Science.gov

Sample records for aguda irreversible debido

  1. Irreversible cycle in linear irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Zhi

    2010-10-01

    The reversible Carnot cycle in reversible thermodynamics is composed of two reversible heat exchange processes and two reversible adiabatic processes. We construct an irreversible cycle in linear irreversible thermodynamics by analogy with the reversible Carnot cycle. The irreversible cycle is composed of two linear irreversible heat exchange processes and two linear irreversible adiabatic processes. It is found that the Curzon-Alhborn efficiency can be attained if the power for each of the four linear irreversible processes reaches its maximum. The maximum efficiency is the Carnot efficiency. The strong coupling condition is prerequisite for the respective attainment of the Curzon-Alhborn efficiency and the Carnot efficiency.

  2. Potentiality, irreversibility, and death.

    PubMed

    Lizza, John P

    2005-02-01

    There has been growing concern about whether individuals who satisfy neurological criteria for death or who become non-heart-beating organ donors are really dead. This concern has focused on the issue of the potential for recovery that these individuals may still have and whether their conditions are irreversible. In this article I examine the concepts of potentiality and irreversibility that have been invoked in the discussions of the definition of death and non-heart-beating organ donation. I initially focus on the recent challenge by D. Alan Shewmon to accepting any neurological criterion of death. I argue that Shewmon relies on a problematic and unrealistic concept of potentiality, and that a better, more realistic concept of potentiality is consistent with accepting a neurological criterion for death. I then turn to an analysis of how the concept of irreversibility has been used in discussion of non-heart-beating organ donation. Similarly, I argue that some participants in this discussion have invoked a problematic and unrealistic concept of irreversibility. I then propose an alternative, more realistic account of irreversibility that explains how "irreversibility" should be understood in the definition and criteria of death.

  3. Irreversibility time scale.

    PubMed

    Gallavotti, G

    2006-06-01

    Entropy creation rate is introduced for a system interacting with thermostats (i.e., for a system subject to internal conservative forces interacting with "external" thermostats via conservative forces) and a fluctuation theorem for it is proved. As an application, a time scale is introduced, to be interpreted as the time over which irreversibility becomes manifest in a process leading from an initial to a final stationary state of a mechanical system in a general nonequilibrium context. The time scale is evaluated in a few examples, including the classical Joule-Thompson process (gas expansion in a vacuum).

  4. From instability to irreversibility

    PubMed Central

    Elskens, Y.; Prigogine, I.

    1986-01-01

    A canonical procedure transforming the unitary evolution group Ut in a contracting semigroup Wt for phase-space ensembles has been developed for Kolmogorov dynamical systems in a series of recent papers. This paper investigates the physical meaning of this transformation. We stress that, for sufficiently unstable dynamical systems in which phase-space points are identified with an arbitrary but finite precision, one must take into account the undiscernibility of trajectories having the same asymptotic behavior in the future. The fundamental objects of our description are thus bundles of converging trajectories. We show that such an ensemble, corresponding to initial conditions whose support has finite measure, is then represented by a distribution function (called a Boltzmann ensemble) that evolves to equilibrium under the action of a markovian semigroup. The usual Gibbs-Koopman ensembles satisfying the Liouville equation are recovered as a singular limit. This work validates Boltzmann's intuition for a class of unstable dynamical systems and appears as a step toward the derivation of equations exhibiting irreversibility at a microscopic level. PMID:16593741

  5. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  6. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  7. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  8. Intrinsically irreversible thermoacoustic heat engine

    SciTech Connect

    Wheatley, J.; Hofler, T.; Swift, G.W.; Migliori, A.

    1983-07-01

    Certain thermoacoustic effects are described which form the basis for a heat engine that is intrinsically irreversible in the sense that it requires thermal lags for its operation. After discussing several acoustical heating and cooling effects, including the behavior of a new structure called a ''thermoacoustic couple,'' we discuss structures that can be placed in acoustically resonant tubes to produce both substantial heat pumping effects and, for restricted heat inputs, large temperature differences. The results are analyzed quantitatively using a second-order thermoacoustic theory based on the work of Rott. The qualities of the acoustic engine are generalized to describe a class of intrinsically irreversible heat engines of which the present acoustic engine is a special case. Finally the results of analysis of several idealized intrinsically irreversible engines are presented. These suggest that the efficiency of such engines may be determined primarily by geometry or configuration rather than by temperature.

  9. Comments to Irreversibility in Thermodynamics

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1995-01-01

    The problem of irreversibility in thermodynamics was revisited and analyzed on the microscopic, stochastic, and macroscopic levels of description. It was demonstrated that Newtonian dynamics can be represented in the Reynolds form, a new phenomenological force with non-Lipschitz properties was introduced, and additional non- Lipschitz thermodynamical forces were incorporated into macroscopic models of transport phenomena.

  10. Tumor Ablation with Irreversible Electroporation

    PubMed Central

    Al-Sakere, Bassim; André, Franck; Bernat, Claire; Connault, Elisabeth; Opolon, Paule; Davalos, Rafael V.; Rubinsky, Boris; Mir, Lluis M.

    2007-01-01

    We report the first successful use of irreversible electroporation for the minimally invasive treatment of aggressive cutaneous tumors implanted in mice. Irreversible electroporation is a newly developed non-thermal tissue ablation technique in which certain short duration electrical fields are used to permanently permeabilize the cell membrane, presumably through the formation of nanoscale defects in the cell membrane. Mathematical models of the electrical and thermal fields that develop during the application of the pulses were used to design an efficient treatment protocol with minimal heating of the tissue. Tumor regression was confirmed by histological studies which also revealed that it occurred as a direct result of irreversible cell membrane permeabilization. Parametric studies show that the successful outcome of the procedure is related to the applied electric field strength, the total pulse duration as well as the temporal mode of delivery of the pulses. Our best results were obtained using plate electrodes to deliver across the tumor 80 pulses of 100 µs at 0.3 Hz with an electrical field magnitude of 2500 V/cm. These conditions induced complete regression in 12 out of 13 treated tumors, (92%), in the absence of tissue heating. Irreversible electroporation is thus a new effective modality for non-thermal tumor ablation. PMID:17989772

  11. Reversible simulation of irreversible computation

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tromp, John; Vitányi, Paul

    1998-09-01

    Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized by among other things generating excess thermic entropy in the computation. Computing performance has improved to the extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method was proposed by Bennett and can be analyzed using a simple ‘reversible’ pebble game. The reachable reversible simulation instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.

  12. Ecological optimization for generalized irreversible Carnot refrigerators

    NASA Astrophysics Data System (ADS)

    Chen, Lingen; Xiaoqin, Zhu; Sun, Fengrui; Wu, Chih

    2005-01-01

    The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators.

  13. Stochastic approach to irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Nicolis, Grégoire; De Decker, Yannick

    2017-10-01

    An extension of classical irreversible thermodynamics pioneered by Ilya Prigogine is developed, in which fluctuations of macroscopic observables accounting for microscopic-scale processes are incorporated. The contribution of the fluctuations to the entropy production is derived from a generalized entropy balance equation and expressed in terms of the fluctuating variables, via an extended local equilibrium Ansatz and in terms of the probability distributions of these variables. The approach is illustrated on reactive systems involving linear and nonlinear steps, and the role of the distance from equilibrium and of the nonlinearities is assessed.

  14. Irreversible evolution of quantum chaos

    NASA Astrophysics Data System (ADS)

    Ugulava, A.; Chotorlishvili, L.; Nickoladze, K.

    2005-05-01

    The pendulum is the simplest system having all the basic properties inherent in dynamic stochastic systems. In the present paper we investigate the pendulum with the aim to reveal the properties of a quantum analogue of dynamic stochasticity or, in other words, to obtain the basic properties of quantum chaos. It is shown that a periodic perturbation of the quantum pendulum (similarly to the classical one) in the neighborhood of the separatrix can bring about irreversible phenomena. As a result of recurrent passages between degenerate states, the system gets self-chaotized and passes from the pure state to the mixed one. Chaotization involves the states, the branch points of whose levels participate in a slow “drift” of the system along the Mathieu characteristics this “drift” being caused by a slowly changing variable field. Recurrent relations are obtained for populations of levels participating in the irreversible evolution process. It is shown that the entropy of the system first grows and, after reaching the equilibrium state, acquires a constant value.

  15. Lyapunov decay in quantum irreversibility.

    PubMed

    García-Mata, Ignacio; Roncaglia, Augusto J; Wisniacki, Diego A

    2016-06-13

    The Loschmidt echo--also known as fidelity--is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime.

  16. Lyapunov decay in quantum irreversibility

    PubMed Central

    Roncaglia, Augusto J.; Wisniacki, Diego A.

    2016-01-01

    The Loschmidt echo—also known as fidelity—is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime. PMID:27140966

  17. Optimization of an irreversible Stirling regenerative cycle

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; Cano-Bianco, M.; León-Galicia, A.; Rivera-Camacho, J. M.

    2015-01-01

    In this work a Stirling regenerative cycle with some irreversibilities is analyzed. The analyzed irreversibilities are located at the heat exchangers. They receive a finite amount of heat and heat leakage occurs between both reservoirs. Using this model, power and the efficiency at maximum power are obtained. Some optimal design parameters for the exchanger heat areas and thermal conductances are presented. The relation between the power, efficiency and the results obtained are shown graphically.

  18. N-Alkoxyheterocycles As Irreversible Photooxidants†

    PubMed Central

    Wosinska, Zofia M.; Stump, Faye L.; Ranjan, Rajeev; Lorance, Edward D.; Finley, GeNita N.; Patel, Priya P.; Khawaja, Muzamil A.; Odom, Katie L.; Kramer, Wolfgang H.; Gould, Ian R.

    2015-01-01

    Irreversible photooxidation based on N–O bond fragmentation is demonstrated for N-methoxyheterocycles in both the singlet and triplet excited state manifolds. The energetic requirements for bond fragmentation are studied in detail. Bond fragmentation in the excited singlet manifold is possible for ππ* singlet states with energies significantly larger than the N–O bond dissociation energy of ca 55 kcal mol−1. For the nπ* triplet states, N–O bond fragmentation does not occur in the excited state for orbital overlap and energetic reasons. Irreversible photooxidation occurs in the singlet states by bond fragmentation followed by electron transfer. Irreversible photooxidation occurs in the triplet states via bimolecular electron transfer to the donor followed by bond fragmentation. Using these two sensitization schemes, donors can be irreversibly oxidized with oxidation potentials ranging from ca 1.6–2.2 V vs SCE. The corresponding N-ethylheterocycles are characterized as conventional reversible photooxidants in their triplet states. The utility of these sensitizers is demonstrated by irreversibly generating the guanosine radical cation in buffered aqueous solution. PMID:24354634

  19. Designing Irreversible Inhibitors--Worth the Effort?

    PubMed

    González-Bello, Concepción

    2016-01-05

    Despite the unquestionable success of numerous irreversible drugs that are currently in clinical use, such as acetylsalicylic acid (Aspirin) and penicillin, the number of such approved drugs is much lower than that of noncovalent drugs. Over the years, the potential off-target effects of these types of compounds have been the primary concern that has hampered their development. However, their remarkable advantages over noncovalent drugs and a better analysis of the risks have decreased the widespread skepticism surrounding them. The design of irreversible inhibitors is a challenge, particularly considering that in some cases their efficacy is due to complex and unexpected mechanisms of action. In this review the main advantages of irreversible inhibition are summarized, and the complexity of certain covalent modification mechanisms is highlighted with selected examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lanford's Theorem and the Emergence of Irreversibility

    NASA Astrophysics Data System (ADS)

    Uffink, Jos; Valente, Giovanni

    2015-04-01

    It has been a longstanding problem to show how the irreversible behaviour of macroscopic systems can be reconciled with the time-reversal invariance of these same systems when considered from a microscopic point of view. A result by Lanford (Dynamical systems, theory and applications, 1975, Asterisque 40:117-137, 1976, Physica 106A:70-76, 1981) shows that, under certain conditions, the famous Boltzmann equation, describing the irreversible behaviour of a dilute gas, can be obtained from the time-reversal invariant Hamiltonian equations of motion for the hard spheres model. Here, we examine how and in what sense Lanford's theorem succeeds in deriving this remarkable result. Many authors have expressed different views on the question which of the ingredients in Lanford's theorem is responsible for the emergence of irreversibility. We claim that these interpretations miss the target. In fact, we argue that there is no time-asymmetric ingredient at all.

  1. Efficiency of Rectification: Reversible vs. Irreversible Regimes

    NASA Astrophysics Data System (ADS)

    Sokolov, I. M.

    2002-11-01

    Both man-made locomotive devices and molecular motors use gears to transform a reciprocating motion into a directed one. One of the most common gears is a rectifier, a mechanically irreversible appliance. The maximal energetic efficiency of an isothermic gear is bounded by unity, as a consequence of the Second Law. However, approaching this ideal efficiency does not imply approaching reversibility. We discuss what properties of a rectifier mostly influence the transduction efficiency and show that an appliance which locks under backward force is just the one which can approach the ideal efficiency either in the reversible or in the irreversible regime.

  2. A Case of SSRI Induced Irreversible Parkinsonism

    PubMed Central

    Khan, Shahbaj A; Azad, Sudip

    2015-01-01

    Serotonin specific reuptake inhibitors (SSRI) are widely used antidepressants for variety of clinical conditions and have found popularity. They are sometimes associated with extrapyramidal side effects including Parkinsonism. We report a case of generalized anxiety disorder on treatment with SSRI (fluoxetine / sertraline) who developed irreversible Parkinsonism. SSRI are known to cause reversible or irreversible motor disturbances through pathophysiological changes in basal ganglion motor system by altering the dopamine receptors postsynaptically. Clinician should keep risk benefit ratio in mind and change of antidepressant of different class may be considered. Case is reported to alert physicians to possibility of motor system damage while treating with SSRI. PMID:25859504

  3. Markov Chain Monte Carlo and Irreversibility

    NASA Astrophysics Data System (ADS)

    Ottobre, Michela

    2016-06-01

    Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [18, 21, 28, 29] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [23], which results from a nonreversible discretization of a nonreversible dynamics.

  4. Absorption media for irreversibly gettering thionyl chloride

    DOEpatents

    Buffleben, George; Goods, Steven H.; Shepodd, Timothy; Wheeler, David R.; Whinnery, Jr., LeRoy

    2002-01-01

    Thionyl chloride is a hazardous and reactive chemical used as the liquid cathode in commercial primary batteries. Contrary to previous thinking, ASZM-TEDA.RTM. carbon (Calgon Corporation) reversibly absorbs thionyl chloride. Thus, several candidate materials were examined as irreversible getters for thionyl chloride. The capacity, rate and effect of temperature were also explored. A wide variety of likely materials were investigated through screening experiments focusing on the degree of heat generated by the reaction as well as the material absorption capacity and irreversibility, in order to help narrow the group of possible getter choices. More thorough, quantitative measurements were performed on promising materials. The best performing getter was a mixture of ZnO and ASZM-TEDA.RTM. carbon. In this example, the ZnO reacts with thionyl chloride to form ZnCl.sub.2 and SO.sub.2. The SO.sub.2 is then irreversibly gettered by ASZM-TEDA.RTM. carbon. This combination of ZnO and carbon has a high capacity, is irreversible and functions effectively above -20.degree. C.

  5. Ultrafast irreversible phototautomerization of o-nitrobenzaldehyde.

    PubMed

    Migani, Annapaola; Leyva, Verónica; Feixas, Ferran; Schmierer, Thomas; Gilch, Peter; Corral, Inés; González, Leticia; Blancafort, Lluís

    2011-06-14

    o-Nitrobenzaldehyde is photolabile because of an irreversible phototautomerization, whereas comparable aromatic compounds function as photoprotectors because the tautomerization is reversible. In this experimental and theoretical study we track down the cause of this difference to the electronic changes that occur during the tautomerization. This journal is © The Royal Society of Chemistry 2011

  6. Pilot Decision-Making in Irreversible Emergencies

    ERIC Educational Resources Information Center

    Winter, Scott R.

    2013-01-01

    The purpose of this study was to determine if a reflexive learning treatment utilizing select case studies could enhance the decision-making of pilots who encounter an irreversible emergency. Participants, who consisted of members of the subject university's professional pilot program, were divided into either a control or experimental group and…

  7. Mechanisms of irreversible decoherence in solids

    NASA Astrophysics Data System (ADS)

    Domínguez, F. D.; Zamar, R. C.; Segnorile, H. H.; González, C. E.

    2017-06-01

    Refocalization sequences in nuclear magnetic resonance (NMR) can in principle reverse the coherent evolution under the secular dipolar Hamiltonian of a closed system. We use this experimental strategy to study the effect of irreversible decoherence on the signal amplitude attenuation in a single-crystal hydrated salt where the nuclear spin system consists of the set of hydration water proton spins having a strong coupling within each pair and a much weaker coupling with other pairs. We study the experimental response of attenuation times with temperature, crystal orientation with respect to the external magnetic field, and rf pulse amplitudes. We find that the observed attenuation of the refocalized signals can be explained by two independent mechanisms: (a) evolution under the nonsecular terms of the reversion Hamiltonian, and (b) an intrinsic mechanism having the attributes of irreversible decoherence induced by the coupling with a quantum environment. To characterize (a) we compare the experimental data with the numerical calculation of the refocalized NMR signal of an artificial, closed spin system. To describe (b) we use a model of the irreversible adiabatic decoherence of spin pairs coupled with a phonon bath which allows evaluating an upper bound for the decoherence times. This model accounts for both the observed dependence of the decoherence times on the eigenvalues of the spin-environment Hamiltonian, and the independence from the sample temperature. This result, then, supports the adiabatic decoherence induced by the dipole-phonon coupling as the explanation for the observed irreversible decay of reverted NMR signals in solids.

  8. Pilot Decision-Making in Irreversible Emergencies

    ERIC Educational Resources Information Center

    Winter, Scott R.

    2013-01-01

    The purpose of this study was to determine if a reflexive learning treatment utilizing select case studies could enhance the decision-making of pilots who encounter an irreversible emergency. Participants, who consisted of members of the subject university's professional pilot program, were divided into either a control or experimental group and…

  9. Enfermedad diarreica aguda por Escherichia coli patógenas en Colombia

    PubMed Central

    Gómez-Duarte, Oscar G.

    2014-01-01

    Resumen Las cepas de E. coli patógenas intestinales son causas importantes de la enfermedad diarreica aguda (EDA) en niños menores de 5 años en América Latina, África y Asia y están asociadas a alta mortalidad en niños en las comunidades más pobres de África y el Sudeste Asiático. Estudios sobre el papel de las E. coli patógenas intestinales en la EDA infantil en Colombia y otros países de América Latina son limitados debido a la carencia de ensayos para detección de estos patógenos en los laboratorios clínicos de centros de salud. Estudios recientes han reportado la detección de E. coli patógenas intestinales en Colombia, siendo la E. coli enterotoxigénica la cepa más frecuentemente asociada a diarrea en niños menores de 5 años. Otros patógenos detectados en estos pacientes incluyen las E. coli enteroagregativa, enteropatógena, productora de toxina Shiga, y de adherencia difusa. Con base en estudios que reportan la presencia de E. coli productora de toxina Shiga y E. coli enteroagregativa en carnes y vegetales en supermercados, se cree que productos alimentarios contaminados contribuyen a la transmisión de estos patógenos y a la infección del huésped susceptible. Más estudios son necesarios para evaluar los mecanismos de transmisión, el impacto en la epidemiologia de la EDA, y las pautas de manejo y prevención de estos patógenos que afectan la población pediátrica en Colombia. PMID:25491457

  10. A new microscopic level of irreversibility

    SciTech Connect

    Prigogine, I.

    1987-01-01

    In this paper, the non-exponential decay is analyzed with the help of simple computer experiments performed by T. Petrosky, simulating classical radiation damping. The non-exponential decay is studied and shown to depend on the preparation of the system. However, whatever the initial preparation, the system reaches the decay predicted by classical radiation theory after a short time we call the Zeno's time. The similitude of Petrosky's results with computer experiments for the approach to equilibrium in many-body systems is emphasized. However, while there one deals with times which are multiple of the relaxation time, the irreversibility manifest in radiation theory occurs always over a much shorter time scale, the Zeno's time. In atomic systems, this would be a time order of 10/sup /minus/18/ seconds. These results are of great interest for the understanding of the microscopic mechanism of radiation. Let us consider a charged oscillator. In a first stage, this oscillator has to produce the field oscillators to which it may transfer energy through the usual resonance mechanism. Radiation appears therefore as a kind of non linear autocatalytic process, involving a self-organization mechanism. The behavior during the Zeno period can be explained easily in terms of subdynamics as introduced by the Brussel's group. We see that there is no transition from reversibility to irreversibility. Irreversible processes start at the very moment at which the system is prepared. It is important to stress that an unstable particle is itself the result of irreversible processes. As a result, an unstable particle (or an excited atomic state) can no more be described in terms of wave functions, as irreversible processes are not included in Schroedinger's equation. 14 refs., 3 figs.

  11. Uncertainty Quantification in Irreversible Electroporation Simulations

    PubMed Central

    Labarbera, Nicholas

    2017-01-01

    One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to investigate how uncertainty in tissue and tumor conductivity propagate into final ablation predictions used for treatment planning. Two dimensional simulations were performed for a circular tumor surrounded by healthy tissue, and electroporated from two monopolar electrodes. The conductivity values were treated as random variables whose distributions were taken from published literature on the average and standard deviation of liver tissue and liver tumors. Three different Monte Carlo setups were simulated each at three different voltages. Average and standard deviation data was reported for a multitude of electrical field properties experienced by the tumor. Plots showing the variability in the electrical field distribution throughout the tumor are also presented.

  12. Irreversible enzyme inhibition kinetics and drug-drug interactions.

    PubMed

    Mohutsky, Michael; Hall, Stephen D

    2014-01-01

    This chapter describes the types of irreversible inhibition of drug-metabolizing enzymes and the methods commonly employed to quantify the irreversible inhibition and subsequently predict the extent and time course of clinically important drug-drug interactions.

  13. Multiscale multifractal time irreversibility analysis of stock markets

    NASA Astrophysics Data System (ADS)

    Jiang, Chenguang; Shang, Pengjian; Shi, Wenbin

    2016-11-01

    Time irreversibility is one of the most important properties of nonstationary time series. Complex time series often demonstrate even multiscale time irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. We study the multiscale time irreversibility of time series. In this paper, we develop a method called multiscale multifractal time irreversibility analysis (MMRA), which allows us to extend the description of time irreversibility to include the dependence on the segment size and statistical moments. We test the effectiveness of MMRA in detecting multifractality and time irreversibility of time series generated from delayed Henon map and binomial multifractal model. Then we employ our method to the time irreversibility analysis of stock markets in different regions. We find that the emerging market has higher multifractality degree and time irreversibility compared with developed markets. In this sense, the MMRA method may provide new angles in assessing the evolution stage of stock markets.

  14. The connection between logical and thermodynamic irreversibility

    NASA Astrophysics Data System (ADS)

    Ladyman, James; Presnell, Stuart; Short, Anthony J.; Groisman, Berry

    There has recently been a good deal of controversy about Landauer's Principle, which is often stated as follows: the erasure of one bit of information in a computational device is necessarily accompanied by a generation of kT ln 2 heat. This is often generalised to the claim that any logically irreversible operation cannot be implemented in a thermodynamically reversible way. Norton [2005. Eaters of the lotus: Landauer's principle and the return of Maxwell's demon. Studies in History and Philosophy of Modern Physics, 36, 375-411] and Maroney [2005. The (absence of a) relationship between thermodynamic and logical reversibility. Studies in History and Philosophy of Modern Physics, 36, 355-374] both argue that Landauer's Principle has not been shown to hold in general, and Maroney offers a method that he claims instantiates the operation Reset in a thermodynamically reversible way. In this paper we defend the qualitative form of Landauer's Principle, and clarify its quantitative consequences (assuming the second law of thermodynamics). We analyse in detail what it means for a physical system to implement a logical transformation L, and we make this precise by defining the notion of an L-machine. Then we show that logical irreversibility of L implies thermodynamic irreversibility of every corresponding L-machine. We do this in two ways. First, by assuming the phenomenological validity of the Kelvin statement of the second law, and second, by using information-theoretic reasoning. We illustrate our results with the example of the logical transformation 'Reset', and thereby recover the quantitative form of Landauer's Principle.

  15. Irreversible translation arrest in the reperfused brain

    PubMed Central

    DeGracia, Donald J; Hu, Bingren R

    2012-01-01

    Irreversible translation arrest occurs in reperfused neurons that will die by delayed neuronal death. It is now recognized that suppression of protein synthesis is a general response of eukaryotic cells to exogenous stressors. Indeed, stress-induced translation arrest can be viewed as a component of cell stress responses, and consists of initiation, maintenance, and termination phases that work in concert with stress-induced transcriptional mechanisms. Within this framework, we review translation arrest in reperfused neurons. This framework provides a basis to recognize that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is the initiator of translation arrest, and a key marker indicating activation of neuronal stress responses. However, eIF2 alpha phosphorylation is reversible. Other phases of stress-induced translation arrest appear to contribute to irreversible translation arrest specifically in ischemic vulnerable neuron populations. We detail two lines of evidence supporting this view. First, ischemia, as a stress stimulus, induces irreversible co-translational protein misfolding and aggregation after 4 to 6 h of reperfusion, trapping protein synthesis machinery into functionally inactive protein aggregates. Second, ischemia and reperfusion leads to modifications of stress granules (SGs) that sequester functionally inactive 48S preinitiation complexes to maintain translation arrest. At later reperfusion durations, these mechanisms may converge such that SGs become sequestered in protein aggregates. These mechanisms result in elimination of functionally active ribosomes and preclude recovery of protein synthesis in selectively vulnerable neurons. Thus, recognizing translation arrest as a component of endogenous cellular stress response pathways will aid in making sense of the complexities of postischemic translation arrest. PMID:16926841

  16. Chaos and irreversibility in simple model systems.

    PubMed

    Hoover, Wm. G.; Posch, Harald A.

    1998-06-01

    The multifractal link between chaotic time-reversible mechanics and thermodynamic irreversibility is illustrated for three simple chaotic model systems: the Baker Map, the Galton Board, and many-body color conductivity. By scaling time, or the momenta, or the driving forces, it can be shown that the dissipative nature of the three thermostated model systems has analogs in conservative Hamiltonian and Lagrangian mechanics. Links between the microscopic nonequilibrium Lyapunov spectra and macroscopic thermodynamic dissipation are also pointed out. (c) 1998 American Institute of Physics.

  17. Irreversibility for All Bound Entangled States

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Horodecki, Michał; Horodecki, Ryszard; Synak-Radtke, Barbara

    2005-11-01

    We derive a new inequality for entanglement for a mixed four-partite state. Employing this inequality, we present a one-shot lower bound for entanglement cost and prove that entanglement cost is strictly larger than zero for any entangled state. We demonstrate that irreversibility occurs in the process of formation for all nondistillable entangled states. In this way we solve a long standing problem of how “real” is entanglement of bound entangled states. Using the new inequality we also prove the impossibility of local cloning of a known entangled state.

  18. Probabilistic Gompertz model of irreversible growth.

    PubMed

    Bardos, D C

    2005-05-01

    Characterizing organism growth within populations requires the application of well-studied individual size-at-age models, such as the deterministic Gompertz model, to populations of individuals whose characteristics, corresponding to model parameters, may be highly variable. A natural approach is to assign probability distributions to one or more model parameters. In some contexts, size-at-age data may be absent due to difficulties in ageing individuals, but size-increment data may instead be available (e.g., from tag-recapture experiments). A preliminary transformation to a size-increment model is then required. Gompertz models developed along the above lines have recently been applied to strongly heterogeneous abalone tag-recapture data. Although useful in modelling the early growth stages, these models yield size-increment distributions that allow negative growth, which is inappropriate in the case of mollusc shells and other accumulated biological structures (e.g., vertebrae) where growth is irreversible. Here we develop probabilistic Gompertz models where this difficulty is resolved by conditioning parameter distributions on size, allowing application to irreversible growth data. In the case of abalone growth, introduction of a growth-limiting biological length scale is then shown to yield realistic length-increment distributions.

  19. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  20. Irreversible thermal denaturation of Torpedo californica acetylcholinesterase.

    PubMed Central

    Kreimer, D. I.; Shnyrov, V. L.; Villar, E.; Silman, I.; Weiner, L.

    1995-01-01

    Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state. PMID:8563632

  1. Magnetic Irreversibility in VO2/Ni Bilayers

    NASA Astrophysics Data System (ADS)

    de La Venta, Jose; Lauzier, Josh; Sutton, Logan

    The temperature dependence of the coercivity and magnetization of VO2/Ni bilayers was studied. VO2 exhibits a well-known Structural Phase Transition (SPT) at 330-340 K, from a low temperature monoclinic (M) to a high temperature rutile (R) structure. The SPT of VO2 induces an inverse magnetoelastic effect that strongly modifies the coercivity and magnetization of the Ni films. In addition, the growth conditions allow tuning of the magnetic properties. Ni films deposited on top of VO2 (M) show an irreversible change in the coercivity after the first cycle through the high temperature phase, with a corresponding change in the surface morphology of VO2. On the other hand, the Ni films grown on top of VO2 (R) do not show this irreversibility. These results indicate that properties of magnetic films are strongly affected by the strain induced by materials that undergo SPT and that it is possible to control the magnetic properties by tuning the growth conditions.

  2. Irreversible heavy chain transfer to chondroitin.

    PubMed

    Lauer, Mark E; Hascall, Vincent C; Green, Dixy E; DeAngelis, Paul L; Calabro, Anthony

    2014-10-17

    We have recently demonstrated that the transfer of heavy chains (HCs) from inter-α-inhibitor, via the enzyme TSG-6 (tumor necrosis factor-stimulated gene 6), to hyaluronan (HA) oligosaccharides is an irreversible event in which subsequent swapping of HCs between HA molecules does not occur. We now describe our results of HC transfer experiments to chondroitin sulfate A, chemically desulfated chondroitin, chemoenzymatically synthesized chondroitin, unsulfated heparosan, heparan sulfate, and alginate. Of these potential HC acceptors, only chemically desulfated chondroitin and chemoenzymatically synthesized chondroitin were HC acceptors. The kinetics of HC transfer to chondroitin was similar to HA. At earlier time points, HCs were more widely distributed among the different sizes of chondroitin chains. As time progressed, the HCs migrated to lower molecular weight chains of chondroitin. Our interpretation is that TSG-6 swaps the HCs from the larger, reversible sites on chondroitin chains, which function as HC acceptors, onto smaller chondroitin chains, which function as irreversible HC acceptors. HCs transferred to smaller chondroitin chains were unable to be swapped off the smaller chondroitin chains and transferred to HA. HCs transferred to high molecular weight HA were unable to be swapped onto chondroitin. We also present data that although chondroitin was a HC acceptor, HA was the preferred acceptor when chondroitin and HA were in the same reaction mixture.

  3. Exergetic sustainability evaluation of irreversible Carnot refrigerator

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin

    2015-10-01

    Purpose of this paper is to assess irreversible refrigeration cycle by using exergetic sustainability index. In literature, there is no application of exergetic sustainability index for the refrigerators and, indeed, this index has not been derived for refrigerators. In this study, exergetic sustainability indicator is presented for the refrigeration cycle and its relationships with other thermodynamics parameters including COP, exergy efficiency, cooling load, exergy destruction, ecological function and work input are investigated. Calculations are conducted for endoreversible and reversible cycles and then results obtained from the ecological function are compared. It is found that exergy efficiency, exergetic sustainable index reduce 47.595% and 59.689% and rising at the COP is 99.888% is obtained for endoreversible cycle. Similarly, exergy efficiency and exergetic sustainability index reduce 90.163% and 93.711% and rising of the COP is equal to 99.362%.

  4. Geroconversion: irreversible step to cellular senescence

    PubMed Central

    Blagosklonny, Mikhail V

    2014-01-01

    Cellular senescence happens in 2 steps: cell cycle arrest followed, or sometimes preceded, by gerogenic conversion (geroconversion). Geroconvesrion is a form of growth, a futile growth during cell cycle arrest. It converts reversible arrest to irreversible senescence. Geroconversion is driven by growth-promoting, mitogen-/nutrient-sensing pathways such as mTOR. Geroconversion leads to hyper-secretory, hypertrophic and pro-inflammatory cellular phenotypes, hyperfunctions and malfunctions. On organismal level, geroconversion leads to age-related diseases and death. Rapamycin, a gerosuppressant, extends life span in diverse species from yeast to mammals. Stress–and oncogene-induced accelerated senescence, replicative senescence in vitro and life-long cellular aging in vivo all can be described by 2-step model. PMID:25483060

  5. Irreversible electroporation: state of the art.

    PubMed

    Wagstaff, Peter Gk; Buijs, Mara; van den Bos, Willemien; de Bruin, Daniel M; Zondervan, Patricia J; de la Rosette, Jean Jmch; Laguna Pes, M Pilar

    2016-01-01

    The field of focal ablative therapy for the treatment of cancer is characterized by abundance of thermal ablative techniques that provide a minimally invasive treatment option in selected tumors. However, the unselective destruction inflicted by thermal ablation modalities can result in damage to vital structures in the vicinity of the tumor. Furthermore, the efficacy of thermal ablation intensity can be impaired due to thermal sink caused by large blood vessels in the proximity of the tumor. Irreversible electroporation (IRE) is a novel ablation modality based on the principle of electroporation or electropermeabilization, in which electric pulses are used to create nanoscale defects in the cell membrane. In theory, IRE has the potential of overcoming the aforementioned limitations of thermal ablation techniques. This review provides a description of the principle of IRE, combined with an overview of in vivo research performed to date in the liver, pancreas, kidney, and prostate.

  6. Performance of an irreversible quantum Carnot engine with spin 12.

    PubMed

    Wu, Feng; Chen, Lingen; Wu, Shuang; Sun, Fengrui; Wu, Chih

    2006-06-07

    The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible Carnot cycle with spin 12. The optimal relationship between the dimensionless power output P* versus the efficiency eta for the irreversible quantum Carnot engine with heat leakage and other irreversible losses is derived. Especially, the performances of the engine at low temperature limit and at high temperature limit are discussed.

  7. The Littoral Station of Aguda, in the North of Portugal

    NASA Astrophysics Data System (ADS)

    Weber, M.

    1995-03-01

    The public authorities have recently approved the building of a Littoral Station in Aguda, a small fishing village on the Atlantic coast, 15 km south of the River Douro estuary in the municipal area of Vila Nova de Gaia. The internal structure of the building involves a Fishery Museum exhibiting ancient and modern gear, a Public Aquarium displaying the local marine fauna and flora and a Research and Educational Department for marine biology, aquaculture and fishery. The project was drawn up by the architect João Paulo Peixoto, in collaboration with local engineers, and the author. In Aguda there is an active, small-scale fishery, based on traditional methods handed down from generation to generation. The almost unstudied local marine fauna and flora is characterized by a high diversity of invertebrates and a rich abundance of fish stocks. Easy access to a variety of marine biotopes is guaranteed by means of the local fishing-fleet, thus supporting the Station's programme of education and research.

  8. Mesoscopic systems: classical irreversibility and quantum coherence.

    PubMed

    Barbara, Bernard

    2012-09-28

    Mesoscopic physics is a sub-discipline of condensed-matter physics that focuses on the properties of solids in a size range intermediate between bulk matter and individual atoms. In particular, it is characteristic of a domain where a certain number of interacting objects can easily be tuned between classical and quantum regimes, thus enabling studies at the border of the two. In magnetism, such a tuning was first realized with large-spin magnetic molecules called single-molecule magnets (SMMs) with archetype Mn(12)-ac. In general, the mesoscopic scale can be relatively large (e.g. micrometre-sized superconducting circuits), but, in magnetism, it is much smaller and can reach the atomic scale with rare earth (RE) ions. In all cases, it is shown how quantum relaxation can drastically reduce classical irreversibility. Taking the example of mesoscopic spin systems, the origin of irreversibility is discussed on the basis of the Landau-Zener model. A classical counterpart of this model is described enabling, in particular, intuitive understanding of most aspects of quantum spin dynamics. The spin dynamics of mesoscopic spin systems (SMM or RE systems) becomes coherent if they are well isolated. The study of the damping of their Rabi oscillations gives access to most relevant decoherence mechanisms by different environmental baths, including the electromagnetic bath of microwave excitation. This type of decoherence, clearly seen with spin systems, is easily recovered in quantum simulations. It is also observed with other types of qubits such as a single spin in a quantum dot or a superconducting loop, despite the presence of other competitive decoherence mechanisms. As in the molecular magnet V(15), the leading decoherence terms of superconducting qubits seem to be associated with a non-Markovian channel in which short-living entanglements with distributions of two-level systems (nuclear spins, impurity spins and/or charges) leading to 1/f noise induce τ(1)-like

  9. Greenland's pronounced glacier retreat not irreversible

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-02-01

    In recent decades, the combined forces of climate warming and short-term variability have forced the massive glaciers that blanket Greenland into retreat, with some scientists worrying that deglaciation could become irreversible. The short history of detailed glacier observations, however, makes pinning the ice loss to either short-term dynamics or long-term change difficult. Research by Young et al. detailing the effects of two bouts of sudden and temporary cooling during an otherwise warm phase in Greenland's climate history could help answer that question by showing just how heavy a hand short-term variability can have in dictating glacier dynamics. Along the western edge of Greenland the massive Jakobshavn Isbræ glacier reaches out to the coast, its outflow dropping icebergs into Baffin Bay during the summer months. Flanking the glacier's tongue are the Tasiussaq and Marrait moraines—piles of rock marking the glacier's former extent. Researchers suspected the moraines were tied to two periods of abrupt cooling that hit Greenland 9300 and 8200 years ago, and that association was reinforced by the authors' radiocarbon and beryllium isotope analyses of the area surrounding the moraines. Beryllium-10 forms when cosmic radiation travels through the atmosphere and strikes the Earth's surface, with surface rock concentrations indicating how long it has been ice-free.

  10. Combustion irreversibilities: Numerical simulation and analysis

    NASA Astrophysics Data System (ADS)

    Silva, Valter; Rouboa, Abel

    2012-08-01

    An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.

  11. Simulations of kinetically irreversible protein aggregate structure.

    PubMed Central

    Patro, S Y; Przybycien, T M

    1994-01-01

    We have simulated the structure of kinetically irreversible protein aggregates in two-dimensional space using a lattice-based Monte-Carlo routine. Our model specifically accounts for the intermolecular interactions between hydrophobic and hydrophilic protein surfaces and a polar solvent. The simulations provide information about the aggregate density, the types of inter-monomer contacts and solvent content within the aggregates, the type and extent of solvent exposed perimeter, and the short- and long-range order all as a function of (i) the extent of monomer hydrophobic surface area and its distribution on the model protein surface and (ii) the magnitude of the hydrophobic-hydrophobic contact energy. An increase in the extent of monomer hydrophobic surface area resulted in increased aggregate densities with concomitant decreased system free energies. These effects are accompanied by increases in the number of hydrophobic-hydrophobic contacts and decreases in the solvent-exposed hydrophobic surface area of the aggregates. Grouping monomer hydrophobic surfaces in a single contiguous stretch resulted in lower aggregate densities and lower short range order. More favorable hydrophobic-hydrophobic contact energies produced structures with higher densities but the number of unfavorable protein-protein contacts was also observed to increase; greater configurational entropy produced the opposite effect. Properties predicted by our model are in good qualitative agreement with available experimental observations. Images FIGURE 6 FIGURE 13 PMID:8061184

  12. Reversible and irreversible aggregation of magnetic liposomes.

    PubMed

    García-Jimeno, Sonia; Estelrich, Joan; Callejas-Fernández, José; Roldán-Vargas, Sándalo

    2017-10-12

    Understanding stabilization and aggregation in magnetic nanoparticle systems is crucial to optimizing the functionality of these systems in real physiological applications. Here we address this problem for a specific, yet representative, system. We present an experimental and analytical study on the aggregation of superparamagnetic liposomes in suspension in the presence of a controllable external magnetic field. We study the aggregation kinetics and report an intermediate time power law evolution and a long time stationary value for the average aggregate diffusion coefficient, both depending on the magnetic field intensity. We then show that the long time aggregate structure is fractal with a fractal dimension that decreases upon increasing the magnetic field intensity. By scaling arguments we also establish an analytical relation between the aggregate fractal dimension and the power law exponent controlling the aggregation kinetics. This relation is indeed independent on the magnetic field intensity. Despite the superparamagnetic character of our particles, we further prove the existence of a population of surviving aggregates able to maintain their integrity after switching off the external magnetic field. Finally, we suggest a schematic interaction scenario to rationalize the observed coexistence between reversible and irreversible aggregation.

  13. Irreversible thermodynamics of creep in crystalline solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.; Warren, J. A.; Sekerka, R. F.; Boettinger, W. J.

    2013-11-01

    We develop an irreversible thermodynamics framework for the description of creep deformation in crystalline solids by mechanisms that involve vacancy diffusion and lattice site generation and annihilation. The material undergoing the creep deformation is treated as a nonhydrostatically stressed multicomponent solid medium with nonconserved lattice sites and inhomogeneities handled by employing gradient thermodynamics. Phase fields describe microstructure evolution, which gives rise to redistribution of vacancy sinks and sources in the material during the creep process. We derive a general expression for the entropy production rate and use it to identify of the relevant fluxes and driving forces and to formulate phenomenological relations among them taking into account symmetry properties of the material. As a simple application, we analyze a one-dimensional model of a bicrystal in which the grain boundary acts as a sink and source of vacancies. The kinetic equations of the model describe a creep deformation process accompanied by grain boundary migration and relative rigid translations of the grains. They also demonstrate the effect of grain boundary migration induced by a vacancy concentration gradient across the boundary.

  14. Irreversible electroporation on the small intestine

    PubMed Central

    Phillips, M A; Narayan, R; Padath, T; Rubinsky, B

    2012-01-01

    Background: Non-thermal irreversible electroporation (NTIRE) has recently been conceived as a new minimally invasive ablation method, using microsecond electric fields to produce nanoscale defects in the cell membrane bilayer and induce cell death while keeping all other molecules, including the extracellular matrix, intact. Here, we present the first in vivo study that examines the effects of NTIRE on the small intestine, an organ whose collateral damage is of particular concern in the anticipated use of NTIRE for treatment of abdominal cancers. Methods: A typical NTIRE electrical protocol was applied directly to the rat small intestine and histological analysis was used to examine the effect of NTIRE over time. Results: The application of NTIRE led to complete cell ablation in the targeted tissue, but the animal did not show any physiological effects of the procedure and the intestine showed signs of recovery, developing an epithelial layer 3 days post treatment and regenerating its distinct layers within a week. Conclusion: Our results indicate that this novel procedure can be used for abdominal cancer treatment while minimising collateral damage to adjacent tissues because of the unique ability of the NTIRE ablation method to target the cell membrane. PMID:22223084

  15. Guinea pig ductus arteriosus. II - Irreversible closure after birth.

    NASA Technical Reports Server (NTRS)

    Fay, F. S.; Cooke, P. H.

    1972-01-01

    To investigate the mechanism underlying irreversibility of ductal closure after birth, studies were undertaken to determine the exact time course for the onset of irreversible closure of the guinea pig ductus arteriosus. Parallel studies of the reactivity of ductal smooth muscle to oxygen and studies of the postpartum cellular changes within the vessel were also carried out.

  16. Formation of Irreversible H-bonds in Cellulose Materials

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  17. Guinea pig ductus arteriosus. II - Irreversible closure after birth.

    NASA Technical Reports Server (NTRS)

    Fay, F. S.; Cooke, P. H.

    1972-01-01

    To investigate the mechanism underlying irreversibility of ductal closure after birth, studies were undertaken to determine the exact time course for the onset of irreversible closure of the guinea pig ductus arteriosus. Parallel studies of the reactivity of ductal smooth muscle to oxygen and studies of the postpartum cellular changes within the vessel were also carried out.

  18. The Anesthetic Efficacy of the Intraosseous Injection in Irreversible Pulpitis.

    DTIC Science & Technology

    1995-01-01

    The purpose of this study was to evaluate the anesthetic efficacy of an intraosseous injection in teeth diagnosed with irreversible pulpitis . Fifty...one healthy human subjects with symptomatic maxillary or mandibular posterior teeth diagnosed with irreversible pulpitis were used in this study. The

  19. Irreversible thermodynamic analysis and application for molecular heat engines

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Açıkkalp, Emin

    2017-09-01

    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  20. Irreversible Electroporation in a Swine Lung Model

    SciTech Connect

    Dupuy, Damian E.; Aswad, Bassam; Ng, Thomas

    2011-04-15

    Purpose: This study was designed to evaluate the safety and tissue effects of IRE in a swine lung model. Methods: This study was approved by the institutional animal care committee. Nine anesthetized domestic swine underwent 15 percutaneous irreversible electroporation (IRE) lesion creations (6 with bipolar and 3 with 3-4 monopolar electrodes) under fluoroscopic guidance and with pancuronium neuromuscular blockade and EKG gating. IRE electrodes were placed into the central and middle third of the right mid and lower lobes in all animals. Postprocedure PA and lateral chest radiographs were obtained to evaluate for pneumothorax. Three animals were sacrificed at 2 weeks and six at 4 weeks. Animals underwent high-resolution CT scanning and PA and lateral radiographs 1 h before sacrifice. The treated lungs were removed en bloc, perfused with formalin, and sectioned. Gross pathologic and microscopic changes after standard hematoxylin and eosin staining were analyzed within the areas of IRE lesion creation. Results: No significant adverse events were identified. CT showed focal areas of spiculated high density ranging in greatest diameter from 1.1-2.2 cm. On gross inspection of the sectioned lung, focal areas of tan discoloration and increased density were palpated in the areas of IRE. Histological analysis revealed focal areas of diffuse alveolar damage with fibrosis and inflammatory infiltration that respected the boundaries of the interlobular septae. No pathological difference could be discerned between the 2- and 4-week time points. The bronchioles and blood vessels within the areas of IRE were intact and did not show signs of tissue injury. Conclusion: IRE creates focal areas of diffuse alveolar damage without creating damage to the bronchioles or blood vessels. Short-term safety in a swine model appears to be satisfactory.

  1. Irreversible Sorption of Contaminants During Ferrihydrite Transformation

    SciTech Connect

    Anderson, H.L.; Arthur, S.E.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Westrich, H.R.

    1999-05-19

    A better understanding of the fraction of contaminants irreversibly sorbed by minerals is necessary to effectively quantify bioavailability. Ferrihydrite, a poorly crystalline iron oxide, is a natural sink for sorbed contaminants. Contaminants may be sorbed/occluded as ferrihydrite precipitates in natural waters or as it ages and transforms to more crystalline iron oxides such as goethite or hematite. Laboratory studies indicate that Cd, Co, Cr, Cu, Ni, Np, Pb, Sr, U, and Zn are irreversibly sorbed to some extent during the aging and transformation of synthetic ferrihydrite. Barium, Ra and Sr are known to sorb on ferrihydrite in the pH range of 6 to 10 and sorb more strongly at pH values above its zero point of charge (pH> 8). We will review recent literature on metal retardation, including our laboratory and modeling investigation of Ba (as an analogue for Ra) and Sr adsorption/resorption, during ferrihydrite transformation to more crystalline iron oxides. Four ferrihydrite suspensions were aged at pH 12 and 50 °C with or without Ba in 0.01 M KN03 for 68 h or in 0.17 M KN03 for 3424 h. Two ferrihydrite suspensions were aged with and without Sr at pH 8 in 0.1 M KN03 at 70°C. Barium or Sr sorption, or resorption, was measured by periodically centrifuging suspension subsamples, filtering, and analyzing the filtrate for Ba or Sr. Solid subsamples were extracted with 0.2 M ammonium oxalate (pH 3 in the dark) and with 6 M HCl to determine the Fe and Ba or Sr attributed to ferrihydrite (or adsorbed on the goethite/hematite stiace) and the total Fe and Ba or Sr content, respectively. Barium or Sr occluded in goethite/hematite was determined by the difference between the total Ba or Sr and the oxalate extractable Ba or Sr. The percent transformation of ferrihydrite to goethite/hematite was estimated from the ratio of oxalate and HC1 extractable Fe. All Ba was retained in the precipitates for at least 20 h. Resorption of Ba reached a maximum of 7 to 8% of the Ba2+ added

  2. Hierarchical Variational Principles of Irreversible Processes in Thermal Disturbance

    NASA Astrophysics Data System (ADS)

    Nakano, H.

    1997-09-01

    Quantum variational principles of irreversible processes in the linear response theory which have been developed by the present author and his coworker taking the electric conduction as an example are generalized to the transport phenomena in thermal disturbance, where the fluctuation-dissipation law is manifested. By contracting the information, the principle presented at the dynamical stage which concerns no irreversibility is converted into those at the more coarse grained stages, which concerns irreversibility. The conversion takes place from the dynamical to kinetic stage and next from the kinetic to hydrothermodynamical stage.

  3. Irreversibility transition of colloidal polycrystals under cyclic deformation

    PubMed Central

    Jana, Pritam Kumar; Alava, Mikko J.; Zapperi, Stefano

    2017-01-01

    Cyclically loaded disordered particle systems, such as granular packings and amorphous media, display a non-equilibrium phase transition towards irreversibility. Here, we investigate numerically the cyclic deformation of a colloidal polycrystal with impurities and reveal a transition to irreversible behavior driven by the displacement of dislocations. At the phase transition we observe enhanced particle diffusion, system size effects and broadly distributed strain bursts. In addition to provide an analogy between the deformation of amorphous and polycrystalline materials, our results allow to reinterpret Zener pinning of grain boundaries as a way to prevent the onset of irreversible crystal ordering. PMID:28358018

  4. Experiments with an intrinsically irreversible acoustic heat engine

    SciTech Connect

    Wheatley, J.; Hofler, T.; Swift, G.W.; Migliori, A.

    1983-02-14

    The general qualities of a type of thermodynamic engine that depends intrinsically for its operation on irreversible processes are set forth and demonstrated experimentally in the context of a thermoacoustic heat-pumping engine.

  5. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowei; Chen, Lingen; Wu, Feng; Sun, Fengrui

    2009-12-01

    A model of an irreversible quantum Carnot heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach, equations of some important performance parameters, such as power output, efficiency, exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.

  6. Irreversible adsorption/desorption of PAHs in sediment/water

    SciTech Connect

    Fu, G.; Kan, A.T.; Tomson, M.B.

    1996-10-01

    Successive adsorption isotherm of phenanthrene on soil corresponds to a constant partition of phenanthrene between the bulk solution and solid phase. This shows that the hydrophobic reaction is a dominant mechanism in adsorption process. However, desorption of PAHs appears irreversibility. Cyclic and multiple adsorption and desorption experiments indicated that there is an irreversibly adsorbed intrinsic capacity in the interaction of PAHs (naphthalene and phenanthrene) and soil in aqueous solution. This irreversible fraction for PAHs (naphthalene and phenanthrene) is about 1000-5000 {mu}g/g normalized on the basis of soil organic carbon. The desorption of PAHs from soil appears biphasic when the total adsorbed capacity is greater than the intrinsic irreversibly adsorbed value. In phase, the partitioning coefficient of desorption of PAHs is similar to that of adsorption. However, the other mechanism may be responsible to control the release of PAHs in phase 2.

  7. Gibbs Paradox Revisited from the Fluctuation Theorem with Absolute Irreversibility

    NASA Astrophysics Data System (ADS)

    Murashita, Yûto; Ueda, Masahito

    2017-02-01

    The inclusion of the factor ln (1 /N !) in the thermodynamic entropy proposed by Gibbs is shown to be equivalent to the validity of the fluctuation theorem with absolute irreversibility for gas mixing.

  8. Irreversibility and dissipation in finite-state automata

    NASA Astrophysics Data System (ADS)

    Ganesh, Natesh; Anderson, Neal G.

    2013-12-01

    Irreversibility and dissipation in finite-state automata (FSA) are considered from a physical-information-theoretic perspective. A quantitative measure for the computational irreversibility of finite automata is introduced, and a fundamental lower bound on the average energy dissipated per state transition is obtained and expressed in terms of FSA irreversibility. The irreversibility measure and energy bound are germane to any realization of a deterministic automaton that faithfully registers abstract FSA states in distinguishable states of a physical system coupled to a thermal environment, and that evolves via a sequence of interactions with an external system holding a physical instantiation of a random input string. The central result, which is shown to follow from quantum dynamics and entropic inequalities alone, can be regarded as a generalization of Landauer's Principle applicable to FSAs and tailorable to specified automata. Application to a simple FSA is illustrated.

  9. Microscopic reversibility and macroscopic irreversibility: A lattice gas model

    NASA Astrophysics Data System (ADS)

    Pérez-Cárdenas, Fernando C.; Resca, Lorenzo; Pegg, Ian L.

    2016-09-01

    We present coarse-grained descriptions and computations of the time evolution of a lattice gas system of indistinguishable particles, whose microscopic laws of motion are exactly reversible, in order to investigate how or what kind of macroscopically irreversible behavior may eventually arise. With increasing coarse-graining and number of particles, relative fluctuations of entropy rapidly decrease and apparently irreversible behavior unfolds. Although that behavior becomes typical in those limits and within a certain range, it is never absolutely irreversible for any individual system with specific initial conditions. Irreversible behavior may arise in various ways. We illustrate one possibility by replacing detailed integer occupation numbers at lattice sites with particle probability densities that evolve diffusively.

  10. Extended irreversible thermodynamics and the quality of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Bhalekar, Anil A.

    1999-08-01

    It is reiterated that without a Gibbs-Duhem equation no thermodynamic description ofirreversible and reversible processes exists. It is shown with the help of Gibbs-Duhem equation of extended irreversible thermodynamics that the physical contents of intensive quantities, the temperature and the pressure, do not change in going from reversible to irreversible processes. This confirms well with the earlier demonstrations of Eu and Garcia-Colin.

  11. Optimization of Irreversible Cogeneration Systems under Alternative Performance Criteria

    NASA Astrophysics Data System (ADS)

    Atmaca, M.; Gumus, M.; Inan, A. T.; Yilmaz, T.

    2009-10-01

    In this study, an exergy optimization has been performed for a cogeneration plant consisting of an irreversible Carnot heat engine. In the analysis, different objective functions have been defined based on alternative performance criteria and the optimum values of the design parameters of a cogeneration cycle were determined for different criteria. In this context, the effects of irreversibilities on the exergetic performance are investigated, and the results are discussed.

  12. Neuroprotective effects of allopregnenolone on hippocampal irreversible neurotoxicity in vitro.

    PubMed

    Frank, C; Sagratella, S

    2000-10-01

    1. The effects of allopregnenolone, a neurosteroid, endowed with GABAmimetic properties, were tested towards two models of irreversible hippocampal neurotoxicity: i) the irreversible depression produced by hypoxia on the CA1 evoked field potentials in rat hippocampal slices, and ii) glutamate-induced irreversible changes in intracellular calcium concentration in primary hippocampal cell coltures. 2. In control conditions during the reoxygenation period after the application of 15 min of hypoxia, the CA1 evoked field potentials were irreversibly suppressed in almost the 50% of the experiments. In the remaining experiments there were a significative (p<0.01) irreversible reduction of the magnitude of the CA1 population spike with respect with the pre-hypoxia values. Allopregnenolone (50-75 microM) perfused 30 min before, during and 30 min after hypoxia produced a significative (p<0.05) decrease both in the hypoxia-induced irreversible suppression of the CA1 PS and both in the irreversible decrease of the CA1 PS at the end of reoxygenation. 3. The exposition of the primary hippocampal cultured cells to glutamate 0.5 mM for 10 min was followed by a sustained elevation of [Ca2+]i, that persisted at 70-80% of maximal increase for the rest of the experiment (60 min). When a pretreatment with 10-50 microM allopregnanolone preceded Glu 0.5 mM application, [Ca2+]i increased to a maximal value during the glutamate application, after which a fast decrease to 50% was observed, followed by a slow recovery within about 30 min. 4. The results showed that the neurosteroid allopregnenolone, endowed with GABAmimetic properties, ameliorated the functional correlates of irreversible hippocampal neurotoxicity.

  13. Irreversible pulpitis and achieving profound anesthesia: Complexities and managements

    PubMed Central

    Modaresi, Jalil; Davoudi, Amin; Badrian, Hamid; Sabzian, Roya

    2016-01-01

    Dental pain management is one of the most critical aspects of modern dentistry. Irreversible pulpitis and further root canal therapy might cause an untolerated pain to the patients. The improvements in anesthetic agents and techniques were one of the advantages of studying nerve biology and stimulation. This article tried to overview of the nerve activities in inflammatory environments or induced pain. Furthermore, the proper advises, and supplementary techniques were reviewed for better pain management of irreversible pulpitis. PMID:26957681

  14. The incidence of mechanical allodynia in patients with irreversible pulpitis.

    PubMed

    Owatz, Christopher B; Khan, Asma A; Schindler, William G; Schwartz, Scott A; Keiser, Karl; Hargreaves, Kenneth M

    2007-05-01

    The mechanisms of odontogenic pain are complex and incompletely understood. Cases of irreversible pulpitis are thought to represent a localized inflammatory response to bacterial challenge in dental pulp tissue. The presenting symptoms are classically defined by exaggerated painful episodes to thermal stimuli that may linger after cessation of the stimulus. However, the associated incidence of mechanical allodynia, defined as reduced mechanical pain threshold to masticatory forces, has not been characterized. This study evaluated pain intensity ratings and the presence of mechanical allodynia reported by 993 consecutive dental patients presenting for tooth extraction in a community health center. After clinical and radiographic examinations, the pulpal/periradicular diagnostic categories were normal pulp/normal periradicular (n=792 patients), irreversible pulpitis/normal periradicular (n=86), or irreversible pulpitis/acute periradicular periodontitis (n=115). The rank order for the mean values of pain intensity ratings was irreversible pulpitis/acute periradicular periodontitis > irreversible pulpitis/normal periradicular > normal/normal (p<0.05 for all comparisons). The incidence of mechanical allodynia in patients presenting with irreversible pulpitis was 57.2%, indicating that periradicular mechanical allodynia contributes to early stages of odontogenic pain because of inflammation of vital pulpal tissue.

  15. Attribution of irreversible loss to anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    The Paris Agreement (2015) under the UNFCCC has anchored loss and damage in a separate article which specifies that understanding and support should be enhanced in areas addressing loss and damage such as early warning, preparedness, insurance and resilience. Irreversible loss is a special category under loss and damage but there is still missing clarity over what irreversible loss actually includes. Many negative impacts of climate change may be handled or mitigated by existing risk management, reduction and absorption approaches. Irreversible loss, however, is thought to be insufficiently addressed by risk management. Therefore, countries potentially or actually affected by irreversible loss are calling for other measures such as compensation, which however is highly contested in international climate policy. In Paris (2015) a decision was adopted that loss and damage as defined in the respective article of the agreement does not involve compensation and liability. Nevertheless, it is likely that some sort of mechanism will eventually need to come into play for irreversible loss due to anthropogenic climate change, which might involve compensation, other forms of non-monetary reparation, or transformation. Furthermore, climate litigation has increasingly been attempted to address negative effects of climate change. In this context, attribution is important to understand the drivers of change, what counts as irreversible loss due to climate change, and, possibly, who or what is responsible. Here we approach this issue by applying a detection and attribution perspective on irreversible loss. We first analyze detected climate change impacts as assessed in the IPCC Fifth Assessment Report. We distinguish between irreversible loss in physical, biological and human systems, and accordingly identify the following candidates of irreversible loss in these systems: loss of glaciers and ice sheets, loss of subsurface ice (permafrost) and related loss of lake systems; loss

  16. Partially-irreversible sorption of formaldehyde in five polymers

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.

    2014-12-01

    Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.

  17. Irreversible climate change due to carbon dioxide emissions.

    PubMed

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.

  18. Irreversible climate change due to carbon dioxide emissions

    PubMed Central

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  19. A criterion to maximize the irreversible efficiency in heat engines

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; Canales-Palma, A.; León-Galicia, A.; Musharrafie-Martínez, M.

    2003-02-01

    The purpose of this work is to obtain a more precise calculation of the effective limits to the efficiency, of several cyclic heat engines. This calculation is based, first, on the equations describing the irreversible efficiency, and second, on a method which results from a general criterion to maximize this efficiency, applicable to several heat engines. With this method, we apply the criterion to maximize efficiencies; establish lower and upper bounds, corresponding to the efficiencies of Curzon-Ahlborn-like and Carnot-like heat engines; and, finally, find analytical or numerical expressions for the efficiencies etame and etamax. etamax is the maximum irreversible efficiency; etame is the efficiency in which the irreversible efficiency achieves its maximum, in a similar way to the Curzon-Ahlborn efficiency (maximum work or power). The method was applied to a Brayton cycle, presenting internal dissipations of the working fluid and irreversibilities due to the finite-rate heat transfer between the heat engine and its reservoirs. Also, we applied this method to a Carnot cycle including the irreversibilities of a finite-rate heat transfer between the heat engine and its reservoirs, heat leak between the reservoirs, and internal dissipations of the working fluid. The results obtained for the Brayton cycle are more general and useful than those in the relevant literature.

  20. Reversible and irreversible protein glutathionylation: biological and clinical aspects

    PubMed Central

    Cooper, Arthur J L.; Pinto, John T.; Callery, Patrick S.

    2011-01-01

    Introduction Depending in part on the glutathione to glutathione disulfide ratio, reversible protein glutathionylation to a mixed disulfide may occur. Reversible glutathionylation is important in protecting proteins against oxidative stress, guiding correct protein folding, regulating protein activity, and modulating proteins critical to redox signaling. The potential also exists for irreversible protein glutathionylation via Michael addition of an -SH group to a dehydroalanyl residue, resulting in formation of a stable, non-reducible thioether linkage. Areas covered This article reviews factors contributing to reversible and irreversible protein glutathionylation and their biomedical implications. It also examines the possibility that certain drugs such as busulfan may be toxic by promoting irreversible glutathionylation. The reader will gain an appreciation of the protective nature and control of function resulting from reversible protein glutathionylation. The reader is also introduced to the recently identified phenomenon of irreversible protein glutathionylation and its possible deleterious effects. Expert opinion The process of reversible protein glutathionylation is now well established but these findings need to be substantiated at the tissue and organ levels, and also with disease state. That being said, irreversible protein glutathionylation can also occur and this has implications in disease and aging. Toxicologists should consider this when evaluating the possible side effects of certain drugs such as busulfan that may generate a glutathionylating species in vivo. PMID:21557709

  1. Irreversibility analysis in the process of solar distillation

    NASA Astrophysics Data System (ADS)

    Chávez, S.; Terres, H.; Lizardi, A.; López, R.; Lara, A.

    2017-01-01

    In this work an irreversibility analysis for the thermal process of solar distillation of three different substances is presented, for which it employs a solar still of a slope where three experimental tests with 5.5 L of brine, river water and MgCl2 were performed. Temperature data principally in the glass cover, absorber plate, fluid, environment and the incident solar radiation on the device were obtained. With measurements of temperature, solar radiation and exergetic balance, irreversibilities are found on the device. The results show that the highest values of irreversibilities are concentrated in the absorber plate with an average of 321 W, 342 W and 276 W, followed by the cover glass with an average of 75.8 W, 80.4 W and 86.7 W and finally the fluid with 15.3 W, 15.9 W and 16 W, for 5.5 L of brine, river water and MgCl2.

  2. Irreversible fouling during multicycle microfiltration of wastewater effluent.

    PubMed

    Shan, Huifeng; Neufeld, Ronald D

    2007-12-01

    This study focused on irreversible fouling during microfiltration of primary and secondary effluents from municipal wastewater treatment plants. Flow resistances were calculated from the sum of clean membrane resistances, resultant cake layer resistances, and consequent irreversible fouling resistances. Results from a dead-end cell experimental system showed that the accumulated cake resistance was dominating for microfiltration of primary/secondary effluents. Suspended solids in the primary and secondary effluents had a similar compressibility index, n, with a value of approximately 0.5, indicating that they were moderately compressible particles. The value of irreversible resistance is dependent on the intensity of membrane cleaning; however, for a given membrane cleaning strategy, this value steadily increased and reached a maximum after approximately 6 cycles of filtration and cleaning. This study provided an explanation for the significant drop of throughput flux in the early application of membrane processes, and a plateau flux approached correspondingly.

  3. Origin of irreversibility of cell cycle start in budding yeast.

    PubMed

    Charvin, Gilles; Oikonomou, Catherine; Siggia, Eric D; Cross, Frederick R

    2010-01-19

    Budding yeast cells irreversibly commit to a new division cycle at a regulatory transition called Start. This essential decision-making step involves the activation of the SBF/MBF transcription factors. SBF/MBF promote expression of the G1 cyclins encoded by CLN1 and CLN2. Cln1,2 can activate their own expression by inactivating the Whi5 repressor of SBF/MBF. The resulting transcriptional positive feedback provides an appealing, but as yet unproven, candidate for generating irreversibility of Start. Here, we investigate the logic of the Start regulatory module by quantitative single-cell time-lapse microscopy, using strains in which expression of key regulators is efficiently controlled by changes of inducers in a microfluidic chamber. We show that Start activation is ultrasensitive to G1 cyclin. In the absence of CLN1,2-dependent positive feedback, we observe that Start transit is reversible, due to reactivation of the Whi5 transcriptional repressor. Introduction of the positive feedback loop makes Whi5 inactivation and Start activation irreversible, which therefore guarantees unidirectional entry into S phase. A simple mathematical model to describe G1 cyclin turn on at Start, entirely constrained by empirically measured parameters, shows that the experimentally measured ultrasensitivity and transcriptional positive feedback are necessary and sufficient dynamical characteristics to make the Start transition a bistable and irreversible switch. Our study thus demonstrates that Start irreversibility is a property that arises from the architecture of the system (Whi5/SBF/Cln2 loop), rather than the consequence of the regulation of a single component (e.g., irreversible protein degradation).

  4. Entanglement irreversibility from quantum discord and quantum deficit.

    PubMed

    Cornelio, Marcio F; de Oliveira, Marcos C; Fanchini, Felipe F

    2011-07-08

    We relate the problem of irreversibility of entanglement with the recently defined measures of quantum correlation--quantum discord and one-way quantum deficit. We show that the entanglement of formation is always strictly larger than the coherent information and the entanglement cost is also larger in most cases. We prove irreversibility of entanglement under local operations and classical communication for a family of entangled states. This family is a generalization of the maximally correlated states for which we also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the distillable secret key, and the quantum discord.

  5. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  6. Pressure-Volume Integral Expressions for Work in Irreversible Processes

    ERIC Educational Resources Information Center

    Gislason, Eric A.; Craig, Norman C.

    2007-01-01

    Different formulations of thermodynamic work "w" as a pressure-volume integral are examined for a piston moving against a gas in an irreversible process. Proper expressions are obtained using the instantaneous pressure of the gas on the piston as the integrand and also using certain external pressures as the integrand. There are two common yet…

  7. Irreversible visual sensing of humidity using a cholesteric liquid crystal.

    PubMed

    Saha, Abhijit; Tanaka, Yoko; Han, Yang; Bastiaansen, Cees M W; Broer, Dirk J; Sijbesma, Rint P

    2012-05-14

    Irreversible optical sensing of humidity by a doped cholesteric liquid crystal is achieved by using a thin film of nematic host E7 with a binaphthylorthosilicate ester as dopant (guest). The film changes its color from blue (to green to orange to red) to colorless when exposed to humidity as the dopant is hydrolyzed. This journal is © The Royal Society of Chemistry 2012

  8. Irreversible electroporation: evolution of a laboratory technique in interventional oncology.

    PubMed

    Deipolyi, Amy R; Golberg, Alexander; Yarmush, Martin L; Arellano, Ronald S; Oklu, Rahmi

    2014-01-01

    Electroporation involves applying electric field pulses to cells, leading to the alteration or destruction of cell membranes. Irreversible electroporation (IRE) creates permanent defects in cell membranes and induces cell death. By directly targeting IRE to tumors, percutaneous nonthermal ablation is possible. The history of IRE, evolution of concepts, theory, biological applications, and clinical data regarding its safety and efficacy are discussed.

  9. Irreversible electroporation: evolution of a laboratory technique in interventional oncology

    PubMed Central

    Deipolyi, Amy R.; Golberg, Alexander; Yarmush, Martin L.; Arellano, Ronald S.; Oklu, Rahmi

    2014-01-01

    Electroporation involves applying electric field pulses to cells, leading to the alteration or destruction of cell membranes. Irreversible electroporation (IRE) creates permanent defects in cell membranes and induces cell death. By directly targeting IRE to tumors, percutaneous nonthermal ablation is possible. The history of IRE, evolution of concepts, theory, biological applications, and clinical data regarding its safety and efficacy are discussed. PMID:24412820

  10. When an Adiabatic Irreversible Expansion or Compression Becomes Reversible

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.; Soares, A. A.

    2009-01-01

    This paper aims to contribute to a better understanding of the concepts of a "reversible process" and "entropy". For this purpose, an adiabatic irreversible expansion or compression is analysed, by considering that an ideal gas is expanded (compressed), from an initial pressure P[subscript i] to a final pressure P[subscript f], by being placed in…

  11. BNNT-mediated irreversible electroporatio: its potential on cancer cells

    SciTech Connect

    Vittoria Raffa, Cristina Riggio, Michael W. Smith, Kevin C. Jordan, Wei Cao, Alfred Cuschieri

    2012-10-01

    Tissue ablation, i.e., the destruction of undesirable tissues, has become an important minimally invasive technique alternative to resection surgery for the treatment of tumours. Several methods for tissue ablation are based on thermal techniques using cold, e.g. cryosurgery [1] or heat, e.g. radiofrequency [2] or high-intensity focused ultrasound [3] or nanoparticle-mediated irradiation [4]. Alternatively, irreversible electroporation (IRE) has been proposed as non thermal technique for minimally invasive tissue ablation based on the use of electrical pulses. When the electric field is applied to a cell, a change in transmembrane potential is induced, which can cause biochemical and physiological changes of the cell. When the threshold value of the transmembrane potential is exceeded, the cell membrane becomes permeable, thus allowing entrance of molecules that otherwise cannot cross the membrane [5]. A further increase in the electric field intensity may cause irreversible membrane permeabilization and cell death. These pulses create irreversible defects (pores) in the cell membrane lipid bilayer, causing cell death through loss of cell homeostasis [6]. This is desirable in tumour ablation in order to produce large cell death, without the use of cytostatic drugs. A study of Davalos, Mir and Rubinsky showed that IRE can ablate substantial volumes of tissue without inducing a thermal effect and therefore serve as an independent and new tissue ablation modality; this opened the way to the use of IRE in surgery [7]. Their finding was subsequently confirmed in studies on cells [8], small animal models [9] and in large animal models in the liver [10] and the heart [11]. The most important finding in these papers is that irreversible electroporation produces precisely delineated ablation zones with cell scale resolution between ablated and non-ablated areas, without zones in which the extent of damage changes gradually as during thermal ablation. Furthermore, it is

  12. Flux pinning characteristics and irreversibility line in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Matsushita, T.; Ihara, N.; Kiuchi, M.

    1995-01-01

    The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.

  13. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  14. Reversible and Irreversible Time-Dependent Behavior of GRCop-84

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.; Ellis, David L.

    2017-01-01

    A series of mechanical tests were conducted on a high-conductivity copper alloy, GRCop-84, in order to understand the time dependent response of this material. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures, strain rates, and stress levels to excite various amounts of time-dependent behavior. At low applied stresses the deformation behavior was found to be fully reversible. Above a certain stress, termed the viscoelastic threshold, irreversible deformation was observed. At these higher stresses the deformation was observed to be viscoplastic. Both reversible and irreversible regions contained time dependent deformation. These experimental data are documented to enable characterization of constitutive models to aid in design of high temperature components.

  15. Irreversible Nek2 kinase inhibitors with cellular activity

    PubMed Central

    Henise, Jeffrey C.; Taunton, Jack

    2013-01-01

    A structure-based approach was used to design irreversible, cysteine-targeted inhibitors of the human centrosomal kinase, Nek2. Potent inhibition of Nek2 kinase activity in biochemical and cell-based assays required a noncatalytic cysteine residue (Cys22), located near the glycine-rich loop in a subset of human kinases. Elaboration of an oxindole scaffold led to our most selective compound, oxindole propynamide 16 (JH295). Propynamide 16 irreversibly inhibited cellular Nek2 without affecting the mitotic kinases, Cdk1, Aurora B, or Plk1. Moreover, 16 did not perturb bipolar spindle assembly or the spindle assembly checkpoint. To our knowledge, 16 is the first small molecule shown to inactivate Nek2 kinase activity in cells. PMID:21627121

  16. Elucidating the mechanism behind irreversible deformation of viral capsids.

    PubMed

    Arkhipov, Anton; Roos, Wouter H; Wuite, Gijs J L; Schulten, Klaus

    2009-10-07

    Atomic force microscopy has recently provided highly precise measurements of mechanical properties of various viruses. However, molecular details underlying viral mechanics remain unresolved. Here we report atomic force microscopy nanoindentation experiments on T=4 hepatitis B virus (HBV) capsids combined with coarse-grained molecular dynamics simulations, which permit interpretation of experimental results at the molecular level. The force response of the indented capsid recorded in simulations agrees with experimental observations. In both experiment and simulation, irreversible capsid deformation is observed for deep indentations. Simulations show the irreversibility to be due to local bending and shifting of capsid proteins, rather than their global rearrangement. These results emphasize the viability of large capsid deformations without significant changes of the mutual positions of HBV capsid proteins, in contrast to the stiffer capsids of other viruses, which exhibit more extensive contacts between their capsid proteins than seen in the case of HBV.

  17. Overcoming of energy barrier for irreversible magnetization in nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Li, Zhu-bai; Zhang, Ying; Shen, Bao-gen; Zhang, Ming; Hu, Feng-xia; Sun, Ji-rong

    2017-01-01

    The irreversible magnetization occurs mainly in hard grains in nanocomposite magnets, and the domain wall involves a little part of defect region in irreversible magnetization due to the self-interaction. The investigation on thermal activation shows that the defect region involved in domain wall becomes narrower due to the TiNb addition in Pr2Fe14B/α-Fe magnets. The defect region augments the energy density in the negative direction of domain wall to overcome the energy barrier of perfect hard region. The soft phase, exchange-coupled with defect region at hard grain outer-layer, promotes magnetization reversal in defect region by exchange coupling. While the defect region plays a role as a ladder to overcome the energy barrier, resulting in the decrease of coecivity more or less depending upon the width and anisotropy of defect region.

  18. Reversible and irreversible interactions between elastin and plasma lipoproteins.

    PubMed

    Winlove, C P; Parker, K H; Ewins, A R

    1985-03-08

    The interactions between radiolabeled, human plasma lipoproteins and elastin derived from bovine ligamentum nuchae were investigated using a washout technique. The interaction was characterised by Ki, a coefficient of irreversible binding, and Kr, the reversible partition coefficient. For both low-density lipoproteins (LDL) and high-density lipoproteins (HDL) the Ki values decreased as total lipoprotein concentration increased, suggesting that the binding is saturable, and were similar in magnitude to those measured by other workers using elastin derived from the human aorta. For both LDL and HDL the Kr values were independent of lipoprotein concentration in the range 0.1 microgram/ml-1.5 micrograms/ml. At a total protein concentration of 1.5 mg/ml in the incubation medium, the reversible interactions were comparable in magnitude to the irreversible.

  19. Thermoeconomic analysis of an irreversible Stirling heat pump cycle

    NASA Astrophysics Data System (ADS)

    Lucia, U.; Gervino, G.

    2006-03-01

    In this paper an analysis of the Stirling cycle in thermoeconomic terms is developed using the entropy generation. In the thermoeconomic optimization of an irreversible Stirling heat pump cycle the F function has been introduced to evaluate the optimum for the higher and lower sources temperature ratio in the cycle: this ratio represents the value which optimizes the cycle itself. The variation of the function F is proportional to the variation of the entropy generation, the maxima and minima of F has been evaluated in a previous paper without giving the physical foundation of the method. We investigate the groundwork of this approach: to study the upper and lower limits of F function allows to determine the cycle stability and the optimization conditions. The optimization consists in the best COP at the least cost. The principle of maximum variation for the entropy generation becomes the analytic foundation of the optimization method in the thermoeconomic analysis for an irreversible Stirling heat pump cycle.

  20. Prostaglandin E2 to diagnose between reversible and irreversible pulpitis.

    PubMed

    Petrini, M; Ferrante, M; Ciavarelli, L; Brunetti, L; Vacca, M; Spoto, G

    2012-01-01

    The aim of this work is to verify a correlation between the grade of inflammation and the concentration of PGE2 in human dental pulp. A total of 25 human dental pulps were examined by histological analysis and radioimmunologic dosage of PGE2. The pulps used in this experiment were from healthy and symptomatic teeth; the first ones were collected from teeth destined to be extracted for orthodontic reasons. An increase was observed of PGE2 in reversible pulpitis compared with healthy pulps and with the irreversible pulpitis and the clear decrease of these when NSAIDs are taken. This study demonstrates that PGE2 level is correlated to histological analysis thus allowing to distinguish symptomatic teeth in reversible and irreversible pulpitis.

  1. Irreversible sortase A-mediated ligation driven by diketopiperazine formation.

    PubMed

    Liu, Fa; Luo, Ethan Y; Flora, David B; Mezo, Adam R

    2014-01-17

    Sortase A (SrtA)-mediated ligation has emerged as an attractive tool in bioorganic chemistry attributing to the remarkable specificity of the ligation reaction and the physiological reaction conditions. However, the reversible nature of this reaction limits the efficiency of the ligation reaction and has become a significant constraint to its more widespread use. We report herein a novel set of SrtA substrates (LPETGG-isoacyl-Ser and LPETGG-isoacyl-Hse) that can be irreversibly ligated to N-terminal Gly-containing moieties via the deactivation of the SrtA-excised peptide fragment through diketopiperazine (DKP) formation. The convenience of the synthetic procedure and the stability of the substrates in the ligation buffer suggest that both LPETGG-isoacyl-Ser and LPETGG-isoacyl-Hse are valuable alternatives to existing irreversible SrtA substrate sequences.

  2. Aftereffect in rocks caused by preexisting irreversible deformations

    SciTech Connect

    Stavrogin, A.N.; Shirkes, O.A.

    1987-05-01

    In this paper, rock specimens cut as cores of a diameter of 30 mm, 80 mm in length, were subjected to irreversible deformation in a high hydrostatic pressure chamber according to Karman's procedure. The types of rocks investigated were white Koelga marble, non-burst-hazardous (NBH) sandstone from Donets Basin, limestone from Estonslanets deposit and brown coal from Shurab coal deposit. Marble specimens were subjected to the most extensive studies. The aftereffect curves are shown for each type of rock studied. Aftereffect deformations of rocks are basically creep flows occurring under the effect of residual stresses introduced into the rock material on the course of its irreversible deformation by a high hydrostatic pressure, according to the authors. The physical nature of the residual stresses in the rocks and the mechanism of their creation are examined at the level of structural elements (grains or crystals).

  3. Variability of Irreversible Poleward Transport in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Olsen, Mark; Douglass, Anne; Newman, Paul; Nash, Eric; Witte, Jacquelyn; Ziemke, Jerry

    2011-01-01

    The ascent and descent of the Brewer-Dobson circulation plays a large role in determining the distributions of many constituents in the extratropical lower stratosphere. However, relatively fast, quasi-horizontal transport out of the tropics and polar regions also significantly contribute to determining these distributions. The tropical tape recorder signal assures that there must be outflow from the tropics into the extratropical lower stratosphere. The phase of the quasi-biennial oscillation (QBO) and state of the polar vortex are known to modulate the transport from the tropical and polar regions, respectively. In this study we examine multiple years of ozone distributions in the extratropical lower stratosphere observed by the Aura Microwave Limb Sounder (MLS) and the Aura High Resolution Dynamic Limb Sounder (HIRDLS). The distributions are compared with analyses of irreversible, meridional isentropic transport. We show that there is considerable year-to-year seasonal variability in the amount of irreversible transport from the tropics, which is related to both the phase of the QBO and the state of the polar vortex. The reversibility of the transport is consistent with the number of observed breaking waves. The variability of the atmospheric index of refraction in the lower stratosphere is shown to be significantly correlated with the wave breaking and amount of irreversible transport. Finally, we will show that the seasonal extratropical stratosphere to troposphere transport of ozone can be substantially modulated by the amount of irreversible meridional transport in the lower stratosphere and we investigate how observable these differences are in data of tropospheric ozone.

  4. Entropy production and irreversibility of dissipative trajectories in electric circuits

    NASA Astrophysics Data System (ADS)

    Chiang, K.-H.; Lee, C.-L.; Lai, P.-Y.; Chen, Y.-F.

    2017-01-01

    We experimentally examine the equivalence between the entropy production evaluated from irreversibility of trajectories and the physical dissipation in dissipative processes via electric resistor-capacitor (RC) circuits. The examinations are performed for two nonequilibrium steady states that are driven by an injected current and temperature difference, respectively. Such an equivalence demonstrates a parameter-free method to evaluate the entropy production of a system. The effects of configurational and temporal resolutions are also studied.

  5. The State of Irreversible Electroporation in Interventional Oncology

    PubMed Central

    Silk, Mikhail; Tahour, David; Srimathveeravalli, Govindarajan; Solomon, Stephen B.; Thornton, Raymond H.

    2014-01-01

    A new ablation modality, irreversible electroporation (IRE), has been of increasing interest in interventional radiology. Its nonthermal mechanism of action of killing tumor cells allows physicians the ability to ablate tumors in areas previously contraindicated for thermal ablation. This article reviews the current published clinical outcomes, imaging follow-up, and the current knowledge gaps in the procedure for patients treated with IRE. PMID:25053862

  6. Irreversibility and chaos: role of lubrication interactions in sheared suspensions.

    PubMed

    Metzger, Bloen; Pham, Phong; Butler, Jason E

    2013-05-01

    We investigate non-Brownian particles suspended in a periodic shear-flow using simulations. Following Metzger and Butler [Phys. Rev. E 82, 051406 (2010)], we show that the chaotic dynamics arising from lubrication interactions are too weak to generate an observable particle dispersion. The irreversibility observed in periodic flow is dominated by contact interactions. Nonetheless, we show that lubrication interactions must be included in the calculation to obtain results that agree with experiments.

  7. Entropy production and irreversibility of dissipative trajectories in electric circuits.

    PubMed

    Chiang, K-H; Lee, C-L; Lai, P-Y; Chen, Y-F

    2017-01-01

    We experimentally examine the equivalence between the entropy production evaluated from irreversibility of trajectories and the physical dissipation in dissipative processes via electric resistor-capacitor (RC) circuits. The examinations are performed for two nonequilibrium steady states that are driven by an injected current and temperature difference, respectively. Such an equivalence demonstrates a parameter-free method to evaluate the entropy production of a system. The effects of configurational and temporal resolutions are also studied.

  8. Spontaneous subtalar fusion: an irreversible complication of subtalar arthroereisis.

    PubMed

    Lui, Tun Hing

    2014-01-01

    Subtalar arthroereisis has been used for the treatment of symptomatic flexible flatfoot deformities in both pediatric and adult patients. Chronic sinus tarsi pain is the most common complication of this procedure and can be relieved by removal of the implant. We describe a case of spontaneous fusion of the subtalar joint after arthroereisis. This is an irreversible complication that should be described to the patient as a rare, but possible, outcome of arthroereisis of the subtalar joint.

  9. Irreversible Electroporation for Focal Ablation at the Porta Hepatis

    SciTech Connect

    Kasivisvanathan, Veeru; Thapar, Ankur Oskrochi, Youssof; Picard, John; Leen, Edward L. S.

    2012-12-15

    Patients with chemotherapy-refractory liver metastases who are not candidates for surgery may be treated with focal ablation techniques with established survival benefits. Irreversible electroporation is the newest of these and has the putative advantages of a nonthermal action, preventing damage to adjacent biliary structures and bowel. This report describes the use of irreversible electroporation in a 61-year-old man with a solitary chemoresistant liver metastasis unsuitable for radiofrequency ablation as a result of its proximity to the porta hepatis. At 3 months, tumor size was decreased on computed tomography from 28 Multiplication-Sign 19 to 20 Multiplication-Sign 17 mm, representing stable disease according to the response evaluation criteria in solid tumors. This corresponded to a decrease in tumor volume size from 5.25 to 3.16 cm{sup 3}. There were no early or late complications. Chemoresistant liver metastases in the proximity of the porta hepatis that are considered to be too high a risk for conventional surgery or thermal ablation may be considered for treatment by the novel ablation technique of irreversible electroporation.

  10. Irreversibility in energy processes: Non-dimensional quantification and balance

    NASA Astrophysics Data System (ADS)

    Pons, Michel

    2004-06-01

    The concept of thermodynamic efficiency (ratio of real cycle efficiency by Carnot efficiency) is well-known. The concept of numbers of entropy-production and of exergy-loss proposed by A. Bejan are also known, but rarely used. The present study firstly evidences that these two last numbers are actually identical, thus being a common number of irreversibility, independent of the method used for obtaining it. The study also evidences a non-dimensional irreversibility balance that applies to any energy conversion process. This balance correlates the thermodynamic efficiency of a whole process (which in most cases equals the exergetic efficiency) and the numbers of irreversibility of the different components or sub-processes involved in this process. Moreover, the basic additivity of entropy-productions and exergy-losses is maintained in this balance. This balance applies to the basic cycles (heat-engines, refrigerators, heat-pumps and heat-transformers), either work- or heat-powered. It also applies to more complex cycles (heat-powered cycles consuming electricity, four-temperature heat-powered cycles, cogeneration processes), thus giving a robust framework for analyzing these cycles.

  11. Irreversibility and complex network behavior of stream flow fluctuations

    NASA Astrophysics Data System (ADS)

    Serinaldi, Francesco; Kilsby, Chris G.

    2016-05-01

    Exploiting the duality between time series and networks, directed horizontal visibility graphs (DHVGs) are used to perform an unprecedented analysis of the dynamics of stream flow fluctuations with focus on time irreversibility and long range dependence. The analysis relies on a large quality-controlled data set consisting of 699 daily time series recorded in the continental United States (CONUS) that are not affected by human activity and primarily reflects meteorological conditions. DHVGs allow a clear visualization and quantification of time irreversibility of flow dynamics, which can be interpreted as a signature of nonlinearity, and long range dependence resulting from the interaction of atmospheric, surface and underground processes acting at multiple spatio-temporal scales. Irreversibility is explored by mapping the time series into ingoing, outgoing, and undirected graphs and comparing the corresponding degree distributions. Using surrogate data preserving up to the second order linear temporal dependence properties of the observed series, DHVGs highlight the additional complexity introduced by nonlinearity into flow fluctuation dynamics. We show that the degree distributions do not decay exponentially as expected, but tend to follow a subexponential behavior, even though sampling uncertainty does not allow a clear distinction between apparent or true power law decay. These results confirm that the complexity of stream flow dynamics goes beyond a linear representation involving for instance the combination of linear processes with short and long range dependence, and requires modeling strategies accounting for temporal asymmetry and nonlinearity.

  12. Anesthetic Efficacy in Irreversible Pulpitis: A Randomized Clinical Trial.

    PubMed

    Allegretti, Carlos E; Sampaio, Roberta M; Horliana, Anna C R T; Armonia, Paschoal L; Rocha, Rodney G; Tortamano, Isabel Peixoto

    2016-01-01

    Inferior alveolar nerve block has a high failure rate in the treatment of mandibular posterior teeth with irreversible pulpitis. The aim of this study was to compare the anesthetic efficacy of 4% articaine, 2% lidocaine and 2% mepivacaine, all in combination with 1:100,000 epinephrine, in patients with irreversible pulpitis of permanent mandibular molars during a pulpectomy procedure. Sixty-six volunteers from the Emergency Center of the School of Dentistry, University of São Paulo, randomly received 3.6 mL of local anesthetic as a conventional inferior alveolar nerve block (IANB). The subjective signal of lip numbness, pulpal anesthesia and absence of pain during the pulpectomy procedure were evaluated respectively, by questioning the patient, stimulation using an electric pulp tester and a verbal analogue scale. All patients reported the subjective signal of lip numbness. Regarding pulpal anesthesia success as measured with the pulp tester, the success rate was respectively 68.2% for mepivacaine, 63.6% for articaine and 63.6% for lidocaine. Regarding patients who reported no pain or mild pain during the pulpectomy, the success rate was, respectively 72.7% for mepivacaine, 63.6% for articaine and 54.5% for lidocaine. These differences were not statistically significant. Neither of the solutions resulted in 100% anesthetic success in patients with irreversible pulpitis of mandibular molars.

  13. Developing irreversible inhibitors of the protein kinase cysteinome

    PubMed Central

    Liu, Qingsong; Sabnis, Yogesh; Zhao, Zheng; Zhang, Tinghu; Buhrlage, Sara J.; Jones, Lyn H.; Gray, Nathanael S.

    2013-01-01

    Protein kinases are a large family of approximately 530 highly conserved enzymes that transfer a γ-phosphate group from ATP to a variety of amino acid residues such as tyrosine, serine and threonine which serves as a ubiquitous mechanism for cellular signal transduction. The clinical success of a number of kinase-directed drugs and the frequent observation of disease causing mutations in protein kinases suggest that a large number of kinases may represent therapeutically relevant targets. To-date the majority of clinical and preclinical kinase inhibitors are ATP-competitive, non-covalent inhibitors that achieve selectivity through recognition of unique features of particular protein kinases. Recently there has been renewed interest in the development of irreversible inhibitors that form covalent bonds with cysteine or other nucleophilic residues in the ATP-binding pocket. Irreversible kinase inhibitors have a number of potential advantages including prolonged pharmacodynamics, suitability for rational design, high potency and ability to validate pharmacological specificity through mutation of the reactive cysteine residue. Here we review recent efforts to develop cysteine-targeted irreversible protein kinase inhibitors and discuss their modes of recognizing the ATP-binding pocket and their biological activity profiles. In addition, we provided an informatics assessment of the potential ‘kinase-cysteinome’ and discuss strategies for the efficient development of new covalent inhibitors. PMID:23438744

  14. Irreversible gelation of wormlike micelle solutions under microfluidic flow

    NASA Astrophysics Data System (ADS)

    Cheung, Perry; Cardiel, Joshua; Dubash, Neville; Shen, Amy

    2010-11-01

    The formation of flow-induced gel-like structures in surfactant solutions containing wormlike micelles have previously been observed in macroscopic flow under applied shear in dilute solutions of cetyl-trimethylammonium bromide (CTAB) and sodium salicylate (NaSal). However, the observed gelation phase transition is short-lived once the applied flow is stopped and reversibly disappears. Recently, irreversible gelation was achieved by applying high shear and extensional flows within a packed bed of microbeads in a microfluidic device [1]. We present here a further investigation of the irreversible flow-induced gelation of dilute solutions of CTAB/NaSal in microfluidic devices with microfabricated arrays of microposts with varying post diameters and inter-post spacing. The onset of gelation at various surfactant concentrations and flow rates (both shear and extension rates) will be examined to determine the extent of this phenomenon. [4pt] [1] Vasudevan, M., et al., Irreversible nanogel formation in surfactant solutions by microporous flow. Nat Mater, 2010. 9(5): p. 436-441.

  15. The problematic role of 'irreversibility' in the definition of death.

    PubMed

    Hershenov, David

    2003-02-01

    Most definitions of death--whether cardiopulmonary, whole brain and brain stem, or just upper brain--include an irreversibility condition. Cessation of function is not enough to declare death. Irreversibility should be limited to an organism's ability to 'restart' itself after vital organs have ceased to function. However, this would mean that every hour people who cannot be revived without the intervention of medical personnel and their technology are coming back from the dead. However, the alternative of irreversibility being dependent upon technology will lead to even more counterintuitive results such as: some people are dead at a particular time and place, but others in more technologically advanced eras and locations are alive despite their being in identical physical states; in the future, millions of cryogeneically frozen human beings could spend centuries in a non-dead state because of the future technological breakthroughs; or large numbers of 'frozen' people are dead for aeons but coroners are not able to declare them so because they are unaware of what biological conditions science will never be able to reverse. So death should be defined only in non-relational biological terms, with a self-starting condition similar to that once advocated by Lawrence Becker.

  16. Thermodynamic performance optimization for an irreversible vacuum thermionic generator

    NASA Astrophysics Data System (ADS)

    Chen, Lingen; Ding, Zemin; Zhou, Junle; Wang, Wenhua; Sun, Fengrui

    2017-07-01

    Theoretical model of an irreversible vacuum thermionic generator considering external and internal finite rate heat transfer is established in this paper. By assuming radiative heat transfer processes, the general expressions of performance parameters are derived based on non-equilibrium thermodynamics and finite-time thermodynamics (FTT). The thermodynamic performances of the irreversible thermionic device are further analyzed and optimized by using the FTT theory with multiple optimization criteria such as power output, efficiency, ecological function, and efficient power. The influences of design parameters, such as output voltage, collector work function and heat reservoir temperature, on optimal performance are analyzed in detail by numerical calculations. By properly choosing the work function and output voltage, the thermionic generator can be tuned to operate in the optimal condition with maximum power or efficiency. By comparing the device performance at different design points, the optimal operation regions of power and efficiency of the irreversible thermionic generator are determined. The obtained results are of theoretical significance for the optimal design of practical solar-powered thermionic generators.

  17. Lagrangian view of time irreversibility of fluid turbulence

    NASA Astrophysics Data System (ADS)

    Xu, HaiTao; Pumir, Alain; Bodenschatz, Eberhard

    2016-01-01

    A turbulent flow is maintained by an external supply of kinetic energy, which is eventually dissipated into heat at steep velocity gradients. The scale at which energy is supplied greatly differs from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for singleparticle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.

  18. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    PubMed

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  19. Advanced Caries Microbiota in Teeth with Irreversible Pulpitis.

    PubMed

    Rôças, Isabela N; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Bracks, Igor V; Siqueira, José F

    2015-09-01

    Bacterial taxa in the forefront of caries biofilms are candidate pathogens for irreversible pulpitis and are possibly the first ones to invade the pulp and initiate endodontic infection. This study examined the microbiota of the most advanced layers of dentinal caries in teeth with irreversible pulpitis. DNA extracted from samples taken from deep dentinal caries associated with pulp exposures was analyzed for the presence and relative levels of 33 oral bacterial taxa by using reverse-capture checkerboard hybridization assay. Quantification of total bacteria, streptococci, and lactobacilli was also performed by using real-time quantitative polymerase chain reaction. Associations between the target bacterial taxa and clinical signs/symptoms were also evaluated. The most frequently detected taxa in the checkerboard assay were Atopobium genomospecies C1 (53%), Pseudoramibacter alactolyticus (37%), Streptococcus species (33%), Streptococcus mutans (33%), Parvimonas micra (13%), Fusobacterium nucleatum (13%), and Veillonella species (13%). Streptococcus species, Dialister invisus, and P. micra were significantly associated with throbbing pain, S. mutans with pain to percussion, and Lactobacillus with continuous pain (P < .05). Quantitative polymerase chain reaction revealed a mean total bacterial load of 1 × 10(8) (range, 2.05 × 10(5) to 4.5 × 10(8)) cell equivalents per milligram (wet weight) of dentin. Streptococci and lactobacilli were very prevalent but comprised only 0.09% and 2% of the whole bacterial population, respectively. Several bacterial taxa were found in advanced caries lesions in teeth with exposed pulps, and some of them were significantly associated with symptoms. A role for these taxa in the etiology of irreversible pulpitis is suspected. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Testing time series irreversibility using complex network methods

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Donner, Reik V.; Kurths, Jürgen

    2013-04-01

    The absence of time-reversal symmetry is a fundamental property of many nonlinear time series. Here, we propose a new set of statistical tests for time series irreversibility based on standard and horizontal visibility graphs. Specifically, we statistically compare the distributions of time-directed variants of the common complex network measures degree and local clustering coefficient. Our approach does not involve surrogate data and is applicable to relatively short time series. We demonstrate its performance for paradigmatic model systems with known time-reversal properties as well as for picking up signatures of nonlinearity in neuro-physiological data.

  1. On Irreversibility and Radiation in Classical Electrodynamics of Point Particles

    NASA Astrophysics Data System (ADS)

    Bauer, Gernot; Deckert, Dirk-André; Dürr, Detlef; Hinrichs, Günter

    2013-09-01

    The direct interaction theory of electromagnetism, also known as Wheeler-Feynman electrodynamics, is often misinterpreted and found unappealing because of its reference to the absorber and, more importantly, to the so-called absorber condition. Here we remark that the absorber condition is indeed questionable and presumably not relevant for the explanation of irreversible radiation phenomena in our universe. What is relevant and deserves further scrutiny is the emergent effective description of a source particle in an environment. We therefore rephrase what we consider the relevant calculation by Wheeler and Feynman and comment on the status of the theory.

  2. Irreversible shear-activated aggregation in non-Brownian suspensions.

    PubMed

    Guery, J; Bertrand, E; Rouzeau, C; Levitz, P; Weitz, D A; Bibette, J

    2006-05-19

    We have studied the effect of shear on the stability of suspensions made of non-Brownian solid particles. We demonstrate the existence of an irreversible transition where the solid particles aggregate at remarkably low volume fractions (phi approximately 0.1). This shear-induced aggregation is dramatic and exhibits a very sudden change in the viscosity, which increases sharply after a shear-dependent induction time. We show that this induction time is related exponentially to the shear rate, reflecting the importance of the hydrodynamic forces in reducing the repulsive energy barrier that prevents the particles from aggregating.

  3. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    PubMed

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  4. Reversible and irreversible magnetoresistance of quasisingle domain permalloy microstructures

    NASA Astrophysics Data System (ADS)

    Steiner, M.; Pels, C.; Meier, G.

    2004-06-01

    Permalloy microstructures are investigated by magnetoresistance measurements at 2.0 K and by magnetic-force microscopy at room temperature. While the reversible anisotropic magnetoresistance is determined to be 2.4% at saturation fields of Bsat=1020 mT, the irreversible switching yields a resistance change of the order of 0.05% at 13 mT. By tilting the external magnetic field relative to the easy axis of the quasi single-domain microstructures insight in the reversal process is gained. Comparison with an analytical model provides evidence for magnetization reversal by curling.

  5. Intrinsic irreversibility limits the efficiency of multidimensional molecular motors

    NASA Astrophysics Data System (ADS)

    Jack, M. W.; Tumlin, C.

    2016-05-01

    We consider the efficiency limits of Brownian motors able to extract work from the temperature difference between reservoirs or from external thermodynamic forces. These systems can operate in a variety of modes, including as isothermal engines, heat engines, refrigerators, and heat pumps. We derive analytical results showing that certain classes of multidimensional Brownian motor, including the Smoluchowski-Feynman ratchet, are unable to attain perfect efficiency (Carnot efficiency for heat engines). This demonstrates the presence of intrinsic irreversibilities in their operating mechanism. We present numerical simulations showing that in some cases the loss process that limits efficiency is associated with vortices in the probability current.

  6. Intrinsic irreversibility limits the efficiency of multidimensional molecular motors.

    PubMed

    Jack, M W; Tumlin, C

    2016-05-01

    We consider the efficiency limits of Brownian motors able to extract work from the temperature difference between reservoirs or from external thermodynamic forces. These systems can operate in a variety of modes, including as isothermal engines, heat engines, refrigerators, and heat pumps. We derive analytical results showing that certain classes of multidimensional Brownian motor, including the Smoluchowski-Feynman ratchet, are unable to attain perfect efficiency (Carnot efficiency for heat engines). This demonstrates the presence of intrinsic irreversibilities in their operating mechanism. We present numerical simulations showing that in some cases the loss process that limits efficiency is associated with vortices in the probability current.

  7. Microscopic time-reversibility and macroscopic irreversibility: Still a paradox

    SciTech Connect

    Posch, H.A.; Dellago, Ch.; Hoover, W.G.; Kum, O. |

    1995-09-13

    Microscopic time reversibility and macroscopic irreversibility are a paradoxical combination. This was first observed by J. Loschmidt in 1876 and was explained, for conservative systems, by L. Boltzmann the following year. Both these features are also present in modern simulations of classic many-body systems in steady nonequilibrium states. We illustrate them here for the simplest possible models, a continuous one-dimensional model of field-driven diffusion, the so-called driven Lorentz gas or Galton Board, and an ergodic time reversible dissipative map.

  8. Irreversible electroporation of hepatocellular carcinoma: patient selection and perspectives

    PubMed Central

    Zimmerman, Asha; Grand, David; Charpentier, Kevin P

    2017-01-01

    Irreversible electroporation (IRE) is a novel form of tissue ablation that uses high-current electrical pulses to induce pore formation of the cell lipid bilayer, leading to cell death. The safety of IRE for ablation of hepatocellular carcinoma (HCC) has been established. Outcome data for ablation of HCC by IRE are limited, but early results are encouraging and suggest equivalency to the outcomes obtained for thermal ablation for appropriately selected, small (<3 cm) tumors. Long-term oncologic efficacy and histopathologic response data have not been published, and therefore, application of IRE for the treatment of HCC should still be viewed with caution. PMID:28331845

  9. The irreversibly comatose: respect for the subhuman in human life.

    PubMed

    Rolston, H

    1982-11-01

    In the case of the irreversibly comatose patient, though no personal consciousness remains, some moral duty is owed the remaining biological life. Such an ending to human life, if pathetic, is also both intelligible and meaningful in a biological and evolutionary perspective. By distinguishing between the human subjective life and the spontaneous objective life, we can recognize a naturalistic principle in medical ethics, contrary to a current tendency to defend purely humanistic norms. This principle has applications in clinical care in the definition of death, in the use of life support therapy, in distinguishing ordinary from extraordinary therapy, in evaluating euthanasia, and in the extent of appropriate medical intervention in terminal cases.

  10. Critical behavior of an irreversible multiple-reaction process

    NASA Astrophysics Data System (ADS)

    Albano, Ezequiel V.

    1994-04-01

    A multiple-reaction irreversible surface reaction model (M-R) involving one monomer (A) and two different dimers (B 2 and C 2) is proposed and studied by means of Monte Carlo simulations. In the absence of the monomer species the M-R model reduces to the DD model (Maltz et al. Surf. Sci. 277 (1992) 414), while in the absence of one of the dimer species the M-R gives the ZGB model (Ziff et al. Phys. Rev. Lett. 56 (1986) 2553). The M-R model is suitable to investigate: on the one hand, the influence caused by the presence of H 2-traces (H 2 is C 2) on the catalytic oxidation of carbon monoxide, e.g. A + {1}/{2})B 2 → AB where A is CO, B 2 is O 2 and AB is CO 2, and on the other hand, the effect of CO-traces on the catalytic oxidation of hydrogen, e.g. ( {1}/{2})B 2 + C 2 → C 2B. Furthermore, the M-R model exhibits irreversible phase transitions (IPTs) between poisoned states with the surface saturated by adsorbed species and reactive regimes with production of both AB and C 2B. The critical points at which the first and second-order IPTs characteristic of the M-R take place are determined. Interesting theoretical possibilities which become opened when studying the observed critical behavior of the M-R model are discussed.

  11. Voter model with arbitrary degree dependence: clout, confidence and irreversibility

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2014-03-01

    The voter model is widely used to model opinion dynamics in society. In this paper, we propose three modifications to incorporate heterogeneity into the model. We address the corresponding oversimplifications of the conventional voter model which are unrealistic. We first consider the voter model with popularity bias. The influence of each node on its neighbors depends on its degree. We find the consensus probabilities and expected consensus times for each of the states. We also find the fixation probability, which is the probability that a single node whose state differs from every other node imposes its state on the entire system. In addition, we find the expected fixation time. Then two other extensions to the model are proposed and the motivations behind them are discussed. The first one is confidence, where in addition to the states of neighbors, nodes take their own state into account at each update. We repeat the calculations for the augmented model and investigate the effects of adding confidence to the model. The second proposed extension is irreversibility, where one of the states is given the property that once nodes adopt it, they cannot switch back. This is motivated by applications where, agents take an irreversible action such as seeing a movie, purchasing a music album online, or buying a new product. The dynamics of densities, fixation times and consensus times are obtained.

  12. Carnot's cycle for small systems: irreversibility and cost of operations

    PubMed

    Sekimoto; Takagi; Hondou

    2000-12-01

    In the thermodynamic limit, the existence of a maximal efficiency of energy conversion attainable by a Carnot cycle consisting of quasistatic isothermal and adiabatic processes precludes the existence of a perpetual machine of the second kind, whose cycles yield positive work in an isothermal environment. We employ the recently developed framework of the energetics of stochastic processes (called "stochastic energetics") to reanalyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that in this nonmacroscopic situation both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy conversion over many cycles and the irreversible property of isolated, purely mechanical processes under external "macroscopic" operations are discussed in relation to the impossibility of a perpetual machine, or Maxwell's demon. This analysis may serve as the basis for the design and analysis of mesoscopic energy converters in the near future.

  13. Irreversible entropy model for damage diagnosis in resistors

    SciTech Connect

    Cuadras, Angel Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos

    2015-10-28

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.

  14. Essays on oil price volatility and irreversible investment

    NASA Astrophysics Data System (ADS)

    Pastor, Daniel J.

    In chapter 1, we provide an extensive and systematic evaluation of the relative forecasting performance of several models for the volatility of daily spot crude oil prices. Empirical research over the past decades has uncovered significant gains in forecasting performance of Markov Switching GARCH models over GARCH models for the volatility of financial assets and crude oil futures. We find that, for spot oil price returns, non-switching models perform better in the short run, whereas switching models tend to do better at longer horizons. In chapter 2, I investigate the impact of volatility on firms' irreversible investment decisions using real options theory. Cost incurred in oil drilling is considered sunk cost, thus irreversible. I collect detailed data on onshore, development oil well drilling on the North Slope of Alaska from 2003 to 2014. Volatility is modeled by constructing GARCH, EGARCH, and GJR-GARCH forecasts based on monthly real oil prices, and realized volatility from 5-minute intraday returns of oil futures prices. Using a duration model, I show that oil price volatility generally has a negative relationship with the hazard rate of drilling an oil well both when aggregating all the fields, and in individual fields.

  15. MTA pulpotomy of human permanent molars with irreversible pulpitis.

    PubMed

    Eghbal, Mohammad Jafar; Asgary, Saeed; Baglue, Reza Ali; Parirokh, Masoud; Ghoddusi, Jamileh

    2009-04-01

    The histological success of mineral trioxide aggregate (MTA) pulpotomy for treatment of irreversible pulpitis in human teeth as an alternative treatment was investigated in this study. Fourteen molars which had to be extracted were selected from patients 16-28 years old. The selection criteria include carious pulp exposure with a history of lingering pain. After isolation, caries removal and pulp exposure, MTA was used in pulpotomy treatment. Patients were evaluated for pain after 24 h. Two patients were lost from this study. Twelve teeth were extracted after 2 months and were assessed histologically. Recall examinations confirmed that none of the patients experienced pain after pulpotomy. Histological observation revealed that all samples had dentin bridge formation completely and that the pulps were vital and free of inflammation. Although the results favour the use of MTA as a pulpotomy material, more studies with larger samples and a longer recall period are suggested to justify the use of MTA for treatment of irreversible pulpitis in human permanent teeth.

  16. Molecular control of irreversible bistability during trypanosome developmental commitment

    PubMed Central

    Domingo-Sananes, Maria Rosa; Szöőr, Balazs; Ferguson, Michael A.J.

    2015-01-01

    The life cycle of Trypanosoma brucei involves developmental transitions that allow survival, proliferation, and transmission of these parasites. One of these, the differentiation of growth-arrested stumpy forms in the mammalian blood into insect-stage procyclic forms, can be induced synchronously in vitro with cis-aconitate. Here, we show that this transition is an irreversible bistable switch, and we map the point of commitment to differentiation after exposure to cis-aconitate. This irreversibility implies that positive feedback mechanisms operate to allow commitment (i.e., the establishment of “memory” of exposure to the differentiation signal). Using the reversible translational inhibitor cycloheximide, we show that this signal memory requires new protein synthesis. We further performed stable isotope labeling by amino acids in cell culture to analyze synchronized parasite populations, establishing the protein and phosphorylation profile of parasites pre- and postcommitment, thereby defining the “commitment proteome.” Functional interrogation of this data set identified Nek-related kinase as the first-discovered protein kinase controlling the initiation of differentiation to procyclic forms. PMID:26483558

  17. Endovascular nonthermal irreversible electroporation: a finite element analysis.

    PubMed

    Maor, Elad; Rubinsky, Boris

    2010-03-01

    Tissue ablation finds an increasing use in modern medicine. Nonthermal irreversible electroporation (NTIRE) is a biophysical phenomenon and an emerging novel tissue ablation modality, in which electric fields are applied in a pulsed mode to produce nanoscale defects to the cell membrane phospholipid bilayer, in such a way that Joule heating is minimized and thermal damage to other molecules in the treated volume is reduced while the cells die. Here we present a two-dimensional transient finite element model to simulate the electric field and thermal damage to the arterial wall due to an endovascular NTIRE novel device. The electric field was used to calculate the Joule heating effect, and a transient solution of the temperature is presented using the Pennes bioheat equation. This is followed by a kinetic model of the thermal damage based on the Arrhenius formulation and calculation of the Henriques and Moritz thermal damage integral. The analysis shows that the endovascular application of 90, 100 mus pulses with a potential difference of 600 V can induce electric fields of 1000 V/cm and above across the entire arterial wall, which are sufficient for irreversible electroporation. The temperature in the arterial wall reached a maximum of 66.7 degrees C with a pulse frequency of 4 Hz. Thermal damage integral showed that this protocol will thermally damage less than 2% of the molecules around the electrodes. In conclusion, endovascular NTIRE is possible. Our study sets the theoretical basis for further preclinical and clinical trials with endovascular NTIRE.

  18. A Perspective on the Kinetics of Covalent and Irreversible Inhibition.

    PubMed

    Strelow, John M

    2017-01-01

    The clinical and commercial success of covalent drugs has prompted a renewed and more deliberate pursuit of covalent and irreversible mechanisms within drug discovery. A covalent mechanism can produce potent inhibition in a biochemical, cellular, or in vivo setting. In many cases, teams choose to focus on the consequences of the covalent event, defined by an IC50 value. In a biochemical assay, the IC50 may simply reflect the target protein concentration in the assay. What has received less attention is the importance of the rate of covalent modification, defined by kinact/KI. The kinact/KI is a rate constant describing the efficiency of covalent bond formation resulting from the potency (KI) of the first reversible binding event and the maximum potential rate (kinact) of inactivation. In this perspective, it is proposed that the kinact/KI should be employed as a critical parameter to identify covalent inhibitors, interpret structure-activity relationships (SARs), translate activity from biochemical assays to the cell, and more accurately define selectivity. It is also proposed that a physiologically relevant kinact/KI and an (unbound) AUC generated from a pharmacokinetic profile reflecting direct exposure of the inhibitor to the target protein are two critical determinants of in vivo covalent occupancy. A simple equation is presented to define this relationship and improve the interpretation of covalent and irreversible kinetics.

  19. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors

    PubMed Central

    Johnson, Douglas S; Weerapana, Eranthie; Cravatt, Benjamin F

    2010-01-01

    This article presents several covalent inhibitors, including examples of successful drugs, as well as highly selective, irreversible inhibitors of emerging therapeutic targets, such as fatty acid amide hydolase. Covalent inhibitors have many desirable features, including increased biochemical efficiency of target disruption, less sensitivity toward pharmacokinetic parameters and increased duration of action that outlasts the pharmacokinetics of the compound. Safety concerns that must be mitigated include lack of specificity and the potential immunogenicity of protein–inhibitor adduct(s). Particular attention will be given to recent technologies, such as activity-based protein profiling, which allow one to define the proteome-wide selectivity patterns for covalent inhibitors in vitro and in vivo. For instance, any covalent inhibitor can, in principle, be modified with a ‘clickable’ tag to generate an activity probe that is almost indistinguishable from the original agent. These probes can be applied to any living system across a broad dose range to fully inventory their on and off targets. The substantial number of drugs on the market today that act by a covalent mechanism belies historical prejudices against the development of irreversibly acting therapeutic small molecules. Emerging proteomic technologies offer a means to systematically discriminate safe (selective) versus deleterious (nonselective) covalent inhibitors and thus should inspire their future design and development. PMID:20640225

  20. Preventing Scars after Injury with Partial Irreversible Electroporation.

    PubMed

    Golberg, Alexander; Villiger, Martin; Khan, Saiqa; Quinn, Kyle P; Lo, William C Y; Bouma, Brett E; Mihm, Martin C; Austen, William G; Yarmush, Martin L

    2016-11-01

    Preventing the formation of hypertrophic scars, especially those that are a result of major trauma or burns, would have enormous impact in the fields of regenerative and trauma medicine. In this report, we introduce a noninvasive method to prevent scarring based on nonthermal partial irreversible electroporation. Contact burn injuries in rats were treated with varying treatment parameters to optimize the treatment protocol. Scar surface area and structural properties of the scar were assessed with histology and non-invasive, longitudinal imaging with polarization-sensitive optical coherence tomography. We found that partial irreversible electroporation using 200 pulses of 250 V and 70 μs duration, delivered at 3 Hz every 20 days during a total of five therapy sessions after the initial burn injury, resulted in a 57.9% reduction of the scar area compared with untreated scars and structural features approaching those of normal skin. Unlike humans, rats do not develop hypertrophic scars. Therefore, the use of a rat animal model is the limiting factor of this work.

  1. Linear Dimensional Stability of Irreversible Hydrocolloid Materials Over Time.

    PubMed

    Garrofé, Analía B; Ferrari, Beatriz A; Picca, Mariana; Kaplan, Andrea E

    2015-12-01

    The aim of this study was to evaluate the linear dimensional stability of different irreversible hydrocolloid materials over time. A metal mold was designed with custom trays made of thermoplastic sheets (Sabilex, sheets 0.125 mm thick). Perforations were made in order to improve retention of the material. Five impressions were taken with each of the following: Kromopan 100 (LASCOD) [AlKr], which has dimensional stability of 100 hours, and Phase Plus (ZHERMACK) [AlPh], which has dimensional stability of 48 hours. Standardized digital photographs were taken at different time intervals (0, 15, 30, 45, 60, 120 minutes; 12, 24 and 96 hours), using an "ad-hoc" device. The images were analyzed with software (UTHSCSA Image Tool) by measuring the distance between intersection of the lines previously made at the top of the mold. The results were analyzed by ANOVA for repeated measures. Initial and final values were (mean and standard deviation): AlKr: 16.44 (0.22) and 16.34 (0.11), AlPh: 16.40 (0.06) and 16.18 (0.06). Statistical evaluation showed significant effect of material and time factors. Under the conditions in this study, time significantly affects the linear dimensional stability of irreversible hydrocolloid materials.

  2. Frequency spectroscopy of irreversible electrochemical nucleation kinetics on the nanoscale

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Chen, Chi; Arruda, Thomas M.; Jesse, Stephen; Ciucci, Francesco; Kalinin, Sergei V.

    2013-11-01

    An approach is developed for probing the thermodynamics and kinetics of irreversible electrochemical reactions on solid surfaces based on local frequency-voltage spectroscopy. For a model Li-ion conductor surface, two regimes for bias-controlled behavior are demonstrated and ascribed to the difference in the critical nucleus size. The electrostatic and electrochemical phenomena at the tip-surface junction are analyzed. These studies suggest an experimental pathway for exploring local electrochemical activity in solids.An approach is developed for probing the thermodynamics and kinetics of irreversible electrochemical reactions on solid surfaces based on local frequency-voltage spectroscopy. For a model Li-ion conductor surface, two regimes for bias-controlled behavior are demonstrated and ascribed to the difference in the critical nucleus size. The electrostatic and electrochemical phenomena at the tip-surface junction are analyzed. These studies suggest an experimental pathway for exploring local electrochemical activity in solids. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03953f

  3. From Maximum Entropy Models to Non-Stationarity and Irreversibility

    NASA Astrophysics Data System (ADS)

    Cofre, Rodrigo; Cessac, Bruno; Maldonado, Cesar

    The maximum entropy distribution can be obtained from a variational principle. This is important as a matter of principle and for the purpose of finding approximate solutions. One can exploit this fact to obtain relevant information about the underlying stochastic process. We report here in recent progress in three aspects to this approach.1- Biological systems are expected to show some degree of irreversibility in time. Based on the transfer matrix technique to find the spatio-temporal maximum entropy distribution, we build a framework to quantify the degree of irreversibility of any maximum entropy distribution.2- The maximum entropy solution is characterized by a functional called Gibbs free energy (solution of the variational principle). The Legendre transformation of this functional is the rate function, which controls the speed of convergence of empirical averages to their ergodic mean. We show how the correct description of this functional is determinant for a more rigorous characterization of first and higher order phase transitions.3- We assess the impact of a weak time-dependent external stimulus on the collective statistics of spiking neuronal networks. We show how to evaluate this impact on any higher order spatio-temporal correlation. RC supported by ERC advanced Grant ``Bridges'', BC: KEOPS ANR-CONICYT, Renvision and CM: CONICYT-FONDECYT No. 3140572.

  4. Influence of delayed pouring on irreversible hydrocolloid properties.

    PubMed

    Rodrigues, Stéfani Becker; Augusto, Carolina Rocha; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2012-01-01

    The aim of this study was to evaluate the physical properties of irreversible hydrocolloid materials poured immediately and after different storage periods. Four alginates were tested: Color Change (Cavex); Hydrogum (Zhermack); Hydrogum 5 (Zhermack); and Hydro Print Premium (Coltene). Their physical properties, including the recovery from deformation (n = 3), compressive strength (n = 3), and detail reproduction and gypsum compatibility (n = 3), were analyzed according to ANSI/ADA specification no. 18. Specimens were stored at 23ºC and humidity and were then poured with gypsum immediately and after 1, 2, 3, 4, and 5 days. The data were analyzed by two-way analysis of variance (ANOVA) and Tukey's test at p < 0.05. All of the alginate impression materials tested exhibited detail reproduction and gypsum compatibility at all times. Hydro Print Premium and Hydrogum 5 showed recovery from deformation, as established by ANSI/ADA specification no. 18, after 5 days of storage. As the storage time increased, the compressive strength values also increased. Considering the properties of compounds' recovery from deformation, compressive strength, and detail reproduction and gypsum compatibility, irreversible hydrocolloids should be poured immediately.

  5. Evidence of irreversible CO2 intercalation in montmorillonite

    SciTech Connect

    Romanov, V

    2013-02-13

    Mitigation of the global climate change via sequestration of anthropogenic carbon dioxide (CO2) in geologic formations requires assessment of the reservoir storage capacity and cap rock seal integrity. The typical cap rock is shale or mudstone rich in clay minerals that may significantly affect the effectiveness of the CO2 trapping. Specific objectives of this study were to conduct experimental investigation into the processes associated with CO2 and H2O trapped in swelling clay, namely, Wyoming and Texas montmorillonite powder. Combined (same-sample) multi-technique data ? manometric sorption isotherm hysteresis, diffuse reflectance infrared spectroscopy ?trapped CO2? fingerprints, irreversible X-ray diffraction patterns for the clay interlayer in intermediate hydration state, and HF acid digestion resulting in formation of non-extractable F:CO2 adducts ? corroborate a hypothesis that carbon dioxide molecules can be irreversibly trapped via anomalous extreme confinement in the galleries associated with montmorillonite interlayer, which may result in formation of carbonates in the longer term. Validation on Arizona montmorillonite lumps substantiated the evidence that such processes may occur in natural clay deposits but possibly on a different scale and at a different rate.

  6. Irreversibility in physics stemming from unpredictable symbol-handling agents

    NASA Astrophysics Data System (ADS)

    Myers, John M.; Madjid, F. Hadi

    2016-05-01

    The basic equations of physics involve a time variable t and are invariant under the transformation t --> -t. This invariance at first sight appears to impose time reversibility as a principle of physics, in conflict with thermodynamics. But equations written on the blackboard are not the whole story in physics. In prior work we sharpened a distinction obscured in today's theoretical physics, the distinction between obtaining evidence from experiments on the laboratory bench and explaining that evidence in mathematical symbols on the blackboard. The sharp distinction rests on a proof within the mathematics of quantum theory that no amount of evidence, represented in quantum theory in terms of probabilities, can uniquely determine its explanation in terms of wave functions and linear operators. Building on the proof we show here a role in physics for unpredictable symbol-handling agents acting both at the blackboard and at the workbench, communicating back and forth by means of transmitted symbols. Because of their unpredictability, symbol-handling agents introduce a heretofore overlooked source of irreversibility into physics, even when the equations they write on the blackboard are invariant under t --> -t. Widening the scope of descriptions admissible to physics to include the agents and the symbols that link theory to experiments opens up a new source of time-irreversibility in physics.

  7. Carnot's cycle for small systems: Irreversibility and cost of operations

    NASA Astrophysics Data System (ADS)

    Sekimoto, Ken; Takagi, Fumiko; Hondou, Tsuyoshi

    2000-12-01

    In the thermodynamic limit, the existence of a maximal efficiency of energy conversion attainable by a Carnot cycle consisting of quasistatic isothermal and adiabatic processes precludes the existence of a perpetual machine of the second kind, whose cycles yield positive work in an isothermal environment. We employ the recently developed framework of the energetics of stochastic processes (called ``stochastic energetics'') to reanalyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit. We find that in this nonmacroscopic situation both processes of connection to and disconnection from heat baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irreversibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy conversion over many cycles and the irreversible property of isolated, purely mechanical processes under external ``macroscopic'' operations are discussed in relation to the impossibility of a perpetual machine, or Maxwell's demon. This analysis may serve as the basis for the design and analysis of mesoscopic energy converters in the near future.

  8. Percutaneous irreversible electroporation of a renal tumor: Anesthetic management.

    PubMed

    de la Flor-Robledo, M; Solís-Muñoz, P; Sanjuán-Álvarez, M; Abadal-Villayandre, J M; Asensio-Merino, F

    2016-01-01

    Percutaneous irreversible electroporation (IRE) is a novel tumour ablation method. The application of short and high-voltage electrical pulses to the target lesion induces alterations in cell membrane permeability, finally causing tumour cell death. The extremely high-voltage that is needed in this technique requires the surveillance and management of an experienced anaesthesiologist, as it involves a significant risk of complications, such as cardiac arrhythmias or seizures. The case is presented of a 66 year-old patient diagnosed with a renal adenocarcinoma, and who received without intention-to-cure IRE under general anaesthesia. This case represents the first time this type of technique is used in Spain. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Sub-kBT micro-electromechanical irreversible logic gate.

    PubMed

    López-Suárez, M; Neri, I; Gammaitoni, L

    2016-06-28

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed.

  10. Irreversible Adsorption Governs the Equilibration of Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Panagopoulou, Anna; Napolitano, Simone

    2017-09-01

    We demonstrate that the enhanced segmental motion commonly observed in spin cast thin polymer films is a nonequilibrium phenomenon. In the presence of nonrepulsive interfaces, prolonged annealing in the liquid state allows, in fact, recovering bulk segmental mobility. Our measurements prove that, while the fraction of unrelaxed chains increases upon nanoconfinement, the dynamics of equilibration is almost unaffected by the film thickness. We show that the rate of equilibration of nanoconfined chains does not depend on the structural relaxation process but on the feasibility to form an adsorbed layer. We propose that the equilibration of the thin polymer melts is driven by the slow relaxation of interfacial chains upon irreversible adsorption on the confining walls.

  11. Sub-kBT micro-electromechanical irreversible logic gate

    NASA Astrophysics Data System (ADS)

    López-Suárez, M.; Neri, I.; Gammaitoni, L.

    2016-06-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input-output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed.

  12. Sub-kBT micro-electromechanical irreversible logic gate

    PubMed Central

    López-Suárez, M.; Neri, I.

    2016-01-01

    In modern computers, computation is performed by assembling together sets of logic gates. Popular gates like AND, OR and XOR, processing two logic inputs and yielding one logic output, are often addressed as irreversible logic gates, where the sole knowledge of the output logic value is not sufficient to infer the logic value of the two inputs. Such gates are usually believed to be bounded to dissipate a finite minimum amount of energy determined by the input–output information difference. Here we show that this is not necessarily the case, by presenting an experiment where a OR logic gate, realized with a micro-electromechanical cantilever, is operated with energy well below the expected limit, provided the operation is slow enough and frictional phenomena are properly addressed. PMID:27350333

  13. Non-thermal irreversible electroporation for deep intracranial disorders.

    PubMed

    Garcia, Paulo A; Neal, Robert E; Rossmeisl, John H; Davalos, Rafael V

    2010-01-01

    Non-thermal irreversible electroporation (N-TIRE) is a new minimally invasive technique to kill undesirable tissue. We build on our previous intracranial studies in order to evaluate the possibility of using N-TIRE for deep intracranial disorders. In this manuscript we describe a minimally invasive computed tomography (CT) guided N-TIRE procedure in white matter. In addition, we report the electric field threshold needed for white matter ablation (630 - 875 V/cm) using four sets of twenty 50 µs pulses at a voltage-to-distance ratio of 1000 V/cm. We also confirm the non-thermal aspect of the technique with real time temperature data measured at the electrode-tissue interface.

  14. Large-cell Monte Carlo renormalization of irreversible growth processes

    NASA Technical Reports Server (NTRS)

    Nakanishi, H.; Family, F.

    1985-01-01

    Monte Carlo sampling is applied to a recently formulated direct-cell renormalization method for irreversible, disorderly growth processes. Large-cell Monte Carlo renormalization is carried out for various nonequilibrium problems based on the formulation dealing with relative probabilities. Specifically, the method is demonstrated by application to the 'true' self-avoiding walk and the Eden model of growing animals for d = 2, 3, and 4 and to the invasion percolation problem for d = 2 and 3. The results are asymptotically in agreement with expectations; however, unexpected complications arise, suggesting the possibility of crossovers, and in any case, demonstrating the danger of using small cells alone, because of the very slow convergence as the cell size b is extrapolated to infinity. The difficulty of applying the present method to the diffusion-limited-aggregation model, is commented on.

  15. Citrate synthesis in intact rat-liver mitochondria is irreversible.

    PubMed

    Greksák, M; Lopes-Cardozo, M; van den Bergh, S G

    1982-02-01

    Rat-liver mitochondria were incubated with [1,5-14C]citrate in the presence of fluorocitrate to block its oxidation in the Krebs cycle. The reaction products were analysed enzymatically and by anion-exchange chromatography. Incorporation of 14C into acetyl-L-carnitine or ketone bodies via a backward action of citrate synthase was not observed. The optimal rate of citrate synthesis from pyruvate and malate in the presence of fluorocitrate was 15 nmol . mg-1 min-1. In the absence of fluorocitrate, but in the presence of malonate, citrate was oxidized to succinate at a rate of 4 nmol . mg-1 . min-1. We conclude that the synthesis of citrate by intact rat liver mitochondria is an irreversible process. The possible mechanism underlying this phenomenon and the consequence for metabolic regulation are discussed.

  16. Ac irreversibility line of bismuth-based high temperature superconductors

    SciTech Connect

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  17. Exact solutions for mass-dependent irreversible aggregations.

    PubMed

    Son, Seung-Woo; Christensen, Claire; Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya

    2011-10-01

    We consider the mass-dependent aggregation process (k+1)X→X, given a fixed number of unit mass particles in the initial state. One cluster is chosen proportional to its mass and is merged into one, either with k neighbors in one dimension, or--in the well-mixed case--with k other clusters picked randomly. We find the same combinatorial exact solutions for the probability to find any given configuration of particles on a ring or line, and in the well-mixed case. The mass distribution of a single cluster exhibits scaling laws and the finite-size scaling form is given. The relation to the classical sum kernel of irreversible aggregation is discussed.

  18. Rat liver regeneration following ablation with irreversible electroporation.

    PubMed

    Golberg, Alexander; Bruinsma, Bote G; Jaramillo, Maria; Yarmush, Martin L; Uygun, Basak E

    2016-01-01

    During the past decade, irreversible electroporation (IRE) ablation has emerged as a promising tool for the treatment of multiple diseases including hepatic cancer. However, the mechanisms behind the tissue regeneration following IRE ablation have not been investigated. Our results indicate that IRE treatment immediately kills the cells at the treatment site preserving the extracellular architecture, in effect causing in vivo decellularization. Over the course of 4 weeks, progenitor cell differentiation, through YAP and notch pathways, together with hepatocyte expansion led to almost complete regeneration of the ablated liver leading to the formation of hepatocyte like cells at the ablated zone. We did not observe significant scarring or tumor formation at the regenerated areas 6 months post IRE. Our study suggests a new model to study the regeneration of liver when the naïve extracellular matrix is decellularized in vivo with completely preserved extracellular architecture.

  19. Irreversible energy gain by linear and nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Bauer, D.; Mulser, P.

    2005-01-01

    A particle can gain appreciable irreversible energy ("absorption") from linear or nonlinear oscillations only by ballistic excitation ("collision") or, if excited by an adiabatic pulse of constant frequency, by undergoing resonance. For the linear oscillator it is shown that the transition from ballistic to adiabatic behavior out of resonance occurs for sin2-pulses 2 4 eigenperiod long. In the case of a linear oscillator with time-varying eigenfrequency it is shown that Cornu's double spiral represents an attractor, either for zero energy gain out of resonance or finite gain by transiting through resonance. One of the remarkable properties of nonlinear oscillators is that resonance depends on the level of excitation. It is this property which opens a new access to understanding the dominant heating process at high laser intensities, the so-called collisionless absorption phase in solids, extended cluster media, dusty plasmas, and sprays, well guaranteed by experiments and computer simulations but hitherto not well understood in physical terms.

  20. Rat liver regeneration following ablation with irreversible electroporation

    PubMed Central

    Bruinsma, Bote G.; Jaramillo, Maria; Yarmush, Martin L.

    2016-01-01

    During the past decade, irreversible electroporation (IRE) ablation has emerged as a promising tool for the treatment of multiple diseases including hepatic cancer. However, the mechanisms behind the tissue regeneration following IRE ablation have not been investigated. Our results indicate that IRE treatment immediately kills the cells at the treatment site preserving the extracellular architecture, in effect causing in vivo decellularization. Over the course of 4 weeks, progenitor cell differentiation, through YAP and notch pathways, together with hepatocyte expansion led to almost complete regeneration of the ablated liver leading to the formation of hepatocyte like cells at the ablated zone. We did not observe significant scarring or tumor formation at the regenerated areas 6 months post IRE. Our study suggests a new model to study the regeneration of liver when the naïve extracellular matrix is decellularized in vivo with completely preserved extracellular architecture. PMID:26819842

  1. Inequivalent models of irreversible dimer filling: ``Transition state'' dependence

    NASA Astrophysics Data System (ADS)

    Nord, R. S.; Evans, J. W.

    1990-12-01

    Irreversible adsorption of diatomics on crystalline surfaces is sometimes modeled as random dimer filling of adjacent pairs of sites on a lattice. We note that this process can be implemented in two distinct ways: (i) randomly pick adjacent pairs of sites, jj', and fill jj' only if both are empty (horizontal transition state); or (ii) randomly pick a single site, j, and if j and at least one neighbor are empty, then fill j and a randomly chosen empty neighbor (vertical transition state). Here it is instructive to consider processes which also include competitive random monomer filling of single sites. We find that although saturation (partial) coverages differ little between the models for pure dimer filling, there is a significant difference for comparable monomer and dimer filling rates. We present exact results for saturation coverage behavior for a linear lattice, and estimates for a square lattice. Ramifications for simple models of CO oxidation on surfaces are indicated.

  2. Irreversible thermochromism in copper chloride Imidazolium Nanoparticle Networks.

    PubMed

    Kronstein, Martin; Kriechbaum, Konstantin; Akbarzadeh, Johanna; Peterlik, Herwig; Neouze, Marie-Alexandra

    2013-08-14

    In this work Imidazolium Nanoparticle Networks (INNs) with chloride counter-ions were used to complex copper dichloride. This complexation reaction leads to the formation of a green material. The properties of the copper INN material were compared to: first, copper imidazolium complexes, without the presence of silica nanoparticles, which are not thermochromic; second, chloride-containing INN material. The copper INN material showed irreversible thermochromic behaviour, with a clear colour change from green to yellow at 180 °C, which is due to a configuration change of the copper complex from planar to tetragonal. This structural change was studied using DSC and in situ SAXS measurements during heat treatment. The thermochromic material is stable under air up to 250 °C. This preliminary study opens the door of optical sensors for INN materials.

  3. Energy cascade and irreversibility in reversible shell models of turbulence

    NASA Astrophysics Data System (ADS)

    de Pietro, Massimo; Cencini, Massimo; Biferale, Luca; Boffetta, Guido

    2016-11-01

    Dissipation breaks the time reversibility of the Navier-Stokes equation. It has been conjectured that forced-dissipated Navier-Stokes equations are "equivalent" to a modified version of the equations in which the dissipative term is modified such as to preserve the time-inversion symmetry. This can be realized choosing a velocity dependent viscosity in such a way to preserve a global quantity, e.g. energy or enstrophy. Here we present results on shell models of turbulence where time reversibility is restored following the mechanism originally suggested. We show that when the time-dependent viscosity is chosen such as to conserve enstrophy, the resulting reversible dynamics exhibit an energy cascade, sharing the same features of the standard irreversible cascade. We acknowledge funding from ERC ADG NewTURB No. 339032.

  4. Advertising and Irreversible Opinion Spreading in Complex Social Networks

    NASA Astrophysics Data System (ADS)

    Candia, Julián

    Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order-disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.

  5. Large-cell Monte Carlo renormalization of irreversible growth processes

    NASA Technical Reports Server (NTRS)

    Nakanishi, H.; Family, F.

    1985-01-01

    Monte Carlo sampling is applied to a recently formulated direct-cell renormalization method for irreversible, disorderly growth processes. Large-cell Monte Carlo renormalization is carried out for various nonequilibrium problems based on the formulation dealing with relative probabilities. Specifically, the method is demonstrated by application to the 'true' self-avoiding walk and the Eden model of growing animals for d = 2, 3, and 4 and to the invasion percolation problem for d = 2 and 3. The results are asymptotically in agreement with expectations; however, unexpected complications arise, suggesting the possibility of crossovers, and in any case, demonstrating the danger of using small cells alone, because of the very slow convergence as the cell size b is extrapolated to infinity. The difficulty of applying the present method to the diffusion-limited-aggregation model, is commented on.

  6. [Irreversible coma following hypoglycemia in Sheehan syndrome with adrenocortical insufficiency].

    PubMed

    Sas, A M; Meynaar, I A; Laven, J S; Bakker, S L; Feelders, R A

    2003-08-23

    A 24-year-old woman of Somali origin delivered at term after an uncomplicated pregnancy. Post-partum haemorrhage resulted in hypovolaemic shock which was treated by hysterectomy. Five days later she became comatose due to unrecognised hypoglycaemia which caused severe irreversible brain damage and status epilepticus. Treatment in the intensive care unit with artificial respiration, prednisolone, desmopressin, inotropic support, barbiturates and an anaesthetic under EEG guidance was unsuccessful. The patient died 28 days post-partum. The hypoglycaemia was due to a combination of (a) inadequate glucose intake and (b) lack of counter-regulatory mechanisms due to a deficiency of steroids and growth hormone as a result of loss of pituitary function (Sheehan syndrome) together with adrenocortical insufficiency. The combination of Sheehan syndrome and primary adrenocortical insufficiency has not been described previously in the literature.

  7. The Social Cost of Stochastic and Irreversible Climate Change

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Judd, K. L.; Lontzek, T.

    2013-12-01

    Many scientists are worried about climate change triggering abrupt and irreversible events leading to significant and long-lasting damages. For example, a rapid release of methane from permafrost may lead to amplified global warming, and global warming may increase the frequency and severity of heavy rainfall or typhoon, destroying large cities and killing numerous people. Some elements of the climate system which might exhibit such a triggering effect are called tipping elements. There is great uncertainty about the impact of anthropogenic carbon and tipping elements on future economic wellbeing. Any rational policy choice must consider the great uncertainty about the magnitude and timing of global warming's impact on economic productivity. While the likelihood of tipping points may be a function of contemporaneous temperature, their effects are long lasting and might be independent of future temperatures. It is assumed that some of these tipping points might occur even in this century, but also that their duration and post-tipping impact are uncertain. A faithful representation of the possibility of tipping points for the calculation of social cost of carbon would require a fully stochastic formulation of irreversibility, and accounting for the deep layer of uncertainties regarding the duration of the tipping process and also its economic impact. We use DSICE, a DSGE extension of the DICE2007 model of William Nordhaus, which incorporates beliefs about the uncertain economic impact of possible climate tipping events and uses empirically plausible parameterizations of Epstein-Zin preferences to represent attitudes towards risk. We find that the uncertainty associated with anthropogenic climate change imply carbon taxes much higher than implied by deterministic models. This analysis indicates that the absence of uncertainty in DICE2007 and similar IAM models may result in substantial understatement of the potential benefits of policies to reduce GHG emissions.

  8. Performance of an irreversible quantum Carnot engine with spin 1/2

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Chen, Lingen; Wu, Shuang; Sun, Fengrui; Wu, Chih

    2006-06-01

    The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible Carnot cycle with spin 1/2. The optimal relationship between the dimensionless power output P* versus the efficiency η for the irreversible quantum Carnot engine with heat leakage and other irreversible losses is derived. Especially, the performances of the engine at low temperature limit and at high temperature limit are discussed.

  9. Evaluation of irreversible JPEG compression for a clinical ultrasound practice.

    PubMed

    Persons, Kenneth R; Hangiandreou, Nicholas J; Charboneau, Nicholas T; Charboneau, J; James, E; Douglas, Bruce R; Salmon, Ann P; Knudsen, John M; Erickson, Bradley J

    2002-03-01

    A prior ultrasound study indicated that images with low to moderate levels of JPEG and wavelet compression were acceptable for diagnostic purposes. The purpose of this study is to validate this prior finding using the Joint Photographic Experts Group (JPEG) baseline compression algorithm, at a compression ratio of approximately 10:1, on a sufficiently large number of grayscale and color ultrasound images to attain a statistically significant result. The practical goal of this study is to determine if it is feasible for radiologists to use irreversibly compressed images as an integral part of the day to day ultrasound practice (ie, perform primary diagnosis with, and store irreversibly compressed images in the ultrasound PACS archive). In this study, 5 Radiologists were asked to review 300 grayscale and color static ultrasound images selected from 4 major anatomic groups. Each image was compressed and decompressed using the JPEG baseline compression algorithm at a fixed quality factor resulting in an average compression ratio of approximately 9:1. The images were presented in pairs (original and compressed) in a blinded fashion on a PACS workstation in the ultrasound reading areas, and radiologists were asked to pick which image they preferred in terms of diagnostic utility and their degree of certainty (on a scale from 1 to 4). Of the 1499 total readings, 50.17% (95% confidence intervals at 47.6%, and 52.7%) indicated a preference for the original image in the pair, and 49.83% (95% confidence intervals at 47.3%, and 52.0%) indicated a preference for the compressed image. These findings led the authors to conclude that static color and gray-scale ultrasound images compressed with JPEG at approximately 9:1 are statistically indistinguishable from the originals for primary diagnostic purposes. Based on the authors laboratory experience with compression and the results of this and other prior studies, JPEG compression is now being applied to all ultrasound images in

  10. Roles of reversible and irreversible aggregation in sugar processing.

    PubMed

    Uchimiya, Minori

    2017-04-13

    Colloids (1-1000-nm particles) in sugarcane/beet juice originate from non-sucrose impurities (polyphenolic colorants, residual soil, polysaccharides) of the plant materials; additional colloids form during the high temperature processing. Colloids are reactive toward aggregation, sorption, desorption, and redox/hydrolysis/thermal transformation reactions. Both Derjaguin-Landau-Verwey-Overbeek (DLVO; van der Waals and electrostatic forces) and non-DLVO (involving hydrophilic colloids) interactions control the stability of colloids in juice. Heteroaggregation causes a range of feedstock and end product problems, including turbidity, viscosity, color, gelling, crystallization, starch ghost, and heat transfer problems. Even after intensive clarification and refining, trace colloidal impurities on white (refined) sugar remain to cause a problem known as acid beverage floc. Acid beverage floc is an example of DLVO-type aggregation of oppositely charged particles at decreased pH. Examples of irreversible aggregates include starch ghost and recalcitrant organomineral composites formed at elevated temperature that resist heat transfer. Fundamental knowledge in aggregation kinetics is necessary to predict the occurrence of undesirable aggregates, as pH, ionic strength, temperature, and sucrose concentration change during the processing of sugarcane/beet juice.

  11. Irreversible Entropy Production in Two-Phase Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora

    2003-01-01

    This report presents a study of dissipation (irreversible production of entropy) in three-dimensional, temporal mixing layers laden with evaporating liquid drops. The purpose of the study is to examine the effects of evaporating drops on the development of turbulent features in flows. Direct numerical simulations were performed to analyze transitional states of three mixing layers: one without drops, and two that included drops at different initial mass loadings. Without drops, the dissipation is essentially due to viscous effects. It was found that in the presence of drops, the largest contribution to dissipation was made by heating and evaporation of the drops, and that at large length scales, this contribution is positive (signifying that the drops reduce turbulence), while at small scales, this contribution is negative (the drops increase turbulence). The second largest contribution to dissipation was found to be associated with the chemical potential, which leads to an increase in turbulence at large scales and a decrease in turbulence at small scales. The next smaller contribution was found to be that of viscosity. The fact that viscosity effects are only third in order of magnitude in the dissipation is in sharp contrast to the situation for the mixing layer without the drops. The next smaller contribution - that of the drag and momentum of the vapor from the drops - was found to be negative at lower mass loading but to become positive at higher mass loading.

  12. Percolation of heteronuclear dimers irreversibly deposited on square lattices

    NASA Astrophysics Data System (ADS)

    Gimenez, M. C.; Ramirez-Pastor, A. J.

    2016-09-01

    The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A ) or a nonconductive segment (segment type B ). Three types of dimers are considered: A A , B B , and A B . The connectivity analysis is carried out by accounting only for the conductive segments (segments type A ). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k -mers (particles occupying k adjacent sites) with defects.

  13. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Lin, G.; Tegus, O.; Zhang, L.; Brück, E.

    2004-02-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performance characteristics of the ferromagnetic Stirling refrigeration cycle are investigated and the effects of some key irreversibilities on the performance of the cycle are revealed. By using the optimal-control theory, the optimal relation between the coefficient of performance and the cooling rate is derived and some important performance bounds, e.g., the maximum cooling rate, the maximum coefficient of performance, are determined. Moreover, the optimal operating regions for cooling rate, coefficient of performance and the optimal operating temperatures of a cyclic working substance in the two heat-transfer processes are obtained. Furthermore, the influences of magnetization and magnetic field on the performance characteristics of the cycle are discussed. The results obtained here have general significance and can be deduced to the related ones of the Stirling refrigeration cycle using paramagnetic salt as a cyclic working substance.

  14. Irreversible chemical steps control intersubunit dynamics during translation.

    PubMed

    Marshall, R Andrew; Dorywalska, Magdalena; Puglisi, Joseph D

    2008-10-07

    The ribosome, a two-subunit macromolecular machine, deciphers the genetic code and catalyzes peptide bond formation. Dynamic rotational movement between ribosomal subunits is likely required for efficient and accurate protein synthesis, but direct observation of intersubunit dynamics has been obscured by the repetitive, multistep nature of translation. Here, we report a collection of single-molecule fluorescence resonance energy transfer assays that reveal a ribosomal intersubunit conformational cycle in real time during initiation and the first round of elongation. After subunit joining and delivery of correct aminoacyl-tRNA to the ribosome, peptide bond formation results in a rapid conformational change, consistent with the counterclockwise rotation of the 30S subunit with respect to the 50S subunit implied by prior structural and biochemical studies. Subsequent binding of elongation factor G and GTP hydrolysis results in a clockwise rotation of the 30S subunit relative to the 50S subunit, preparing the ribosome for the next round of tRNA selection and peptide bond formation. The ribosome thus harnesses the free energy of irreversible peptidyl transfer and GTP hydrolysis to surmount activation barriers to large-scale conformational changes during translation. Intersubunit rotation is likely a requirement for the concerted movement of tRNA and mRNA substrates during translocation.

  15. Membrane alterations in irreversibly sickled cells: hemoglobin--membrane interaction.

    PubMed

    Lessin, L S; Kurantsin-Mills, J; Wallas, C; Weems, H

    1978-01-01

    Irreversibly sickled cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation and owe their biophysical abnormalities to acquired membrane alterations. Freeze-etched membranes both of ISCs produced in vitro and ISCs isolated in vivo reveal microbodies fixed to the internal (PS) surface which obscure spectrin filaments. Intramembranous particles (IMPs) on the intramembrane (PF) surface aggregate over regions of subsurface microbodies. Electron microscopy of diaminobenzidine-treated of ISC ghosts show the microbodies to contain hemoglobin and/or hemoglobin derivatives. Scanning electron microscopy and freeze-etching demonstrate that membrane--hemoglobin S interaction in ISCs enhances the membrane loss by microspherulation. Membrane-bound hemoglobin is five times greater in in vivo ISCs than non-ISCs, and increases during ISC production, parallelling depletion of adenosine triphosphate. Polyacrylamide gel electrophoresis of ISC membranes shows the presence of high-molecular-weight heteropolymers in the pre--band 1 region, a decrease in band 4.1 and an increase in bands 7, 8, and globin. The role of cross-linked membrane protein polymers in the generation of ISCs is discussed and is synthesized in terms of a unified concept for the determinants of the genesis of ISCs.

  16. Intrinsic randomness and intrinsic irreversibility in classical dynamical systems

    PubMed Central

    Courbage, M.; Prigogine, I.

    1983-01-01

    We continue our previous work on dynamic “intrinsically random” systems for which we can derive dissipative Markov processes through a one-to-one change of representation. For these systems, the unitary group of evolution can be transformed in this way into two distinct Markov processes leading to equilibrium for either t→ + ∞ or t→ - ∞. To lift the degeneracy, we first formulate the second principle as a selection rule that is meaningful in intrinsically random systems. For these systems, this excludes a set of unrealizable states. As a result of this exclusion, permitted initial conditions correspond to a set of states that is not invariant through velocity inversion. In this way, the time-reversal symmetry of dynamics is broken and these systems acquire a new feature we may call “intrinsic irreversibility.” The set of admitted initial conditions can be characterized by an entropy displaying the amount of information necessary for their preparation. The initial conditions selected by the second law correspond to a finite amount of information, while the initial conditions that are rejected correspond to an infinite amount of information and are therefore “impossible.” We believe that our formulation permits a microscopic formulation of the second law of thermodynamics for well-defined classes of dynamical systems. PMID:16578774

  17. Scaling Law for Irreversible Entropy Production in Critical Systems

    PubMed Central

    Hoang, Danh-Tai; Prasanna Venkatesh, B.; Han, Seungju; Jo, Junghyo; Watanabe, Gentaro; Choi, Mahn-Soo

    2016-01-01

    We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise in a single setup with equal significance. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. The initially ordered spins become disordered by quenching the ferromagnetic coupling constant. For a sudden quench, the deviation from the Jarzynski equality evaluated from the ideal ensemble average could, in principle, depend on the reduced coupling constant ε0 of the initial state and the system size L. We find that, instead of depending on ε0 and L separately, this deviation exhibits a scaling behavior through a universal combination of ε0 and L for a given tolerance parameter, inherited from the critical scaling laws of second-order phase transitions. A similar scaling law can be obtained for the finite-speed quench as well within the Kibble-Zurek mechanism. PMID:27277558

  18. Irreversibility and the breaking of resonance-antiresonance symmetry

    NASA Astrophysics Data System (ADS)

    Ordonez, Gonzalo; Hatano, Naomichi

    2017-10-01

    We consider open quantum systems modeled as discrete lattices. Using a simple model of a single-site coupled to two leads as an example, we show that the time evolution of these systems can be analyzed in terms of an explicitly time-reversal symmetric resolution of unity. This resolution of unity includes both resonant states, which decay in the future, and anti-resonant states, which decay in the past. We show that a time-reversal invariant state contains both resonant and anti-resonant components with equal weights. However, this symmetry is automatically broken as the system evolves in time, with the resonant component becoming much larger than the anti-resonant component for t > 0 (and vice versa for t < 0). We argue that irreversibility is a manifestation of this symmetry breaking. We also compare our present approach with the subdynamics approach developed by Prof. Prigogine and collaborators. Finally, we suggest an extension of our present approach from the level of wave functions to the level of density matrices.

  19. Irreversible Gelation in Wormlike Micellar Solutions via Microfluidics

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua; Zhao, Ya; Cheung, Perry; Shen, Amy

    2013-11-01

    Surfactant molecules can self-assemble into various morphologies under proper combinations of ionic strength, temperature, and flow conditions. At equilibrium, the wormlike micelles can transition from entangled to branched and multi-connected structures with increasing salt concentration. Under specific flow conditions, micellar structure transition can follow different trajectories. In this work we consider the flow of two semi-dilute wormlike micellar solutions through microposts, focusing on their microstructural and rheological evolution. Both solutions contain cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal). One is weakly viscoelastic and shear thickening while the other is strongly viscoelastic and shear thinning. When subject to strain rates ~103 s-1 and strain ~103, we observe irreversible gelation, with entangled, branched, and multi-connected micellar bundles, evidenced by electron microscopy. We also show that the rheological properties of the shear-thickening precursor are smaller than those of the gel, while the rheological properties of the shear-thinning precursor are several times larger than those of the ge. This rheological property variation is associated with their respective structural evolution.

  20. The nineteenth century conflict between mechanism and irreversibility

    NASA Astrophysics Data System (ADS)

    van Strien, Marij

    2013-08-01

    The reversibility problem (better known as the reversibility objection) is usually taken to be an internal problem in the kinetic theory of gases, namely the problem of how to account for the second law of thermodynamics within this theory. Historically, it is seen as an objection that was raised against Boltzmann's kinetic theory of gases, which led Boltzmann to a statistical approach to the kinetic theory, culminating in the development of statistical mechanics. In this paper, I show that in the late nineteenth century, the reversibility problem had a much broader significance-it was widely discussed and certainly not only as an objection to Boltzmann's kinetic theory of gases. In this period, there was a conflict between mechanism and irreversibility in physics which was tied up with central issues in philosophy of science such as materialism, empiricism and the need for mechanistic foundations of physical theories, as well as with concerns about the heat death of the universe. I discuss how this conflict was handled by the major physicists of the period, such as Maxwell, Kelvin, Duhem, Poincaré, Mach and Planck, as well as by a number of lesser-known authors.

  1. Percolation of heteronuclear dimers irreversibly deposited on square lattices.

    PubMed

    Gimenez, M C; Ramirez-Pastor, A J

    2016-09-01

    The percolation problem of irreversibly deposited heteronuclear dimers on square lattices is studied. A dimer is composed of two segments, and it occupies two adjacent adsorption sites. Each segment can be either a conductive segment (segment type A) or a nonconductive segment (segment type B). Three types of dimers are considered: AA, BB, and AB. The connectivity analysis is carried out by accounting only for the conductive segments (segments type A). The model offers a simplified representation of the problem of percolation of defective (nonideal) particles, where the presence of defects in the system is simulated by introducing a mixture of conductive and nonconductive segments. Different cases were investigated, according to the sequence of deposition of the particles, the types of dimers involved in the process, and the degree of alignment of the deposited objects. By means of numerical simulations and finite-size scaling analysis, the complete phase diagram separating a percolating from a nonpercolating region was determined for each case. Finally, the consistency of our results was examined by comparing with previous data in the literature for linear k-mers (particles occupying k adjacent sites) with defects.

  2. Use of irreversible electroporation in unresectable pancreatic cancer

    PubMed Central

    2015-01-01

    Irreversible electroporation is a non-thermal injury ablative modality that has been in clinical use since 2008 in the treatment of locally advanced soft tissue tumors. It has been reported to be utilized intraoperatively, laparoscopically or percutaneously. The method of action of IRE relies on a high voltage (maximum 3,000 volts) small microsecond pulse lengths (70 to 90 microseconds) to induce cell membrane porosity which leads to slow/protracted cell death over time. One of the largest unmet needs in oncology that IRE has been utilized is in locally advanced (stage III) pancreatic cancer. Recent studies have demonstrated the safety and palliation with encouraging improvement in overall survival. Its inherent limitation still remains tissue heterogeneity and the unique settings based on tumor histology and prior induction therapy. There remains a high technical demand of the end-user and the more extensive knowledge transfer which makes the learning curve longer in order to achieve appropriate and safe utilization. PMID:26151062

  3. Irreversible electroporation of locally advanced pancreatic neck/body adenocarcinoma

    PubMed Central

    2015-01-01

    Objective Irreversible electroporation (IRE) of locally advanced pancreatic adenocarcinoma of the neck has been used to palliate appropriate stage 3 pancreatic cancers without evidence of metastasis and who have undergone appropriate induction therapy. Currently there has not been a standardized reported technique for pancreatic mid-body tumors for patient selection and intra-operative technique. Patients Subjects are patients with locally advanced pancreatic adenocarcinoma of the body/neck who have undergone appropriate induction chemotherapy for a reasonable duration. Main outcome measures Technique of open IRE of locally advanced pancreatic adenocarcinoma of the neck/body is described, with the emphasis on intra-operative ultrasound and intra-operative electroporation management. Results The technique of open IRE of the pancreatic neck/body with bracketing of the celiac axis and superior mesenteric artery with continuous intraoperative ultrasound imaging and consideration of intraoperative navigational system is described. Conclusions IRE of locally advanced pancreatic adenocarcinoma of the body/neck is feasible for appropriate patients with locally advanced unresectable pancreatic cancer. PMID:26029461

  4. Metabolically Labile Fumarate Esters Impart Kinetic Selectivity to Irreversible Inhibitors.

    PubMed

    Zaro, Balyn W; Whitby, Landon R; Lum, Kenneth M; Cravatt, Benjamin F

    2016-12-14

    Electrophilic small molecules are an important class of chemical probes and drugs that produce biological effects by irreversibly modifying proteins. Examples of electrophilic drugs include covalent kinase inhibitors that are used to treat cancer and the multiple sclerosis drug dimethyl fumarate. Optimized covalent drugs typically inactivate their protein targets rapidly in cells, but ensuing time-dependent, off-target protein modification can erode selectivity and diminish the utility of reactive small molecules as chemical probes and therapeutics. Here, we describe an approach to confer kinetic selectivity to electrophilic drugs. We show that an analogue of the covalent Bruton's tyrosine kinase (BTK) inhibitor Ibrutinib bearing a fumarate ester electrophile is vulnerable to enzymatic metabolism on a time-scale that preserves rapid and sustained BTK inhibition, while thwarting more slowly accumulating off-target reactivity in cell and animal models. These findings demonstrate that metabolically labile electrophilic groups can endow covalent drugs with kinetic selectivity to enable perturbation of proteins and biochemical pathways with greater precision.

  5. Scaling Law for Irreversible Entropy Production in Critical Systems

    NASA Astrophysics Data System (ADS)

    Hoang, Danh-Tai; Prasanna Venkatesh, B.; Han, Seungju; Jo, Junghyo; Watanabe, Gentaro; Choi, Mahn-Soo

    2016-06-01

    We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise in a single setup with equal significance. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. The initially ordered spins become disordered by quenching the ferromagnetic coupling constant. For a sudden quench, the deviation from the Jarzynski equality evaluated from the ideal ensemble average could, in principle, depend on the reduced coupling constant ε0 of the initial state and the system size L. We find that, instead of depending on ε0 and L separately, this deviation exhibits a scaling behavior through a universal combination of ε0 and L for a given tolerance parameter, inherited from the critical scaling laws of second-order phase transitions. A similar scaling law can be obtained for the finite-speed quench as well within the Kibble-Zurek mechanism.

  6. Irreversibility of birth-related changes in the pulmonary circulation.

    PubMed

    Levine, G L; Goetzman, B W; Milstein, J M; Bennett, S H

    1994-12-01

    We hypothesized that establishing conditions of hypoxia and fluid filling of the airways in lungs of newborns would reproduce the high levels of pulmonary vascular resistance (PVR) observed in the fetal state. We assessed the hemodynamics of the left pulmonary circulation of 1- to 3-day-old lambs during a variety of airway states while attempting to reestablish fetal conditions. Eleven animals were studied during both normoxemia and hypoxemia in a baseline airway state with a positive end-expiratory pressure (PEEP) of 4 cm H2O, and in experimental airway states, of atelectasis, and fluid filling to 15 and 30 mL/kg and with PEEP of 12 cm H2O. PVR increased while pulmonary blood flow decreased with all airway state changes as compared to baseline, suggesting a passive mechanism for these changes. With the addition of hypoxemia there was a further increase in PVR in all states accompanied by an increase in pulmonary blood flow, indicating that active vasoconstriction was responsible for the increase in PVR. The combined effects of hypoxemia and fluid filling, designed to approximate the fetal state, increased PVR to only 20-30% of fetal values. Thus, additional factors appear to be important in maintaining the high PVR of the fetal state. We speculate that ventilation of the lungs at birth irreversibly alters these factors.

  7. Fundamental economic irreversibilities influence policies for enhancing international forest phytosanitary security

    Treesearch

    Thomas P. Holmes; Will Allen; Robert G. Haight; E. Carina H. Keskitalo; Mariella Marzano; Maria Pettersson; Christopher P. Quine; E. R. Langer

    2017-01-01

    National and international efforts to manage forest biosecurity create tension between opposing sources of ecological and economic irreversibility. Phytosanitary policies designed to protect national borders from biological invasions incur sunk costs deriving from economic and political irreversibilities that incentivizes wait-and-see decision-making. However, the...

  8. "Adult" Conceptualization of Irreversibility: Implications for the Development of the Concept of Death.

    ERIC Educational Resources Information Center

    Brent, Sandor B.; Speece, Mark W.

    1993-01-01

    Studies of development of children's understanding of death compares children's understanding against presumed adult concept. Examined validity of adult concept of irreversibility by comparing actual adult data to presumed adult standard and to actual child data. Undergraduates (n=165) completed questionnaire on irreversibility of death. Subjects…

  9. A minimal dissipation type-based classification in irreversible thermodynamics and microeconomics

    NASA Astrophysics Data System (ADS)

    Tsirlin, A. M.; Kazakov, V.; Kolinko, N. A.

    2003-10-01

    We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.

  10. Optimization of a solar-driven irreversible Carnot heat engine at maximum power output

    SciTech Connect

    Goektun, S.

    1997-08-01

    By employing the energetic optimization technique, the optimum performance of an irreversible Carnot heat engine system driven by a corrugated sheet collector is investigated at maximum power output. The maximum overall efficiency of the system is expressed in terms of the operating parameter of the collector and the cycle-irreversibility parameter of the heat engine.

  11. The Impact of Uncertainty and Irreversibility on Investments in Online Learning

    ERIC Educational Resources Information Center

    Oslington, Paul

    2004-01-01

    Uncertainty and irreversibility are central to online learning projects, but have been neglected in the existing educational cost-benefit analysis literature. This paper builds some simple illustrative models of the impact of irreversibility and uncertainty, and shows how different types of cost and demand uncertainty can have substantial impacts…

  12. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems

    PubMed Central

    Lucia, Umberto

    2016-01-01

    The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes. PMID:27762333

  13. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-10-01

    The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes.

  14. Irreversible inhibitors of c-Src kinase that target a non-conserved cysteine

    PubMed Central

    Kwarcinski, Frank E.; Fox, Christel C.; Steffey, Michael E.; Soellner, Matthew B.

    2012-01-01

    We have developed the first irreversible inhibitors of wild-type c-Src kinase. We demonstrate that our irreversible inhibitors display improved potency and selectivity relative to their reversible counterparts. Our strategy involves modifying a promiscuous kinase inhibitor with an electrophile to generate covalent inhibitors of c-Src. We applied this methodology to two inhibitor scaffolds that exhibit increased cellular efficacy when rendered irreversible. In addition, we have demonstrated the utility of irreversible inhibitors in studying the conformation of an important loop in kinases that can control inhibitor selectivity and cause drug resistance. Together, we have developed a general and robust framework for generating selective irreversible inhibitors from reversible, promiscuous inhibitor scaffolds. PMID:22928736

  15. Generalized model and optimum performance of an irreversible quantum Brayton engine with spin systems.

    PubMed

    Wu, Feng; Chen, Lingen; Sun, Fengrui; Wu, Chih; Li, Qing

    2006-01-01

    The purpose of this paper is to establish a model of an irreversible quantum Brayton engine using many noninteracting spin systems as the working substance and consisting of two irreversible adiabatic and two isomagnetic field processes. The time evolution of the total magnetic moment M is determined by solving the generalized quantum master equation of an open system in the Heisenberg picture. The time of two irreversible adiabatic processes is considered based on finite-rate evolution. The relationship between the power output P and the efficiency eta for the irreversible quantum Brayton engine with spin systems is derived. The optimally operating region (or criteria) for the engine is determined. The influences of these important parameters on the performances (P and eta) of the engine are discussed. The results obtained herein will be useful for the further understanding and the selection of the optimal operating conditions for an irreversible quantum Brayton engine with spin systems.

  16. Effects of crystal quality and preferred orientation on the irreversible growth of compact TATB cylindrical explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Haobin; Xu, Jingjiang; Liu, Yu; Huang, Hui; Sun, Jie

    2013-09-01

    Three kinds of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) cylinders compacted with TATB raw materials, recrystallized near-spherical and platy TATB crystals are compared to investigate the effects of crystal quality and preferred orientation on their irreversible growth. The results show that the higher the crystal quality, the lower the irreversible volume growth. The compacted cylinders of raw material TATB, with the poorest crystal quality, possess more irreversible growth than those with recrystallized high quality TATB crystals. Irreversible growth of TATB cylinders are also affected by crystal preferred orientation. With the same crystal quality, crystal preferred orientation leads to anisotropic irreversible dimension growth, but has no effect on the volume expansion of TATB cylinders. By changing the crystal quality and preferred orientation, the deformation problem of TATB-based PBX explosives may be restricted.

  17. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2008-04-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  18. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2007-08-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ester formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes are estimated to potentially produce greater than 2.5 μg m-3 of SOA from the various biogenic hydrocarbons under atmospheric conditions, which can be highly significant given the large array of atmospheric olefins.

  19. Irreversible Collective Migration of Cyanobacteria in Eutrophic Conditions

    PubMed Central

    Dervaux, Julien; Mejean, Annick; Brunet, Philippe

    2015-01-01

    In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and signicantly degrade the quality of water resources. In order to determine the physico-chemical parameters involved in their formation and quantitatively predict their appearance, we successfully reproduced irreversible cyanobacterial blooms in vitro. By combining chemical, biochemical and hydrodynamic evidences, we identify a mechanism, unrelated to the presence of internal gas vesicles, allowing the sudden collective upward migration in test tubes of several cyanobacterial strains (Microcystis aeruginosa PCC 7005, Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803). The final state consists in a foamy layer of biomass at the air-liquid interface, in which micro-organisms remain alive for weeks, the medium lying below being almost completely depleted of cyanobacteria. These "laboratory blooms" start with the aggregation of cells at high ionic force in cyanobacterial strains that produce anionic extracellular polymeric substances (EPS). Under appropriate conditions of nutrients and light intensity, the high photosynthetic activity within cell clusters leads the dissolved oxygen (DO) to supersaturate and to nucleate into bubbles. Trapped within the EPS, these bubbles grow until their buoyancy pulls the biomass towards the free surface. By investigating a wide range of spatially homogeneous environmental conditions (illumination, salinity, cell and nutrient concentration) we identify species-dependent thresholds and timescales for bloom formation. We conclude on the relevance of such results for cyanobacterial bloom formation in the environment and we propose an ecient method for biomass harvesting in bioreactors. PMID:25799424

  20. Irreversible collective migration of cyanobacteria in eutrophic conditions.

    PubMed

    Dervaux, Julien; Mejean, Annick; Brunet, Philippe

    2015-01-01

    In response to natural or anthropocentric pollutions coupled to global climate changes, microorganisms from aquatic environments can suddenly accumulate on water surface. These dense suspensions, known as blooms, are harmful to ecosystems and significantly degrade the quality of water resources. In order to determine the physico-chemical parameters involved in their formation and quantitatively predict their appearance, we successfully reproduced irreversible cyanobacterial blooms in vitro. By combining chemical, biochemical and hydrodynamic evidences, we identify a mechanism, unrelated to the presence of internal gas vesicles, allowing the sudden collective upward migration in test tubes of several cyanobacterial strains (Microcystis aeruginosa PCC 7005, Microcystis aeruginosa PCC 7806 and Synechocystis sp. PCC 6803). The final state consists in a foamy layer of biomass at the air-liquid interface, in which micro-organisms remain alive for weeks, the medium lying below being almost completely depleted of cyanobacteria. These "laboratory blooms" start with the aggregation of cells at high ionic force in cyanobacterial strains that produce anionic extracellular polymeric substances (EPS). Under appropriate conditions of nutrients and light intensity, the high photosynthetic activity within cell clusters leads the dissolved oxygen (DO) to supersaturate and to nucleate into bubbles. Trapped within the EPS, these bubbles grow until their buoyancy pulls the biomass towards the free surface. By investigating a wide range of spatially homogeneous environmental conditions (illumination, salinity, cell and nutrient concentration) we identify species-dependent thresholds and timescales for bloom formation. We conclude on the relevance of such results for cyanobacterial bloom formation in the environment and we propose an efficient method for biomass harvesting in bioreactors.

  1. Irreversible electroporation: Just another form of thermal therapy?

    PubMed Central

    van Gemert, Martin J C; Wagstaff, Peter G K; de Bruin, Daniel M; van Leeuwen, Ton G; van der Wal, Allard C; Heger, Michal; van der Geld, Cees W M

    2015-01-01

    Background Irreversible electroporation (IRE) is (virtually) always called non-thermal despite many reports showing that significant Joule heating occurs. Our first aim is to validate with mathematical simulations that IRE as currently practiced has a non-negligible thermal response. Our second aim is to present a method that allows simple temperature estimation to aid IRE treatment planning. Methods We derived an approximate analytical solution of the bio-heat equation for multiple 2-needle IRE pulses in an electrically conducting medium, with and without a blood vessel, and incorporated published observations that an electric pulse increases the medium's electric conductance. Results IRE simulation in prostate-resembling tissue shows thermal lesions with 67–92°C temperatures, which match the positions of the coagulative necrotic lesions seen in an experimental study. Simulation of IRE around a blood vessel when blood flow removes the heated blood between pulses confirms clinical observations that the perivascular tissue is thermally injured without affecting vascular patency. Conclusions The demonstration that significant Joule heating surrounds current multiple-pulsed IRE practice may contribute to future in-depth discussions on this thermal issue. This is an important subject because it has long been under-exposed in literature. Its awareness pleads for preventing IRE from calling “non-thermal” in future publications, in order to provide IRE-users with the most accurate information possible. The prospect of thermal treatment planning as outlined in this paper likely aids to the important further successful dissemination of IRE in interventional medicine. Prostate 75:332–335, 2015. © 2014 The Authors. The Prostate Published by Wiley Periodicals, Inc. PMID:25327875

  2. Ictal time-irreversible intracranial EEG signals as markers of the epileptogenic zone.

    PubMed

    Schindler, Kaspar; Rummel, Christian; Andrzejak, Ralph G; Goodfellow, Marc; Zubler, Frédéric; Abela, Eugenio; Wiest, Roland; Pollo, Claudio; Steimer, Andreas; Gast, Heidemarie

    2016-09-01

    To show that time-irreversible EEG signals recorded with intracranial electrodes during seizures can serve as markers of the epileptogenic zone. We use the recently developed method of mapping time series into directed horizontal graphs (dHVG). Each node of the dHVG represents a time point in the original intracranial EEG (iEEG) signal. Statistically significant differences between the distributions of the nodes' number of input and output connections are used to detect time-irreversible iEEG signals. In 31 of 32 seizure recordings we found time-irreversible iEEG signals. The maximally time-irreversible signals always occurred during seizures, with highest probability in the middle of the first seizure half. These signals spanned a large range of frequencies and amplitudes but were all characterized by saw-tooth like shaped components. Brain regions removed from patients who became post-surgically seizure-free generated significantly larger time-irreversibilities than regions removed from patients who still had seizures after surgery. Our results corroborate that ictal time-irreversible iEEG signals can indeed serve as markers of the epileptogenic zone and can be efficiently detected and quantified in a time-resolved manner by dHVG based methods. Ictal time-irreversible EEG signals can help to improve pre-surgical evaluation in patients suffering from pharmaco-resistant epilepsies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH)

    NASA Astrophysics Data System (ADS)

    Weber, Samuel; Beutel, Jan; Faillettaz, Jérome; Hasler, Andreas; Krautblatter, Michael; Vieli, Andreas

    2017-02-01

    Understanding rock slope kinematics in steep, fractured bedrock permafrost is a challenging task. Recent laboratory studies have provided enhanced understanding of rock fatigue and fracturing in cold environments but were not successfully confirmed by field studies. This study presents a unique time series of fracture kinematics, rock temperatures and environmental conditions at 3500 m a. s. l. on the steep, strongly fractured Hörnligrat of the Matterhorn (Swiss Alps). Thanks to 8 years of continuous data, the longer-term evolution of fracture kinematics in permafrost can be analyzed with an unprecedented level of detail. Evidence for common trends in spatiotemporal pattern of fracture kinematics could be found: a partly reversible seasonal movement can be observed at all locations, with variable amplitudes. In the wider context of rock slope stability assessment, we propose separating reversible (elastic) components of fracture kinematics, caused by thermoelastic strains, from the irreversible (plastic) component due to other processes. A regression analysis between temperature and fracture displacement shows that all instrumented fractures exhibit reversible displacements that dominate fracture kinematics in winter. Furthermore, removing this reversible component from the observed displacement enables us to quantify the irreversible component. From this, a new metric - termed index of irreversibility - is proposed to quantify relative irreversibility of fracture kinematics. This new index can identify periods when fracture displacements are dominated by irreversible processes. For many sensors, irreversible enhanced fracture displacement is observed in summer and its initiation coincides with the onset of positive rock temperatures. This likely indicates thawing-related processes, such as meltwater percolation into fractures, as a forcing mechanism for irreversible displacements. For a few instrumented fractures, irreversible displacements were found at the

  4. Irreversible Electroporation Near the Heart: Ventricular Arrhythmias Can Be Prevented With ECG Synchronization

    PubMed Central

    Deodhar, Ajita; Dickfeld, Timm; Single, Gordon W.; Hamilton, William C.; Thornton, Raymond H.; Sofocleous, Constantinos T.; Maybody, Majid; Gónen, Mithat; Rubinsky, Boris; Solomon, Stephen B.

    2013-01-01

    OBJECTIVE Irreversible electroporation is a nonthermal ablative tool that uses direct electrical pulses to create irreversible membrane pores and cell death. The ablation zone is surrounded by a zone of reversibly increased permeability; either zone can cause cardiac arrhythmias. Our purpose was to establish a safety profile for the use of irreversible electroporation close to the heart. MATERIALS and METHODS The effect of unsynchronized and synchronized (with the R wave on ECG) irreversible electroporation in swine lung and myocardium was studied in 11 pigs. Twelve lead ECG recordings were analyzed by an electrophysiologist for the presence of arrhythmia. Ventricular arrhythmias were categorized as major events. Minor events included all other dysrhythmias or ECG changes. Cardiac and lung tissue was submitted for histopathologic analysis. Electrical field modeling was performed to predict the distance from the applicators over which cells show electroporation-induced increased permeability. RESULTS At less than or equal to 1.7 cm from the heart, fatal (major) events occurred with all unsynchronized irreversible electroporation. No major and three minor events were seen with synchronized irreversible electroporation. At more than 1.7 cm from the heart, two minor events occurred with only unsynchronized irreversible electroporation. Electrical field modeling correlates well with the clinical results, revealing increased cell membrane permeability up to 1.7 cm away from the applicators. Complete lung ablation without intervening live cells was seen. No myocardial injury was seen. CONCLUSION Unsynchronized irreversible electroporation close to the heart can cause fatal ventricular arrhythmias. Synchronizing irreversible electroporation pulse delivery with absolute refractory period avoids significant cardiac arrhythmias. PMID:21343484

  5. A fingerprint encryption scheme based on irreversible function and secure authentication.

    PubMed

    Yang, Yijun; Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes.

  6. A Fingerprint Encryption Scheme Based on Irreversible Function and Secure Authentication

    PubMed Central

    Yu, Jianping; Zhang, Peng; Wang, Shulan

    2015-01-01

    A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes. PMID:25873989

  7. A Fragment-Based Method to Discover Irreversible Covalent Inhibitors of Cysteine Proteases

    PubMed Central

    2015-01-01

    A novel fragment-based drug discovery approach is reported which irreversibly tethers drug-like fragments to catalytic cysteines. We attached an electrophile to 100 fragments without significant alterations in the reactivity of the electrophile. A mass spectrometry assay discovered three nonpeptidic inhibitors of the cysteine protease papain. The identified compounds display the characteristics of irreversible inhibitors. The irreversible tethering system also displays specificity: the three identified papain inhibitors did not covalently react with UbcH7, USP08, or GST-tagged human rhinovirus 3C protease. PMID:24870364

  8. Effect of graphite surface structure on initial irreversible reaction in graphite anodes

    SciTech Connect

    Suzuki, Kimihito; Hamada, Takeshi; Sugiura, Tsutomu

    1999-03-01

    The initial irreversible reaction that occurs in graphite anodes during the first lithium intercalation in lithium rechargeable batteries was studied in view of graphite surface structure. Graphitized mesophase spheres and pitch-based carbon fibers, which show low irreversible capacity, were shown to have turbostatic surface regions and highly graphitized cores using Ar-ion laser Raman spectroscopy. Burning off these surface regions resulted in remarkable increases of initial irreversible capacity. Those results can be explained by a proposed model that a turbostatic structure of the graphite surface region resists drastic swelling of interlayer spaces arising from cointercalation of solvated ions and depresses the side reaction.

  9. Mesoscale modeling of irreversible volume growth in powders of anisotropic crystals

    SciTech Connect

    Gee, R; Maiti, A; Fried, L

    2006-05-05

    Careful thermometric analysis (TMA) on powders of micron-sized triamino-trinitrobenzene (TATB) crystallites are shown to display irreversible growth in volume when subjected to repeated cycles of heating and cooling. Such behavior is counter-intuitive to typical materials response to simulated annealing cycles in atomic-scale molecular dynamics. However, through coarse-grained simulations using a mesoscale Hamiltonian we quantitatively reproduce irreversible growth behavior in such powdered material. We demonstrate that irreversible growth happens only in the presence of intrinsic crystalline anisotropy, and is mediated by particles much smaller than the average crystallite size.

  10. Irreversible adsorption/deposition kinetics: A generalized approach

    NASA Astrophysics Data System (ADS)

    Adamczyk, Z.; Senger, B.; Voegel, J.-C.; Schaaf, P.

    1999-02-01

    . This can be explained by the fact that for a high energy barrier the adsorbing particles could randomize over the deposition plane before crossing the barrier and adsorbing irreversibly.

  11. Irreversible deposition/adsorption processes on solid surfaces

    NASA Astrophysics Data System (ADS)

    Schaaf, P.; Voegel, J.-C.; Senger, B.

    In this article, we summarize the knowledge in the field of irreversible deposition processes of large molecules or colloidal particles on solid surfaces. An irreversible adsorption process is defined as a process in which, once adsorbed, a particle can neither diffuse along, nor desorb from the surface. We first introduce the basic tools used in these studies, one of the most important being the concept of available surface function. General results relative to these processes are then presented. We discuss, in particular, the connection between the reduced variance of the number density fluctuations of adsorbed particles and the available surface function. We then review the main models which were introduced in the literature to account for these phenomena. They can be divided in two classes: (i) the models which are based entirely on statistical and geometrical grounds. The best known and most widely studied of them is the Random Sequential Adsorption (RSA) model which is discussed in details. For the processes in which gravity plays an important role one uses the Ballistic Deposition (BD) model. We also present models which are aimed at accounting for the behavior lying between the ballistic deposition and the RSA. (ii) The second type of models corresponds to those which take explicitly the diffusion of the particles in the vicinity of the adsorption plane into account. The results relative to these models, called diffusional models, are discussed in details. Finally, the last part of the review is devoted to experimental results. We show, in particular, that the Langmuir model, which is the most widely used model in the literature to account for the protein adsorption kinetics, does not predict correctly the experimental observations. We present and discuss in a critical way experimental evidence which seems to indicate the validity of the RSA and ballistic models. Cet article présente une synthèse des connaissances dans le domaine des processus d

  12. Irreversible entropy production in two-phase flows with evaporating drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N. A.

    2002-01-01

    A derivation of the irreversible entropy production, that is the dissipation, in two-phase flows is presented for the purpose of examining the effect of evaporative-drop modulation of flows having turbulent features.

  13. Ecological optimization of an irreversible quantum Carnot heat engine with spin-1/2 systems

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowei; Chen, Lingen; Wu, Feng; Sun, Fengrui

    2010-02-01

    A model of a quantum heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting spin-1/2 systems is established in this paper. The quantum heat engine cycle is composed of two isothermal processes and two irreversible adiabatic processes and is referred to as a spin quantum Carnot heat engine. Based on the quantum master equation and the semi-group approach, equations of some important performance parameters, such as power output, efficiency, entropy generation rate and ecological function (a criterion representing the optimal compromise between exergy output rate and exergy loss rate), for the irreversible spin quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. The effects of internal irreversibility and heat leakage on ecological performance are discussed in detail.

  14. The Effects of Internal and External Irreversibility of a Vapor Compression Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Jen; Chiou, Jeng-Shing

    The concept of finite-time thermodynamics is employed to investigate the optimal refrigeration rate for an irreversible refrigeration cycle. The heat transfer between the system (internal) fluid and cooling (external) fluid takes place at the actual heat exchanger, which has the finite-size heat transfer area and the realistic heat transfer effectiveness. The internal irreversibility results from the compression process and the expansion process are also considered. The optimal refrigeration rate is calculated and expressed in terms of the irreversibility parameter (Ir), coefficient of performance (COP), the time ratio(γ) of heat transfer processes and the effectiveness of heat exchanger. The derived COP which consider both the external and internal irreversibility can thus be considered as the benchmark value for a practical refrigeration cycle, and the parametric study can provide the basis for both determination of optimal operating conditions and design of a practical refrigeration cycle.

  15. Effect of design variables on irreversible magnet demagnetization in brushless dc motor

    NASA Astrophysics Data System (ADS)

    Kim, Tae Heoung; Lee, Ju

    2005-05-01

    The large demagnetizing currents in brushless dc (BLdc) motor are generated by the short-circuited stator windings and the fault of a drive circuit. So, irreversible magnet demagnetization occurs due to the external demagnetizing field by these currents. In this paper, we deal with the effect of design variables on irreversible magnet demagnetization in BLdc motor through the modeling approach using a two-dimensional finite-element method (2D FEM). The nonlinear analysis of a permanent magnet is added to 2D FEM to consider irreversible demagnetization. As a result, it is shown that magnet thickness, teeth surface width, and rotor back yoke thickness are the most important geometrical dimensions of BLdc motor in terms of irreversible magnet demagnetization.

  16. Reversible and irreversible structural transformations of nanocomponents of molecular layers by resonance photoexcitation or heating

    NASA Astrophysics Data System (ADS)

    Kaliteevskaya, Elena N.; Krutyakova, Valentina P.; Razumova, Tatyana K.; Starovoytov, Anton A.

    2010-09-01

    The reversible and irreversible structural transformations of monomolecular and associated nanocomponents of a polymethine dye layer by photoexcitation or heating are studied experimentally. The photo- and thermodestruction yields of the layers are investigated.

  17. The role of the irreversible electroporation in the hepato-pancreatico-biliary surgery.

    PubMed

    Sánchez-Velázquez, Patricia; Clavien, Pierre-Alain

    Irreversible electroporation is a novel technique growing in popularity over the last years among the ablative modalities. Its unique action mechanism produces irreversible nanopores in the membrane of the cell leading to apoptosis; therefore irreversible electroporation can be used to ablate substantial volumes of tissue without the undesirable thermal effects as the "heat sink effect". Moreover the extracellular matrix is left unperturbed, thus sparing the structural architecture of surrounding structures such as bile ducts and blood vessels. In the last years its use has been widespread in both liver and pancreatic ablation. Irreversible electroporation has shown its safety with however some caution, feasibility and favorable outcomes in clinical settings such as unresectable locally advanced disease in which the surgical and therapeutic options are very limited. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Nucleophilic Additions to Coordinated 1,10-Phenanthroline: Intramolecular, Intermolecular, Reversible, and Irreversible.

    PubMed

    Arévalo, Rebeca; Menéndez, M Isabel; López, Ramón; Merino, Isabel; Riera, Lucía; Pérez, Julio

    2016-12-12

    KN(SiMe3 )2 reacts with [Re(CO)3 (phen)(PMe3 )]OTf via reversible addition to the phen ligand and irreversible deprotonation of the PMe3 ligand followed by intramolecular attack to phen by the deprotonated phosphane, whereas MeLi irreversibly adds to phen. The addition of MeLi has been shown to be intermolecular, unlike previously known nucleophilic additions to pyridines. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. From Dynamic Combinatorial Chemistry to in Vivo Evaluation of Reversible and Irreversible Myeloperoxidase Inhibitors.

    PubMed

    Soubhye, Jalal; Gelbcke, Michel; Van Antwerpen, Pierre; Dufrasne, François; Boufadi, Mokhtaria Yasmina; Nève, Jean; Furtmüller, Paul G; Obinger, Christian; Zouaoui Boudjeltia, Karim; Meyer, Franck

    2017-02-09

    The implementation of dynamic combinatorial libraries allowed the determination of highly active reversible and irreversible inhibitors of myeloperoxidase (MPO) at the nanomolar level. Docking experiments highlighted the interaction between the most active ligands and MPO, and further kinetic studies defined the mode of inhibition of these compounds. Finally, in vivo evaluation showed that one dose of irreversible inhibitors is able to suppress the activity of MPO after inducing inflammation.

  20. Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells.

    PubMed

    Hoffman, Michelle D; Zucker, Lauren I; Brown, Pamela J B; Kysela, David T; Brun, Yves V; Jacobson, Stephen C

    2015-12-15

    In the environment, most bacteria form surface-attached cell communities called biofilms. The attachment of single cells to surfaces involves an initial reversible stage typically mediated by surface structures such as flagella and pili, followed by a permanent adhesion stage usually mediated by polysaccharide adhesives. Here, we determine the absolute and relative timescales and frequencies of reversible and irreversible adhesion of single cells of the bacterium Caulobacter crescentus to a glass surface in a microfluidic device. We used fluorescence microscopy of C. crescentus expressing green fluorescent protein to track the swimming behavior of individual cells prior to adhesion, monitor the cell at the surface, and determine whether the cell reversibly or irreversibly adhered to the surface. A fluorescently labeled lectin that binds specifically to polar polysaccharides, termed holdfast, discriminated irreversible adhesion events from reversible adhesion events where no holdfast formed. In wild-type cells, the holdfast production time for irreversible adhesion events initiated by surface contact (23 s) was 30-times faster than the holdfast production time that occurs through developmental regulation (13 min). Irreversible adhesion events in wild-type cells (3.3 events/min) are 15-times more frequent than in pilus-minus mutant cells (0.2 events/min), indicating the pili are critical structures in the transition from reversible to irreversible surface-stimulated adhesion. In reversible adhesion events, the dwell time of cells at the surface before departing was the same for wild-type cells (12 s) and pilus-minus mutant cells (13 s), suggesting the pili do not play a significant role in reversible adhesion. Moreover, reversible adhesion events in wild-type cells (6.8 events/min) occur twice as frequently as irreversible adhesion events (3.3 events/min), demonstrating that most cells contact the surface multiple times before transitioning from reversible to

  1. One- and two-dimensional quantum models: Quenches and the scaling of irreversible entropy.

    PubMed

    Sharma, Shraddha; Dutta, Amit

    2015-08-01

    Using the scaling relation of the ground state quantum fidelity, we propose the most generic scaling relations of the irreversible work (the residual energy) of a closed quantum system at absolute zero temperature when one of the parameters of its Hamiltonian is suddenly changed. We consider two extreme limits: the heat susceptibility limit and the thermodynamic limit. It is argued that the irreversible entropy generated for a thermal quench at low enough temperatures when the system is initially in a Gibbs state is likely to show a similar scaling behavior. To illustrate this proposition, we consider zero-temperature and thermal quenches in one-dimensional (1D) and 2D Dirac Hamiltonians where the exact estimation of the irreversible work and the irreversible entropy is possible. Exploiting these exact results, we then establish the following. (i) The irreversible work at zero temperature shows an appropriate scaling in the thermodynamic limit. (ii) The scaling of the irreversible work in the 1D Dirac model at zero temperature shows logarithmic corrections to the scaling, which is a signature of a marginal situation. (iii) Remarkably, the logarithmic corrections do indeed appear in the scaling of the entropy generated if the temperature is low enough while they disappear for high temperatures. For the 2D model, no such logarithmic correction is found to appear.

  2. Influence of membrane properties on physically reversible and irreversible fouling in membrane bioreactors.

    PubMed

    Tsuyuhara, T; Hanamoto, Y; Miyoshi, T; Kimura, K; Watanabe, Y

    2010-01-01

    This study aimed to examine the impact of membrane properties on membrane fouling in membrane bioreactor (MBR). Membrane fouling was divided into two categories: physically reversible and irreversible fouling. Membrane properties related to each type of membrane fouling were investigated separately. Five microfiltration (MF) and one ultrafiltration (UF) membranes with different properties (pore size, contact angle, roughness, zeta potential, and pure water permeability) were examined with a laboratory-scale MBR, fed with synthetic wastewater. Two separate experiments were conducted: the first to examine physically reversible fouling, and the second to examine physically irreversible fouling. The correlation between the degree of each type of fouling and membrane properties was studied. High correlation was observed between the degree of physically reversible fouling and roughness (R(2)=0.96). In contrast, with regard to physically irreversible fouling, strong correlation between roughness and degree of membrane fouling can only be found in the case of MF membranes. Except for the membrane with the highest roughness, the degree of physically irreversible fouling can be well correlated with pure water permeability (lower pure water permeability results in higher degree of physically irreversible fouling) including UF membrane. On the basis of the results obtained in this study, it can be concluded that roughness is an important factor in determination of physically reversible fouling regardless of the types of membrane (i.e. MF or UF membranes) and evolutions of physically irreversible fouling can be mitigated when an MBR is operated with membranes with smooth surface and high pure water permeability.

  3. Irreversible electroporation in the treatment of locally advanced pancreas and liver metastases of colorectal carcinoma

    PubMed Central

    Wichtowski, Mateusz; Nowaczyk, Piotr; Kocur, Jacek

    2016-01-01

    Aim of the study Irreversible electroporation is a new, non-thermal ablation technique in the treatment of parenchymal organ tumors which uses short high voltage pulses of electricity in order to induce apoptosis of targeted cells. In this paper the application of this method of treatment in locally advanced pancreatic cancer (LAPC) and liver cancer is analyzed. Material and methods Between 04.2014 and 09.2014 two patients with LAPC and one with colorectal liver metastasis (CRLM) were qualified for treatment with irreversible electroporation. Both patients remained under constant observation and control. PubMed/Medline, Embase and Google Scholar databases were searched and eight original reports on irreversible electroporation of pancreatic and liver tumors based on the biggest groups of patients were found. Results Two patients with LAPC and one with CRLM were qualified for ablation with irreversible electroporation. In all three patients a successful irreversible electroporation (IRE) procedure of the whole tumor was conducted. In the minimum seven-month follow-up 100% local control was achieved – without progression. In the literature review the local response to treatment ranged from 41% to 100%. The event-free survival rate in six-month observation was 94%. Conclusions Ablation with irreversible electroporation is a new non-thermal ablation technique which has been demonstrated, both in the previously published studies and in the cases described in this paper, as a safe and efficient therapeutic method for patients with LAPC and CRLM. PMID:27095938

  4. Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems.

    PubMed

    Carcaterra, A; Akay, A

    2007-04-01

    This paper discusses a class of unexpected irreversible phenomena that can develop in linear conservative systems and provides a theoretical foundation that explains the underlying principles. Recent studies have shown that energy can be introduced to a linear system with near irreversibility, or energy within a system can migrate to a subsystem nearly irreversibly, even in the absence of dissipation, provided that the system has a particular natural frequency distribution. The present work introduces a general theory that provides a mathematical foundation and a physical explanation for the near irreversibility phenomena observed and reported in previous publications. Inspired by the properties of probability distribution functions, the general formulation developed here is based on particular properties of harmonic series, which form the common basis of linear dynamic system models. The results demonstrate the existence of a special class of linear nondissipative dynamic systems that exhibit nearly irreversible energy exchange and possess a decaying impulse response. In addition to uncovering a new class of dynamic system properties, the results have far-reaching implications in engineering applications where classical vibration damping or absorption techniques may not be effective. Furthermore, the results also support the notion of nearly irreversible energy transfer in conservative linear systems, which until now has been a concept associated exclusively with nonlinear systems.

  5. Substance P and CGRP expression in dental pulps with irreversible pulpitis.

    PubMed

    Sattari, Mandana; Mozayeni, Mohammad Ali; Matloob, Arash; Mozayeni, Maryam; Javaheri, Homan H

    2010-08-01

    The purpose of this study was to compare substance P (SP) and calcitonin gene-related peptide (CGRP) expression in pulp tissue with clinically diagnosed symptomatic and asymptomatic irreversible pulpitis. Healthy pulps acted as controls. Five normal pulps and 40 with irreversible pulpitis (20 symptomatic and 20 asymptomatic) were obtained from 45 different patients. SP and CGRP expression was determined by competition binding assays using enzyme immunoassay. anova and Mann-Whitney tests were used to ascertain if there were statistically significant differences between the groups. The results showed that neuropeptides were found in all pulp samples. The highest and the lowest expressions for SP and CGRP were found in symptomatic irreversible pulpitis and healthy pulps groups, respectively. The differences between healthy pulps and the groups of pulps having irreversible pulpitis were significant (P < 0.001). Although Mann-Whitney's post-hoc tests showed statistically significant differences in CGRP expression between two pulpitis groups (P < 0.05), differences in SP expression between symptomatic and asymptomatic irreversible pulpitis groups were not significant. This study demonstrated that the expression of CGRP and SP is significantly higher in pulps with irreversible pulpitis compared with healthy pulps.

  6. Evaluation of properties of irreversible hydrocolloid impression materials mixed with disinfectant liquids.

    PubMed

    Amalan, Arul; Ginjupalli, Kishore; Upadhya, Nagaraja

    2013-01-01

    Addition of disinfectant to irreversible hydrocolloid impression materials can eliminate the disinfection step to avoid dimensional changes associated with it. The aim of the present study was to evaluate the effect of various disinfectant mixing liquids on the properties of commercially available irreversible hydrocolloid impression materials. Four commercially available irreversible hydrocolloid impression materials (Zelgan, Vignette, Tropicalgin, and Algitex) were mixed with disinfectant liquid containing chlorhexidine (0.1 and 0.2%) and sodium hypochlorite (0.1 and 0.5%). After mixing with disinfectant liquids, materials were evaluated for pH changes during gelation, gelation time, flow, gel strength, permanent deformation and detail reproduction. Significant changes in gelation time were observed in irreversible hydrocolloid impression materials upon mixing with disinfectant liquids. In general, chlorhexidine increased the gelation time, whereas sodium hypochlorite reduced it. However, no significant changes in the flow were observed both with chlorhexidine and sodium hypochlorite. Gel strength was found to decrease when mixed with chlorhexidine, whereas an increase in gel strength was observed upon mixing with sodium hypochlorite. Permanent deformation of the most irreversible hydrocolloid impression materials was below the specification limit even after mixing with disinfectant liquids. Sodium hypochlorite significantly reduced the surface detail reproduction, whereas no change in detail reproduction was observed with chlorhexidine. Chlorhexidine solution can be used to mix irreversible hydrocolloid impression materials in regular dental practice as it did not significantly alter the properties. This may ensure effective disinfection of impressions.

  7. Evaluation of properties of irreversible hydrocolloid impression materials mixed with disinfectant liquids

    PubMed Central

    Amalan, Arul; Ginjupalli, Kishore; Upadhya, Nagaraja

    2013-01-01

    Background: Addition of disinfectant to irreversible hydrocolloid impression materials can eliminate the disinfection step to avoid dimensional changes associated with it. The aim of the present study was to evaluate the effect of various disinfectant mixing liquids on the properties of commercially available irreversible hydrocolloid impression materials. Materials and Methods: Four commercially available irreversible hydrocolloid impression materials (Zelgan, Vignette, Tropicalgin, and Algitex) were mixed with disinfectant liquid containing chlorhexidine (0.1 and 0.2%) and sodium hypochlorite (0.1 and 0.5%). After mixing with disinfectant liquids, materials were evaluated for pH changes during gelation, gelation time, flow, gel strength, permanent deformation and detail reproduction. Results: Significant changes in gelation time were observed in irreversible hydrocolloid impression materials upon mixing with disinfectant liquids. In general, chlorhexidine increased the gelation time, whereas sodium hypochlorite reduced it. However, no significant changes in the flow were observed both with chlorhexidine and sodium hypochlorite. Gel strength was found to decrease when mixed with chlorhexidine, whereas an increase in gel strength was observed upon mixing with sodium hypochlorite. Permanent deformation of the most irreversible hydrocolloid impression materials was below the specification limit even after mixing with disinfectant liquids. Sodium hypochlorite significantly reduced the surface detail reproduction, whereas no change in detail reproduction was observed with chlorhexidine. Conclusion: Chlorhexidine solution can be used to mix irreversible hydrocolloid impression materials in regular dental practice as it did not significantly alter the properties. This may ensure effective disinfection of impressions. PMID:23878566

  8. Characterization of irreversible physio-mechanical processes in stretched fetal membranes.

    PubMed

    Marom, Yulia; Goldman, Shlomit; Shalev, Eliezer; Shilo, Doron

    2016-01-01

    We perform bulge tests on live fetal membrane (FM) tissues that simulate the mechanical conditions prior to contractions. Experimental results reveal an irreversible mechanical behavior that appears during loading and is significantly different than the mechanical behavior that appears during unloading or in subsequent loading cycles. The irreversible behavior results in a residual strain that does not recover upon unloading and remains the same for at least 1h after the FM is unloaded. Surprisingly, the irreversible behavior demonstrates a linear stress-strain relation. We introduce a new model for the mechanical response of collagen tissues, which accounts for the irreversible deformation and provides predictions in agreement with our experimental results. The basic assumption of the model is that the constitutive stress-strain relationship of individual elements that compose the collagen fibers has a plateau segment during which an irreversible transformation/deformation occurs. Fittings of calculated and measured stress-strain curves reveal a well-defined single-value property of collagenous tissues, which is related to the threshold strain εth for irreversible transformation. Further discussion of several physio-mechanical processes that can induce irreversible behavior indicate that the most probable process, which is in agreement with our results for εth, is a phase transformation of collagen molecules from an α-helix to a β-sheet structure. A phase transformation is a manifestation of a significant change in the molecular structure of the collagen tissues that can alter connections with surrounding molecules and may lead to critical biological changes, e.g., an initiation of labor. This study is driven by the hypothesis that pre-contraction mechanical stretch of the fetal membrane (FM) can lead to a change in the microstructure of the FM, which in turn induces a critical biological (hormonal) change that leads to the initiation of labor. We present

  9. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements

    PubMed Central

    Goyal, Megha; Chaudhuri, Tapan K.; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C). PMID

  10. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    PubMed

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  11. Irreversible compressible work and available potential energy dissipation in turbulent stratified fluids

    NASA Astrophysics Data System (ADS)

    Tailleux, Rémi

    2013-07-01

    Although it plays a key role in the theory of stratified turbulence, the concept of available potential energy (APE) dissipation has remained until now a rather mysterious quantity, owing to the lack of rigorous result about its irreversible character or energy conversion type. Here, we show by using rigorous energetics considerations rooted in the analysis of the Navier-Stokes for a fully compressible fluid with a nonlinear equation of state that the APE dissipation is an irreversible energy conversion that dissipates kinetic energy into internal energy, exactly as viscous dissipation. These results are established by showing that APE dissipation contributes to the irreversible production of entropy, and by showing that it is a part of the work of expansion/contraction. Our results provide a new interpretation of the entropy budget, that leads to a new exact definition of turbulent effective diffusivity, which generalizes the Osborn-Cox model, as well as a rigorous decomposition of the work of expansion/contraction into reversible and irreversible components. In the context of turbulent mixing associated with parallel shear flow instability, our results suggests that there is no irreversible transfer of horizontal momentum into vertical momentum, as seems to be required when compressible effects are neglected, with potential consequences for the parameterizations of momentum dissipation in the coarse-grained Navier-Stokes equations.

  12. Optimization of the performance characteristics in an irreversible magnetic Ericsson refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Xia, Z. R.; Ye, X. M.; Lin, G. X.; Brück, E.

    2006-05-01

    A general model of an irreversible Ericsson refrigeration cycle employing paramagnetic materials as the working substance is presented, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leak, efficiency of regenerator and internal irreversibility resulting from magnetic working substances are taken into account. On the basis of the general thermodynamic properties of paramagnetic materials and the optimal-control theory, the optimal mathematical expressions of cooling load, coefficient of performance and power input of the irreversible Ericsson refrigeration cycle using paramagnetic materials as the working substance are derived. By means of a numerical approach, the influence of the heat leak, the internal irreversibility, the efficiency of regenerator, the ratio of the magnetic fields on the cyclic performance characteristics of the refrigeration cycle are revealed and discussed in detail. Some important performance bounds, e.g. the maximum cooling load and the corresponding coefficient of performance, the maximum coefficient of performance and the corresponding cooling load, are determined and evaluated. Furthermore, several special cases may be deduced from the primary results in this paper. The conclusions obtained in the present paper are more general and useful than those existing in literature and can provide some new important information for the optimal design and performance improvement of magnetic refrigerators.

  13. The optimal operating temperature of the collector of an irreversible solar-driven refrigerator

    NASA Astrophysics Data System (ADS)

    Lin, Guoxing; Yan, Zijun

    1999-01-01

    A universal irreversible solar-driven refrigerator model is presented, in which not only the irreversibility of heat conduction but also the irreversibilities resulting from the friction, eddies and other irreversible effects inside the working fluid are considered. On the basis of this model and the linear heat-loss model of a solar collector, one of the important parameters, called the optimal operating temperature of the collector of a solar-driven refrigerator, is derived by using the finite-time thermodynamic theory. From the result, the maximum overall coefficient of performance of the refrigerator is determined and some significant problems are discussed. The results obtained here are quite realistic and universal, insofar as all the corresponding results derived by using the reversible and endoreversible models and the model considering only the internal irreversibility cycle can be deduced from them. Thus, they may provide some new theoretical bases for further exploitation of solar-driven refrigerators. Furthermore, some shortcoming in the related literature are pointed out.

  14. Irreversible JPEG 2000 compression of abdominal CT for primary interpretation: assessment of visually lossless threshold.

    PubMed

    Lee, Kyoung Ho; Kim, Young Hoon; Kim, Bo Hyoung; Kim, Kil Joong; Kim, Tae Jung; Kim, Hyuk Jung; Hahn, Seokyung

    2007-06-01

    To estimate the visually lossless threshold for Joint Photographic Experts Group (JPEG) 2000 compression of contrast-enhanced abdominal computed tomography (CT) images, 100 images were compressed to four different levels: a reversible (as negative control) and irreversible 5:1, 10:1, and 15:1. By alternately displaying the original and the compressed image on the same monitor, six radiologists independently determined if the compressed image was distinguishable from the original image. For each reader, we compared the proportion of the compressed images being rated distinguishable from the original images between the reversible compression and each of the three irreversible compressions using the exact test for paired proportions. For each reader, the proportion was not significantly different between the reversible (0-1%, 0/100 to 1/100) and irreversible 5:1 compression (0-3%). However, the proportion significantly increased with the irreversible 10:1 (95-99%) and 15:1 compressions (100%) versus reversible compression in all readers (P < 0.001); 100 and 95% of the 5:1 compressed images were rated indistinguishable from the original images by at least five of the six readers and all readers, respectively. Irreversibly 5:1 compressed abdominal CT images are visually lossless and, therefore, potentially acceptable for primary interpretation.

  15. Irreversibility line in superconductor as line of constant shielding current density

    SciTech Connect

    Goemoery, F.; Takacs, S.; Holubar, T.

    1997-06-01

    The irreversibility of magnetic properties of superconductors is due to the existence of macroscopic shielding currents persisting for some period of time. The same currents offer nearly lossless electricity transport. Thus, the extent of magnetic irreversibility is directly proportional to the current-carrying capacity of a superconductor. Because the current-carrying capacity is an intrinsic property of the material, various experimental techniques should give the same irreversibility line corresponding to the same macroscopic shielding current density. Following this approach, the authors compared the irreversibility lines obtained from AC susceptibility measurement with those determined from quasistatic magnetization loops recorded with the help of a SQUID susceptometer. An additional parameter which has to be comparable is the electrical field characterizing the rate of change of the magnetic field. Fulfilling these conditions of equivalency, the authors found that it is possible to explain the irreversibility lines obtained by various techniques and at different conditions by the same physical model. They demonstrate that for the data, taken within two orders of magnitude for the current density and more than seven orders of magnitude for the electrical field, a consistent picture expressing all the observed features by the same model can be found. Measurements are presented from YBCO samples.

  16. Health Technology Assessment of CEM Pulpotomy in Permanent Molars with Irreversible Pulpitis

    PubMed Central

    Yazdani, Shahram; Jadidfard, Mohammad-Pooyan; Tahani, Bahareh; Kazemian, Ali; Dianat, Omid; Alim Marvasti, Laleh

    2014-01-01

    Introduction: Teeth with irreversible pulpitis usually undergo root canal therapy (RCT). This treatment modality is often considered disadvantageous as it removes vital pulp tissue and weakens the tooth structure. A relatively new concept has risen which suggests vital pulp therapy (VPT) for irreversible pulpitis. VPT with calcium enriched mixture (VPT/CEM) has demonstrated favorable treatment outcomes when treating permanent molars with irreversible pulpitis. This study aims to compare patient related factors, safety and organizational consideration as parts of health technology assessment (HTA) of the new VPT/CEM biotechnology when compared with RCT. Materials and Methods: Patient related factors were assessed by looking at short- and long-term clinical success; safety related factors were evaluated by a specialist committee and discussion board involved in formulating healthcare policies. Organizational evaluation was performed and the social implications were assessed by estimating the costs, availability, accessibility and acceptability. The impact of VPT/CEM biotechnology was assessed by investigating the incidence of irreversible pulpitis and the effect of this treatment on reducing the burden of disease. Results: VPT/CEM biotechnology was deemed feasible and acceptable like RCT; however, it was more successful, accessible, affordable, available and also safer than RCT. Conclusion: When considering socioeconomic implications on oral health status and oral health-related quality of life of VPT/CEM, the novel biotechnology can be more effective and more efficient than RCT in mature permanent molars with irreversible pulpitis. PMID:24396372

  17. Partial purification of the mu opioid receptor irreversibly labeled with (/sup 3/H)b-funaltrexamine

    SciTech Connect

    Liu-Chen, L.Y.; Phillips, C.A.; Tam, S.W.

    1986-03-01

    The mu opioid receptor in bovine striatal membranes was specifically and irreversibly labeled by incubation with 5 nM (/sup 3/H)..beta..-funaltrexamine (approx.-FNA) at 37/sup 0/C for 90 min in the presence of 100 mM NaCl. The specific and irreversible binding of (/sup 3/H)..beta..-FNA as defined by that blocked by 1 /sup +/M naloxone was about 60% of total irreversible binding. The specific irreversible binding was saturable, stereospecific, time-, temperature, and tissue-dependent. Mu opioid ligands were much more potent than delta or kappa ligands in inhibiting the specific irreversible labeling. SDS polyacrylamide gel electrophoresis of solubilized membranes in the presence of 2-mercaptoethanol yielded a major radiolabeled broad band of MW 68-97K daltons, characteristic of a glycoprotein band. This band was not observed in membranes labeled in the presence of excess unlabeled naloxone. The glycoprotein nature of the (/sup 3/H)..beta..-FNA-labeled opioid receptor was confirmed by its binding to a wheat germ agglutinin-Sepharose column and its elution with N-acetylglucosamine.

  18. Reversible and irreversible emission of methanethiol and dimethyl disulfide from anaerobically stored broccoli.

    PubMed

    Tulio, Artemio Z; Yamanaka, Hiroyuki; Ueda, Yoshinori; Imahori, Yoshihiro; Chachin, Kazuo

    2003-11-05

    The reversible and irreversible emission of methanethiol (MT) and dimethyl disulfide (DMDS) from broccoli florets was demonstrated during anaerobic storage at 20 degrees C for up to 24 h. Reversible emission of MT and DMDS was feasible only in broccoli stored for between 0 and 12 h under entirely anaerobic condition. Beyond that, the emission was completely irreversible. This irreversible process was demonstrated through significant reductions in the chlorophyll fluorescence values and rate of carbon dioxide production and significant increase in the membrane permeability of induced broccoli tissues after exposure to air and incubation. Irreversible emission was also demonstrated through significant change in color from the characteristic bright green to olive green as well as the conversion of chlorophyll a to pheophytin a and chlorophyll a' contents of the induced florets after hot-water treatment. These findings suggest that the irreversible emission of MT and DMDS is a function of permanent membrane damage and loss of intracellular compartmentation in the broccoli tissues as a result of the anaerobic induction. The off-odor formation can still be reversed if the affected tissue is only temporarily impaired by anaerobic condition, thereby maintaining the quality of stored broccoli.

  19. Maximum power, ecological function and efficiency of an irreversible Carnot cycle: a cost and effectiveness optimization

    NASA Astrophysics Data System (ADS)

    Aragón-González, G.; Canales-Palma, A.; León-Galicia, A.; Morales-Gómez, J. R.

    2008-12-01

    In this work we include, for the Carnot cycle, irreversibilities of linear finite rate of heat transferences between the heat engine and its reservoirs, heat leak between the reservoirs and internal dissipations of the working fluid. A first optimization of the power output, the efficiency and ecological function of an irreversible Carnot cycle, with respect to: internal temperature ratio, time ratio for the heat exchange and the allocation ratio of the heat exchangers; is performed. For the second and third optimizations, the optimum values for the time ratio and internal temperature ratio are substituted into the equation of power and, then, the optimizations with respect to the cost and effectiveness ratio of the heat exchangers are performed. Finally, a criterion of partial optimization for the class of irreversible Carnot engines is herein presented.

  20. Optimization of the performance characteristics in an irreversible regeneration magnetic Brayton refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wu, GuoXing

    2012-02-01

    A model of the irreversible regenerative Brayton refrigeration cycle working with paramagnetic materials is established, in which the regeneration problem in two constant-magnetic field processes and the irreversibility in two adiabatic processes are considered synthetically. Expressions for the COP, cooling rate, power input, the minimum ratio of the two magnetic fields, etc., are derived. It is found that the influence of the irreversibility and the regeneration on the main performance parameters of the magnetic Brayton refrigerator is remarkable. It is important that we have obtained several optimal criteria, which may provide some theoretical basis for the optimal design and operation of the Brayton refrigerator. The results obtained in the paper can provide some new theoretical information for the optimal design and performance improvement of real Brayton refrigerators.

  1. Performance analysis and parametric optimum criteria of an irreversible Bose-Otto engine

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Liu, Sanqiu; He, Jizhou

    2009-04-01

    An irreversible cycle model of a Bose-Otto engine is established, in which finite time thermodynamic processes and the irreversibility result from the nonisentropic compression and expansion processes are taken into account. Based on the model, expressions for the power output and efficiency of the Bose-Otto engine are derived. On the basis of the thermodynamic properties of ideal Bose gas, the effects of the irreversibility and the compression ratio of the two isochoric processes on the performance of the Bose-Otto engine are revealed and some important performance parameters are optimized. Furthermore, some optimal operating regions including those for the power output, efficiency, and the temperatures of the cyclic working substance at two important state points are determined and evaluated. Finally, several special cases are discussed in detail.

  2. Classifying of financial time series based on multiscale entropy and multiscale time irreversibility

    NASA Astrophysics Data System (ADS)

    Xia, Jianan; Shang, Pengjian; Wang, Jing; Shi, Wenbin

    2014-04-01

    Time irreversibility is a fundamental property of many time series. We apply the multiscale entropy (MSE) and multiscale time irreversibility (MSTI) to analyze the financial time series, and succeed to classify the financial markets. Interestingly, both methods have nearly the same classification results, which mean that they are capable of distinguishing different series in a reliable manner. By comparing the results of shuffled data with the original results, we confirm that the asymmetry property is an inherent property of financial time series and it can extend over a wide range of scales. In addition, the effect of noise on Americas markets and Europe markets are relatively more significant than the effect on Asia markets, and loss of time irreversibility has been detected in high noise added series.

  3. A thermodynamic view on latent heat transport, expansion work of water vapor and irreversible moist processes.

    NASA Astrophysics Data System (ADS)

    Pauluis, O.

    2001-05-01

    Three aspects of moist convection are discussed here: the latent heat transport from the Earth's surface to the regions where water vapor condenses, the expansion work performed by water vapor during its ascent, and the irreversible entropy production due to diffusion of water vapor and phase changes. A thermodynamic relationship between these three aspects of moist convection, referred here to as the entropy budget of the water substance, is derived. This relationship is similar to the entropy budget of an imperfect heat engine that produces less work than the corresponding Carnot cycle because of the irreversibility associated with diffusion of water vapor and irreversible phase changes. In addition to behaving as a heat engine, moist convection also acts as an atmospheric dehumidifier that removes water from the atmosphere through condensation and precipitation. In statistical equilibrium, this dehumidification is balanced by a continuous moistening of dry air, associated at the microphysical scales with diffusion of water vapor and irreversible phase changes. The irreversible entropy production due to these moist processes can thus be viewed as the irreversible counterpart to the atmospheric dehumidification. The entropy budget of the water substance thus indicates that there is a competition between how much the latent heat transport behaves as an atmospheric dehumidifier, and how much it behaves as a heat engine. Scaling arguments show that for conditions typical of the tropical atmosphere, the expansion work of water vapor accounts for about one third of the work that would be performed by a corresponding Carnot cycle. This implies that the latent heat transport acts more as an atmospheric dehumidifier than as a heat engine. This also implies that the amount of work performed by moist convection should be much weaker than what has been predicted by earlier theories that assume that convection behaves mostly as a perfect heat engine.

  4. Effect of disinfection on irreversible hydrocolloid and alternative impression materials and the resultant gypsum casts.

    PubMed

    Suprono, Montry S; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2012-10-01

    Many new products have been introduced and marketed as alternatives to traditional irreversible hydrocolloid materials. These alternative materials have the same structural formula as addition reaction silicone, also known as vinyl polysiloxane (VPS), impression materials. Currently, there is limited in vitro and in vivo research on these products, including on the effects of chemical disinfectants on the materials. The purpose of this study was to compare the effects of a spray disinfecting technique on a traditional irreversible hydrocolloid and 3 new alternative impression materials in vitro. The tests were performed in accordance with the American National Standards Institute/American Dental Association (ANSI/ADA) Specification Nos. 18 and 19. Under standardized conditions, 100 impressions were made of a ruled test block with an irreversible hydrocolloid and 3 alternative impression materials. Nondisinfected irreversible hydrocolloid was used as the control. The impressions were examined for surface detail reproduction before and after disinfection with a chloramine-T product. Type III and Type V dental stone casts were evaluated for linear dimensional change and gypsum compatibility. Comparisons of linear dimensional change were analyzed with 2-way ANOVA of mean ranks with the Scheffé post hoc comparisons (α=.05). Data for surface detail reproduction were analyzed with the Wilcoxon Signed-Rank procedure and gypsum compatibility with the Kruskal-Wallis Rank procedure (α=.05). The alternative impression materials demonstrated significantly better outcomes with all 3 parameters tested. Disinfection with chloroamine-T did not have any effect on the 3 alternative impression materials. The irreversible hydrocolloid groups produced the most variability in the measurements of linear dimensional change. All of the tested materials were within the ADA's acceptable limit of 1.0% for linear dimensional change, except for the disinfected irreversible hydrocolloid

  5. Dimensional stability and detail reproduction of irreversible hydrocolloid and elastomeric impressions disinfected by immersion.

    PubMed

    Johnson, G H; Chellis, K D; Gordon, G E; Lepe, X

    1998-04-01

    Because irreversible hydrocolloid impressions imbibe blood and saliva, immersion rather than spray disinfection may be more effective. Polyether has been shown to be dimensionally sensitive to immersion disinfection. The aim of this study was to determine whether irreversible hydrocolloid and polyether impressions could be disinfected by immersion without sacrificing accuracy and surface quality. Impressions were made of a master mandibular arch containing a crown preparation. Changes between the master and working casts were assessed. Irreversible hydrocolloids (Jeltrate; Palgaflex), a polyether (Impregum F), and an addition silicone (President) were used. Disinfectants were an iodophor (Biocide), a glyoxal glutaraldehyde (Impresept de), and a phenol glutaraldehyde (Sporicidin). The control was without disinfection. Casts were formed in Type IV gypsum. The roughness of working dies was also recorded and an analysis of variance was used for statistical evaluation. Results. Casts from disinfected irreversible hydrocolloid and elastomeric impressions maintained accuracy for anteroposterior and cross arch dimensions where differences from the master was less than 0.1%. Buccolingual and mesiodistal dimensions of working dies (disinfected and control) were 6 to 8 microm larger than the master for addition silicones and 11 to 16 pm for polyethers. The occlusogingival dimension of dies for control and disinfected polyether was 9 pm longer than the master compared with -3 microm for addition silicone. The range of mean surface roughness of working dies made from irreversible hydrocolloids was 1.4 to 1.7 microm and ranged from 0.5 to 0.7 microm for elastomeric impressions. Conclusion. Immersion disinfection of Jeltrate material with iodophor and Palgaflex material with glyoxal glutaraldehyde produced casts and dies as accurate as the control. Control and disinfected elastomeric impression produced dies as clinically accurate and smooth as the master. Disinfection of

  6. Enhanced irreversible sorption of carbaryl to soils amended with crop-residue-derived biochar.

    PubMed

    Qiu, Yuping; Wu, Minwei; Jiang, Jing; Li, Liang; Sheng, G Daniel

    2013-09-01

    The irreversible sorption-desorption of carbaryl in five soil types with crop-residue-derived biochar (CBC) amendment was determined. CBC has lower surface area and micropores volume than wood-based biochar and charcoal. However, CBC amendment (0.5%) still significantly enhanced the hysteresis effect on soils, with a 1.7- to 2.8-fold increase in the hysteresis index (HI) values. The HI values increased exponentially with the increased amount of CBC but decreased exponentially with the increased amount of soil organic matter (SOM%). Furthermore, the irreversible carbaryl sorption (qirr) and the irreversibility index (Iirr) values were proportional to the amount of CBC (0-1.0%) in soils. Likewise, the SOM-rich soil (S3) was washed ten times to reduce its SOM% to evaluate the influence of the dissolved organic matter (DOM) in the soils on the irreversible sorption. The Iirr values of the unamended S3 increased as the number of sorption-desorption cycles increased, whereas those of the 1.0% CBC-amended S3 decreased. In addition, the Iirr values of the unwashed S3 were lower than those of the washed S3. By contrast, the Iirr values of the 1.0% CBC-amended S3 soil were higher in the unwashed samples than in the washed samples. These results suggested that DOM had opposite effects on the irreversible carbaryl sorption by unamended and CBC-amended soils. The DOM release may expose more irreversible adsorption sites in the soils and may cover the surface of the CBC to form a desorption-resistant fraction in its mesopore or macropore regions, thereby preventing the desorption of adsorbed carbaryl molecules.

  7. [Irreversible chemical AFM-fishing for the detection of low-copied proteins].

    PubMed

    Ivanov, Iu D; Danichev, V V; Pleshakova, T O; Shumov, I D; Ziborov, V S; Krokhin, N V; Zagumennyĭ, M N; Ustinov, V S; Smirnov, L P; Shironin, A V; Archakov, A I

    2014-01-01

    The atomic-force microscopy-based method of irreversible chemical AFM-fishing (AFM-IF(Ch)) has been developed for the detection of proteins at ultra-low concentrations in solution. Using this method, a very low concentration of horseradish peroxidase (HRP) protein (10(-17) M) was detected in solution. A theoretical model that allows the description of obtained experimental data, is proposed. This model takes into consideration both the transport of the protein from the bulk solution onto the AFM-chip surface and its irreversible binding to the activated area.

  8. Irreversibility and the Arrow of Time in a Quenched Quantum System.

    PubMed

    Batalhão, T B; Souza, A M; Sarthour, R S; Oliveira, I S; Paternostro, M; Lutz, E; Serra, R M

    2015-11-06

    Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field. We experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time reversal. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.

  9. Irreversible event-based model for thermal emission of electrons from isolated traps

    NASA Astrophysics Data System (ADS)

    Dimitrijev, Sima

    2009-05-01

    In spite of the irreversible nature of macroscopic processes, our understanding of the fundamental physical phenomena remains limited to reversible models (the Loschmidt's paradox). We propose a direct irreversible model for the probability per unit time that an electron will be emitted from an isolated trap. This resolves a number of problems, including (1) the dubious link between emission measurements and the parameters of the independent capture process and (2) the elusive meaning of the degeneracy factor in the equilibrium Fermi-Dirac distribution.

  10. An Irreversible Constitutive Law for Modeling the Delamination Process Using Interface Elements

    NASA Technical Reports Server (NTRS)

    Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.

  11. An Irreversible Constitutive Law for Modeling the Delamination Process using Interface Elements

    NASA Technical Reports Server (NTRS)

    Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Ambur, Damodar (Technical Monitor)

    2002-01-01

    An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.

  12. Irreversible Horner's syndrome diagnosed by aproclonidine test due to benign thyroid nodule.

    PubMed

    M, Coskun; A, Aydogan; C, Gokce; O, Ilhan; Ov, Ozkan; H, Gokce; H, Oksuz

    2013-01-01

    We are reporting an irreversible Horner Syndrome (HS) in a patient with benign thyroid gland nodule in which thyroidectomy was performed for treatment. A 37-year-old female was admitted to our clinic with a swelling in the left lobe of the thyroid gland and ptosis at the left eyelid. The clinical diagnosis of HS was confirmed pharmacologically by aproclonidine. Histopathologic examination of thyroidectomy specimen was reported as benign nodule. To the best of our knowledge, this is a very rare report in terms of thyroid benign nodule associated with irreversible HS due to cervical sympathetic chain compression.

  13. Irreversible Horner’s syndrome diagnosed by aproclonidine test due to benign thyroid nodule

    PubMed Central

    M, Coskun; A, Aydogan; C, Gokce; O, Ilhan; OV, Ozkan; H, Gokce; H, Oksuz

    2013-01-01

    We are reporting an irreversible Horner Syndrome (HS) in a patient with benign thyroid gland nodule in which thyroidectomy was performed for treatment. A 37-year-old female was admitted to our clinic with a swelling in the left lobe of the thyroid gland and ptosis at the left eyelid. The clinical diagnosis of HS was confirmed pharmacologically by aproclonidine. Histopathologic examination of thyroidectomy specimen was reported as benign nodule. To the best of our knowledge, this is a very rare report in terms of thyroid benign nodule associated with irreversible HS due to cervical sympathetic chain compression. PMID:24353546

  14. Single cell imaging of Bruton's Tyrosine Kinase using an irreversible inhibitor

    PubMed Central

    Turetsky, Anna; Kim, Eunha; Kohler, Rainer H.; Miller, Miles A.; Weissleder, Ralph

    2014-01-01

    A number of Bruton's tyrosine kinase (BTK) inhibitors are currently in development, yet it has been difficult to visualize BTK expression and pharmacological inhibition in vivo in real time. We synthesized a fluorescent, irreversible BTK binder based on the drug Ibrutinib and characterized its behavior in cells and in vivo. We show a 200 nM affinity of the imaging agent, high selectivity, and irreversible binding to its target following initial washout, resulting in surprisingly high target-to-background ratios. In vivo, the imaging agent rapidly distributed to BTK expressing tumor cells, but also to BTK-positive tumor-associated host cells. PMID:24759210

  15. Single cell imaging of Bruton's Tyrosine Kinase using an irreversible inhibitor

    NASA Astrophysics Data System (ADS)

    Turetsky, Anna; Kim, Eunha; Kohler, Rainer H.; Miller, Miles A.; Weissleder, Ralph

    2014-04-01

    A number of Bruton's tyrosine kinase (BTK) inhibitors are currently in development, yet it has been difficult to visualize BTK expression and pharmacological inhibition in vivo in real time. We synthesized a fluorescent, irreversible BTK binder based on the drug Ibrutinib and characterized its behavior in cells and in vivo. We show a 200 nM affinity of the imaging agent, high selectivity, and irreversible binding to its target following initial washout, resulting in surprisingly high target-to-background ratios. In vivo, the imaging agent rapidly distributed to BTK expressing tumor cells, but also to BTK-positive tumor-associated host cells.

  16. Antibacterial efficacy and effect of chlorhexidine mixed with irreversible hydrocolloid for dental impressions: a randomized controlled trial.

    PubMed

    Cubas, Glória; Valentini, Fernanda; Camacho, Guilherme Brião; Leite, Fábio; Cenci, Maximiliano Sérgio; Pereira-Cenci, Tatiana

    2014-01-01

    This study aimed to evaluate whether chlorhexidine mixed with irreversible hydrocolloid powder decreases microbial contamination during impression taking without affecting the resulting casts. Twenty volunteers were randomly divided into two groups (n = 10) according to the liquid used for impression taking in conjunction with irreversible hydrocolloid: 0.12% chlorhexidine or water. Surface roughness and dimensional stability of the casts were evaluated. Chlorhexidine mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P < .001) but did not affect the surface quality or dimensional stability of the casts. Mixing chlorhexidine with irreversible hydrocolloid powder is an alternative method to prevent contamination without sacrificing impression quality.

  17. Thermodynamic second law in irreversible processes of chaotic few-body systems.

    PubMed

    Hu, G; Zheng, Z; Yang, L; Kang, W

    2001-10-01

    Irreversible processes of few hard-ball (N) mechanical systems are investigated numerically and compared with the theoretical results of quasistatic processes. The thermodynamic second law is valid for N>or=2 for both equilibrium and nonequilibrium systems if the average ensemble of the large number of identical systems is taken.

  18. A simple technique to reduce the risk of irreversible gingival recession after the final impression.

    PubMed

    Labban, Nawaf

    2011-12-01

    The chemicomechanical method is the most common tissue displacement technique used to facilitate the final impression for fixed dental prostheses. The article describes a simple technique to minimize the risk of developing gingival irreversible recession because of tissue displacement cords. © 2011 by the American College of Prosthodontists.

  19. Irreversible magnetization reversal in some Co-based alloy thin films

    NASA Astrophysics Data System (ADS)

    Admon, U.; Dariel, M. P.; Grunbaum, E.; Lodder, J. C.

    1989-07-01

    Irreversible magnetization reversal occurs either by coherent or incoherent spin rotation or by wall displacement. In electrodeposited Co-W, Co-Fe, and Co-P 300-500-Å films, vibrating sample magnetometer hysteresis loop analyses indicate that magnetization reversal takes place by wall displacement. The formation and movement of domain walls has been put in evidence by Lorentz electron microscopy.

  20. Time-Dependent Reversible-Irreversible Deformation Threshold Determined Explicitly by Experimental Technique

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Arnold, Steven M.

    2000-01-01

    Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.

  1. 50 CFR 402.09 - Irreversible or irretrievable commitment of resources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.09 Irreversible or... proposed species or proposed critical habitat under section 7(a)(4) of the Act. ...

  2. 50 CFR 402.09 - Irreversible or irretrievable commitment of resources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.09 Irreversible or... proposed species or proposed critical habitat under section 7(a)(4) of the Act. ...

  3. 50 CFR 402.09 - Irreversible or irretrievable commitment of resources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.09 Irreversible or... proposed species or proposed critical habitat under section 7(a)(4) of the Act. ...

  4. 50 CFR 402.09 - Irreversible or irretrievable commitment of resources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.09 Irreversible or... proposed species or proposed critical habitat under section 7(a)(4) of the Act. ...

  5. 50 CFR 402.09 - Irreversible or irretrievable commitment of resources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED General § 402.09 Irreversible or... proposed species or proposed critical habitat under section 7(a)(4) of the Act. ...

  6. Expansion Work without the External Pressure and Thermodynamics in Terms of Quasistatic Irreversible Processes

    ERIC Educational Resources Information Center

    Schmidt-Rohr, Klaus

    2014-01-01

    We demonstrate that the formula for irreversible expansion work in most chemical thermodynamics textbooks does not apply during the expansion process. Instead of the "external pressure" P[subscript ext], the pressure P[subscript sys,mb] on the piston or other moving boundary (hence the subscript mb), which is nearly equal to the system…

  7. Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Levin, Michael; Gallucci, V. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with…

  8. An ecology-based analysis of irreversible biofouling in membrane bioreactors.

    PubMed

    Zhang, K; Choi, H; Wu, M; Sorial, G A; Dionysiou, D; Oerther, D B

    2007-01-01

    To provide the first step towards a microbial ecology-based understanding of irreversible membrane biofouling, four laboratory-scale membrane bioreactors (MBRs) were operated to investigate the identity of bacterial populations highly correlated with irreversible membrane biofouling. The conventional MBR was divided into two separate experimental units. Unit one consisted of four suspended-growth, activated sludge, sequencing batch bioreactors treating a synthetic paper mill wastewater. Unit two consisted of a microfiltration membrane cell. Amplified ribosomal deoxyribonucleic acid restriction analysis (ARDRA) was used to compare the predominant bacterial populations in samples of mixed liquor and irreversibly bound to the membrane surface. The results of ARDRA showed a significant difference between the planktonic and sessile bacterial communities suggesting that irreversible biofouling of microfiltration membranes may be more highly correlated to specific bacterial populations rather than the total, bulk concentration of biomass. A custom-built mini-flow cell and light microscopy were used to visualise the early formation of biofilms by two pure cultures (Escherichia coli and Acinetobacter calcoaceticus) on membrane surfaces. The results confirmed that A. calcoaceticus was able to enhance the initiation of biofilm formation on microfiltration membranes.

  9. Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide.

    PubMed

    Liu, Guanshu; Li, Yuguo; Pagel, Mark D

    2007-12-01

    Irreversible responsive PARAmagnetic Chemical Exchange Saturation Transfer (PARACEST) MRI contrast agents constitute a new type of agent for molecular imaging. To investigate the utility of this approach, a novel PARACEST MRI contrast agent, Yb(III)-(1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid)-orthoaminoanilide (Yb-DO3A-oAA), was developed that detects nitric oxide (NO). The agent exhibited two CEST effects at -11 ppm and +8 ppm, which were assigned to chemical exchange from amide and amine functional groups, respectively. The effects of pH, temperature, and concentration were investigated to characterize the complex and to optimize PARACEST detection. This responsive PARACEST MRI contrast agent incurred an irreversible covalent change in the presence of NO and O(2), which caused an irreversible disappearance of both PARACEST effects from MR images. The NO-dependent response of a relaxivity-based MRI contrast agent, Gd-DO3A-oAA, was investigated for comparison. This report highlights the advantages of irreversible MRI contrast agents, demonstrates that large changes in PARACEST can be used to create a highly responsive agent, and indicates challenges that must be overcome to apply this type of contrast agent to in vivo biomedical applications in molecular imaging. (c) 2007 Wiley-Liss, Inc.

  10. Irreversible inhibition of type I dehydroquinase by substrates for type II dehydroquinase.

    PubMed

    Bello, C G; Harris, J M; Manthey, M K; Coggins, J R; Abell, C

    2000-03-06

    Mechanistic differences between type I and type II dehydroquinases have been exploited in the design of type specific inhibitors. (2R)-2-Bromo-3-dehydroquinic acid (3), (2R)-2-fluoro-3-dehydroquinic acid (5) and 2-bromo-3-dehydroshikimic acid (4), all excellent substrates for type II dehydroquinase, are shown to be irreversible inhibitors of type I dehydroquinase.

  11. A comparison of the anesthetic efficacy of articaine and lidocaine in patients with irreversible pulpitis.

    PubMed

    Tortamano, Isabel Peixoto; Siviero, Marcelo; Costa, Carina Gisele; Buscariolo, Inês Aparecida; Armonia, Paschoal Laércio

    2009-02-01

    The purpose of the present study was to compare the anesthetic efficacy of 4% articaine with 1:100,000 epinephrine with that of 2% lidocaine with 1:100,000 epinephrine during pulpectomy in patients with irreversible pulpitis in mandibular posterior teeth. Forty volunteers, patients with irreversible pulpitis admitted to the Emergency Center of the School of Dentistry at the University of São Paulo, randomly received a conventional inferior alveolar nerve block containing 3.6 mL of either 4% articaine with 1:100,000 epinephrine or 2% lidocaine with 1:100,000 epinephrine. During the subsequent pulpectomy, we recorded the patients' subjective assessments of lip anesthesia, the absence/presence of pulpal anesthesia through electric pulp stimulation, and the absence/presence of pain through a verbal analogue scale. All tested patients reported lip anesthesia after the application of either inferior alveolar nerve block. Regarding pulpal anesthesia success as measured with the pulp tester, the lidocaine solution had a higher success rate (70%) than the articaine solution (65%). For patients reporting none or mild pain during pulpectomy, the success rate of the articaine solution (65%) was higher than that of the lidocaine solution (45%). Yet, none of the observed differences between articaine and lidocaine were statistically significant. Apparently, therefore, both local anesthetic solutions had similar effects on the patients with irreversible pulpitis in mandibular posterior teeth. Neither of the solutions, however, resulted in an effective pain control during irreversible pulpitis treatments.

  12. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.

    PubMed

    Boronat, S; García-Santamarina, S; Hidalgo, E

    2015-05-01

    Oxidative modifications in proteins have been traditionally considered as hallmarks of damage by oxidative stress and aging. However, oxidants can generate a huge variety of reversible and irreversible modifications in amino acid side chains as well as in the protein backbones, and these post-translational modifications can contribute to the activation of signal transduction pathways, and also mediate the toxicity of oxidants. Among the reversible modifications, the most relevant ones are those arising from cysteine oxidation. Thus, formation of sulfenic acid or disulfide bonds is known to occur in many enzymes as part of their catalytic cycles, and it also participates in the activation of signaling cascades. Furthermore, these reversible modifications have been usually attributed with a protective role, since they may prevent the formation of irreversible damage by scavenging reactive oxygen species. Among irreversible modifications, protein carbonyl formation has been linked to damage and death, since it cannot be repaired and can lead to protein loss-of-function and to the formation of protein aggregates. This review is aimed at researchers interested on the biological consequences of oxidative stress, both at the level of signaling and toxicity. Here we are providing a concise overview on current mass-spectrometry-based methodologies to detect reversible cysteine oxidation and irreversible protein carbonyl formation in proteomes. We do not pretend to impose any of the different methodologies, but rather to provide an objective catwalk on published gel-free approaches to detect those two types of modifications, from a biologist's point of view.

  13. The “irreversibility line” viewed as a phase transition: thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Tournier, R.; Giordanengo, B.; De Rango, P.; Sulpice, A.

    1990-08-01

    The irreversibility line could be a second order phase transition. A vortex-lattice-dependent term in the Gibbs free energy is assumed to go to zero as H-H * for H < H *. The reversible magnetization of extremely high κ materials and H *(T) are used to predict the change of susceptibility and specific heat at the transition without any ajustable parameter.

  14. ScienceCast 145: No Turning Back: West Antarctic Glaciers in Irreversible Decline

    NASA Image and Video Library

    2014-05-12

    A new study led by NASA researchers shows that half-a-dozen key glaciers in the West Antarctic Ice Sheet are in irreversible decline. The melting of these sprawling icy giants will affect global sea levels in the centuries ahead.

  15. Laser induced irreversible absorption changes in alkali halides at 10.6 µm

    NASA Astrophysics Data System (ADS)

    Wu, S.-T.; Bass, M.

    1981-12-01

    Laser induced irreversible changes in the absorption of alkali halides has been observed by using repetitively pulsed laser calorimetry. These changes occur at intensities below that required for laser induced breakdown and necessitate a change in the definition of laser damage threshold. A simple model is proposed to explain these observations based on the accumulation of microscopic failures as a result of each pulse.

  16. Irreversible Capacities of Graphite in Low Temperature Electrolytes for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B.; Smart, M.; Surampudi, S.; Wang, Y.; Zhang, X.; Greenbaum, S.; Hightower, A.; Ahn, C.; Fultz, B.

    1999-01-01

    Carbonaceous anode materials in lithium ion rechargeable cells experience irreversible capacity, mainly due to a consumption of lithium in the formation of surface passive films. The stability and kinetics of lithium intercalation into the carbon anodes are dictated by these films.

  17. Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines

    NASA Astrophysics Data System (ADS)

    Tyagi, S. K.; Kaushik, S. C.; Salhotra, R.

    2002-10-01

    The concept of finite time thermodynamics is used to determine the ecological function of irreversible Stirling and Ericsson heat engine cycles. The ecological function is defined as the power output minus power loss (irreversibility), which is the ambient temperature times, the entropy generation rate. The ecological function is maximized with respect to cycle temperature ratio and the expressions for the corresponding power output and thermal efficiency are derived at the optimal operating conditions. The effect of different operating parameters, the effectiveness on the hot, cold and the regenerative side heat exchangers, the cycle temperature ratio, heat capacitance ratio and the internal irreversibility parameter on the maximum ecological function are studied. It is found that the effect of regenerator effectiveness is more than the hot and cold side heat exchangers and the effect of the effectiveness on cold side heat exchanger is more than the effectiveness on the hot side heat exchanger on the maximum ecological function. It is also found that the effect of internal irreversibility parameter is more than the other parameters not only on the maximum ecological function but also on the corresponding power output and the thermal efficiency.

  18. Irreversible Capacities of Graphite in Low Temperature Electrolytes for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B.; Smart, M.; Surampudi, S.; Wang, Y.; Zhang, X.; Greenbaum, S.; Hightower, A.; Ahn, C.; Fultz, B.

    1999-01-01

    Carbonaceous anode materials in lithium ion rechargeable cells experience irreversible capacity, mainly due to a consumption of lithium in the formation of surface passive films. The stability and kinetics of lithium intercalation into the carbon anodes are dictated by these films.

  19. Expansion Work without the External Pressure and Thermodynamics in Terms of Quasistatic Irreversible Processes

    ERIC Educational Resources Information Center

    Schmidt-Rohr, Klaus

    2014-01-01

    We demonstrate that the formula for irreversible expansion work in most chemical thermodynamics textbooks does not apply during the expansion process. Instead of the "external pressure" P[subscript ext], the pressure P[subscript sys,mb] on the piston or other moving boundary (hence the subscript mb), which is nearly equal to the system…

  20. [Determination of irreversibility of clinical brain death. Electroencephalography and evoked potentials].

    PubMed

    Buchner, H; Ferbert, A

    2016-02-01

    Principally, in the fourth update of the rules for the procedure to finally determine the irreversible cessation of function of the cerebrum, the cerebellum and the brainstem, the importance of an electroencephalogram (EEG), somatosensory evoked potentials (SEP) and brainstem auditory evoked potentials (BAEP) are confirmed. This paper presents the reliability and validity of the electrophysiological diagnosis, discusses the amendments in the fourth version of the guidelines and introduces the practical application, problems and sources of error.An EEG is the best established supplementary diagnostic method for determining the irreversibility of clinical brain death syndrome. It should be noted that residual brain activity can often persist for many hours after the onset of brain death syndrome, particularly in patients with primary brainstem lesions. The derivation and analysis of an EEG requires a high level of expertise to be able to safely distinguish artefacts from primary brain activity. The registration of EEGs to demonstrate the irreversibility of clinical brain death syndrome is extremely time consuming.The BAEPs can only be used to confirm the irreversibility of brain death syndrome in serial examinations or in the rare cases of a sustained wave I or sustained waves I and II. Very often, an investigation cannot be reliably performed because of existing sound conduction disturbances or failure of all potentials even before the onset of clinical brain death syndrome. This explains why BAEPs are only used in exceptional cases.The SEPs of the median nerve can be very reliably derived, are technically simple and with few sources of error. A serial investigation is not required and the time needed for examination is short. For these reasons SEPs are given preference over EEGs and BAEPs for establishing the irreversibility of clinical brain death syndrome.

  1. An in vitro investigation into the physical properties of irreversible hydrocolloid alternatives.

    PubMed

    Patel, Rishi D; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2010-11-01

    A number of manufacturers have introduced new products that are marketed as alternatives to irreversible hydrocolloid impression materials. However, there is a paucity of laboratory and clinical research on these products compared to traditional irreversible hydrocolloid. The purpose of this study was to evaluate the detail reproduction, gypsum compatibility, and linear dimensional change of 3 recently introduced impression materials designed as alternatives to irreversible hydrocolloid. The tested materials were Position Penta Quick, Silgimix, and AlgiNot. An irreversible hydrocolloid impression material, Jeltrate Plus Antimicrobial, served as the control. The parameters of detail reproduction, gypsum compatibility, and linear dimensional change were tested in accordance with ANSI/ADA Specifications No. 18 and 19. The gypsum compatibility was tested using a type III stone (Microstone Golden) and a type IV stone (Die-Keen Green). The data were analyzed using the Kruskal-Wallis rank test and the Mann-Whitney U test (α=.05). The test materials demonstrated significantly (P<.001) better detail reproduction than the control material. Silgimix exhibited the best compatibility with Microstone, whereas AlgiNot and Position Penta Quick exhibited the best gypsum compatibility with Die-Keen. An incompatibility was observed over time between the Jeltrate control material and the Microstone gypsum material. For linear dimensional change, the mean dimension of the control material most closely approximated the distance between the lines on the test die, but it exhibited the greatest variability in measurements. All of the test materials exhibited linear dimensional change within the ADA's accepted limit of 1.0%. The 3 new impression materials exhibited better detail reproduction and less variability in linear dimensional change than the irreversible hydrocolloid control. Gypsum compatibility varied with the brand of gypsum used, with an incompatibility identified between the

  2. Using irreversible compression in digital radiology: a preliminary study of the opinions of radiologists

    NASA Astrophysics Data System (ADS)

    Seeram, Euclid

    2006-03-01

    The large volumes of digital images produced by digital imaging modalities in Radiology have provided the motivation for the development of picture archiving and communication systems (PACS) in an effort to provide an organized mechanism for digital image management. The development of more sophisticated methods of digital image acquisition (Multislice CT and Digital Mammography, for example), as well as the implementation and performance of PACS and Teleradiology systems in a health care environment, have created challenges in the area of image compression with respect to storing and transmitting digital images. Image compression can be reversible (lossless) or irreversible (lossy). While in the former, there is no loss of information, the latter presents concerns since there is a loss of information. This loss of information from diagnostic medical images is of primary concern not only to radiologists, but also to patients and their physicians. In 1997, Goldberg pointed out that "there is growing evidence that lossy compression can be applied without significantly affecting the diagnostic content of images... there is growing consensus in the radiologic community that some forms of lossy compression are acceptable". The purpose of this study was to explore the opinions of expert radiologists, and related professional organizations on the use of irreversible compression in routine practice The opinions of notable radiologists in the US and Canada are varied indicating no consensus of opinion on the use of irreversible compression in primary diagnosis, however, they are generally positive on the notion of the image storage and transmission advantages. Almost all radiologists are concerned with the litigation potential of an incorrect diagnosis based on irreversible compressed images. The survey of several radiology professional and related organizations reveals that no professional practice standards exist for the use of irreversible compression. Currently, the

  3. Positive Feedback of NDT80 Expression Ensures Irreversible Meiotic Commitment in Budding Yeast

    PubMed Central

    Tsuchiya, Dai; Yang, Yang; Lacefield, Soni

    2014-01-01

    In budding yeast, meiotic commitment is the irreversible continuation of the developmental path of meiosis. After reaching meiotic commitment, cells finish meiosis and gametogenesis, even in the absence of the meiosis-inducing signal. In contrast, if the meiosis-inducing signal is removed and the mitosis-inducing signal is provided prior to reaching meiotic commitment, cells exit meiosis and return to mitosis. Previous work has shown that cells commit to meiosis after prophase I but before entering the meiotic divisions. Since the Ndt80 transcription factor induces expression of middle meiosis genes necessary for the meiotic divisions, we examined the role of the NDT80 transcriptional network in meiotic commitment. Using a microfluidic approach to analyze single cells, we found that cells commit to meiosis in prometaphase I, after the induction of the Ndt80-dependent genes. Our results showed that high-level expression of NDT80 is important for the timing and irreversibility of meiotic commitment. A modest reduction in NDT80 levels delayed meiotic commitment based on meiotic stages, although the timing of each meiotic stage was similar to that of wildtype cells. A further reduction of NDT80 resulted in the surprising finding of inappropriately uncommitted cells: withdrawal of the meiosis-inducing signal and addition of the mitosis-inducing signal to cells at stages beyond metaphase I caused return to mitosis, leading to multi-nucleate cells. Since Ndt80 enhances its own transcription through positive feedback, we tested whether positive feedback ensured the irreversibility of meiotic commitment. Ablating positive feedback in NDT80 expression resulted in a complete loss of meiotic commitment. These findings suggest that irreversibility of meiotic commitment is a consequence of the NDT80 transcriptional positive feedback loop, which provides the high-level of Ndt80 required for the developmental switch of meiotic commitment. These results also illustrate the

  4. Magnetic irreversibility: An important amendment in the zero-field-cooling and field-cooling method

    NASA Astrophysics Data System (ADS)

    Teixeira Dias, Fábio; das Neves Vieira, Valdemar; Esperança Nunes, Sabrina; Pureur, Paulo; Schaf, Jacob; Fernanda Farinela da Silva, Graziele; de Paiva Gouvêa, Cristol; Wolff-Fabris, Frederik; Kampert, Erik; Obradors, Xavier; Puig, Teresa; Roa Rovira, Joan Josep

    2016-02-01

    The present work reports about experimental procedures to correct significant deviations of magnetization data, caused by magnetic relaxation, due to small field cycling by sample transport in the inhomogeneous applied magnetic field of commercial magnetometers. The extensively used method for measuring the magnetic irreversibility by first cooling the sample in zero field, switching on a constant applied magnetic field and measuring the magnetization M(T) while slowly warming the sample, and subsequently measuring M(T) while slowly cooling it back in the same field, is very sensitive even to small displacement of the magnetization curve. In our melt-processed YBaCuO superconducting sample we observed displacements of the irreversibility limit up to 7 K in high fields. Such displacements are detected only on confronting the magnetic irreversibility limit with other measurements, like for instance zero resistance, in which the sample remains fixed and so is not affected by such relaxation. We measured the magnetic irreversibility, Tirr(H), using a vibrating sample magnetometer (VSM) from Quantum Design. The zero resistance data, Tc0(H), were obtained using a PPMS from Quantum Design. On confronting our irreversibility lines with those of zero resistance, we observed that the Tc0(H) data fell several degrees K above the Tirr(H) data, which obviously contradicts the well known properties of superconductivity. In order to get consistent Tirr(H) data in the H-T plane, it was necessary to do a lot of additional measurements as a function of the amplitude of the sample transport and extrapolate the Tirr(H) data for each applied field to zero amplitude.

  5. Irreversible Heating Measurement with Microsecond Pulse Magnet: Example of the α-θ Phase Transition of Solid Oxygen

    NASA Astrophysics Data System (ADS)

    Nomura, Toshihiro; Matsuda, Yasuhiro H.; Takeyama, Shojiro; Kobayashi, Tatsuo C.

    2016-09-01

    Dissipation inevitably occurs in first-order phase transitions, leading to irreversible heating. Conversely, the irreversible heating effect may indicate the occurrence of the first-order phase transition. We measured the temperature change at the magnetic-field-induced α-θ phase transition of solid oxygen. A significant temperature increase from 13 to 37 K, amounting to 700 J/mol, due to irreversible heating was observed at the first-order phase transition. We argue that the hysteresis loss of the magnetization curve and the dissipative structural transformation account for the irreversible heating. The measurement of irreversible heating can be utilized to detect the first-order phase transition in combination with an ultrahigh magnetic fields generated in a time of µs order.

  6. Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial

    PubMed Central

    Ahmed, A. Shafath; Charles, P. David; Cholan, R.; Russia, M.; Surya, R.; Jailance, L.

    2015-01-01

    Aim: This study aimed to evaluate whether the extract of Morinda citrifolia L. mixed with irreversible hydrocolloid powder decreases microbial contamination during impression making without affecting the resulting casts. Materials and Methods: Twenty volunteers were randomly divided into two groups (n = 10). Group A 30 ml extract of M. citrifolia L diluted in 30 ml of water was mixed to make the impression with irreversible hydrocolloid material. Group B 30 ml deionized water was mixed with irreversible hydrocolloid material to make the impressions following which the surface roughness and dimensional stability of casts were evaluated. Results: Extract of M. citrifolia L. mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P < 0.001) but did not affect the surface quality or dimensional stability of the casts. Conclusion: Mixing the extract of M. citrifolia L. with irreversible hydrocolloid powder is an alternative method to prevent contamination without sacrificing impression quality. PMID:26538926

  7. Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial.

    PubMed

    Ahmed, A Shafath; Charles, P David; Cholan, R; Russia, M; Surya, R; Jailance, L

    2015-08-01

    This study aimed to evaluate whether the extract of Morinda citrifolia L. mixed with irreversible hydrocolloid powder decreases microbial contamination during impression making without affecting the resulting casts. Twenty volunteers were randomly divided into two groups (n = 10). Group A 30 ml extract of M. citrifolia L diluted in 30 ml of water was mixed to make the impression with irreversible hydrocolloid material. Group B 30 ml deionized water was mixed with irreversible hydrocolloid material to make the impressions following which the surface roughness and dimensional stability of casts were evaluated. Extract of M. citrifolia L. mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P < 0.001) but did not affect the surface quality or dimensional stability of the casts. Mixing the extract of M. citrifolia L. with irreversible hydrocolloid powder is an alternative method to prevent contamination without sacrificing impression quality.

  8. Self-assembly of nanostructured materials through irreversible covalent bond formation.

    PubMed

    Baek, Kangkyun; Hwang, Ilha; Roy, Indranil; Shetty, Dinesh; Kim, Kimoon

    2015-08-18

    Over the past decades, numerous efforts have been devoted to synthesizing nanostructured materials with specific morphology because their size and shape play an important role in determining their functions. Self-assembly using weak and reversible interactions or bonds has provided synthetic routes toward various nanostructures because it allows a "self-checking" and "self-error-correcting" process under thermodynamic control. By contrast, the use of irreversible covalent bonds, despite the potential to generate more robust structures, has been disfavored in the synthesis of well-defined nanomaterials largely due to the lack of such self-error-correcting mechanisms. To date, the use of irreversible bonds is largely limited to covalent fixation of preorganized building blocks on a template, which, though capable of producing shape-persistent and robust nanostructured materials, often requires a laborious and time-consuming multistep processes. Constructing well-defined nanostructures by self-assembly using irreversible covalent bonds without help of templates or preorganization of components remains a challenge. This Account describes our recent discoveries and progress in self-assembly of nanostructured materials through strong, practically irreversible covalent bond formation and their applications in various areas including drug delivery, anticancer therapy, and heterogeneous catalysis. The key to the success of this approach is the use of rationally designed building blocks possessing multiple in-plane reactive groups at the periphery. These blocks can then successfully grow into flat oligomeric patches through irreversible covalent bond formation without the aid of preorganization or templates. Further growth of the patches with or without curvature generation drives the system to the formation of polymer nanocapsules, two-dimensional (2D) polymer films, and toroidal nanotubular microrings. Remarkably, the final morphology can be specified by a few simple

  9. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines.

    PubMed

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  10. Monte Carlo simulations of the short time dynamics of a first-order irreversible phase transition

    NASA Astrophysics Data System (ADS)

    Albano, Ezequiel V.

    2001-09-01

    The ZGB model (Ziff-Gulari-Barshad, Phys. Rev. Lett. 56 (1986) 2553) for the catalytic oxidation of carbon monoxide has a single parameter given by the normalized partial pressure of CO molecules ( PCO). For PCO⩾ PCOCoex≃0.52583 the surface of the catalyst becomes irreversibly covered by CO molecules and the system cannot escape from this state. However, for PCO slightly below PCOCoex the system reaches an active stationary state. So, just at PCOCoex a sharp first-order irreversible phase transition is observed. It is shown that a study of the short time dynamics of the ZGB model allows to obtain a fairly accurate evaluation of the upper spinodal point given by PCOUsp≃0.52675(5). This figure is in excellent agreement with extensive simulations performed using the constant coverage ensemble.

  11. Implications of the detailed fluctuation theorem for the sources of irreversibility in interfacial charge transfer processes.

    PubMed

    Bisquert, Juan

    2005-11-01

    We investigate from basic principles of nonequilibrium statistical mechanics the general reasons why electron transfer across an interface is associated with irreversible elements (resistances) in equivalent circuit modeling. We apply the detailed fluctuation theorem [C. Jarzynski, J. Stat. Phys. 98, 77 (2000)] to a simple model of an interface between two different materials. The elementary transition rates are interpreted in terms of the evolution of a microstate, and obey a ratio that is related to the heat absorbed from the phonon bath while promoting an electron to a higher energy level. The amount of irreversibility (the entropy production), and also the macroscopic current density, can be both obtained with the additional constraint that the system belongs in a particular mesostate, determined by the distribution of chemical and electrostatic potential.

  12. Simulation of lung tissue properties in age and irreversible obstructive syndromes using an aldehyde.

    PubMed Central

    Sugihara, T; Martin, C J

    1975-01-01

    Weak solutions of CHOH alter tissue properties, probably by forming intermolecular cross-linkages. The maximum length (Lmax) to which alveolar wall can be extended is reduced. If exposed to CHOH while extended, the resting length (LO) of alveolar wall increases. Maximum extensibility (Lambdamax equal to Lmax/LO) decreases. Similar changes are found in the alveolar wall of man with aging and are significantly more marked in patients with irreversible obstructive pulmonary syndromes. A reduction in the energy loss of the length-tension cycle (hysteresis) was seen after exposure to CHOH, however, that does not occur with age or in obstructive syndromes. Because an exposure of alveolar wall to elastase increases LO and hysteresis, we used a staged exposure to CHOH followed by elastase. Tissue suitably prepared by exposure to CHOH followed by elastolysis better simulates the tissue changes of age and irreversible obstructive syndromes. PMID:1141435

  13. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    PubMed

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  14. Intermode Coupling Drives the Irreversible Tautomerization in Porphycene on Copper(111) Induced by Scanning Tunnelling Microscopy.

    PubMed

    Novko, Dino; Blanco-Rey, María; Tremblay, Jean Christophe

    2017-03-02

    In this contribution, we develop a nonadiabatic theory that explains, from first-principles, the recently reported irreversible trans → cis tautomerization of porphycene on Cu(111) induced by a scanning tunnelling microscope at finite bias. The inelastic contribution to the STM current is found to excite a large number of skeletal vibrational modes of the molecule, thereby inducing a deformation of the potential energy landscape along the hydrogen transfer coordinate. Above a threshold bias, the stability of the tautomers is reversed, which indirectly drives the reaction via intermode coupling. The proposed potential deformation term accounts effectively for the excitation of all internal vibrational modes without increasing the dimensionality of the problem. The model yields information about reaction rates, explains the reaction irreversibility at low temperatures, and accounts for the presence of resonant processes.

  15. Using non-thermal irreversible electroporation to create an in vivo niche for exogenous cell engraftment.

    PubMed

    Chang, Tammy T; Zhou, Vivian X; Rubinsky, Boris

    2017-05-01

    The critical shortage of donor organs has spurred investigation of alternative approaches to either generate replacement organs or implant exogenous cells for treatment of end-stage organ failure. Non-thermal irreversible electroporation (NTIRE), which uses brief high electric field pulses to induce irreversible permeabilization of cell membranes, has emerged as a technique for tumor ablation. Here, we introduce a new application for NTIRE that employs in situ cell ablation to create a niche within a solid organ for engraftment of exogenous cells in vivo. We treated the livers of mice with NTIRE and subsequently implanted exogenous congenic hepatocytes within the zone of cell ablation. Donor hepatocytes engrafted and integrated with host liver parenchyma pre-treated with NTIRE. This new approach should have value for studying the effects of a native matrix scaffold on in vivo cell growth and may pioneer a new type of minimally-invasive regenerative surgery.

  16. Irreversible binding of o,p'-DDD in interrenal cells of Atlantic cod (Gadus morhua).

    PubMed

    Lindhe, Orjan; Brandt, Ingvar; Christiansen, Jørgen Schou; Ingebrigtsen, Kristian

    2003-03-01

    Precision-cut tissue slices of the anterior kidney from Atlantic cod (Gadus morhua) were prepared with a Krumdieck tissue slicer and exposed to 2-(2-chlorophenyl)-2-(4-chloro-(14C)phenyl)-1,1-dichlorethane (o,p(')-[14C]DDD) in vitro. Microautoradiography revealed irreversible o,p(')-DDD-derived binding confined to the glucocorticoid producing interrenal cells (adrenocortical analogues). This cell-selective binding was confirmed by means of autoradiography at different levels of resolution on Atlantic cod administered o,p(')-[14C]DDD intragastrically. The results provide evidence for a site-specific metabolic activation and irreversible binding of o,p(')-DDD in the interrenal cells, which, in turn, may modify glucocorticoid homeostasis.

  17. Optimum criteria of an irreversible quantum Brayton refrigeration cycle with an ideal Bose gas

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Liu, Sanqiu; He, Jizhou

    2008-11-01

    An irreversible cycle model of the quantum Brayton refrigeration cycle is established, in which finite-time processes and irreversibility in the two adiabatic processes are taken into account. On the basis of the thermodynamic properties of an ideal Bose gas, by using the optimal control-theory, the mathematical expressions for several important performance parameters, such as the coefficient of performance, power input and cooling load, are derived and some important performance parameters, e.g., the temperatures of the working substance at several important state-points, are optimized. By means of numerical predictions, the optimal performance characteristic curves of a Bose-Brayton refrigeration cycle are obtained and analyzed. Furthermore, some optimal operating regions including those for the cooling load, coefficient of performance and the temperatures of the cyclic working substance at the two important state-points are determined and evaluated. Finally, several special cases are discussed in detail.

  18. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics

    SciTech Connect

    Glavatskiy, K. S.

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  19. Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model.

    PubMed

    Puebla, Ricardo; Relaño, Armando

    2015-07-01

    For a certain class of isolated quantum systems, we report the existence of irreversible processes in which the energy is not dissipated. After a closed cycle in which the initial energy distribution is fully recovered, the expectation value of a symmetry-breaking observable changes from a value differing from zero in the initial state to zero in the final state. This entails the unavoidable loss of a certain amount of information and constitutes a source of irreversibility. We show that the von Neumann entropy of time-averaged equilibrium states increases in the same magnitude as a consequence of the process. We support this result by means of numerical calculations in an experimentally feasible system, the Lipkin-Meshkov-Glick model.

  20. Nitric oxide inhibits irreversibly P815 cell proliferation: involvement of potassium channels.

    PubMed

    Costa, R S A; Assreuy, J

    2002-12-01

    Nitric oxide (NO) has been shown to inhibit both normal and cancer cell proliferation. Potassium channels are involved in cell proliferation and, as NO activates these channels, we investigated the effect of NO on the proliferation of murine mastocytoma cell lines and the putative involvement of potassium channels. NO (in the form of NO donors) caused dose-dependent inhibition of cell proliferation in the P815 cell line inducing growth arrest in the mitosis phase. Incubation with NO donor for 4 or 24 h had a similar inhibitory effect on cell proliferation, indicating that this effect is irreversible. The inhibitory effect of NO was completely prevented by the blockade of voltage- and calcium-dependent potassium channels, but not by blockade of ATP-dependent channels. NO inhibition of cell proliferation was unaffected by guanylate cyclase and by cytoskeleton disruptors. Therefore, NO inhibits cell proliferation irreversibly via a potassium channel-dependent but guanylate cyclase-independent pathway in murine mastocytoma cells.

  1. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth.

    PubMed

    Catling, D C; Zahnle, K J; McKay, C

    2001-08-03

    The low O2 content of the Archean atmosphere implies that methane should have been present at levels approximately 10(2) to 10(3) parts per million volume (ppmv) (compared with 1.7 ppmv today) given a plausible biogenic source. CH4 is favored as the greenhouse gas that countered the lower luminosity of the early Sun. But abundant CH4 implies that hydrogen escapes to space (upward arrow space) orders of magnitude faster than today. Such reductant loss oxidizes the Earth. Photosynthesis splits water into O2 and H, and methanogenesis transfers the H into CH4. Hydrogen escape after CH4 photolysis, therefore, causes a net gain of oxygen [CO2 + 2H2O --> CH4 + 2O2 --> CO2 + O2 + 4H(upward arrow space)]. Expected irreversible oxidation (approximately 10(12) to 10(13) moles oxygen per year) may help explain how Earth's surface environment became irreversibly oxidized.

  2. On heat equation in the framework of classic irreversible thermodynamics with internal variables

    NASA Astrophysics Data System (ADS)

    Ciancio, Vincenzo; Restuccia, Liliana

    2016-06-01

    In this paper, we show that, using a procedure of classical irreversible thermodynamics (CIT) with internal variables, it is possible to describe the relaxation of thermal phenomena, obtaining some well known results of extended irreversible thermodynamics (EIT). In particular, we introduce as internal variables a vector and a second rank tensor, that influence the thermal transport phenomena, and we derive in the anisotropic and isotropic case, the phenomenological equations for these variables. In the case, in which the medium is isotropic, it is obtained that the total heat flux can be split in two parts: a first contribution J(0), governed by Fourier law, and a second contribution J(1), obeying Maxwell-Cattaneo-Vernotte (MCV) equation, in which a relaxation time is present. The obtained results may have applications in describing the thermal behavior in nanosystems (semiconductors, nanotubes,…), where the phenomena are fast and there are high-frequency thermal waves.

  3. Irreversible chemical reactions visualized in space and time with 4D electron microscopy.

    PubMed

    Park, Sang Tae; Flannigan, David J; Zewail, Ahmed H

    2011-02-16

    We report direct visualization of irreversible chemical reactions in space and time with 4D electron microscopy. Specifically, transient structures are imaged following electron transfer in copper-tetracyanoquinodimethane [Cu(TCNQ)] crystals, and the oxidation/reduction process, which is irreversible, is elucidated using the single-shot operation mode of the microscope. We observed the fast, initial structural rearrangement due to Cu(+) reduction and the slower growth of metallic Cu(0) nanocrystals (Ostwald ripening) following initiation of the reaction with a pulse of visible light. The mechanism involves electron transfer from TCNQ anion-radical to Cu(+), morphological changes, and thermally driven growth of discrete Cu(0) nanocrystals embedded in an amorphous carbon skeleton of TCNQ. This in situ visualization of structures during reactions should be extendable to other classes of reactive systems.

  4. An Irreversible Inhibitor of HSP72 that Unexpectedly Targets Lysine-56.

    PubMed

    Pettinger, Jonathan; Le Bihan, Yann-Vaï; Widya, Marcella; van Montfort, Rob L M; Jones, Keith; Cheeseman, Matthew D

    2017-02-22

    The stress-inducible molecular chaperone, HSP72, is an important therapeutic target in oncology, but inhibiting this protein with small molecules has proven particularly challenging. Validating HSP72 inhibitors in cells is difficult owing to competition with the high affinity and abundance of its endogenous nucleotide substrates. We hypothesized this could be overcome using a cysteine-targeted irreversible inhibitor. Using rational design, we adapted a validated 8-N-benzyladenosine ligand for covalent bond formation and confirmed targeted irreversible inhibition. However, no cysteine in the protein was modified; instead, we demonstrate that lysine-56 is the key nucleophilic residue. Targeting this lysine could lead to a new design paradigm for HSP72 chemical probes and drugs.

  5. Irreversibility of Symptoms with Biotin Therapy in an Adult with Profound Biotinidase Deficiency.

    PubMed

    Ferreira, Patrick; Chan, Alicia; Wolf, Barry

    2017-02-21

    We report a 36-year-old woman who exhibited progressive optic atrophy at 13 years old, then stroke-like episodes and spastic diplegia in her 20s. Biotinidase deficiency was not readily considered in the differential diagnosis, and the definitive diagnosis was not made until pathological variants of the biotinidase gene (BTD) were found by exome sequencing. Profound biotinidase deficiency was confirmed by enzyme analysis. Unfortunately, her symptoms did not resolve or improve with biotin treatment. Biotin therapy is essential for all individuals with profound biotinidase deficiency and for preventing further damage in those who already exhibit irreversible neurological damage. Newborn screening for the disorder would have avoided years of clinical symptoms that now appear to be irreversible with biotin treatment.

  6. Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices.

    PubMed

    Hui, Alex Y N; Wang, Gang; Lin, Bingcheng; Chan, Wing-Tat

    2005-10-01

    Microwave plasma was generated in a glass bottle containing 2-3 Torr of oxygen for plasma treatment of a polymer surface. A "kitchen microwave oven" and a dedicated microwave digestion oven were used as the power source. Poly(dimethylsiloxane)(PDMS) slabs treated by a 30 W plasma for 30-60 s sealed irreversibly to form microfluidic devices that can sustain solution flow of an applied pressure of 42 psi without leaking. Experimental set up and conditions for the production of a homogeneous plasma to activate the PDMS surface for irreversible sealing are described in detail. The surface of a microwave plasma-treated PDMS slab was characterized using atomic force microscopy (AFM) and attenuated total reflection-Fourier Transform infrared spectroscopy (ATR-FTIR). The plasma-treated surface bears silica characteristics.

  7. Entropy production in irreversible systems described by a Fokker-Planck equation.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2010-08-01

    We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.

  8. Self-adjoint Lyapunov variables, temporal ordering, and irreversible representations of Schroedinger evolution

    SciTech Connect

    Strauss, Y.

    2010-02-15

    In nonrelativistic quantum mechanics time enters as a parameter in the Schroedinger equation. However, there are various situations where the need arises to view time as a dynamical variable. In this paper we consider the dynamical role of time through the construction of a Lyapunov variable - i.e., a self-adjoint quantum observable whose expectation value varies monotonically as time increases. It is shown, in a constructive way, that a certain class of models admits a Lyapunov variable and that the existence of a Lyapunov variable implies the existence of a transformation mapping the original quantum mechanical problem to an equivalent irreversible representation. In addition, it is proven that in the irreversible representation there exists a natural time ordering observable splitting the Hilbert space at each t>0 into past and future subspaces.

  9. Simulation of irreversible rock compaction effects on geopressured reservoir response: Topical report

    SciTech Connect

    Riney, T.D.

    1986-12-01

    A series of calculations are presented which quantitatively demonstrate the effects of nonlinear stress-deformation properties on the behavior of geopressured reservoirs. The range of stress-deformation parameters considered is based on information available from laboratory rock mechanics tests performed at the University of Texas at Austin and at Terra Tek, Inc. on cores recovered from geopressured wells. The effects of irreversible formation rock compaction, associated permeability reduction, and repetitive load/unload cycling are considered. The formation rock and geopressured brine properties are incorporated into an existing reservoir simulator using a bilinear model for the irreversible compaction process. Pressure drawdown and buildup testing of a well producing from the geopressured formation is simulated for a suite of calculations covering the range of formation parameters. The results are presented and discussed in terms of the inference (e.g., permeability and reservoir volume) that would be drawn from the simulated test data by an analyst using conventional methods.

  10. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  11. Capital dissipation minimization for a class of complex irreversible resource exchange processes

    NASA Astrophysics Data System (ADS)

    Xia, Shaojun; Chen, Lingen

    2017-05-01

    A model of a class of irreversible resource exchange processes (REPes) between a firm and a producer with commodity flow leakage from the producer to a competitive market is established in this paper. The REPes are assumed to obey the linear commodity transfer law (LCTL). Optimal price paths for capital dissipation minimization (CDM) (it can measure economic process irreversibility) are obtained. The averaged optimal control theory is used. The optimal REP strategy is also compared with other strategies, such as constant-firm-price operation and constant-commodity-flow operation, and effects of the amount of commodity transferred and the commodity flow leakage on the optimal REP strategy are also analyzed. The commodity prices of both the producer and the firm for the CDM of the REPes with commodity flow leakage change with the time exponentially.

  12. Irreversible electrical manipulation of magnetization on BiFeO{sub 3}-based heterostructures

    SciTech Connect

    Xu, Qingyu E-mail: jdu@nju.edu.cn; Xu, Zhenyu; He, Maocheng; Du, Jun E-mail: jdu@nju.edu.cn; Cao, Yanqiang

    2015-05-07

    We prepared several heterostructures, Co/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} on surface oxidized Si or (111) SrTiO{sub 3} and NiFe/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} on (001) SrTiO{sub 3} substrates using LaNiO{sub 3} as bottom electrode. With different strategies of voltage application, the exchange bias field H{sub E} decreased with increasing voltage irreversibly for all the heterostructures at room temperature. The chemical state at the NiFe/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} interface was studied by X-ray photoelectron spectroscopy before and after the electrical manipulation. The oxidization of the metallic ferromagnetic layer at interface after the electrical manipulation has been confirmed, which might explain the irreversibility.

  13. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures

    PubMed Central

    Klajn, Rafal; Bishop, Kyle J. M.; Grzybowski, Bartosz A.

    2007-01-01

    Nanoparticles (NPs) decorated with ligands combining photoswitchable dipoles and covalent cross-linkers can be assembled by light into organized, three-dimensional suprastructures of various types and sizes. NPs covered with only few photoactive ligands form metastable crystals that can be assembled and disassembled “on demand” by using light of different wavelengths. For higher surface concentrations, self-assembly is irreversible, and the NPs organize into permanently cross-linked structures including robust supracrystals and plastic spherical aggregates. PMID:17563381

  14. Microstructural evolution and irreversibility in the viscoelastic response of mesoscopic dusty-plasma liquids.

    PubMed

    Chan, Chia-Ling; I, Lin

    2007-03-09

    We experimentally demonstrate the viscoelastic response and construct a microscopic dynamical picture using a quasi-2D dusty-plasma liquid confined in a mesoscopic gap and sheared periodically. The correlation between microdisplacement and structural evolution at the discrete kinetic level is explored. Through hopping, the structural rearrangement associated with shear enhanced stretching, kinking, breaking, and reconnection of local lattice lines generates irreversible plastic deformation. The strain energy accumulation in the twisted regions without topological rearrangement is the source for local rebound.

  15. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes.

    PubMed

    Yamamura, Hiroshi; Okimoto, Kenji; Kimura, Katsuki; Watanabe, Yoshimasa

    2014-05-01

    Although membrane filtration is a promising technology in the field of drinking water treatment, persistent membrane fouling remains a major disadvantage. For more efficient operation, causative agents of membrane fouling need to be identified. Membrane fouling can be classified into physically reversible and irreversible fouling on basis of the removability of the foulants by physical cleaning. Four types of natural organic matter (NOM) in river water used as a source of drinking water were fractionated into hydrophobic and hydrophilic fractions, and their potential to develop irreversible membrane fouling was evaluated by a bench-scale filtration experiment together with spectroscopic and chromatographic analyses. In this study, only dissolved NOM was investigated without consideration of interactions of NOM fractions with particulate matter. Results demonstrated that despite identical total organic carbon (TOC), fouling development trends were significantly different between hydrophilic and hydrophobic fractions. The hydrophobic fractions did not increase membrane resistance, while the hydrophilic fractions caused severe loss of membrane permeability. These results were identical with the case when the calcium was added to hydrophobic and hydrophilic fractions. The largest difference in NOM characteristics between hydrophobic and hydrophilic fractions was the presence or absence of macromolecules; the primary constituent causing irreversible fouling was inferred to be "biopolymers", including carbohydrates and proteins. In addition, the results demonstrated that the extent of irreversible fouling was considerably different depending on the combination of membrane materials and NOM characteristics. Despite identical nominal pore size (0.1 μm), a polyvinylidene fluoride (PVDF) membrane was found to be more rapidly fouled than a PE membrane. This is probably explained by the generation of strong hydrogen bonding between hydroxyl groups of biopolymers and fluorine

  16. Fourteen. beta. -(bromoacetamido)morphine irreversibly labels. mu. opioid receptors in rat brain membranes

    SciTech Connect

    Bidlack, J.M.; Frey, D.K.; Seyed-Mozaffari, A.; Archer, S. )

    1989-05-16

    The binding properties of 14{beta}-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM ({sup 3}H)(D-Ala{sup 2},(Me)Phe{sup 4},Gly(ol){sup 5})enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the {mu} binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The {mu} receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the {delta}-selective peptide ({sup 3}H)(D-penicillamine{sup 2},D-penicillamine{sup 5})enkephalin (DPDPE) and (-)-({sup 3}H)bremazocine in the presence of {mu} and {delta} blockers, selective for {kappa} binding sites. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the {mu}s site did not afford protection. These studies have demonstrated that when a disulfide bond at or near {mu} opioid binding sites was reduced, BAM could then alkylate this site, resulting in the specific irreversible labeling of {mu} opioid receptors.

  17. Dipeptide-derived nitriles containing additional electrophilic sites: potentially irreversible inhibitors of cysteine proteases.

    PubMed

    Löser, Reik; Gütschow, Michael

    2009-12-01

    Heterocyclic and open-chain dipeptide-derived nitriles have been synthesized, containing an additional electrophilic center enabling the subsequent covalent modification of the thioimidate nitrogen formed in situ at the active site of the enzyme. The inhibitory potential of these nitriles against the cysteine proteases papain and cathepsins L, S, and K was determined. The open-chain dipeptide nitriles 8 and 10 acted as moderate reversible inhibitors, but no evidence for an irreversible inhibition of these enzymes was discernable.

  18. Time irreversibility of the statistics of a single particle in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Frishman, Anna; Falkovich, Gregory

    2015-04-01

    We investigate time irreversibility from the point of view of a single particle in Burgers turbulence. Inspired by the recent work for incompressible flows [Xu et al., Proc. Natl. Acad. Sci. USA 111, 7558 (2014), 10.1073/pnas.1321682111], we analyze the evolution of the kinetic energy for fluid markers and use the fluctuations of the instantaneous power as a measure of time irreversibility. For short times, starting from a uniform distribution of markers, we find the scaling <[E(t ) -E (0 ) ] n>∝t and ∝Ren -1 for the power as a function of the Reynolds number. Both observations can be explained using the "flight-crash" model, suggested by Xu et al. Furthermore, we use a simple model for shocks that reproduces the moments of the energy difference, including the pre-factor for . To complete the single-particle picture for Burgers we compute the moments of the Lagrangian velocity difference and show that they are bifractal. This arises in a similar manner to the bifractality of Eulerian velocity differences. In the above setting, time irreversibility is directly manifest as particles eventually end up in shocks. We additionally investigate time irreversibility in the long-time limit when all particles are located inside shocks and the Lagrangian velocity statistics are stationary. We find the same scalings for the power and energy differences as at short times and argue that this is also a consequence of rare "flight-crash" events related to shock collisions.

  19. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis

    PubMed Central

    Rôças, Isabela N.; Rachid, Caio T. C. C.; Lima, Kenio C.; Assunção, Isauremi V.; Gomes, Patrícia N.; Siqueira, José F.

    2016-01-01

    This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%), Pseudoramibacter (10.7%) and Streptococcus (5.5%). Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection. PMID:27135405

  20. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis.

    PubMed

    Rôças, Isabela N; Alves, Flávio R F; Rachid, Caio T C C; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Siqueira, José F

    2016-01-01

    This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%), Pseudoramibacter (10.7%) and Streptococcus (5.5%). Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection.

  1. Microstructural Evolution and Irreversibility in the Viscoelastic Response of Mesoscopic Dusty-Plasma Liquids

    SciTech Connect

    Chan, C.-L.; I, L.

    2007-03-09

    We experimentally demonstrate the viscoelastic response and construct a microscopic dynamical picture using a quasi-2D dusty-plasma liquid confined in a mesoscopic gap and sheared periodically. The correlation between microdisplacement and structural evolution at the discrete kinetic level is explored. Through hopping, the structural rearrangement associated with shear enhanced stretching, kinking, breaking, and reconnection of local lattice lines generates irreversible plastic deformation. The strain energy accumulation in the twisted regions without topological rearrangement is the source for local rebound.

  2. Irreversible injury of isolated adult rat myocytes. Osmotic fragility during metabolic inhibition.

    PubMed Central

    Ganote, C. E.; Vander Heide, R. S.

    1988-01-01

    Isolated myocytes can be established as a valid model for studying changes in cytoskeletal proteins during the development of irreversible injury only if isolated cells develop lesions similar to those that occur during irreversible injury to intact hearts, specifically osmotic fragility and subsarcolemmal blebs. In the first experiment, isolated cells were irreversibly injured by metabolic inhibition with 5 mM Iodoacetic acid (IAA) and 6 mM amobarbital (Amy). Osmotic fragility of control and injured cells was determined by comparing the rates of development of trypan blue permeability during 60 minutes of isotonic or hypotonic (50% reduction in osmolality) incubations. Cell morphology was monitored by light and electron microscopy. Control cells remained elongated and excluded trypan blue. Metabolically inhibited cells rapidly contracted to a nearly square shape. The inhibited squared cells initially excluded trypan blue, but during 60 minutes of incubation became permeable to trypan blue. Cells in hypotonic buffer developed blue staining at a more rapid rate than cells in isotonic buffer, indicating increased osmotic fragility. In a second experiment, control and inhibited cells were first incubated for 25 minutes in isotonic buffer and then in either isotonic or hypotonic buffer. In this experiment, inhibited cells also developed more extensive and rapid permeability increases when transferred to the hypotonic buffer than cells maintained in the isotonic buffer. In both experiments, increased permeability of cells to trypan blue was accompanied by formation of subsarcolemmal blebs along the lateral cell border and at the intercalated disks. The results show that metabolically inhibited, isolated myocytes do exhibit morphologic lesions and increased osmotic fragility properties similar to those reported during anoxic or ischemic injury to intact hearts. Therefore, isolated myocytes may be a useful model with which to study cytoskeletal-sarcolemmal membrane

  3. Irreversible modification of magnetic properties of Pt/Co/Pt ultrathin films by femtosecond laser pulses

    SciTech Connect

    Kisielewski, J.; Dobrogowski, W.; Kurant, Z.; Stupakiewicz, A.; Tekielak, M.; Maziewski, A.; Kirilyuk, A.; Kimel, A.; Rasing, Th.; Baczewski, L. T.; Wawro, A.

    2014-02-07

    Annealing ultrathin Pt/Co/Pt films with single femtosecond laser pulses leads to irreversible spin-reorientation transitions and an amplification of the magneto-optical Kerr rotation. The effect was studied as a function of the Co thickness and the pulse fluence, revealing two-dimensional diagrams of magnetic properties. While increasing the fluence, the creation of two branches of the out-of-plane magnetization state was found.

  4. Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates.

    PubMed

    Orbach, Ron; Remacle, Françoise; Levine, R D; Willner, Itamar

    2012-12-26

    The Toffoli and Fredkin gates were suggested as a means to exhibit logic reversibility and thereby reduce energy dissipation associated with logic operations in dense computing circuits. We present a construction of the logically reversible Toffoli and Fredkin gates by implementing a library of predesigned Mg(2+)-dependent DNAzymes and their respective substrates. Although the logical reversibility, for which each set of inputs uniquely correlates to a set of outputs, is demonstrated, the systems manifest thermodynamic irreversibility originating from two quite distinct and nonrelated phenomena. (i) The physical readout of the gates is by fluorescence that depletes the population of the final state of the machine. This irreversible, heat-releasing process is needed for the generation of the output. (ii) The DNAzyme-powered logic gates are made to operate at a finite rate by invoking downhill energy-releasing processes. Even though the three bits of Toffoli's and Fredkin's logically reversible gates manifest thermodynamic irreversibility, we suggest that these gates could have important practical implication in future nanomedicine.

  5. Perturbative expansion of irreversible work in Fokker-Planck equation à la quantum mechanics

    NASA Astrophysics Data System (ADS)

    Koide, T.

    2017-08-01

    We discuss the systematic expansion of the solution of the Fokker-Planck equation with the help of the eigenfunctions of the time-dependent Fokker-Planck operator. The expansion parameter is the time derivative of the external parameter which controls the form of an external potential. Our expansion corresponds to the perturbative calculation of the adiabatic motion in quantum mechanics. With this method, we derive a new formula to calculate the irreversible work order by order, which is expressed as the expectation value with a pseudo density matrix. Applying this method to the case of the harmonic potential, we show that the first order term of the expansion gives the exact result. Because we do not need to solve the coupled differential equations of moments, our method simplifies the calculations of various functions such as the fluctuation of the irreversible work per unit time. We further investigate the exact optimized protocol to minimize the irreversible work by calculating its variation with respect to the control parameter itself.

  6. Non-Equilibrium Thermodynamic Analysis on the Performance of AN Irreversible Thermally Driven Brownian Motor

    NASA Astrophysics Data System (ADS)

    Gao, Tianfu; Chen, Jincan

    Based on the general model of thermally-driven Brownian motors, an equivalent cycle system is established and the Onsager coefficients and efficiency at the maximum power output of the system are analytically calculated from non-equilibrium thermodynamics. It is found that the Onsager reciprocity relation holds and the Onsager coefficients are affected by the main irreversibilities existing in practical systems. Only when the heat leak and the kinetic energy change of the particle in the system are negligible, can the determinant of the Onsager matrix vanish. It is also found that in the frame of non-equilibrium thermodynamics, the power output and efficiency of an irreversible Brownian motor can be expressed to be the same form as those of an irreversible Carnot heat engine, so the results obtained here are of general significance. Moreover, these results are used to analyze the performance characteristics of a class of thermally-driven Brownian motors so that some important conclusions in literature may be directly derived from the present paper.

  7. Parametric optimization of an irreversible magnetic Ericsson refrigerator with finite heat reservoirs

    NASA Astrophysics Data System (ADS)

    Ye, X. M.; Lin, G. X.; Chen, J. C.; Brück, E.

    2007-04-01

    An irreversible cycle model of magnetic Ericsson refrigerators is established, in which the finite heat capacities of external heat reservoirs, heat-transfer irreversibility, inherent regenerative losses, additional regenerative losses due to thermal resistances and irreversibility inside the magnetic working substances are taken into account. On the basis of the thermodynamic equations of paramagnetic materials, the performance characteristics of the magnetic Ericsson refrigeration cycle are investigated. By using the method of the optimal control theory, the optimal equations between the cooling load and the coefficient of performance and between the cooling load and the power input are derived. Furthermore, the maximum cooling load and the corresponding coefficient of performance, the minimum power input and the optimally operating temperatures of the cyclic working substance are obtained. The optimal operating region of the magnetic Ericsson refrigerator is determined. The results obtained here are closer to the performance characteristics of practical magnetic refrigerators with finite heat reservoirs than those in literature and are helpful to the optimal design and performance improvement of magnetic Ericsson refrigerators.

  8. Remission of irreversible aripiprazole-induced tardive dystonia with clozapine: a case report.

    PubMed

    Joe, Soohyun; Park, Jangho; Lim, Jongseok; Park, Choongman; Ahn, Joonho

    2015-10-19

    Aripiprazole can cause irreversible tardive dystonia in some individuals, and additional intervention is sometimes needed. Here, we report the first case of aripiprazole-induced irreversible tardive dystonia in which complete recovery of motor function was achieved using the antipsychotic drug clozapine. A 24-year-old man with bipolar disorder was treated with aripiprazole and gradually developed tardive dystonia. Thorough medical and neurological examinations were performed to rule out other possible causes of tardive dystonia. Clozapine was administered when the patient did not improve following long-term withdrawal of aripiprazole or adjuvant medications. Before administration of clozapine, the patient was experiencing severe dystonia as assessed by the Extrapyramidal Symptom Rating Scale. Dystonic symptoms began to improve about 1 month after starting administration of clozapine and were completely resolved 3 months after clozapine administration. Clinicians should note the risk of aripiprazole-induced tardive dystonia and consider clozapine as an alternative and effective treatment modality in cases of irreversible tardive dystonia, particularly when concomitant treatment of psychotic symptoms is required.

  9. Selection and constraint underlie irreversibility of tooth loss in cypriniform fishes

    PubMed Central

    Aigler, Sharon R.; Jandzik, David; Hatta, Kohei; Uesugi, Kentaro; Stock, David W.

    2014-01-01

    The apparent irreversibility of the loss of complex traits in evolution (Dollo’s Law) has been explained either by constraints on generating the lost traits or the complexity of selection required for their return. Distinguishing between these explanations is challenging, however, and little is known about the specific nature of potential constraints. We investigated the mechanisms underlying the irreversibility of trait loss using reduction of dentition in cypriniform fishes, a lineage that includes the zebrafish (Danio rerio) as a model. Teeth were lost from the mouth and upper pharynx in this group at least 50 million y ago and retained only in the lower pharynx. We identified regional loss of expression of the Ectodysplasin (Eda) signaling ligand as a likely cause of dentition reduction. In addition, we found that overexpression of this gene in the zebrafish is sufficient to restore teeth to the upper pharynx but not to the mouth. Because both regions are competent to respond to Eda signaling with transcriptional output, the likely constraint on the reappearance of oral teeth is the alteration of multiple genetic pathways required for tooth development. The upper pharyngeal teeth are fully formed, but do not exhibit the ancestral relationship to other pharyngeal structures, suggesting that they would not be favored by selection. Our results illustrate an underlying commonality between constraint and selection as explanations for the irreversibility of trait loss; multiple genetic changes would be required to restore teeth themselves to the oral region and optimally functioning ones to the upper pharynx. PMID:24821783

  10. Ultraviolet-induced irreversible tensile actuation of diacetylene/nylon microfibers

    NASA Astrophysics Data System (ADS)

    Chun, Kyoung-Yong; Choi, Changsoon; Baughman, Ray H.; Kim, Seon Jeong

    2016-07-01

    Photomechanically irreversible tensile-actuated diacetylene-embedding nylon 6/6 microfibers were investigated. 10,12-pentacosadiynoic acid (PCDA) monomer, which have conventionally provided a visual color change by temperature and photo-driven stimuli, was embedded in nylon 6/6 microfibers by wet spinning. By ultraviolet (UV) (254 nm) exposure, we observed irreversible tensile actuation (contraction) of linear (untwisted) and helical (twisted) structural microfibers. The tensile contraction of twisted nylon 6/6-PCDA microfiber containing10 mM PCDA was reached to ˜2% at 60 °C. Such irreversible tensile contraction can be promoted by volume contraction of PCDA monomers during UV exposure along with irregular structural deformation containing gauche conformation with increasing temperature. The kinetics of tensile contraction with temperature and time were shown by the Arrhenius plots. The activation energies were 34.3-35.7 kJ mol-1 as increasing the concentration of PCDA, implies that the nylon 6/6-PCDA microfibers could be applied to show time-temperature integrated device.

  11. Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O.

    PubMed

    Asai, Michihiro; Ohba, Tomonori; Iwanaga, Takashi; Kanoh, Hirofumi; Endo, Morinobu; Campos-Delgado, Jessica; Terrones, Mauricio; Nakai, Kazuyuki; Kaneko, Katsumi

    2011-09-28

    Graphene and graphitic nanoribbons possess different types of carbon hybridizations exhibiting different chemical activity. In particular, the basal plane of the honeycomb lattice of nanoribbons consisting of sp(2)-hybridized carbon atoms is chemically inert. Interestingly, their bare edges could be more reactive as a result of the presence of extra unpaired electrons, and for multilayer graphene nanoribbons, the presence of terraces and ripples could introduce additional chemical activity. In this study, a remarkable irreversibility in adsorption of CO(2) and H(2)O on graphitic nanoribbons was observed at ambient temperature, which is distinctly different from the behavior of nanoporous carbon and carbon blacks. We also noted that N(2) molecules strongly interact with the basal planes at 77 K in comparison with edges. The irreversible adsorptions of both CO(2) and H(2)O are due to the large number of sp(3)-hybridized carbon atoms located at the edges. The observed irreversible adsorptivity of the edge surfaces of graphitic nanoribbons for CO(2) and H(2)O indicates a high potential in the fabrication of novel types of catalysts and highly selective gas sensors.

  12. Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates

    PubMed Central

    Orbach, Ron; Remacle, Françoise; Levine, R. D.; Willner, Itamar

    2012-01-01

    The Toffoli and Fredkin gates were suggested as a means to exhibit logic reversibility and thereby reduce energy dissipation associated with logic operations in dense computing circuits. We present a construction of the logically reversible Toffoli and Fredkin gates by implementing a library of predesigned Mg2+-dependent DNAzymes and their respective substrates. Although the logical reversibility, for which each set of inputs uniquely correlates to a set of outputs, is demonstrated, the systems manifest thermodynamic irreversibility originating from two quite distinct and nonrelated phenomena. (i) The physical readout of the gates is by fluorescence that depletes the population of the final state of the machine. This irreversible, heat-releasing process is needed for the generation of the output. (ii) The DNAzyme-powered logic gates are made to operate at a finite rate by invoking downhill energy-releasing processes. Even though the three bits of Toffoli’s and Fredkin’s logically reversible gates manifest thermodynamic irreversibility, we suggest that these gates could have important practical implication in future nanomedicine. PMID:23236131

  13. Nonlinear Gamow vectors, shock waves, and irreversibility in optically nonlocal media

    NASA Astrophysics Data System (ADS)

    Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio

    2015-08-01

    Dispersive shock waves dominate wave-breaking phenomena in Hamiltonian systems. In the absence of loss, these highly irregular and disordered waves are potentially reversible. However, no experimental evidence has been given about the possibility of inverting the dynamics of a dispersive shock wave and turn it into a regular wavefront. Nevertheless, the opposite scenario, i.e., a smooth wave generating turbulent dynamics, is well studied and observed in experiments. Here we introduce a theoretical formulation for the dynamics in a highly nonlocal and defocusing medium described by the nonlinear Schroedinger equation. Our theory unveils a mechanism that enhances the degree of irreversibility. This mechanism explains why a dispersive shock cannot be reversed in evolution even for an arbitrarily small amount of loss. Our theory is based on the concept of nonlinear Gamow vectors, i.e., power-dependent generalizations of the counterintuitive and hereto-elusive exponentially decaying states in Hamiltonian systems. We theoretically show that nonlinear Gamow vectors play a fundamental role in nonlinear Schroedinger models: They may be used as a generalized basis for describing the dynamics of the shock waves and affect the degree of irreversibility of wave-breaking phenomena. Gamow vectors allow analytical calculation of the amount of breaking of time reversal with a quantitative agreement with numerical solutions. We also show that a nonlocal, nonlinear optical medium may act as a simulator for the experimental investigation of quantum irreversible models, as the reversed harmonic oscillator.

  14. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.

    PubMed

    Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph

    2012-03-01

    Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.

  15. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    SciTech Connect

    Zhai, Yuhu; Calzolaio, Ciro; Senatore, Carmine

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  16. Extended irreversible thermodynamics modeling for self-heating and dissipation in piezoelectric ceramics.

    PubMed

    Lu, Xia; Hanagud, Sathya V

    2004-12-01

    Self-heating or dissipation of piezoelectric ceramic elements is observed to be severe under dynamic operations even in the linear range. In this paper, a nonequilibrium thermodynamic model is developed to delineate the coupled irreversible mechanical, electric, and thermal processes, which jointly contribute to dissipation. Specifically, additional nonequilibrium state variables, also known as thermodynamic fluxes, are brought in to describe each of these processes. The characteristic relaxation of these processes is modeled. The nonnegative rate of entropy production is found to be in quadratic form of thermodynamics fluxes. The energy balance equation, which governs the transformation between different energy forms, is obtained in the framework of extended irreversible thermodynamics. Using this model, the dissipation of a piezoceramic stack actuator under harmonic electric or mechanical loadings in linear operation range is studied. The harmonic-balance methods are utilized as solution techniques. In contrast to the existing piezoelectric dissipation models, the dissipation by the developed model is verified to nonlinearly depend on operating frequency, with a peak dissipation occurring at some operating frequency that is related to characteristic relaxation of irreversible processes. The measurements of newly introduced parameters are also discussed.

  17. Effect of uniaxial stress on the reversible and irreversible permeabilities of 2% Mn pipeline steel

    SciTech Connect

    Makar, J.M.; Atherton, D.L. . Dept. of Physics)

    1994-07-01

    The results of a study of the effects of constant uniaxial stress on the irreversible and reversible differential permeabilities of minor and saturation major hysteresis loops are presented, extending an earlier study which studied those permeability components on the initial magnetization curve. Tension was found to increase both the reversible and irreversible components of the saturation major loop differential permeability in the low magnetization region, and to decrease them in the high magnetization region. The opposite effect was found for compression. This effect was explained as the result of changes in the domain structure of the sample when stressed and a resulting change in the ratio of 90[degree] of 180[degree] domain walls. The differences between the upper and lower branches of the saturation major hysteresis loop reversible relative differential permeability were found to increase in tension and decrease in compression, with more complicated behavior occurring in the irreversible component. Minor loop behavior was also found to vary depending on the magnetization of the sample. In the low magnetization region tension was found to produce higher values and larger variations in both components of the relative differential permeability than the unstressed case, while compression produced lower values and smaller variations. The opposite behavior was found to be true in the high magnetization region, while an intermediate behavior with little or no change in both the relative differential permeability components was found to exist between the two extreme cases.

  18. Spectroscopic studies on the irreversible heat-induced structural transition of Pin1.

    PubMed

    Wang, Jing-Zhang; Lin, Tao; Teng, Teng; Xie, Si-Si; Zhu, Guo-Fei; Du, Lin-Fang

    2011-01-01

    Previously, the mechanism of the thermal unfolding of Pin1 (on-line measurements) was studied, revealing that Pin1 has a relatively high thermal stability. However, it is still questionable whether the unfolding of Pin1 is reversible. In the present work, intrinsic tryptophan fluorescence, ANS fluorescence, RLS, FTIR and CD spectroscopies are used to evaluate the reversibility of the thermal unfolding of Pin1. Intrinsic tryptophan fluorescence studies indicate that structural changes around tryptophan motifs in Pin1 are possibly reversible after heat treatment (even above 98°C), for no significant change in the intensity or λ(max) of the spectra was observed. ANS fluorescence measurements indicate the irreversible exposure of the hydrophobic clusters in Pin1 after heat treatment at 98°C, with increase in the fluorescence intensity and blue shift in λmax. Also, RLS signals of the Pin1-ANS system increased after heat treatment, possibly implying both the unfolding and the aggregation of Pin1. In addition, FTIR and CD results confirmed the irreversible unfolding of the secondary structure in Pin1 after heat treatment above 90°C, showing decreases in both α-helix and β-sheet. In summary, the present work mainly suggests that heat treatment, especially above 90°C, has an important impact on the structural stability of Pin1, and the structural unfolding induced by heat was proved to be irreversible. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation

    PubMed Central

    Shaw, Bryan F.; Schneider, Gregory F.; Bilgiçer, Başar; Kaufman, George K.; Neveu, John M.; Lane, William S.; Whitelegge, Julian P.; Whitesides, George M.

    2008-01-01

    This paper reports that the acetylation of lysine ε-NH3 + groups of α-amylase—one of the most important hydrolytic enzymes used in industry—produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90°C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the neutral surfactant TRITON X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)phenyl ether), but not by the cationic surfactant, dodecyltrimethylammonium bromide (DTAB). The increased resistance of acetylated α-amylase toward inactivation is attributed to the increased net negative charge of α-amylase that resulted from the acetylation of lysine ammonium groups (lysine ε-NH3 + → ε-NHCOCH3). Increases in the net negative charge of proteins can decrease the rate of unfolding by anionic surfactants, and can also decrease the rate of protein aggregation. The acetylation of lysine represents a simple, inexpensive method for stabilizing bacterial α-amylase against irreversible inactivation in the presence of the anionic and neutral surfactants that are commonly used in industrial applications. PMID:18451358

  20. Irreversible formation of intermediate BSA oligomers requires and induces conformational changes.

    PubMed

    Vaiana, S M; Emanuele, A; Palma-Vittorelli, M B; Palma, M U

    2004-06-01

    Understanding the relation between protein conformational changes and aggregation, and the physical mechanisms leading to such processes, is of primary importance, due to its direct relation to a vast class of severe pathologies. Growing evidence also suggests that oligomeric intermediates, which may occur early in the aggregation pathway, can be themselves pathogenic. The possible cytotoxicity of oligomers of non-disease-associated proteins adds generality to such suggestion and to the interest of studies of oligomer formation. Here we study the early stages of aggregation of Bovine Serum Albumin (BSA), a non pathogenic protein which has proved to be a useful model system. Dynamic light scattering and circular dichroism measurements in kinetic experiments following step-wise temperature rises, show that the "intermediate" form, which initiates large-scale aggregation, is the result of structural and conformational changes and concurrent formation of oligomers, of average size in the range of 100-200 A. Two distinct thresholds are observed. Beyond the first one oligomerization starts and causes partial irreversibility of conformational changes. Beyond the second threshold, additional secondary structural changes occurring in proteins being recruited progress on the same time scale of oligomerization. The concurrent behavior causes a mutual stabilization of oligomerization, and of structural and conformational changes, evidenced by a progressive increase of their irreversibility. This process interaction appears to be pivotal in producing irreversible oligomers. Copyright 2004 Wiley-Liss, Inc.

  1. Anesthetic efficacy of lidocaine/meperidine for inferior alveolar nerve blocks in patients with irreversible pulpitis.

    PubMed

    Bigby, Jason; Reader, Al; Nusstein, John; Beck, Mike

    2007-01-01

    The purpose of this prospective, randomized, single-blind study was to compare the anesthetic efficacy of lidocaine with epinephrine to lidocaine plus meperidine with epinephrine for inferior alveolar nerve blocks (IAN) in patients with mandibular posterior teeth experiencing irreversible pulpitis. Forty-eight emergency patients diagnosed with irreversible pulpitis of a mandibular posterior tooth randomly received, in a single-blind manner, 36 mg of lidocaine with 18 mug epinephrine or 36 mg of lidocaine with 18 mug of epinephrine plus 36 mg meperidine with 18 mug epinephrine, using a conventional inferior alveolar nerve block. Endodontic access was begun 15 minutes after solution deposition, and all patients were required to have profound lip numbness. Success was defined as no or mild pain (visual analog scale recordings) upon endodontic access or initial instrumentation. The success rate for the inferior alveolar nerve block using the lidocaine solution was 26%, and for the lidocaine/meperidine solution, the success rate was 12%. There was no significant difference (p = 0.28) between the two solutions. In conclusion, for mandibular posterior teeth with irreversible pulpitis, the addition of 36 mg of meperidine to a lidocaine solution administered in a conventional IAN block did not improve the success rate over a standard lidocaine solution.

  2. Selection and constraint underlie irreversibility of tooth loss in cypriniform fishes.

    PubMed

    Aigler, Sharon R; Jandzik, David; Hatta, Kohei; Uesugi, Kentaro; Stock, David W

    2014-05-27

    The apparent irreversibility of the loss of complex traits in evolution (Dollo's Law) has been explained either by constraints on generating the lost traits or the complexity of selection required for their return. Distinguishing between these explanations is challenging, however, and little is known about the specific nature of potential constraints. We investigated the mechanisms underlying the irreversibility of trait loss using reduction of dentition in cypriniform fishes, a lineage that includes the zebrafish (Danio rerio) as a model. Teeth were lost from the mouth and upper pharynx in this group at least 50 million y ago and retained only in the lower pharynx. We identified regional loss of expression of the Ectodysplasin (Eda) signaling ligand as a likely cause of dentition reduction. In addition, we found that overexpression of this gene in the zebrafish is sufficient to restore teeth to the upper pharynx but not to the mouth. Because both regions are competent to respond to Eda signaling with transcriptional output, the likely constraint on the reappearance of oral teeth is the alteration of multiple genetic pathways required for tooth development. The upper pharyngeal teeth are fully formed, but do not exhibit the ancestral relationship to other pharyngeal structures, suggesting that they would not be favored by selection. Our results illustrate an underlying commonality between constraint and selection as explanations for the irreversibility of trait loss; multiple genetic changes would be required to restore teeth themselves to the oral region and optimally functioning ones to the upper pharynx.

  3. Estimating Temperature Rise Due to Flashlamp Heating Using Irreversible Temperature Indicators

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    1999-01-01

    One of the nondestructive thermography inspection techniques uses photographic flashlamps. The flashlamps provide a short duration (about 0.005 sec) heat pulse. The short burst of energy results in a momentary rise in the surface temperature of the part. The temperature rise may be detrimental to the top layer of the part being exposed. Therefore, it is necessary to ensure the nondestructive nature of the technique. Amount of the temperature rise determines whether the flashlamp heating would be detrimental to the part. A direct method for the temperature measurement is to use of an infrared pyrometer that has much shorter response time than the flash duration. In this paper, an alternative technique is given using the irreversible temperature 'indicators. This is an indirect technique and it measures the temperature rise on the irreversible temperature indicators and computes the incident heat flux. Once the heat flux is known, the temperature rise on the part can be computed. A wedge shaped irreversible temperature indicator for measuring the heat flux is proposed. A procedure is given to use the wedge indicator.

  4. Unexpected impact of irreversible adsorption on thermal expansion: Adsorbed layers are not that dead.

    PubMed

    Braatz, Marie-Luise; Infantas Meléndez, Leslie; Sferrazza, Michele; Napolitano, Simone

    2017-05-28

    We investigated the impact of irreversible adsorption on the mechanisms of thermal expansion of 1D confined polymer layers. For spincoated films (polystyrene on aluminum) of constant thickness, the thermal expansion coefficient of the melt drops upon annealing following the kinetics of irreversible adsorption of the chains onto the supporting substrate, while the thermal expansion of the glass is annealing invariant. These perturbations are explained in terms of the reduction in free volume content, upon immobilization of monomers onto the substrate. To shed more light on this phenomenon, we performed an extensive investigation of the thermal expansion of irreversibly adsorbed layers of polystyrene on silicon oxide. We verified that, contrarily to recent speculations, these films cannot be modeled as dead layers - immobilized slabs lacking of segmental relaxation. On the contrary, thin adsorbed layers show an increase in thermal expansion with respect to the bulk, due to packing frustration. Immobilization plays a role only when the thickness of the adsorbed layers overcomes ∼10 nm. Finally, we show that for adsorbed layers the difference in thermal expansion between the melt and the glass is sufficiently high to investigate the glass transition down to 3 nm. Owing to this unique feature, not shared by spincoated films, adsorbed layers are the perfect candidate to study the properties of extremely thin polymer films.

  5. Unexpected impact of irreversible adsorption on thermal expansion: Adsorbed layers are not that dead

    NASA Astrophysics Data System (ADS)

    Braatz, Marie-Luise; Infantas Meléndez, Leslie; Sferrazza, Michele; Napolitano, Simone

    2017-05-01

    We investigated the impact of irreversible adsorption on the mechanisms of thermal expansion of 1D confined polymer layers. For spincoated films (polystyrene on aluminum) of constant thickness, the thermal expansion coefficient of the melt drops upon annealing following the kinetics of irreversible adsorption of the chains onto the supporting substrate, while the thermal expansion of the glass is annealing invariant. These perturbations are explained in terms of the reduction in free volume content, upon immobilization of monomers onto the substrate. To shed more light on this phenomenon, we performed an extensive investigation of the thermal expansion of irreversibly adsorbed layers of polystyrene on silicon oxide. We verified that, contrarily to recent speculations, these films cannot be modeled as dead layers - immobilized slabs lacking of segmental relaxation. On the contrary, thin adsorbed layers show an increase in thermal expansion with respect to the bulk, due to packing frustration. Immobilization plays a role only when the thickness of the adsorbed layers overcomes ˜10 nm. Finally, we show that for adsorbed layers the difference in thermal expansion between the melt and the glass is sufficiently high to investigate the glass transition down to 3 nm. Owing to this unique feature, not shared by spincoated films, adsorbed layers are the perfect candidate to study the properties of extremely thin polymer films.

  6. Calcium-Enriched Mixture Pulpotomy of Primary Molar Teeth with Irreversible Pulpitis. A Clinical Study

    PubMed Central

    Memarpour, Mahtab; Fijan, Soleiman; Asgary, Saeed; Keikhaee, Marzieh

    2016-01-01

    Objectives: To evaluate the outcome of vital pulp therapy in primary teeth with irreversible pulpitis by using calcium-enriched mixture (CEM) cement according to clinical and radiographic assessment. Participants and Methods: Fifty primary molar teeth with irreversible pulpitis in 50 children aged 6-8 years underwent pulpotomy using CEM cement as the dressing material. Following pulpotomy, pain intensity was evaluated by use of a visual analog scale at 1 and 7 days from the treatment and in clinical appointments at 3, 6 and 12 months after baseline. Radiographic evaluation was performed at 6 and 12 months. Data were analyzed using the McNemar test. Results: A total of 42 children (mean age 7.26 ± 0.82 year) completed the study. After one day treatment 56 % of children reported complete relief of pain and after 7 days 62% reported the same. However, two children complained of increased pain 1 day after treatment. None of the children reported pain in the subsequent appointments. One child complained of tenderness in percussion after 6 months. Pulp canal obliteration was the most common change in the radiographic assessment. There was no significant difference between clinical (92.8%) and radiographic (90.4%) success (p=0.990). Conclusion: Pulpotomy using CEM cement could present a successful treatment in primary molar teeth with irreversible pulpitis. PMID:27326265

  7. Calcitonin gene-related peptide receptor expression in alternatively activated monocytes/macrophages during irreversible pulpitis.

    PubMed

    Caviedes-Bucheli, Javier; Moreno, Gloria Cristina; López, María Paula; Bermeo-Noguera, Ana Milena; Pacheco-Rodríguez, Gloriana; Cuellar, Adriana; Muñoz, Hugo Roberto

    2008-08-01

    The purpose of this study was to quantify the percentage and the mean fluorescence intensity of viable alternatively activated monocytes/macrophages (AAMø) CD163+ positive for calcitonin gene-related peptide receptor (CGRPr) within the total AAMø population in human dental pulp. Pulp tissue samples were collected from teeth with a clinical diagnosis of irreversible pulpitis (n = 13), pulps with induced inflammation (n = 13), and normal pulps (n = 13). All samples were labeled to identify positive cells for CGRPr and CD163 using a flow cytometry assay. Results demonstrated that a high percentage of total viable AAMø CD163+ expressed CGRPr on their membranes (72.12% in healthy pulp, 62.20% in irreversible pulpitis, and 58.01% in induced pulpitis). Significant differences were found between mean AAMø CD163+ fluorescence for CGRPr according to pulp condition, being greater in irreversible pulpitis. It can be concluded that AAMø CD163+ are expressed during normal and inflammatory processes, supporting the hypothesis that they could exercise an anti-inflammatory action that could be controlled by CGRP signaling after its binding.

  8. Irreversibility behavior in Ag-sheathed Bi-based superconducting wires

    SciTech Connect

    Dou, S.X.; Liu, H.K.; Guo, Y.C.; Wang, J.; Jin, X.J.; Hu, Q.Y. ); Shi, D.L.; Salem-Sugui, S.; Wang, Z. )

    1992-04-01

    Irreversibility lines for Ag/(Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y}(2223) wires prepared through a phase formation- decomposition-recovery (PFDR) process and normal annealing process were determined using both AC susceptibility measurements under DC fields and magnetisation measurements. It was found that flux pinning was enhanced in the PFDR processed samples over the normal processed samples, in particular at temperature above 77 K. The PFDR process results in high mass density, grain alignment, uniform distribution of impurity precipitates and high density of defects. The irreversibility temperatures scaled with the applied field according to H{sup 1/3}, which is in contrast to H{sup 2/3} law for YBa{sub 2}Cu{sub 3}O{sub 7-x} and conventional superconductors. The irreversibility lines for PFDR processed tapes showed a crossover with those for normal processed tapes at temperature below {Tc} of the (Bi,Pb){sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} (2212), suggesting that at temperature above {Tc} of the 2212 phase, the 2212 as nonsuperconducting region, may serve as effective pinning sites for fluxoids.

  9. Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane.

    PubMed

    Schwichtenhövel, C; Deuticke, B; Haest, C W

    1992-10-19

    The slow, non-mediated transmembrane movement of the lipid probes lysophosphatidylcholine, NBD-phosphatidylcholine and NBD-phosphatidylserine in human erythrocytes becomes highly enhanced in the presence of 1-alkanols (C2-C8) and 1,2-alkane diols (C4-C8). Above a threshold concentration characteristic for each alcohol, flip rates increase exponentially with the alcohol concentration. The equieffective concentrations of the alcohols decrease about 3-fold per methylene added. All 1-alkanols studied are equieffective at comparable calculated membrane concentrations. This is also observed or the 1,2-alkane diols, albeit at a 5-fold lower membrane concentration. At low alcohol concentrations, flip enhancement is reversible to a major extent upon removal of the alcohol. In contrast, a residual irreversible flip acceleration is observed following removal of the alcohol after a treatment at higher concentrations. The threshold concentrations to produce irreversible flip acceleration by 1-alkanols and 1,2-alkane diols are 1.5- and 3-fold higher than those for flip acceleration in the presence of the corresponding alcohols. A causal role in reversible flip-acceleration of a global increase of membrane fluidity or membrane polarity seems to be unlikely. Alcohols may act by increasing the probability of formation of transient structural defects in the hydrophobic barrier that already occur in the native membrane. Membrane defects responsible for irreversible flip-acceleration may result from alterations of membrane skeletal proteins by alcohols.

  10. Evidence for Irreversible Inhibition of Glycogen Synthase Kinase-3β by Tideglusib*

    PubMed Central

    Domínguez, Juan Manuel; Fuertes, Ana; Orozco, Leyre; del Monte-Millán, María; Delgado, Elena; Medina, Miguel

    2012-01-01

    Tideglusib is a GSK-3 inhibitor currently in phase II clinical trials for the treatment of Alzheimer disease and progressive supranuclear palsy. Sustained oral administration of the compound to a variety of animal models decreases Tau hyperphosphorylation, lowers brain amyloid plaque load, improves learning and memory, and prevents neuronal loss. We report here that tideglusib inhibits GSK-3β irreversibly, as demonstrated by the lack of recovery in enzyme function after the unbound drug has been removed from the reaction medium and the fact that its dissociation rate constant is non-significantly different from zero. Such irreversibility may explain the non-competitive inhibition pattern with respect to ATP shown by tideglusib and perhaps other structurally related compounds. The replacement of Cys-199 by an Ala residue in the enzyme seems to increase the dissociation rate, although the drug retains its inhibitory activity with decreased potency and long residence time. In addition, tideglusib failed to inhibit a series of kinases that contain a Cys homologous to Cys-199 in their active site, suggesting that its inhibition of GSK-3β obeys to a specific mechanism and is not a consequence of nonspecific reactivity. Results obtained with [35S]tideglusib do not support unequivocally the existence of a covalent bond between the drug and GSK-3β. The irreversibility of the inhibition and the very low protein turnover rate observed for the enzyme are particularly relevant from a pharmacological perspective and could have significant implications on its therapeutic potential. PMID:22102280

  11. Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases

    NASA Astrophysics Data System (ADS)

    Dou, Dengfeng; Park, Jewn Giew; Rana, Sandeep; Madden, Benjamin J.; Jiang, Haobo; Pang, Yuan-Ping

    2013-01-01

    We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (kinact/KI) of 3,604-458,597 M-1sec-1 but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with kinact/KI values of 1,915 and 1,507 M-1sec-1, respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.

  12. Optimum performance analysis of an irreversible quantum cryogenic refrigeration cycle working with an ideal Bose or Fermi gas

    NASA Astrophysics Data System (ADS)

    Lin, Bihong; Chen, Jincan

    2008-05-01

    An irreversible model of the Carnot cryogenic refrigeration cycle working with an ideal Bose or Fermi gas is established, which is composed of two irreversible adiabatic and two isothermal processes. The effects of the quantum degeneracy of the working substance, the irreversibility of the finite-rate heat transfer between the working fluid and the heat reservoirs, and the internal irreversibility in two adiabatic processes on the optimum performance characteristics of the quantum refrigeration cycle are analyzed. The performance characteristics of the cycle in strong and weak gas degeneracy cases are discussed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. Some optimum criteria are given.

  13. Mechanisms of physically irreversible fouling during surface water microfiltration and mitigation by aluminum electroflotation pretreatment.

    PubMed

    Gamage, Neranga P; Chellam, Shankararaman

    2014-01-21

    A modified poly(vinylidene fluoride) membrane was used to directly microfilter untreated Lake Houston water, which was then regenerated by surface washing and hydraulic backwashing, a process that was cycled five times. The source water was also electrochemically precoagulated using aluminum and microfiltered, and the membrane was physically regenerated for five cycles. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used to characterize foulants on membrane surfaces and rigorously deduce their contributions to physically irreversible fouling after cycles 1 and 5. Hydrophobic molecules primarily appeared to initiate fouling during microfiltration of untreated raw water because O-H/N-H bands were attenuated while C-H bands remained relatively unchanged in FTIR-spectra of membrane surfaces after only one cycle. However, O-H/N-H and symmetric and asymmetric C(═ O)O(-) stretching bands significantly intensified with continued filtration/regeneration of untreated water, showing the importance of hydrophilic molecules and the role of complexation, respectively, to longer term irreversible fouling. Distinct C-H bands were detected in floated flocs after electrolysis, suggesting the sorption and subsequent removal of a substantial portion of the hydrophobic moieties present in Lake Houston water during pretreatment. Consequently, hydrophilic compounds appeared to contribute more to irreversible fouling in pretreated waters throughout the course of filtration as evidenced by significantly more intense O-H bands (compared with C-H bands) on the membrane surface after cycles 1 and 5. Therefore, electroflotation pretreatment reduced accumulation of hydrophobic foulants but simultaneously increased complexation of hydrophilic foulant molecules along with any carried-over aluminum hydroxide precipitates evidenced by increasing Al and O concentrations via XPS and intense C(═ O)O(-) stretching

  14. Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation.

    PubMed

    Rodriguez-Navarro, C; Ruiz-Agudo, E; Ortega-Huertas, M; Hansen, E

    2005-11-22

    Although Ca(OH)2 is one of the oldest art and building material used by mankind, little is known about its nanostructural and colloidal characteristics that play a crucial role in its ultimate performance as a binder in lime mortars and plasters. In particular, it is unknown why hydrated lime putty behaves as an irreversible colloid once dried. Such effect dramatically affects the reactivity and rheology of hydrated lime dispersions. Here we show that the irreversible colloidal behavior of Ca(OH)2 dispersions is the result of an oriented aggregation mechanism triggered by drying. Kinetic stability and particle size distribution analysis of oven-dried slaked lime or commercial dry hydrate dispersions exhibit a significant increase in settling speed and particle (cluster) size in comparison to slaked lime putty that has never been dried. Drying-related particle aggregation also leads to a significant reduction in surface area. Electron microscopy analyses show porous, randomly oriented, micron-sized clusters that are dominant in the dispersions both before and after drying. However, oriented aggregation of the primary Ca(OH)2 nanocrystals (approximately 60 nm in size) is also observed. Oriented aggregation occurs both before and during drying, and although limited before drying, it is extensive during drying. Nanocrystals self-assemble in a crystallographically oriented manner either along the 100 or equivalent 110 directions, or along the Ca(OH)2 basal planes, i.e., along [001]. While random aggregation appears to be reversible, oriented aggregation is not. The strong coherent bonding among oriented nanoparticles prevents disaggregation upon redispersion in water. The observed irreversible colloidal behavior associated with drying of Ca(OH)2 dispersions has important implications in heritage conservation, particularly considering that nowadays hydrated lime is often the preferred alternative to portland cement in architectural heritage conservation. Finally, our

  15. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.

    PubMed

    Wang, Yang; Tu, Z C

    2012-01-01

    The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form η(mP)=η(C)/(2-γη(C)), where η(C) is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of η(mP) is bounded between η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys. 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of η(mP)=η(C)/(2-γη(C)) as well as the existence of two bounds, η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). © 2012 American Physical Society

  16. The Anti-Inflammatory Effects of Matrix Metalloproteinase-3 on Irreversible Pulpitis of Mature Erupted Teeth

    PubMed Central

    Eba, Hisanori; Murasawa, Yusuke; Iohara, Koichiro; Isogai, Zenzo; Nakamura, Hiroshi; Nakamura, Hiroyuki; Nakashima, Misako

    2012-01-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis. PMID:23285075

  17. Dimensional accuracy of 2 irreversible hydrocolloid alternative impression materials with immediate and delayed pouring.

    PubMed

    Nassar, Usama; Hussein, Bayan; Oko, Andrea; Carey, Jason P; Flores-Mir, Carlos

    2012-01-01

    To assess dimensional accuracy and stability of 2 irreversible hydrocolloid alternative impression materials with immediate and delayed pouring. Two alternative impression materials, AlgiNot FS and Position Penta Quick, were compared with a traditional irreversible hydrocolloid, Jeltrate Plus antimicrobial alginate. Impressions were made of a metal model with 4 cylinders of known dimensions, with pouring performed immediately or after 4 hours of storage. A digital micrometer was used to measure cylinder diameter on the model and the poured casts. Dimensional changes were analyzed according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 19 (2004 version) (α=0.05). There were significant differences among the 3 materials, between the 2 pour times and as a function of storage time (multivariate analysis of variance, p<0.001). One-way analysis of variance revealed no significant differences between the 2 alternative impression materials, but changes for these materials differed significantly from those for the traditional impression material for immediate (p<0.05) and 4-hour (p<0.001) pouring. Linear dimensional changes for the 2 substitute materials were within the limits of the ANSI/ADA specification. With immediate pouring, both alternative impression materials exhibited minimal dimensional changes, which were maintained or reduced with 4-hour pouring. For both pouring times, these changes were less than 0.5%. The minimal dimensional changes observed with these irreversible hydrocolloid alternative impression materials after 4 hours of storage may save chairside time and help to produce accurate results for procedures such as partial denture framework, surgical guides, and pediatric and orthodontic devices.

  18. Irreversible trimer to monomer transition of thermophilic rhodopsin upon thermal stimulation.

    PubMed

    Tsukamoto, Takashi; Demura, Makoto; Sudo, Yuki

    2014-10-30

    Assembly is one of the keys to understand biological molecules, and it takes place in spatial and temporal domains upon stimulation. Microbial rhodopsin (also called retinal protein) is a membrane-embedded protein that has a retinal chromophore within seven-transmembrane α-helices and shows homo-, di-, tri-, penta-, and hexameric assemblies. Those assemblies are closely related to critical physiological properties such as stabilizing the protein structure and regulating their photoreaction dynamics. Here we investigated the assembly and disassembly of thermophilic rhodopsin (TR), which is a novel proton-pumping rhodopsin derived from a thermophile living at 75 °C. TR was characterized using size-exclusion chromatography and circular dichroism spectroscopy, and formed a trimer at 25 °C, but irreversibly dissociated into monomers upon thermal stimulation. The transition temperature was estimated to be 68 °C. The irreversible nature made it possible to investigate the photochemical properties of both the trimer and the monomer independently. Compared with the trimer, the absorption maximum of the monomer is blue-shifted by 6 nm without any changes in the retinal composition, pKa value for the counterion or the sequence of the proton movement. The photocycling rate of the monomeric TR was similar to that of the trimeric TR. A similar trimer-monomer transition upon thermal stimulation was observed for another eubacterial rhodopsin GR but not for the archaeal rhodopsins AR3 and HwBR, suggesting that the transition is conserved in bacterial rhodopsins. Thus, the thermal stimulation of TR induces the irreversible disassembly of the trimer.

  19. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    PubMed

    Eba, Hisanori; Murasawa, Yusuke; Iohara, Koichiro; Isogai, Zenzo; Nakamura, Hiroshi; Nakamura, Hiroyuki; Nakashima, Misako

    2012-01-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  20. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    PubMed

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  1. Effect of irreversibility on the thermodynamic characterization of the thermal denaturation of Aspergillus saitoi acid proteinase.

    PubMed Central

    Tello-Solis, S R; Hernandez-Arana, A

    1995-01-01

    The thermal denaturation of the acid proteinase from Aspergillus saitoi was studied by CD and differential scanning calorimetry (DSC). This process seemed to be completely irreversible, as protein samples that were heated to temperatures at which the transition had been completed and then cooled at 25 degrees C did not show any reversal of the change in the CD signal. Similar results were obtained with DSC. Nevertheless, we were able to detect the presence of reversibly unfolded species in experiments in which the enzyme solution was heated to a temperature within the transition region, followed by rapid cooling at 25 degrees C. Accordingly, the denaturation of behaviour of the acid proteinase seems to be consistent with the existence of one (or more) reversible unfolding transition followed by an irreversible step. The van't Hoff enthalpy, delta HvH, which corresponds to the reversible transition was calculated from extrapolation to infinite heating rate as 310 kJ.mol-1. This parameter was also determined from direct estimation of the equilibrium constant at several temperatures (delta HvH = 176 kJ.mol-1). Comparison of the average delta HvH with the calorimetric enthalpy (delta Hcal. = 770 kJ.mol-1) gave a value of 3.2 for the delta Hcal./delta HvH ratio, indicating that the molecular structure of the enzyme is probably formed by three or four cooperative regions, a number similar to that of the acid proteinase, pepsin. It should be noted that a completely different conclusion would be obtained from a straightforward analysis of the calorimetric curves, disregarding the effect of irreversibility on the denaturation process. PMID:7487958

  2. Revisiting the first-order irreversible phase transition of the Ziff-Gulari-Barshad model

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Albano, Ezequiel V.

    2001-02-01

    The first-order irreversible phase transition (IPT) characteristic of the Ziff-Gulari-Barshad (ZGB) model is studied by means of extensive numerical simulations. Using the constant-coverage method it is found that hysteresis effects hinder the location of the coexistence point. However, the hysteresis loop is unstable against a negligible small external perturbation, allowing the determination of the coexistence point quite accurately. Also, by means of epidemic studies, an existing controversy on the occurrence of scale invariance in the dynamical behaviour of the system at coexistence is resolved. Our findings reconcile the behaviour of the first-order IPTs of the ZGB model with their reversible counterparts.

  3. Hysteretic effects in the first-order irreversible phase transition of the ZGB model

    NASA Astrophysics Data System (ADS)

    Loscar, Ernesto S.; Albano, Ezequiel V.

    2009-04-01

    The first-order irreversible phase transition (FOIPT) of the ZGB model [Ziff, Gulari, Barshad, Phys. Rev. Lett. 56 (1986) 2553] for the catalytic oxidation of carbon monoxide is studied numerically by using the constant-coverage (CC) ensemble. The CC method allows us to study hysteretic effects close to coexistence, as well as the location of the coexistence point. Also, evidence that the FOIPT exhibits a condensation/evaporation pseudo-transition (in finite samples), as observed in its reversible counterparts, is presented and discussed.

  4. Nucleation of a new phase on a surface that is changing irreversibly with time.

    PubMed

    Sear, Richard P

    2014-02-01

    Nucleation of a new phase almost always starts at a surface. This surface is almost always assumed not to change with time. However, surfaces can roughen, partially dissolve, and change chemically with time. Each of these irreversible changes will change the nucleation rate at the surface, resulting in a time-dependent nucleation rate. Here we use a simple model to show that partial surface dissolution can qualitatively change the nucleation process in a way that is testable in experiment. The changing surface means that the nucleation rate is increasing with time. There is an initial period during which no nucleation occurs, followed by relatively rapid nucleation.

  5. Analysis of a quantum irreversible Otto cycle with exergetic sustainable index

    NASA Astrophysics Data System (ADS)

    Dalkıran, Alper; Açıkkalp, Emin; Caner, Necmettin

    2016-07-01

    In this study, exergetic sustainability index is applied to quantum irreversible Otto cycle with -1/2 spin system. Exergetic sustainability index in a quantum engine is used first time. This index is the ratio of exergy output (work output for a thermal engine) to total exergetic losses. It gives an opportunity to evaluate for all thermodynamic losses in the system, that is why, it is an important index. In addition, some thermodynamic parameters (work output, exergy destruction, first and second law efficiencies) are considered and their relationships between the exergetic sustainability index are determined.

  6. Irreversible volume expansion of a TATB-based composite and compressive strength

    NASA Astrophysics Data System (ADS)

    Thompson, Darla Graff; Schwarz, Ricardo B.; DeLuca, Racci

    2017-01-01

    It has long been known that compacted composites containing TATB (triaminotrinitrobenzene) crystals undergo "ratchet growth," an irreversible volume expansion upon thermal cycling. A clear mechanism has not been established for this phenomenon, but is believed to arise from the highly-anisotropic CTE of TATB crystals and interactions caused by compaction. Explosive performance depends fundamentally on bulk density, so the effect may be important. PBX 9502 is a plastic bonded explosive containing 95 wt% TATB crystals. We have monitored uniaxial length changes of PBX 9502 specimens for various thermal cycles providing mechanistic insight. Post-cycled specimens were compression tested to determine if mechanical properties correlated with the detailed thermal history.

  7. Optimal allocation of thermodynamic irreversibility for the integrated design of propulsion and thermal management systems

    NASA Astrophysics Data System (ADS)

    Maser, Adam Charles

    work losses over the time history of the mission. The characterization of the thermodynamic irreversibility distribution helps give the propulsion systems designer an absolute and consistent view of the tradeoffs associated with the design of the entire integrated system. Consequently, this leads directly to the question of the proper allocation of irreversibility across each of the components. The process of searching for the most favorable allocation of this irreversibility is the central theme of the research and must take into account production cost and vehicle mission performance. The production cost element is accomplished by including an engine component weight and cost prediction capability within the system model. The vehicle mission performance is obtained by directly linking the propulsion and thermal management model to a vehicle performance model and flying it through a mission profile. A canonical propulsion and thermal management systems architecture is then presented to experimentally test each element of the methodology separately: first the integrated modeling and simulation, then the irreversibility, cost, and mission performance considerations, and then finally the proper technique to perform the optimal allocation. A goal of this research is the description of the optimal allocation of system irreversibility to enable an engine cycle design with improved performance and cost at the vehicle-level. To do this, a numerical optimization was first used to minimize system-level production and operating costs by fixing the performance requirements and identifying the best settings for all of the design variables. There are two major drawbacks to this approach: It does not allow the designer to directly trade off the performance requirements and it does not allow the individual component losses to directly factor into the optimization. An irreversibility allocation approach based on the economic concept of resource allocation is then compared to the

  8. Chaos and irreversibility in a conservative nonlinear dynamical system with a few degrees of freedom

    NASA Astrophysics Data System (ADS)

    Petrosky, T. Y.

    1984-04-01

    The motion of an elastic pendulum with two degrees of freedom has been investigated in the vicinity of a separatrix, using the Liouville equation. Even for this simple system, an irreversible kinetic equation of the Fokker-Plank type for the momentum-distribution function has been obtained in the limit of a stiff pendulum. This equation describes a monotonic approach to the 'microcanonical equilibrium state' for a given energy surface. The diffusion coefficient for the energy of the unperturbed pendulum in this work is directly related to that obtained by Chirikov's heuristic argument.

  9. Irreversible pulmonary hypertension associated with Troglostrongylus brevior infection in a kitten.

    PubMed

    Crisi, Paolo E; Traversa, Donato; Di Cesare, Angela; Luciani, Alessia; Civitella, Carla; Santori, Domenico; Boari, Andrea

    2015-10-01

    A four month-old kitten was referred at the Veterinary Teaching Hospital of Teramo, Italy. Physical examination, echocardiography, thoracic radiography, copromicroscopy and biomolecular assays led to a diagnosis of severe parasitic bronchopneumonia by Troglostrongylus brevior complicated by pulmonary hypertension. A single administration of a spot on solution containing imidacloprid 10%/moxidectin 1% was effective in stopping larval shedding but clinical, radiographic and echocardiographic signs of bronchopneumonia and pulmonary hypertension still persisted after further follow-ups.While cases of pulmonary hypertension are known in infections by Aelurostrongylus abstrusus, this is the first report of irreversible pulmonary hypertension in a kitten with troglostrongylosis.

  10. Penicillanic acid sulfone: nature of irreversible inactivation of RTEM beta-lactamase from Escherichia coli.

    PubMed

    Brenner, D G; Knowles, J R

    1984-11-20

    When penicillanic acid sulfone in large molar excess is incubated with the RTEM beta-lactamase, the enzyme becomes inactivated irreversibly. From studies of the consequential spectroscopic changes, from the use of specifically tritiated penicillanic acid sulfone, and from comparison by isoelectric focusing of the enzyme after inactivation by the sulfone and by clavulanic acid, the inactivated enzyme appears to be cross-linked by a beta-aminoacrylate fragment deriving from C-5, C-6, and C-7 of the original beta-lactam. Model studies on the behavior of alcoholic solutions of penicillanic acid sulfone in the presence of amines are entirely consistent with this interpretation.

  11. Giant flux creep through the surface barriers and the irreversibility line in high-{Tc} superconductors

    SciTech Connect

    Burlachkov, L.; Geshkenbein, V.B. ||; Koshelev, A.E. |; Larkin, A.I. |; Vinokur, V.M.

    1994-05-01

    Magnetic flux relaxation over the surface barrier in high temperature superconductors are investigated Vortex dynamics controlled by the penetration both of pancake vortices and vortex lines are discussed. The penetration field H{sub p} for pancakes decay is exponentially with temperature. The size of the magnetization loop is determined by the decay of H{sub p} during the process of relaxation, but its shape remains unchanged. The irreversibility line associated with the pancake penetration is given by H{sub irr} {proportional_to} exp(- 2T/T{sub o}), and may lie both above and below the melting line.

  12. An Irreversible Thermodynamics Model for Graphite Sublimation in Intense Radiation Environments.

    DTIC Science & Technology

    1980-09-15

    27 8. Relationship of T w to 4rad at Several Pressures, Irreversible Thermodynamics Model ... ............. .... 29 TABLES 1. Q ...rela- tionships [see Eqs. (lla,b)]. -11- -~~RGO -11 --- ___RGO I RESERVOIRR I1 Fig 1 Rprsetaio o Pas C ang Trb[em as a T Dicniu Syte REGONII REIO& where...AT AAR (17a) q qqI qv T ~AT Jv A - (17b) 17 1Schrage, R. W., A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York

  13. Irreversible phase transitions driven by an oscillatory parameter in a far-from-equilibrium system.

    PubMed

    Saracco, G P; Albano, E V

    2001-03-01

    The dynamic response of a forest-fire model to the harmonic variation of an external parameter is studied by means of numerical simulations. Second-order irreversible phase transitions driven by the harmonic input are reported. The location of such transitions depends on both the amplitude and period of the input signal. By means of epidemic studies the relevant critical exponents can be determined, which allow us to place the reported transitions in the universality class of directed percolation. This conclusion is also supported by a field theoretical calculation.

  14. Irreversible Paraplegia Following One Time Prophylactic Intrathecal Chemotherapy in an Adult Patient with Acute Lymphoblastic Leukemia

    PubMed Central

    Lee, Hea Yong; Im, Sung-il; Kang, Myoung-Hee; Kim, Kwang Min; Kim, Seok Hyun; Kim, Hun-Gu; Kang, Jung Hun

    2008-01-01

    We present an adult female patient who developed irreversible paraplegia and areflexia four days post intrathecal chemotherapy with methotrexate, cytosine arabinoside and hydrocortisone. On magnetic resonance imaging (MRI) of the lumbar spine, diffuse gadolinium enhancement of the anterior spinal nerve roots (ventral roots) was detected. Methylprednisolone was intravenously administered at a daily dose of 30mg/kg for three days. Despite this treatment, flaccid weakness in the lower extremities and urinary retention persisted. Following consolidation chemotherapy, no improvement in neurologic status was noted. Six months later, a follow-up MRI revealed severe atrophy of the thoracic spinal cord. PMID:18306482

  15. Design and synthesis of irreversible inhibitors of foot-and-mouth disease virus 3C protease.

    PubMed

    Roqué Rosell, Núria R; Mokhlesi, Ladan; Milton, Nicholas E; Sweeney, Trevor R; Zunszain, Patricia A; Curry, Stephen; Leatherbarrow, Robin J

    2014-01-15

    Foot-and-mouth disease virus (FMDV) causes a highly infectious and economically devastating disease of livestock. The FMDV genome is translated as a single polypeptide precursor that is cleaved into functional proteins predominantly by the highly conserved viral 3C protease, making this enzyme an attractive target for antiviral drugs. A peptide corresponding to an optimal substrate has been modified at the C-terminus, by the addition of a warhead, to produce irreversible inhibitors that react as Michael acceptors with the enzyme active site. Further investigation highlighted key structural determinants for inhibition, with a positively charged P2 being particularly important for potency.

  16. Irreversible Thermodynamics of Uniform Ferromagnets with Spin Accumulation: Bulk and Interface Phenomena

    NASA Astrophysics Data System (ADS)

    Saslow, Wayne; Li, Fuxiang; Taniguchi, Tomohiro

    We extend the irreversible thermodynamics of uniform ferromagnets to include the non-equilibrium phenomenon of spin accumulation, both for conductors and for insulators. The dynamics of the quantization axis M& circ; is governed by the Landau-Lifshitz equation. The spin accumulation, whose longitudinal and transverse parts we label δM and m -->, is due to a non-equilibrium distribution of magnetic excitations. Its dynamics is governed by a Bloch equation that includes spin diffusion. We also consider transport across surfaces, including boundary conditions for M& circ;, δM , and m -->, and apply the results to the nature of the reciprocity between spin transfer torque and spin pumping.

  17. Performance assessment of an irreversible nano Brayton cycle operating with Maxwell-Boltzmann gas

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin; Caner, Necmettin

    2015-05-01

    In the last decades, nano-technology has been developed very fast. According to this, nano-cycle thermodynamics should improve with a similar rate. In this paper, a nano-scale irreversible Brayton cycle working with helium is evaluated for different thermodynamic criteria. These are maximum work output, ecological function, ecological coefficient of performance, exergetic performance criteria and energy efficiency. Thermodynamic analysis was performed for these criteria and results were submitted numerically. In addition, these criteria are compared with each other and the most convenient methods for the optimum conditions are suggested.

  18. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report

    SciTech Connect

    Melenhorst, Marleen C. A. M. Scheffer, Hester J. Vroomen, Laurien G. P. H.; Kazemier, Geert Tol, M. Petrousjka van den; Meijerink, Martijn R.

    2016-01-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth–Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure.

  19. Competitive irreversible random one-, two-, three-, . . . point adsorption on two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Evans, J. W.; Nord, R. S.

    1985-02-01

    An analytic treatment of competitive, irreversible (immobile) random one-, two-, three-, . . . point adsorption (or monomer, dimer, trimer, . . . filling) on infinite, uniform two-dimensional lattices is provided by applying previously developed truncation schemes to the hierarchial form of the appropriate master equations. The behavior of these processes for two competing species is displayed by plotting families of ``filling trajectories'' in the partial-coverage plane for various ratios of adsorption rates. The time or coverage dependence of various subconfiguration probabilities can also be analyzed. For processes where no one-point (monomer) adsorption occurs, the lattice cannot fill completely; accurate estimates of the total (and partial) saturation coverages can be obtained.

  20. Information conservation, entropy increase and statistical irreversibility for an isolated system

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Ren

    2009-10-01

    We consider statistical irreversibility and its compatibility with reversible dynamics. The role played by the observation is analyzed in detail. It makes our previous proof for the second law of thermodynamics clearer. On this basis, we emphasize the importance and wide applicability of the second law of thermodynamics. A new form of physics with this law substituted by the principle of information conservation is suggested. By the way, we also solve the paradox of Schrödinger cat, and show that the universe will not go to the so-called heat death spontaneously.

  1. Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing

    SciTech Connect

    Wilking, James N.; Mason, Thomas G.

    2007-04-15

    Many materials weaken through fracturing when subjected to extreme stresses. By contrast, we show that breaking down repulsive bits of matter dispersed in a viscous liquid can cause a dramatic and irreversible increase in the dispersion's elasticity. Anionically stabilized microscale emulsions subjected to a history of high-pressure microfluidic flow can develop an unusually large elastic modulus as droplets are ruptured to the nanoscale, yielding 'nanonaise'. As the droplet size approaches the Debye screening length, the nanoemulsion vitrifies. Consequently, the onset of elasticity for disordered uniform nanoemulsions can occur at droplet volume fractions far below maximal random jamming of spheres.

  2. Irreversible reactions studied with nanosecond transmission electron microscopy movies: Laser crystallization of phase change materials

    NASA Astrophysics Data System (ADS)

    Santala, M. K.; Reed, B. W.; Raoux, S.; Topuria, T.; LaGrange, T.; Campbell, G. H.

    2013-04-01

    We use multi-frame, nanosecond-scale photo-emission transmission electron microscopy to create movies of irreversible reactions that occur too rapidly to capture with conventional microscopy. The technique is applied to the crystallization of phase change materials used for optical and resistive memory. For those applications, laser- or current-induced crystallization is orders of magnitude too fast to capture with other imaging techniques. We recorded movies of laser-induced crystallization and measured crystal growth rates at temperatures close to where the maximum growth rate occurs. This paves the way for studying crystallization kinetics of phase change materials over the whole range of technologically relevant temperatures.

  3. Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems.

    PubMed

    Peiris, R H; Jaklewicz, M; Budman, H; Legge, R L; Moresoli, C

    2013-06-15

    Fluorescence excitation-emission matrix (EEM) approach together with principal component analysis (PCA) was used for assessing hydraulically irreversible fouling of three pilot-scale ultrafiltration (UF) systems containing full-scale and bench-scale hollow fiber membrane modules in drinking water treatment. These systems were operated for at least three months with extensive cycles of permeation, combination of back-pulsing and scouring and chemical cleaning. The principal component (PC) scores generated from the PCA of the fluorescence EEMs were found to be related to humic substances (HS), protein-like and colloidal/particulate matter content. PC scores of HS- and protein-like matter of the UF feed water, when considered separately, showed reasonably good correlations with the rate of hydraulically irreversible fouling for long-term UF operations. In contrast, comparatively weaker correlations for PC scores of colloidal/particulate matter and the rate of hydraulically irreversible fouling were obtained for all UF systems. Since, individual correlations could not fully explain the evolution of the rate of irreversible fouling, multi-linear regression models were developed to relate the combined effect of HS-like, protein-like and colloidal/particulate matter PC scores to the rate of hydraulically irreversible fouling for each specific UF system. These multi-linear regression models revealed significant individual and combined contribution of HS- and protein-like matter to the rate of hydraulically irreversible fouling, with protein-like matter generally showing the greatest contribution. The contribution of colloidal/particulate matter to the rate of hydraulically irreversible fouling was not as significant. The addition of polyaluminum chloride, as coagulant, to UF feed appeared to have a positive impact in reducing hydraulically irreversible fouling by these constituents. The proposed approach has applications in quantifying the individual and synergistic

  4. Transiently Produced Hypochlorite Is Responsible for the Irreversible Inhibition of Chlorite Dismutase

    PubMed Central

    2014-01-01

    Chlorite dismutases (Clds) are heme b-containing prokaryotic oxidoreductases that catalyze the reduction of chlorite to chloride with the concomitant release of molecular oxygen. Over time, they are irreversibly inactivated. To elucidate the mechanism of inactivation and investigate the role of the postulated intermediate hypochlorite, the pentameric chlorite dismutase of “Candidatus Nitrospira defluvii” (NdCld) and two variants (having the conserved distal arginine 173 exchanged with alanine and lysine) were recombinantly produced in Escherichia coli. Exchange of the distal arginine boosts the extent of irreversible inactivation. In the presence of the hypochlorite traps methionine, monochlorodimedone, and 2-[6-(4-aminophenoxy)-3-oxo-3H-xanthen-9-yl]benzoic acid, the extent of chlorite degradation and release of molecular oxygen is significantly increased, whereas heme bleaching and oxidative modifications of the protein are suppressed. Among other modifications, hypochlorite-mediated formation of chlorinated tyrosines is demonstrated by mass spectrometry. The data obtained were analyzed with respect to the proposed reaction mechanism for chlorite degradation and its dependence on pH. We discuss the role of distal Arg173 by keeping hypochlorite in the reaction sphere for O–O bond formation. PMID:24754261

  5. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  6. Cefazolin Irreversibly Inhibits Proliferation and Migration of Human Mesenchymal Stromal Cells.

    PubMed

    Pilge, Hakan; Fröbel, Julia; Lensing-Höhn, Sabine; Zilkens, Christoph; Krauspe, Rüdiger

    2016-01-01

    Drugs may have a significant effect on postoperative bone healing by reducing the function of human mesenchymal stromal cells (hMSC) or mature osteoblasts. Although cefazolin is one of the most commonly used antibiotic drugs in arthroplasty to prevent infection worldwide, there is a lack of information regarding how cefazolin affects hMSC and therefore may have an effect on early bone healing. We studied the proliferation and migration capacity of primary hMSC during cefazolin treatment at various doses for up to 3 days, as well as the reversibility of the effects during the subsequent 3 days of culture without the drug. We found a time- and dose-dependent reduction of the proliferation rate and the migratory potential. Tests of whether these effects were reversible revealed that doses ≥ 250 μg/mL or treatments longer than 24 h irreversibly affected the cells. We are the first to show that application of cefazolin irreversibly inhibits the potential of hMSC for migration to the trauma site and local proliferation. Cefazolin should be administered only at the required dosage and time to prevent periprosthetic infection. If long-term administration is required and delayed bone healing is present, cefazolin application must be considered as a cause of delayed bone healing.

  7. Cefazolin Irreversibly Inhibits Proliferation and Migration of Human Mesenchymal Stromal Cells

    PubMed Central

    Pilge, Hakan; Fröbel, Julia; Lensing-Höhn, Sabine; Zilkens, Christoph; Krauspe, Rüdiger

    2016-01-01

    Drugs may have a significant effect on postoperative bone healing by reducing the function of human mesenchymal stromal cells (hMSC) or mature osteoblasts. Although cefazolin is one of the most commonly used antibiotic drugs in arthroplasty to prevent infection worldwide, there is a lack of information regarding how cefazolin affects hMSC and therefore may have an effect on early bone healing. We studied the proliferation and migration capacity of primary hMSC during cefazolin treatment at various doses for up to 3 days, as well as the reversibility of the effects during the subsequent 3 days of culture without the drug. We found a time- and dose-dependent reduction of the proliferation rate and the migratory potential. Tests of whether these effects were reversible revealed that doses ≥250 μg/mL or treatments longer than 24 h irreversibly affected the cells. We are the first to show that application of cefazolin irreversibly inhibits the potential of hMSC for migration to the trauma site and local proliferation. Cefazolin should be administered only at the required dosage and time to prevent periprosthetic infection. If long-term administration is required and delayed bone healing is present, cefazolin application must be considered as a cause of delayed bone healing. PMID:27069918

  8. Flocculation kinetics of low-turbidity raw water and the irreversible floc breakup process.

    PubMed

    Marques, Rodrigo de Oliveira; Ferreira Filho, Sidney Seckler

    2017-04-01

    The main objective of this study was to propose an improvement to the flocculation kinetics model presented by Argaman and Kaufman, by including a new term that accounts for the irreversible floc breakup process. Both models were fitted to the experimental results obtained with flocculation kinetics assays of low turbidity raw water containing Microcystis aeruginosa cells. Aluminum sulfate and ferric chloride were used as coagulants, and three distinct average velocity gradient (G) values were applied in the flocculation stage (20, 40 and 60 s(-1)). Experimental results suggest that the equilibrium between the aggregation and breakup process, as depicted by Argaman and Kaufman's original model, might not be constant over time, since the residual turbidity increased in various assays (phenomenon that was attributed to the irreversible floc breakup process). In the aluminum sulfate assays, the residual turbidity increase was visible when G = 20 s(-1) (dosages of 60 and 80 mg L(-1)). For the ferric chloride assays, the phenomenon was noticed when G = 60 s(-1) (dosages of 60 and 80 mg L(-1)). The proposed model presented a better fit to the experimental results, especially at higher coagulant dosages and/or higher values of average velocity gradient (G).

  9. Selective Targeting of Extracellular Insulin-Degrading Enzyme by Quasi-Irreversible Thiol-Modifying Inhibitors.

    PubMed

    Abdul-Hay, Samer O; Bannister, Thomas D; Wang, Hui; Cameron, Michael D; Caulfield, Thomas R; Masson, Amandine; Bertrand, Juliette; Howard, Erin A; McGuire, Michael P; Crisafulli, Umberto; Rosenberry, Terrone R; Topper, Caitlyn L; Thompson, Caroline R; Schürer, Stephan C; Madoux, Franck; Hodder, Peter; Leissring, Malcolm A

    2015-12-18

    Many therapeutically important enzymes are present in multiple cellular compartments, where they can carry out markedly different functions; thus, there is a need for pharmacological strategies to selectively manipulate distinct pools of target enzymes. Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that hydrolyzes diverse peptide substrates in both the cytosol and the extracellular space, but current genetic and pharmacological approaches are incapable of selectively inhibiting the protease in specific subcellular compartments. Here, we describe the discovery, characterization, and kinetics-based optimization of potent benzoisothiazolone-based inhibitors that, by virtue of a unique quasi-irreversible mode of inhibition, exclusively inhibit extracellular IDE. The mechanism of inhibition involves nucleophilic attack by a specific active-site thiol of the enzyme on the inhibitors, which bear an isothiazolone ring that undergoes irreversible ring opening with the formation of a disulfide bond. Notably, binding of the inhibitors is reversible under reducing conditions, thus restricting inhibition to IDE present in the extracellular space. The identified inhibitors are highly potent (IC50(app) = 63 nM), nontoxic at concentrations up to 100 μM, and appear to preferentially target a specific cysteine residue within IDE. These novel inhibitors represent powerful new tools for clarifying the physiological and pathophysiological roles of this poorly understood protease, and their unusual mechanism of action should be applicable to other therapeutic targets.

  10. Optimum performance analysis of a two-stage irreversible magnetization Brayton refrigeration system

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lin, Bihong; Chen, Jincan

    2006-10-01

    A two-stage magnetization Brayton refrigeration cycle model using a paramagnetic material as the working substance is established, in which the regeneration and the irreversibility in the adiabatic processes are taken into account. On the basis of the thermodynamic properties of a paramagnetic material, the expressions of some important parameters such as the coefficient of performance, refrigeration load and work input are derived and used to analyse the performance characteristics of the refrigeration cycle. The influence of the inter-magnetization process, irreversibility in the adiabatic processes and regeneration on the performance of the cycle is discussed in detail. The advantage of adding the inter-magnetization process is expounded and the magnetic field ratio related to the inter-magnetization process is optimized. Moreover, the optimal values of the temperatures of the working substance at different state points and the optimally operating region of the cycle are determined. The results obtained here are compared with those derived from some relevant magnetic Brayton refrigeration cycles, and consequently, some significant conclusions are obtained.

  11. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    DOE PAGES

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; ...

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure releasemore » and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.« less

  12. Synthesis of Irreversible Incompletely Specified Multi-Output Functions to Reversible EOSOPS Circuits with PSE Gates

    NASA Astrophysics Data System (ADS)

    Fiszer, Robert Adrian

    As quantum computers edge closer to viability, it becomes necessary to create logic synthesis and minimization algorithms that take into account the particular aspects of quantum computers that differentiate them from classical computers. Since quantum computers can be functionally described as reversible computers with superposition and entanglement, both advances in reversible synthesis and increased utilization of superposition and entanglement in quantum algorithms will increase the power of quantum computing. One necessary component of any practical quantum computer is the computation of irreversible functions. However, very little work has been done on algorithms that synthesize and minimize irreversible functions into a reversible form. In this thesis, we present and implement a pair of algorithms that extend the best published solution to these problems by taking advantage of Product-Sum EXOR (PSE) gates, the reversible generalization of inhibition gates, which we have introduced in previous work [1,2]. We show that these gates, combined with our novel synthesis algorithms, result in much lower quantum costs over a wide variety of functions as compared to our competitors, especially on incompletely specified functions. Furthermore, this solution has applications for milti-valued and multi-output functions.

  13. Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible

    NASA Astrophysics Data System (ADS)

    Ferrell, James E.; Xiong, Wen

    2001-03-01

    Xenopus oocyte maturation is an example of an all-or-none, irreversible cell fate induction process. In response to a submaximal concentration of the steroid hormone progesterone, a given oocyte may either mature or not mature, but it can exist in intermediate states only transiently. Moreover, once an oocyte has matured, it will remain arrested in the mature state even after the progesterone is removed. It has been hypothesized that the all-or-none character of oocyte maturation, and some aspects of the irreversibility of maturation, arise out of the bistability of the signal transduction system that triggers maturation. The bistability, in turn, is hypothesized to arise from the way the signal transducers are organized into a signaling circuit that includes positive feedback (which makes it so that the system cannot rest in intermediate states) and ultrasensitivity (which filters small stimuli out of the feedback loop, allowing the system to have a stable off-state). Here we review two simple graphical methods that are commonly used to analyze bistable systems, discuss the experimental evidence for bistability in oocyte maturation, and suggest that bistability may be a common means of producing all-or-none responses and a type of biochemical memory.

  14. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide.

    PubMed

    Hutchins, David A; Walworth, Nathan G; Webb, Eric A; Saito, Mak A; Moran, Dawn; McIlvin, Matthew R; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  15. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  16. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    PubMed Central

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-01-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191

  17. The evolution of plant reproductive systems: how often are transitions irreversible?

    PubMed Central

    Barrett, Spencer C. H.

    2013-01-01

    Flowering plants are characterized by striking variation in reproductive systems, and the evolutionary lability of their sexual traits is often considered a major driver of lineage diversification. But, evolutionary transitions in reproductive form and function are never entirely unconstrained and many changes exhibit strong directionality. Here, I consider why this occurs by examining transitions in pollination, mating and sexual systems, some of which have been considered irreversible. Among pollination systems, shifts from bee to hummingbird pollination are rarely reversible, whereas transitions from animal to wind pollination are occasionally reversed. Specialized pollination systems can become destabilized through a loss of pollinator service resulting in a return to generalized pollination, or more commonly a reliance on self-pollination. Homomorphic and heteromorphic self-incompatibility systems have multiple origins but breakdown to self-compatibility occurs much more frequently with little evidence for subsequent gains, at least over short time-spans. Similarly, numerous examples of the shift from outcrossing to predominant self-fertilization are known, but cases of reversal are very limited supporting the view that autogamy usually represents an evolutionary dead-end. The evolution of dioecy from hermaphroditism has also been considered irreversible, although recent evidence indicates that the occurrence of sex inconstancy and hybridization can lead to the origin of derived sexual systems from dioecy. The directionality of many transitions clearly refutes the notion of unconstrained reproductive flexibility, but novel adaptive solutions generally do not retrace earlier patterns of trait evolution. PMID:23825207

  18. Thermal and pH changes, and dimensional stability in irreversible hydrocolloid impression material during setting.

    PubMed

    Bayindir, Funda; Yanikoğlu, Nuran; Duymuş, Zeynep

    2002-06-01

    Present study the relation between pH, thermal changes and dimensional stability during setting of irreversible hydrocolloid impression materials was investigated. Ten specimens of each product were prepared for different measurements: Thermal, pH changes and dimensional stability (mass and linear). Thermal and pH readings for 20 min and dimensional measurements for a 2 hr period were taken after mixing. It was observed that pH and thermal values changed in relation to different materials, while they did not change with the time according to variance analysis results. On the other hand, dimensional stability showed significant differences with time in all tested impression materials. A continuous pH change was observed with the time of gelation in all irreversible hydrocolloid impression materials tested. Dimensional stability also showed significant differences with time in all impression material and as a result hydrocolloids with a high pH showed better dimensional stability than those with a low pH.

  19. Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue.

    PubMed

    Hjouj, Mohammad; Rubinsky, Boris

    2010-07-01

    We introduce and characterize the use of MRI for studying nonthermal irreversible electroporation (NTIRE) in a vegetative tissue model. NTIRE is a new minimally invasive surgical technique for tissue ablation in which microsecond, high electric-field pulses form nanoscale defects in the cell membrane that lead to cell death. Clinical NTIRE sequences were applied to a potato tuber tissue model. The potato is used for NTIRE studies because cell damage is readily visible with optical means through a natural oxidation process of released intracellular enzymes (polyphenol oxidase) and the formation of brown-black melanins. MRI sequences of the treated area were taken at various times before and after NTIRE and compared with photographic images. A comparison was made between T1W, T2W, FLAIR and STIR MRIs of NTIRE and photographic images. Some MRI sequences show changes in areas treated by irreversible electroporation. T1W and FLAIR produce brighter images of the treated areas. In contrast, the signal was lost from the treated area when a suppression technique, STIR, was used. There was similarity between optical photographic images of the treated tissue and MRIs of the same areas. This is the first study to characterize MRI of NTIRE in vegetative tissue. We find that NTIRE produces changes in vegetative tissue that can be imaged by certain MRI sequences. This could make MRI an effective tool to study the fundamentals of NTIRE in nonanimal tissue.

  20. Extended random sequential adsorption model of irreversible deposition processes: From simulations to experiments

    PubMed Central

    Lavalle, P.; Schaaf, P.; Ostafin, M.; Voegel, J.-C.; Senger, B.

    1999-01-01

    An experimental study of the irreversible deposition of colloidal particles of various radii R on a solid surface is presented over a wide range of the Péclet number, Pe, or reduced radius R* (Pe = R*4). The experimental data are analyzed by means of a new generalized random sequential adsorption model that takes explicitly the diffusion of the particles during the deposition into account. It allows description of the continuous transition from a random sequential adsorption-like to a ballistic-like deposition behavior. It depends on three parameters: ds, related to the diffusion of the particles before adhesion; ns, related to the number of allowed adhesion trials of a particle; and Re, representing the effective particle radius. The model allows accounting for all of the experimental observations relative to the radial distribution functions and the number density fluctuations over the whole coverage range and all investigated values of R*. In addition, it is found that ds/R is proportional to R*−2 as expected for a diffusional process. Moreover, the parameters ds and ns appear to be connected through the empirical relation (ds/R)ns2/3 = C, where C is found to be of the order of 50. This unique statistical model allows an accurate description of the irreversible deposition process, whatever the influence of gravity with respect to diffusion. PMID:10500136

  1. Irreversible inhibition of epidermal growth factor receptor activity by 3-aminopropanamides.

    PubMed

    Carmi, Caterina; Galvani, Elena; Vacondio, Federica; Rivara, Silvia; Lodola, Alessio; Russo, Simonetta; Aiello, Stefania; Bordi, Fabrizio; Costantino, Gabriele; Cavazzoni, Andrea; Alfieri, Roberta R; Ardizzoni, Andrea; Petronini, Pier Giorgio; Mor, Marco

    2012-03-08

    Irreversible epidermal growth factor receptor (EGFR) inhibitors contain a reactive warhead which covalently interacts with a conserved cysteine residue in the kinase domain. The acrylamide fragment, a commonly employed warhead, effectively alkylates Cys797 of EGFR, but its reactivity can cause rapid metabolic deactivation or nonspecific reactions with off-targets. We describe here a new series of irreversible inhibitors containing a 3-aminopropanamide linked in position 6 to 4-anilinoquinazoline or 4-anilinoquinoline-3-carbonitrile driving portions. Some of these compounds proved to be as efficient as their acrylamide analogues in inhibiting EGFR-TK (TK = tyrosine kinase) autophosphorylation in A549 lung cancer cells. Moreover, several 3-aminopropanamides suppressed proliferation of gefitinib-resistant H1975 cells, harboring the T790M mutation in EGFR, at significantly lower concentrations than did gefitinib. A prototypical compound, N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(dimethylamino)propanamide (5), did not show covalent binding to cell-free EGFR-TK in a fluorescence assay, while it underwent selective activation in the intracellular environment, releasing an acrylamide derivative which can react with thiol groups.

  2. Novel irreversible epidermal growth factor receptor inhibitors by chemical modulation of the cysteine-trap portion.

    PubMed

    Carmi, Caterina; Cavazzoni, Andrea; Vezzosi, Stefano; Bordi, Fabrizio; Vacondio, Federica; Silva, Claudia; Rivara, Silvia; Lodola, Alessio; Alfieri, Roberta R; La Monica, Silvia; Galetti, Maricla; Ardizzoni, Andrea; Petronini, Pier Giorgio; Mor, Marco

    2010-03-11

    Irreversible EGFR inhibitors can circumvent acquired resistance to first-generation reversible, ATP-competitive inhibitors in the treatment of non-small-cell lung cancer. They contain both a driver group, which assures target recognition, and a warhead, generally an acrylamide or propargylamide fragment that binds covalently to Cys797 within the kinase domain of EGFR. We performed a systematic exploration of the role for the warhead group, introducing different cysteine-trapping fragments at position 6 of a traditional 4-anilinoquinazoline scaffold. We found that different reactive groups, including epoxyamides (compounds 3-6) and phenoxyacetamides (compounds 7-9), were able to irreversibly inhibit EGFR. In particular, at significant lower concentrations than gefitinib (1), (2R,3R)-N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(piperidin-1-ylmethyl)oxirane-2-carboxamide (6) inhibited EGFR autophosphorylation and downstream signaling pathways, suppressed proliferation, and induced apoptosis in gefitinib-resistant NSCLC H1975 cells, harboring the T790M mutation in EGFR.

  3. Short Laser Pulse-Induced Irreversible Photothermal Effects in Red Blood Cells

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Oginsky, Alexander O.; Olson, John S.; Lapotko, Dmitri O.

    2013-01-01

    Background and Objectives Photothermal (PT) responses of individual red blood cells (RBC) to short laser pulses may depend upon PT interactions at microscale. Study Design/Materials and Methods A sequence of identical short laser pulses (0.5 and 10 nanoseconds, 532 nm) was applied to individual RBCs, and their PT properties were analyzed at microscale in real time after each single pulse. Results PT interactions in RBC were found to be localized to sub-micrometer zones associated with Hb that may be responsible for overheating and evaporation at higher optical energies. At sub-ablative energies, a single short laser pulse induced irreversible changes in the optical properties of RBC that stimulated the transition from a heating-cooling response to ablative evaporation in individual erythrocytes during their exposure to subsequent, but identical pulses. Conclusion The PT response of RBCs to short laser pulses of specific energy includes localized irreversible modifications of cell structure, resulting in three different effects: thermal non-ablative response, ablative evaporation, and residual thermal response. PMID:21290393

  4. Analysis of a compartmental model of amyloid beta production, irreversible loss and exchange in humans.

    PubMed

    Elbert, Donald L; Patterson, Bruce W; Bateman, Randall J

    2015-03-01

    Amyloid beta (Aβ) peptides, and in particular Aβ42, are found in senile plaques associated with Alzheimer's disease. A compartmental model of Aβ production, exchange and irreversible loss was recently developed to explain the kinetics of isotope-labeling of Aβ peptides collected in cerebrospinal fluid (CSF) following infusion of stable isotope-labeled leucine in humans. The compartmental model allowed calculation of the rates of production, irreversible loss (or turnover) and short-term exchange of Aβ peptides. Exchange of Aβ42 was particularly pronounced in amyloid plaque-bearing participants. In the current work, we describe in much greater detail the characteristics of the compartmental model to two distinct audiences: physician-scientists and biokineticists. For physician-scientists, we describe through examples the types of questions the model can and cannot answer, as well as correct some misunderstandings of previous kinetic analyses applied to this type of isotope labeling data. For biokineticists, we perform a system identifiability analysis and a sensitivity analysis of the kinetic model to explore the global and local properties of the model. Combined, these analyses motivate simplifications from a more comprehensive physiological model to the final model that was previously presented. The analyses clearly demonstrate that the current dataset and compartmental model allow determination with confidence a single 'turnover' parameter, a single 'exchange' parameter and a single 'delay' parameter. When combined with CSF concentration data for the Aβ peptides, production rates may also be obtained.

  5. Smoothed quantum-classical states in time-irreversible hybrid dynamics

    NASA Astrophysics Data System (ADS)

    Budini, Adrián A.

    2017-09-01

    We consider a quantum system continuously monitored in time which in turn is coupled to an arbitrary dissipative classical system (diagonal reduced density matrix). The quantum and classical dynamics can modify each other, being described by an arbitrary time-irreversible hybrid Lindblad equation. Given a measurement trajectory, a conditional bipartite stochastic state can be inferred by taking into account all previous recording information (filtering). Here, we demonstrate that the joint quantum-classical state can also be inferred by taking into account both past and future measurement results (smoothing). The smoothed hybrid state is estimated without involving information from unobserved measurement channels. Its average over recording realizations recovers the joint time-irreversible behavior. As an application we consider a fluorescent system monitored by an inefficient photon detector. This feature is taken into account through a fictitious classical two-level system. The average purity of the smoothed quantum state increases over that of the (mixed) state obtained from the standard quantum jump approach.

  6. New Method for Evaluating Irreversible Adsorption and Stationary Phase Bleed in Gas Chromatographic Capillary Columns

    SciTech Connect

    Wright, Bob W.; Wright, Cherylyn W.

    2012-10-26

    A novel method for the evaluation of gas chromatographic (GC) column inertness has been developed using a tandem GC approach. Typically column inertness is measured by analyte peak shape evaluation. In general, silica, glass, and metal surfaces are chemically reactive and can cause analyte adsorption, which typically is observed as chromatographic peak tailing. Adsorption processes produce broad, short chromatographic peaks that confound peak area determinations because a significant portion can reside in the noise. In addition, chromatographic surfaces and stationary phases can irreversibly adsorb certain analytes without obvious degradation of peak shape. The inertness measurements described in this work specifically determine the degree of irreversible adsorption behavior of specific target compounds at levels ranging from approximately 50 picograms to 1 nanogram on selected gas chromatographic columns. Chromatographic columns with 5% phenylmethylsiloxane, polyethylene glycol (wax), trifluoropropylsiloxane, and 78% cyanopropylsiloxane stationary phases were evaluated with a variety of phosphorus- and sulfur- containing compounds selected as test compounds due to their ease of adsorption and importance in trace analytical detection. In addition, the method was shown effective for characterizing column bleed.

  7. Experimental investigation of irreversibility of a proton exchange membrane fuel cell at different channel geometry

    NASA Astrophysics Data System (ADS)

    Khazaee, I.; Ghazikhani, M.

    2012-12-01

    The geometry of the channels of a fuel cell is very important for performance and efficiency of it. For this reason, a thermodynamic analysis is performed for a PEM fuel cell at different channel geometry that three different fuel cells with rectangular, elliptical and triangular serpentine channels have constructed. The active area of each cell is 25 cm2 that its weight is 1300 g. The material of the gas diffusion layer is carbon clothes, the membrane is Nafion 112 and the catalyst layer is a plane with 0.004 g/cm2 Platinum. Also a test bench designed and constructed for testing the cell and a series of experiments are carried out to investigate the influence of the geometry of the cell on irreversibility under the normal conditions. The results show that the performance of the cell at T_{{{{O}}2 }} = 55 °C, T_{{{{H}}2 }} = 55 °C, T_{{cell}} = 60 °C, oxygen flow rate = 0.5 L/min, hydrogen flow rate = 0.3 L/min and P = 2.905 bar is higher about 12 % and 18 % when the geometry of the channels is rectangular in comparison of elliptical and triangular channels and the irreversibility is lower about 17 % and 33 % when the geometry of the channels is rectangular in comparison of elliptical and triangular channels.

  8. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    SciTech Connect

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang -Yong; Blom, Douglas A.; Evans, William J.; Kao, Chi -Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.

  9. Lung function, haemoglobin and irreversibly sickled cells in sickle cell patients.

    PubMed

    Jaja, S I; Opesanwo, O; Mojiminiyi, F B; Kehinde, M O

    2000-01-01

    This study seeks to show whether there is a positive relationship between HbF, irreversibly sickled cells and several lung function parameters. Percentage haemoglobin F (%HbF), percent irreversibly sickled cells (%ISC), blood pressure (BP, mm Hg), heart rate (HR, b/min), forced vital capacity (FVC,I), timed vital capacity (FEV1, I) FEV1% and peak expiratory flow rate (PEFR, I/min) were measured in 10 sickle cell (in the steady state) and 15 non-sickle cell subjects matched by age and sex. Results showed that although the ages in both groups of subjects were similar, sickle cell anaemia (SCA) subjects had smaller stature. Diastolic BP was significantly lower while pulse pressure, %Hbf and %ISC were significantly higher in SCA subjects (P < 0.001 in each case). Predicted FVC, FEV1, and PEFR were significantly higher (P < 0.01, P < 0.01, P < 0.001 in each case) than observed values obtained from SCA subjects. Similarly, measured FVC, FEV1, and PEFR in SCA subjects were significantly lower (P < 0.001 respectively) than values obtained from non-sickle cell subjects. In SCA subjects, %HbF or %ISC correlated negatively with each of the ventilatory parameters and with each other. Similar results (except for PEFR) were obtained in the non-sickle cell subjects. The results suggest that %HbF and %ISC correlate negatively with lung function parameters in sickle cell sufferers in the steady state.

  10. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-02-15

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed.

  11. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed Central

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-01-01

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed. PMID:3297044

  12. Thermal mechanisms responsible for the irreversible degradation of superconductivity in commercial superconductors

    NASA Astrophysics Data System (ADS)

    Romanovskii, V. R.

    2017-08-01

    Conditions for the irreversible propagation of thermal instabilities in commercial superconductors subjected to intense and soft cooling have been formulated. An analysis has been conducted using two types of the superconductor's I-V characteristics, i.e., an ideal I-V characteristic, which assumes a step superconducting-to-normal transition, and a continuous I-V characteristic, which is described by a power law. The propagation rate of thermal instabilities along the superconducting composite has been determined. Calculations have been made for both subcritical and supercritical values of the current. It has been shown that they propagate along a commercial superconductor in the form of a switching wave. In rapidly cooled commercial superconductors, the steady-state rate of thermal instability propagation in the longitudinal direction can only be positive because there is no region of steady stabilization. It has been proved that, in the case of thermal instability irreversible propagation, the rise in the commercial superconductor temperature is similar to diffusion processes that occur in explosive chain reactions.

  13. The evolution of plant reproductive systems: how often are transitions irreversible?

    PubMed

    Barrett, Spencer C H

    2013-08-22

    Flowering plants are characterized by striking variation in reproductive systems, and the evolutionary lability of their sexual traits is often considered a major driver of lineage diversification. But, evolutionary transitions in reproductive form and function are never entirely unconstrained and many changes exhibit strong directionality. Here, I consider why this occurs by examining transitions in pollination, mating and sexual systems, some of which have been considered irreversible. Among pollination systems, shifts from bee to hummingbird pollination are rarely reversible, whereas transitions from animal to wind pollination are occasionally reversed. Specialized pollination systems can become destabilized through a loss of pollinator service resulting in a return to generalized pollination, or more commonly a reliance on self-pollination. Homomorphic and heteromorphic self-incompatibility systems have multiple origins but breakdown to self-compatibility occurs much more frequently with little evidence for subsequent gains, at least over short time-spans. Similarly, numerous examples of the shift from outcrossing to predominant self-fertilization are known, but cases of reversal are very limited supporting the view that autogamy usually represents an evolutionary dead-end. The evolution of dioecy from hermaphroditism has also been considered irreversible, although recent evidence indicates that the occurrence of sex inconstancy and hybridization can lead to the origin of derived sexual systems from dioecy. The directionality of many transitions clearly refutes the notion of unconstrained reproductive flexibility, but novel adaptive solutions generally do not retrace earlier patterns of trait evolution.

  14. Stationary open systems: A brief review on contemporary theories on irreversibility

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2013-03-01

    Open systems are very important in science and engineering for their applications and the analysis of the real word. At their steady state, two apparently opposed principles for their rate of entropy production have been proposed: the minimum entropy production rate and the maximum entropy production, useful in the analysis of dissipation and irreversibility of different processes in physics, chemistry, biology and engineering. Both principles involve an extremum of the rate of the entropy production at the steady state under non-equilibrium conditions. On the other hand, in engineering thermodynamics, dissipation and irreversibility are analyzed using the entropy generation, for which there exist two principle of extrema too, the minimum and the maximum principle. Finally, oppositions to the extrema principle have been developed too. In this paper, all these extrema principles will be analyzed in order to point out the relations among them and a synthesis useful in engineering applications, in physical and chemical process analysis and in biology and biotechnology will be proposed.

  15. An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore.

    PubMed

    Liu, Jiaquan; Hanne, Jeungphill; Britton, Brooke M; Shoffner, Matthew; Albers, Aaron E; Bennett, Jared; Zatezalo, Rachel; Barfield, Robyn; Rabuka, David; Lee, Jong-Bong; Fishel, Richard

    2015-11-19

    Fluorophore labeling of proteins while preserving native functions is essential for bulk Förster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E.coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins.

  16. Irreversible properties of YBCO thick films deposited by liquid phase epitaxy on single crystalline substrates

    NASA Astrophysics Data System (ADS)

    Vostner, A.; Tönies, S.; Weber, H. W.; Cheng, Y. S.; Kurumovic, A.; Evetts, J. E.; Mennema, S. H.; Zandbergen, H. W.

    2003-10-01

    We report on the field and temperature dependence of the critical transport current density Jc, the angular dependence of the transport current at various external magnetic fields and the irreversibility fields in YBa2Cu3O7-delta (Y-123) thick films prepared by liquid phase epitaxy (LPE). A comparison of the irreversible properties between specimens produced with and without silver additions to the melt is also presented. Transmission electron microscopy (TEM) was employed to obtain information on the correlation between the transport properties and the microstructure. The samples were deposited either directly on NdGaO3 (NGO) or on seeded (100) MgO substrates, where a 200 nm thin YBCO film deposited by pulsed laser deposition (PLD) acts as seed layer for the LPE process. The final thickness of the Y-123 layer is of the order of 1 µm for the NGO and between 2 and 10 µm for the MgO samples. The critical current densities reach 3 × 109 A m-2 at zero field and 77 K in the best case.

  17. Irreversible Electroporation of Renal Cell Carcinoma: A First-in-Man Phase I Clinical Study

    SciTech Connect

    Pech, Maciej; Janitzky, Andreas; Wendler, Johann Jacob; Strang, Christof; Blaschke, Simon; Dudeck, Oliver; Ricke, Jens; Liehr, Uwe-Bernd

    2011-02-15

    Purpose: Irreversible electroporation (IRE) is a newly developed nonthermal tissue-ablation technique in which high-voltage electrical pulses of microsecond duration are applied to induce irreversible permeabilisation of the cell membrane, presumably through nanoscale defects in the lipid bilayer, leading to apoptosis. The purpose of this study was to assess the feasibility and safety of ablating renal cell carcinoma (RCC) tissue by IRE. Methods: Six patients scheduled for curative resection of RCC were included. IRE was performed during anaesthesia immediately before the resection with electrographic synchronisation. Central haemodynamics were recorded before and 5 min after electroporation. Five-channel electrocardiography (ECG) was used for detailed analysis of ST waveforms. Blood sampling and 12-lead ECG were performed before, during, and at scheduled intervals after the intervention. Results: Analysis of ST waveforms and axis deviations showed no relevant changes during the entire study period. No changes in central haemodynamics were seen 5 min after IRE. Similarly, haematological, serum biochemical, and ECG variables showed no relevant differences during the investigation period. No changes in cardiac function after IRE therapy were found. One case of supraventricular extrasystole was encountered. Initial histopathologic examination showed no immediate adverse effects of IRE (observation of delayed effects will require a different study design). Conclusion: IRE seems to offer a feasible and safe technique by which to treat patients with kidney tumours and could offer some potential advantages over current thermal ablative techniques.

  18. Is the Supraspinatus Muscle Atrophy Truly Irreversible after Surgical Repair of Rotator Cuff Tears?

    PubMed Central

    Chung, Seok Won; Kim, Sae Hoon; Tae, Suk-Kee; Yoon, Jong Pil; Choi, Jung-Ah

    2013-01-01

    Background Atrophy of rotator cuff muscles has been considered an irreversible phenomenon. The purpose of this study is to evaluate whether atrophy is truly irreversible after rotator cuff repair. Methods We measured supraspinatus muscle atrophy of 191 patients with full-thickness rotator cuff tears on preoperative magnetic resonance imaging and postoperative multidetector computed tomography images, taken at least 1 year after operation. The occupation ratio was calculated using Photoshop CS3 software. We compared the change between pre- and postoperative occupation ratios after modifying the preoperative occupation ratio. In addition, possible relationship between various clinical factors and the change of atrophy, and between the change of atrophy and cuff integrity after surgical repair were evaluated. Results The mean occupation ratio was significantly increased postoperatively from 0.44 ± 0.17 to 0.52 ± 0.17 (p < 0.001). Among 191 patients, 81 (42.4%) showed improvement of atrophy (more than a 10% increase in occupation ratio) and 33 (17.3%) worsening (more than a 10% decrease). Various clinical factors such as age tear size, or initial degree of atrophy did not affect the change of atrophy. However, the change of atrophy was related to repair integrity: cuff healing failure rate of 48.5% (16 of 33) in worsened atrophy; and 22.2% (18 of 81) in improved atrophy (p = 0.007). Conclusions The supraspinatus muscle atrophy as measured by occupation ratio could be improved postoperatively in case of successful cuff repair. PMID:23467404

  19. Kinetic study on the irreversible thermal denaturation of Schistosoma japonicum glutathione S-transferase.

    PubMed

    Quesada-Soriano, Indalecio; García-Maroto, Federico; García-Fuentes, Luis

    2006-05-01

    The thermal unfolding pathway of the Schistosoma japonicum glutathione S-transferase (Sj26GST) was previously interpreted by applying equilibrium thermodynamics and a reversible two-state model (Kaplan et al., (1997) Protein Science, 6, 399-406), though weak support for this interpretation was provided. In our study, thermal denaturation of Sj26GST has been re-examined by differential scanning calorimetry in the pH range of 6.5-8.5 and in the presence of the substrate and S-hexylglutathione. Calorimetric traces were found to be irreversible and highly scan-rate dependent. Thermogram shapes, as well as their scan-rate dependence, can be globally explained by assuming that thermal denaturation takes place according to one irreversible step described by a first-order kinetic constant that changes with temperature, as given by an Arrhenius equation. On the basis of this model, values for the rate constant as a function of temperature and the activation energy have been determined. Data also indicate that binding of GSH or S-hexylglutathione just exert a very little stabilising effect on the dimeric structure of the molecule.

  20. Theoretical characterisation of irreversible and reversible hydrogen storage reactions on Ni-doped C60 fullerene

    NASA Astrophysics Data System (ADS)

    Shalabi, A. S.; El Mahdy, A. M.; Soliman, K. A.; Taha, H. O.

    2014-12-01

    An attempt has been made to characterise the irreversible and reversible hydrogen storage reactions on Ni-doped C60 fullerene by using the state of the art density functional theory calculations. The single Ni atom prefers to bind at the bridge site between two hexagonal rings of C60 fullerene, and can bind up to four hydrogen molecules with average adsorption energies of -0.85, -0.83, -0.58, and -0.31 eV per hydrogen molecule. No evidence for metal clustering in the ideal circumstances and the hydrogen storage capacity is expected to be as large as 8.9 wt%. While the desorption activation barriers of the complexes nH2NiC60 (n = 1, 2) are outside the desirable energy window recommended by the department of energy for practical applications (-0.2 to -0.6 eV), the desorption activation barriers of the complexes nH2NiC60 (n = 3, 4) are inside this window. The irreversible 2H2 + NiC60 and reversible 3H2 + NiC60 interactions are characterised in terms of several theoretical parameters such as: (1) densities of states and projected densities of states, (2) pairwise and non-pairwise additivity, (3) infrared, Raman, and proton magnetic resonance spectra, (4) electrophilicity, and (5) statistical thermodynamic stability.

  1. A self-disinfecting irreversible hydrocolloid impression material mixed with povidone iodine powder

    PubMed Central

    Ismail, Hussien Abdalfatah; Asfour, Hani; Shikho, Souaad Abdulelah

    2016-01-01

    Objectives: The aim was to evaluate the effect of adding povidone (PVP) iodine powder with different concentrations to irreversible hydrocolloid on both microbiological and dimensional stability. Materials and Methods: Regular set of (alginate) irreversible hydrocolloid was selected as control group. PVP-iodine powder was mixed with the alginate powder at concentrations of 1, 5, 10, 15, and 20% by weight (test groups). All specimens were tested for their antimicrobial effect against Streptococcus mutans and Staphylococcus aureus as well as dimensional stability. Results: The results of test groups showed that concentrations 1, 5, and 10, weight % had little effect against S. mutans and S. aureus microorganisms. While concentrations 15 and 20 weight % had demonstrated greater effect on microbial growth. The mean of dimensional stability in mm of modified alginate with PVP-iodine at 15 and 20 weight % was –0.119 ± 0.255 and –0.035 ± 0.074, respectively. While the mean dimensional stability in mm of unmodified alginate was –0.112 ± 0.176. The results of dimensional stability showed that 15 and 20 concentrations of test groups adversely affect the dimensional stability. The adverse effect was noticed to be significant in concentration 20%, where as it was nonsignificant in 15% concentration. Conclusion: Modified alginate impression material with 15 weight % PVP-iodine powered give the material, a self-disinfected properties with less deteriorating effect on dimensional stability. PMID:28042266

  2. Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors

    DOE PAGES

    Nikolo, Martin; Singleton, John; Zapf, Vivien S.; ...

    2016-07-20

    The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( Tc = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( Tc = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( Tc = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep ratemore » (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications.« less

  3. On the existence of physiological age based on functional hierarchy: a formal definition related to time irreversibility.

    PubMed

    Chauvet, Gilbert A

    2006-09-01

    The present approach of aging and time irreversibility is a consequence of the theory of functional organization that I have developed and presented over recent years (see e.g., Ref. 11). It is based on the effect of physically small and numerous perturbations known as fluctuations, of structural units on the dynamics of the biological system during its adult life. Being a highly regulated biological system, a simple realistic hypothesis, the time-optimum regulation between the levels of organization, leads to the existence of an internal age for the biological system, and time-irreversibility associated with aging. Thus, although specific genes are controlling aging, time-irreversibility of the system may be shown to be due to the degradation of physiological functions. In other words, I suggest that for a biological system, the nature of time is specific and is an expression of the highly regulated integration. An internal physiological age reflects the irreversible course of a living organism towards death because of the irreversible course of physiological functions towards dysfunction, due to the irreversible changes in the regulatory processes. Following the works of Prigogine and his colleagues in physics, and more generally in the field of non-integrable dynamical systems (theorem of Poincaré-Misra), I have stated this problem in terms of the relationship between the macroscopic irreversibility of the functional organization and the basic mechanisms of regulation at the lowest "microscopic" level, i.e., the molecular, lowest level of organization. The neuron-neuron elementary functional interaction is proposed as an illustration of the method to define aging in the nervous system.

  4. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer

    PubMed Central

    Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-01-01

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer. PMID:27487128

  5. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer.

    PubMed

    Liu, Bing; Huang, XinPing; Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-09-06

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer.

  6. Pilot Study to Assess Safety and Clinical Outcomes of Irreversible Electroporation for Partial Gland Ablation in Men with Prostate Cancer

    PubMed Central

    Murray, Katie S.; Ehdaie, Behfar; Musser, John; Mashni, Joseph; Srimathveeravalli, Govindarajan; Durack, Jeremy C.; Solomon, Stephen B.; Coleman, Jonathan A.

    2016-01-01

    Purpose Partial prostate gland ablation is a strategy to manage localized prostate cancer. Irreversible electroporation can ablate localized soft tissues. We sought to describe 30- and 90-day complications and intermediate-term functional outcomes in men undergoing prostate gland ablation using irreversible electroporation. Materials and Methods We reviewed the charts of 25 patients with prostate cancer who underwent prostate gland ablation using irreversible electroporation as a primary procedure and who were followed for at least 6 months. Results Median follow-up was 10.9 months. Grade 3 complications occurred in 2 patients including epididymitis (1) and urinary tract infection (1). Fourteen patients experienced grade ≤ 2 complications, mainly transient urinary symptoms, hematuria, and urinary tract infections. Of 25 patients, 4 (16%) had cancer in the zone of ablation on routine follow-up biopsy at 6 months. Of those with normal urinary function at baseline, 88% and 94% reported normal urinary function at 6 and 12 months after prostate gland ablation, respectively. By 12 months, only 1 patient with normal erectile function at baseline reported new difficulty with potency and only 2 patients (8%) required a pad for urinary incontinence. Conclusions Prostate gland ablation with irreversible electroporation is feasible and safe in selected men with localized prostate cancer. Intermediate-term urinary and erectile function outcomes appear reasonable. Irreversible electroporation is effective in ablation of tumor-bearing prostate tissue, as a majority of men had no evidence of residual cancer on biopsy 6 months after prostate gland ablation. PMID:27113966

  7. Irreversible photoinhibition of photosystem II is caused by exposure of Synechocystis cells to strong light for a prolonged period.

    PubMed

    Allakhverdiev, Suleyman I; Tsvetkova, Nelly; Mohanty, Prasanna; Szalontai, Balász; Moon, Byoung Yong; Debreczeny, Mónika; Murata, Norio

    2005-07-15

    Irreversible photoinhibition of photosystem II (PSII) occurred when Synechocystis sp. PCC 6803 cells were exposed to very strong light for a prolonged period. When wild-type cells were illuminated at 20 degrees C for 2 h with light at an intensity of 2,500 micromol photons m(-2) s(-1), the oxygen-evolving activity of PSII was almost entirely and irreversibly lost, whereas the photochemical reaction center in PSII was inactivated only reversibly. The extent of irreversible photoinhibition was enhanced at lower temperatures and by the genetically engineered rigidification of membrane lipids. Western and Northern blotting demonstrated that, after cells had undergone irreversible photoinhibition, the precursor to D1 protein in PSII was synthesized but not processed properly. These observations may suggest that exposure of Synechocystis cells to strong light results in the irreversible photoinhibition of the oxygen-evolving activity of PSII via impairment of the processing of pre-D1 and that this effect of strong light is enhanced by the rigidification of membrane lipids.

  8. Anesthetic efficacy of articaine for inferior alveolar nerve blocks in patients with symptomatic versus asymptomatic irreversible pulpitis.

    PubMed

    Argueta-Figueroa, Liliana; Arzate-Sosa, Gabriel; Mendieta-Zeron, Hugo

    2012-01-01

    This study sought to determine the anesthetic efficacy of 4% articaine with 1:100,000 epinephrine in patients with symptomatic and asymptomatic irreversible pulpitis in mandibular posterior teeth and if individual patient factors, pulpal disease characteristics, and previous medication are correlated to local anesthetic success. A second objective was to determine the specificity and sensibility of a cold test for prediction of anesthetic success prior to endodontic treatment. Seventy patients diagnosed with irreversible pulpitis in mandibular posterior teeth received 1.6 mL of 4% articaine with 1:100,000 epinephrine for an inferior alveolar nerve block (IANB) using a metal guide. The anesthetic solution was injected with a computer-preprogrammed delivery system for local anesthesia. Endodontic access was begun 15 minutes after solution deposition; later, patients rated their discomfort using the visual analog scale (VAS). The success rate for the IA NB using articaine was 64.2% in patients with symptomatic irreversible pulpitis and 86.9% in patients with asymptomatic irreversible pulpitis. Cold test prior to root canal treatment had a specificity and sensibility of 12.5% and 87.1%, respectively. The anesthetic efficacy of articaine in irreversible pulpitis is moderately acceptable, and anesthetic success increases when the patient has been premedicated with NSAIDs. The cold test appears to be a favorable indicator for predicting anesthetic success.

  9. Efficiency at maximum power output of linear irreversible Carnot-like heat engines

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Tu, Z. C.

    2012-01-01

    The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each “isothermal” process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form ηmP=ηC/(2-γηC), where ηC is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of ηmP is bounded between η-≡ηC/2 and η+≡ηC/(2-ηC). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys.JCPSA60021-960610.1063/1.455832 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.150603 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/81/20003 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of ηmP=ηC/(2-γηC) as well as the existence of two bounds, η-≡ηC/2 and η+≡ηC/(2-ηC).

  10. A statistical model for multidimensional irreversible electroporation cell death in tissue

    PubMed Central

    2010-01-01

    Background Irreversible electroporation (IRE) is a minimally invasive tissue ablation technique which utilizes electric pulses delivered by electrodes to a targeted area of tissue to produce high amplitude electric fields, thus inducing irreversible damage to the cell membrane lipid bilayer. An important application of this technique is for cancer tissue ablation. Mathematical modelling is considered important in IRE treatment planning. In the past, IRE mathematical modelling used a deterministic single value for the amplitude of the electric field required for causing cell death. However, tissue, particularly cancerous tissue, is comprised of a population of different cells of different sizes and orientations, which in conventional IRE are exposed to complex electric fields; therefore, using a deterministic single value is overly simplistic. Methods We introduce and describe a new methodology for evaluating IRE induced cell death in tissue. Our approach employs a statistical Peleg-Fermi model to correlate probability of cell death in heterogeneous tissue to the parameters of electroporation pulses such as the number of pulses, electric field amplitude and pulse length. For treatment planning, the Peleg-Fermi model is combined with a numerical solution of the multidimensional electric field equation cast in a dimensionless form. This is the first time in which this concept is used for evaluating IRE cell death in multidimensional situations. Results We illustrate the methodology using data reported in literature for prostate cancer cell death by IRE. We show how to fit this data to a Fermi function in order to calculate the critical statistic parameters. To illustrate the use of the methodology, we simulated 2-D irreversible electroporation protocols and produced 2-D maps of the statistical distribution of cell death in the treated region. These plots were compared to plots produced using a deterministic model of cell death by IRE and the differences were noted

  11. The SAT Protein of Porcine Parvovirus Accelerates Viral Spreading through Induction of Irreversible Endoplasmic Reticulum Stress.

    PubMed

    Mészáros, István; Tóth, Renáta; Olasz, Ferenc; Tijssen, Peter; Zádori, Zoltán

    2017-08-15

    The SAT protein (SATp) of porcine parvovirus (PPV) accumulates in the endoplasmic reticulum (ER), and SAT deletion induces the slow-spreading phenotype. The in vitro comparison of the wild-type Kresse strain and its SAT knockout (SAT(-)) mutant revealed that prolonged cell integrity and late viral release are responsible for the slower spreading of the SAT(-) virus. During PPV infection, regardless of the presence or absence of SATp, the expression of downstream ER stress response proteins (Xbp1 and CHOP) was induced. However, in the absence of SATp, significant differences in the quantity and the localization of CHOP were detected, suggesting a role of SATp in the induction of irreversible ER stress in infected cells. The involvement of the induction of irreversible ER stress in porcine testis (PT) cell necrosis and viral egress was confirmed by treatment of infected cells by ER stress-inducing chemicals (MG132, dithiothreitol, and thapsigargin), which accelerated the egress and spreading of both the wild-type and the SAT(-) viruses. UV stress induction had no beneficial effect on PPV infection, underscoring the specificity of ER stress pathways in the process. However, induction of CHOP and its nuclear translocation cannot alone be responsible for the biological effect of SAT, since nuclear CHOP could not complement the lack of SAT in a coexpression experiment.IMPORTANCE SATp is encoded by an alternative open reading frame of the PPV genome. Earlier we showed that SATp of the attenuated PPV NADL-2 strain accumulates in the ER and accelerates virus release and spreading. Our present work revealed that slow spreading is a general feature of SAT(-) PPVs and is the consequence of prolonged cell integrity. PPV infection induced ER stress in infected cells regardless of the presence of SATp, as demonstrated by the morphological changes of the ER and expression of the stress response proteins Xbp1 and CHOP. However, the presence of SATp made the ER stress more severe

  12. Irreversibility effects in piezoelectric wafer active sensors after exposure to high temperature

    NASA Astrophysics Data System (ADS)

    Faisal Haider, Mohammad; Giurgiutiu, Victor; Lin, Bin; Yu, Lingyu

    2017-09-01

    This paper presents an experimental and analytical study of irreversible change in piezoelectric wafer active sensor (PWAS) electromechanical (E/M) impedance and admittance signature under high temperature exposure. After elevated to high temperatures, change in the material properties of PWAS can be quantified through irreversible changes in its E/M impedance and admittance signature. For the experimental study, circular PWAS transducers were exposed to temperatures between 50 °C and 250 °C at 50 °C intervals. E/M impedance and admittance data were obtained before and after each heating cycle. Irreversible temperature sensitivity of PWAS resonance and anti-resonance frequency was estimated as 0.0246 kHz °C-1 and 0.0327 kHz °C-1 respectively. PWAS transducer material properties relevant to impedance or admittance signature such as dielectric constant, dielectric loss factor, mechanical loss factor, and in plane piezoelectric constant were determined experimentally at room temperature before and after the elevated temperature tests. The in-plane piezoelectric coefficient was measured by using optical-fiber strain transducer system. It was found that the dielectric constant and in-plane piezoelectric coefficient increased linearly with temperature. Dielectric loss also increases with temperature but remains within 0.2% of initial room temperature value. Change in dielectric properties and piezoelectric constant may be explained by depinning of domains or by domain wall motion. The piezoelectric material degradation was investigated microstructurally and crystallographically by using scanning electron microscope and x-ray diffraction method respectively. There were no noticeable changes in microstructure, crystal structure, unit cell dimension, or symmetry. The degraded PWAS material properties were determined by matching impedance and admittance spectrums from experimental results with a closed form circular PWAS analytical model. Analytical results showed that

  13. Numerical Study of the First Order Irreversible Phase Transition in the Ziff-Gulari Model

    NASA Astrophysics Data System (ADS)

    Albano, Ezequiel V.; Monetti, Roberto

    The Ziff-Gulari-Barshad model [ZGB; Phys. Rev. Lett. 56, 2553 (1986)] is a lattice gas adsorption-reaction model that qualitatively reproduces some relevant features of the oxidation of carbon monoxide on single crystal surfaces. We study the first order irreversible critical behavior of this model by means of two different types of simulation techniques, namely constant coverage simulations and epidemic analysis. Constant coverage simulations allow us to investigate in detail hysteretic and finite size effects within the coexistence region. The position of the coexistence point is accurately determined by introducing a small perturbation into the constant coverage method. Extensive epidemic simulations reveal the absence of power law behavior in the dynamic behavior at coexistence, in contrast to previous claims.

  14. Groundwater sapping as the cause of irreversible desertification of Hunshandake Sandy Lands, Inner Mongolia, northern China

    PubMed Central

    Yang, Xiaoping; Scuderi, Louis A.; Wang, Xulong; Scuderi, Louis J.; Zhang, Deguo; Li, Hongwei; Forman, Steven; Xu, Qinghai; Wang, Ruichang; Huang, Weiwen; Yang, Shixia

    2015-01-01

    In the middle-to-late Holocene, Earth’s monsoonal regions experienced catastrophic precipitation decreases that produced green to desert state shifts. Resulting hydrologic regime change negatively impacted water availability and Neolithic cultures. Whereas mid-Holocene drying is commonly attributed to slow insolation reduction and subsequent nonlinear vegetation–atmosphere feedbacks that produce threshold conditions, evidence of trigger events initiating state switching has remained elusive. Here we document a threshold event ca. 4,200 years ago in the Hunshandake Sandy Lands of Inner Mongolia, northern China, associated with groundwater capture by the Xilamulun River. This process initiated a sudden and irreversible region-wide hydrologic event that exacerbated the desertification of the Hunshandake, resulting in post-Humid Period mass migration of northern China’s Neolithic cultures. The Hunshandake remains arid and is unlikely, even with massive rehabilitation efforts, to revert back to green conditions. PMID:25561539

  15. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOEpatents

    Manthiram, Arumugam; Wu, Yan

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  16. REVERSIBLE AND IRREVERSIBLE PASSIVATION OF A LA-NI-AL ALLOY

    SciTech Connect

    Shanahan, K.; Klein, J.

    2009-06-25

    This paper seeks to explore some of the effects of passivating a LaNi{sub 4.25}Al{sub 0.75} sample by air oxidation under controlled conditions. Passivation of this metal hydride alloy seems to have two distinct regimes. The first occurs with air oxidation at 80 C and 20 C. It is characterized by complete reversibility upon hydrogen readsorption, although said readsorption is hindered substantially at room temperature, requiring the material to be heated to produce the reactivation. The second regime is illustrated by 130 C air oxidation and is characterized by irreversible loss of hydrogen absorption capacity. This passivation does not hinder hydrogen readsorption into the remaining hydride material.

  17. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; He, Jizhou

    2012-11-01

    We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures Th and Tc (

  18. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.

    PubMed

    Wang, Jianhui; He, Jizhou

    2012-11-01

    We investigate the efficiency at the maximum power output (EMP) of an irreversible Carnot engine performing finite-time cycles between two reservoirs at constant temperatures T(h) and T(c) (

  19. Effects of oxymorphazone in frogs: long lasting antinociception in vivo, and apparently irreversible binding in vitro

    SciTech Connect

    Benyhe, S.; Hoffman, G.; Varga, E.; Hosztafi, S.; Toth, G.; Borsodi, A.; Wollemann, M.

    1989-01-01

    Oxymorphazone was found to be a relatively weak antinociceptive drug in intact frog (Rana esculenta) when acetic acid was used as pain stimulus. Frogs remained analgesic for at least 48 hrs following oxymorphazone administration. The ligand increased the latency of wiping reflex in spinal frogs too. There effects were blocked by naloxone. In equilibrium binding studies (/sup 3/H)oxymorphazone had high affinity to the opioid receptors of frog brain and spinal cord as well. Kinetic experiments show that only 25% of the bound (/sup 3/H)oxymorphazone is readily dissociable. Preincubation of the membranes with labeled oxymorphazone results in a washing resistant inhibition of the opioid binding sites. At least 70% of the (/sup 3/H)oxymorphazone specific binding is apparently irreversible after reaction at 5 nM ligand concentration, and this can be enhanced by a higher concentration of tritiated ligand.

  20. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  1. Irreversible magnetoporation of micro-organisms in high pulsed magnetic fields.

    PubMed

    Novickij, Vitalij; Grainys, Audrius; Novickij, Jurij; Markovskaja, Svetlana

    2014-09-01

    Electroporation is an appealing way of stimulating living cells, which causes permanent or temporary nanoporosities in the structure of the biological objects. However, the technique has a disadvantage such as a requirement of contact between the electrodes and the cell medium. In this review, a methodology of contactless treatment of the biological objects using pulsed magnetic fields is proposed. The eukaryotic micro-organisms Achlya americana and Saprolegnia diclina have been used in the study and magnetic fields up to 7 T were applied, which caused effects similar to irreversible electroporation resulting in the death of the species. The proposed technique is applicable for different types of the biological cells or micro-organisms and possibly can be used in the area of cancer, antifungal treatment and other biotechnological fields.

  2. Arterial complication of irreversible electroporation procedure for locally advanced pancreatic cancer

    PubMed Central

    Ekici, Yahya; Tezcaner, Tugan; Aydın, Hüseyin Onur; Boyvat, Fatih; Moray, Gökhan

    2016-01-01

    Irreversible electroporation (IRE) is a non-thermal ablation technique used especially in locally advanced pancreatic carcinomas that are considered surgically unresectable. We present the first case of acute superior mesenteric artery (SMA) occlusion secondary to pancreatic IRE procedure that has not been reported before in the literature. A 66-year-old man underwent neoadjuvant chemoradiotherapy for locally advanced pancreatic ductal adenocarcinoma. IRE procedure was applied to the patient during laparotomy under general anesthesia. After finishing the procedure, an acute intestinal ischemia was detected. A conventional vascular angiography was performed and a metallic stent was successfully placed to the SMA and blood flow was maintained. It is important to be careful in such cases of tumor involvement of SMA when evaluating for IRE procedure of pancreatic tumor. PMID:27795815

  3. Transfer of quantum correlations from light to atoms in the case of irreversible evolution

    SciTech Connect

    Gorbachev, V. N.; Trubilko, A. I.

    2010-10-15

    We consider the irreversible dynamics of two two-level atoms that interact with a bipartite broad-band electromagnetic field in an entangled state that forms a heat bath with a quantum correlation. Using Ito's stochastic integration technique, we have derived a kinetic equation for atoms and found their steady state, which turns out to be inseparable and leads to a violation of Bell's inequalities. The application of the atomic state found as a quantum channel for teleportation is considered. We have calculated the channel quality or fidelity that determines the possibilities for using the channel, in particular, characterizes its security. The process of teleportation by means of a quantum channel formed by an entangled heat bath is considered. Comparison of two (atomic and light) channels has shown that they have different properties with regard to separability and identical properties with regard to nonlocality. This means that nonlocality can be completely transferred from light to atoms.

  4. Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in-situ dilatometry

    NASA Astrophysics Data System (ADS)

    Sauerteig, Daniel; Ivanov, Svetlozar; Reinshagen, Holger; Bund, Andreas

    2017-02-01

    The technique of electrochemical in-situ dilatometry is applied to study the intercalation induced macroscopic expansion of electrodes for lithium-ion batteries. A full cell setup is used to investigate the expansion under real conditions. This method enables in-situ measurement of expansion under defined pressure, using conventional electrodes, separators and electrolytes. To understand the influence of the microstructure, the swelling behavior of different LiNi1/3 Mn1/3 Co1/3 O2 (NMC) positive electrodes and graphite negative electrodes is measured and systematically analyzed. A theoretical approach for assessment of reversible electrode displacement in a full cell is developed, by using a low number of material specific input parameters. Electrochemical in-situ dilatometry is able to show differences in irreversible dilation depending on electrode design and therefore it is a powerful technique for stability and lifetime assessment.

  5. Scale invariance of continuum size distribution upon irreversible growth of surface islands

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sokolova, Zh. V.

    2015-06-01

    The continuum kinetic equation for irreversible heterogeneous growth of a surface island is ana-lyzed given a special form of the dependence of capture coefficient σ on size s and coverage of the surface Θ. It is shown that, if σ( s, Θ) = α(Θ)( a + s)β, the function α(Θ) is arbitrary, and 0 ≤ β ≤ 1, then the solutions of the continuum equation of the first order satisfy the hypothesis about the scale invariance of the size distribu-tion (scaling) in a single exceptional case—at ≤ = 1. The obtained results testify about the presence of a fun-damental relation of the scaling and linearity of the dependence σ( s). Problems about associations of distri-bution functions in continuum and discrete growth models and about application of the obtained solutions for modeling and interpretation of experimental data in different systems are discussed.

  6. Percutaneous Irreversible Electroporation of Locally Advanced Pancreatic Carcinoma Using the Dorsal Approach: A Case Report

    SciTech Connect

    Scheffer, Hester J. Melenhorst, Marleen C. A. M.; Vogel, Jantien A.; Tilborg, Aukje A. J. M. van; Nielsen, Karin Kazemier, Geert; Meijerink, Martijn R.

    2015-06-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is increasingly used to treat locally advanced pancreatic carcinoma (LAPC). We describe a 67-year-old male patient with a 5 cm stage III pancreatic tumor who was referred for IRE. Because the ventral approach for electrode placement was considered dangerous due to vicinity of the tumor to collateral vessels and duodenum, the dorsal approach was chosen. Under CT-guidance, six electrodes were advanced in the tumor, approaching paravertebrally alongside the aorta and inferior vena cava. Ablation was performed without complications. This case describes that when ventral electrode placement for pancreatic IRE is impaired, the dorsal approach could be considered alternatively.

  7. Graphical Analysis of PET Data Applied to Reversible and Irreversible Tracers

    SciTech Connect

    Logan, Jean

    1999-11-18

    Graphical analysis refers to the transformation of multiple time measurements of plasma and tissue uptake data into a linear plot, the slope of which is related to the number of available tracer binding sites. This type of analysis allows easy comparisons among experiments. No particular model structure is assumed, however it is assumed that the tracer is given by bolus injection and that both tissue uptake and the plasma concentration of unchanged tracer are monitored following tracer injection. The requirement of plasma measurements can be eliminated in some cases when a reference region is available. There are two categories of graphical methods which apply to two general types of ligands--those which bind reversibly during the scanning procedure and those which are irreversible or trapped during the time of the scanning procedure.

  8. Two-state irreversible thermal denaturation of Euphorbia characias latex amine oxidase.

    PubMed

    Amani, Mojtaba; Moosavi-Movahedi, Ali A; Floris, Giovanni; Mura, Anna; Kurganov, Boris I; Ahmad, Faizan; Saboury, Ali A

    2007-02-01

    Thermal denaturation of Euphorbia latex amine oxidase (ELAO) has been studied by enzymatic activity, circular dichroism and differential scanning calorimetry. Thermal denaturation of ELAO is shown to be an irreversible process. Checking the validity of two-state it really describes satisfactorily the thermal denaturation of ELAO. Based on this model we obtain the activation energy, parameter T(*) (the absolute temperature at which the rate constant of denaturation is equal to 1 min(-1)), and total enthalpy of ELAO denaturation. HPLC experiments show that the thermal denatured enzyme conserves its dimeric state. The N(2)-->kD(2) model for thermal denaturation of ELAO is proposed: where N(2) and D(2) are the native and denatured dimer, respectively.

  9. Yielding and Irreversible Deformation below the Microscale: Surface Effects and Non-Mean-Field Plastic Avalanches

    PubMed Central

    Moretti, Paolo; Cerruti, Benedetta; Miguel, M.-Carmen

    2011-01-01

    Nanoindentation techniques recently developed to measure the mechanical response of crystals under external loading conditions reveal new phenomena upon decreasing sample size below the microscale. At small length scales, material resistance to irreversible deformation depends on sample morphology. Here we study the mechanisms of yield and plastic flow in inherently small crystals under uniaxial compression. Discrete structural rearrangements emerge as a series of abrupt discontinuities in stress-strain curves. We obtain the theoretical dependence of the yield stress on system size and geometry and elucidate the statistical properties of plastic deformation at such scales. Our results show that the absence of dislocation storage leads to crucial effects on the statistics of plastic events, ultimately affecting the universal scaling behavior observed at larger scales. PMID:21666747

  10. Diabetes Irreversibly Depletes Bone Marrow–Derived Mesenchymal Progenitor Cell Subpopulations

    PubMed Central

    Januszyk, Michael; Sorkin, Michael; Glotzbach, Jason P.; Vial, Ivan N.; Maan, Zeshaan N.; Rennert, Robert C.; Duscher, Dominik; Thangarajah, Hariharan; Longaker, Michael T.; Butte, Atul J.

    2014-01-01

    Diabetic vascular pathology is largely attributable to impairments in tissue recovery from hypoxia. Circulating progenitor cells have been postulated to play a role in ischemic recovery, and deficiencies in these cells have been well described in diabetic patients. Here, we examine bone marrow–derived mesenchymal progenitor cells (BM-MPCs) that have previously been shown to be important for new blood vessel formation and demonstrate significant deficits in the context of diabetes. Further, we determine that this dysfunction is attributable to intrinsic defects in diabetic BM-MPCs that are not correctable by restoring glucose homeostasis. We identify two transcriptionally distinct subpopulations that are selectively depleted by both type 1 and type 2 diabetes, and these subpopulations have provasculogenic expression profiles, suggesting that they are vascular progenitor cells. These results suggest that the clinically observed deficits in progenitor cells may be attributable to selective and irreversible depletion of progenitor cell subsets in patients with diabetes. PMID:24740572

  11. Thermodynamics of Irreversible Processes Applied to Solute Transport in Non Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Mathieu-Balster, I.; Sicard, J.

    1999-09-01

    Modeling of solute transport in non-saturated and non-isothermal porous media is dealt with by thermodynamics of irreversible processes. This rigorous approach enables us to consider the different kinds of transfer and the coupling. Every physical phenomenon as water phase transition and solute adsorption by the solid matrix can be taken into account. The final model may be applied to several fields such as civil engineering, agronomy, pollution and the assessment of radioactive waste repositories. A numerical modeling taking into account the effect of temperature gradient on solute transport (“Soret effect”) is in the process of implementation in the French software “CESAR-LCPC” of the “Laboratoire Central des Ponts et Chaussées”.

  12. Impact of water quality on setting of irreversible hydrocolloid impression materials.

    PubMed

    Bradna, Pavel; Cerna, Darina

    2006-12-01

    Setting of irreversible hydrocolloid impression materials is based on the ionic reaction between carboxylic groups and calcium ions and may, therefore, be affected by ionic species present in the mixing water. The impact of this phenomenon on the clinical performance of these materials has not been well documented. The purpose of this study was to compare the setting behavior of irreversible hydrocolloid impression materials when mixed with tap and distilled water, and to determine the impact of typical cations present in tap water and their concentrations on the setting process. Six brands of irreversible hydrocolloid impression materials (Kromopan 100, Xantalgin Select FS, Alginoplast, Elastic Plus, Ypeen, and Ypeen Premium) were mixed with tap and distilled water (control) according to manufacturers' recommendations. Elastic Plus was also mixed with aqueous solutions containing various concentrations of NaCl, CaCl(2), and AlCl(3) to determine the role of typical cations on setting. Using a controlled shear stress oscillatory rheometer, time changes of storage (G') and loss (G'') moduli during setting were measured at 23 degrees C and used to determine the working and setting times and rigidity of set impression materials. The sample size (n=3) for each material/mixing system was increased to 8 to increase reliability of measurements in systems where the effect of mixing water was low or variance of results was high. The data were analyzed (alpha=.05) using a t test (tap water), a 1-way ANOVA, a Tukey post hoc test (shear stress), and a nested ANOVA and Fisher Least Significant Difference post hoc analysis (cation and cation concentration). Statistical analysis showed significant (P<.001) acceleration in the setting rate for Kromopan 100, the working time of which was shorter with tap water by 23.4 seconds and the setting time, by 32.8 seconds. Similar significant reductions (in seconds) in both working and setting times, respectively, were found with Xantalgin

  13. Reversible and irreversible effects of chemical fixation on the NMR properties of single cells.

    PubMed

    Purea, Armin; Webb, Andrew G

    2006-10-01

    The effects of chemical fixation are known to alter MR parameters, such as relaxation times and the apparent diffusion coefficient (ADC) of water. It is often assumed that such changes are reversible after samples have been reimmersed in a buffer solution for a sufficient period of time. In this study we characterize the changes associated with fixation of single Xenopus laevis oocytes and their subsequent reimmersion in buffer. Substantial reductions in both T(1) and T(2) values were measured for all compartments of the cell after fixation, with the cytoplasm showing larger changes than the nucleus. After reimmersion in buffer, there were small but statistically significant differences in MR parameters between fresh and reimmersed cells. Experiments with a gadolinium (Gd) contrast agent showed evidence of irreversible changes in the permeability of cellular membranes to small molecules.

  14. Experimental investigation of information processing under irreversible Brownian conditions: work/time analysis of paper chromatograms.

    PubMed

    Graham, Daniel J; Malarkey, Christopher; Sevchuk, William

    2008-08-28

    A wet laboratory study of chemical information processing in Brownian (random walk) environments is presented. Point samples of adsorbed dyes were subject to diffusion on paper chromatography sheets; the resulting images were recorded digitally using an office scanner. The experiments enabled the measurement of four types of information along with the attendant costs of work and time. The data are examined for their statistical distribution and scaling properties and Fourier spectral components. Whereas theory, calculations, and reversible pathways were central to the previous paper, the present study is devoted to experiments and irreversible transformations. Overall, the results establish several key points about information of four varieties purchased in real-time Brownian venues. The points concern the kinetics of information, memory effects, and the distributions of information changes with energy.

  15. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes.

    PubMed

    Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.

  16. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles.

    PubMed

    Mahmoudi, Morteza; Shokrgozar, Mohammad A; Sardari, Soroush; Moghadam, Mojgan K; Vali, Hojatollah; Laurent, Sophie; Stroeve, Pieter

    2011-03-01

    The understanding of the interactions between nanomaterials and proteins is of extreme importance in medicine. In a biological fluid, proteins can adsorb and associate with nanoparticles, which can have significant impact on the biological behavior of the proteins and the nanoparticles. We report here on the interactions of iron saturated human transferrin protein with both bare and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles (SPIONs). The exposure of human transferrin to SPIONs results in the release of iron, which changes the main function of the protein, which is the transport of iron among cells. After removal of the magnetic nanoparticles, the original protein conformation is not recovered, indicating irreversible changes in transferrin conformation: from a compact to an open structure.

  17. Antibiotics are not useful to reduce pain associated with irreversible pulpitis.

    PubMed

    Hoskin, Eileen; Veitz-Keenan, Analia

    2016-09-01

    Data sourcesCochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Clinical Trials.gov and the WHO International Clinical Trials Registry Platform. There were no language restrictions.Study selectionRandomised controlled trials which compared the relief of pain with systemic antibiotics and analgesics against placebo and analgesics in the preoperative phase of irreversible pulpitis. The primary interest was pain control with an antibiotic or without one in the presence of analgesics. The secondary outcomes were type, dose and frequency of medication for pain relief and any adverse effects related to hypersensitivity or other reactions to either the antibiotic or analgesics.Data extraction and synthesisTwo authors independently assessed the results of the searches. Data extraction and risk bias assessment were also carried out independently. A third reviewer settled any disagreement on inclusion. Since only one study was included a meta-analysis could not be performed.ResultsOnly one double blind randomised clinical trial involving 40 participants with a diagnosis of irreversible pulpitis in one of their teeth was included in this review. This was a low risk, well-constructed double blind study. Half of the participants were treated with penicillin 500 mg, the other with a placebo every six hours over a seven- day period. In addition, all the participants were instructed to initially take one tablet of ibuprofen every 4-6 hours as needed and to take acetaminophen with codeine (two tablets every 4-6 hours) only if the ibuprofen did not relieve the pain.There was no significant difference in the mean total number of ibuprofen tablets over the study period; 9.2(standard deviation (SD) 6.02) in the penicillin group versus, 9.6 (SD 6.34) in the placebo group; mean difference -0.40 (95% CI -4.23 to 3.43); P value = 0.84.The mean total number of Tylenol tablets, 6.9 (SD 6.87), used in the penicillin group versus 4

  18. Proposal and applications of a method for the study of irreversible phase transitions.

    PubMed

    Loscar, Ernesto S; Guisoni, Nara; Albano, Ezequiel V

    2009-11-01

    The gradient method for the study of irreversible phase transitions in far-from-equilibrium lattice systems is proposed and successfully applied to both the archetypical case of the Ziff-Gulari-Barshad model [R. M. Ziff, Phys. Rev. Lett. 56, 2553 (1986)] and a forest-fire cellular automaton. By setting a gradient of the control parameter along one axis of the lattice, one can simultaneously treat both the active and the inactive phases of the system. In this way different interfaces are defined whose study allows us to find the active-inactive phase transition (both of first and second order), as well as the description of the active phase as composed of two further phases: the percolating and the nonpercolating ones. The average location and the width of the interfaces obey standard scaling behavior that is essentially governed by the roughness exponent alpha=1/(1+nu) , where nu is the suitable correlation length exponent.

  19. Decreasing the initial irreversible capacity loss by addition of cyclic sulfate as electrolyte additives

    NASA Astrophysics Data System (ADS)

    Sano, Atsushi; Maruyama, Satoshi

    Initial irreversible capacity loss in graphite electrodes was suppressed by 1,3,2-dioxathiolane-2,2-dioxide and its derivatives (cyclic sulfates) in propylene carbonate (PC) containing electrolyte. Cyclic voltammetry (CV) showed that cyclic sulfates were decomposed at higher potentials than that for electrolyte solvents. In galvanostatic charge and discharge measurement, first cycle efficiency was increased from 58.2% to 90.5% by the addition of 1,3,2-dioxathiolane-2,2-dioxide. Passivation films formed by cyclic sulfates were observed by X-ray photoelectron spectroscopy (XPS), FT-IR, and pyrolysis/GC/MS (pyro/GC/MS). These results indicate that the surface was covered by a PEO like polymer with the inner layer comprised of Li 2S like compounds.

  20. Effect of irreversible electroporation on three-dimensional cell culture model.

    PubMed

    Kurata, Kosaku; Matsushita, Masahiro; Yoshii, Takashi; Fukunaga, Takanobu; Takamatsu, Hiroshi

    2012-01-01

    Irreversible electroporation (IRE) is a new treatment to necrotize abnormal cells by high electric pulses. Electric potential difference over 1 V across the plasma membrane permanently permeabilizes the cell with keeping the extracellular matrix intact if the thermal damage due to the Joule heating effect is avoided. This is the largest advantage of the IRE compared to the other conventional treatment. However, since the IRE has just started to be used in clinical tests, it is important to predict the necrotized region that depends on pulse parameters and electrode arrangement. We therefore examined the numerical solution to the Laplace equation for the static electric field to predict the IRE-induced cell necrosis. Three-dimensionally (3-D) cultured cells in a tissue phantom were experimentally subjected to the electric pulses through a pair of puncture electrodes. The necrotized area was determined as a function of the pulse repetition and compared with the area that was estimated by the numerical analysis.

  1. Development of peptidomimetics with a vinyl sulfone warhead as irreversible falcipain-2 inhibitors.

    PubMed

    Ettari, Roberta; Nizi, Emanuela; Di Francesco, Maria Emilia; Dude, Marie-Adrienne; Pradel, Gabriele; Vicík, Radim; Schirmeister, Tanja; Micale, Nicola; Grasso, Silvana; Zappalà, Maria

    2008-02-28

    This paper describes the synthesis of a new class of peptidomimetic cysteine protease inhibitors based on a 1,4-benzodiazepine scaffold and on an electrophilic vinyl sulfone moiety. The former was introduced internally to a peptide sequence that mimics the fragment D-Ser-Gly; the latter was built on the P1-P1' site and reacts as a classical "Michael acceptor", leading to an alkylated enzyme by irreversible addition of the thiol group of the active site cysteine. The introduction of the vinyl sulfone moiety has been accomplished by olefin cross-metathesis, a powerful tool for the formation of carbon-carbon double bonds. New compounds 2-3 have been proven to be potent and selective inhibitors of falcipain-2, a cysteine protease isolated from Plasmodium falciparum, displaying antiplasmodial activity.

  2. Irreversible transitions in the exchange-striction model of spin-glass state

    NASA Astrophysics Data System (ADS)

    Valkov, V. I.; Golovchan, A. V.

    2014-08-01

    Based on the assumption of a negative volume dependence of random exchange integrals, it is possible to switch to a compressible Sherrington-Kirkpatrick spin-glass model. Within the proposed model, temperature-pressure phase diagrams were calculated and pressure- and magnetic-field-induced first-order phase transitions from the initial paramagnetic and spin-glass states to the ferromagnetic state were predicted. It was shown that the application of pressure in the spin-glass state not only increases and shifts magnetic susceptibility, but also reduces the critical magnetic fields of irreversible induced phase transitions from the spin-glass to the ferromagnetic state. The obtained results are used to describe the spin-glass state in (Sm1-xGdx)0.55Sr0.45MnO3.

  3. Irreversible inactivation of interleukin 2 in a pump-based delivery environment.

    PubMed Central

    Tzannis, S T; Hrushesky, W J; Wood, P A; Przybycien, T M

    1996-01-01

    The physical stability of pharmaceutical proteins in delivery environments is a critical determinant of biological potency and treatment efficacy, and yet it is often taken for granted. We studied both the bioactivity and physical stability of interleukin 2 upon delivery via continuous infusion. We found that the biological activity of the delivered protein was dramatically reduced by approximately 90% after a 24-hr infusion program. Only a portion of these losses could be attributed to direct protein deposition on the delivery surfaces. Analysis of delivered protein by size exclusion chromatography gave no indication of insulin-like, surface-induced aggregation phenomena. Examination of the secondary and tertiary structure of both adsorbed and delivered protein via Fourier-transform infrared spectroscopy, circular dichroism, and fluorescence spectroscopy indicated that transient surface association of interleukin 2 with the catheter tubing resulted in profound, irreversible structural changes that were responsible for the majority of the biological activity losses. PMID:8643597

  4. Irreversible altering of crystalline phase of phase-change Ge-Sb thin films

    SciTech Connect

    Krusin-Elbaum, L.; Shakhvorostov, D.; Cabral, C. Jr.; Raoux, S.; Jordan-Sweet, J. L.

    2010-03-22

    The stability of the crystalline phase of binary phase-change Ge{sub x}Sb{sub 1-x} films is investigated over a wide range of Ge content. From Raman spectroscopy we find the Ge-Sb crystalline structure irreversibly altered after exposure to a laser beam. We show that with increasing beam intensity/temperature Ge agglomerates and precipitates out in the amount growing with x. A simple empirical relation links Ge precipitation temperature T{sub Ge}{sup p} to the rate of change dT{sub cryst}/dx of crystallization, with the precipitation easiest on the mid-range x plateau, where T{sub cryst} is nearly constant. Our findings point to a preferable 15% < or approx. x < 50% window, that may achieve the desired cycling/archival properties of a phase-change cell.

  5. Irreversible embrittlement of Alloy 600 in hydrogenated steam at 400 C

    SciTech Connect

    Gendron, T.S.; Newman, R.C.

    1994-12-31

    Intergranular embrittlement of Alloy 600 has been studied by pre-exposing thin foils, 20--30 pm thick, in high-pressure steam/hydrogen at 400 C, then fracturing them at room temperature. Hydrogen egress was believed to be complete before fracture, so any embrittlement was due to irreversible damage at the grain boundaries. Embrittlement was observed in both as-received and cold-worked material, to a depth of a few microns. The kinetics of this embrittlement are insufficient to account for stress corrosion velocities measured in this environment, unless one postulates an improbably frequent crack advance. The most likely cause of embrittlement is selective intergranular oxidation of chromium. Various other internal embrittlement processes are discussed.

  6. Exploring the optimal performances of irreversible single resonance energy selective electron refrigerators

    NASA Astrophysics Data System (ADS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-05-01

    Applying finite-time thermodynamics (FTT) and electronic transport theory, the optimal performances of irreversible single resonance energy selective electron (ESE) refrigerator are analyzed. The effects of heat leakage between two electron reservoirs on optimal performances are discussed. The influences of system operating parameters on cooling load, coefficient of performance (COP), figure of merit and ecological function are demonstrated using numerical examples. Comparative performance analyses among different objective functions show that performance characteristics at maximum ecological function and maximum figure of merit are of great practical significance. Combining the two optimization objectives of maximum ecological function and maximum figure of merit together, more specific optimal ranges of cooling load and COP are obtained. The results can provide some advices to the design of practical electronic machine systems.

  7. Did nonlinear irreversible thermodynamics revolutionize the classical time conception of physics?

    NASA Astrophysics Data System (ADS)

    von Borzeszkowski, Horst-Heino; Wahsner, Renate

    1984-07-01

    From both physical and epistemological viewpoints, the following theses, which nowadays are often discussed in the literature, are examined: Nonlinear thermodynamics renders it possible to grasp evolutionary physical processes; for thermodynamics it introduces, instead of idealized reversible time, a directed time into physics; thus a science is established that is nearer to reality than classical physics. To analyze these theses, the relation of thermodynamics to dynamical physics is considered. In particular, it is demonstrated that, in classical as well as in modern thermodynamics, irreversibility is introduced via conditions which must be formulated in addition to the dynamical laws. To show the reason for this, the epistemological status of the physical time conception is analyzed, and its character as a physical measurement quantity is established.

  8. Asymptotic capture number and island size distributions for one-dimensional irreversible submonolayer growth

    NASA Astrophysics Data System (ADS)

    Amar, J. G.; Popescu, M. N.

    2004-01-01

    Using a set of approximate evolution equations [J. G. Amar et al., Phys. Rev. Lett. 86, 3092 (2001)] for the average gap size between islands, we calculate analytically the asymptotic scaled capture-number distribution (CND) for one-dimensional irreversible submonolayer growth of point islands. The predicted asymptotic CND is in reasonably good agreement with kinetic Monte Carlo (KMC) results, and leads to a nondivergent asymptotic scaled island size distribution (ISD). We then show that a slight modification of our analytic form leads to analytical expressions for the asymptotic CND and a resulting asymptotic ISD which are in excellent agreement with KMC simulations. We also show that in the asymptotic limit the scaled average gap distribution is identical to the scaled CND and thus demonstrate that in this limit, the self-averaging property of the capture zones holds exactly.

  9. Unexpected irreversible damage of an asymmetric bismuth silicate photorefractive spatial light modulator

    SciTech Connect

    Li Xiujian; Yang Jiankun; Yang Juncai; Chang Shengli; Liu Ju; Hu Wenhua

    2007-06-20

    Unexpected irreversible damage occurred repeatedly in the asymmetric bismuth silicate (BSO)photorefractive spatial light modulator under some operation modes, even though thepower of the write-light beam does not exceed the optical damage threshold. Accordingto the microscopic surface images and the Raman spectra of the BSO film, suddenrising of temperature in local areas caused by the drift of the photon-induced electronsis responsible for the damage; the damage exists not only on the surface but also insidethe BSO crystal. The damage is relative to the structure of the spatial lightmodulator, the operation mode, and the growth of the BSO crystal. The informationprovided by the damage is useful for optimizing the structure, the operation modes, and the performance of the photorefractive spatial light modulators.

  10. Molecular stress relief through a force-induced irreversible extension in polymer contour length.

    PubMed

    Wu, Dong; Lenhardt, Jeremy M; Black, Ashley L; Akhremitchev, Boris B; Craig, Stephen L

    2010-11-17

    Single-molecule force spectroscopy is used to observe the irreversible extension of a gem-dibromocyclopropane (gDBC)-functionalized polybutadiene under tension, a process akin to polymer necking at a single-molecule level. The extension of close to 28% in the contour length of the polymer backbone occurs at roughly 1.2 nN (tip velocity of 3 μm/s) and is attributed to the force-induced isomerization of the gDBCs into 2,3-dibromoalkenes. The rearrangement represents a possible new mechanism for localized stress relief in polymers and polymer networks under load, and the quantification of the force dependency provides a benchmark value for further studies of mechanically triggered chemistry in bulk polymers.

  11. Discovery of Tumor-Specific Irreversible Inhibitors of Stearoyl CoA Desaturase

    PubMed Central

    Theodoropoulos, Panayotis C.; Gonzales, Stephen S.; Winterton, Sarah E.; Rodriguez-Navas, Carlos; McKnight, John S.; Morlock, Lorraine K.; Hanson, Jordan M.; Cross, Bethany; Owen, Amy E.; Duan, Yingli; Moreno, Jose R.; Lemoff, Andrew; Mirzaei, Hamid; Posner, Bruce A.; Williams, Noelle S.

    2016-01-01

    A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic to the same four of 12 human lung cancer cell lines at low nanomolar concentrations. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible stearoyl CoA desaturase (SCD) inhibitors. SCD is recognized as a promising biological target in cancer and metabolic disease. However, SCD is essential to sebocytes, and accordingly SCD inhibitors cause skin toxicity. Mouse sebocytes were unable to activate the benzothiazoles or oxalamides into SCD inhibitors, providing a therapeutic window for inhibiting SCD in vivo. We thus offer a strategy to target SCD in cancer by taking advantage of high CYP expression in a subset of tumors. PMID:26829472

  12. Onsager's irreversible thermodynamics of the dynamics of transient pores in spherical lipid vesicles.

    PubMed

    Martínez-Balbuena, L; Hernández-Zapata, E; Santamaría-Holek, I

    2015-09-01

    Onsager's irreversible thermodynamics is used to perform a systematic deduction of the kinetic equations governing the opening and collapse of transient pores in spherical vesicles. We show that the edge tension has to be determined from the initial stage of the pore relaxation and that in the final state the vesicle membrane is not completely relaxed, since the surface tension and the pressure difference are about 25% of its initial value. We also show that the pore life-time is controlled by the solution viscosity and its opening is driven by the solution leak-out and the surface tension drop. The final collapse is due to a non-linear interplay between the edge and the surface tensions together with the pressure difference. We also discuss the connection with previous models.

  13. Irreversible Markov chain Monte Carlo algorithm for self-avoiding walk

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Chen, Xiaosong; Deng, Youjin

    2017-02-01

    We formulate an irreversible Markov chain Monte Carlo algorithm for the self-avoiding walk (SAW), which violates the detailed balance condition and satisfies the balance condition. Its performance improves significantly compared to that of the Berretti-Sokal algorithm, which is a variant of the Metropolis-Hastings method. The gained efficiency increases with spatial dimension (D), from approximately 10 times in 2D to approximately 40 times in 5D. We simulate the SAW on a 5D hypercubic lattice with periodic boundary conditions, for a linear system with a size up to L = 128, and confirm that as for the 5D Ising model, the finite-size scaling of the SAW is governed by renormalized exponents, v* = 2/ d and γ/ v* = d/2. The critical point is determined, which is approximately 8 times more precise than the best available estimate.

  14. Unusual molecular material formed through irreversible transformation and revealed by 4D electron microscopy.

    PubMed

    van der Veen, Renske M; Tissot, Antoine; Hauser, Andreas; Zewail, Ahmed H

    2013-05-28

    Four-dimensional (4D) electron microscopy (EM) uniquely combines the high spatial resolution to pinpoint individual nano-objects, with the high temporal resolution necessary to address the dynamics of their laser-induced transformation. Here, using 4D-EM, we demonstrate the in situ irreversible transformation of individual nanoparticles of the molecular framework Fe(pyrazine)Pt(CN)4. The newly formed material exhibits an unusually large negative thermal expansion (i.e. contraction), which is revealed by time-resolved imaging and diffraction. Negative thermal expansion is a unique property exhibited by only few materials. Here we show that the increased flexibility of the metal-cyanide framework after the removal of the bridging pyrazine ligands is responsible for the negative thermal expansion behavior of the new material. This in situ visualization of single nanostructures during reactions should be extendable to other classes of reactive systems.

  15. Internal time, irreversibility and intermittency in the quasi-self-similarity of turbulence

    NASA Astrophysics Data System (ADS)

    Nagata, Ken-ichi; Katsuyama, Tomoo

    1992-10-01

    We have presented the description of a dynamical regime inherent in a hierarchical velocity-correlation function defined for the time series of turbulent velocities. The regime is described with an average time scale termed the “internal time”, which measures the rates of local energy transfers flowing through the hierarchy and of dissipation accompanying the energy flow. Viscosity of the fluid elongates the internal time in very small length scales in the neighborhood of the smallest scale, enhancing its own effect on nonlinear action. The elongation yields a time arrow resulting from the irreversibility of the dissipative nature. We put a new interpretation on intermittency (i.e. multifractal), and also give an explanation that the multifractal structure of turbulence makes our hierarchical description possible. Our model demonstrates the experimental results of Batchelor and Townsend for the decay of turbulent flows.

  16. Reversible and irreversible flow-induced phase transition in micellar solutions

    NASA Astrophysics Data System (ADS)

    Sureshkumar, Radhakrishna; Vasudevan, Mukund; Buse, Eric; Krishna, Hare; Kalyanaraman, Ramki; Khomami, Bamin; Shen, Amy

    2008-03-01

    It is well known that wormlike micelles form shear-induced structures (SIS). SIS formation is typically accompanied by the appearance of a gel-like phase. While both configurational dynamics of the micelles in flow and electrostatics are recognized as the key factors that influence such phase transitions, there are no universally applicable criteria for the onset strain rate as function of salt concentration. In this work, first, we examine the effect of salt concentration on the critical strain rate for CTAB/NaSal solutions and show that a ``self-similar'' phase transition regime exists. Second, we show that under strong (elongational) flow conditions, the phase transitions are irreversible, leading to the formation of gels that are stable even after the flow is stopped. Results obtained from atomic force microscopy studies of the structure of such gels will be presented.

  17. Endodontic therapy of a mandibular canine tooth with irreversible pulpitis secondary to dentigerous cyst.

    PubMed

    MacGee, Scott

    2014-01-01

    Dentigerous cysts are uncommon, yet are being reported with increasing frequency in the veterinary literature. Dentigerous cysts are a type of benign odontogenic cyst associated with impacted teeth, most commonly the mandibular first premolar tooth. Significant bone destruction can occur secondary to the expansion of a dentigerous cyst. The expanding cyst can lead to pathology of neighboring teeth, which can include external root resorption or pulpitis. Intraoral dental radiographs are imperative to properly assess the presence and extent of a dentigerous cyst, as well as the status of the neighboring teeth. This case report describes treatment for dentigerous cyst including cyst lining curettage, mandibular bone regeneration, and endodontic therapy for a canine tooth with irreversible pulpitis.

  18. Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds.

    PubMed

    Cunha, Rodrigo L O R; Gouvêa, Iuri E; Feitosa, Geovana P V; Alves, Márcio F M; Brömme, Dieter; Comasseto, João V; Tersariol, Ivarne L S; Juliano, Luiz

    2009-11-01

    The inhibition of human cysteine cathepsins B, L, S and K was evaluated by a set of hypervalent tellurium compounds (telluranes) comprising both organic and inorganic derivatives. All telluranes studied showed a time- and concentration-dependent irreversible inhibition of the cathepsins, and their second-order inactivation rate constants were determined. The organic derivatives were potent inhibitors of the cathepsins and clear specificities were detected, which were parallel to their known substrate specificities. In all cases, the activity of the tellurane-inhibited cathepsins was recovered by treatment of the inactivated enzymes with reducing agents. The maximum stoichiometry of the reaction between cysteine residues and telluranes were also determined. The presented data indicate that it is possible to design organic compounds with a tellurium(IV) moiety as a novel warhead that covalently modifies the catalytic cysteine, and which also form strong interactions with subsites of cathepsins B, L, S and K, resulting in more specific inhibition.

  19. Groundwater sapping as the cause of irreversible desertification of Hunshandake Sandy Lands, Inner Mongolia, northern China.

    PubMed

    Yang, Xiaoping; Scuderi, Louis A; Wang, Xulong; Scuderi, Louis J; Zhang, Deguo; Li, Hongwei; Forman, Steven; Xu, Qinghai; Wang, Ruichang; Huang, Weiwen; Yang, Shixia

    2015-01-20

    In the middle-to-late Holocene, Earth's monsoonal regions experienced catastrophic precipitation decreases that produced green to desert state shifts. Resulting hydrologic regime change negatively impacted water availability and Neolithic cultures. Whereas mid-Holocene drying is commonly attributed to slow insolation reduction and subsequent nonlinear vegetation-atmosphere feedbacks that produce threshold conditions, evidence of trigger events initiating state switching has remained elusive. Here we document a threshold event ca. 4,200 years ago in the Hunshandake Sandy Lands of Inner Mongolia, northern China, associated with groundwater capture by the Xilamulun River. This process initiated a sudden and irreversible region-wide hydrologic event that exacerbated the desertification of the Hunshandake, resulting in post-Humid Period mass migration of northern China's Neolithic cultures. The Hunshandake remains arid and is unlikely, even with massive rehabilitation efforts, to revert back to green conditions.

  20. Irreversible inactivation of interleukin 2 in a pump-based delivery environment.

    PubMed

    Tzannis, S T; Hrushesky, W J; Wood, P A; Przybycien, T M

    1996-05-28

    The physical stability of pharmaceutical proteins in delivery environments is a critical determinant of biological potency and treatment efficacy, and yet it is often taken for granted. We studied both the bioactivity and physical stability of interleukin 2 upon delivery via continuous infusion. We found that the biological activity of the delivered protein was dramatically reduced by approximately 90% after a 24-hr infusion program. Only a portion of these losses could be attributed to direct protein deposition on the delivery surfaces. Analysis of delivered protein by size exclusion chromatography gave no indication of insulin-like, surface-induced aggregation phenomena. Examination of the secondary and tertiary structure of both adsorbed and delivered protein via Fourier-transform infrared spectroscopy, circular dichroism, and fluorescence spectroscopy indicated that transient surface association of interleukin 2 with the catheter tubing resulted in profound, irreversible structural changes that were responsible for the majority of the biological activity losses.

  1. Irreversibility in disordered microfluidic droplet ensembles governed by three-body scattering

    NASA Astrophysics Data System (ADS)

    Shani, Itamar; Beatus, Tsevi; Tlusty, Tsvi; Bar-Ziv, Roy; Bar-Ziv Lab Team

    2016-11-01

    Viscous (Stokes) flow is symmetric under time reversal, but the presence of solid particles or droplets breaks this symmetry. Identifying elementary microscopic processes that break time reversal symmetry in these systems is an open problem. Here we use a dilute disordered dispersion of microfluidic droplets to distinguish three-body collisional scattering as the elementary irreversible process in the otherwise reversible viscous flow. In this process, three droplets interacting by long-range hydrodynamic dipoles approach and collide to form a cluster that quickly breaks into a pair and single that move apart. The pair creation is accompanied by a local increase in spatial order, which is measured by a reduction of the three-body configurational entropy. Our results put forth an elementary mechanism for reversibility breaking in particle carrying fluids and highlight the importance of three-body motion as a source of complexity in many-body systems with long-range interactions.

  2. Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation.

    PubMed

    Rowan, N J; MacGregor, S J; Anderson, J G; Fouracre, R A; Farish, O

    2000-08-01

    The physical effects of high-intensity pulsed electric fields (PEF) on the inactivation of diarrhoeagenic Bacillus cereus cells suspended in 0.1% peptone water were examined by transmission electron microscopy (TEM). The levels of PEF-induced microbial cell death were determined by enumeration on tryptone soy yeast extract agar and Bacillus cereus-selective agar plates. Following exposure to lethal levels of PEF, TEM investigation revealed irreversible cell membrane rupture at a number of locations, with the apparent leakage of intracellular contents. This study provides a clearer understanding of the mechanism of PEF-induced cellular damage, information that is essential for the further optimization of this emerging food-processing technology.

  3. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    NASA Technical Reports Server (NTRS)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  4. Fast X-ray microdiffraction techniques for studying irreversible transformations in materials

    PubMed Central

    Kelly, Stephen T.; Trenkle, Jonathan C.; Koerner, Lucas J.; Barron, Sara C.; Walker, Nöel; Pouliquen, Philippe O.; Tate, Mark W.; Gruner, Sol M.; Dufresne, Eric M.; Weihs, Timothy P.; Hufnagel, Todd C.

    2011-01-01

    A pair of techniques have been developed for performing time-resolved X-ray microdiffraction on irreversible phase transformations. In one technique capillary optics are used to focus a high-flux broad-spectrum X-ray beam to a 60 µm spot size and a fast pixel array detector is used to achieve temporal resolution of 55 µs. In the second technique the X-rays are focused with Kirkpatrick–Baez mirrors to achieve a spatial resolution better than 10 µm and a fast shutter is used to provide temporal resolution better than 20 µs while recording the diffraction pattern on a (relatively slow) X-ray CCD camera. Example data from experiments are presented where these techniques are used to study self-propagating high-temperature synthesis reactions in metal laminate foils. PMID:21525656

  5. Coalescence behavior of oil droplets coated in irreversibly-adsorbed surfactant layers.

    PubMed

    Reichert, Matthew D; Walker, Lynn M

    2015-07-01

    Coalescence between oil caps with irreversibly adsorbed layers of nonionic surfactant is characterized in deionized water and electrolyte solution. The coalescence is characterized using a modified capillary tensiometer allowing for accurate measurement of the coalescence time. Results suggest two types of coalescence behavior, fast coalescence at low surface coverages that are independent of ionic strength and slow coalescence at high coverage. These slow coalescence events (orders of magnitude slower) are argued to be due to electric double layer forces or more complicated stabilization mechanisms arising from interfacial deformation and surface forces. A simple film drainage model is used in combination with measured values for interfacial properties to quantify the interaction potential between the two interfaces. Since this approach allows the two caps to have the same history, interfacial coverage and curvature, the results offer a tool to better understand a mechanism that is important to emulsion stability.

  6. Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters.

    PubMed

    Kovaleva, Agnessa; Manevitch, Leonid I; Kosevich, Yuriy A

    2011-02-01

    We demonstrate that in significant limiting cases the problem of irreversible energy transfer in an oscillatory system with time-dependent parameters can be efficiently solved in terms of the Fresnel integrals. For definiteness, we consider a system of two weakly coupled linear oscillators in which the first oscillator with constant parameters is excited by an initial impulse, whereas the coupled oscillator with a slowly varying frequency is initially at rest but then acts as an energy trap. We show that the evolution equations of the slow passage through resonance are identical to the equations of the Landau-Zener tunneling problem, and therefore, the suggested asymptotic solution of the classical problem provides a simple analytic description of the quantum Landau-Zener tunneling with arbitrary initial conditions over a finite time interval. A correctness of approximations is confirmed by numerical simulations.

  7. Comments on “Sub-kBT Micro-Electromechanical Irreversible Logic Gate”

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.

    2016-08-01

    In a recent paper, [M. López-Suárez, I. Neri and L. Gammaitoni, Sub-kBT micro-electromechanical irreversible logic gate, Nat. Commun. 7 (2016) 12068] the authors claimed that they demonstrated sub-kBT energy dissipation at elementary logic operations. However, the argumentation is invalid because it neglects the dominant source of energy dissipation, namely, the charging energy of the capacitance of the input electrode, which totally dissipates during the full (0-1-0) cycle of logic values. The neglected dissipation phenomenon is identical with the mechanism that leads to the lower physical limit of dissipation (70-100 kBT) in today’s microprocessors (CMOS logic) and in any other system with thermally activated errors thus the same limit holds for the new scheme, too.

  8. Irreversibility in a unitary finite-rate protocol: the concept of internal friction

    NASA Astrophysics Data System (ADS)

    Çakmak, Selçuk; Altintas, Ferdi; Müstecaplıoğlu, Özgür E.

    2016-07-01

    The concept of internal friction, a fully quantum mechanical phenomena, is investigated in a simple, experimentally accessible quantum system in which a spin-1/2 is driven by a transverse magnetic field in a quantum adiabatic process. The irreversible production of the waste energy due to the quantum friction is quantitatively analyzed in a forward-backward unitary transform of the system Hamiltonian by using the quantum relative entropy between the actual density matrix obtained in a parametric transformation and the one in a reversible adiabatic process. Analyzing the role of total transformation time and the different pulse control schemes on the internal friction reveal the non-monotone character of the internal friction as a function of the total protocol time and the possibility for almost frictionless solutions in finite-time transformations.

  9. Rapid dramatic alterations to the tumor microstructure in pancreatic cancer following irreversible electroporation ablation

    PubMed Central

    Zhang, Zhuoli; Li, Weiguo; Procissi, Daniel; Tyler, Patrick; Omary, Reed A; Larson, Andrew C

    2013-01-01

    Aim NanoKnife® (Angiodynamics, Inc., NY, USA) or irreversible electroporation (IRE) is a newly available ablation technique to induce the formation of nanoscale pores within the cell membrane in targeted tissues. The purpose of this study was to elucidate morphological alterations following 30 min of IRE ablation in a mouse model of pancreatic cancer. Materials & methods Immunohistochemistry markers were compared with diffusion-weighted MRI apparent diffusion coefficient measurements before and after IRE ablation. Results Immunohistochemistry apoptosis index measurements were significantly higher in IRE-treated tumors than in controls. Rapid tissue alterations after 30 min of IRE ablation procedures (structural and morphological alterations along with significantly elevated apoptosis markers) were consistently observed and well correlated to apparent diffusion coefficient measurements. Discussion This imaging assay offers the potential to serve as an in vivo biomarker for noninvasive detection of tumor response following IRE ablation. PMID:24024571

  10. Peptides containing acylated C-terminal gem diamines: novel irreversible inactivators of the cysteine and serine proteinases.

    PubMed

    Gilmore, B F; Lynas, J F; Harriott, P; Healy, A; Walker, B

    2006-05-01

    This study reports on the synthesis of peptides containing C-terminal acylated gem-diamines and their utilization for the preparation of irreversible inactivators of the serine and cysteine proteinases. We have succeeded in obtaining an inhibitor Acetyl-Val-Pro-g-Val-CO-O-C(6)H(4)-NO(2) of neutrophil and pancreatic elastases that functions in a time-dependent manner, indicative of the action of an irreversible inactivator, functioning, most probably, through the formation of a long-lived acyl enzyme intermediate. In addition, we have demonstrated the irreversible inhibition of the cysteine proteinase bovine cathepsin B, by chloroacetyl and bromoacetyl derivatives of a dipeptide gem-diamine, Cbz-Phe-g-Ala-CO-CH(2)Hal (Hal = Br, Cl).

  11. Suppressive effect of Li 2CO 3 on initial irreversibility at carbon anode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Kook; Chung, Kwang-il; Kim, Woo-Seong; Sung, Yung-Eun; Park, Su-Moon

    The initial capacity irreversibility caused by film formation on a mesophase pitch-based carbon fibre (MPCF) electrode surface is studied with the goal of improving the performance of a lithium-ion battery. The addition of Li 2CO 3 to a solution of 1 M LiPF 6/EC:DFC (1:1, v/v) results in a decrease in the initial irreversible capacity caused by solvent decomposition and the passivation film on the MPCF electrode surface. Suppression of the initial irreversible capacity at the anode electrode by the introduction of Li 2CO 3 is investigated by means of chronopotentiometry, cyclic voltammetry, ac impedance spectroscopy, FTIR, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. It is concluded that the suppression is caused mainly by prevention of solvent decomposition and by structural change in the passivation film on the anode electrode.

  12. Irreversible volume growth in polymer-bonded powder systems: effects of crystalline anisotropy, particle size distribution, and binder strength

    SciTech Connect

    Maiti, A; Gee, R H; Hoffman, D; Fried, L E

    2007-08-22

    Pressed-powdered crystallites of intrinsically anisotropic materials have been shown to undergo irreversible volume expansion when subjected to repeated cycles of heating and cooling. We develop a coarse-grained (micron-scale) interaction Hamiltonian for this system and perform molecular dynamics simulations, which quantitatively reproduce the experimentally observed irreversible growth. The functional form and values of the interaction parameters at the coarse-grained level are motivated by our knowledge at the atomic/molecular scale, and allows a simple way to incorporate the effect of polymeric binder. We demonstrate that irreversible growth happens only in the presence of intrinsic crystalline anisotropy of the powder material, is mediated by particles much smaller than the average crystallite size, and can be significantly reduced in the presence of high-strength polymeric binder with elevated glass transition temperatures.

  13. IC-4, a new irreversible EGFR inhibitor, exhibits prominent anti-tumor and anti-angiogenesis activities.

    PubMed

    Li, Ying-Bo; Wang, Zhong-Qing; Yan, Xu; Chen, Mei-Wan; Bao, Jiao-Lin; Wu, Guo-Sheng; Ge, Ze-Mei; Zhou, De-Min; Wang, Yi-Tao; Li, Run-Tao

    2013-10-28

    Accumulating evidence suggested that the irreversible tyrosine kinase inhibitors (TKIs) have potential to override the acquired resistance to target-based therapies. Herein, we reported IC-4 as a novel irreversible TKI for epidermal growth factor receptor (EGFR). IC-4 potentially suppressed proliferation, induced apoptosis and a G2/M cell cycle arrest in breast cancer cells, correlating with inhibition of EGF-induced EGFR activation, but independent of DNA damage. In addition, IC-4 exhibited anti-angiogenetic activities both in vitro and in vivo. It suppressed cell viability and proliferation induced by various growth factors in human umbilical vein endothelial cells (HUVECs). IC-4 also inhibited HUVECs migration and tube formation. In transgenic zebrafish embryo model, IC-4 was shown to suppress formation of intersegmental vessel and development of subintestinal vessels. Taken together, these results demonstrated that IC-4 is a new irreversible EGFR-TKI, exhibiting potent anti-breast cancer and anti-angiogenetic effects.

  14. Altered calcium homeostasis in irreversibly injured P388D1 macrophages.

    PubMed Central

    Gleva, G. F.; Goodglick, L. A.; Kane, A. B.

    1990-01-01

    Sequestration of calcium by mitochondria is an important mechanism to maintain normal intracellular calcium homeostasis. Anoxic or toxic damage to these organelles has been postulated to disrupt intracellular calcium compartmentalization, leading to cell death. The authors examined the potential relationship between mitochondrial dysfunction, altered calcium homeostasis, and irreversible injury in a model system of silica-induced toxicity to P388D1 cells. Exposure to toxic silica particles, but not to nontoxic latex heads, disrupted mitochondrial membrane potential, increased membrane-associated calcium, elevated free cytosolic calcium, and killed 50% to 60% of the cell population after 6 to 8 hours. To test whether disruption of the mitochondrial membrane potential was sufficient to cause irreversible injury, P388D1 cells were exposed to either the proton ionophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or to the mitochondrial inhibitor, antimycin A. Over 90% of the treated cells showed depolarization of the mitochondrial membrane as indicated by the fluorescent probe rhodamine 123. Carbonyl cyanide p-trifluoromethoxyphenylbydrazone also caused an elevation in free cytosolic calcium as monitored by fura-2. However, even after 6 hours of exposure to these proton ionophores or mitochondrial inhibitors, P388D1 cells did not show increased chlorotetracycline (CTC)-induced fluorescence or loss of viability. P388D1 cells exposed to silica have been shown previously to lose 80% of their adenosine triphosphate (ATP) content. The effect of reduced ATP levels on intracellular calcium homeostasis and viability was assessed by exposing P338D1 cells to FCCP in the presence of sodium azide and 2-deoxyglucose, which reduced ATP content by more than 90%. Under these conditions, none of the cells were killed, and only 5.5% showed increased CTC-induced fluorescence after 6 hours. These data indicate that disruption of the mitochondrial membrane potential, even

  15. Reversible and irreversible vascular bioeffects induced by ultrasound and microbubbles in chorioallantoic membrane model

    NASA Astrophysics Data System (ADS)

    Tarapacki, Christine; Kuebler, Wolfgang M.; Tabuchi, Arata; Karshafian, Raffi

    2017-03-01

    Background: The application of ultrasound and microbubbles at therapeutic conditions has been shown to improve delivery of molecules, cause vasoconstriction, modulate blood flow and induce a vascular shut down in in vivo cancerous tissues. The underlying mechanism has been associated with the interaction of ultrasonically-induced microbubble oscillation and cavitation with the blood vessel wall. In this study, the effect of ultrasound and microbubbles on blood flow and vascular architecture was studied using a fertilized chicken egg CAM (chorioallantoic membrane) model. Methods: CAM at day 12 of incubation (Hamburger-Hamilton stage 38-40) were exposed to ultrasound at varying acoustic pressures (160, 240 and 320 kPa peak negative pressure) in the presence of Definity microbubbles and 70 kDa FITC dextran fluorescent molecules. A volume of 50 µL Definity microbubbles were injected into a large anterior vein of the CAM prior to ultrasound exposure. The ultrasound treatment sequence consisted of 5 s exposure at 500 kHz frequency, 8 cycles and 1 kHz pulse repetition frequency with 5 s off for a total exposure of 2 minutes. Fluorescent videos and images of the CAM vasculature were acquired using intravital microscopy prior, during and following the ultrasound exposure. Perfusion was quantified by measuring the length of capillaries in a region of interest using Adobe Illustrator. Results and Discussion: The vascular bioeffects induced by USMB increased with acoustic peak negative pressure. At 160 kPa, no visible differences were observed compared to the control. At 240 kPa, a transient decrease in perfusion with subsequent recovery within 15 minutes was observed, whereas at 320 kPa, the fluorescent images showed an irreversible vascular damage. The study indicates that a potential mechanism for the transient decrease in perfusion may be related to blood coagulation. The results suggest that ultrasound and microbubbles can induce reversible and irreversible vascular

  16. Posterior Reversible Encephalopathy Syndrome (PRES): Restricted Diffusion does not Necessarily Mean Irreversibility

    PubMed Central

    Wagih, Alaa; Mohsen, Laila; Rayan, Moustafa M.; Hasan, Mo’men M.; Al-Sherif, Ashraf H.

    2015-01-01

    Summary Background Restricted diffusion is the second most common atypical presentation of PRES. This has a very important implication, as lesions with cytotoxic edema may progress to infarction. Several studies suggested the role of DWI in the prediction of development of infarctions in these cases. Other studies, however, suggested that PRES is reversible even with cytotoxic patterns. Our aim was to evaluate whether every restricted diffusion in PRES is reversible and what factors affect this reversibility. Material/Methods Thirty-six patients with acute neurological symptoms suggestive of PRES were included in our study. Inclusion criteria comprised imaging features of atypical PRES where DWI images and ADC maps show restricted diffusion. Patients were imaged with 0.2-T and 1.5-T machines. FLAIR images were evaluated for the severity of the disease and a FLAIR/DWI score was used. ADC values were selectively recorded from the areas of diffusion restriction. A follow-up MRI study was carried out in all patients after 2 weeks. Patients were classified according to reversibility into: Group 1 (reversible PRES; 32 patients) and Group 2 (irreversible changes; 4 patients). The study was approved by the University’s research ethics committee, which conforms to the declaration of Helsinki. Results The age and blood pressure did not vary significantly between both groups. The total number of regions involved and the FLAIR/DWI score did not vary significantly between both groups. Individual regions did not reveal any tendency for the development of irreversible lesions. Similarly, ADC values did not reveal any significant difference between both groups. Conclusions PRES is completely reversible in the majority of patients, even with restricted diffusion. None of the variables under study could predict the reversibility of PRES lesions. It seems that this process is individual-dependent. PMID:25960819

  17. Water and salt dynamics and the hydraulic conductivity feedback: irreversible soil degradation and reclamation opportunities

    NASA Astrophysics Data System (ADS)

    Mau, Yair; Porporato, Amilcare

    2017-04-01

    We present a model for the dynamics of soil water, salt concentration and exchangeable sodium fraction in the root zone, driven by irrigation water of various qualities and stochastic rainfall. The main nonlinear feedback is the decrease in hydraulic conductivity for low salinity and/or high sodicity levels. The three variables have quite disparate characteristic time scales: soil water can vary two or three orders of magnitude faster than the exchangeable sodium fraction. In certain limiting cases in which the input of water is constant, the system can be simplified by eliminating the equation for soil water, allowing a full description of the dynamics in the two-dimensional salinity-sodicity phase space. We estimate soil structure degradation time scales for high sodium-adsorption-ratio irrigation water, and delineate the regions in the salinity-sodicity phase space where sodium-induced degradation is effectively irreversible. This apparent irreversibility is the result of relatively long evolution time scales with respect to human activity. When we take into account stochastic rainfall—and the accompanying wetting and drying cycles—the system produces a myriad of statistical steady states. This means that equal environmental conditions can produce different outcomes, accessible to each other only by large interventions, such as temporary changes in the quality of irrigation water or one-time amendment use. Our characterization of the dynamics of water and salt in the root zone, and how it depends on environmental parameters, offers us opportunities to control and reclaim degraded states making optimal resource use. We show an example of sodic soil reclamation through calcium-based fertigation, with minimal time (and applied water) expenditure.

  18. Thermodynamic Analysis of Snowball Earth Hysteresis Experiment: Efficiency, Entropy Production, and Irreversibility

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Fraedrich, Klaus; Lunkeit, Frank

    2010-05-01

    We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the 2nd law of thermodynamics for auditing climate model and outline a set of parameterizations to be used in conceptual and intermediate complexity models or for the reconstruction of the past climate conditions

  19. Sorption irreversibility of 1,4-dichlorobenzene in two natural organic matter-rich geosorbents.

    PubMed

    Sander, Michael; Pignatello, Joseph J

    2009-03-01

    Hysteresis, a frequently observed phenomenon in sorption studies, is inconsistent with the key assumption of sorption reversibility in most fate and bioavailability models. Therefore, a study of the underlying causes of hysteresis is essential. Carbon-radiolabeled 1,4-dichlorobenzene (DCB) isotope tracer exchange was carried out at select points along the isotherms of DCB in a brown coal and a peat soil, holding total DCB concentration constant. Tracer exchange was performed both in the forward (sorption) and reverse (desorption) directions at the bulk sorption points and in the desorption direction at the corresponding bulk desorption points. Bulk DCB isotherms showed concentration-dependent hysteresis. However, tracer reequilibration in all cases was consistent with free exchange between sorbed and aqueous-phase molecules. These results rule out common experimental artifacts and demonstrate that sorption of bulk DCB is truly hysteretic (i.e., irreversible). The differences in rates between bulk and tracer sorption and desorption are consistent with the coupling of bulk DCB diffusion to other processes that retard equilibration, which we assign to matrix swelling or shrinking. Hysteresis is attributed to matrix deformation--specifically, to inelastic expansion and creation of voids accommodating sorbate molecules in the matrix, which leads to enhanced affinity in the desorption step. Comparing the results to previous results for naphthalene in the coal, we find that irreversible effects are similar for DCB and naphthalene in the coal but differ for DCB between the two sorbents. An explanation based on the different physical properties of these sorbents is provided. Solid-phase extraction of equilibrated DCB with Tenax revealed a highly desorption-resistant fraction. While too small to account for the observed hysteresis, this fraction may represent molecules that become trapped as the matrix collapses and simultaneously stiffens during abrupt desorption.

  20. Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    PubMed Central

    Pang, Yuan-Ping; Singh, Sanjay K.; Gao, Yang; Lassiter, T. Leon; Mishra, Rajesh K.; Zhu, Kun Yan; Brimijoin, Stephen

    2009-01-01

    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems. PMID:19194505