce Au precursors (e.g., NaAuCl{sub 4}) to deposit Au nanoparticles on the surfaces of the AgCl nanowires, resulting in the formation of AgCl:Au composite nanowires. Because of strong surface plasmon resonance and chemical inertness of Au nanoparticles, the as-synthesized AgCl:Au nanowires exhibit enhanced absorption coefficient in the visible region and enhanced chemical stability to prevent them from degradation and aggregation. These unique properties enable the AgCl:Au nanowires to be used as a class of promising plasmonic photocatalysts driven by visible light. Preliminary results demonstrate these composite nanowires can efficiently decompose organics, such as methylene blue molecules, under illumination of white light.

  13. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  14. Nano Ag@AgBr surface-sensitized Bi2WO6 photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Lin, Shuanglong; Liu, Li; Hu, Jinshan; Liang, Yinghua; Cui, Wenquan

    2015-01-01

    Nano Ag@AgBr decorated on the surface of flower-like Bi2WO6 (hereafter designated Ag@AgBr/Bi2WO6) were prepared via a facile oil-in-water self-assembly method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), etc. The characterization results indicated that nano Ag@AgBr was observed to be evenly dispersed on the surface of Bi2WO6, and was approximately 20 nm in size. Ag@AgBr/Bi2WO6 composites exhibited excellent UV-vis absorption, due to quantum dimension effect of Ag@AgBr, the surface plasmonic resonance (SPR) of Ag nanoparticles and the special flower-like structure of Bi2WO6. The photoelectrochemical measurement verified that the suitable band potential of Ag@AgBr and Bi2WO6 and the existence of metal Ag resulted in the high efficiency in charge separation of the composite. The photocatalytic activities of the Ag@AgBr/Bi2WO6 samples were examined under visible-light irradiation for the degradation of methylene blue (MB). The composite presented excellent photocatalytic activity due to the synergetic effect of Bi2WO6, AgBr, and Ag nanoparticles. The Ag@AgBr(20 wt.%)/Bi2WO6 sample exhibited the best photocatalytic activity, degrading 95.03% MB after irradiation for 2 h, which was respectively 1.29 times and 1.28 times higher than that of Ag@AgBr and Bi2WO6 photocatalyst. Meanwhile, phenol and salicylic acid were degraded to further prove the degradation ability of Ag@AgBr/Bi2WO6. Additionally, studies performed using radical scavengers indicated that O2-•, •OH and Br0 acted as the main reactive species. Based on above, a photocatalytic mechanism for organics degradation over Ag@AgBr/Bi2WO6 was proposed.

  15. Effective medium based optical analysis with finite element method simulations to study photochromic transitions in Ag-TiO2 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Abhilash, T.; Balasubrahmaniyam, M.; Kasiviswanathan, S.

    2016-03-01

    Photochromic transitions in silver nanoparticles (AgNPs) embedded titanium dioxide (TiO2) films under green light illumination are marked by reduction in strength and blue shift in the position of the localized surface plasmon resonance (LSPR) associated with AgNPs. These transitions, which happen in the sub-nanometer length scale, have been analysed using the variations observed in the effective dielectric properties of the Ag-TiO2 nanocomposite films in response to the size reduction of AgNPs and subsequent changes in the surrounding medium due to photo-oxidation. Bergman-Milton formulation based on spectral density approach is used to extract dielectric properties and information about the geometrical distribution of the effective medium. Combined with finite element method simulations, we isolate the effects due to the change in average size of the nanoparticles and those due to the change in the dielectric function of the surrounding medium. By analysing the dynamics of photochromic transitions in the effective medium, we conclude that the observed blue shift in LSPR is mainly because of the change in the dielectric function of surrounding medium, while a shape-preserving effective size reduction of the AgNPs causes decrease in the strength of LSPR.

  16. Ag/Ag2SO3 plasmonic catalysts with high activity and stability for CO2 reduction with water vapor under visible light.

    PubMed

    Wang, Da; Yu, Yan; Zhang, Zhipeng; Fang, Huiying; Chen, Jianmeng; He, Zhiqiao; Song, Shuang

    2016-09-01

    The conversion of CO2 into useful raw materials for fuels and chemicals by solar energy is described using a plasmonic photocatalyst comprised of Ag supported on Ag2SO3 (Ag/Ag2SO3) fabricated by a facile solid-state ion-exchange method and subsequent reduction with hydrazine hydrate. The optimum molar ratio of Ag(0)/Ag(+) was 5 %. Visible light irradiation (>400 nm) of the Ag/Ag2SO3 powder in the presence of CO2 and water vapor led to the formation of CH4 and CO with a quantum yield of 0.126 %, and an energy returned on energy invested of 0.156 %. The Ag/Ag2SO3 retained high catalytic activity after ten successive experimental cycles. The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy with energy-dispersive X-ray analysis, UV/Vis absorption spectroscopy, and Brunauer-Emmett-Teller analyses, as well as photocurrent action spectroscopy. It is proposed that the photocatalytic activity of the catalysts is initiated by energy conversion from incident photons to localized surface plasmon resonance oscillations of silver nanoparticles. This plasmonic energy is transferred to the Ag2SO3 by direct electron transfer and/or resonant energy transfer, causing the separation of photogenerated electron/hole pairs. PMID:27282369

  17. Non-targeted analysis of wastewater treatment plant effluents by high performance liquid chromatography-time slice-solid phase extraction-nuclear magnetic resonance/time-of-flight-mass spectrometry.

    PubMed

    Godejohann, Markus; Berset, Jean-Daniel; Muff, Daniel

    2011-12-23

    Extracts of effluents from two different wastewater treatment plants (WWTP) in Switzerland taken during the application period of pesticides were examined by coupling an HPLC-MS system to a nuclear magnetic resonance spectrometer using a post column peak trapping device. By trapping 1 min portions of the chromatogram onto post column solid phase extraction cartridges (time slice-SPE-NMR) a comprehensive overview of proton carrying constituents could be achieved. Non-supervised statistical analysis of the NMR spectra obtained by this approach revealed NMR resonances pointing to contaminants present in decreasing proton concentration in the extracts. Comparison of exact mass data acquired during the trapping process to these NMR resonances enabled the identification of the pesticides Linuron, Metazachlor, Ethofumesate, Isoproturon, Metamitron, Propazine and Chloridazon. Desaminometamitron, a known transformation product of Metamitron could also be identified together with unexpected highly concentrated C8, C10 and C12 fatty acids and their glycerol mono- and di esters. Other compounds identified were a drug metabolite (3-Carboxymefenamic acid), a sun screen agent (Ensulizole: 2-Phenyl-1H-1,3-benzodiazole-6-sulfonic acid) and industrial chemicals (Benzotriazole, N-Benzyl-indole). In addition, a number of well-resolved proton spectra cannot be attributed to a mass response showing the need of further investigations using 2D-NMR and different ionization techniques.

  18. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    NASA Astrophysics Data System (ADS)

    Boomi, Pandi; Prabu, Halliah Gurumallesh; Manisankar, Paramasivam; Ravikumar, Sundaram

    2014-05-01

    Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  19. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach

    NASA Astrophysics Data System (ADS)

    Kokila, T.; Ramesh, P. S.; Geetha, D.

    2015-11-01

    Biosynthesis of metallic silver nanoparticles has now become an alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized from Cavendish banana peel extract (CBPE) and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Atomic force microscopy (AFM), Field emission scanning electronic microscope (FESEM), Dynamic light scattering (DLS) and zeta potential (ZP). The AgNPs formation was confirmed by UV-visible spectroscopy through color conversion due to surface plasma resonance band at 430 nm. The effect of pH on nanoparticle synthesis was determined by adjusting the various pH of the reaction mixtures. The crystalline nature of nanoparticles was confirmed from the XRD pattern, and the grain size was found to be around 34 nm. To identify the compounds responsible for the bioreduction of Ag+ ion and the stabilization of AgNPs produced, the functional group present in Cavendish banana peel extract was investigated using FTIR. AFM has proved to be very helpful in determining morphological features and the diameter of AgNPs in the range of 23-30 nm was confirmed by FESEM. DLS studies revealed that the average size of AgNPs was found to be around 297 nm. Zeta potential value for AgNPs obtained was -11 mV indicating the moderate stability of synthesized nanoparticles. The antibacterial activity of the nanoparticles was studied against Gram-positive and Gram-negative bacteria. Biosynthesized AgNPs showed a strong DPPH radical and ABTS scavengers compared to the aqueous peel extract of Cavendish banana.

  20. Extracting amplitudes from photoproduction data

    NASA Astrophysics Data System (ADS)

    Workman, R. L.

    2011-09-01

    We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).

  1. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy.

    PubMed

    Patra, Jayanta Kumar; Das, Gitishree; Baek, Kwang-Hyun

    2016-08-01

    The biological synthesis of nanoparticles has gained tremendous interest, and plants and plant extracts are preferred over other biological sources for this process because of their rich content of bioactive metabolites. In this study, silver nanoparticles (AgNPs) were produced utilizing the aqueous extract of watermelon rind (WRA), an agricultural waste material under photo exposed condition at room temperature, and tested for their antibacterial, anticandidal and antioxidant activities. The synthesized AgNPs showed surface plasmon resonance at 425nm with an average size of 109.97nm. The morphology and elemental composition was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric and differential thermogravimetric analysis (TG/DTG) confirmed that the bioactive compounds from the WRA extract were involved in the synthesis and capping of AgNPs. X-ray diffraction (XRD) revealed the crystallite nature of the AgNPs. The AgNPs exhibited strong broad spectrum antibacterial activity against five different foodborne bacteria with zones of inhibition 9.12-14.54mm in diameter. When AgNPs were mixed with kanamycin and rifampicin the mixture exhibited strong antibacterial synergistic activity. The AgNPs also exerted strong synergistic anticandidal activity when they were combined with amphotericin b. The AgNPs had high antioxidant activity and reducing power. Overall, the results confirmed the bio-potentials of the synthesized AgNPs using WRA, which could have applications in the biomedical, cosmetic, pharmaceutical, food preservation and packaging industries. PMID:27261701

  2. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy.

    PubMed

    Patra, Jayanta Kumar; Das, Gitishree; Baek, Kwang-Hyun

    2016-08-01

    The biological synthesis of nanoparticles has gained tremendous interest, and plants and plant extracts are preferred over other biological sources for this process because of their rich content of bioactive metabolites. In this study, silver nanoparticles (AgNPs) were produced utilizing the aqueous extract of watermelon rind (WRA), an agricultural waste material under photo exposed condition at room temperature, and tested for their antibacterial, anticandidal and antioxidant activities. The synthesized AgNPs showed surface plasmon resonance at 425nm with an average size of 109.97nm. The morphology and elemental composition was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric and differential thermogravimetric analysis (TG/DTG) confirmed that the bioactive compounds from the WRA extract were involved in the synthesis and capping of AgNPs. X-ray diffraction (XRD) revealed the crystallite nature of the AgNPs. The AgNPs exhibited strong broad spectrum antibacterial activity against five different foodborne bacteria with zones of inhibition 9.12-14.54mm in diameter. When AgNPs were mixed with kanamycin and rifampicin the mixture exhibited strong antibacterial synergistic activity. The AgNPs also exerted strong synergistic anticandidal activity when they were combined with amphotericin b. The AgNPs had high antioxidant activity and reducing power. Overall, the results confirmed the bio-potentials of the synthesized AgNPs using WRA, which could have applications in the biomedical, cosmetic, pharmaceutical, food preservation and packaging industries.

  3. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  4. Solution structure of peptide AG4 used to form silver nanoparticles

    SciTech Connect

    Lee, Eunjung; Kim, Dae-Hee; Woo, Yoonkyung; Hur, Ho-Gil; Lim, Yoongho

    2008-11-21

    The preparation of silver nanoparticles (AgNPs) is of great interest due to their various biological activities, such as observed in their antimicrobial and wound healing actions. Moreover, the formation of AgNPs using silver-binding peptide has certain advantages because they can be made in aqueous solution at ambient temperature. The solution structure of the silver-binding peptide AG4 was determined using nuclear magnetic resonance spectroscopy, and the site of the AG4 interaction with AgNPs was elucidated.

  5. Uptake pathway for Ag bioaccumulation in three benthic invertebrates exposed to contaminated sediments

    USGS Publications Warehouse

    Yoo, H.; Lee, J.-S.; Lee, B.-G.; Lee, I.T.; Schlekat, C.E.; Koh, C.-H.; Luoma, S.N.

    2004-01-01

    We exposed 3 benthic invertebrates, the clam Macoma balthica, the polychaete Neanthes arenaceodentata and the amphipod Leptocheirus plumulosus, to Ag-contaminated sediments to evaluate the relative importance of various uptake routes (sediments, porewater or overlying water, and supplementary food) for Ag bioaccumulation. Silver bioaccumulation was evaluated at 4 levels of sediment Ag (0.1, 0,3, 1,2 and 3.3 ??mol Ag g-1) and 2 levels of acid-volatile sulfide (AVS), <0.5 or ???40 ??mol g-1, and compared among food treatments with or without Ag contamination, or with different food rations. L. plumulosus were incubated for 35 d in the Ag-contaminated sediments after 3 mo of Ag-sediment equilibration, and M. balthica and N. arenaceodentata for 19 d after 5 mo equilibration. Ag bioaccumulation in the 3 organisms was significantly correlated with 1N HCl-extractable Ag concentrations (Ag-SEM: simultaneously extracted Ag with AVS) in sediments. The Ag concentrations in porewater and overlying water were greatest in the sediments with least AVS, consistent with previous studies. Nevertheless, the amphipod and clam exposed to oxic sediments (<0.5 ??mol AVS g-1) accumulated amounts of Ag similar to those accumulated by organisms exposed to anoxic sediments (???40 ??mol AVS g-1), when Ag-SEM levels were comparable. The dissolved Ag source was important for bioaccumulation in the polychaete N. arenaceodentata. Amphipods fed Ag-contaminated food contained ???1.8-fold more tissue Ag concentrations than those fed uncontaminated food. As suggested in kinetic (DYMBAM) modeling studies, ingestion of contaminated sediments and food were the principle routes of Ag bioaccumulation by the benthic invertebrates during chronic exposure, but the relative importance of each uptake route differed among species.

  6. Oxidation-Resistant Ag Nanostructures for Ultrastable Plasmonic Applications

    SciTech Connect

    Sachan, R; Ramos, V; Malasi, Abhinav; Yadavali, S; Bartley, B.; Duscher, Gerd; Kalyanaraman, Ramki

    2013-01-01

    Although Ag is considered a noble metal, its surface oxidizes relatively quickly on exposure to ambient air. On the nanos- cale, this degradation is especially deleterious to applications pertaining to its plasmonic behavior, such as surface plasmon resonance (SPR) sensing. In this Communication we show that oxidation of Ag nanoparticles under ambient conditions can be significantly suppressed by contacting Ag with immis- cible Co nanoparticles. As a consequence, while the plasmonic characteristic of pure Ag degrades by 25% within 500 h, Ag-Co nanoparticles take almost ten times longer to show a similar magnitude of decay in air, thus showing ultrastable plasmonics. We attribute this oxidation-resistance to a cathodic protection arising from galvanic coupling.

  7. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy.

    PubMed

    Verma, Devendra Kumar; Hasan, Syed Hadi; Banik, Rathindra Mohan

    2016-02-01

    Current study presents an economic, ecofriendly and simple photo-catalytic green route for the swift biosynthesis of silver nanoparticles (AgNPs) within 20s, devoid of any instrumental support or chemical reductant. Aqueous leaf-extract of an aquatic fern, Salvinia molesta (AES), was used as a bioreductant as well as a stabilizing agent. Rapid change in color of reaction mixture from yellowish green to reddish brown within 20s in direct sun light exposure was considered as the primary visual indication of AgNPs biosynthesis. The biosynthesis of AgNPs was confirmed by UV-visible spectroscopy through the presence of a characteristic surface plasmon resonance (SPR) band for AgNPs at λmax of 425 nm. The process parameters were optimized through one factor at a time approach. Optimal values of different process parameters for the current biosynthetic system were found as; 35 min of reaction time under sun light, 8.0mM AgNO3 concentration and 5.0% (v/v) AES inoculum dose. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis showed that most of AgNPs were spherical in shape with average size distribution of 12.46 nm having face centered cubic (fcc) crystal lattice. IR analysis of AES and synthesized AgNPs indicated the involvement of both hydroxyl and amino groups in the biosynthesis and stabilization of AgNPs. The synthesized AgNPs were found to be an effective antibacterial agent against both Gram positive and Gram negative bacteria. On the basis of results and facts, a probable mechanism has also been proposed to explore the possible route of biosynthesis of AgNPs through AES. PMID:26735000

  8. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy.

    PubMed

    Verma, Devendra Kumar; Hasan, Syed Hadi; Banik, Rathindra Mohan

    2016-02-01

    Current study presents an economic, ecofriendly and simple photo-catalytic green route for the swift biosynthesis of silver nanoparticles (AgNPs) within 20s, devoid of any instrumental support or chemical reductant. Aqueous leaf-extract of an aquatic fern, Salvinia molesta (AES), was used as a bioreductant as well as a stabilizing agent. Rapid change in color of reaction mixture from yellowish green to reddish brown within 20s in direct sun light exposure was considered as the primary visual indication of AgNPs biosynthesis. The biosynthesis of AgNPs was confirmed by UV-visible spectroscopy through the presence of a characteristic surface plasmon resonance (SPR) band for AgNPs at λmax of 425 nm. The process parameters were optimized through one factor at a time approach. Optimal values of different process parameters for the current biosynthetic system were found as; 35 min of reaction time under sun light, 8.0mM AgNO3 concentration and 5.0% (v/v) AES inoculum dose. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis showed that most of AgNPs were spherical in shape with average size distribution of 12.46 nm having face centered cubic (fcc) crystal lattice. IR analysis of AES and synthesized AgNPs indicated the involvement of both hydroxyl and amino groups in the biosynthesis and stabilization of AgNPs. The synthesized AgNPs were found to be an effective antibacterial agent against both Gram positive and Gram negative bacteria. On the basis of results and facts, a probable mechanism has also been proposed to explore the possible route of biosynthesis of AgNPs through AES.

  9. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  10. Surface plasmon enhanced photoluminescence in amorphous silicon carbide films by adjusting Ag island film sizes

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wang, Xin-Zhan; Dai, Wan-Lei; Lu, Wan-Bing; Liu, Yu-Mei; Fu, Guang-Sheng

    2013-05-01

    Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (α-SiC:H) films, and the influences of Ag island films on the optical properties of the α-SiC:H films are investigated. Atomic force microscope images show that Ag nanoislands are formed after Ag coating, and the size of the Ag islands increases with increasing Ag deposition time. The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained, and the resonance peak shifts toward longer wavelength with increasing Ag island size. The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands, and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min. Analyses show that the influence of surface plasmons on the PL of α-SiC:H is determined by the competition between the scattering and absorption of Ag islands, and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.

  11. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  12. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  13. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  14. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  15. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-08-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  16. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    NASA Astrophysics Data System (ADS)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  17. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition

    SciTech Connect

    Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2010-11-01

    The flux of atomic oxygen generated in a electron cyclotron resonance (ECR) microwave plasma source was quantified by two different methods. The commonly applied approach of monitoring the frequency change of a silver-coated quartz crystal microbalance (QCM) deposition rate monitor as the silver is oxidized was found to underestimate the atomic oxygen flux by an order of magnitude compared to a more direct deposition approach. In the mixed-phase Ag/Ag2O deposition method, silver films were deposited in the presence of the plasma such that the films were partially oxidized to Ag2O; x-ray photoelectron spectroscopy (XPS) was utilized for quantification of the oxidized fraction. The inaccuracy of the QCM oxidation method was tentatively attributed to efficient catalytic recombination of O atoms on the silver surface.

  18. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates.

    PubMed

    Ali, Khursheed; Ahmed, Bilal; Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed

    2015-01-01

    A simple and rapid microwave assisted method of green synthesis of silver nanoparticles (AgNPs) was developed using aqueous leaf extract of Eucalyptus globulus(ELE), and their antibacterial and antibiofilm potential investigated. With this aim, the aqueous solutions of ELE and AgNO3(1 mM) were mixed (1:4 v/v), and microwave irradiated at 2450 Mhz, for 30 sec. The instant color change of the ELE-AgNO3 mixture from pale yellow to dark brown indicated ELE-AgNPs synthesis. The intensity of peak at 428 nm in UV-Vis spectra, due to the surface plasmon resonance of AgNPs, varied with the amount of ELE, AgNO3 concentration, pH and time of incubation. The biosynthesized ELE-AgNPs were characterized by UV-visible spectroscopy, XRD, TEM, SEM-EDX, FTIR and TGA analyses. The size of ELE-AgNPs was determined to be in range of 1.9-4.3 nm and 5-25 nm, with and without microwave treatment, respectively. SEM exhibited the capping of AgNPs with the ELE constituents, and validated by FTIR analysis. The FTIR data revealed the presence of plant organic constituents and metabolites bound to ELE-AgNPs, which contributes for their stability. The antimicrobial activity of ELE-AgNPs was assessed by growth and biofilm inhibition of extended spectrum β-lactamase (ESBL) producing Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) clinical bacterial isolates. The results demonstrated that S. aureus were more sensitive to ELE-AgNPs than E. coli and P. aeruginosa. MRSA exhibited higher sensitive than MSSA, whereas P. aeruginosa were more sensitive than E. coli to ELE-AgNPs treatment. Also, significant (83 ± 3% and 84 ± 5%) biofilm inhibition was observed in case of S. aureus and P. aeruginosa, respectively. The results elucidated environmentally friendly, economical and quick method for production of colloidal bio-functionalized ELE-AgNPs, for effectual clinical applications, as broad spectrum

  19. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates.

    PubMed

    Ali, Khursheed; Ahmed, Bilal; Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed

    2015-01-01

    A simple and rapid microwave assisted method of green synthesis of silver nanoparticles (AgNPs) was developed using aqueous leaf extract of Eucalyptus globulus(ELE), and their antibacterial and antibiofilm potential investigated. With this aim, the aqueous solutions of ELE and AgNO3(1 mM) were mixed (1:4 v/v), and microwave irradiated at 2450 Mhz, for 30 sec. The instant color change of the ELE-AgNO3 mixture from pale yellow to dark brown indicated ELE-AgNPs synthesis. The intensity of peak at 428 nm in UV-Vis spectra, due to the surface plasmon resonance of AgNPs, varied with the amount of ELE, AgNO3 concentration, pH and time of incubation. The biosynthesized ELE-AgNPs were characterized by UV-visible spectroscopy, XRD, TEM, SEM-EDX, FTIR and TGA analyses. The size of ELE-AgNPs was determined to be in range of 1.9-4.3 nm and 5-25 nm, with and without microwave treatment, respectively. SEM exhibited the capping of AgNPs with the ELE constituents, and validated by FTIR analysis. The FTIR data revealed the presence of plant organic constituents and metabolites bound to ELE-AgNPs, which contributes for their stability. The antimicrobial activity of ELE-AgNPs was assessed by growth and biofilm inhibition of extended spectrum β-lactamase (ESBL) producing Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) clinical bacterial isolates. The results demonstrated that S. aureus were more sensitive to ELE-AgNPs than E. coli and P. aeruginosa. MRSA exhibited higher sensitive than MSSA, whereas P. aeruginosa were more sensitive than E. coli to ELE-AgNPs treatment. Also, significant (83 ± 3% and 84 ± 5%) biofilm inhibition was observed in case of S. aureus and P. aeruginosa, respectively. The results elucidated environmentally friendly, economical and quick method for production of colloidal bio-functionalized ELE-AgNPs, for effectual clinical applications, as broad spectrum

  20. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates

    PubMed Central

    Ali, Khursheed; Ahmed, Bilal; Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2015-01-01

    A simple and rapid microwave assisted method of green synthesis of silver nanoparticles (AgNPs) was developed using aqueous leaf extract of Eucalyptus globulus(ELE), and their antibacterial and antibiofilm potential investigated. With this aim, the aqueous solutions of ELE and AgNO3(1 mM) were mixed (1:4 v/v), and microwave irradiated at 2450 Mhz, for 30 sec. The instant color change of the ELE-AgNO3 mixture from pale yellow to dark brown indicated ELE-AgNPs synthesis. The intensity of peak at 428 nm in UV-Vis spectra, due to the surface plasmon resonance of AgNPs, varied with the amount of ELE, AgNO3 concentration, pH and time of incubation. The biosynthesized ELE-AgNPs were characterized by UV-visible spectroscopy, XRD, TEM, SEM-EDX, FTIR and TGA analyses. The size of ELE-AgNPs was determined to be in range of 1.9–4.3 nm and 5-25 nm, with and without microwave treatment, respectively. SEM exhibited the capping of AgNPs with the ELE constituents, and validated by FTIR analysis. The FTIR data revealed the presence of plant organic constituents and metabolites bound to ELE-AgNPs, which contributes for their stability. The antimicrobial activity of ELE-AgNPs was assessed by growth and biofilm inhibition of extended spectrum β-lactamase (ESBL) producing Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) clinical bacterial isolates. The results demonstrated that S. aureus were more sensitive to ELE-AgNPs than E. coli and P. aeruginosa. MRSA exhibited higher sensitive than MSSA, whereas P. aeruginosa were more sensitive than E. coli to ELE-AgNPs treatment. Also, significant (83 ± 3% and 84 ± 5%) biofilm inhibition was observed in case of S. aureus and P. aeruginosa, respectively. The results elucidated environmentally friendly, economical and quick method for production of colloidal bio-functionalized ELE-AgNPs, for effectual clinical applications, as broad spectrum

  1. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    SciTech Connect

    Chen, Yunfang; Fang, Jianzhang; Lu, Shaoyou; Wu, Yan; Chen, Dazhi; Huang, Liyan; Xu, Weicheng; Zhu, Ximiao; Fang, Zhanqiang

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  2. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    SciTech Connect

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  3. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    NASA Astrophysics Data System (ADS)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Tihminlioglu, Funda; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-01

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  4. Narrow size distributed Ag nanoparticles grown by spin coating and thermal reduction: effect of processing parameters

    NASA Astrophysics Data System (ADS)

    Ansari, A. A.; Sartale, S. D.

    2016-08-01

    A simple method to grow uniform sized Ag nanoparticles with narrow size distribution on flat support (glass and Si substrates) via spin coating of Ag+ ions (AgNO3) solution followed by thermal reduction in H2 is presented. These grown nanoparticles can be used as model catalytic system to study size dependent oxygen reduction reaction (ORR) activity. Ag nanoparticles formation was confirmed by local surface plasmon resonance and x-ray photoelectron spectroscopy measurements. Influences of process parameters (revolution per minute (rpm), ramp and salt concentration) on grown Ag nanoparticles size, density and size uniformity are studied. With increase in rpm and ramp the size decreases and the particle number density increases, whereas the size dispersion improves. The catalytic activity of the grown Ag particles for ORR is studied and it is found that the catalytic performance is dependent on the size as well as the number density of the grown Ag nanoparticles.

  5. Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2016-04-01

    Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures.

  6. Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures.

    PubMed

    Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2016-12-01

    Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures. PMID:27094823

  7. Plasmon-enhanced photocatalytic properties of nano Ag@AgBr on single-crystalline octahedral Cu2O (1 1 1) microcrystals composite photocatalyst

    NASA Astrophysics Data System (ADS)

    Liu, Li; Lin, Shuanglong; Hu, Jinshan; Liang, Yinghua; Cui, Wenquan

    2015-03-01

    A new composite photocatalyst Ag@AgBr/Cu2O was prepared by loading Ag@AgBr on (1 1 1) facts of octahedral Cu2O substrate via a facile precipitation in situ photoreduction method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis), nitrogen sorption and the photoelectrochemical measurements. The results show that Ag@AgBr nanoparticles are well-dispersed on Cu2O nanoparticles with narrow size distributions and controllable sizes from 10 to 30 nm. TEM results of the as-synthesized Ag@AgBr/Cu2O nanocomposite revealed that Ag@AgBr nanoparticles were attached to the surface of octahedral Cu2O. Photocatalytic degradation of methylene blue (MB) was carried out to evaluate the photocatalytic activity of Ag@AgBr/Cu2O under visible-light irradiation. The Ag@AgBr/Cu2O composite showed stronger visible light absorption capacity and higher photocatalytic activity than pure Cu2O. The Ag@AgBr (15 wt.%)/Cu2O sample presented the best photocatalytic activity, degrading 93.28% MB after irradiation for 90 min, due to their high surface area (18.499 m2 g-1), the Crystal effect of Cu2O and surface plasmon resonance of Ag NPs. Meanwhile, phenol was degraded to further prove the degradation ability of Ag@AgBr/Cu2O. In addition, the quenching effect was examined in the photocatalytic reaction process of MB. Active h+, Br0 and the resulting rad O2- played the major roles for the dye degradation, while rad OH was verified to be insignificant. Based on the experimental results, a photocatalytic mechanism for organics degradation over Ag@AgBr/Cu2O photocatalysts was proposed. The electronic interactions were systematically studied and confirmed by the photoelectrochemical measurements.

  8. Impedance studies of the cell Ag/AgI/Ag beta alumina/AgI/Ag. Technical report No. 15, August 1987-August 1988

    SciTech Connect

    Breiter, M.W.; Drstak, H.; Maly-Schreiber, M.

    1988-07-01

    The construction of the cell Ag/AgI/Ag beta alumina/AgI/Ag is described. The impedance of this cell was measured between .001 and 10000 Hz at temperatures between 20 and 550 C. At temperatures below 100 C the cell impedance is determined to a large extent by the bulk resistance of the AgI layer and to a smaller extent by the impedance of the interface Ag/Agi. At temperatures between 160 and 350 C the impedance is controlled by the bulk resistance of the Ag beta alumina and an impedance due to contact problems between Ag and AgI. The bulk resistance of the beta' alumina becomes predominant between 350 and 550 C. A hindrance due to the transfer of silver ions from AgI to Ag beta' alumina was not observable in the whole temperature range.

  9. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude extract of Radix Scutellariae.

    PubMed

    Tahtah, Yousof; Kongstad, Kenneth T; Wubshet, Sileshi G; Nyberg, Nils T; Jønsson, Louise H; Jäger, Anna K; Qinglei, Sun; Staerk, Dan

    2015-08-21

    In this work, development of a new microplate-based high-resolution profiling assay using recombinant human aldose reductase is presented. Used together with high-resolution radical scavenging and high-resolution α-glucosidase assays, it provided the first report of a triple aldose reductase/α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main radical scavengers were ganhuangemin, viscidulin III, baicalin, oroxylin A 7-O-glucuronide, wogonoside, baicalein, wogonin, and skullcapflavone II.

  10. Biogenic synthesis and spectroscopic characterization of silver nanoparticles using leaf extract of Indoneesiella echioides: in vitro assessment on antioxidant, antimicrobial and cytotoxicity potential

    NASA Astrophysics Data System (ADS)

    Kuppurangan, Gunaseelan; Karuppasamy, Balaji; Nagarajan, Kanipandian; Krishnasamy Sekar, Rajkumar; Viswaprakash, Nilmini; Ramasamy, Thirumurugan

    2015-12-01

    Natural synthesis of metal nanoparticles is gaining more attention in recent years. This article demonstrates the phytochemical synthesis of silver nanoparticles (AgNPs) by using Indoneesiella echioides (L) leaf extract as a reducing and stabilizing agent. Biosynthesis of AgNPs was monitored by UV-visible spectroscopy which revealed intense surface plasmon resonance bands at 420 nm. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction were employed to identify various functional groups and crystalline nature of AgNPs. High-resolution transmission electron microscopy studies demonstrated that synthesized particles were spherical with average size of ~29 nm. In vitro antioxidant effects were analyzed by 2,2'-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), which exhibited 69 and 71 % of scavenging activity, respectively. The antimicrobial activity of green AgNPs displayed better zone of inhibition against selected human pathogens. The present study also investigated the toxicity effect of biogenic AgNPs against human lung adenocarcinoma cancer cells (A549) and normal human epithelial cells (HBL-100) in vitro, and the inhibitory concentrations (IC50) were found to be 30 and 60 µg/mL, respectively. Herein, we propose a previously unexplored medicinal plant for the biological synthesis of AgNPs with potent biomedical applications.

  11. Biogenic synthesis and spectroscopic characterization of silver nanoparticles using leaf extract of Indoneesiella echioides: in vitro assessment on antioxidant, antimicrobial and cytotoxicity potential

    NASA Astrophysics Data System (ADS)

    Kuppurangan, Gunaseelan; Karuppasamy, Balaji; Nagarajan, Kanipandian; Krishnasamy Sekar, Rajkumar; Viswaprakash, Nilmini; Ramasamy, Thirumurugan

    2016-10-01

    Natural synthesis of metal nanoparticles is gaining more attention in recent years. This article demonstrates the phytochemical synthesis of silver nanoparticles (AgNPs) by using Indoneesiella echioides (L) leaf extract as a reducing and stabilizing agent. Biosynthesis of AgNPs was monitored by UV-visible spectroscopy which revealed intense surface plasmon resonance bands at 420 nm. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction were employed to identify various functional groups and crystalline nature of AgNPs. High-resolution transmission electron microscopy studies demonstrated that synthesized particles were spherical with average size of ~29 nm. In vitro antioxidant effects were analyzed by 2,2'-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH), which exhibited 69 and 71 % of scavenging activity, respectively. The antimicrobial activity of green AgNPs displayed better zone of inhibition against selected human pathogens. The present study also investigated the toxicity effect of biogenic AgNPs against human lung adenocarcinoma cancer cells (A549) and normal human epithelial cells (HBL-100) in vitro, and the inhibitory concentrations (IC50) were found to be 30 and 60 µg/mL, respectively. Herein, we propose a previously unexplored medicinal plant for the biological synthesis of AgNPs with potent biomedical applications.

  12. Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing

    SciTech Connect

    Gao, Chuanbo; Lu, Zhenda; Chi, Miaofang; Liu, ying; Cheng, Quan; Yin, Yadong

    2012-01-01

    An SPR biosensor was developed by employing highly stable Au-protected Ag nanoplates (NP) as enhancers (see picture). Superior performance was achieved by depositing a thin and uniform coating of Au on the Ag surface while minimizing disruptive galvanic replacement and retaining the strong surface plasmon resonance (SPR) of the silver nanoplates.

  13. Screening of key antioxidant compounds of longan (Dimocarpus longan Lour.) seed extract by combining online fishing/knockout, activity evaluation, Fourier transform ion cyclotron resonance mass spectrometry, and high-performance liquid chromatography electrospray ionization mass spectrometry methods.

    PubMed

    Chen, Jinyu; Ge, Zhen-Zhen; Zhu, Wei; Xu, Ze; Li, Chun-Mei

    2014-10-01

    To figure out the key phenolic compounds accounting for the antioxidant effects of longan (Dimocarpus longan Lour.) seed extract, online fishing/knockout method, activity evaluation assays, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and high-performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis were used jointly for the first time. p-Coumaric acid-glycoside, (S)-flavogallonic acid, ellagic acid derivative, and methyl-ellagic acid glucopyranoside were first identified in longan seeds. In addition, our study revealed that ellagic acid as well as its derivative and p-coumaric acid-glycoside had important contribution to the potent antioxidant activity of longan seed extract, while gallic acid, corilagin, (S)-flavogallonic acid, methyl-ellagic acid glucopyranoside, and ethyl gallate showed very little contribution to the total antioxidant activity of longan seed extract. The combining use of the online fishing/knockout method, activity evaluation assays, FT-ICR-MS, and HPLC-ESI-MS analysis is a useful and simple strategy for screening of key bioactive compounds from complex extracts.

  14. Near integer tune for polarization preservation in the AGS

    SciTech Connect

    Tsoupas N.; Ahrens, L.; Bai, M.; Brown, K.; Glenn, J.W.; Huang, H.; MacKay, W.W.; Roser, T.; Schoefer, V.; Zeno, K.

    2012-05-20

    The high energy (T = 250 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the beam. In order to preserve the polarization of the proton beam, during the acceleration in the AGS, which is the pre-injector to RHIC, we have installed in AGS two partial helical magnets which minimize the loss of the beam polarization caused by the various intrinsic spin resonances occurring during the proton acceleration. The minimization of the polarization loss during the acceleration cycle, requires that the vertical tune of the AGS is between the values of 8.97 and 8.985 during the acceleration. With the AGS constrained to run at near integer tune {approx}8.980, the perturbations to the beam caused by the partial helical magnets are large and also result in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have installed in specified straight sections of the AGS compensation quads and we have also generated a beam bump at the location of the cold partial helix. In this paper we present the beam optics of the AGS which ameliorates the adverse effect of the two partial helices on the beam optics.

  15. A study on prevention of an electric discharge at an extraction electrode of an electron cyclotron resonance ion source for cancer therapy.

    PubMed

    Kishii, Y; Kawasaki, S; Kitagawa, A; Muramatsu, M; Uchida, T

    2014-02-01

    A compact ECR ion source has utilized for carbon radiotherapy. In order to increase beam intensity with higher electric field at the extraction electrode and be better ion supply stability for long periods, electric geometry and surface conditions of an extraction electrode have been studied. Focusing attention on black deposited substances on the extraction electrode, which were observed around the extraction electrode after long-term use, the relation between black deposited substances and the electrical insulation property is investigated. The black deposited substances were inspected for the thickness of deposit, surface roughness, structural arrangement examined using Raman spectroscopy, and characteristics of electric discharge in a test bench, which was set up to simulate the ECR ion source.

  16. A study on prevention of an electric discharge at an extraction electrode of an electron cyclotron resonance ion source for cancer therapy

    SciTech Connect

    Kishii, Y. Kawasaki, S.; Kitagawa, A.; Muramatsu, M.; Uchida, T.

    2014-02-15

    A compact ECR ion source has utilized for carbon radiotherapy. In order to increase beam intensity with higher electric field at the extraction electrode and be better ion supply stability for long periods, electric geometry and surface conditions of an extraction electrode have been studied. Focusing attention on black deposited substances on the extraction electrode, which were observed around the extraction electrode after long-term use, the relation between black deposited substances and the electrical insulation property is investigated. The black deposited substances were inspected for the thickness of deposit, surface roughness, structural arrangement examined using Raman spectroscopy, and characteristics of electric discharge in a test bench, which was set up to simulate the ECR ion source.

  17. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction

    NASA Astrophysics Data System (ADS)

    Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y.

    2016-04-01

    The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.

  18. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction.

    PubMed

    Zhong, H X; Wei, Y; Yue, Y Z; Zhang, L H; Liu, Y

    2016-04-01

    The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.

  19. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors.

    PubMed

    Velu, Kuppan; Elumalai, Devan; Hemalatha, Periaswamy; Janaki, Arumugam; Babu, Muthu; Hemavathi, Maduraiveeran; Kaleena, Patheri Kunyil

    2015-11-01

    Silver nanoparticles (AgNPs) were successfully synthesised from aqueous silver nitrate using the extracts of Arachis hypogaea peels. The synthesised SNPs were characterized by Fourier transform-infrared spectroscopy analysis, X-ray diffraction, transmission electron microscopy analysis and high-resonance scanning electron microscopy, and energy dispersive X-ray spectroscopy. AgNPs were well defined and measured 20 to 50 nm in size. The nanoparticles were crystallized with a face-centered cubic structure. Larvicidal activity of synthesised AgNPs from A. hypogaea peels was tested for their larvicidal activity against the fourth instar larvae of Aedes aegypti (Yellow fever), Anopheles stephensi (Human malaria). The results suggest that the synthesised AgNPs have the potential to be used as an ideal eco-friendly resource for the control of A. aegypti and A. stephensi. This study provides the first report on the mosquito larvicidal activity of synthesised AgNPs from A. hypogaea peels against vectors of malaria and dengue.

  20. PVP induce self-seeding process for growth of Au@Ag core@shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Eisa, Wael H.; Al-Ashkar, Emad; El-Mossalamy, S. M.; Ali, Safaa S. M.

    2016-05-01

    A novel self-seeding route is developed for fabrication of metallic nanocomposites of gold (core) and silver (shell) (Au@Ag core@shell). Herein, polyvinylpyrrolidone (PVP) is used as both reducing and stabilizing agent. The surface plasmon resonance (SPR) of Au@Ag core@shell can be tuned by controlling the thickness of the Ag shell. The different growth stages of the Au@Ag core@shell have been traced by in situ UV-vis absorption spectra. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy are used for the characterization of the prepared samples.

  1. Spoof-like plasmonic behavior of plasma enhanced atomic layer deposition grown Ag thin films

    SciTech Connect

    Prokes, S. M.; Glembocki, O. J.; Cleveland, Erin; Caldwell, Josh D.; Foos, Edward; Niinistoe, Jaakko; Ritala, Mikko

    2012-01-30

    The plasmonic behavior of Ag thin films produced by plasma enhanced atomic layer deposition (PEALD) has been investigated. We show that as-deposited flat PEALD Ag films exhibit unexpected plasmonic properties, and the plasmonic enhancement can differ markedly, depending on the microstructure of the Ag film. Electromagnetic field simulations indicate that this plasmonic behavior is due to air gaps that are an inherent property of the mosaic-like microstructure of the PEALD-grown Ag film, suggesting that this is a metamaterial with behavior very similar to what would be expected in spoof plasmonics where gaps are fabricated in films to create plasmonic-like resonances.

  2. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol.

    PubMed

    Zhang, Peng; Shao, Changlu; Zhang, Zhenyi; Zhang, Mingyi; Mu, Jingbo; Guo, Zengcai; Liu, Yichun

    2011-08-01

    Carbon nanofibers/silver nanoparticles (CNFs/AgNPs) composite nanofibers were fabricated by two steps consisting of the preparation of the CNFs by electrospinning and the hydrothermal growth of the AgNPs on the CNFs. The as-prepared nanofibers were characterized by scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X-ray diffraction, resonant Raman spectra, thermal gravimetric and differential thermal analysis, and X-ray photoelectron spectroscopy, respectively. The results indicated that not only were AgNPs (25-50 nm) successfully grown on the CNFs but also the AgNPs were distributed without aggregation on the CNFs. Further more, by adjusting the parameters in hydrothermal processing, the content of silver supported on the CNFs could be easily controlled. The catalytic activities of the CNFs/AgNPs composite nanofibers to the reduction of 4-nitrophenol (4-NP) with NaBH(4) were tracked by UV-visible spectroscopy. It was suggested that the CNFs/AgNPs composite nanofibers exhibited high catalytic activity in the reduction of 4-NP, which might be attributed to the high surface areas of AgNPs and synergistic effect on delivery of electrons between CNFs and AgNPs. And, the catalytic efficiency was enhanced with the increasing of the content of silver on the CNFs/AgNPs composite nanofibers. Notably, the CNFs/AgNPs composite nanofibers could be easily recycled due to their one-dimensional nanostructural property.

  3. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods. PMID:27497571

  4. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  5. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  6. Space charge effects: tune shifts and resonances

    SciTech Connect

    Weng, W.T.

    1986-08-01

    The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs. (LEW)

  7. Relaxation mechanism of β-carotene from S2 (1Bu(+)) state to S1 (2Ag(-)) state: femtosecond time-resolved near-IR absorption and stimulated resonance Raman studies in 900-1550 nm region.

    PubMed

    Takaya, Tomohisa; Iwata, Koichi

    2014-06-12

    Carotenoids have two major low-lying excited states, the second lowest (S2 (1Bu(+))) and the lowest (S1 (2Ag(-))) excited singlet states, both of which are suggested to be involved in the energy transfer processes in light-harvesting complexes. Studying vibrational dynamics of S2 carotenoids requires ultrafast time-resolved near-IR Raman spectroscopy, although it has much less sensitivity than visible Raman spectroscopy. In this study, the relaxation mechanism of β-carotene from the S2 state to the S1 state is investigated by femtosecond time-resolved multiplex near-IR absorption and stimulated Raman spectroscopy. The energy gap between the S2 and S1 states is estimated to be 6780 cm(-1) from near-IR transient absorption spectra. The near-IR stimulated Raman spectrum of S2 β-carotene show three bands at 1580, 1240, and 1050 cm(-1). When excess energy of 4000 cm(-1) is added, the S1 C═C stretch band shows a large upshift with a time constant of 0.2 ps. The fast upshift is explained by a model that excess energy generated by internal conversion from the S2 state to the S1 state is selectively accepted by one of the vibronic levels of the S1 state and is redistributed among all the vibrational modes.

  8. Benzimidazole carbamate residues in milk: Detection by Surface Plasmon Resonance-biosensor, using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for extraction.

    PubMed

    Keegan, Jemma; Whelan, Michelle; Danaher, Martin; Crooks, Steven; Sayers, Regina; Anastasio, Aniello; Elliott, Christopher; Brandon, David; Furey, Ambrose; O'Kennedy, Richard

    2009-11-10

    A surface plasmon resonance (SPR) biosensor screening assay was developed and validated to detect 11 benzimidazole carbamate (BZT) veterinary drug residues in milk. The polyclonal antibody used was raised in sheep against a methyl 5(6)-[(carboxypentyl)-thio]-2-benzimidazole carbamate protein conjugate. A sample preparation procedure was developed using a modified QuEChERS method. BZT residues were extracted from milk using liquid extraction/partition with a dispersive solid phase extraction clean-up step. The assay was validated in accordance with the performance criteria described in 2002/657/EC. The limit of detection of the assay was calculated from the analysis of 20 known negative milk samples to be 2.7mugkg(-1). The detection capability (CCbeta) of the assay was determined to be 5mugkg(-1) for 11 benzimidazole residues and the mean recovery of analytes was in the range 81-116%. A comparison was made between the SPR-biosensor and UPLC-MS/MS analyses of milk samples (n=26) taken from cows treated different benzimidazole products, demonstrating the SPR-biosensor assay to be fit for purpose.

  9. Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.

    PubMed

    Adegboyega, Nathaniel F; Sharma, Virender K; Siskova, Karolina M; Vecerova, Renata; Kolar, Milan; Zbořil, Radek; Gardea-Torresdey, Jorge L

    2014-03-18

    This work reports the role of iron redox pair (Fe(3+)/Fe(2+)) in the formation of naturally occurring silver nanoparticles (AgNPs) in the aquatic environment. The results showed that Fe(3+) or Fe(2+) ions in the mixtures of Ag(+) and natural organic matter enhanced the formation of AgNPs. The formation of AgNPs depended on pH and types of organic matter. Increase in pH enhanced the formation of AgNPs, and humic acids as ligands showed higher formation of AgNPs compared to fulvic acids. The observed results were described by considering the potentials of redox pairs of silver and iron species and the possible species involved in reducing silver ions to AgNPs. Dynamic light scattering and transmission electron microscopy measurements of AgNPs revealed mostly bimodal size distribution with decrease in size of AgNPs due to iron species in the reaction mixture. Minimum inhibitory concentration of AgNPs needed to inhibit the growth of various bacterial species suggested the role of surfaces of tested Gram-positive and Gram-negative bacteria. Stability study of AgNPs, formed in Ag(+)-humic acid/fulvic acids-Fe(3+) mixtures over a period of several months showed high stability of the particles with significant increase in surface plasmon resonance peak. The environmental implications of the results in terms of fate, transport, and ecotoxicity of organic-coated AgNPs are briefly presented. PMID:24524189

  10. Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase.

    PubMed

    Devi, Th Babita; Ahmaruzzaman, M

    2016-09-01

    In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation. PMID:27246560

  11. Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueous phase.

    PubMed

    Devi, Th Babita; Ahmaruzzaman, M

    2016-09-01

    In the current study, we report the utilization of the biogenic potential of Benincasa hispida (ash gourd) peel extract for the synthesis of Ag embedded AgCl nanoparticles nanoparticles (Ag/AgCl NPs) without the use of any external organic solvents. The appearance of dark brown color from the pale yellow color confirmed the formation of Ag/AgCl nanoparticles which was further validated by absorbance peak using UV-visible spectroscopy. The phytochemicals (flavones) present in the B. hispida peel extract acts as a reducing/stabilizing agents. The morphology and size of the synthesized NPs were characterized by transmission electron microscope (TEM), selected area electron microscope (SAED) and high resolution transmission electron microscope (HR-TEM). FT-IR spectra of the B. hispida peel extract and after the development of nanoparticles are determined to identify the functional groups responsible for the conversion of metal ions to metal nanoparticles. The synthesized nanoparticles showed an excellent photocatalytic property in the degradation of toxic dye like malachite green oxalate under sunlight irradiation. For the first time, malachite green oxalate dye was degraded by Ag/AgCl nanoparticles under sunlight irradiation.

  12. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes.

  13. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    PubMed

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes. PMID:26410042

  14. Particle placement and sheet topological control in the fabrication of Ag-hexaniobate nanocomposites.

    PubMed

    Adireddy, Shiva; Rostamzadeh, Taha; Carbo, Cecilia E; Wiley, John B

    2015-01-01

    Synthetic methods are demonstrated that allow for the fabrication of Ag-hexaniobate nanocomposites with directed nanoparticle (NP) placement and nanosheet morphological control. The solvothermal treatment of exfoliated nanosheets (NSs) in the presence of Ag NPs leads to a high yield of Ag nanocomposites. This approach is quite flexible and, with control of time and temperature, can be used to produce nanocomposites with specific architectures; Ag NPs can be attached to nanosheets, attached to the surfaces of nanoscrolls, or at higher temperatures, captured within nanoscrolls to form nanopeapod (NPP) structures. The decorated nanosheets and nanoscrolls show surface plasmon resonance (SPR) maxima similar to that of free Ag NPs, while the Ag NPPs exhibit a red shift of about 10 nm. PMID:25531945

  15. The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Ye, Lihua; Liu, Bo; Li, Fangjie; Feng, Yangyang; Cui, Yiping; Lu, Yanqing

    2016-10-01

    The threshold energy and electric field response characteristic of random laser have been investigated in dye-doped nematic liquid crystal (DDNLC) with the addition of different concentrations of Ag nanoparticles (NPs). Due to the localized surface plasmon resonance (LSPR) induced by Ag NPs, random laser from DDNLC with Ag NP doping had a lower threshold energy. From another point of view, nematic liquid crystals (LCs) in a DDNLC cell with the addition of Ag NPs could be more easily influenced by the electric field, which allowed the random laser to be controlled at a lower applied voltage. The turn-off time and turn-on time of random laser also decreased in the DDNLC cells with increasing the concentration of Ag NPs. This is due to the enhancement of the electro-optical characteristic of LC and the restoring force imparted by the locally ordered LCs induced by the Ag NPs, respectively.

  16. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  17. EDDY CURRENT EFFECT OF THE BNL-AGS VACUUM CHAMBER ON THE OPTICS OF THE BNL-AGS SYNCHROTRON.

    SciTech Connect

    TSOUPAS,N.; AHRENS,L.; BROWN,K.A.; GLENN,J.W.; GARDNER,K.

    1999-03-29

    During the acceleration cycle of the AGS synchrotron, eddy currents are generated within the walls of the vacuum chambers of the AGS main magnets. The vacuum chambers have elliptical cross section, are made of inconel material with a wall thickness of 2 mm and are placed within the gap of the combined-function main magnets of the AGS synchrotron. The generation of the eddy currents in the walls of the vacuum chambers, creates various magnetic multipoles, which affect the optics of the AGS machine. In this report these magnetic multipoles are calculated for various time interval starting at the acceleration cycle, where the magnetic field of the main magnet is {approx}0.1 T, and ending before the beam extraction process, where the magnetic field of the main magnet is almost constant at {approx}1.1 T. The calculations show that the magnetic multipoles generated by the eddy-currents affect the optics of the AGS synchrotron during the acceleration cycle and in particular at low magnetic fields of the main magnet. Their effect is too weak to affect the optics of the AGS machine during beam extraction at the nominal energies.

  18. Highly luminescent material based on Alq3:Ag nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices. PMID:23653126

  19. Ag Division States Philosophy

    ERIC Educational Resources Information Center

    American Vocational Journal, 1976

    1976-01-01

    The discussion which took place during the American Vocational Association's (AVA) Agriculture Division meeting at the 1975 AVA Convention is summarized, and the statement of vo-ag education philosophy (including 13 key concepts), which was passed during the convention, is presented. (AJ)

  20. "Smart" Ag Nanostructures for Plasmon-Enhanced Spectroscopies.

    PubMed

    Li, Chao-Yu; Meng, Meng; Huang, Sheng-Chao; Li, Lei; Huang, Shao-Rong; Chen, Shu; Meng, Ling-Yan; Panneerselvam, Rajapandiyan; Zhang, San-Jun; Ren, Bin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2015-11-01

    Silver is an ideal candidate for surface plasmon resonance (SPR)-based applications because of its great optical cross-section in the visible region. However, the uses of Ag in plasmon-enhanced spectroscopies have been limited due to their interference via direct contact with analytes, the poor chemical stability, and the Ag(+) release phenomenon. Herein, we report a facile chemical method to prepare shell-isolated Ag nanoparticle/tip. The as-prepared nanostructures exhibit an excellent chemical stability and plasmonic property in plasmon-enhanced spectroscopies for more than one year. It also features an alternative plasmon-mediated photocatalysis pathway by smartly blocking "hot" electrons. Astonishingly, the shell-isolated Ag nanoparticles (Ag SHINs), as "smart plasmonic dusts", reveal a ∼1000-fold ensemble enhancement of rhodamine isothiocyanate (RITC) on a quartz substrate in surface-enhanced fluorescence. The presented "smart" Ag nanostructures offer a unique way for the promotion of ultrahigh sensitivity and reliability in plasmon-enhanced spectroscopies.

  1. HPLC-NMR revisited: using time-slice high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance with database-assisted dereplication.

    PubMed

    Johansen, Kenneth T; Wubshet, Sileshi G; Nyberg, Nils T

    2013-03-19

    Time-based trapping of chromatographically separated compounds onto solid-phase extraction (SPE) cartridges and subsequent elution to NMR tubes was done to emulate the function of HPLC-NMR for dereplication purposes. Sufficient mass sensitivity was obtained by use of a state-of-the-art HPLC-SPE-NMR system with a cryogenically cooled probe head, designed for 1.7 mm NMR tubes. The resulting (1)H NMR spectra (600 MHz) were evaluated against a database of previously acquired and prepared spectra. The in-house-developed matching algorithm, based on partitioning of the spectra and allowing for changes in the chemical shifts, is described. Two mixtures of natural products were used to test the approach: an extract of Carthamus oxyacantha (wild safflower), containing an array of spiro compounds, and an extract of the endophytic fungus Penicillum namyslowski, containing griseofulvin and analogues. The database matching of the resulting spectra positively identified expected compounds, while the number of false positives was few and easily recognized.

  2. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  3. Measurements of $ep \\to e^\\prime π^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    SciTech Connect

    Park, Kijun; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brooks, W. K.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Elouadrhiri, L.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Joo, H. S.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J.; Markov, N.; Martinez, D.; McKinnon, B.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pasyuk, E.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati??, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, E. S.; Smith, G. D.; Sparveris, N.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-04-01

    Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted at different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 < 2.5$ GeV$^2$.

  4. Measurements of $$ep \\to e^\\prime π^+n$$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    DOE PAGES

    Park, Kijun; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; et al

    2015-04-01

    Differential cross sections of the exclusive processmore » $$e p \\to e^\\prime \\pi^+ n$$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $$\\pi^+ n$$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $$n\\pi^+$$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $$I = {1\\over 2}$$ resonances $$N(1675){5\\over 2}^-$$, $$N(1680){5\\over 2}^+$$ and $$N(1710){1\\over 2}^+$$ were extracted at different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $$N(1675){5\\over 2}^-$$ in the $$A_{1/2}$$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $$N(1680){5\\over 2}^+$$ we observe a slow changeover from the dominance of the $$A_{3/2}$$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $$A_{1/2}$$ begins to dominate. The scalar amplitude $$S_{1/2}$$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $$N(1710){1\\over 2}^+$$ resonance our analysis shows significant strength for the $$A_{1/2}$$ amplitude at $Q^2 < 2.5$ GeV$^2$.« less

  5. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  6. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  7. Studies on properties of Ag/Co0.05Ti0.95O2 random nanocomposite as metamaterials

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Gholipur, Reza; Bahari, Ali

    2016-10-01

    In this work, random metal-dielectric nanocomposites consisting of Ag nanorods embedded in Co0.05Ti0.95O2 are studied. The aspect ratio of Ag nanorods is about 15, and different contents of Ag nanorods are investigated. The nanocomposites with Ag content exceeding its percolation threshold, show metal-like behavior with negative permittivity. Moreover, in these nanocomposites, Ag nanorods form silver networks with diamagnetic response which combine with the magnetic resonance of ferromagnetic Co0.05Ti0.95O2 particles. The permeability spectra show that CTO-Ag15 33% nanocomposite has strongest diamagnetic behavior. These results indicate that the CTO-Ag15 33% sample is a promising candidate for the double negative materials.

  8. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  9. Investigation of the chaperone function of the small heat shock protein — AgsA

    PubMed Central

    2010-01-01

    Background A small heat shock protein AgsA was originally isolated from Salmonella enterica serovar Typhimurium. We previously demonstrated that AgsA was an effective chaperone that could reduce the amount of heat-aggregated proteins in an Escherichia coli rpoH mutant. AgsA appeared to promote survival at lethal temperatures by cooperating with other chaperones in vivo. To investigate the aggregation prevention mechanisms of AgsA, we constructed N- or C-terminal truncated mutants and compared their properties with wild type AgsA. Results AgsA showed significant overall homology to wheat sHsp16.9 allowing its three-dimensional structure to be predicted. Truncations of AgsA until the N-terminal 23rd and C-terminal 11th amino acid (AA) from both termini preserved its in vivo chaperone activity. Temperature-controlled gel filtration chromatography showed that purified AgsA could maintain large oligomeric complexes up to 50°C. Destabilization of oligomeric complexes was observed for N-terminal 11- and 17-AA truncated AgsA; C-terminal 11-AA truncated AgsA could not form large oligomeric complexes. AgsA prevented the aggregation of denatured lysozyme, malate dehydrogenase (MDH) and citrate synthase (CS) but did not prevent the aggregation of insulin at 25°C. N-terminal 17-AA truncated AgsA showed no chaperone activity towards MDH. C-terminal 11-AA truncated AgsA showed weak or no chaperone activity towards lysozyme, MDH and CS although it prevented the aggregation of insulin at 25°C. When the same amount of AgsA and C-terminal 11-AA truncated AgsA were mixed (half of respective amount required for efficient chaperone activities), good chaperone activity for all substrates and temperatures was observed. Detectable intermolecular exchanges between AgsA oligomers at 25°C were not observed using fluorescence resonance energy transfer analysis; however, significant exchanges between AgsA oligomers and C-terminal truncated AgsA were observed at 25°C. Conclusions Our data

  10. Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur

    SciTech Connect

    Shen, Mingmin; Russell, Selena M.; Liu, Da-Jiang; Thiel, Patricia A.

    2011-10-17

    Sulfur accelerates coarsening of Ag nanoislands on Ag(100) at 300 K, and this effect is enhanced with increasing sulfur coverage over a range spanning a few hundredths of a monolayer, to nearly 0.25 monolayers. We propose that acceleration of coarsening in this system is tied to the formation of AgS{sub 2} clusters primarily at step edges. These clusters can transport Ag more efficiently than can Ag adatoms (due to a lower diffusion barrier and comparable formation energy). The mobility of isolated sulfur on Ag(100) is very low so that formation of the complex is kinetically limited at low sulfur coverages, and thus enhancement is minimal. However, higher sulfur coverages force the population of sites adjacent to step edges, so that formation of the cluster is no longer limited by diffusion of sulfur across terraces. Sulfur exerts a much weaker effect on the rate of coarsening on Ag(100) than it does on Ag(111). This is consistent with theory, which shows that the difference between the total energy barrier for coarsening with and without sulfur is also much smaller on Ag(100) than on Ag(111).

  11. Laser array having mutually coupled resonators

    SciTech Connect

    Sziklas, E.A.; Palma, G.E.

    1987-07-21

    A laser system is described having at least two independently pumped unstable laser resonators. Each has a feedback region in which optical radiation resonates, an output region. Output radiation exists from the feedback region and an output coupling means for coupling out a main beam from the region in which laser extracted radiation extracted from a first one of at least two unstable laser resonators is coupled unidirectionally into at least one other of the unstable laser resonators. The extracted radiation from the first unstable laser resonator influences at least one other unstable laser resonator. The improvement comprises a system in which each of the resonators is mutually and substantially symmetrically, bidirectionally coupled to at least one other unstable resonator, through extraction means for extracting at least one coupling portion of the output radiation. A coupling radiation power and transporting means transports at least one coupling portion of the output radiation that is mode-matched to an adjoint mode. At least one other unstable laser resonator into at least one corresponding output region of the other one of at least two unstable laser resonators produce a laser system having a scaled-up laser output.

  12. Head-to-Head Comparison of Ultra-High-Performance Liquid Chromatography with Diode Array Detection versus Quantitative Nuclear Magnetic Resonance for the Quantitative Analysis of the Silymarin Complex in Silybum marianum Fruit Extracts.

    PubMed

    Cheilari, Antigoni; Sturm, Sonja; Intelmann, Daniel; Seger, Christoph; Stuppner, Hermann

    2016-02-24

    Quantitative nuclear magnetic resonance (qNMR) spectroscopy is known as an excellent alternative to chromatography-based mixture analysis. NMR spectroscopy is a non-destructive method, needs only limited sample preparation, and can be readily automated. A head-to-head comparison of qNMR to an ultra-high-performance liquid chromatography with diode array detection (uHPLC-DAD)-based quantitative analysis of six flavonolignan congeners (silychristin, silydianin, silybin A, silybin B, isosilybin A, and isosilybin B) of the Silybum marianum silymarin complex is presented. Both assays showed similar performance characteristics (linear range, accuracy, precision, and limits of quantitation) with analysis times below 30 min/sample. The assays were applied to industrial S. marianum extracts (AC samples) and to extracts locally prepared from S. marianum fruits (PL samples). An assay comparison by Bland-Altman plots (relative method bias AC samples, -0.1%; 2SD range, ±5.1%; relative method bias PL samples, -0.3%; 2SD range, ±7.8%) and Passing-Bablok regression analysis (slope and intercept for AC and PL samples not significantly different from 1.00 and 0.00, respectively; Spearman's coefficient of rank correlation, >0.99) did show that qNMR and uHPLC-DAD can be used interchangeably to quantitate flavonolignans in the silymarin complex.

  13. Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry

    SciTech Connect

    Campbell, J.A.; Linehan, J.C.; Robins, W.H.

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

  14. Comprehensive analysis of commercial willow bark extracts by new technology platform: combined use of metabolomics, high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy and high-resolution radical scavenging assay.

    PubMed

    Agnolet, Sara; Wiese, Stefanie; Verpoorte, Robert; Staerk, Dan

    2012-11-01

    Here, proof-of-concept of a new analytical platform used for the comprehensive analysis of a small set of commercial willow bark products is presented, and compared with a traditional standardization solely based on analysis of salicin and salicin derivatives. The platform combines principal component analysis (PCA) of two chemical fingerprints, i.e., HPLC and (1)H NMR data, and a pharmacological fingerprint, i.e., high-resolution 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation (ABTS(+)) reduction profile, with targeted identification of constituents of interest by hyphenated HPLC-solid-phase extraction-tube transfer NMR, i.e., HPLC-SPE-ttNMR. Score plots from PCA of HPLC and (1)H NMR fingerprints showed the same distinct grouping of preparations formulated as capsules of Salix alba bark and separation of S. alba cortex. Loading plots revealed this to be due to high amount of salicin in capsules and ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba cortex, respectively. PCA of high-resolution radical scavenging profiles revealed clear separation of preparations along principal component 1 due to the major radical scavengers (+)-catechin and ampelopsin. The new analytical platform allowed identification of 16 compounds in commercial willow bark extracts, and identification of ampelopsin, taxifolin, 7-O-methyltaxifolin-3'-O-glucoside, and 7-O-methyltaxifolin in S. alba bark extract is reported for the first time. The detection of the novel compound, ethyl 1-hydroxy-6-oxocyclohex-2-enecarboxylate, is also described.

  15. AGS preinjector improvement

    SciTech Connect

    Alessi, J.G.; Brennan, J.M.; Brown, H.N.; Brodowski, J.; Gough, R.; Kponou, A.; Prelec, K.; Staples, J.; Tanabe, J.; Witkover, R.

    1987-01-01

    In 1984, a polarized H/sup -/ source was installed to permit the acceleration of polarized protons in the AGS, using a low current, 750 keV RFQ Linear Accelerator as the preinjector. This RFQ was designed by LANL and has proved to be quite satisfactory and reliable. In order to improve the reliability and simplify maintenance of the overall AGS operations, it has been decided to replace one of the two 750 keV Cockcroft-Waltons (C-W) with an RFQ. The design of a new high current RFQ has been carried out by LBL and is also being constructed there. This paper describes the preinjector improvement project, centered around that RFQ, which is underway at BNL.

  16. Laser-induced reconstruction of Ag clusters in helium droplets

    NASA Astrophysics Data System (ADS)

    Gomez, Luis F.; O'Connell, Sean M. O.; Jones, Curtis F.; Kwok, Justin; Vilesov, Andrey F.

    2016-09-01

    Silver clusters were assembled in helium droplets of different sizes ranging from 105 to 1010 atoms. The absorption of the clusters was studied upon laser irradiation at 355 nm and 532 nm, which is close to the plasmon resonance maximum in spherical Ag clusters and in the range of the absorption of the complex, branched Ag clusters, respectively. The absorption of the pulsed (7 ns) radiation at 532 nm shows some pronounced saturation effects, absent upon the continuous irradiation. This phenomenon has been discussed in terms of the melting of the complex Ag clusters at high laser fluence, resulting in a loss of the 532 nm absorption. Estimates of the heat transfer also indicate that a bubble may be formed around the hot cluster at high fluences, which may result in ejection of the cluster from the droplet, or disintegration of the droplet entirely.

  17. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana

    2014-06-01

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.

  18. Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers.

    PubMed

    Liu, Xiaotong; Li, Dabing; Sun, Xiaojuan; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren

    2015-07-28

    The tunability of surface plasmon resonance can enable the highest degree of localised surface plasmon enhancement to be achieved, based on the emitting or absorbing wavelength. In this article, tunable dipole surface plasmon resonances of Ag nanoparticles (NPs) are realized by modification of the SiO2 dielectric layer thicknesses. SiO2 layers both beneath and over the Ag NPs affected the resonance wavelengths of local surface plasmons (LSPs). By adjusting the SiO2 thickness beneath the Ag NPs from 5 nm to 20 nm, the dipole surface plasmon resonances shifted from 470 nm to 410 nm. Meanwhile, after sandwiching the Ag NPs by growing SiO2 before NPs fabrication and then overcoating the NPs with various SiO2 thicknesses from 5 nm to 20 nm, the dipole surface plasmon resonances changed from 450 nm to 490 nm. The SiO2 cladding dielectric layer can tune the Ag NP surface charge, leading to a change in the effective permittivity of the surrounding medium, and thus to a blueshift or redshift of the resonance wavelength. Also, the quadrupole plasmon resonances were suppressed by the SiO2 cladding layer because the dielectric SiO2 can suppress level splitting of surface plasmon resonances caused by the Ag NP coupling effect.

  19. Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region

    NASA Astrophysics Data System (ADS)

    Ren, Shoutian; Zhao, Guoliang; Wang, Yingying; Wang, Benyang; Wang, Qiang

    2015-03-01

    Sandwiched ZnO@Ag@Cu2O nanorod films were synthesized by successive electrodeposition, magnetron sputtering and the second electrodeposition. The as-synthesized composites were characterized by x-ray diffraction patterns, field emission scanning electron microscopy, low- and high-resolution transmission electron microscopy and a UV-vis spectrophotometer. Their photocatalytic performance was estimated by the degradation of a methyl orange solution under UV or visible-light irradiation, respectively. In the visible region, due to localized surface plasmon resonance absorption of Ag NPs, ZnO@Ag@Cu2O showed a significantly enhanced photocatalytic performance. The enhancement factor of Ag NPs on the catalytic performance of ZnO@Ag@Cu2O was estimated as a function of the Cu2O deposition time, and the corresponding enhancement mechanism was also evaluated by the monochromatic photocatalytic experiment and discrete dipole approximation simulation. In the UV region, due to the formation of a Schottky junction (e.g. Ag/ZnO, Ag/Cu2O), a limited enhanced photocatalytic performance was also realized for ZnO@Ag@Cu2O photocatalysts.

  20. Photocurrent enhancement of chemically synthesized Ag nanoparticle-embedded BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Maruyama, Rika; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2016-10-01

    BiFeO3 and Ag nanoparticle-embedded BiFeO3 thin films were prepared on Pt/TiO x /SiO2/Si and MgO(100) substrates using colloidal silver and BiFeO3 metal-organic precursor solutions. Colloidal silver solution was prepared by a chemical reductive method using NaBH4 as a reductant. The prepared Ag nanoparticles exhibited characteristic optical absorption properties based on their surface plasmon resonance related to particle size. The synthesized BiFeO3 and Ag nanoparticle/BiFeO3 thin films demonstrated rapid on/off responses of photocurrent to visible light. The Ag nanoparticle-incorporated BiFeO3 film exhibited a 2-4-fold higher photocurrent than the BiFeO3 film. Optical and ferroelectric properties did not change markedly even when Ag nanoparticles were embedded in the BiFeO3 thin film within the quantities of this study. Furthermore, in the Ag nanoparticle/BiFeO3 composite structure, Ag nanoparticles were introduced in the near-metallic state with maintained their nanometer size. In the Ag nanoparticle-embedded BiFeO3 film, photoinduced charge separation and transport of photoexcited carriers were enhanced by the surface plasmon effect of nanosized Ag particles as well as the internal bias electric field existed in the narrow-bandgap BiFeO3 thin film.

  1. Formation Mechanism and Characterization of Ag-Metal Chelate Polymer Prepared by a Wet Chemical Process

    NASA Astrophysics Data System (ADS)

    Huang, Chueh-Jung; Lin, Jiang-Jen; Shieu, Fuh-Sheng

    2005-08-01

    In this study, a metal chelate polymer (MCP) contained Ag(0) was prepared from commercial polyvinyl acetate (PVAc) and silver nitrate (AgNO3) by a wet chemical method using concentrate formic acid (HCOOH) as solvent. The characterization of these MCP materials, and the formation mechanism that involved in the MCP system, were studied by the analyses of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM). The Ag(I) cations of silver nitrate (AgNO3) were found coordinated with polymer functional groups to form polymer-Ag(I) complexes. The XRD analysis revealed that these complexed Ag(I) ions were in-situ reduced to generate Ag(0) metal by HCOOH solvent in MCP system. The results of FTIR and NMR analyses demonstrated that there are hydrolyzed hydroxyl groups present in the MCP chains. The XPS analysis showed that the oxygen ligands that interacted with the Ag(0) were mostly contributed from the OH groups. The interaction between the reduced Ag(0) metal and the polymer chains was confirmed by transmission electron microscopy (TEM) investigation on the MCP materials.

  2. Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph W.; Levie, Harold W.; McCall, Scott K.; Teslich, Nick E.; Wall, Mark A.; Orme, Christine A.; Matthews, Manyalibo J.

    2012-10-01

    Hollow spherical ZnO particles doped with Ag were synthesized with a two-step oxidation and sublimation furnace annealing process. Ag nanoparticle precipitates, as observed by transmission electron microscopy, were present in the polycrystalline ZnO matrix at Ag concentrations below 0.02 mol%, significantly below the 0.8 mol% solubility limit for Ag in ZnO. Enhanced Raman scattering of ZnO phonon modes is observed, increasing with Ag nanoparticle concentration. A further enhancement in Raman scattering due to resonance effects was observed for LO phonons excited by 2.33-eV photons as compared with Raman scattering under 1.96-eV excitation. Room-temperature photoluminescence spectra showed both a near-band-edge emission due to free exciton transitions and a mid-gap transition due to the presence of singly ionized oxygen vacancies. ZnO:Ag particles were measured electrically in a packed column and in monolithic form, and in both cases displayed nonlinear current-voltage characteristics similar to those previously observed in sintered ZnO:Ag monoliths where Ag-enhanced disorder at grain boundaries is thought to control current transport. We demonstrate therefore that Ag simultaneously modifies the electrical and optical properties of ZnO particles through the introduction of vacancies and other defects.

  3. Course of poly(4-aminodiphenylamine)/Ag nanocomposite formation through UV-vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Thanjam, Starlet; Philips, M. Francklin; Komathi, S.; Manisankar, P.; Sivakumar, C.; Gopalan, A.; Lee, Kwang-Pill

    2011-09-01

    Kinetics of chemical oxidative polymerization of 4-aminodiphenylamine (4ADPA) was followed in aqueous 1 M p-toluene sulfonic acid (p-TSA) using silver nitrate (AgNO 3) as an oxidant by UV-vis spectroscopy. The medium was found to be clear and homogeneous during the course of polymerization. The absorbances corresponding to the intermediate and the polymer were followed for different concentrations of 4ADPA and AgNO 3 and at different reaction time. The appearance of a band around 450 nm during the initial stages of polymerization corresponds to the plasmon resonance formed by the reduction of Ag + ions. Rate of poly(4-aminodiphenylamine)/Ag nanocomposite ( RP4ADPA/AgNC) was determined for various reaction conditions. RP4ADP/AgNC showed second order power dependence on 4ADPA and first order dependence on AgNO 3. The observed order dependences of 4ADPA and AgNO 3 on the formation of P4ADPA/AgNC were used to deduce a rate equation for the reaction. Rate constant for the reaction was determined through different approaches. The good agreement between the rate constants obtained through different approaches justifies the selection of rate equation.

  4. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  5. Spectroscopy of microcrystals in the CuI-AgI system

    SciTech Connect

    Voll, V.A.; Barmasov, A.V.; Struts, A.V.

    1994-06-01

    Using comparative analysis of the absorption and luminescence spectra of samples with different compositions, we studied the effect of the preparation procedure on the structure of composite CuI-AgI microcrystals formed in the gelatin matrix. The resonance character of excitation and its localization at the substrate/epitax interface were established. The most probable composition of the thermally stable photolytic centers as a function of the relative content of Cu and Ag was discussed.

  6. The Effect of Ag-DOPING on the Critical Current Density of YBa2Cu3O7-δ Superconductors

    NASA Astrophysics Data System (ADS)

    Lue, Juh Tzeng; Kung, J. H.; Yen, H. H.; Chen, Y. C.; Wu, P. T.

    The superconducting state and the transition temperature Tc of the interstitially Ag-doped YBa2 Cu3 O7-δ are not changed even when the Ag concentration is increased up to 20%, whereas the substitutionally doped YBa2 Cu3-x Agx O7-δ system ceases to be superconductive when the contents x of Ag is over 1.2. Magnetic susceptibility measurement indicates that the interstitial Ag-doping yields higher diamagnetic signal and enhances the critical current density by 15 folds. Photoelectron emission and electron spin resonance spectroscopic studies elucidate that the copper ions change from diamagnetic to paramagnetic states at some doping levels.

  7. Egg White Templated Synthesis of Ag and Au@Ag Alloy Microspheres for Surface-Enhanced Raman Spectroscopy Research.

    PubMed

    Li, Min; Zhang, Ying; Wang, Xiansong; Cui, Daxiang

    2016-01-01

    Herein, we report the green synthesis of Ag and Au@Ag microspheres by using the aqueous extracts of the egg white as well as their application as substrates for surface-enhanced Raman spectroscopy (SERS) detection. Both microspheres are prepared via the green synthesis method (room temperature, in aqueous solution and a benign reducer). The as-prepared urchin-like Ag microspheres have an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 10-40 nm. Meanwhile, the Au@Ag architectures prepared by galvanic replacement keep nearly similar size, which is also composed of some compact nanoparticles with an average diameter of about 10-40 nm. These products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), and Fourier transform infrared spectrophotometer (FTIR). The study on SERS activities is also carried out for both microspheres. It is found that Au@Ag microspheres possess much higher SERS activity than Ag microspheres. Our work may shed light on the design and synthesis of self-assembled 3D micro/nano-architectures for the use of SERS, catalysis, biosensors, nanomedicine, etc. PMID:27398550

  8. Egg White Templated Synthesis of Ag and Au@Ag Alloy Microspheres for Surface-Enhanced Raman Spectroscopy Research.

    PubMed

    Li, Min; Zhang, Ying; Wang, Xiansong; Cui, Daxiang

    2016-01-01

    Herein, we report the green synthesis of Ag and Au@Ag microspheres by using the aqueous extracts of the egg white as well as their application as substrates for surface-enhanced Raman spectroscopy (SERS) detection. Both microspheres are prepared via the green synthesis method (room temperature, in aqueous solution and a benign reducer). The as-prepared urchin-like Ag microspheres have an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 10-40 nm. Meanwhile, the Au@Ag architectures prepared by galvanic replacement keep nearly similar size, which is also composed of some compact nanoparticles with an average diameter of about 10-40 nm. These products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), and Fourier transform infrared spectrophotometer (FTIR). The study on SERS activities is also carried out for both microspheres. It is found that Au@Ag microspheres possess much higher SERS activity than Ag microspheres. Our work may shed light on the design and synthesis of self-assembled 3D micro/nano-architectures for the use of SERS, catalysis, biosensors, nanomedicine, etc.

  9. Damping of nanomechanical resonators.

    PubMed

    Unterreithmeier, Quirin P; Faust, Thomas; Kotthaus, Jörg P

    2010-07-01

    We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile stress as a function of geometry and mode index m≤9. Reproducing all observed resonance frequencies with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain we successfully predict the observed mode-dependent damping with a single frequency-independent fit parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying microscopic mechanisms. PMID:20867737

  10. Spectral investigation of nonlinear local field effects in Ag nanoparticles

    SciTech Connect

    Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji

    2015-03-21

    The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.

  11. Optical properties of Ag nanoparticle-polymer composite film based on two-dimensional Au nanoparticle array film

    PubMed Central

    2014-01-01

    The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence. PMID:24685186

  12. Green and red luminescence in co-precipitation synthesized Pr:LuAG nanophosphor

    NASA Astrophysics Data System (ADS)

    Kumar, S. Arun; Kumar, K. Ashok; Gunaseelan, M.; Asokan, K.; Senthilselvan, J.

    2016-05-01

    Pr:LuAG nanophosphor is an effective candidate in magnetic resonance imaging coupled positron emission tomography (MRI-PET) for medical imaging and scintillator applications. LuAG:Pr (0.05, 0.15 mol%) nanoscale ceramic powders were synthesized by co-precipitation method using urea as precipitant. Effect of antisite defect on structure and luminescence behavior was investigated. Pr:LuAG nanoceramic powders are found crystallized in cubic structure by high temperature calcination at 1400 °C and it shows antisite defect. HR-SEM analysis revealed spherically shaped Pr:LuAG nanoceramic particulate powders with ˜100 nm size. By the excitation at 450 nm, Pr:LuAG nanophosphor exhibit green to red luminescence in the wavelength range of 520 to 680 nm, which is originated from multiplet transition of Pr3+ ions.

  13. Stochastic resonance

    NASA Astrophysics Data System (ADS)

    Gammaitoni, Luca; Hänggi, Peter; Jung, Peter; Marchesoni, Fabio

    1998-01-01

    Over the last two decades, stochastic resonance has continuously attracted considerable attention. The term is given to a phenomenon that is manifest in nonlinear systems whereby generally feeble input information (such as a weak signal) can be be amplified and optimized by the assistance of noise. The effect requires three basic ingredients: (i) an energetic activation barrier or, more generally, a form of threshold; (ii) a weak coherent input (such as a periodic signal); (iii) a source of noise that is inherent in the system, or that adds to the coherent input. Given these features, the response of the system undergoes resonance-like behavior as a function of the noise level; hence the name stochastic resonance. The underlying mechanism is fairly simple and robust. As a consequence, stochastic resonance has been observed in a large variety of systems, including bistable ring lasers, semiconductor devices, chemical reactions, and mechanoreceptor cells in the tail fan of a crayfish. In this paper, the authors report, interpret, and extend much of the current understanding of the theory and physics of stochastic resonance. They introduce the readers to the basic features of stochastic resonance and its recent history. Definitions of the characteristic quantities that are important to quantify stochastic resonance, together with the most important tools necessary to actually compute those quantities, are presented. The essence of classical stochastic resonance theory is presented, and important applications of stochastic resonance in nonlinear optics, solid state devices, and neurophysiology are described and put into context with stochastic resonance theory. More elaborate and recent developments of stochastic resonance theory are discussed, ranging from fundamental quantum properties-being important at low temperatures-over spatiotemporal aspects in spatially distributed systems, to realizations in chaotic maps. In conclusion the authors summarize the achievements

  14. Ablation and optical third-order nonlinearities in Ag nanoparticles

    PubMed Central

    Torres-Torres, Carlos; Peréa-López, Néstor; Reyes-Esqueda, Jorge Alejandro; Rodríguez-Fernández, Luis; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; Oliver, Alicia

    2010-01-01

    The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs) was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR) of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but non-linearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser-induced controlled explosions, with potential applications for biomedical photothermal processes. PMID:21187944

  15. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  16. Micro-morphometrical assessment of the effect of Harpagophytum procumbens extract on articular cartilage in rabbits with experimental osteoarthritis using magnetic resonance imaging.

    PubMed

    Wachsmuth, L; Lindhorst, E; Wrubel, S; Hadzhiyski, H; Hudelmaier, M; Eckstein, F; Chrubasik, S

    2011-08-01

    In vitro effects indicate a putative beneficial effect of Harpagophytum procumbens on cartilage turnover, however, in vivo protective effects on cartilage have yet to be demonstrated. A 7.1T MRI scanner was used to derive measurements of thickness, surface area and volume of the tibial condylar cartilage and to assess their precision (in the case of volume also accuracy) against the volumes of dissected cartilage measured by water displacement. Quantitative measurements were made in 16 rabbits, 6 months after unilateral medial meniscectomy and transection of the anterior cruciate ligament, after which eight of these were given a proprietary extract of Harpagophytum procumbens (HP). A semiquantitative MRI-based grading of the tibial cartilage was also compared with a 'macroscopic' grading based on direct visual inspection of dissected joints. The test-retest precision for MRI-based measurement was ≤6.4%. MRI-based measurements correlated well with volumes of surgically resected cartilage (r =  0.97, pair-wise random difference 4.2%). The medial tibial cartilage thickness and volume were about 35% smaller in the operated knees than in the non-operated contralateral knees (p < 0.05). The findings suggest that MRI is a precise and accurate tool for evaluating cartilage in a rabbit model of OA. The difference between the intact and operated knee in thickness and volume of the medial tibial cartilage was slightly but not significantly smaller in the HP-treated group than in the non-treated group. PMID:21284047

  17. Surface Plasmon-Mediated Energy Transfer in Hetero-Gap Au-Ag Nanowires

    PubMed Central

    Wei, Wei; Li, Shuzhou; Qin, Lidong; Xue, Can; Millstone, Jill E.; Xu, Xiaoyang; Schatz, George C.; Mirkin, Chad A.

    2011-01-01

    We report the observation of energy transfer from a gold (Au) nanodisk pair to a silver (Ag) nanowire across a 120 nm gap via surface plasmon resonance (SPR) excitation. The enhanced electromagnetic (EM) fields generated by Au SPR excitation induce oscillation of the conduction electrons in the Ag segment, transferring energy to it even though the Ag segment has only weak resonant interactions with the incident electromagnetic radiation. The induced Ag SPR produces strong EM fields at the position of the Ag segment, leading to a Raman signal ~15 times greater than when the Ag segment is alone (not adjacent to the Au nanodisk pair). The Raman intensity is found to depend nonlinearly on the incident laser intensity for laser power densities of 10 kW/cm2, which is consistent with the results of electromagnetic theory calculations which are not able to account for the factor of 15 enhancement based on a linear mechanism. This suggests that energy transfer from the Au disk pair to the Ag segment involves an enhanced nonlinear polarization mechanism such as can be produced by the electronic Kerr effect or stimulated Raman scattering. PMID:18767888

  18. Slow extraction at the SSC

    SciTech Connect

    Colton, E.P.

    1985-01-01

    Resonant slow extraction at the SSC will permit fixed-target operation. Stochastic extraction appears to be a promising technique for achieving spill times of the order of 1000 s. However, systematic sextupole error fields in the SSC dipoles must be reduced a factor of twenty from the design values; otherwise the extraction process will be perturbed or suppressed. In addition, good regulation of the SSC power supplies is essential for smooth extraction over the spill period. 10 refs., 1 fig.

  19. The A2Σ+-XΠi electronic transition of AgS

    NASA Astrophysics Data System (ADS)

    Gupta, Varun; Mazzotti, Fabio J.; Rice, Corey A.; Nagarajan, Ramya; Maier, John P.

    2013-04-01

    The near-infrared electronic transition of silver monosulfide, AgS was measured for the first time using mass-resolved 1+1' resonance enhanced ionization spectroscopy in the 10 000-11 000 cm-1 region. The observed vibronic bands were analysed to obtain ωe″=331.6(2) cm and ωexe″=1.3(1) cm for the ground state, and Te=10528.3(2) cm, ωe'=318.4(1) cm, ωexe'=1.4(1) cm for the excited state of 107Ag32 S. The transitions are assigned to the A2Σ+-X2Πi system based on the rotational analysis of the Ω″=3/2 spin-orbit component of the 0-0 and 1-0 vibronic bands. The rotational constants for the X2Π state were determined to be B″=0.13126(16) cm , D″=5.5(17)×10-7 cmand A″=-477(8) cm .

  20. Communication: Structure, formation, and equilibration of ensembles of Ag-S complexes on an Ag surface

    SciTech Connect

    Russell, Selena M.; Kim, Yousoo; Liu, Da-Jiang; Evans, J. W.; Thiel, P. A.

    2013-02-15

    We have utilized conditions of very low temperature (4.7 K) and very low sulfur coverage to isolate and identify Ag-S complexes that exist on the Ag(111) surface. The experimental conditions are such that the complexes form at temperatures above the temperature of observation. These complexes can be regarded as polymeric chains of varying length, with an Ag4S pyramid at the core of each monomeric unit. Steps may catalyze the formation of the chains and this mechanism may be reflected in the chain length distribution.

  1. Antiadipogenic Effects of Aster glehni Extract: In Vivo and In Vitro Effects

    PubMed Central

    Lee, Heon-Myung; Yang, Gabsik; Ahn, Tae-Gue; Kim, Myung-Dong; Nugroho, Agung; Park, Hee-Juhn; Lee, Kyung-Tae; Park, Wansu; An, Hyo-Jin

    2013-01-01

    Aster glehni (AG) is a Korean traditional herb that grows in Ulleungdo Island, Republic of Korea. None of the several reports on AG include a determination of the effect of AG on adipogenesis. The primary aim of this study was to determine whether AG attenuates adipogenesis in mouse 3T3-L1 cells and epididymal fat tissue. AG blocked the differentiation of 3T3-L1 preadipocytes in a concentration-dependent manner and suppressed the expression of adipogenesis-related genes such as PPARγ, C/EBPα, and SREBP1c, the master regulators of adipogenesis. Male C57BL/6J mice were divided randomly and equally into 4 diet groups: control diet (CON), high-fat diet (HFD), HFD with 1% AG extract added (AG1), and HFD with 5% AG extract added (AG5). The experimental animals were fed HFD and the 2 combinations for 10 weeks. Mice fed HFD with AG gained less body weight and visceral fat-pad weight than did the mice fed HFD alone. Moreover, AG inhibited the expression of important adipogenic genes such as PPARγ, C/EBPα, SREBP1c, LXR, and leptin in the epididymal adipose tissue of the mice treated with AG1 and AG5. These findings indicate antiadipogenic and antiobesity effects of AG and suggest its therapeutic potential in obesity and obesity-related diseases. PMID:23864899

  2. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  3. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  4. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    SciTech Connect

    HUANG, H.; AHRENS, L.A.; BAI, M.; BRAVAR, A.; BROWN, K.; COURANT, E.D.; GARDNER, C.; GLENN, J.W.; LUCCIO, A.U.; MACKAY, W.W.; PTITSYN, V.; ROSER, T.; TEPIKIAN, S.; TSOUPAS, N.; WOOD, J.; YIP, K.; ZELENSKI, A.; ZENO, K.

    2006-06-26

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  5. Analysis of sesquiterpene lactones, lignans, and flavonoids in wormwood (Artemisia absinthium L.) using high-performance liquid chromatography (HPLC)-mass spectrometry, reversed phase HPLC, and HPLC-solid phase extraction-nuclear magnetic resonance.

    PubMed

    Aberham, Anita; Cicek, Serhat Sezai; Schneider, Peter; Stuppner, Hermann

    2010-10-27

    Today, the medicinal use of wormwood (Artemisia absinthium) is enjoying a resurgence of popularity. This study presents a specific and validated high-performance liquid chromatography (HPLC)-diode array detection method for the simultaneous determination and quantification of bioactive compounds in wormwood and commercial preparations thereof. Five sesquiterpene lactones, two lignans, and a polymethoxylated flavonoid were baseline separated on RP-18 material, using a solvent gradient consisting of 0.085% (v/v) o-phosphoric acid and acetonitrile. The flow rate was 1.0 mL/min, and chromatograms were recorded at 205 nm. The stability of absinthin was tested exposing samples to light, moisture, and different temperatures. Methanolic and aqueous solutions of absinthin were found to be stable for up to 6 months. This was also the case when the solid compound was kept in the refrigerator at -35 °C. In contrast, the colorless needles, when stored at room temperature, turned yellow. Three degradation compounds (anabsin, anabsinthin, and the new dimer 3'-hydroxyanabsinthin) were identified by HPLC-mass spectrometry and HPLC-solid-phase extraction-nuclear magnetic resonance and quantified by the established HPLC method.

  6. Multiple Tune Jumps to Overcome Horizontal Depolarizing Resonances

    NASA Astrophysics Data System (ADS)

    Huang, H.; Ahrens, L. A.; Bai, M.; Brown, K. A.; Dutheil, Y.; Gardner, C.; Glenn, J. W.; Lin, F.; Mackay, W. W.; Meot, F.; Poblaguev, A.; Ranjbar, V.; Roser, T.; Schoefer, V.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2016-02-01

    Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the Alternative Gradient Synchrotron(AGS). The relatively weak but numerous horizontal resonances are the main source of polarization loss in the AGS. A pair of horizontal tune jump quads have been used to overcome these weak resonances. The locations of the two quads have to be chosen such that the disturbance to the beam optics is minimum. The emittance growth has to be mitigated for this method to work. In addition, this technique needs very accurate jump timing. Using two partial Siberian snakes, with vertical tune inside the spin tune gap and 80% polarization at AGS injection, polarized proton beam had reached 1.5 × 1011 proton per bunch with 65% polarization. With the tune jump timing optimized and emittance preserved, more than 70% polarization with 2 × 1011 protons per bunch has been achieved.

  7. Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells.

    PubMed

    Du, Peng; Jing, Pengtao; Li, Di; Cao, Yinghui; Liu, Zhenyu; Sun, Zaicheng

    2015-05-01

    Localized surface plasmon resonance (LSPR), light scattering, and lowering the series resistance of noble metal nanoparticles (NPs) provide positive effect on the performance of photovoltaic device. However, the exciton recombination on the noble metal NPs accompanying above influences will deteriorate the performance of device. In this report, surface-modified Ag@oxide (TiO2 or SiO2 ) nanoprisms with 1-2 nm shell thickness are developed. The thin film composed of P3HT/Ag@oxides and P3HT:PCBM/Ag@oxides is investigated by absorption, photoluminescence (PL), and transient absorption spectroscopy. The results show a significant absorption, PL enhancement, and long-lived photogenerated polaron in the P3HT/Ag@TiO2 film, indicating the increase of photogenerated exciton population by LSPR of Ag nanoprisms. In the case of P3HT/Ag nanoprisms, partial PL quench and relatively short-lived photogenerated polaron are observed. That indicates that the oxides layer can effectively avoid the exciton recombination. When the Ag@oxide nanoprisms are introduced into the active layer of P3HT:PCBM photovoltaic devices, about 31% of power conversion efficiency enhancement is obtained relative to the reference cell. All these results indicate that Ag@oxides can enhance the performance of the cell, at the same time the ultrathin oxide shell prevents from the exciton recombination.

  8. Preparation and photocatalytic properties of AgI–SnO{sub 2} nano-composites

    SciTech Connect

    Wen, Biao; Wang, Xiao-Hui; Lu, Juan; Cao, Jia-Lei; Wang, Zuo-Shan

    2013-05-15

    Highlights: ► AgI–SnO{sub 2} nano-composites have been successfully synthesized. ► As-prepared AgI–SnO{sub 2} nano-composites own the excellent visible light photocatalytic activity. ► As-prepared AgI–SnO{sub 2} nano-composites own the excellent stability. - Abstract: AgI doped SnO{sub 2} nano-composites were prepared by the chemical coprecipitation method and were characterized by the X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Results showed that main of the I{sup −} ions remained in the AgI lattice which is highly dispersed in the system. The photo-catalytic experiments performed under visible light irradiation using methylene blue as the pollutant revealed that not only the photo-catalytic activity but also the stability of SnO{sub 2} based photocatalyst could be improved by introduction of an appropriate amount of AgI, and the result was further supported by the UV–Vis diffuse reflection spectra and the electron spin-resonance spectra. Among all of the samples, AgI–SnO{sub 2} nano-composite with 2At% AgI exhibited the best catalytic efficiency and stability.

  9. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines.

    PubMed

    Marega, Carla; Maculan, Jenny; Andrea Rizzi, Gian; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-20

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm(-1) was obtained. The results allow to compare the two different approaches in the detection of ammines.

  10. Polyvinyl alcohol electrospun nanofibers containing Ag nanoparticles used as sensors for the detection of biogenic amines

    NASA Astrophysics Data System (ADS)

    Marega, Carla; Maculan, Jenny; Rizzi, Gian Andrea; Saini, Roberta; Cavaliere, Emanuele; Gavioli, Luca; Cattelan, Mattia; Giallongo, Giuseppe; Marigo, Antonio; Granozzi, Gaetano

    2015-02-01

    Polyvinyl alcohol (PVA) electrospun nanofibers containing Ag nanoparticles (NPs) have been deposited on glass substrates. The aim of the work was to test the feasibility of this approach for the detection of biogenic amines by using either the Ag localized surface plasmon resonance quenching caused by the adsorption of amines on Ag NPs or by detecting the amines by surface enhanced Raman spectroscopy (SERS) after adsorption, from the gas phase, on the metal NPs. Two different approaches have been adopted. In the first one an ethanol/water solution containing AgNO3 was used directly in the electrospinning apparatus. In this way, a simple heat treatment of the nanofibers mat was sufficient to obtain the formation of Ag NPs inside the nanofibers and a partial cross-link of PVA. In the second procedure, the Ag NPs were deposited on PVA nanofibers by using the supersonic cluster beam deposition method, so that a beam of pure Ag NPs of controlled size was obtained. Exposure of the PVA mat to the beam produced a uniform distribution of the NPs on the nanofibers surface. Ethylendiamine vapors and volatile amines released from fresh shrimp meat were chemisorbed on the nanofibers mats. A SERS spectrum characterized by a diagnostic Ag-N stretching vibration at 230 cm-1 was obtained. The results allow to compare the two different approaches in the detection of ammines.

  11. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli.

    PubMed

    Wang, Lian; He, Hong; Yu, Yunbo; Sun, Li; Liu, Sijin; Zhang, Changbin; He, Lian

    2014-06-01

    Silver-loaded CeO2 nanomaterials (Ag/CeO2) including Ag/CeO2 nanorods, nanocubes, nanoparticles were prepared with hydrothermal and impregnation methods. Catalytic inactivation of Escherichia coli with Ag/CeO2 catalysts through the formation of reactive oxygen species (ROS) was investigated. For comparison purposes, the bactericidal activities of CeO2 nanorods, nanocubes and nanoparticles were also studied. There was a 3-4 log order improvement in the inactivation of E. coli with Ag/CeO2 catalysts compared with CeO2 catalysts. Temperature-programmed reduction of H2 showed that Ag/CeO2 catalysts had higher catalytic oxidation ability than CeO2 catalysts, which was the reason for that Ag/CeO2 catalysts exhibited stronger bactericidal activities than CeO2 catalysts. Further, the bactericidal activities of CeO2 and Ag/CeO2 depend on their shapes. Results of 5,5-dimethyl-1-pyrroline-N-oxide spin-trapping measurements by electron spin resonance and addition of catalase as a scavenger indicated the formation of OH, O2(-), and H2O2, which caused the obvious bactericidal activity of catalysts. The stronger chemical bond between Ag and CeO2 nanorods led to lower Ag(+) elution concentrations. The toxicity of Ag(+) eluted from the catalysts did not play an important role during the bactericidal process. Experimental results also indicated that Ag/CeO2 induced the production of intracellular ROS and disruption of the cell wall and cell membrane. A possible production mechanism of ROS and bactericidal mechanism of catalytic oxidation were proposed.

  12. ESR and TL mechanism in CaSO4 : Ag co-doped phosphors

    NASA Astrophysics Data System (ADS)

    Dhabekar, Bhushan; Menon, Sanjeev; Alagu Raja, E.; Sanaye, S. S.; Gundu Rao, T. K.; Bhatt, B. C.; Kher, R. K.

    2006-06-01

    Thermoluminescence (TL) studies have been carried out on CaSO4 : Mn, CaSO4 : Ag,Mn, CaSO4 : Ag,Nd, CaSO4 : Ag,Mn,Nd, CaSO4 : Ag,Zr and CaSO4 : Ag,Mn,Zr phosphors. It is found that TL at 360 °C in CaSO4 : Ag,Mn,Nd is about 40 times that of CaSO4 : Ag,Mn and about 170 times that of CaSO4 : Ag,Nd. This shows that the presence of an efficient luminescent centre (Mn2+) as well as a trivalent impurity (such as Nd3+ or Y3+) is important for enhancement of TL at 360 °C in the CaSO4 : Ag,Mn,Nd phosphor system. Electron spin resonance (ESR) studies show that the peak at 360 °C correlates with an Ag2+ centre formed due to γ-irradiation and observable only below -170 °C. The Ag2+ centre is characterized by an axial g-tensor with principal values g|| = 2.38 and gbottom = 2.41. ESR studies further indicate that the precursor to a centre observable at low temperature (-170 °C) appears to act as the recombination centre for the TL peak at 360 °C. The low temperature centre is characterized by the g-values g|| = 2.0023 and gbottom = 2.0038 and is assigned to the SO_{3}^{ - } radical.

  13. The AGS-Booster lattice

    SciTech Connect

    Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.

    1987-01-01

    The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.

  14. Spin tracking simulations in AGS based on ray-tracing methods - bare lattice, no snakes -

    SciTech Connect

    Meot, F.; Ahrens, L.; Gleen, J.; Huang, H.; Luccio, A.; MacKay, W. W.; Roser, T.; Tsoupas, N.

    2009-09-01

    This Note reports on the first simulations of and spin dynamics in the AGS using the ray-tracing code Zgoubi. It includes lattice analysis, comparisons with MAD, DA tracking, numerical calculation of depolarizing resonance strengths and comparisons with analytical models, etc. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods of concern in and available from Zgoubi. Simulations of crossing and neighboring of spin resonances in AGS ring, bare lattice, without snake, have been performed, in order to assess the capabilities of Zgoubi in that matter, and are reported here. This yields a rather long document. The two main reasons for that are, on the one hand the desire of an extended investigation of the energy span, and on the other hand a thorough comparison of Zgoubi results with analytical models as the 'thin lens' approximation, the weak resonance approximation, and the static case. Section 2 details the working hypothesis : AGS lattice data, formulae used for deriving various resonance related quantities from the ray-tracing based 'numerical experiments', etc. Section 3 gives inventories of the intrinsic and imperfection resonances together with, in a number of cases, the strengths derived from the ray-tracing. Section 4 gives the details of the numerical simulations of resonance crossing, including behavior of various quantities (closed orbit, synchrotron motion, etc.) aimed at controlling that the conditions of particle and spin motions are correct. In a similar manner Section 5 gives the details of the numerical simulations of spin motion in the static case: fixed energy in the neighboring of the resonance. In Section 6, weak resonances are explored, Zgoubi results are compared with the Fresnel integrals model. Section 7 shows the computation of the {rvec n} vector in the AGS lattice and tuning considered. Many details on the numerical conditions as data files etc. are given in the Appendix Section

  15. In vitro effects of 1α,25(OH)₂D₃-glycosides from Solbone A (Solanum glaucophyllum leaves extract; Herbonis AG) compared to synthetic 1α,25(OH)₂D₃ on myogenesis.

    PubMed

    Gili, Valeria; Pardo, Verónica Gonzalez; Ronda, Ana C; De Genaro, Pablo; Bachmann, Heini; Boland, Ricardo; de Boland, Ana Russo

    2016-05-01

    The presence of glycoside derivatives of 1α,25(OH)2D3 endows plants to gradual release of the free bioactive form of 1α,25(OH)2D3 from its glycoconjugates by endogenous animal tissue glycosidases. This results in increased half-life of the hormone in blood when purified plant fractions are administered for therapeutic purposes. In this work, we evaluated the role 1α,25(OH)2D3-glycosides enriched natural product (Solbone A) from Solanum glaucophyllum leaf extract compared with synthetic 1α,25(OH)2D3 on myogenic differentiation in C2C12 myoblasts. For these, differentiation markers and myogenic parameters were studied in C2C12 myoblasts. Results showed that Solbone A, likewise the synthetic hormone, increased creatine kinase activity at day 2 after differentiation induction (60%, p<0.05). Solbone A and synthetic 1α,25(OH)2D3 increased vitamin D3 receptor protein expression at 10nM (50% and 30%, respectively) and the transcription factor myogenin (80%, p<0.05). However, tropomyosin expression was not affected by both compounds. In addition, myosin heavy chain (MHC) protein expression was increased 30% at day 2 of differentiation. Solbone A or synthetic 1α,25(OH)2D3 had no effects on myogenin nor MHC cell localization. Cellular mass increased with myogenesis progression, being Solbone A more effective than synthetic 1α,25(OH)2D3. Finally, Solbone A, as well as synthetic 1α,25(OH)2D3, augmented the index fusion of cultured muscle fibers. In conclusion, these results demonstrated that Solbone A exhibit at least equal or greater effects on early myoblast differentiation as synthetic hormone, suggesting that plant glycosides could be an effective, accessible and cheaper substitute for synthetic 1α,25(OH)2D3 to promote muscle growth. PMID:26968127

  16. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  17. Resonance conditions

    NASA Astrophysics Data System (ADS)

    Rebusco, P.

    2005-11-01

    Non-linear parametric resonances occur frequently in nature. Here we summarize how they can be studied by means of perturbative methods. We show in particular how resonances can affect the motion of a test particle orbiting in the vicinity of a compact object. These mathematical toy-models find application in explaining the structure of the observed kHz Quasi-Periodic Oscillations: we show which aspects of the reality naturally enter in the theory, and which one still remain a puzzle.

  18. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    SciTech Connect

    Zhang, Wei Jungfleisch, Matthias B.; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    2015-05-07

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. We measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. Using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. The relative strength of the effect is in agreement with spectroscopic measurements and first principles calculations. We also vary the interlayer materials to study the voltage output in relation to the change of the effective spin mixing conductance. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.

  19. ZnO/Ag composite nanorod arrays for surface-plasmon-enhanced emission study

    SciTech Connect

    Pal, Anil Kumar E-mail: d.bharathimohan@gmail.com; Mohan, D. Bharathi E-mail: d.bharathimohan@gmail.com

    2014-04-24

    The surface plasmon resonance enhanced emission through coupling of surface plasmons and exciton band energies is studied in hybrid ZnO/Ag nanostructure. The catalytic growth of ZnO nanorods is controlled in seed mediated growth by altering size distribution of Ag nanoislands. X-ray diffraction shows a predominant (002) crystal plane confirming the preferential growth of ZnO nanorods on as-deposited Ag. Increase of surface roughness in Ag film by post deposition annealing process enhances the light emission due to momentum matching between surface plasmons and excitons as well as a red shift of 32 meV occurs due to multi phonon and phonon-exciton interaction.

  20. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach.

    PubMed

    Tamuly, Chandan; Hazarika, Moushumi; Borah, Sarat Ch; Das, Manash R; Boruah, Manas P

    2013-02-01

    The synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Piper pedicellatum C.DC leaf extract is demonstrated here. The rapid formation of stable Ag and Au nanoparticles has been found using P. pedicellatum C.DC leaf extract in aqueous medium at normal atmospheric condition. Competitive reduction of Ag(+) and Au(3+) ions present simultaneously in solution during exposure to P. pedicellatum C.DC leaf extract leads to the synthesis of bimetallic Ag-Au nanoparticles in solution. Transmission electron microscopy (TEM) analysis revealed that the Ag nanoparticles predominantly form spherical in shape with the size range of 2.0±0.5-30.0±1.2 nm. In case of Au nanoparticles, the particles are spherical in shape along with few triangular, hexagonal and pentagonal shaped nanoparticles also observed. X-ray diffraction (XRD) studies revealed that the nanoparticles were face centered cubic (fcc) in shape. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. The chemical constituents, viz. catechin, gallic acid, courmaric acid and protocatechuic acid of the leaf extract were identified which may act as a reducing, stabilizing and capping agent. The expected reaction mechanism in the formation of Ag and Au nanoparticles is also reported. PMID:23107941

  1. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach.

    PubMed

    Tamuly, Chandan; Hazarika, Moushumi; Borah, Sarat Ch; Das, Manash R; Boruah, Manas P

    2013-02-01

    The synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Piper pedicellatum C.DC leaf extract is demonstrated here. The rapid formation of stable Ag and Au nanoparticles has been found using P. pedicellatum C.DC leaf extract in aqueous medium at normal atmospheric condition. Competitive reduction of Ag(+) and Au(3+) ions present simultaneously in solution during exposure to P. pedicellatum C.DC leaf extract leads to the synthesis of bimetallic Ag-Au nanoparticles in solution. Transmission electron microscopy (TEM) analysis revealed that the Ag nanoparticles predominantly form spherical in shape with the size range of 2.0±0.5-30.0±1.2 nm. In case of Au nanoparticles, the particles are spherical in shape along with few triangular, hexagonal and pentagonal shaped nanoparticles also observed. X-ray diffraction (XRD) studies revealed that the nanoparticles were face centered cubic (fcc) in shape. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. The chemical constituents, viz. catechin, gallic acid, courmaric acid and protocatechuic acid of the leaf extract were identified which may act as a reducing, stabilizing and capping agent. The expected reaction mechanism in the formation of Ag and Au nanoparticles is also reported.

  2. Complexation of silver and dissolved organic matter in soil water extracts.

    PubMed

    Settimio, Lara; McLaughlin, Mike J; Kirby, Jason K; Langdon, Kate A; Janik, Les; Smith, Scott

    2015-04-01

    An important aspect of the behaviour and fate of silver (Ag) in soils is the interaction with dissolved organic matter (DOM). The complexation and strength of binding of Ag(+) with DOM in soil water extracts was examined and modelled based on a range of chemical and quality DOM measurements. Silver ion binding measured by addition of the (110m)Ag radioisotope in addition to a cation exchange resin technique were used to determine strongly complexed Ag in solutions. Silver was found to be up to 70% strongly complexed. The variability in Ag(+) binding by DOM across different soils was closely related (R(2) = 0.8) to the mid-infrared spectra of these extracts. The affinity of Ag(+) for DOM was stronger in solutions containing a greater content of humic and aromatic structures. The ability of Ag(+) to complex with DOM could result in increased mobilisation of this metal in the soil environment. PMID:25660071

  3. Pulicaria glutinosa Extract: A Toolbox to Synthesize Highly Reduced Graphene Oxide-Silver Nanocomposites

    PubMed Central

    Al-Marri, Abdulhadi H.; Khan, Mujeeb; Khan, Merajuddin; Adil, Syed F.; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z.; Tremel, Wolfgang; Labis, Joselito P.; Siddiqui, Mohammed Rafiq H.; Tahir, Muhammad N.

    2015-01-01

    A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet–visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS) activity, and significantly increased the intensities of the Raman signal of graphene. PMID:25569090

  4. Complexation of silver and dissolved organic matter in soil water extracts.

    PubMed

    Settimio, Lara; McLaughlin, Mike J; Kirby, Jason K; Langdon, Kate A; Janik, Les; Smith, Scott

    2015-04-01

    An important aspect of the behaviour and fate of silver (Ag) in soils is the interaction with dissolved organic matter (DOM). The complexation and strength of binding of Ag(+) with DOM in soil water extracts was examined and modelled based on a range of chemical and quality DOM measurements. Silver ion binding measured by addition of the (110m)Ag radioisotope in addition to a cation exchange resin technique were used to determine strongly complexed Ag in solutions. Silver was found to be up to 70% strongly complexed. The variability in Ag(+) binding by DOM across different soils was closely related (R(2) = 0.8) to the mid-infrared spectra of these extracts. The affinity of Ag(+) for DOM was stronger in solutions containing a greater content of humic and aromatic structures. The ability of Ag(+) to complex with DOM could result in increased mobilisation of this metal in the soil environment.

  5. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens

    NASA Astrophysics Data System (ADS)

    Das, J.; Paul Das, M.; Velusamy, P.

    2013-03-01

    Simple, effective and rapid approach for the green synthesis of silver nanoparticles (AgNPs) using leaf extract of Sesbania grandiflora and their in vitro antibacterial activity against selected human pathogens has been demonstrated in the study. Various instrumental techniques were adopted to characterize the synthesized AgNPs viz. UV-Vis, FTIR, XRD, TEM, EDX and AFM. Surface Plasmon spectra for AgNPs are centered at 422 nm with dark brown color. The synthesized AgNPs were found to be spherical in shape with size in the range of 10-25 nm. The presence of water soluble proteins in the leaf extract was identified by FTIR which were found to be responsible for the reduction of silver ions (Ag+) to AgNPs. Moreover, the synthesized AgNPs showed potent antibacterial activity against multi-drug resistant (MDR) bacteria such as Salmonella enterica and Staphylococcus aureus.

  6. Pulicaria glutinosa extract: a toolbox to synthesize highly reduced graphene oxide-silver nanocomposites.

    PubMed

    Al-Marri, Abdulhadi H; Khan, Mujeeb; Khan, Merajuddin; Adil, Syed F; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Tremel, Wolfgang; Labis, Joselito P; Siddiqui, Mohammed Rafiq H; Tahir, Muhammad N

    2015-01-05

    A green, one-step approach for the preparation of graphene/Ag nanocomposites (PE-HRG-Ag) via simultaneous reduction of both graphene oxide (GRO) and silver ions using Pulicaria glutinosa plant extract (PE) as reducing agent is reported. The plant extract functionalizes the surfaces of highly reduced graphene oxide (HRG) which helps in conjugating the Ag NPs to HRG. Increasing amounts of Ag precursor enhanced the density of Ag nanoparticles (NPs) on HRG. The preparation of PE-HRG-Ag nanocomposite is monitored by using ultraviolet-visible (UV-Vis) spectroscopy, powder X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The as-prepared PE-HRG-Ag nanocomposities display excellent surface-enhanced Raman scattering (SERS) activity, and significantly increased the intensities of the Raman signal of graphene.

  7. Chemical mechanism of surface-enhanced Raman scattering via charge transfer in fluorenone–Ag complex

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Yafei; Wu, Shiwei; Song, Peng; Xia, Lixin

    2016-06-01

    The intermolecular interaction between fluorenone (FN) and silver surfaces was investigated experimentally and theoretically. The structural, electronic and optical properties of the FN–Ag complex indicate that the carbonyl group O atom in FN molecules is the adsorbed position site to attach the silver substrate through the weak bond O…Ag. The analysis of vibrational modes and Raman activity of the largely enhanced Raman peaks using two FN–Ag4-x (x  =  l, s) complex models reveals that only the a1 vibrational modes with C 2v symmetry are selectively enhanced, from the point view of the change of dipole moment and polarizability induced by the interaction between FN and Ag4 substrate. Furthermore, the direct visualized evidence of the surface-enhanced Raman scattering (SERS) chemical enhancement mechanism for the FN–Ag complex is presented. The results reveal that only the intermolecular charge transfer with π–π transition characterization between FN and an Ag4 cluster facilitates the resonance Raman process and is directly responsible for chemical enhancement of Raman scattering of the FN–Ag complex.

  8. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination.

    PubMed

    Chen, Ying-Jui; Chiang, Yun-Wei; Huang, Michael H

    2016-08-01

    Sub- to micrometer-sized Ag2O cubes, great rhombicuboctahedra, cuboctahedra, corner-truncated octahedra, octahedra, and rhombic dodecahedra have been synthesized at room temperature using simple molar ratios of NH4NO3, NaOH, and AgNO3 solutions with a short reaction time. In addition, tuning the concentration of NH3 in the solution can provide more particle morphologies including edge- and corner-truncated cubes, small rhombicuboctahedra, and edge-truncated octahedra to enrich Ag2O shape diversity. X-ray photoelectron spectroscopy (XPS) spectra indicate surface composition of various crystals as pure Ag2O. Diffuse reflectance spectra have been used to determine the band gap of Ag2O cubes. Ag2O cubes, octahedra, and rhombic dodecahedra having the same total particle surface area were used for facet-dependent photocatalytic activity comparison in the degradation of methyl orange. Cubes are comparably highly active for this reaction, while octahedra and rhombic dodecahedra give moderate and low catalytic activities, respectively. Electron paramagnetic resonance (EPR) measurements confirm this reactivity order. Although all Ag2O samples show significant etching during photocatalysis, metallic silver is not produced. PMID:27411371

  9. Fabrication LSPR sensor chip of Ag NPs and their biosensor application based on interparticle coupling

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Neishaboorynejad, T.; Arsalani, S.

    2015-07-01

    We introduce a simple method to synthesize localized surface plasmon resonance (LSPR) sensor chip of Ag NPs on the hydrogenated amorphous carbon by co-deposition of RF-Sputtering and RF-PECVD. The X-ray photoelectron spectroscopy revealed the content of Ag and C atoms. X-ray diffraction profile and atomic force microscopy indicate that the Ag NPs have fcc crystal structure and spherical shape and by increasing deposition time, particle sizes do not vary and only Ag NPs aggregation occurs, resulting in LSPR wavelength shift. Firstly, by increasing Ag NPs content, in-plan interparticles coupling is dominant and causes redshift in LSPR. At the early stage of agglomeration, out-plane coupling occurs and in-plane coupling is reduced, resulting a blueshift in the LSPR. By further increasing of Ag NPs content, agglomeration is completed on the substrate and in-plan coupling rises, resulting significant redshift in the LSPR. Results were used to implement biosensor application of chips. Detection of DNA primer at fM concentration was achieved based on breaking interparticles coupling of Ag NPs. A significant wavelength shift sensitivity of 30 nm and a short response time of 30 min were obtained, where both of these are prerequisite for biosensor applications.

  10. Hadron Resonances from QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  11. Autostereogram resonators

    NASA Astrophysics Data System (ADS)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  12. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  13. Solid and solution NMR studies of the complexation of Ag + with the trans isomer of captopril: Biological activities of this high blood pressure drug along with its Ag + complex

    NASA Astrophysics Data System (ADS)

    Isab, Anvarhusein A.; Wazeer, Mohamed I. M.

    2006-09-01

    Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.

  14. High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida.

    PubMed

    Tahtah, Yousof; Wubshet, Sileshi G; Kongstad, Kenneth T; Heskes, Allison Maree; Pateraki, Irini; Møller, Birger Lindberg; Jäger, Anna K; Staerk, Dan

    2016-04-01

    Type 2 diabetes (T2D) constituted 90% of the global 387 million diabetes cases in 2014. The enzyme protein-tyrosine phosphatase 1B (PTP1B) has been recognized as a therapeutic target for treatment of T2D and its adverse complications. With the aim of accelerating the investigation of complex natural sources, such as crude plant extracts, for potential PTP1B inhibitors, we have developed a bio-analytical platform combining high-resolution PTP1B inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HR-bioassay/HPLC-HRMS-SPE-NMR. Human recombinant PTP1B enzyme was used for the microplate-based PTP1B inhibition assay, which was optimized for pH and substrate concentration to be compatible with rate measurements within the 10 min incubation time. Subsequently, analytical-scale HPLC-based microfractionation followed by colorimetric microplate-based PTP1B bioassaying enabled construction of a high-resolution inhibition profile corresponding to the HPLC profile. The high-resolution PTP1B inhibition profiling was validated using an artificial mixture of known PTP1B inhibitors and non-inhibiting compounds as negative controls. Finally, a proof-of-concept study with a real sample was performed using crude ethyl acetate extract of the phytochemically hitherto unexplored plant Eremophila lucida. This led to the identification of the first viscidane type diterpene, i.e., 5-hydroxyviscida-3,14-dien-20-oic acid (9) as PTP1B inhibitor with an IC50 value of 42.0 ± 5.9 μM. In addition, a series of flavonoids, i.e., luteolin (1), dinatin (3a), tricin (3b), 3,6-dimethoxyapigenin (4), jaceidin (5), and cirsimaritin (6) as well as a cembrene diterpene, (3Z, 7E, 11Z)-15-hydroxycembra-3,7,11-trien-19-oic acid (8), were also identified for the first time from E. lucida.

  15. High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida.

    PubMed

    Tahtah, Yousof; Wubshet, Sileshi G; Kongstad, Kenneth T; Heskes, Allison Maree; Pateraki, Irini; Møller, Birger Lindberg; Jäger, Anna K; Staerk, Dan

    2016-04-01

    Type 2 diabetes (T2D) constituted 90% of the global 387 million diabetes cases in 2014. The enzyme protein-tyrosine phosphatase 1B (PTP1B) has been recognized as a therapeutic target for treatment of T2D and its adverse complications. With the aim of accelerating the investigation of complex natural sources, such as crude plant extracts, for potential PTP1B inhibitors, we have developed a bio-analytical platform combining high-resolution PTP1B inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HR-bioassay/HPLC-HRMS-SPE-NMR. Human recombinant PTP1B enzyme was used for the microplate-based PTP1B inhibition assay, which was optimized for pH and substrate concentration to be compatible with rate measurements within the 10 min incubation time. Subsequently, analytical-scale HPLC-based microfractionation followed by colorimetric microplate-based PTP1B bioassaying enabled construction of a high-resolution inhibition profile corresponding to the HPLC profile. The high-resolution PTP1B inhibition profiling was validated using an artificial mixture of known PTP1B inhibitors and non-inhibiting compounds as negative controls. Finally, a proof-of-concept study with a real sample was performed using crude ethyl acetate extract of the phytochemically hitherto unexplored plant Eremophila lucida. This led to the identification of the first viscidane type diterpene, i.e., 5-hydroxyviscida-3,14-dien-20-oic acid (9) as PTP1B inhibitor with an IC50 value of 42.0 ± 5.9 μM. In addition, a series of flavonoids, i.e., luteolin (1), dinatin (3a), tricin (3b), 3,6-dimethoxyapigenin (4), jaceidin (5), and cirsimaritin (6) as well as a cembrene diterpene, (3Z, 7E, 11Z)-15-hydroxycembra-3,7,11-trien-19-oic acid (8), were also identified for the first time from E. lucida. PMID:26882973

  16. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  17. Morphological Evolution of Single-Crystal Ag Nanospheres during the Galvanic Replacement Reaction with HAuCl(4).

    PubMed

    Kim, Mun Ho; Lu, Xianmao; Wiley, Benjamin; Lee, Eric P; Xia, Younan

    2008-01-01

    This paper presents a systematic study of the galvanic replacement reaction between 23.5 nm single-crystal Ag nanospheres and HAuCl(4) in an aqueous medium. We have monitored both morphological and spectral changes as the molar ratio of HAuCl(4) to Ag is increased. The replacement reaction on single-crystal Ag nanospheres results in the formation of a series of hollow and porous nanostructures composed of Au-Ag alloys. By varying the molar ratio of HAuCl(4) to Ag, we are able to control the size and density of the pores. In addition, the localized surface plasmon resonance peaks of these nanostructures can be readily tuned from 408 to 791 nm as the product becomes increasingly more hollow and porous.

  18. The Surprising in Vivo Instability of Near-IR-Absorbing Hollow Au–Ag Nanoshells

    PubMed Central

    2015-01-01

    Photothermal ablation based on resonant illumination of near-infrared-absorbing noble metal nanoparticles that have accumulated in tumors is a highly promising cancer therapy, currently in multiple clinical trials. A crucial aspect of this therapy is the nanoparticle size for optimal tumor uptake. A class of nanoparticles known as hollow Au (or Au–Ag) nanoshells (HGNS) is appealing because near-IR resonances are achievable in this system with diameters less than 100 nm. However, in this study, we report a surprising finding that in vivo HGNS are unstable, fragmenting with the Au and the remnants of the sacrificial Ag core accumulating differently in various organs. We synthesized 43, 62, and 82 nm diameter HGNS through a galvanic replacement reaction, with nanoparticles of all sizes showing virtually identical NIR resonances at ∼800 nm. A theoretical model indicated that alloying, residual Ag in the nanoparticle core, nanoparticle porosity, and surface defects all contribute to the presence of the plasmon resonance at the observed wavelength, with the major contributing factor being the residual Ag. While PEG functionalization resulted in stable nanoparticles under laser irradiation in solution, an anomalous, strongly element-specific biodistribution observed in tumor-bearing mice suggests that an avid fragmentation of all three sizes of nanoparticles occurred in vivo. Stability studies across a wide range of pH environments and in serum confirmed HGNS fragmentation. These results show that NIR resonant HGNS contain residual Ag, which does not stay contained within the HGNS in vivo. This demonstrates the importance of tracking both materials of a galvanic replacement nanoparticle in biodistribution studies and of performing thorough nanoparticle stability studies prior to any intended in vivo trial application. PMID:24547810

  19. Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Hairui; Hu, Yanchun; Zhang, Zhuxia; Liu, Xuguang; Jia, Husheng; Xu, Bingshe

    2015-11-01

    Ag nanoparticles (Ag-NPs) decorated ZnO microspheres (ZnO-MSs) heterostructural composites were fabricated via a two-step chemical method. The ZnO-MSs with the diameter about 700 nm was initially prepared by ultrasonic technology. Subsequently, Ag-NPs with a diameter of 20-50 nm were anchored onto the surface of the as-prepared ZnO-MSs by a microwave polyol process. The morphology, structural and optical properties of the as-synthesized materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-visible absorption spectroscopy, and photoluminescence spectroscopy. The results show that the surface plasmon absorption band of Ag/ZnO composites is distinctly broadened and the PL intensity of Ag/ZnO heterostructural composites varies with the increase of Ag loading. The photocatalytic activity of the Ag/ZnO composites were evaluated by the degradation of rhodamine B (RhB) solution under ultraviolet (UV) and visible light irradiation. The rate of degradation of the as-prepared Ag/ZnO composites was more than triple times faster than that of pure ZnO-MSs under UV light, which was ascribed to the formation of Schottky barriers in the regions between Ag-NPs and ZnO-MSs. Furthermore, Ag/ZnO composites exhibit superior photocatalytic activity over ZnO-MSs in the visible light region owing to the effective electron transfer from plasmon-excited Ag(0) nanoparticles to ZnO-MSs by strong localization of surface plasmon resonance (SPR). This can effectively decrease the recombination of electron-hole pairs, lead to a prolonged lifetime of the electron-holes pairs that promotes the degradation efficiency. The chemical stability and reusability of Ag/ZnO powders were also investigated.

  20. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 Dye-Sensitized Solar Cells.

    PubMed

    Liu, Yunyu; She, Guangwei; Qi, Xiaopeng; Mu, Lixuan; Wang, Xuesong; Shi, Wensheng

    2015-09-01

    Ag nanowires (AgNWs) were employed in mesoporous TiO2 dye-sensitized solar cells (DSSCs) to enhance the photoelectric conversion efficiency (PCE). The possible reasons for PCE improvement, i.e., improvement in electron transport and light harvesting due to light scattering and plasmonic resonance effect of AgNWs are investigated. Electrochemical impedance spectra (EIS) study proved that addition of AgNWs can enhance the conductivity of TiO2 thin film photoanode, which is an important reason for the increase of photocurrent. Furthermore, through the comparison experiments as well as the UV-Vis absorption and IPCE characterization, contributions of the light scattering and plasmonic resonance effect to the enhancement of light harvest, and thus PCE of the DSSCs were demonstrated. It was found that fast electron transport of AgNWs played more important role for the PCE improvement than the light harvest enhancement due to light scattering and plasmonic effect. Based on these investigations, the AgNWs modified TiO2 thin film DSSCs were optimized. After integrating AgNWs into the photoanode, the photocurrent increased significantly and PCE increased -50% comparing with the pure TiO2-based DSSCs.

  1. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 Dye-Sensitized Solar Cells.

    PubMed

    Liu, Yunyu; She, Guangwei; Qi, Xiaopeng; Mu, Lixuan; Wang, Xuesong; Shi, Wensheng

    2015-09-01

    Ag nanowires (AgNWs) were employed in mesoporous TiO2 dye-sensitized solar cells (DSSCs) to enhance the photoelectric conversion efficiency (PCE). The possible reasons for PCE improvement, i.e., improvement in electron transport and light harvesting due to light scattering and plasmonic resonance effect of AgNWs are investigated. Electrochemical impedance spectra (EIS) study proved that addition of AgNWs can enhance the conductivity of TiO2 thin film photoanode, which is an important reason for the increase of photocurrent. Furthermore, through the comparison experiments as well as the UV-Vis absorption and IPCE characterization, contributions of the light scattering and plasmonic resonance effect to the enhancement of light harvest, and thus PCE of the DSSCs were demonstrated. It was found that fast electron transport of AgNWs played more important role for the PCE improvement than the light harvest enhancement due to light scattering and plasmonic effect. Based on these investigations, the AgNWs modified TiO2 thin film DSSCs were optimized. After integrating AgNWs into the photoanode, the photocurrent increased significantly and PCE increased -50% comparing with the pure TiO2-based DSSCs. PMID:26716285

  2. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning.

  3. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117

  4. Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity.

    PubMed

    Zhang, Qian; Huang, Yu; Xu, Lifeng; Cao, Jun-ji; Ho, Wingkei; Lee, Shun Cheng

    2016-02-17

    Harnessing inexhaustible solar energy for photocatalytic disposal of nitrogen oxides is of great significance nowadays. In this study, Ag-SrTiO3 nanocomposites (Ag-STO) were synthesized via one-pot solvothermal method for the first time. The deposition of Ag nanoparticles incurs a broad plasmonic resonance absorption in the visible light range, resulting in enhanced visible light driven activity on NO removal in comparison with pristine SrTiO3. The Ag loading amount has a significant influence on light absorption properties of Ag-STO, which further affects the photocatalytic efficiency. It was shown that 0.5% Ag loading onto SrTiO3 (in mass ratio) could remove 30% of NO in a single reaction path under visible light irradiation, which is twice higher than that achieved on pristine SrTiO3. Most importantly, the generation of harmful intermediate (NO2) is largely inhibited over SrTiO3 and Ag-STO nanocomposites, which can be ascribed to the basic surface property of strontium sites. As identified by electron spin resonance (ESR) spectra,·O2(-) and ·OH radicals are the major reactive species for NO oxidation. Essentially speaking, the abundance of reactive oxygen radicals produced over Ag-STO nanocomposites are responsible for the improved photocatalytic activity. This work provides a facile and controllable route to fabricate plasmonic Ag-SrTiO3 nanocomposite photocatalyst featuring high visible light activity and selectivity for NO abatement.

  5. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  6. Anethum graveolens Linn. (dill) extract enhances the mounting frequency and level of testicular tyrosine protein phosphorylation in rats*

    PubMed Central

    Iamsaard, Sitthichai; Prabsattroo, Thawatchai; Sukhorum, Wannisa; Muchimapura, Supaporn; Srisaard, Panee; Uabundit, Nongnut; Thukhammee, Wipawee; Wattanathorn, Jintanaporn

    2013-01-01

    Objective: To investigate the effect of Anethum graveolens (AG) extracts on the mounting frequency, histology of testis and epididymis, and sperm physiology. Methods: Male rats induced by cold immobilization before treating with vehicle or AG extracts [50, 150, and 450 mg/kg body weight (BW)] via gastric tube for consecutive 1, 7, and 14 d were examined for mounting frequency, testicular phosphorylation level by immunoblotting, sperm concentration, sperm acrosome reaction, and histological structures of testis and epididymis, respectively. Results: AG (50 mg/kg BW) significantly increased the mounting frequency on Days 1 and 7 compared to the control group. Additionally, rat testis treated with 50 mg/kg BW AG showed high levels of phosphorylated proteins as compared with the control group. In histological analyses, AG extract did not affect the sperm concentration, acrosome reaction, and histological structures of testis and epididymis. Conclusions: AG extract enhances the aphrodisiac activity and is not harmful to sperm and male reproductive organs. PMID:23463768

  7. Synthesis of Ag nanoplates on GaAs wafers : evidence for growth mechanism.

    SciTech Connect

    Sun, Y.; Center for Nanoscale Materials

    2010-01-21

    Direct synthesis of Ag nanoplates on GaAs wafers has been developed in our group through a simple solution/solid interfacial reaction (SSIR) strategy, in which aqueous solutions of pure AgNO{sub 3} react with the GaAs wafers at room temperature [J. Phys. Chem. C 2009, 113, 6061; 2008, 112, 8928; Chem. Mater. 2007, 19, 5845]. However, a number of questions are still not clear yet regarding the roles of different possible pathways for reducing Ag{sup +} ions in the growth of Ag nanoplates. In this article, we try to answer these remaining questions by specifically designing experiments and extracting direct evidence from systematic characterizations of different samples. It is conclusive that growth of high-quality Ag nanoplates on GaAs wafers is ascribed to the good separation between nucleation and growth steps, which are driven by two different reduction pathways. At the nucleation step, fast reduction of Ag{sup +} ions with a high concentration of surface electrons is crucial for the formation of Ag nuclei with multiple (111) twin planes parallel to each other, and remaining the environment of a high concentration of surface electrons for a period long enough is also important to develop the Ag nuclei into stable seeds. At the growth step, a hole injection process is mainly responsible for reduction of Ag{sup +} ions to enlarge the stable seeds into Ag nanoplates with controlled sizes by tuning the growth time. The paralleled multiple (111) twin planes provide a crystalline confinement to guide the growth of the seeds into nanoplates.

  8. Diode-coupled Ag nanoantennas for nanorectenna energy conversion

    NASA Astrophysics Data System (ADS)

    Osgood, Richard, III; Giardini, Stephen; Carlson, Joel; Fernandes, Gustavo E.; Kim, Jin Ho; Xu, Jimmy; Chin, Matthew; Nichols, Barbara; Dubey, Madan; Parilla, Philip; Berry, Joseph; Ginley, David; Periasamy, Prakash; Guthrey, Harvey; O'Hayre, Ryan; Buchwald, Walter

    2011-10-01

    Arrays of "nanorectennas" consist of diode-coupled nanoantennas with plasmonic resonances in the visible/near-infrared (vis/nir) regime, and are expected to convert vis/nir radiative power into useful direct current. We study plasmonic resonances in large format (~ 1 mm2 area) arrays, consisting of electron beam-patterned horizontal (e.g., parallel to the substrate) Ag lines patterned on ultrathin (< 20 nm) tunneling barriers (NiO, NbOx, and other oxides). Our e-beam fabrication technique is scalable to large dimensions, and allows us to easily probe different antenna dimensions. These tunneling barriers, located on a metallic ground plane, rectify the alternating current generated in the nanoantenna at resonance. We measure the plasmonic resonances in these nanoantennas, and find good agreement with modeling, which also predicts that the electric field driving the electrons into the ground plane (and therefore the rectification efficiency) is considerably enhanced at resonance. Various metal-insulator-metal tunneling diodes, incorporating the afore-mentioned barrier layers and different metals for the ground plane, are experimentally characterized and compared to our conduction model. We observe ~ 1 mV signals from NiO-based nanorectenna arrays illuminated by 532 nm and 1064 nm laser pulses, and discuss the origin of these signals.

  9. Evaluation on the Toxic Effects of NanoAg to Catalase.

    PubMed

    Zhang, Bin; Zhai, Wenxin; Liu, Rutao; Yu, Zehua; Shen, Hengmei; Hu, Xinxin

    2015-02-01

    Protein is the functional actor of life. Research on protein damage induced by nanomaterials may give insight into the toxicity mechanisms of nanoparticles. Studying nano silver over the impact of the structure and function of catalase (CAT) at the molecular level, is of great significance for a comprehensive evaluation of their toxic effects. The toxic effects of nanoAg on catalase were thoroughly investigated using steady state and time resolved fluorescence quenching measurements, ultraviolet-visible absorption spectroscopy, resonance light scattering spectroscopy (RLS), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM). NanoAg could decrease the amount of alpha-helix and increase the beta sheet structure, leading to loose the skeleton structure of catalase. The characteristic fluorescence of catalase was obviously quenched, which showed the exposal of internal hydrophobic amino acids enhanced, and its quenching type is dynamic quenching. The result of RLS and TEM showed that the distribution and size of nanoAg become more uniform and smaller after their interaction, resulting in a decrease of RLS intensity. NanoAg could make the activity of catalase rise. By changing the structure of catalase, nanoAg increases its enzymatic activity to a certain extent, breaking down its balance in vivo, thereby affecting the normal physiological activities. NanoAg has obvious toxic effects on catalase. This paper provided a new perspective and method for the toxic effects of nanoAg to biological macromolecules; provided basic data and reference gist for the hygienics and toxicology studies of nanoAg. It is conducive to the toxicity prevention and control work of nanoAg, promoting nano-technology applied to human production and living better.

  10. Evaluation on the Toxic Effects of NanoAg to Catalase.

    PubMed

    Zhang, Bin; Zhai, Wenxin; Liu, Rutao; Yu, Zehua; Shen, Hengmei; Hu, Xinxin

    2015-02-01

    Protein is the functional actor of life. Research on protein damage induced by nanomaterials may give insight into the toxicity mechanisms of nanoparticles. Studying nano silver over the impact of the structure and function of catalase (CAT) at the molecular level, is of great significance for a comprehensive evaluation of their toxic effects. The toxic effects of nanoAg on catalase were thoroughly investigated using steady state and time resolved fluorescence quenching measurements, ultraviolet-visible absorption spectroscopy, resonance light scattering spectroscopy (RLS), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM). NanoAg could decrease the amount of alpha-helix and increase the beta sheet structure, leading to loose the skeleton structure of catalase. The characteristic fluorescence of catalase was obviously quenched, which showed the exposal of internal hydrophobic amino acids enhanced, and its quenching type is dynamic quenching. The result of RLS and TEM showed that the distribution and size of nanoAg become more uniform and smaller after their interaction, resulting in a decrease of RLS intensity. NanoAg could make the activity of catalase rise. By changing the structure of catalase, nanoAg increases its enzymatic activity to a certain extent, breaking down its balance in vivo, thereby affecting the normal physiological activities. NanoAg has obvious toxic effects on catalase. This paper provided a new perspective and method for the toxic effects of nanoAg to biological macromolecules; provided basic data and reference gist for the hygienics and toxicology studies of nanoAg. It is conducive to the toxicity prevention and control work of nanoAg, promoting nano-technology applied to human production and living better. PMID:26353675

  11. Photoelectron spectroscopy of AgCl, AgBr, and AgI vapors

    SciTech Connect

    Berkowitz, J.; Batson, C.H.; Goodman, G.L.

    1980-06-01

    He I photoelectron spectra of AgCl, AgBr and AgI vapors have been obtained which differ significantly from earlier work. In each instance, the characteristic features of the diatomic molecule are prominent. The spectral features separate into a valence region, predominantly halogen p-like, and a deeper region, predominantly of Ag 4d character. The latter is split by spin--orbit and ligand field interactions, which are parametrized from the experimental data. Relativistic calculations of the X/sub ..cap alpha../--DVM--SCC type have been performed for these species. At the transition state level, they agree very well with the experimental peak positions. Nonrelativistic calculations of this type have been performed for CuCl and cyclic Cu/sub 3/Cl/sub 3/. Unlike the AgX species, the CuCl and Cu/sub 3/Cl/sub 3/ exhibit strong mixing of metal d and halogen p orbitals for the uppermost occupied orbital, and other Cu 3d-like orbitals above the Cl 3p-like orbitals. It is suggested that the occurrence of Cu 3d orbitals in the valence region may play a role in the anomalous diagmagnetic signal and large conductivity changes of CuCl condensed from the vapor.

  12. The AGS Booster control system

    SciTech Connect

    Frankel, R.; Auerbach, E.; Culwick, B.; Clifford, T.; Mandell, S.; Mariotti, R.; Salwen, C.; Schumburg, N.

    1988-01-01

    Although moderate in size, the Booster construction project requires a comprehensive control system. There are three operational modes: as a high intensity proton injector for the AGS, as a heavy ion accelerator and injector supporting a wide range of ions and as a polarized proton storage injector. These requirements are met using a workstation based extension of the existing AGS control system. Since the Booster is joining a complex of existing accelerators, the new system will be capable of supporting multiuser operational scenarios. A short discussion of this system is discussed in this paper.

  13. AG Draconis - a symbiotic mystery

    NASA Astrophysics Data System (ADS)

    Galis, R.; Hric, L.; Smelcer, L.

    2015-02-01

    Symbiotic system AG Draconis regularly undergoes quiescent and active stages which consist of the series of individual outbursts. The period analysis of new and historical photometric data, as well as radial velocities, confirmed the presence of the two periods. The longer one (~550 d) is related to the orbital motion and the shorter one (~355 d) could be due to pulsation of the cool component of AG Dra. In addition, the active stages change distinctively, but the outbursts are repeated with periods from 359 - 375 d.

  14. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis.

    PubMed

    Yin, Haibo; Chen, Xiaofang; Hou, Rujing; Zhu, Huijuan; Li, Shiqing; Huo, Yuning; Li, Hexing

    2015-09-16

    Ag/BiOBr film coated on the glass substrate was synthesized by a solvothermal method and a subsequent photoreduction process. Such a Ag/BiOBr film was then adhered to a hollow rotating disk filled with long-afterglow phosphor inside the chamber. The Ag/BiOBr film exhibited high photocatalytic activity for organic pollutant degradation owing to the improved visible-light harvesting and the separation of photoinduced charges. The long-afterglow phosphor could absorb the excessive daylight and emit light around 488 nm, activating the Ag/BiOBr film to realize round-the-clock photocatalysis. Because the Ag nanoparticles could extend the light absorbance of the Ag/BiOBr film to wavelengths of around 500 nm via a surface plasma resonance effect, they played a key role in realizing photocatalysis induced by long-afterglow phosphor.

  15. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    PubMed

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-01

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

  16. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis.

    PubMed

    Yin, Haibo; Chen, Xiaofang; Hou, Rujing; Zhu, Huijuan; Li, Shiqing; Huo, Yuning; Li, Hexing

    2015-09-16

    Ag/BiOBr film coated on the glass substrate was synthesized by a solvothermal method and a subsequent photoreduction process. Such a Ag/BiOBr film was then adhered to a hollow rotating disk filled with long-afterglow phosphor inside the chamber. The Ag/BiOBr film exhibited high photocatalytic activity for organic pollutant degradation owing to the improved visible-light harvesting and the separation of photoinduced charges. The long-afterglow phosphor could absorb the excessive daylight and emit light around 488 nm, activating the Ag/BiOBr film to realize round-the-clock photocatalysis. Because the Ag nanoparticles could extend the light absorbance of the Ag/BiOBr film to wavelengths of around 500 nm via a surface plasma resonance effect, they played a key role in realizing photocatalysis induced by long-afterglow phosphor. PMID:26317239

  17. Effect of Synthesis Techniques on Crystallization and Optical Properties of Ag-Cu Bimetallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Ziye; Qin, Fen; Huang, Po-Shun; Nettleship, Ian; Lee, Jung-Kun

    2016-04-01

    Silver (Ag)-copper (Cu) bimetallic nanoparticles (NPs) were synthesized by the reduction of silver nitrate and copper (II) acetate monohydrate using ethylene glycol in a microwave (MW) heating system with controlled reaction times ranging from 5 min to 30 min. The molar ratio Ag/Cu was varied from 1:1 to 1:3. The effect of reaction conditions on the bimetallic NPs structures and compositions were characterized by x-ray photoelectron spectroscopy, x-ray diffraction and transmission electron microscopy. The average particle size was approximately 150 nm. The surface plasmon resonance (SPR) of Ag-Cu bimetallic NPs was investigated by monitoring the SPR band peak behavior via UV/Vis spectrophotometry. The resonance peak positions and peak widths varied due to the different structures of the bimetallic NPs created under the synthesis conditions. In the MW heating method, the reduction of Cu was increased and Cu was inhomogeneously deposited over the Ag cores. As the composition of Cu becoming higher in the Ag-Cu bimetallic NPs, the absorption between 400 nm to 600 nm was greatly enhanced.

  18. Diffusion of two-dimensional Cu islets on Ag(111) studied with the Molecular Dynamics Method

    NASA Astrophysics Data System (ADS)

    Hayat, Sadar S.; Alcantara Ortigoza, Marisol; Rahman, Talat S.

    2009-03-01

    Our molecular dynamics simulations (at 300, 500 and 700 K) of the diffusion of two-dimensional Cun islets (1<=n<=9) on Ag(111) using many-body potentials yield an Arrhenius behavior. Concerted motion is seen to dominate the diffusion of smaller islets (2-4 atoms) whereas multiple-atom, shape-adjusting processes control the diffusion of the larger ones. Although the effective energy barrier scales with islet size, the barriers do not change considerably for islands containing 4 to 9 atoms (they are ˜ 220 ± 37 meV). While the diffusion barrier for Cu monomers on Ag(111) is higher than that on Cu(111) (both in experiment and theory), the situation reverses starting from the dimer. Our results for monomer and dimer are in excellent agreement with those extracted from experiments.^1 On comparing our results with those for Cu islets on Cu(111), we find that the comparatively large Ag-Ag bond-length sets the contrast between Cu monomer diffusion on Cu(111) and on Ag(111). The diffusivity of Cu dimer, however, is boosted on Ag(111) by the competition between optimizing the Cu-Cu and the Cu-Ag bonds. For larger islets (3-9 atoms) our results reveal several novel diffusion processes, including those in which an islet-atom climbs atop. ^1 Morgenstern et al. PRL93, 056102 (2005). Work supported by NSF-ITR 0428826.

  19. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S.

    2011-04-01

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses.

  20. Photoreduction of Ag+ in Ag/Ag2S/Au memristor

    NASA Astrophysics Data System (ADS)

    Mou, N. I.; Tabib-Azar, M.

    2015-06-01

    Silver halides and chalcogenides are excellent memristor materials that have been extensively used in the past as photosensitive layers in photography. Here we examine the effect of illumination on the operating voltages and switching speed of Ag/Ag2S/Au memristors using a green laser (473-523 nm). Our results indicate that illumination decreases the average switching time from high to low resistance states by ∼19% and decreases the turn-off voltages dramatically from -0.8 V to -0.25 V that we attribute to the change in sulfur valency and a photo-induced change in its oxidation/reduction potential. Photo-induced reduction of silver in Ag2S may be used in three dimensional optical memories that can be electronically read and reset.

  1. Ag-Ag dispersive interaction and physical properties of Ag3Co(CN)6

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Dove, Martin T.; Refson, Keith

    2014-08-01

    We report a density functional theory (DFT) study of Ag3Co(CN)6, a material noted for its colossal positive and negative thermal expansion, and its giant negative linear compressibility. Here, we explicitly include the dispersive interaction within the DFT calculation, and find that it is essential to reproduce the ground state, the high-pressure phase, and the phonons of this material, and hence essential to understand this material's remarkable physical properties. New exotic properties are predicted. These include heat enhancement of the negative linear compressibility, a large reduction in the coefficient of thermal expansion on compression with change of sign of the mode Grüneisen parameters under pressure, and large softening of the material on heating. Our results suggest that these are associated with the weak Ag-Ag dispersive interactions acting with an efficient hinging mechanism in the framework structure.

  2. Negative effective gravity in water waves by periodic resonator arrays.

    PubMed

    Hu, Xinhua; Chan, C T; Ho, Kai-Ming; Zi, Jian

    2011-04-29

    Based on analytic derivations and numerical simulations, we show that near a low resonant frequency water waves cannot propagate through a periodic array of resonators (bottom-mounted split tubes) as if water has a negative effective gravitational acceleration g(e) and positive effective depth h(e). This gives rise to a low-frequency resonant band gap in which water waves can be strongly reflected by the resonator array. For a damping resonator array, the resonant gap can also dramatically modify the absorption efficiency of water waves. The results provide a mechanism to block water waves and should find applications in ocean wave energy extraction.

  3. Disentangling the Dynamical Origin of P11 Nucleon Resonances

    SciTech Connect

    Nobuhiko Suzuki, Bruno Julia Diaz, Hiroyuki Kamano, Tsung-Shung Lee, Akihiko Matsuyama, Toru Sato

    2010-01-01

    The dynamical origins of the two poles associated with the Roper resonance are examined. Both of them together with the next higher resonance in the P11 partial wave are found to have the same originating bare state, indicating that the coupling to the meson-baryon continuum induces multiple observed resonances from the same bare state. Concerning other partial waves, the resonance poles extracted within the same multi-channels multi-resonances model of pi N reactions are compared to those listed by the Particle Data Group (PDG). Within our reaction model, all the identified resonances consist of a core state and meson-baryon components.

  4. Plasmonic color analysis of Ag-coated black-Si SERS substrate.

    PubMed

    Asiala, Steven M; Marr, James M; Gervinskas, Gediminas; Juodkazis, Saulius; Schultz, Zachary D

    2015-11-11

    Red-Green-Blue (RGB) dark-field imaging can direct the choice of laser excitation for Raman enhancements on nanostructured plasmonic surfaces. Here we demonstrate that black silicon (b-Si) is a structured surface that has been shown to effectively absorb broad wavelengths of light, but also enables surface enhanced Raman scattering (SERS) when coated with silver (Ag). Coating b-Si with increasing amounts of Ag results in increased dark-field scattering at discrete frequencies associated with localized plasmon resonances. The dark-field scattering was monitored by collecting a far-field image with an inexpensive complementary metal oxide semiconductor (CMOS) camera, similar to what is available on most mobile phones. Color analysis of the RGB pixel intensities correlates with the observed SERS intensity obtained with either green (532 nm) or red (633 nm) laser excitation in SERS experiments. Of particular note, the SERS response at 633 nm showed low spectral variation and a lack of background scattering compared to SERS at 532 nm. The difference in background suggests sub-radiant (dark or Fano resonances) may be associated with the SERS response at 633 nm and a non-resonant character of SERS. These results indicate that b-Si serves a template where Ag nucleates during physical vapor deposition. Increased deposition causes the deposits to coalesce, and at larger Ag thicknesses, bulk scattering is observed. Comparison with a high enhancement Ag SERS substrate further illustrates that a high density of plasmonic junctions, or hotspots, is important for maximizing the SERS response. The randomness of the b-Si substrate and the corresponding Ag nano-features contributes to a broadband spectral response and enhancement in SERS. Metal-coated b-Si is a promising SERS substrate due to its performance and facile fabrication.

  5. Laser-based synthesis of core Ag-shell AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Hua; Fan, Wai Yip

    2005-05-01

    A laser-controlled synthesis of silver iodide (AgI) nanoparticles with isolable AgI shell-Ag core stable intermediates is achieved via molecular iodine photodissociation in the presence of pure Ag nanoparticles dispersed in water. Ag nanoparticles were introduced into the solution containing sodium dodecylsulphate surfactants and iodine by ablating a piece of silver foil with a 532 nm pulsed Nd-YAG laser. Transmission electron microscopy images showed that different AgI shell-Ag core sizes could be achieved by controlling the photolysis of I 2 in solution. These nanoparticles were also found to catalyse an atom-economy Grignard-Barbier organic reaction.

  6. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  7. Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process.

    PubMed

    Manjula, Bandla; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Reddy, G Venkata Subba; Raju, Konduru Mohana

    2014-04-01

    In this investigation, an ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using biodegradable gelatin as a stabilizing agent is reported. Here, we prepared thermosensitive silver nanocomposite hydrogels composed of gelatin and N-isopropylacrylamide. In this green process AgNPs were formed from Ag(+) ions and reduced with leaf [Azadirachta indica (neem leaf)] extracts, resulting in a hydrogel network. The Ag(0) nanoparticles affect the hydrogel strength and improved the biological activity (inactivation effect of bacteria) of the biodegradable hydrogels. The resulted hydrogel structure, morphology, thermal, swelling behavior, degradation, and antibacterial properties were systematically investigated. The biodegradable thermosensitive silver nanocomposite hydrogels developed were tested for antibacterial activities. The results indicate that these biodegradable silver nanocomposite hydrogels are suitable potential candidates for antibacterial applications.

  8. AGS experiments: 1990, 1991, 1992. Ninth edition

    SciTech Connect

    Depken, J.C.

    1993-04-01

    This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ``as run``; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters.

  9. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells. PMID:25969998

  10. Construction of heterostructured g-C₃N₄/Ag/TiO₂ microspheres with enhanced photocatalysis performance under visible-light irradiation.

    PubMed

    Chen, Yanfeng; Huang, Weixin; He, Donglin; Situ, Yue; Huang, Hong

    2014-08-27

    The visible-light photocatalytic performance of the heterostructured g-C3N4/Ag/TiO2 microspheres was investigated. As an electron-conduction bridge, Ag nanoparticles were photodeposited as the interlayer between g-C3N4 and the surface of TiO2 microspheres to increase visible-light absorption via the surface plasmon resonance. The interface between Ag/TiO2 and g-C3N4 facilitates the direct migration of photoinduced electrons from g-C3N4 to Ag/TiO2, which is conductive to retarding the recombination of electron-holes. The g-C3N4 (4%)/Ag/TiO2 microsphere sample shows significant photocatalytic activity, higher than the sum of g-C3N4 (1.2 mg) and Ag/TiO2 samples, or the sum of TiO2 and Ag/g-C3N4 (1.8 mg) samples. It indicates that the heterostructured combination of g-C3N4, Ag and TiO2 microspheres provides synergistic photocatalytic activity through an efficient electron transfer process.

  11. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells.

  12. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min. PMID:26775100

  13. An efficient photocatalyst for degradation of various organic dyes: Ag@Ag2MoO4-AgBr composite.

    PubMed

    Bai, Yu-Yang; Lu, Yi; Liu, Jin-Ku

    2016-04-15

    The Ag2MoO4-AgBr composite was prepared by a facile in-situ anion-exchange method, then the Ag nanoparticles were coated on this composite through photodeposition route to form a novel Ag@Ag2MoO4-AgBr composite. The in-situ Br(-) replacement in a crystal lattice node position of Ag2MoO4 crystal allows for overcoming the resistance of electron transition effectively. Meanwhile silver nano-particles on the surface of Ag@Ag2MoO4-AgBr composite could act as electron traps to intensify the photogeneration electron-hole separation and the subsequent transfer of the trapped electron to the adsorbed O2 as an electron acceptor. As an efficient visible light catalyst, the Ag@Ag2MoO4-AgBr composite exhibited superior photocatalytic activity for the degradation of various organic dyes. The experimental results demonstrated superior photocatalytic rate of Ag@Ag2MoO4-AgBr composite compared to pure AgBr and Ag2MoO4 crystals (37.6% and 348.4% enhancement respectively). The Ag@Ag2MoO4-AgBr composite cloud degraded Rhodamin B, bromophenol blue, and amino black 10b completed in 7min.

  14. Tunable double resonance of silver nanodecahedron on the insulator/conductor film.

    PubMed

    Lu, Haifei; Kang, Zhiwen; Lei, Jiemei; Ho, Ho-Pui

    2016-05-16

    The generation of double resonance in a nanostructure, thus permitting the modulation of optical field at two frequencies simultaneously, offers new application opportunities for surface enhanced Raman scattering (SERS) and surface enhanced fluorescence (SEF). Here, we present a simple composite nanostructure of silver nanodecahedron (Ag ND)/silica spacer/gold film/glass substrate for achieving double resonance under the normal incidence of polarized light. The optical responses of the composite structure have been theoretically studied by varying the thickness of silica spacer layer from 5 nm to 35 nm for mediating the interaction between Ag ND and gold film. Results indicate that the extinction spectrum of the composite system is strongly dependent on the separation between Ag ND and gold film. The electric field and charge distribution during resonance have been investigated in order to obtain a detailed understanding on the coupling between these two objects. More importantly, due to the anisotropic geometry of Ag ND, double resonance with two plasmonic modes (dipole and gap modes) whose responses can be adjusted through varying the size of Ag ND and mediating its coupling with the gold film respectively, has been achieved in the composite structure under the excitation with polarization parallel to the Ag ND edge adjacent to the spacer surface. The knowledge gained through this work will benefit the development of applications based on local field enhancement. PMID:27409883

  15. Tunable double resonance of silver nanodecahedron on the insulator/conductor film.

    PubMed

    Lu, Haifei; Kang, Zhiwen; Lei, Jiemei; Ho, Ho-Pui

    2016-05-16

    The generation of double resonance in a nanostructure, thus permitting the modulation of optical field at two frequencies simultaneously, offers new application opportunities for surface enhanced Raman scattering (SERS) and surface enhanced fluorescence (SEF). Here, we present a simple composite nanostructure of silver nanodecahedron (Ag ND)/silica spacer/gold film/glass substrate for achieving double resonance under the normal incidence of polarized light. The optical responses of the composite structure have been theoretically studied by varying the thickness of silica spacer layer from 5 nm to 35 nm for mediating the interaction between Ag ND and gold film. Results indicate that the extinction spectrum of the composite system is strongly dependent on the separation between Ag ND and gold film. The electric field and charge distribution during resonance have been investigated in order to obtain a detailed understanding on the coupling between these two objects. More importantly, due to the anisotropic geometry of Ag ND, double resonance with two plasmonic modes (dipole and gap modes) whose responses can be adjusted through varying the size of Ag ND and mediating its coupling with the gold film respectively, has been achieved in the composite structure under the excitation with polarization parallel to the Ag ND edge adjacent to the spacer surface. The knowledge gained through this work will benefit the development of applications based on local field enhancement.

  16. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  17. AGS 20th anniversary celebration

    SciTech Connect

    Baggett, N.V.

    1980-05-22

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume.

  18. AGS experiments: 1985, 1986, 1987

    SciTech Connect

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987.

  19. What Is Ag-Ed?

    ERIC Educational Resources Information Center

    Linley, Judy; Mylne, Lee

    1998-01-01

    Ag-Ed, an agricultural education project for upper elementary students, was held in conjunction with the Toowoomba Show in Queensland, Australia. Agriculture industry representatives provided 20 interactive agricultural presentations for class groups, which were supplemented with a teacher resource-package containing a directory and 13 sections of…

  20. AGS experiments, 1988, 1989, 1990

    SciTech Connect

    Depken, J.C.

    1991-04-01

    This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters.

  1. Anti-angiogenic activity of gecko aqueous extracts and its macromolecular components in CAM and HUVE-12 cells.

    PubMed

    Tang, Zhen; Huang, Shu-Qiong; Liu, Jian-Ting; Jiang, Gui-Xiang; Wang, Chun-Mei

    2015-01-01

    Gecko is a kind of traditional Chinese medicine with remarkable antineoplastic activity. However, undefined mechanisms and ambiguity regarding active ingredients limit new drug development from gecko. This study was conducted to assess anti-angiogenic properties of the aqueous extracts of fresh gecko (AG) or macromolecular components separated from AG (M-AG). An enzyme-linked immunosorbent assay (ELISA) approach was applied to detect the vascular endothelial growth factor (VEGF) secretion of the tumor cells treated with AG or M-AG. The effect of AG or M-AG on vascular endothelial cell proliferation and migratory ability was analyzed by tetrazolium dye colorimetric method, transwell and wound-healing assays. Chick embryo chorioallantoic membrane (CAM) assays were used to ensure the anti-angiogenic activity of M-AG in vivo. The results showed that AG or M-AG inhibited the VEGF secretion of tumor cells, the relative inhibition rates of AG and M-AG being 27.2% and 53.2% respectively at a concentration of 20 μL/mL. AG and M-AG inhibited the vascular endothelial (VE) cell proliferation with IC50 values of 11.5 ± 0.5 μL/mL and 12.9 ± 0.4 μL/mL respectively. The VE cell migration potential was inhibited significantly (p<0.01) by the AG (≥ 24 μL/mL) or M-AG (≥ 12 μL/ mL) treatment. In vivo, neovascularization of CAM treated with M-AG was inhibited significantly (p<0.05) at a concentration of 0.4 μL/mL. This study provided evidence that anti-angiogenesis is one of the anti-tumor mechanisms of AG and M-AG, with the latter as a promising active component.

  2. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities

    PubMed Central

    Jasuja, Nakuleshwar Dut; Gupta, Deepak Kumar; Reza, Mohtashim; Joshi, Suresh C.

    2014-01-01

    In the present study, rapid reduction and stabilization of Ag+ ions with different NaOH molar concentration (0.5 mM, 1.0 mM and 1.5 mM) has been carried out in the aqueous solution of silver nitrate by the bio waste peel extract of P.granatum. Generally, chemical methods used for the synthesis of AgNPs are quite toxic, flammable and have adverse effect in medical application but green synthesis is a better option due to eco-friendliness, non-toxicity and safe for human. Stable AgNPs were synthesized by treating 90 mL aqueous solution of 2 mM AgNO3 with the 5 mL plant peels extract (0.4% w/v) at different NaOH concentration (5 mL). The synthesized AgNPs were characterized by UV-Vis spectroscopy, TEM and SEM. Further, antimicrobial activities of AgNPs were performed on Gram positive i.e. Staphylococcus aureus, Bacillus subtilius and Gram negative i.e. E. coli, Pseudomonas aeruginosa bacteria. The AgNPs synthesized at 1.5 mM NaOH concentration had shown maximum zone of inhibition (ZOI) i.e. 49 ± 0.64 in E. coli, whereas Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilius had shown 40 ± 0.29 mm, 28 ± 0.13 and 42 ± 0.49 mm ZOI respectively. The MIC value of 30 μg/mL observed for E. coli Whereas, Staphylococcus aureus, Bacillus subtilius and Pseudomonas aeruginosa had shown 45 μg/mL, 38 μg/mL, 35 μg/mL respectively. The study revealed that AgNPs had shown significant antimicrobial activity as compared to Streptomycin. PMID:25763037

  3. Green Synthesis of AgNPs Stabilized with biowaste and their antimicrobial activities.

    PubMed

    Jasuja, Nakuleshwar Dut; Gupta, Deepak Kumar; Reza, Mohtashim; Joshi, Suresh C

    2014-01-01

    In the present study, rapid reduction and stabilization of Ag+ ions with different NaOH molar concentration (0.5 mM, 1.0 mM and 1.5 mM) has been carried out in the aqueous solution of silver nitrate by the bio waste peel extract of P.granatum. Generally, chemical methods used for the synthesis of AgNPs are quite toxic, flammable and have adverse effect in medical application but green synthesis is a better option due to eco-friendliness, non-toxicity and safe for human. Stable AgNPs were synthesized by treating 90 mL aqueous solution of 2 mM AgNO₃ with the 5 mL plant peels extract (0.4% w/v) at different NaOH concentration (5 mL). The synthesized AgNPs were characterized by UV-Vis spectroscopy, TEM and SEM. Further, antimicrobial activities of AgNPs were performed on Gram positive i.e. Staphylococcus aureus, Bacillus subtilius and Gram negative i.e. E. coli, Pseudomonas aeruginosa bacteria. The AgNPs synthesized at 1.5 mM NaOH concentration had shown maximum zone of inhibition (ZOI) i.e. 49 ± 0.64 in E. coli, whereas Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilius had shown 40 ± 0.29 mm, 28 ± 0.13 and 42 ± 0.49 mm ZOI respectively. The MIC value of 30 μg/mL observed for E. coli Whereas, Staphylococcus aureus, Bacillus subtilius and Pseudomonas aeruginosa had shown 45 μg/mL, 38 μg/mL, 35 μg/mL respectively. The study revealed that AgNPs had shown significant antimicrobial activity as compared to Streptomycin.

  4. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Tripathi, S. K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta

    2015-09-01

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ~10-5 cm2/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications.

  5. Charge Separation and Catalytic Activity of Fe3 O4 @Ag "Nanospheres".

    PubMed

    Hemmateenejad, Bahram; Shamsipur, Mojtaba; Jalili-Jahani, Naser

    2016-01-01

    Nanospheres of Ag-coated Fe3 O4 were successfully synthesized and characterized. Photocatalytic properties of Fe3 O4 @Ag composites have been investigated using steady-state studies and laser pulse excitations. Accumulation of the electrons in the Ag shell was detected from the shift in the surface plasmon band from 430 to 405 nm, which was discharged when an electron acceptor such as O2 , Thionine (TH) or C60 was introduced into the system. Charge equilibration with redox couple such as C60 (●-) /C60 indicated the ability of these core-shell structures to carry out photocatalytic reduction reactions. As well, outer Ag layer could boost charge separation in magnetic core through dual effects of Schottky junction and localized surface plasmonic resonance (LSPR)-powered band gap breaking effect under sunlight irradiation; resulted in higher photocatalytic degradation of diphenylamine (DPA). The maximum photocatalytic degradation rate was achieved at optimum amount of Ag-NP loading to products. Adsorption studies confirmed that degradation of DPA dominantly occurred in solution. Moderately renewability of the nanocatalysts under sunlight was due to oxidation and dissolution of the outer Ag layer.

  6. Ag doped silicon nitride nanocomposites for embedded plasmonics

    NASA Astrophysics Data System (ADS)

    Bayle, M.; Bonafos, C.; Benzo, P.; Benassayag, G.; Pécassou, B.; Khomenkova, L.; Gourbilleau, F.; Carles, R.

    2015-09-01

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiNx) matrices. By coupling the high refractive index of SiNx to the relevant choice of dielectric thickness in a SiNx/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiNx matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  7. Photoluminescence enhancement of quantum dots on Ag nanoneedles

    PubMed Central

    2012-01-01

    Noble metal nanostructure allows us to tune optical and electrical properties, which has high utility for real-world application. We studied surface plasmon-induced emission of semiconductor quantum dots (QDs) on engineered metallic nanostructures. Highly passive organic ZnS-capped CdSe QDs were spin-coated on poly-(methyl methacrylate)-covered Ag films, which brought QDs near the metallic surface. We obtained the enhanced electromagnetic field and reduced fluorescence lifetimes from CdSe/ZnS QDs due to the strong coupling of emitter wave function with the Ag plasmon resonance. Observed changes include a six-fold increase in the fluorescence intensity and striking reduction in fluorescence lifetimes of CdSe/ZnS QDs on rough Ag nanoneedle compared to the case of smooth surfaces. The advantages of using those nanocomposites are expected for high-efficiency light-emitting diodes, platform fabrication of biological and environmental monitoring, and high-contrast imaging. PMID:22866992

  8. Ag doped silicon nitride nanocomposites for embedded plasmonics

    SciTech Connect

    Bayle, M.; Bonafos, C. Benzo, P.; Benassayag, G.; Pécassou, B.; Carles, R.; Khomenkova, L.; Gourbilleau, F.

    2015-09-07

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiN{sub x}) matrices. By coupling the high refractive index of SiN{sub x} to the relevant choice of dielectric thickness in a SiN{sub x}/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiN{sub x} matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  9. Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Ji Dang; Yun, Hyosuk; Kim, Gwui Cheol; Lee, Chul Won; Choi, Hyun Chul

    2013-10-01

    A facile approach to the synthesis of novel CNT-Ag and GO-Ag antibacterial materials, in which thiol groups are utilized as linkers to secure silver (Ag) nanoparticles to the CNT and GO surfaces without agglomeration, is reported. The resulting CNT-Ag and GO-Ag samples were characterized by performing TEM, XRD, Auger, XPS, and Raman measurements, which revealed that in these antibacterial materials size-similar and quasi-spherical Ag nanoparticles are anchored to the CNT and GO surfaces. The Ag nanoparticles in CNT-Ag and GO-Ag have narrow size distributions with average diameters of 2.6 and 3.5 nm respectively. The antibacterial activities of CNT-Ag and GO-Ag against Escherichia coli were assessed with the paper-disk diffusion method and by determining the minimal inhibitory concentrations (MICs). CNT-Ag was found to have higher antibacterial activity than the reference Ag colloid. Moreover, both CNT-Ag and GO-Ag retain more than 50% of their original antibacterial activities after 20 washes with detergent, which indicates their potential as antibacterial materials for laboratory and medical purposes.

  10. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  11. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract.

    PubMed

    Subba Rao, Y; Kotakadi, Venkata S; Prasad, T N V K V; Reddy, A V; Sai Gopal, D V R

    2013-02-15

    A simple method for the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of Lakshmi tulasi (Ocimum sanctum) leaf as a reducing and stabilizing agent. AgNPs were rapidly synthesized using aqueous extract of tulasi leaf with AgNO(3) solution within 15 min. The green synthesized AgNPs were characterized using physic-chemical techniques viz., UV-Vis, X-ray diffraction (XRD), scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy (EDX) and Fourier transform-infrared spectroscopy (FT-IR). Characterization data reveals that the particles were crystalline in nature and triangle shaped with an average size of 42 nm. The zeta potential of AgNPs were found to be -55.0 mV. This large negative zeta potential value indicates repulsion among AgNPs and their dispersion stability. PMID:23257344

  12. Direct measurement of the intrinsic linewidth of a resonant state

    NASA Astrophysics Data System (ADS)

    Kobos, Zachary; Reed, Mark

    2015-03-01

    We have applied inelastic electron tunneling spectroscopy (IETS) techniques to a resonantly-coupled system to determine quantitative differences in resonant versus non-resonant IETS. We use as a model system a set of GaAs-AlGaAs resonant tunneling diodes (RTDs)(footnote: with different barrier widths to tune resonant state linewidths and transmission coefficients. Modulation-broadening studies confirm theoretical predictions; however, the thermal dependence is markedly different than expected from classical IETS theory. An analysis of resonance shut-off reveals that the thermal dependence reflects the thermal broadening of the injector and resonant state density of states. Using this analysis, we show that one can extract both the transmission coefficient and the intrinsic linewidth of the resonant state. This is compared for RTDs of different tunneling barrier widths, and we observe the expected increase in resonance width for thinner barriers. This work was supported by the National Science Foundation.

  13. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO{sub 3} photocatalyst and its photocatalytic activity under simulated solar light

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-15

    Simulated solar light responsive Ag/AgCl/WO{sub 3} composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO{sub 3} nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: Black-Right-Pointing-Pointer Successful synthesis of Ag/AgCl/WO{sub 3} nanocomposite. Black-Right-Pointing-Pointer Photocatalytic experiment was performed under simulated solar light. Black-Right-Pointing-Pointer Nanocomposite photocatalyst was very active as compared to WO{sub 3} commercial powder. Black-Right-Pointing-Pointer SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  14. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals

    SciTech Connect

    Michaels, A.M.; Nirmal, M.; Brus, L.E.

    1999-11-03

    To explore the relationship between local electromagnetic field enhancement and the large SERS (surface enhanced Raman scattering) enhancement that enables the observation of single molecule Raman spectra, they measure both resonant Rayleigh scattering spectra and rhodamine 6G Raman spectra from single Ag particles. The apparatus combines the techniques of dark-field optical microscopy for resonant Rayleigh measurements, and grazing incidence Raman spectroscopy. The Rayleigh spectra show that the citrate-reduced Ag colloid is extremely heterogeneous. Only the larger particles, in part created by salt induced aggregation, show a large SERS effect. In agreement with the work of Nie and Emory, a few nanocrystals show huge single molecule R6G SERS intensities. While all SERS active particles have some resonant Rayleigh scattering at the 514.5 nm laser wavelength, there is no correlation between the resonant Rayleigh spectra and the SERS intensity. A model is discussed in which huge SERS intensities result from single chemisorbed molecules interacting with ballistic electrons in optically excited large Ag particles. This model is a natural consequence of the standard local electromagnetic field model for SERS and the high surface sensitivity of plasmon dephasing in the noble metals.

  15. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.

    PubMed

    Kim, Kwan; Choi, Jeong-Yong; Lee, Hyang Bong; Shin, Kuan Soo

    2011-09-28

    A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). Accordingly, although no Raman signal is observable when 4-aminobenzenethiol (4-ABT), for instance, is self-assembled on a flat Au substrate, a distinct spectrum is obtained when Ag or Au nanoparticles are adsorbed on the pendent amine groups of 4-ABT. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Ag or Au nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap even by visible light. To appreciate the Raman scattering enhancement and also to seek the optimal condition for SERS at the nanogap, we have thoroughly examined the size effect of Ag nanoparticles, along with the excitation wavelength dependence, by assembling 4-ABT between planar Au and a variable-size Ag nanoparticle (from 20- to 80-nm in diameter). Regarding the size dependence, a higher Raman signal was observed when larger Ag nanoparticles were attached onto 4-ABT, irrespective of the excitation wavelength. Regarding the excitation wavelength, the highest Raman signal was measured at 568 nm excitation, slightly larger than that at 632.8 nm excitation. The Raman signal measured at 514.5 and 488 nm excitation was an order of magnitude weaker than that at 568 nm excitation, in agreement with the finite-difference time domain simulation. It is noteworthy that placing an Au nanoparticle on 4-ABT, instead of an Ag nanoparticle, the enhancement at the 568 nm excitation was several tens of times weaker than that at the 632.8 nm excitation, suggesting the importance of the localized surface plasmon resonance of the Ag nanoparticles for an effective coupling with the surface plasmon polariton of the planar Au substrate to induce a very intense electric field at the nanogap.

  16. AgNP-DNA@GQDs hybrid: new approach for sensitive detection of H2O2 and glucose via simultaneous AgNP etching and DNA cleavage.

    PubMed

    Wang, Lili; Zheng, Jing; Li, Yinhui; Yang, Sheng; Liu, Changhui; Xiao, Yue; Li, Jishan; Cao, Zhong; Yang, Ronghua

    2014-12-16

    A growing body of evidence suggests that hydrogen peroxide (H2O2) plays an active role in the regulation of various physiological processes. Development of sensitive probes for H2O2 is an urgent work. In this study, we proposed a DNA-mediated silver nanoparticle and graphene quantum dot hybrid nanocomposite (AgNP-DNA@GQDs) for sensitive fluorescent detection of H2O2. The sensing mechanism is based on the etching effect of H2O2 to AgNPs and the cleavage of DNA by as-generated hydroxyl radicals (•OH). The formation of AgNP-DNA@GQDs nanocomposite can result in fluorescence quenching of GQDs by AgNPs through the resonance energy transfer. Upon H2O2 addition, the energy transfer between AgNPs and GQDs mediated by DNA was weakened and obvious fluorescence recovery of GQDs could be observed. It is worth noting that the reaction product •OH between H2O2 and AgNPs could cleave the DNA-bridge and result in the disassembly of AgNP-DNA@GQDs to achieve further signal enhancement. With optimal conditions, the approach achieves a low detection limit of 0.10 μM for H2O2. Moreover, this nanocomposite is further extended to the glucose sensing in human urine combining with glucose oxidase (GOx) for the oxidation of glucose and formation of H2O2. The glucose concentrations in human urine are detected with satisfactory recoveries of 94.6-98.8% which holds potential for ultrasensitive quantitative analysis of glucose and supplies valuable information for diabetes mellitus research and clinical diagnosis. PMID:25390796

  17. Photostimulated Luminescence and Dynamics of AgI and Ag Nanoclusters in Zeolites

    SciTech Connect

    Chen, Wei; Joly, Alan G.; Roark, Joel

    2002-06-15

    The photoluminescence and photostimulated luminescence of Ag and AgI nanoclusters formed in zeolite-Y are studied using fluorescence spectroscopy. The photoluminescence spectra of AgI nanoclusters show emission from both AgI and Ag nanoclusters, while the in the photostimulated luminescence, only the emission of Ag clusters is observed. While the photoluminescence from both Ag and AgI particles displays both sub-nanosecond and microsecond lifetimes, the emission from photostimulated luminescence shows very short, picosecond lifetimes. A model which ascribes the photostimulated luminescence to recombination of electrons trapped in the zeolite with Ag in close proximity to the trap site is proposed. The appearance of strong photostimulated luminescence with short decays in these systems demonstrates that nanoparticles have potential for digital storage and medical radiology applications.

  18. Chemically-inactive interfaces in thin film Ag/AgI systems for resistive switching memories

    PubMed Central

    Cho, Deok-Yong; Tappertzhofen, Stefan; Waser, Rainer; Valov, Ilia

    2013-01-01

    AgI nanoionics-based resistive switching memories were studied in respect to chemical stability of the Ag/AgI interface using x-ray absorption spectroscopy. The apparent dissolution of Ag films of thickness below some tens of nanometers and the loss of electrode/electrolyte contact was critically addressed. The results evidently show that there are no chemical interactions at the interface despite the high ionic mobility of Ag ions. Simulation results further show that Ag metal clusters can form in the AgI layer with intermediate-range order at least up to next-next nearest neighbors, suggesting that Ag can permeate into the AgI only in an aggregated form of metal crystallite. PMID:23378904

  19. Synthesis of (Au)Ag core-shell nanocomposite in the water- ethanol mixture and its optical properties

    NASA Astrophysics Data System (ADS)

    Abakshonok, A. V.; Panarin, A. Yu; Agabekov, V. E.; Eryomin, A. N.; Terekhov, S. N.

    2014-08-01

    The technique of synthesis of (Au)Ag core-shell bimetallic nanocomposite was developed. Gold seed nanoparticles (NPs) were obtained by HAuCl4 reduction with sodium citrate at ultrasonic treatment during 3 hours in a mixture of water - ethanol (1:1). Then, the surface of gold NPs was modified by silver. In the presence of polyvinylpyrrolidone (PVP) K30 (Mw ~ 24000) and K90 (Mw ~ 360000) the coreshell (Au)Ag NPs of spherical shape were formed. They are characterized by aggregate stability and well-defined absorption maximum at 400-514 nm. Composite (Au)Ag, prepared in the solution without a polymer or in the presence of carboxymethylcellulose (CMC), sodium polystyrene sulfonate (PSS), dextran T100 and T500, had a broad band plasmon resonance in the whole range of visible spectrum. The ability to use the (Au)Ag core-shell nanoparticles in absorption nanospectroscopy based on the phenomenon of plasmon resonance energy transfer (PRET) was evaluated. In the presence of 0,1-2,0 μM of water-soluble cationic Cu (II) -5,10,15,20-tetrakis (4-N-methyl pyridinium) porphyrin (CuTMPyP4) distinct dips due to plasmon quenching matched the absorption maximum of CuTMPyP4 were detected in the resonant scattering spectrum of (Au)Ag solution.

  20. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract

    PubMed Central

    Sulaiman, Ghassan Mohammad; Mohammed, Wasnaa Hatif; Marzoog, Thorria Radam; Al-Amiery, Ahmed Abdul Amir; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2013-01-01

    Objective To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana (E. chapmaniana) and test the antimicrobial of the nanoparticles against different pathogenic bacteria, yeast and its toxicity against human acute promyelocytic leukemia (HL-60) cell line. Methods Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO3 and exposed to sun light for 1 h. A change from yellowish to reddish brown color was observed. Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed. Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole was obtained on the human leukemia cell line (HL-60). Results UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm. X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50° and 44.76°. The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner. Conclusions It has been demonstrated that the extract of E. chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles. PMID:23570018

  1. Resonances in pi-K scattering

    SciTech Connect

    Wilson, David J.

    2014-06-23

    We have obtained clear signals of resonances in coupled-channel pi K - eta K scattering. Using distillation and a large basis of operators we are able to extract a precise spectrum of energy levels using the variational method. These energies are analysed using inelastic extensions of the Luescher method to obtain scattering amplitudes that clearly describe S, P and D wave resonances, corresponding to the physical K_0^*(1430), the K^*(892) and the K_2^*(1430).

  2. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract

    NASA Astrophysics Data System (ADS)

    Ramesh, P. S.; Kokila, T.; Geetha, D.

    2015-05-01

    A green straight forward method of synthesizing silver nanoparticles (AgNPs) in an aqueous medium was designed using Emblica officinalis (EO) fruit extract as stabilizer and reducer. The formation of AgNPs depends on the effect of extract concentration and pH were studied. The AgNPs was synthesized using E.officinalis (fruit extract) and nanoparticles were characterized using UV-Vis spectrophotometer, the presence of biomolecules of E.officinalis capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg's law and confirmed the crystalline nature of silver nanoparticles. From XRD the average size of AgNPs was found to be around 15 nm. AFM has proved to be very helpful in the determination and verification of various morphological features and parameters. EO fruit extract mediated AgNPs was synthesized and confirmed through kinetic behavior of nanoparticles. The shape of the bio-synthesized AgNPs was spherical. Potent biomolecules of E.officinalis such as polyphenols, glucose, and fructose was capped with AgNPs which reduces the toxicity. The synthesized AgNPs were tested for its antibacterial activity against the isolates by disc diffusion method. The obtained results confirmed that the E.officinalis fruit extract is a very good bioreductant for the synthesis of AgNPs. It was investigated that the synthesized AgNPs showed inhibition and had significant antibacterial against both gram-positive and gram-negative bacterial strains.

  3. Extraction of soil organic phosphorus.

    PubMed

    Turner, Benjamin L; Cade-Menun, Barbara J; Condron, Leo M; Newman, Susan

    2005-04-15

    Organic phosphorus is an important component of soil biogeochemical cycles, but must be extracted from soil prior to analysis. Here we critically review the extraction of soil organic phosphorus, including procedures for quantification, speciation, and assessment of biological availability. Quantitative extraction conventionally requires strong acids and bases, which inevitably alter chemical structure. However, a single-step procedure involving sodium hydroxide and EDTA (ethylenediaminetetraacetate) is suitable for most soils and facilitates subsequent speciation by nuclear magnetic resonance spectroscopy. Analysis of extracts by molybdate colorimetry is a potential source of error in all procedures, because organic phosphorus is overestimated in the presence of inorganic polyphosphates or complexes between inorganic phosphate and humic substances. Sequential extraction schemes fractionate organic phosphorus based on chemical solubility, but the link to potential bioavailability is misleading. Research should be directed urgently towards establishing extractable pools of soil organic phosphorus with ecological relevance.

  4. Synthesis/characterization of a new chelating resin and on-line solid phase extraction for the determination of Ag(I) and Pd(II) from water, cream, anode slime and converter samples by flow injection flame atomic absorption spectrometry.

    PubMed

    Çetin, Tülin; Tokalioğlu, Serife; Ülgen, Ahmet; Sahan, Serkan; Özentürk, Ismail; Soykan, Cengiz

    2013-02-15

    On-line preconcentration procedures for the determination of Ag(I) and Pd(II) by flame atomic absorption spectrometry have been described. A new chelating resin, poly (N,N'-dipropionitrilemethacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propane sulfonic acid) was synthesized and used as a new adsorbent material. The resin was characterized by Fourier transform infrared spectroscopy and elemental analysis. Ag(I) was adsorbed on the chelating resin at pH 5.0 and eluted with 1.0 mol L(-1) HNO3. Pd(II) was retained at pH 9.5 and eluted with 1.5 mol L(-1) HCl. The experimental parameters (pH, type and concentration of eluent, flow rates of sample and eluent solutions, elution time and the effect of interfering ions) for both Ag(I) and Pd(II) were investigated in detail. The detection limit for Ag(I) was 2.4 μg L(-1) and the relative standard deviation was 2.9% for 0.2 μg mL(-1) Ag(I). The detection limit for Pd(II) was 1.7 μg L(-1) and the relative standard deviation was 2.8% for 0.3 μg mL(-1) Pd(II). Accuracy was confirmed by analyzing a certified reference material (TMDA-70), recovery studies on real samples and comparison with electrothermal atomic absorption analysis. The proposed methods were successfully applied to the on-line determination of Ag(I) in bottled water, pharmaceutical cream and anode slime samples and Pd(II) in bottled water and catalytic converter samples.

  5. Evaluation of molecular-Beacon, TaqMan, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts.

    PubMed

    Yesilkaya, Hasan; Meacci, Francesca; Niemann, Stefan; Hillemann, Doris; Rüsch-Gerdes, Sabine; Barer, Michael R; Andrew, Peter W; Oggioni, Marco R

    2006-10-01

    The ability of fluorescence resonance energy transfer, molecular-beacon, and TaqMan probes to detect single nucleotide polymorphism (SNP) in the presence of a wild-type allele was evaluated using drug resistance-conferring SNPs in mixed Mycobacterium tuberculosis DNA. It was found that both the absolute quantity and the ratio of alleles determine the detection sensitivity of the probe systems.

  6. Study on the Lattice Dynamics of the Argyrodite Ag8GeTe6

    NASA Astrophysics Data System (ADS)

    Hitchcock, Dale; Thompson, Emily; He, Jian; Bredesen, Isaac; Keppends, Veelre; Mandrus, David

    2014-03-01

    Ag8GeTe6 was initially studied as a super ionic-electronic mixed conductor in the 1970s, and more recently has attracted new interest for its thermoelectric performance. A key to the desirable thermoelectric performance of Ag8GeTe6 is its exceptionally low lattice thermal conductivity (~ 0.25W/m*K at 300K), which is intimately related to its structure, consecutive structural instabilities, and unusual lattice dynamics (e.g., anharmonicity). In this work, we have studied Ag8GeTe6 by means of thermal conductivity, electrical conductivity, Seebeck coefficient, Hall coefficient, magnetic susceptibility, resonant ultrasound spectroscopy (RUS), photoacoustic spectroscopy, and synchrotron x-ray diffraction at low temperatures in order to further understand the coexistence of mixed conduction and high thermoelectric performance at elevated temperatures. This work is supported by NSF DMR 1307740.

  7. Interpreting plasmonic response of epitaxial Ag/Si(100) island ensembles

    SciTech Connect

    Kong, Dexin; Jiang, Liying; Drucker, Jeff

    2015-12-07

    Associating features in the experimentally measured optical response of epitaxial Ag islands grown on Si(100) with the localized surface plasmon resonances (LSPRs) hosted by the Ag islands is challenging due to the variation of the Si dielectric function over the energy range under consideration. However, it is possible to conclusively identify features in the experimental spectra with LSPR modes oscillating both parallel and perpendicular to the epitaxial interface by simulating the optical response. The Abeles matrix method is used to describe the composite layered system and the Ag islands are modeled using the thin island film model developed by Bedeaux and Vlieger. By incorporating island morphology parameters determined by quantitative analysis of electron micrographs, the simulation faithfully reproduces the main features of the experimental spectra. Individually zeroing the dipoles associated with the LSPR modes enables conclusive identification of their contribution to the optical response of the composite system.

  8. 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Huang, Chenyue; Xu, Chunxiang; Lu, Junfeng; Li, Zhaohui; Tian, Zhengshan

    2016-03-01

    To combine the surface plasma resonance of metal and local field enhancement in metal/semiconductor interface, Ag nanoparticles (NPs) were assembled on a ZnO nanorod array which was grown by hydrothermally on carbon fibers. The construction of dimensional (3D) Surface-Enhanced Raman Scattering (SERS) substrate is used for the sensitive detection of organic pollutants with the advantages such as facile synthesis, short detection time and low cost. The hybrid substrate was manifested a high sensitivity to phenol red at a lower concentration of 1 × 10-9 M and a higher enhancement factor of 3.18 × 109. Moreover, the ZnO nanostructures decorated with Ag NPs were demonstrated self-cleaning function under UV irradiation via photocatalytic degradation of the analytic molecules. The fabrication process of the materials and sensors, optimization of the SERS behaviors for different sized Ag NPs, the mechanism of SERS and recovery were presented with a detailed discussion.

  9. Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Sim, Lan Ching; Bahnemann, Detlef; Jang, Min; Ibrahim, Shaliza; Saravanan, Pichiah

    2015-10-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

  10. Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles.

    PubMed

    Emam, Hossam E; Mowafi, Salwa; Mashaly, Hamada M; Rehan, Mohamed

    2014-09-22

    In situ incorporation technique was used for coloration and acquiring excellent antibacterial properties for viscose fibers by silver nanoparticles (AgNPs). AgNPs were prepared in situ and incorporated in viscose matrix directly without using any other reducing and stabilizing agents. The main objective of this research was to successfully employ the reducing and stabilizing features of cellulose to produce nanosilver-viscose composites. Coloration of fibers after in situ AgNPs incorporation is related to surface plasmon resonance of silver. Colorimetric data were recorded as a function of washings to characterize the final colored fibers. Fastness properties and silver release were all measured to study the washable and wear off properties. Depending on the silver concentration, yellowish colored fibers with different shades were produced. Good fastness properties were obtained after 20 washings without using any crosslinker or binder. The colored fibers had excellent antibacterial activities against Escherichia coli, even after 20 washings. PMID:24906741

  11. Ag diffusion in cubic silicon carbide

    NASA Astrophysics Data System (ADS)

    Shrader, David; Khalil, Sarah M.; Gerczak, Tyler; Allen, Todd R.; Heim, Andrew J.; Szlufarska, Izabela; Morgan, Dane

    2011-01-01

    The diffusion of Ag impurities in bulk 3C-SiC is studied using ab initio methods based on density functional theory. This work is motivated by the desire to reduce transport of radioactive Ag isotopes through the SiC boundary layer in the Tristructural-Isotropic (TRISO) fuel pellet, which is a significant concern for the Very High Temperature Reactor (VHTR) nuclear reactor concept. The structure and stability of charged Ag and Ag-vacancy clusters in SiC are calculated. Relevant intrinsic SiC defect energies are also determined. The most stable state for the Ag impurity in SiC is found to be a Ag atom substituting on the Si sub-lattice and bound to a C vacancy. Bulk diffusion coefficients are estimated for different impurity states and values are all found to have very high activation energy. The impurity state with the lowest activation energy for diffusion is found to be the Ag interstitial, with an activation energy of approximately 7.9 eV. The high activation energies for Ag diffusion in bulk 3C-SiC cause Ag transport to be very slow in the bulk and suggests that observed Ag transport in this material is due to an alternative mechanism (e.g., grain boundary diffusion).

  12. Experiments with Helmholtz Resonators.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1996-01-01

    Presents experiments that use Helmholtz resonators and have been designed for a sophomore-level course in oscillations and waves. Discusses the theory of the Helmholtz resonator and resonance curves. (JRH)

  13. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma S P; Pereira, Guilherme M; Fragal, Elizângela H; Costa, Marco Antonio; Nakamura, Celso Vataru; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-10-01

    The in situ synthesis of silver nanoparticles (AgNPs) within covalently-modified poly(ethylene terephthalate) (PET) films possessing ultra-thin layer of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) is successfully demonstrated. The resulting polymeric films are shown to exhibit antimicrobial activities toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungus (Candida albicans). To make the films, first PET surfaces were subject to photo-oxidation and subsequent solid-state grafting to attach a PVA layer, followed by a PAA layer. To synthesize the AgNPs inside the films, the PVA and PAA-modified PET was soaked in AgNO3 solution and the polymeric film was modified with the Ag(+) ions via Ag(+)-carboxylate interaction, and then the Ag(+) ions-containing polymer film was subject to either photo-reduction or thermal reduction processes. The PVA and PAA thin layers attached by covalent bonds to the PET surface uniquely promoted not only the in situ synthesis but also the stabilization of AgNPs. The formation of the AgNPs was confirmed by UV-vis spectroscopy or by monitoring the surface plasmon resonance (SPR) peak associated with AgNPs. The resulting PVA and PAA ultrathin layers modified and AgNPs containing PET served as bactericide and fungicide, inhibiting the growth of bacteria and fungi on the surfaces. Given PET's versatility and common use in many commercial processes, the method can be used for producing plastic surfaces with versatile antimicrobial and antibacterial properties. PMID:27196366

  14. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract--A comprehensive study.

    PubMed

    Ali, Mohammad; Kim, Bosung; Belfield, Kevin D; Norman, David; Brennan, Mary; Ali, Gul Shad

    2016-01-01

    Unlike chemical synthesis, biological synthesis of nanoparticles is gaining tremendous interest, and plant extracts are preferred over other biological sources due to their ample availability and wide array of reducing metabolites. In this project, we investigated the reducing potential of aqueous extract of Artemisia absinthium L. for synthesizing silver nanoparticles (AgNPs). Optimal synthesis of AgNPs with desirable physical and biological properties was investigated using ultra violet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). To determine their appropriate concentrations for AgNP synthesis, two-fold dilutions of silver nitrate (20 to 0.62 mM) and aqueous plant extract (100 to 0.79 mg ml(-1)) were reacted. The results showed that silver nitrate (2mM) and plant extract (10 mg ml(-1)) mixed in different ratios significantly affected size, stability and yield of AgNPs. Extract to AgNO3 ratio of 6:4v/v resulted in the highest conversion efficiency of AgNO3 to AgNPs, with the particles in average size range of less than 100 nm. Furthermore, the direct imaging of synthesized AgNPs by TEM revealed polydispersed particles in the size range of 5 to 20 nm. Similarly, nanoparticles with the characteristic peak of silver were observed with EDX. This study presents a comprehensive investigation of the differential behavior of plant extract and AgNO3 to synthesize biologically stable AgNPs.

  15. Accurate Extraction of Nanometer Distances in Multimers by Pulse EPR

    PubMed Central

    Valera, Silvia; Ackermann, Katrin; Pliotas, Christos; Huang, Hexian; Naismith, James H.

    2016-01-01

    Abstract Pulse electron paramagnetic resonance (EPR) is gaining increasing importance in structural biology. The PELDOR (pulsed electron–electron double resonance) method allows extracting distance information on the nanometer scale. Here, we demonstrate the efficient extraction of distances from multimeric systems such as membrane‐embedded ion channels where data analysis is commonly hindered by multi‐spin effects. PMID:26865468

  16. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  17. The structure, morphology, and the metal-enhanced fluorescence of nano-Ag/ZnO core-shell structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ding, Yanli; Peng, Xiang; Zhou, Mingtao; Liang, Xiaoyan; Min, Jiahua; Wang, Linjun; Shi, Weimin

    2014-09-01

    Nano-polyc rystalline silver (Ag) particles with the diameter of 60 nm were synthesized by the reducing agent sodium citrate. An amorphous zinc oxide (ZnO) shell layer was then coated on the surface of silver particles using wet chemical method. The Ag/ZnO core-shell structure was characterized by scanning electron microscope, transmission electron microscopy, ultraviolet-visible spectroscopy and fluorescence (FL) measurement. The results showed that nano-Ag/ZnO core-shell particles with an average diameter of ~100 nm were prepared successfully, and the FL intensity of Rhodamine 6G (R6G) mixed with Ag/ZnO nanoparticle was 53 % greater than that of the same amount of R6G without any nanoparticles, which may be related to the effect of surface plasmon resonance.

  18. The structure, morphology, and the metal-enhanced fluorescence of nano-Ag/ZnO core-shell structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ding, Yanli; Peng, Xiang; Zhou, Mingtao; Liang, Xiaoyan; Min, Jiahua; Wang, Linjun; Shi, Weimin

    2015-06-01

    Nano-polyc rystalline silver (Ag) particles with the diameter of 60 nm were synthesized by the reducing agent sodium citrate. An amorphous zinc oxide (ZnO) shell layer was then coated on the surface of silver particles using wet chemical method. The Ag/ZnO core-shell structure was characterized by scanning electron microscope, transmission electron microscopy, ultraviolet-visible spectroscopy and fluorescence (FL) measurement. The results showed that nano-Ag/ZnO core-shell particles with an average diameter of ~100 nm were prepared successfully, and the FL intensity of Rhodamine 6G (R6G) mixed with Ag/ZnO nanoparticle was 53 % greater than that of the same amount of R6G without any nanoparticles, which may be related to the effect of surface plasmon resonance.

  19. Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Ren, Feng; Shen, Shaohua; Fu, Yanming; Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong

    2015-03-01

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu2O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu2O/ZnO photoelectrode comparing to that of the Cu2O film. The high performance of the Ag/Cu2O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  20. Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Nan, Feng; Yang, Ying; Cao, Dawei

    2016-02-01

    BiVO4 photonic crystal inverse opals (io-BiVO4) with highly dispersed Ag nanoparticles (NPs) were prepared by the nanosphere lithography method combining the pulsed current deposition method. The incorporation of the Ag NPs can significantly improve the photoelectrochemical and photocatalytic activity of BiVO4 inverse opals in the visible light region. The photocurrent density of the Ag/io-BiVO4 sample is 4.7 times higher than that of the disordered sample without the Ag NPs, while the enhancement factor of the corresponding kinetic constant in photocatalytic experiment is approximately 3. The improved photoelectrochemical and photocatalytic activity is benefited from two reasons: one is the enhanced light harvesting owing to the coupling between the slow light and localized surface plasmon resonance effect; the other is the efficient separation of charge carriers due to the Schottky barriers.