Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software. PMID:28263994
NASA Astrophysics Data System (ADS)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
Reinforcement learning in scheduling
NASA Technical Reports Server (NTRS)
Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad
1994-01-01
The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.
NASA Astrophysics Data System (ADS)
Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit
2018-03-01
The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.
Job Shop Scheduling Focusing on Role of Buffer
NASA Astrophysics Data System (ADS)
Hino, Rei; Kusumi, Tetsuya; Yoo, Jae-Kyu; Shimizu, Yoshiaki
A scheduling problem is formulated in order to consistently manage each manufacturing resource, including machine tools, assembly robots, AGV, storehouses, material shelves, and so on. The manufacturing resources are classified into three types: producer, location, and mover. This paper focuses especially on the role of the buffer, and the differences among these types are analyzed. A unified scheduling formulation is derived from the analytical results based on the resource’s roles. Scheduling procedures based on dispatching rules are also proposed in order to numerically evaluate job shop-type production having finite buffer capacity. The influences of the capacity of bottle-necked production devices and the buffer on productivity are discussed.
NASA Astrophysics Data System (ADS)
Schulze, L.; Behling, S.; Buhrs, S.
2008-06-01
The usage of Automated Guided Vehicle Systems (AGVS) is growing. This has not always been the case in the past. A new record of the sells numbers is the result of inventive developments, new applications and modern thinking. One market that AGVS were not able to thoroughly conquer yet were rapidly changing logistics environments. The advantages in recurrent transportation with AGVS used to be hindered by the needs of flexibility. When nowadays managers talk about Flexible Manufacturing Systems (FMS) there is no reason not to consider AGVS. Fixed guidelines, permanent transfer stations and static routes are no necessity for most AGVS producers. Flexible Manufacturing Systems can raise profitability with AGVS. When robots start saving billions in production costs, the next step at same plants are automated materials handling systems. Today, there are hundreds of instances of computer-controlled systems designed to handle and transport materials, many of which have replaced conventional human-driven platform trucks. Reduced costs due to damages and failures, tracking and tracing as well as improved production scheduling on top of fewer personnel needs are only some of the advantages.
Wu, Naiqi; Zhou, MengChu
2005-12-01
An automated manufacturing system (AMS) contains a number of versatile machines (or workstations), buffers, an automated material handling system (MHS), and is computer-controlled. An effective and flexible alternative for implementing MHS is to use automated guided vehicle (AGV) system. The deadlock issue in AMS is very important in its operation and has extensively been studied. The deadlock problems were separately treated for parts in production and transportation and many techniques were developed for each problem. However, such treatment does not take the advantage of the flexibility offered by multiple AGVs. In general, it is intractable to obtain maximally permissive control policy for either problem. Instead, this paper investigates these two problems in an integrated way. First we model an AGV system and part processing processes by resource-oriented Petri nets, respectively. Then the two models are integrated by using macro transitions. Based on the combined model, a novel control policy for deadlock avoidance is proposed. It is shown to be maximally permissive with computational complexity of O (n2) where n is the number of machines in AMS if the complexity for controlling the part transportation by AGVs is not considered. Thus, the complexity of deadlock avoidance for the whole system is bounded by the complexity in controlling the AGV system. An illustrative example shows its application and power.
Local navigation and fuzzy control realization for autonomous guided vehicle
NASA Astrophysics Data System (ADS)
El-Konyaly, El-Sayed H.; Saraya, Sabry F.; Shehata, Raef S.
1996-10-01
This paper addresses the problem of local navigation for an autonomous guided vehicle (AGV) in a structured environment that contains static and dynamic obstacles. Information about the environment is obtained via a CCD camera. The problem is formulated as a dynamic feedback control problem in which speed and steering decisions are made on the fly while the AGV is moving. A decision element (DE) that uses local information is proposed. The DE guides the vehicle in the environment by producing appropriate navigation decisions. Dynamic models of a three-wheeled vehicle for driving and steering mechanisms are derived. The interaction between them is performed via the local feedback DE. A controller, based on fuzzy logic, is designed to drive the vehicle safely in an intelligent and human-like manner. The effectiveness of the navigation and control strategies in driving the AGV is illustrated and evaluated.
The vision guidance and image processing of AGV
NASA Astrophysics Data System (ADS)
Feng, Tongqing; Jiao, Bin
2017-08-01
Firstly, the principle of AGV vision guidance is introduced and the deviation and deflection angle are measured by image coordinate system. The visual guidance image processing platform is introduced. In view of the fact that the AGV guidance image contains more noise, the image has already been smoothed by a statistical sorting. By using AGV sampling way to obtain image guidance, because the image has the best and different threshold segmentation points. In view of this situation, the method of two-dimensional maximum entropy image segmentation is used to solve the problem. We extract the foreground image in the target band by calculating the contour area method and obtain the centre line with the least square fitting algorithm. With the help of image and physical coordinates, we can obtain the guidance information.
Lee, Jin Young; Sung, Kyung Rim; Tchah, Hung Won; Yoon, Young Hee; Kim, June Gone; Kim, Myoung Joon; Kim, Jae Yong; Yun, Sung-Cheol; Lee, Joo Yong
2012-12-01
To evaluate whether a combination of penetrating keratoplasty (PKP) or pars plana vitrectomy (PPV) and Ahmed glaucoma valve (AGV) implantation affords a level of success similar to that of AGV implantation alone. Eighteen eyes underwent simultaneous PPV and AGV, 14 eyes with PKP and AGV and 30 eyes with AGV implantation alone were evaluated. Success was defined as attainment of an intraocular pressure (IOP) >5 and <22 mmHg, with or without use of anti-glaucoma medication. Kaplan-Meier survival analysis was performed to compare cumulative survival between the combined surgery groups and the AGV implantation-alone group. Cox proportional hazard regression analysis was conducted to identify factors predictive of success in each of the three groups. Mean (±standard deviation) preoperative IOP was 30.2 ± 10.2 mmHg in the PKP + AGV, 35.2 ± 9.8 mmHg in the PPV + AGV, and 36.2 ± 10.1 mmHg in the AGV implantation-alone group. The cumulative success rate at 18 months was 66.9%, 73.2%, and 70.8% in the three groups, respectively. Neither combined surgery group differed significantly in terms of cumulative success rate compared with the AGV implantation-alone group (p = 0.556, p = 0.487, respectively). The mean number of preoperative anti-glaucoma medications prescribed was significantly associated with success in the PKP + AGV implantation group (hazard ratio, 2.942; p = 0.024). Either PKP or PPV performed in conjunction with AGV implantation afforded similar success rates compared to patients treated with AGV implantation alone. Therefore, in patients with refractory glaucoma who have underlying corneal or retinal pathology requiring treatment with PKP or PPV, AGV implantation can be performed simultaneously.
Sevgi, Duriye D.; Davoudi, Samaneh; Talcott, Katherine E.; Cho, Heeyoon; Guo, Rong; Lobo, Ann-Marie; Papaliodis, George N.; Turalba, Angela; Sobrin, Lucia; Shen, Lucy Q.
2017-01-01
Purpose To compare the intraocular pressure (IOP) outcomes of Ahmed glaucoma valve (AGV) surgery alone versus AGV with fluocinolone implant in uveitic glaucoma patients. Methods We identified uveitic glaucoma patients with AGV surgery alone and AGV surgery combined with fluocinolone implant from the Massachusetts Eye and Ear Ocular Inflammation Database. Demographic information, visual acuity, and IOP were recorded at preoperative visits and 1, 6, and 12 months after surgery. Incidence of hypertensive phase, defined as an IOP of >21 mm Hg or use of additional treatment to lower IOP occurring any time between 7 days to 6 months postoperatively, was investigated. Multilevel mixed effects models were performed to compare the outcomes between groups. Results Eighteen eyes of 13 uveitic glaucoma patients with 1-year follow-up data were included. There were 11 eyes of 9 patients (mean age, 56.5 years; 63.6% male) in the AGV group and 7 eyes of 4 patients (mean age, 61.3 years; 71.4% male) in the AGV + fluocinolone group. There was no significant difference in visual acuity change at 1 year after surgery between groups (P = 0.25), although visual acuity improvement was significant in the AGV group (P = 0.01). The hypertensive phase occurred in 91% of AGV patients and 43% of AGV + fluocinolone patients (P = 0.30), with onset of 8-40 days (mean, 18 days) after surgery. IOP and number of glaucoma medications decreased at the 1-year postoperative visits in both the AGV group (P < 0.0001, P < 0.0001) and the AGV + fluocinolone group (P = 0.001, P < 0.0001). Compared to the AGV group, the AGV + fluocinolone group used fewer glaucoma medications (0.28 vs 1.30 [P = 0.01]) and had better inflammation control (P = 0.02). The surgical complication rates were similar between groups. Conclusions In uveitic glaucoma, AGV with fluocinolone achieves a similar, desired IOP control but with fewer glaucoma medications than AGV alone. PMID:29162989
Sevgi, Duriye D; Davoudi, Samaneh; Talcott, Katherine E; Cho, Heeyoon; Guo, Rong; Lobo, Ann-Marie; Papaliodis, George N; Turalba, Angela; Sobrin, Lucia; Shen, Lucy Q
2017-01-01
To compare the intraocular pressure (IOP) outcomes of Ahmed glaucoma valve (AGV) surgery alone versus AGV with fluocinolone implant in uveitic glaucoma patients. We identified uveitic glaucoma patients with AGV surgery alone and AGV surgery combined with fluocinolone implant from the Massachusetts Eye and Ear Ocular Inflammation Database. Demographic information, visual acuity, and IOP were recorded at preoperative visits and 1, 6, and 12 months after surgery. Incidence of hypertensive phase, defined as an IOP of >21 mm Hg or use of additional treatment to lower IOP occurring any time between 7 days to 6 months postoperatively, was investigated. Multilevel mixed effects models were performed to compare the outcomes between groups. Eighteen eyes of 13 uveitic glaucoma patients with 1-year follow-up data were included. There were 11 eyes of 9 patients (mean age, 56.5 years; 63.6% male) in the AGV group and 7 eyes of 4 patients (mean age, 61.3 years; 71.4% male) in the AGV + fluocinolone group. There was no significant difference in visual acuity change at 1 year after surgery between groups ( P = 0.25), although visual acuity improvement was significant in the AGV group ( P = 0.01). The hypertensive phase occurred in 91% of AGV patients and 43% of AGV + fluocinolone patients ( P = 0.30), with onset of 8-40 days (mean, 18 days) after surgery. IOP and number of glaucoma medications decreased at the 1-year postoperative visits in both the AGV group ( P < 0.0001, P < 0.0001) and the AGV + fluocinolone group ( P = 0.001, P < 0.0001). Compared to the AGV group, the AGV + fluocinolone group used fewer glaucoma medications (0.28 vs 1.30 [ P = 0.01]) and had better inflammation control ( P = 0.02). The surgical complication rates were similar between groups. In uveitic glaucoma, AGV with fluocinolone achieves a similar, desired IOP control but with fewer glaucoma medications than AGV alone.
Quaranta, Luciano; Floriani, Irene; Hollander, Lital; Poli, Davide; Katsanos, Andreas; Konstas, Anastasios G P
2016-04-01
To determine the outcome of needling with adjunctive 5-fluorouracil (5-FU) in patients with a failing Ahmed glaucoma valve (AGV) implant, and to identify predictors of long-term intraocular pressure (IOP) control. A prospective observational study was performed on consecutive patients with medically uncontrolled primary open-angle glaucoma (POAG) with AGV encapsulation or fibrosis and inadequate IOP control. Bleb needling with 5-FU injection (0.1 mL of 50 mg/mL) was performed at the slit-lamp. Patients were examined 1 week following the needling, and then at months 1, 3, and 6. Subsequent follow-up visits were scheduled at 6-month intervals for at least 2 years. Needling with 5-FU was repeated no more than twice during the first 3 months of the follow-up. Procedure outcome was determined on the basis of the recorded IOP levels. Thirty-six patients with an encapsulated or fibrotic AGV underwent 67procedures (mean 1.86 ± 0.83). Complete success, defined as IOP ≤ 18 mm Hg without medications, was obtained in 25% at 24 months of observation. The cumulative proportion of cases achieving either qualified (ie, IOP ≤ 18 mm Hg with medications) or complete success at 24 months of observation was 72.2%. In a univariate Cox proportional hazards model, age was the only variable that independently influenced the risk of failing 5-FU needling revision. Fourteen eyes (38.8%) had a documented complication. Needling over the plate of an AGV supplemented with 5-FU is an effective and safe choice in a significant proportion of POAG patients with elevated IOP due to encapsulation or fibrosis.
Parihar, Jitendra K S; Vats, Devendra P; Maggon, Rakesh; Mathur, Vijay; Singh, Anirudh; Mishra, Sanjay K
2009-01-01
Aim: To evaluate the efficacy of Ahmed glaucoma valve (AGV) drainage devices in cases of adult refractory glaucoma in Indian eyes. Settings and Design: Retrospective interventional case series study. Materials and Methods: Fifty two eyes of 32 patients of refractory glaucoma in the age group of 35 to 60 years who underwent AGV implantation with or without concomitant procedures from January 2003 to Jan 2007 were studied. Of these, 46 eyes (88%) had undergone filtering surgery earlier whereas remaining eyes underwent primary AGV implantation following failure of maximal medical therapy. The follow up ranged between 12 months to 48 months Results: Eighteen eyes (35%) had undergone phacoemulsification with AGV implantation, penetrating keratoplasty (PK) with AGV and intraocular lens (IOL) implantation in 13 eyes (25%), AGV over preexisting IOL in eight eyes (15%). AGV implantation alone was done in six (11%) eyes. Anterior chamber (AC) reconstruction with secondary IOL and AGV was performed in the remaining eyes. The mean intra ocular pressure (IOP) decreased from 36.3 ± 15.7 mm Hg to 19.6 ± 9.2 mm Hg. Complete success as per criteria was achieved in 46 eyes (88%). None of the eyes had failure to maintain IOP control following AGV. Conclusion: The AGV resulted in effective and sustained control of IOP in cases of adult refractory glaucoma in intermediate follow up. PMID:19700871
Comparison of the Ahmed and Baerveldt glaucoma shunts with combined cataract extraction.
Rai, Amrit S; Shoham-Hazon, Nir; Christakis, Panos G; Rai, Amandeep S; Ahmed, Iqbal Ike K
2018-04-01
To compare the surgical outcomes of combined phacoemulsification with either Ahmed glaucoma valve (AGV) or Baerveldt glaucoma implant (BGI). Retrospective cohort study. A total of 104 eyes that underwent combined phacoemulsification with either AGV (PhacoAGV; n = 57) or BGI (PhacoBGI; n = 47) implantation. Failure was defined as uncontrolled intraocular pressure (IOP; <5 mm Hg, ≥18 mm Hg, or <20% reduction), additional glaucoma surgery, vision-threatening complications, or progression to no-light-perception vision. The PhacoAGV group was older (p = 0.03), had poorer baseline visual acuity (VA; p = 0.001), and had fewer previous glaucoma surgeries (p = 0.04). Both groups had similar baseline IOP (PhacoAGV: 26.4 ± 8.3 mm Hg; PhacoBGI: 25.7 ± 7.3; p = 0.66) and glaucoma medications (PhacoAGV: 3.8 ± 1.0; PhacoBGI: 3.6 ± 1.5; p = 0.54). At 2 years, failure rates were 44% in the PhacoAGV group and 23% in the PhacoBGI group (p = 0.02). Both groups had similar mean IOP reduction (PhacoAGV: 45%; PhacoBGI: 47%, p = 0.67) and medication use reduction (PhacoAGV: 47%; PhacoBGI: 58%, p = 0.38). The PhacoBGI group had higher IOP and medication use up to 1 month (p < 0.05). Both groups improved in VA from baseline (p < 0.05) and had similar overall complication rates (p = 0.31). The PhacoBGI group required more overall interventions (p < 0.0005). This comparative study found no difference in IOP, glaucoma medications, or complication rates between PhacoAGV and PhacoBGI at 2 years, despite BGIs being implanted in patients at higher risk for failure. The PhacoAGV group had higher failure rates at 2 years. Both groups had significant improvements in VA due to removal of their cataracts. The PhacoBGI group required more interventions, but most of these were minor slit-lamp procedures. Copyright © 2018. Published by Elsevier Inc.
Surgical Outcomes of Additional Ahmed Glaucoma Valve Implantation in Refractory Glaucoma.
Ko, Sung Ju; Hwang, Young Hoon; Ahn, Sang Il; Kim, Hwang Ki
2016-06-01
To evaluate the surgical outcomes of the implantation of an additional Ahmed glaucoma valve (AGV) into the eyes of patients with refractory glaucoma following previous AGV implantation. This study is a retrospective review of the clinical histories of 23 patients who had undergone a second AGV implantation after a failed initial implantation. Age, sex, prior surgery, glaucoma type, number of medications, intraocular pressure (IOP), visual acuity, and surgical complications were analyzed. Surgical success was defined as IOP maintained below 21 mm Hg, with at least a 20% overall reduction in IOP, regardless of the use of IOP-lowering medications. Following the implantation of a second AGV, the mean IOP decreased from 39.3 to 18.5 mm Hg (52.9% reduction, P<0.001). The mean number of postoperative IOP-lowering medications administered decreased from 2.8 to 1.7 after the second AGV implantation (P<0.001). The cumulative probability of success for the procedure was 87% after 1 year and 52% after 3 years. Three patients (13.0%) experienced bullous keratopathy after the second AGV implantation. None of the patients showed any evidence of diplopia or ocular movement limitation as a result of the presence of 2 AGVs in the same eye. Prior trabeculectomy was found to be a significant risk factor for failure (P=0.027). A second AGV implantation can be a good choice of surgical treatment when the first AGV has failed to control IOP.
Surgically Induced Scleral Necrosis in a Patient With Rheumatoid Arthritis After AGV Implantation.
Kumar, Suresh; Ichhpujani, Parul; Thakur, Sahil
2018-03-01
Surgically induced scleral necrosis (SINS) is a rare entity that has till date not been reported in a patient of glaucoma undergoing Ahmed glaucoma valve (AGV) implantation. We present a case of primary open-angle glaucoma who underwent AGV implantation followed by development of scleral necrosis, involving both the scleral patch graft and host sclera. After failure of surgical and medical management, AGV had to be explanted. The patient was diagnosed with rheumatoid arthritis and had to be treated with steroids and azathioprine for the same. SINS is a potentially disastrous complication of ocular surgery that can occur in patients with systemic diseases like rheumatoid arthritis and requires aggressive management to salvage the eye. SINS can occur with AGV implantation. Treatment may require aggressive medical and surgical intervention. It is imperative to evaluate patients for systemic illness before planning an AGV implant.
Five-year Treatment Outcomes in the Ahmed Baerveldt Comparison Study
Budenz, Donald L.; Barton, Keith; Gedde, Steven J.; Feuer, William J.; Schiffman, Joyce; Costa, Vital P.; Godfrey, David G.; Buys, Yvonne M.
2014-01-01
Purpose To compare the five year outcomes of the Ahmed FP7 Glaucoma Valve (AGV) and the Baerveldt 101-350 Glaucoma Implant (BGI) for the treatment of refractory glaucoma. Design Multicenter randomized controlled clinical trial. Participants 276 patients, including 143 in the AGV group and 133 in the BGI group. Methods Patients 18 to 85 years of age with previous intraocular surgery or refractory glaucoma and intraocular pressure (IOP) of ≥ 18 mmHg in whom glaucoma drainage implant surgery was planned were randomized to implantation of either an AGV or BGI. Main Outcome Measures IOP, visual acuity, use of glaucoma medications, complications, and failure (IOP > 21 mmHg or not reduced by 20% from baseline, IOP ≤ 5 mmHg, reoperation for glaucoma, removal of implant, or loss of light perception). Results At 5 years, IOP (mean ± SD) was 14.7 ± 4.4 mmHg in the AGV group and 12.7 ± 4.5 mmHg in the BGI group (p = 0.012). The number of glaucoma medications in use at 5 years (mean ± SD) was 2.2 ± 1.4 in the AGV group and 1.8 ± 1.5 in the BGI group (p = 0.28). The cumulative probability of failure during 5 years of follow-up was 44.7% in the AGV group and 39.4% in the BGI group (p = 0.65). The number of subjects failing due to inadequately controlled IOP or reoperation for glaucoma was 46 in the AGV group (80% of AGV failures) and 25 in the BGI group (53% of BGI failures, p=0.003). Eleven AGV eyes (20% of AGV failures) experienced persistent hypotony, explantation of implant, or loss of light perception compared to 22 (47% of failures) in the BGI group. The 5-year cumulative reoperation rate for glaucoma was 20.8% in the AGV group compared to 8.6% in the BGI group (p=0.010). Change in logMAR Snellen visual acuity (mean ± SD) at 5 years was 0.42 ± 0.99 in the AGV group and 0.43 ± 0.84 in the BGI group (p=0.97). Conclusions Similar rates of surgical success were observed with both implants at 5 years. BGI implantation produced greater IOP reduction and a lower rate of glaucoma reoperation than AGV implantation but BGI implantation was associated with twice as many failures due to safety issues such as persistent hypotony, loss of light perception, or explantation. PMID:25439606
Parihar, Jitendra Kumar Singh; Jain, Vaibhav Kumar; Kaushik, Jaya; Mishra, Avinash
2017-03-01
To compare the outcome of pars-plana-modified Ahmed glaucoma valve (AGV) versus limbal-based conventional AGV into the anterior chamber, in patients undergoing penetrating keratoplasty (PK) for glaucoma with coexisting corneal diseases. In this prospective randomized clinical trial, 58 eyes of 58 patients with glaucoma and coexisting corneal disease were divided into two groups. Group 1 (29 eyes of 29 patients) included patients undergoing limbal-based conventional AGV into the anterior chamber (AC) along-with PK and group 2 (29 eyes of 29 patients) included those undergoing pars-plana-modified AGV along-with PK. Outcome measures included corneal graft clarity, intraocular pressure (IOP), number of antiglaucoma medications, and postoperative complications. Patients were followed up for a minimum period of 2 years. Out of 58 eyes (58 patients), 50 eyes (50 patients: 25 eyes of 25 patients each in group 1 and group 2) completed the study and were analyzed. Complete success rate for AGV (group 1: 76%; group 2: 72%; p = 0.842) and corneal graft clarity (group 1: 68%; group 2: 76%; p = 0.081) were comparable between the two groups at 2 years. Graft failure was more in conventional AGV (32%) as compared to pars plana-modified AGV (24%) but not statistically significant (p = 0.078) at 2 years. Though both procedures were comparable in various outcome measures, pars-plana-modified AGV is a viable option for patients undergoing PK, as it provides a relatively better corneal graft survival rate and lesser complications that were associated with conventional AGV.
A Review of the Ahmed Glaucoma Valve Implant and Comparison with Other Surgical Operations.
Riva, Ivano; Roberti, Gloria; Katsanos, Andreas; Oddone, Francesco; Quaranta, Luciano
2017-04-01
The Ahmed glaucoma valve (AGV) is a popular glaucoma drainage implant used for the control of intraocular pressure in patients with glaucoma. While in the past AGV implantation was reserved for glaucoma patients poorly controlled after one or more filtration procedures, mounting evidence has recently encouraged its use as a primary surgery in selected cases. AGV has been demonstrated to be safe and effective in reducing intraocular pressure in patients with primary or secondary refractory glaucoma. Compared to other glaucoma surgeries, AGV implantation has shown favorable efficacy and safety. The aim of this article is to review the results of studies directly comparing AGV with other surgical procedures in patients with glaucoma.
Turan, Ozhan M.; Turan, Sifa; Buhimschi, Irina A.; Funai, Edmund F.; Campbell, Katherine H.; Bahtiyar, Ozan M.; Harman, Chris R.; Copel, Joshua A.; Baschat, Ahmet A; Buhimschi, Catalin S.
2013-01-01
Objective We aim to test the hypothesis that 2D fetal AGV measurements offer similar volume estimates as volume calculations based on 3D technique Methods Fetal AGV was estimated by 3D ultrasound (VOCAL) in 93 women with signs/symptoms of preterm labor and 73 controls. Fetal AGV was calculated using an ellipsoid formula derived from 2D measurements of the same blocks (0.523× length × width × depth). Comparisons were performed by intra-class correlation coefficient (ICC), coefficient of repeatability, and Bland-Altman method. The cAGV (AGV/fetal weight) was calculated for both methods and compared for prediction of PTB within 7 days. Results Among 168 volumes, there was a significant correlation between 3D and 2D methods (ICC=0.979[95%CI: 0.971-0.984]). The coefficient of repeatability for the 3D was superior to the 2D method (Intra-observer 3D: 30.8, 2D:57.6; inter-observer 3D: 12.2, 2D: 15.6). Based on 2D calculations, a cAGV≥433mm3/kg, was best for prediction of PTB (sensitivity: 75%(95%CI=59-87); specificity: 89%(95%CI=82-94). Sensitivity and specificity for the 3D cAGV (cut-off ≥420mm3/kg) was 85%(95%CI=70-94) and 95%(95%CI=90-98), respectively. In receiver-operating-curve curve analysis, 3D cAGV was superior to 2D cAGV for prediction of PTB (z=1.99, p=0.047). Conclusion 2D volume estimation of fetal adrenal gland using ellipsoid formula cannot replace 3D AGV calculations for prediction of PTB. PMID:22644825
Three-year Treatment Outcomes in the Ahmed Baerveldt Comparison Study
Barton, Keith; Feuer, William J; Budenz, Donald L; Schiffman, Joyce; Costa, Vital P.; Godfrey, David G.; Buys, Yvonne M.
2014-01-01
Purpose To compare three year outcomes and complications of the Ahmed FP7 Glaucoma Valve (AGV) and Baerveldt 101–350 Glaucoma Implant (BGI) for the treatment of refractory glaucoma. Design Multicenter randomized controlled clinical trial. Participants 276 patients; 143 in the AGV group and 133 in the BGI group. Methods Patients aged 18–85 years with refractory glaucoma and intraocular pressures (IOPs) ≥18 mmHg in whom an aqueous shunt was planned were randomized to either an AGV or a BGI. Main Outcome Measures IOP, visual acuity, supplemental medical therapy, complications, and failure (IOP > 21 mmHg or not reduced by 20% from baseline, IOP ≤ 5 mmHg, reoperation for glaucoma or removal of implant, or loss of light perception vision). Results At 3 years, IOP (mean ± standard deviation) (SD) was 14.3 ± 4.7 mmHg (AGV group) and 13.1 ± 4.5 mmHg (BGI group) (p = 0.086) on 2.0 ± 1.4 and 1.5 ± 1.4 glaucoma medications respectively (p = 0.020). The cumulative probabilities of failure were 31.3% (standard error = 4.0%) (SE) (AGV) and 32.3% (4.2%) (BGI) (p = 0.99). Postoperative complications associated with reoperation or vision loss of ≥ 2 Snellen lines occurred in 24 patients (22%) (AGV) and 38 patients (36%) (BGI) (p = 0.035). The mean change in the Logarithm of the Minimum Angle of Resolution visual acuity (logMAR VA) at 3 years was similar (AGV: 0.21 ± 0.88, BGI: 0.26 ± 0.74) in the two treatment groups at 3 years (p=0.66). The cumulative proportion of patients (SE) undergoing reoperation for glaucoma prior to the three year postoperative time point was 14.5% (3.0%) in the AGV group compared to 7.6% (2.4%) in the BGI group (p=0.053, log-rank). The relative risk of reoperation for glaucoma in the AGV group was 2.1 times that of the BGI group (95% Confidence Interval:1.0–4.8, p=0.045; Cox proportional hazards regression). Conclusions AGV implantation was associated with the need for significantly greater adjunctive medication to achieve equal success relative to BGI implantation and resulted in a greater relative risk of reoperation for glaucoma. More subjects experienced serious postoperative complications in the BGI group than in the AGV group. PMID:24768240
Treatment Outcomes in the Ahmed Baerveldt Comparison Study after One Year of Follow-up
Budenz, Donald L; Barton, Keith; Feuer, William J; Schiffman, Joyce; Costa, Vital P.; Godfrey, David G.; Buys, Yvonne
2010-01-01
Purpose To determine the relative efficacy and complications of the Ahmed FP7 Glaucoma Valve (AGV) and the Baerveldt 101–350 Glaucoma Implant (BGI) in refractory glaucoma. Design Multicenter randomized controlled clinical trial. Participants 276 patients, including 143 in the AGV group and 133 in the BGI group. Methods Patients aged 18–85 years with refractory glaucoma with intraocular pressure (IOP) greater than or equal to 18 mm Hg in whom an aqueous shunt was planned were randomized to undergo implantation of either an AGV or a BGI. Main Outcome Measures Primary outcome was failure, defined as IOP > 21 mm Hg or not reduced by 20%, IOP ≤ 5 mm Hg, reoperation for glaucoma or removal of implant, or loss of light perception vision. Secondary outcomes included mean IOP, visual acuity, use of supplemental medical therapy, and complications. Results Preoperative IOP (mean ± standard deviation, SD) was 31.2 ± 11.2 in the AGV group and 31.8 ± 12.5 in the BGI group (p = 0.71). At 1 year, IOP was 15.4 ± 5.5 mm Hg in the AGV group and 13.2 ± 6.8 mm Hg in the BGI group (p = 0.007). The number of glaucoma medications (mean ± SD) was 1.8 ± 1.3 in the AGV group and 1.5 ± 1.4 in the BGI group (p = 0.071). The cumulative probability of failure was 16.4% (standard error, SE = 3.1%) in the AGV group and 14.0% (SE = 3.1%) in the BGI group at 1 year (p = 0.52). More patients experienced early postoperative complications in the BGI group (n = 77, 58%) compared to the AGV group (n = 61, 43%, p = 0.016). Serious postoperative complications associated with reoperation and/or vision loss of ≥ 2 Snellen lines occurred in 29 patients (20%) in the AGV group and 45 patients (34%) in the BGI group (p = 0.014). Conclusions Although the average IOP after one year was slightly higher in patients who received an AGV, there were fewer early and serious postoperative complications associated with the use of the AGV than the BGI. PMID:20932583
Sutureless human sclera donor patch graft for Ahmed glaucoma valve.
Zeppa, Lucio; Romano, Mario R; Capasso, Luigi; Tortori, Achille; Majorana, Mara A; Costagliola, Ciro
2010-01-01
To report the safety and effectiveness of a sutureless human sclera donor patch graft covering the subconjunctival portion of glaucoma drainage implant tube to prevent its erosion throughout the overlying conjunctiva. This was a prospective pilot study. Fifteen eyes of 15 consecutive patients not responsive to medical and to not-implant surgical glaucoma treatment underwent Ahmed glaucoma valve (AGV) implant surgery with sutureless human sclera donor patch graft. The surgical procedure included AVG implant placed 8 mm behind the corneal limbus and fixed to the sclera with two 9-0 black nylon sutures. The tube was passed through the scleral tunnel, parallel to the corneal limbus, and shortened at the desired length. The anterior part of the tube was covered with human donor scleral graft and kept in place with fibrin glue (Tissue Coll) under the conjunctiva. Examinations were scheduled at baseline and then at 1 week and 1, 3, 6, and 12 months after surgery. At 12-month follow-up, the best-corrected visual acuity did not significantly improve from baseline 0.78+/-1.2 logMAR, whereas mean intraocular pressure significantly decreased from preoperative values of 29.8 (SD 8.4) mmHg. In all cases, the scleral patch was found in place at each check during the follow-up period. No conjunctival erosion over the AGV tube nor sign of endophthalmitis was recorded at any time during the follow-up period. AVG implant surgery with sutureless human sclera donor patch graft represents an effective and relatively safe surgical procedure for complicated glaucomas, avoiding conjunctival erosions over the AGV tube.
Long-term results of Ahmed glaucoma valve implantation in Egyptian population
Elhefney, Eman; Mokbel, Tharwat; Abou Samra, Waleed; Kishk, Hanem; Mohsen, Tarek; El-Kannishy, Amr
2018-01-01
AIM To evaluate the long-term results and complications of Ahmed glaucoma valve (AGV) implantation in a cohort of Egyptian patients. METHODS A retrospective study of 124 eyes of 99 patients with refractory glaucoma who underwent AGV implantation and had a minimum follow-up of 5y was performed. All patients underwent complete ophthalmic examination and intraocular pressure (IOP) measurement before surgery and at 1d, weekly for the 1st month, 3, 6mo, and 1y after surgery and yearly afterward for 5y. IOP was measured by Goldmann applanation tonometry and/or Tono-Pen. Complications and the number of anti-glaucoma medications needed were recorded. Success was defined as IOP less than 21 mm Hg with or without anti-glaucoma medication and without additional glaucoma surgery. RESULTS Mean age was 23.1±19.9y. All eyes had at least one prior glaucoma surgery. IOP was reduced from a mean of 37.2±6.8 to 19.2±5.2 mm Hg after 5y follow-up with a reduced number of medications from 2.64±0.59 to 1.81±0.4. Complete and qualified success rates were 31.5% and 46.0% respectively at the end of follow-up. The most common complications were encapsulated cyst formation in 51 eyes (41.1%), complicated cataract in 9 eyes (7.25%), recessed tube in 8 eyes (6.45%), tube exposure in 6 eyes (4.8%) and corneal touch in 6 eyes (4.8%). Other complications included extruded AGV, endophthalmitis and persistent hypotony. Each of them was recorded in only 2 eyes (1.6%). CONCLUSION Although refractory glaucoma is a difficult problem to manage, AGV is effective and relatively safe procedure in treating refractory glaucoma in Egyptian patients with long-term follow-up. Encapsulated cyst formation was the most common complication, which limits successful IOP control after AGV implantation. However, effective complications management can improve the rate of success. PMID:29600175
Long-term results of Ahmed glaucoma valve implantation in Egyptian population.
Elhefney, Eman; Mokbel, Tharwat; Abou Samra, Waleed; Kishk, Hanem; Mohsen, Tarek; El-Kannishy, Amr
2018-01-01
To evaluate the long-term results and complications of Ahmed glaucoma valve (AGV) implantation in a cohort of Egyptian patients. A retrospective study of 124 eyes of 99 patients with refractory glaucoma who underwent AGV implantation and had a minimum follow-up of 5y was performed. All patients underwent complete ophthalmic examination and intraocular pressure (IOP) measurement before surgery and at 1d, weekly for the 1 st month, 3, 6mo, and 1y after surgery and yearly afterward for 5y. IOP was measured by Goldmann applanation tonometry and/or Tono-Pen. Complications and the number of anti-glaucoma medications needed were recorded. Success was defined as IOP less than 21 mm Hg with or without anti-glaucoma medication and without additional glaucoma surgery. Mean age was 23.1±19.9y. All eyes had at least one prior glaucoma surgery. IOP was reduced from a mean of 37.2±6.8 to 19.2±5.2 mm Hg after 5y follow-up with a reduced number of medications from 2.64±0.59 to 1.81±0.4. Complete and qualified success rates were 31.5% and 46.0% respectively at the end of follow-up. The most common complications were encapsulated cyst formation in 51 eyes (41.1%), complicated cataract in 9 eyes (7.25%), recessed tube in 8 eyes (6.45%), tube exposure in 6 eyes (4.8%) and corneal touch in 6 eyes (4.8%). Other complications included extruded AGV, endophthalmitis and persistent hypotony. Each of them was recorded in only 2 eyes (1.6%). Although refractory glaucoma is a difficult problem to manage, AGV is effective and relatively safe procedure in treating refractory glaucoma in Egyptian patients with long-term follow-up. Encapsulated cyst formation was the most common complication, which limits successful IOP control after AGV implantation. However, effective complications management can improve the rate of success.
Intelligence Level Performance Standards Research for Autonomous Vehicles.
Bostelman, Roger B; Hong, Tsai H; Messina, Elena
2015-01-01
United States and European safety standards have evolved to protect workers near Automatic Guided Vehicles (AGV's). However, performance standards for AGV's and mobile robots have only recently begun development. Lessons can be learned from research and standards efforts for mobile robots applied to emergency response and military applications. Research challenges, tests and evaluations, and programs to develop higher intelligence levels for vehicles can also used to guide industrial AGV developments towards more adaptable and intelligent systems. These other efforts also provide useful standards development criteria for AGV performance test methods. Current standards areas being considered for AGVs are for docking, navigation, obstacle avoidance, and the ground truth systems that measure performance. This paper provides a look to the future with standards developments in both the performance of vehicles and the dynamic perception systems that measure intelligent vehicle performance.
Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment
NASA Astrophysics Data System (ADS)
Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro
The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.
Trabeculectomy with Ex-PRESS implant versus Ahmed glaucoma valve implantation-a comparative study
Waisbourd, Michael; Fischer, Naomi; Shalev, Hadas; Spierer, Oriel; Ben Artsi, Elad; Rachmiel, Rony; Shemesh, Gabi; Kurtz, Shimon
2016-01-01
AIM To compare the surgical outcomes of trabeculectomy with Ex-PRESS implant and Ahmed glaucoma valve (AGV) implantation. METHODS Patients who underwent trabeculectomy with Ex-PRESS implants or AGV implantation separately were included in this retrospective chart review. Main outcome measures were surgical failure and complications. Failure was defined as intraocular pressure (IOP) >21 mm Hg or <5 mm Hg on two consecutive visits after 3mo, reoperation for glaucoma, or loss of light perception. Eyes that had not failed were considered as complete success if they did not required supplemental medical therapy. RESULTS A total of 64 eyes from 57 patients were included: 31 eyes in the Ex-PRESS group and 33 eyes in the AGV group. The mean follow-up time was 2.6±1.1y and 3.3±1.6y, respectively. Patients in the AGV group had significantly higher baseline mean IOP (P=0.005), lower baseline mean visual acuity (VA) (P=0.02), and higher proportion of patients with history of previous trabeculectomy (P<0.0001). Crude failure rates were 16.1%, n=5/31 in the Ex-PRESS group and 24.2%, n=8/33 in the AGV group. The cumulative proportion of failure was similar between the groups, P=0.696. The proportion of eyes that experienced postoperative complications was 32.3% in the Ex-PRESS group and 60.1% in the AGV group (P=0.0229). CONCLUSION Trabeculectomy with Ex-PRESS implant and AGV implantation had comparable failure rates. The AGV group had more post-operative complications, but also included more complex cases with higher baseline mean IOP, worse baseline mean VA, and more previous glaucoma surgeries. Therefore, the results are limited to the cohort included in this study. PMID:27803857
Kubaisi, Buraa; Maleki, Arash; Ahmed, Aseef; Lamba, Neel; Sahawneh, Haitham; Stephenson, Andrew; Montieth, Alyssa; Topgi, Shobha; Foster, C Stephen
2018-01-01
To evaluate the efficacy and safety of Ahmed glaucoma valve (AGV) in eyes with noninfectious uveitis that had fluocinolone acetonide intravitreal implant (Retisert™)-induced glaucoma. This retrospective study reviewed the safety and efficacy of AGV implantation in patients with persistently elevated intraocular pressure (IOP) after implantation of a fluocinolone acetonide intravitreal implant at the Massachusetts Eye Research and Surgery Institution between August 2006 and November 2015. Nine patients with 10 uveitic eyes were included in this study, none of which had preexisting glaucoma in the study eye. Mean patient age was 42 years; 6 patients were female and 3 were male. Baseline mean IOP was 30.6 mmHg prior to AGV placement while mean IOP-lowering medications were 2.9. In the treatment groups, there was a statistically significant reduction in post-AGV IOP. IOP was lowest at 1-week after AGV implantation (9.0 mmHg). Nine out of 10 eyes achieved an IOP below target value of 22 mmHg and/or a 20% reduction in IOP from baseline 1 month and 1 year following AGV placement. All other postoperative time points showed all 10 eyes reaching this goal. A statistically significant decrease in IOP-lowering medication was seen at the 1-week, 1-month, and 3-year time points compared to baseline, while a statistically significant increase was seen at the 3-month, 6-month, and 2-year post-AGV time points. No significant change in retinal nerve thickness or visual field analysis was found. AGV is an effective and safe method of treatment in fluocinolone acetonide intravitreal implant-induced glaucoma. High survival rate is expected for at least 3 years.
Cheng, Jason; Beltran-Agullo, Laura; Buys, Yvonne M; Moss, Edward B; Gonzalez, Johanna; Trope, Graham E
2016-06-01
To assess the validity of a preimplantation flow test to predict early hypotony [intraocular pressure (IOP)≤5 mm Hg on 2 consecutive visits and hypertensive phase (HP) (IOP>21 mm Hg) after Ahmed Glaucoma Valve (AGV) implantation. Prospective interventional study on patients receiving an AGV. A preimplantation flow test using a gravity-driven reservoir and an open manometer was performed on all AGVs. Opening pressure (OP) and closing pressure (CP) were defined as the pressure at which fluid was seen to flow or stop flowing through the AGV, respectively. OP and CP were measured twice per AGV. Patients were followed for 12 weeks. In total, 20 eyes from 19 patients were enrolled. At 12 weeks the mean IOP decreased from 29.2±9.1 to 16.8±5.2 mm Hg (P<0.01). The mean AGV OP was 17.5±5.4 mm Hg and the mean CP was 6.7±2.3 mm Hg. Early (within 2 wk postoperative) HP occurred in 37% and hypotony in 16% of cases. An 18 mm Hg cutoff for the OP gave a sensitivity of 0.71, specificity of 0.83, positive predictive value of 0.71, and negative predictive value of 0.83 for predicting an early HP. A 7 mm Hg cutoff for the CP yielded a sensitivity of 1.0, specificity of 0.38, positive predictive value of 0.23, and negative predictive value of 1.0 for predicting hypotony. Preoperative OP and CP may predict early hypotony or HP and may be used as a guide as to which AGV valves to discard before implantation surgery.
Kubaisi, Buraa; Maleki, Arash; Ahmed, Aseef; Lamba, Neel; Sahawneh, Haitham; Stephenson, Andrew; Montieth, Alyssa; Topgi, Shobha; Foster, C Stephen
2018-01-01
Purpose To evaluate the efficacy and safety of Ahmed glaucoma valve (AGV) in eyes with noninfectious uveitis that had fluocinolone acetonide intravitreal implant (Retisert™)-induced glaucoma. Methods This retrospective study reviewed the safety and efficacy of AGV implantation in patients with persistently elevated intraocular pressure (IOP) after implantation of a fluocinolone acetonide intravitreal implant at the Massachusetts Eye Research and Surgery Institution between August 2006 and November 2015. Results Nine patients with 10 uveitic eyes were included in this study, none of which had preexisting glaucoma in the study eye. Mean patient age was 42 years; 6 patients were female and 3 were male. Baseline mean IOP was 30.6 mmHg prior to AGV placement while mean IOP-lowering medications were 2.9. In the treatment groups, there was a statistically significant reduction in post-AGV IOP. IOP was lowest at 1-week after AGV implantation (9.0 mmHg). Nine out of 10 eyes achieved an IOP below target value of 22 mmHg and/or a 20% reduction in IOP from baseline 1 month and 1 year following AGV placement. All other postoperative time points showed all 10 eyes reaching this goal. A statistically significant decrease in IOP-lowering medication was seen at the 1-week, 1-month, and 3-year time points compared to baseline, while a statistically significant increase was seen at the 3-month, 6-month, and 2-year post-AGV time points. No significant change in retinal nerve thickness or visual field analysis was found. Conclusion AGV is an effective and safe method of treatment in fluocinolone acetonide intravitreal implant-induced glaucoma. High survival rate is expected for at least 3 years. PMID:29750012
Senthil, Sirisha; Badakare, Akshay
2014-01-01
A 10-year-old girl underwent an Ahmed glaucoma valve (AGV) implantation as a primary procedure for glaucoma in aphakia due to congenital cataract surgery. Following an unintended accidental excision of AGV tube during bleb revision for hypertensive phase, AGV was explanted and a second AGV was implanted in the same quadrant after 2 weeks. This resulted in a rare complication of dynamic tube movement in the anterior chamber with tube corneal touch and localised corneal oedema. Excision of the offending unstable tube and placement of a paediatric AGV in a different quadrant led to resolution of this complication, stable vision and well-controlled intraocular pressure. This case highlights the possible causes of dynamic tube, related complications and its management. This case also highlights the importance of understanding the various physiological phases after glaucoma drainage device implantation and their appropriate management. PMID:24695662
Khalaf, H; Shoukri, M; Al-Kadhi, Y; Neimatallah, M; Al-Sebayel, M
2007-06-01
Accurate estimation of graft volume is crucial to avoid small-for-size syndrome following adult-to-adult living donor liver transplantation AALDLT). Herein, we combined radiological and mathematical approaches for preoperative assessment of right graft volume. The right graft volume was preoperatively estimated in 31 live donors using two methods: first, the radiological graft volume (RGV) by computed tomography (CT) volumetry and second, a calculated graft volume (CGV) obtained by multiplying the standard liver volume by the percentage of the right graft volume (given by CT). Both methods were compared to the actual graft volume (AGV) measured during surgery. The graft recipient weight ratio (GRWR) was also calculated using all three volumes (RGV, CGV, and AGV). Lin's concordance correlation coefficient (CCC) was used to assess the agreement between AGV and both RGV and CGV. This was repeated using the GRWR measurements. The mean percentage of right graft volume was 62.4% (range, 55%-68%; SD +/- 3.27%). The CCC between AGV and RGV versus CGV was 0.38 and 0.66, respectively. The CCC between GRWR using AGV and RGV versus CGV was 0.63 and 0.88, respectively (P < .05). According to the Landis and Kock benchmark, the CGV correlated better with AGV when compared to RGV. The better correlation became even more apparent when applied to GRWR. In our experience, CGV showed a better correlation with AGV compared with the RGV. Using CGV in conjunction with RGV may be of value for a more accurate estimation of right graft volume for AALDLT.
Tai, Ming-Cheng; Chen, Yi-Hao; Cheng, Jen-Hao; Liang, Chang-Min; Chen, Jiann-Torng; Chen, Ching-Long; Lu, Da-Wen
2012-01-01
Background To evaluate the efficacy of Ahmed Glaucoma Valve (AGV) surgery and the optimal interval between penetrating keratoplasty (PKP) and AGV implantation in a population of Asian patients with preexisting glaucoma who underwent PKP. Methodology/Principal Findings In total, 45 eyes of 45 patients were included in this retrospective chart review. The final intraocular pressures (IOPs), graft survival rate, and changes in visual acuity were assessed to evaluate the outcomes of AGV implantations in eyes in which AGV implantation occurred within 1 month of post-PKP IOP elevation (Group 1) and in eyes in which AGV implantation took place more than 1 month after the post-PKP IOP evaluation (Group 2). Factors that were associated with graft failure were analyzed, and the overall patterns of complications were reviewed. By their final follow-up visits, 58% of the patients had been successfully treated for glaucoma. After the operation, there were no statistically significant differences between the groups with respect to graft survival (p = 0.98), but significant differences for IOP control (p = 0.049) and the maintenance of visual acuity (VA) (p<0.05) were observed. One year after surgery, the success rates of IOP control in Group 1 and Group 2 were 80% and 46.7%, respectively, and these rates fell to 70% and 37.3%, respectively, by 2 years. Factors that were associated with a high risk of AGV failure were a diagnosis of preexisting angle-closure glaucoma, a history of previous PKP, and a preoperative IOP that was >21 mm Hg. The most common surgical complication, aside from graft failure, was hyphema. Conclusions/Significance Early AGV implantation results in a higher probability of AGV survival and a better VA outcome without increasing the risk of corneal graft failure as a result of post-PKP glaucoma drainage tube implantation. PMID:22629464
Kim, Min Su; Kim, Kyoung Nam; Kim, Chang-Sik
2016-12-01
To compare changes in corneal endothelial cell density (CECD) after Ahmed glaucoma valve (AGV) implantation and trabeculectomy. Changes in corneal endothelium in patients that underwent AGV implantation or trabeculectomy were prospectively evaluated. Corneal specular microscopy was performed at the central cornea using a non-contact specular microscope before surgery and 6 months and 12 months after surgery. The CECD, hexagonality of the endothelial cells, and the coefficient of variation of the cell areas were compared between the two groups. Forty eyes of 40 patients with AGV implantation and 28 eyes of 28 patients with trabeculectomy were studied. Intraocular pressure in the AGV implantation group was significantly higher than that in the trabeculectomy group ( p < 0.001), but there was no significant difference in other clinical variables between the two groups. In the AGV implantation group, the mean CECD significantly decreased by 9.4% at 6 months and 12.3% at 12 months compared with baseline values (both, p < 0.001), while it decreased by 1.9% at 6 months and 3.2% at 12 months in the trabeculectomy group ( p = 0.027 and p = 0.015, respectively). The changes at 6 months and 12 months in the AGV implantation group were significantly higher than those in the trabeculectomy group ( p = 0.030 and p = 0.027, respectively). In the AGV implantation group, there was a significant decrease in the CECD between baseline and 6 months and between 6 months and 12 months ( p < 0.001 and p = 0.005, respectively). However, in the trabeculectomy group, a significant decrease was observed only between baseline and 6 months ( p = 0.027). Both the AGV implantation group and the trabeculectomy group showed statistically significant decreases in the CECD 1 year after surgery. The decrease in CECD in the AVG implantation group was greater and persisted longer than that in the trabeculectomy group.
Telematic Problems of Unmanned Vehicles Positioning at Container Terminals and Warehouses
NASA Astrophysics Data System (ADS)
Kwasniowski, Stanisław; Zajac, Mateusz; Zajac, Paweł
This paper describes the issues of transshipment container terminals operations, in the light of the development of this kind of transport. An increase in handling requires an expansion of stacking yard and automation of handling and transport processes. The development in this area first and foremost depends on modern handling technologies and automatic identification systems. AGV trucks play a key role in in those systems. The role of universities is to promote innovative technologies. Paper [2] contains the status of intermodal terminals development in Poland, which was awarded the prize of the Minister of Infrastructure of Poland in the field of "organization and management." The paper contains a detailed description of the principles of positioning, control and propulsion of AGV vehicles. The content was developed to make it understandable to logisticians responsible for the implementation question in Poland.
HaiBo, Tan; Xin, Kang; ShiHeng, Lu; Lin, Liu
2015-01-01
To compare the efficacy and safety of Ahmed glaucoma valve implantation (AGV) with trabeculectomy in the management of glaucoma patients. A comprehensive literature search (PubMed, Embase, Google, and the Cochrane library) was performed, including a systematic review with meta-analysis of controlled clinical trials comparing AGV versus trabeculectomy. Efficacy estimates were the weighted mean differences (WMDs) for the percentage intraocular pressure reduction (IOPR %) from baseline to end-point, the reduction in glaucoma medications, and the odds ratios (ORs) for complete and qualified success rates. Safety estimates were the relative risks (RRs) for adverse events. All outcomes were reported with a 95% confidence interval (CI). Statistical analysis was performed using the RevMan 5.0 software. Six controlled clinical trials were included in this meta-analysis. There was no significant difference between the AGV and trabeculectomy in the IOPR% (WMD = -3.04, 95% CI: -8.36- 2.26; P = 0.26). The pooled ORs comparing AGV with trabeculectomy were 0.46 (0.22, 0.99) for the complete success rate (P = 0.05) and 0.97 (0.78-1.20) for the quantified success rate (P = 0.76). No significant difference in the reduction in glaucoma medicines was observed (WMD = 0.24; 95% CI: -0.27-0.76; P = 0.35). AGV was found to be associated with a significantly lower frequency of all adverse events (RR = 0.71; 95%CI: 1.14-0.97; p = 0.001) than trabeculectomy, while the most common complications did not differ significantly (all p> 0.05). AGV was equivalent to trabeculectomy in reducing the IOP, the number of glaucoma medications, success rates, and rates of the most common complications. However, AGV was associated with a significantly lower frequency of overall adverse events.
Resende, Arthur F; Moster, Marlene R; Patel, Neal S; Lee, Daniel; Dhami, Hermandeep; Pro, Michael J; Waisbourd, Michael
2016-09-01
Glaucoma patients with markedly elevated intraocular pressure (IOP) are at risk for developing severe hypotony-related complications. The goal of this study was to compare the surgical outcomes of the Ahmed Glaucoma Valve (AGV) and the Baerveldt Glaucoma Implant (BGI) in this patient population. Patients with preoperative IOP≥30 mm Hg were included. Outcome measures were: (1) surgical failure (IOP>21 mm Hg or <30% reduction from baseline or IOP≤5 mm Hg on 2 consecutive follow-up visits after 3 mo, or additional glaucoma surgery, or loss of light perception) and (2) surgical complications. A total of 75 patients were included: 37 in the AGV group and 38 in the BGI group. The mean±SD follow-up was 2.3±1.6 years for the AGV group and 2.4±1.7 years for the BGI group (P=0.643). Mean preoperative IOP was 38.7±6.5 mm Hg for the AGV group and 40.8±7.6 mm Hg for the BGI group. At the last follow-up, 10 (27.0%) patients failed in the AGV group compared with 6 (15.8%) patients in the BGI group (P=0.379). The BGI group had higher rate of flat or shallow anterior chamber (n=4, 10%) compared with the AGV group (n=0, 0%) (P=0.043). Failure rates of AGV and BGI in patients with IOP≥30 mm Hg were comparable. There were more early hypotony-related complications in the BGI group; however, none were vision threatening. Both glaucoma drainage implants were effective in treating patients with uncontrolled glaucoma in an emergency setting.
A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem
NASA Astrophysics Data System (ADS)
Pourrahimian, Parinaz
2017-11-01
Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Algorithm (MA) for optimizing partitioning problem of tandem AGVS. MAs employ a Genetic Algorithm (GA), as a global search, and apply a local search to bring the solutions to a local optimum point. A new Tabu Search (TS) has been developed and combined with a GA to refine the newly generated individuals by GA. The aim of the proposed algorithm is to minimize the maximum workload of the system. After all, the performance of the proposed algorithm is evaluated using Matlab. This study also compared the objective function of the proposed MA with GA. The results showed that the TS, as a local search, significantly improves the objective function of the GA for different system sizes with large and small numbers of zone by 1.26 in average.
Miraftabi, Arezoo; Nilforushan, Naveed
2016-01-01
To report a complication pertaining to subconjunctival bevacizumab injection as an adjunct to Ahmed Glaucoma Valve (AGV) implantation. A 54-year-old woman with history of complicated cataract surgery was referred for advanced intractable glaucoma. AGV implantation with adjunctive subconjunctival bevacizumab (1.25 mg) was performed with satisfactory results during the first postoperative week. However, 10 days after surgery, she developed wound dehiscence and tube exposure. The second case was a 33-year-old man with history of congenital glaucoma and uncontrolled IOP who developed AGV exposure and wound dehiscence after surgery. In both cases, for prevention of endophthalmitis and corneal damage by the unstable tube, the shunt was removed and the conjunctiva was re-sutured. The potential adverse effect of subconjunctival bevacizumab injection on wound healing should be considered in AGV surgery.
Miraftabi, Arezoo; Nilforushan, Naveed
2016-01-01
Purpose: To report a complication pertaining to subconjunctival bevacizumab injection as an adjunct to Ahmed Glaucoma Valve (AGV) implantation. Case Report: A 54-year-old woman with history of complicated cataract surgery was referred for advanced intractable glaucoma. AGV implantation with adjunctive subconjunctival bevacizumab (1.25 mg) was performed with satisfactory results during the first postoperative week. However, 10 days after surgery, she developed wound dehiscence and tube exposure. The second case was a 33-year-old man with history of congenital glaucoma and uncontrolled IOP who developed AGV exposure and wound dehiscence after surgery. In both cases, for prevention of endophthalmitis and corneal damage by the unstable tube, the shunt was removed and the conjunctiva was re-sutured. Conclusion: The potential adverse effect of subconjunctival bevacizumab injection on wound healing should be considered in AGV surgery. PMID:27195095
Comparison of the Ahmed glaucoma valve with the Baerveldt glaucoma implant: a meta-analysis.
Wang, Yi-Wen; Wang, Ping-Bao; Zeng, Chao; Xia, Xiao-Bo
2015-10-13
This study aims to compare the efficacy and safety of the Ahmed glaucoma valve (AGV) with the Baerveldt glaucoma implant (BGI) in glaucoma patients. Databases were searched to identify studies that met pre-stated inclusion criteria, involving randomized controlled clinical trials (RCTs) and non-randomized controlled clinical trials. Treatment effect was analyzed using a random-effect model. Ten controlled clinical trials (1048 eyes) were analyzed, involving two RCTs and eight retrospective comparative studies. Short-term results (6-18 months) and long-term results (>18 months) were analyzed separately. There was no significant difference in the success rate for short-term follow-up between the AGV and BGI groups (5 studies, 714 eyes, odds ratio [OR]: 0.97; 95 % confidence interval [CI]: 0.56, 1.66; P = 0.90). For long-term pooled results (7 studies, 835 eyes), the success rate of AGVs was lower than that of BGIs (OR: 0.73; 95 % CI: 0.54, 0.99, P = 0.04), However, subgroup and sensitivity analyses did not show a significant difference in the success rate between the two groups (P ≥0.05). The AGV group had a higher mean intraocular pressure than the BGI group in short-term (6 studies, 685 eyes, weighted mean difference [WMD]: 2.12 mmHg; 95 % CI: 0.72-3.52; P <0.05) and long-term pooled results (7 studies, 659 eyes, WMD: 1.85 mmHg; 95 % CI: 0.43, 3.28; P = 0.01). The BGI group required fewer glaucoma medications after implantation than the AGV group in two follow-up periods (all P <0.05). The AGV was found to be associated with a significantly lower frequency of total complications (8 studies, 971 eyes, OR: 0.67; 95 % CI: 0.50-0.90; P = 0.007) and severe complications (8 studies, 971 eyes, OR: 0.57; 95 % CI: 0.36-0.91; P = 0.02) than the BGI. The study showed no significant difference in success rate between the two groups. The BGI was more effective for control of intraocular pressure and required fewer medications than the AGV, but the AGV had lower incidence of total and severe complications than the BGI.
Ahmed glaucoma valve in eyes with preexisting episcleral encircling element.
Choudhari, Nikhil Shreeram; George, Ronnie; Shantha, Balekudaru; Neog, Aditya; Tripathi, Shweta; Srinivasan, Bhaskar; Vijaya, Lingam
2014-05-01
To describe the use of Ahmed glaucoma valve (AGV) in the management of intractable glaucoma in eyes with a preexisting episcleral encircling element. This is a retrospective, consecutive, noncomparative study. The study included 12 eyes of 12 patients with a preexisting episcleral encircling element that underwent implantation of silicone AGV to treat intractable glaucoma during January 2009 to September 2010. The mean patient age was 25.6 (standard deviation 17.1) years. Five (41.6%) patients were monocular. The indications for AGV were varied. The mean duration between placement of episcleral encircling element and implantation of AGV was 30.5 (33.8) months. The mean follow-up was 37.4 (22.9) weeks. Preoperatively, the mean intraocular pressure (IOP) was 31.4 (7.9) mmHg and the mean antiglaucoma medications were 2.8. At the final postoperative follow-up, the mean IOP was 12.5 (3.5) mmHg and the mean number of antiglaucoma medications was 0.8 (P < 0.001). The complications observed over the follow-up period did include corneal graft failure in three eyes, tube erosion in two eyes and rhegmatogenous retinal detachment in one eye. AGV is an effective option in the management of intractable glaucoma in eyes with a preexisting episcleral encircling element keeping in mind the possibility of significant postoperative complications.
Al-Mobarak, Faisal; Khan, Arif O
2009-10-01
To evaluate the effect of intraoperative mitomycin-C (MMC) on polypropylene Ahmed glaucoma valve (AGV) survival 2 years after implantation during the first 2 years of life. Retrospective institutional comparative series (1995-2005). Thirty-one eyes of 27 patients (23 unilateral, 4 bilateral; 16 boys, 11 girls) undergoing AGV implantation at a mean age of 11.1 months (standard deviation [SD], 5.46), all of which had 2 years of regular postoperative follow-up. MMC was applied intraoperatively in those cases in the area of AGV implantation in 16 (52%) and was not applied in 15 (48%). In some eyes, MMC was applied intraoperatively in cases done by the surgeons who routinely used MMC for all AGV implantation in young children. Failure was defined as intraocular pressure (IOP) > 22 mmHg with or without glaucoma medications, the need for an additional procedure for IOP control, or the occurrence of significant complications (e.g., endophthalmitis, retinal detachment, persistent hypotony [IOP < 5 mmHg]). Survival was the absence of failure. Failure or significant complications as defined. Mean survival for the non-MMC eyes (22.15 months; standard error [SE], 1.93) was significantly longer than survival for the MMC eyes (16.25 months; SE, 2.17) by the log-rank test (P = 0.025). The difference in cumulative survival at 2 years was also significantly different by log-rank test (P = 0.001): 80.0% (SE 10.3) and 31.3% (SE 11.6), respectively. Rather than improved survival, intraoperative use of MMC was associated with shorter survival 2 years after AGV implantation during the first 2 years of life. We speculate that MMC-induced tissue death can stimulate a reactive fibrosis around the AGV in very young eyes.
Pericardium Plug in the Repair of the Corneoscleral Fistula After Ahmed Glaucoma Valve Explantation
Yoo, Chungkwon; Kwon, Sung Wook
2008-01-01
We report four cases in which a pericardium (Tutoplast®) plug was used to repair a corneoscleral fistula after Ahmed Glaucoma Valve (AGV) explantation. In four cases in which the AGV tube had been exposed, AGV explantation was performed using a pericardium (Tutoplast®) plug to seal the defect previously occupied by the tube. After debridement of the fistula, a piece of processed pericardium (Tutoplast®), measured 1 mm in width, was plugged into the fistula and secured with two interrupted 10-0 nylon sutures. To control intraocular pressure, a new AGV was implanted elsewhere in case 1, phaco-trabeculectomy was performed concurrently in case 2, cyclophotocoagulation was performed postoperatively in case 3 and anti-glaucomatous medication was added in case 4. No complication related to the fistula developed at the latest follow-up (range: 12~26 months). The pericardium (Tutoplast®) plug seems to be an effective method in the repair of corneoscleral fistulas resulting from explantation of glaucoma drainage implants. PMID:19096247
Kim, Kyoung Nam; Lee, Sung Bok; Lee, Yeon Hee; Lee, Jong Joo; Lim, Hyung Bin; Kim, Chang-Sik
2016-07-01
To evaluate changes in the corneal endothelial cell density (ECD) and corneal decompensation following Ahmed glaucoma valve (AGV) implantation. This study was retrospective and observational case series. Patients with refractory glaucoma who underwent AGV implantation and were followed >5 years were consecutively enrolled. We reviewed the medical records, including the results of central corneal specular microscopy. Of the 127 enrolled patients, the annual change in ECD (%) was determined using linear regression for 72 eyes evaluated at least four times using serial specular microscopic examination and compared with 31 control eyes (fellow glaucomatous eyes under medical treatment). The main outcome measures were cumulative risk of corneal decompensation and differences in the ECD loss rates between subjects and controls. The mean follow-up after AGV implantation was 43.1 months. There were no cases of postoperative tube-corneal touch. The cumulative risk of corneal decompensation was 3.3%, 5 years after AGV implantation. There was a more rapid loss of ECD in the 72 subject eyes compared with the 31 controls (-7.0% and -0.1%/year, respectively; p<0.001). However, the rate of loss decreased over time and statistical significance compared with control eyes disappeared after 2 years postoperatively: -10.7% from baseline to 1 year (p<0.01), -7.0% from 1 year to 2 years (p=0.037), -4.2% from 2 years to 3 years (p=0.230) and -2.7% from 3 years to the final follow-up (p=0.111). In case of uncomplicated AGV implantation, the cumulative risk of corneal decompensation was 3.3%, 5 years after the operation. The ECD loss was statistically greater in eyes with AGV than in control eyes without AGV, but the difference was significant only up to 2 years post surgery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Ahmed glaucoma valve in eyes with preexisting episcleral encircling element
Choudhari, Nikhil Shreeram; George, Ronnie; Shantha, Balekudaru; Neog, Aditya; Tripathi, Shweta; Srinivasan, Bhaskar; Vijaya, Lingam
2014-01-01
Background: To describe the use of Ahmed glaucoma valve (AGV) in the management of intractable glaucoma in eyes with a preexisting episcleral encircling element. Materials and Methods: This is a retrospective, consecutive, noncomparative study. The study included 12 eyes of 12 patients with a preexisting episcleral encircling element that underwent implantation of silicone AGV to treat intractable glaucoma during January 2009 to September 2010. Results: The mean patient age was 25.6 (standard deviation 17.1) years. Five (41.6%) patients were monocular. The indications for AGV were varied. The mean duration between placement of episcleral encircling element and implantation of AGV was 30.5 (33.8) months. The mean follow-up was 37.4 (22.9) weeks. Preoperatively, the mean intraocular pressure (IOP) was 31.4 (7.9) mmHg and the mean antiglaucoma medications were 2.8. At the final postoperative follow-up, the mean IOP was 12.5 (3.5) mmHg and the mean number of antiglaucoma medications was 0.8 (P < 0.001). The complications observed over the follow-up period did include corneal graft failure in three eyes, tube erosion in two eyes and rhegmatogenous retinal detachment in one eye. Conclusion: AGV is an effective option in the management of intractable glaucoma in eyes with a preexisting episcleral encircling element keeping in mind the possibility of significant postoperative complications. PMID:24881603
Hwang, Sung Ha; Yoo, Chungkwon; Kim, Yong Yeon; Lee, Dae Young; Nam, Dong Heun; Lee, Jong Yeon
2017-12-01
Glaucoma drainage implant surgery is a treatment option for the management of neovascular glaucoma. However, tube obstruction by blood clot after Ahmed glaucoma valve (AGV) implantation is an unpredictable clinically challenging situation. We report 4 cases using intracameral air injection for the prevention of the tube obstruction of AGV by blood clot. The first case was a 57-year-old female suffering from ocular pain because of a tube obstruction with blood clot after AGV implantation in neovascular glaucoma. Surgical blood clot removal was performed. However, intractable bleeding was noted during the removal of the blood clot, and so intracameral air injection was performed to prevent a recurrent tube obstruction. After the procedure, although blood clots formed around the tube, the tube opening where air could touch remained patent. In 3 cases of neovascular glaucoma with preoperative severe intraocular hemorrhages, intracameral air injection and AGV implantation were performed simultaneously. In all 3 cases, tube openings were patent. It appears that air impeded the blood clots formation in front of the tube opening. Intracameral air injection could be a feasible option to prevent tube obstruction of AGV implant with a blood clot in neovascular glaucoma with high risk of tube obstruction. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Outcomes and Complications of Ahmed Tube Implantation in Asian Eyes.
Choo, Jessica Qian Hui; Chen, Ziyou David; Koh, Victor; Liang, Shen; Aquino, Cecilia Maria; Sng, Chelvin; Chew, Paul
2018-06-18
There is a lack of long-term Asian studies on the efficacy and safety of Ahmed glaucoma valve (AGV) implantation. This study seeks to determine the outcomes and complications of AGV implantation in Asians. Retrospective review of AGV surgeries performed at a single centre in Singapore was conducted. 76 patients with primary and secondary glaucoma who underwent their first AGV surgery from 1st January 2010 to 31st December 2012 were considered for our study. Primary outcomes evaluated were: failure, intra-ocular pressure, best-corrected visual acuity (BCVA), number of IOP-lowering medications and complications. Failure was defined by: IOP >21▒mm Hg on two consecutive visits after 3 months, IOP ≤5▒mm Hg on two consecutive visits after 3 months, reoperation for glaucoma, removal of implant or loss of light perception vision. Mean follow-up duration was 33.2±6.9 months. There was significant reduction in IOP (mean reduction 25.9%, P<0.001) and number of IOP-lowering medications (mean reduction 77.8%, P<0.001) at 3 years. Absolute failure rate was 23.9% at 3 years with no difference between eyes with or without previous trabeculectomy and between eyes with primary or secondary glaucoma. Occurrence of post-operative hyphema was a significant risk factor for failure. Commonest post-operative complications were hyphema and tube exposure. At 3 years after AGV surgery in Asian eyes, less than one-quarter of the eyes fulfilled the criteria for surgical failure.
Eksioglu, Umit; Yakin, Mehmet; Sungur, Gulten; Satana, Banu; Demirok, Gulizar; Balta, Ozgur; Ornek, Firdevs
2017-06-01
The aim of this study was to evaluate the long-term outcome of Ahmed glaucoma valve (AGV) implant for elevated intraocular pressure (IOP) in pediatric patients with uveitis. This was a retrospective chart review. The study included 16 eyes (11 children) with uveitis. Success was defined as having IOP between 6 and 21 mm Hg with (qualified success) or without (complete success) antiglaucoma medications and without the need for further glaucoma or tube extraction surgery. Mean age of patients at the time of AGV implantation was 14.19 ± 3.25 years. AGV implantation was the first glaucoma surgical procedure in 12 eyes (75%). Average postoperative follow-up period was 64.46 ± 33.56 months. Mean preoperative IOP was 33.50 ± 7.30 mm Hg versus 12.69 ± 3.20 mm Hg at the last follow-up visit (p < 0.001). Three eyes (18.7%) were determined as cases of "failure" because of tube removal in 2 eyes and a second AGV implantation in 1 eye. The cumulative probability of complete success was 68.8% at 6 months, 56.3% at 12 months, 49.2% at 36 months, 42.2% at 48 months, and 35.2% at 84 months, and the cumulative probability of eyes without complication was 75.0% at 6 months, 66.7% at 24 months, 58.3% at 36 months, 48.6% at 48 months and 24.3% at 108 months based on Kaplan-Meier survival analysis. Although AGV implant is an effective choice in the management of elevated IOP in pediatric uveitis, antiglaucoma medications are frequently needed for control of IOP. Tube exposure is an important complication in the long term. Differential diagnosis between relapse of uveitis and endophthalmitis is important in patients who received AGV implantation. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Evaluation of success after second Ahmed glaucoma valve implantation.
Nilforushan, Naveed; Yadgari, Maryam; Jazayeri, Anis Alsadat; Karimi, Nasser
2016-03-01
To evaluate the outcome of the second Ahmed glaucoma valve (AGV) surgery in eyes with failed previous AGV surgery. Retrospective case series. Following chart review, 36 eyes of 34 patients with second AGV implantation were enrolled in this study. The primary outcome measure was surgical success defined in terms of intraocular pressure (IOP) control using two criteria: Success was defined as IOP ≤21 mmHg (criterion 1) and IOP ≤16 mmHg (criterion 2), with at least 20% reduction in IOP, either with no medication (complete success) or with no more than two medications (qualified success). Kaplan-Meier survival analysis was used to determine the probability of surgical success. The average age of the patients was 32.7 years (range 4-65), and the mean duration of follow-up was 21.4 months (range 6-96). Preoperatively, the mean IOP was 26.94 mmHg (standard deviation [SD] 7.03), and the patients were using 2.8 glaucoma medications on average (SD 0.9). The mean IOP decreased significantly to 13.28 mmHg (SD 3.59) at the last postoperative visit (P = 0.00) while the patients needed even fewer glaucoma medications on average (1.4 ± 1.1, P = 0.00). Surgical success of second glaucoma drainage devices (Kaplan-Meier analysis), according to criterion 1, at 6, 12, 18, and 42 months was 94%, 85%, 80%, and 53% respectively, and according to criterion 2, was 94%, 85%, 75%, and 45%, respectively. Repeated AGV implantation seems to be a safe modality of treatment with acceptable success rate in cases with failed previous AGV surgery.
Panda, Anita; Prakash, Vadivelu Jaya; Dada, Tanuj; Gupta, Anoop Kishore; Khokhar, Sudarshan; Vanathi, Murugesan
2011-01-01
Aim: The aim was to evaluate the outcome of Ahmed glaucoma valve (AGV) in post-penetrating-keratoplasty glaucoma (PKPG). Materials and Methods: In this prospective study, 20 eyes of 20 adult patients with post-PKPG with intraocular pressure (IOP) >21 mmHg, on two or more antiglaucoma medications, underwent AG (model FP7) implantation and were followed up for a minimum of 6 months. Absolute success was defined as 5
Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst
NASA Astrophysics Data System (ADS)
Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning
2018-02-01
Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.
Evaluation of success after second Ahmed glaucoma valve implantation
Nilforushan, Naveed; Yadgari, Maryam; Jazayeri, Anis Alsadat; Karimi, Nasser
2016-01-01
Purpose: To evaluate the outcome of the second Ahmed glaucoma valve (AGV) surgery in eyes with failed previous AGV surgery. Design: Retrospective case series. Patients and Methods: Following chart review, 36 eyes of 34 patients with second AGV implantation were enrolled in this study. The primary outcome measure was surgical success defined in terms of intraocular pressure (IOP) control using two criteria: Success was defined as IOP ≤21 mmHg (criterion 1) and IOP ≤16 mmHg (criterion 2), with at least 20% reduction in IOP, either with no medication (complete success) or with no more than two medications (qualified success). Kaplan–Meier survival analysis was used to determine the probability of surgical success. Results: The average age of the patients was 32.7 years (range 4–65), and the mean duration of follow-up was 21.4 months (range 6–96). Preoperatively, the mean IOP was 26.94 mmHg (standard deviation [SD] 7.03), and the patients were using 2.8 glaucoma medications on average (SD 0.9). The mean IOP decreased significantly to 13.28 mmHg (SD 3.59) at the last postoperative visit (P = 0.00) while the patients needed even fewer glaucoma medications on average (1.4 ± 1.1, P = 0.00). Surgical success of second glaucoma drainage devices (Kaplan–Meier analysis), according to criterion 1, at 6, 12, 18, and 42 months was 94%, 85%, 80%, and 53% respectively, and according to criterion 2, was 94%, 85%, 75%, and 45%, respectively. Conclusion: Repeated AGV implantation seems to be a safe modality of treatment with acceptable success rate in cases with failed previous AGV surgery. PMID:27146930
Koh, Kyung Min; Hwang, Young Hoon; Jung, Jong Jin; Sohn, Yong Ho
2013-01-01
Purpose To compare the success rates, complications, and visual outcomes between silicone Ahmed glaucoma valve (AGV) implantation with 96 mm2 (FP8) or 184 mm2 (FP7) surface areas. Methods This study is a retrospective review of the records from 132 adult patients (134 eyes) that underwent silicone AGV implant surgery. Among them, the outcomes of 24 eyes from 24 patients with refractory glaucoma who underwent FP8 AGV implantation were compared with 76 eyes from 76 patients who underwent FP7 AGV implantation. Preoperative and postoperative data, including intraocular pressure (IOP), visual acuity, number of medications, and complications were compared between the 2 groups. Results There were no significant differences in baseline characteristics between the 2 groups (p > 0.05). The postoperative visual acuity of the patients in the FP8 group was better than that of the patients in the FP7 group in some early postoperative periods (p < 0.05); however, after 10 postoperative months, visual acuity was not significantly different through the 3-year follow-up period (p > 0.05). Postoperative IOP was not significantly different between the 2 groups (p > 0.05) except for IOP on postoperative day 1 (11.42 mmHg for the FP7 group and 7.42 mmHg for the FP8 group; p = 0.031). There was no statistical difference in success rates, final IOP, number of medications, or complication rates between the 2 groups (p > 0.05). Conclusions The FP7 and FP8 AGV implants showed no difference in terms of vision preservation, IOP reduction, and number of glaucoma medications required. PMID:24082774
Yazdani, Shahin; Doozandeh, Azadeh; Pakravan, Mohammad; Ownagh, Vahid; Yaseri, Mehdi
2017-06-26
To evaluate the effect of intraoperative sub-Tenon injection of triamcinolone acetonide (TA) as an adjunct to Ahmed glaucoma valve (AGV) implantation. In this triple-blind randomized clinical trial, 104 eyes with refractory glaucoma were randomly assigned to conventional AGV (non-TA group) or AGV with adjunctive triamcinolone (TA group). In the TA group, 10 mg TA was injected in the sub-Tenon space around the AGV plate intraoperatively. Patients were followed for 1 year. The main outcome measure was intraocular pressure (IOP). Other outcome measures included best-corrected visual acuity (BCVA), occurrence of hypertensive phase (HP), peak IOP, number of antiglaucoma medications, and complications. A total of 90 patients were included in the final analysis. Mean IOP was lower in the TA group at most follow-up visits; however, the difference was statistically significant only at the first month (p = 0.004). Linear mixed model showed that mean IOP was 1.5 mm Hg lower in the TA group throughout the study period (p = 0.006). Peak postoperative IOP was significantly lower in the TA group (19.3 ± 4.8 mm Hg versus 29 ± 9.2 mm Hg, p = 0.032). Rates of success (defined as 6 < IOP <21 mm Hg) were similar in both groups at 12 months. There was no difference in the occurrence of the HP between the 2 groups (p = 0.123). Loss of BCVA >2 lines was more common in the non-TA group (p = 0.032). Adjunctive intraoperative TA injection during AGV implantation can blunt peak IOP levels and reduce mean IOP up to 1 year. Visual outcomes also seem to be superior to standard surgery.
Yazdani, Shahin; Mahboobipour, Hassan; Pakravan, Mohammad; Doozandeh, Azadeh; Ghahari, Elham
2016-05-01
To determine whether adjunctive mitomycin C (MMC) or amniotic membrane transplantation (AMT) improve the outcomes of Ahmed glaucoma valve (AGV) implantation. This double-blind, stratified, 3-armed randomized clinical trial includes 75 eyes of 75 patients aged 7 to 75 years with refractory glaucoma. Eligible subjects underwent stratified block randomization; eyes were first stratified to surgery in the superior or inferior quadrants based on feasibility; in each subgroup, eyes were randomly assigned to the study arms using random blocks: conventional AGV implantation (group A, 25 eyes), AGV with MMC (group B, 25 eyes), and AGV with AMT (group C, 25 eyes). The 3 study groups were comparable regarding baseline characteristics and mean follow-up (P=0.288). A total of 68 patients including 23 eyes in group A, 25 eyes in group B, and 20 eyes group C completed the follow-up period and were analyzed. Intraocular pressure was lower in the MMC group only 3 weeks postoperatively (P=0.04) but comparable at other time intervals. Overall success rate was comparable in the 3 groups at 12 months (P=0.217). The number of eyes requiring medications (P=0.30), time to initiation of medications (P=0.13), and number of medications (P=0.22) were comparable. Hypertensive phase was slightly but insignificantly more common with standard surgery (82%) as compared with MMC-augmented (60%) and AMT-augmented (70%) procedures (P=0.23). Complications were comparable over 1 year (P=0.28). Although adjunctive MMC and AMT were safe during AGV implantation, they did not influence success rates or intraocular pressure outcomes. Complications, including hypertensive phase, were also comparable.
Su, Gong; Zhang, Tao; Yang, Hongxia; Dai, Wenlong; Tian, Lei; Tao, Hong; Wang, Tao; Mi, Shuhua
2018-01-01
Objective The aim of this study is to evaluate the effects of admission glycemic variability (AGV) on in-hospital outcomes in diabetic patients with non-ST segment elevation acute coronary syndrome (NSTE-ACS) undergoing percutaneous coronary intervention (PCI). Methods We studied 759 diabetic patients with NSTE-ACS undergoing PCI. AGV was accessed based on the mean amplitude of glycemic excursions (MAGEs) in the first 24 hours after admission. Primary outcome was a composite of in-hospital events, all-cause mortality, new-onset myocardial infarction, acute heart failure, and stroke. Secondary outcomes were each of these considered separately. Predictive effects of AGV on the in-hospital outcomes in patients were analyzed. Results Patients with high MAGE levels had significantly higher incidence of total outcomes (9.9% vs. 4.8%, p=0.009) and all-cause mortality (2.3% vs. 0.4%, p=0.023) than those with low MAGE levels during hospitalization. Multivariable analysis revealed that AGV was significantly associated with incidence of in-hospital outcomes (Odds ratio=2.024, 95% CI 1.105-3.704, p=0.022) but hemoglobin A1c (HbA1c) was not. In the receiver-operating characteristic curve analysis for MAGE and HbA1c in predicting in-hospital outcomes, the area under the curve for MAGE (0.608, p=0.012) was superior to that for HbA1c (0.556, p=0.193). Conclusion High AGV levels may be closely correlated with increased in-hospital poor outcomes in diabetic patients with NSTE-ACS following PCI. PMID:29848920
Intelligence Level Performance Standards Research for Autonomous Vehicles
Bostelman, Roger B.; Hong, Tsai H.; Messina, Elena
2017-01-01
United States and European safety standards have evolved to protect workers near Automatic Guided Vehicles (AGV’s). However, performance standards for AGV’s and mobile robots have only recently begun development. Lessons can be learned from research and standards efforts for mobile robots applied to emergency response and military applications. Research challenges, tests and evaluations, and programs to develop higher intelligence levels for vehicles can also used to guide industrial AGV developments towards more adaptable and intelligent systems. These other efforts also provide useful standards development criteria for AGV performance test methods. Current standards areas being considered for AGVs are for docking, navigation, obstacle avoidance, and the ground truth systems that measure performance. This paper provides a look to the future with standards developments in both the performance of vehicles and the dynamic perception systems that measure intelligent vehicle performance. PMID:28649189
Initial Clinical Experience with Ahmed Valve Implantation in Refractory Pediatric Glaucoma
Novak-Lauš, Katia; Škunca Herman, Jelena; Šimić Prskalo, Marija; Jurišić, Darija; Mandić, Zdravko
2016-12-01
The purpose is to report on the safety and efficacy of Ahmed Glaucoma Valve (AGV, New World Medical, Inc., Rancho Cucamonga, CA, USA) implantation for the management of refractory pediatric glaucoma observed during one-year follow up period. A retrospective chart review was conducted on 10 eyes, all younger than 11 years, with pediatric glaucoma that underwent AGV implantation for medicamentously uncontrolled intraocular pressure (IOP) between 2010 and 2014. Outcome measures were control of IOP below 23 mm Hg (with or without antiglaucoma medications) and changes in visual acuity. Complications were recorded. After AGV implantation, IOP values ranged from 18 mm Hg to 23 mm Hg (except for one eye with postoperative hypotonia due to suprachoroid hemorrhage, where the postoperative IOP value was 4 mm Hg). The number of antiglaucoma medications was reduced, i.e. four patients had two medications, one patient had one medication, and the others did not need antiglaucoma medication on the last follow-up visit. One eye had suprachoroid hemorrhage, one eye had long-term persistent uveitic membrane, and two eyes had tube-cornea touch. In conclusion, AGV implantation appears to be a viable option for the management of refractory pediatric glaucoma and shows success in IOP control. However, there was a relatively high complication rate limiting the overall success rate.
Kotze, Ben; Jordaan, Gerrit
2014-08-25
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.
Kotze, Ben; Jordaan, Gerrit
2014-01-01
Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed. PMID:25157548
El Sayed, Y; Awadein, A
2013-01-01
Purpose To compare the results of silicone and polypropylene Ahmed glaucoma valves (AGV) implanted during the first 10 years of life. Methods A prospective study was performed on 50 eyes of 33 patients with paediatric glaucoma. Eyes were matched to either polypropylene or silicone AGV. In eyes with bilateral glaucoma, one eye was implanted with polypropylene and the other eye was implanted with silicone AGV. Results Fifty eyes of 33 children were reviewed. Twenty five eyes received a polypropylene valve, and 25 eyes received a silicone valve. Eyes implanted with silicone valves achieved a significantly lower intraocular pressure (IOP) compared with the polypropylene group at 6 months, 1 year, and 2 years postoperatively. The average survival time was significantly longer (P=0.001 by the log-rank test) for the silicone group than for the polypropylene group and the cumulative probability of survival by the log-rank test at the end of the second year was 80% (SE: 8.0, 95% confidence interval (CI): 64–96%) in the silicone group and 56% (SE: 9.8, 95% CI: 40–90%) in the polypropylene group. The difference in the number of postoperative interventions and complications between both groups was statistically insignificant. Conclusion Silicone AGVs can achieve better IOP control, and longer survival with less antiglaucoma drops compared with polypropylene valves in children younger than 10 years. PMID:23579403
Turalba, Angela V; Pasquale, Louis R
2014-01-01
To evaluate intraoperative subtenon triamcinolone acetonide (TA) as an adjunct to Ahmed glaucoma valve (AGV) implantation. Retrospective comparative case series. Forty-two consecutive cases of uncontrolled glaucoma undergoing AGV implantation: 19 eyes receiving intraoperative subtenon TA and 23 eyes that did not receive TA. A retrospective chart review was performed on consecutive pseudophakic adult patients with uncontrolled glaucoma undergoing AGV with and without intraoperative subtenon TA injection by a single surgeon. Clinical data were collected from 42 eyes and analyzed for the first 6 months after surgery. Primary outcomes included intraocular pressure (IOP) and number of glaucoma medications prior to and after AGV implantation. The hypertensive phase (HP) was defined as an IOP measurement of greater than 21 mmHg (with or without medications) during the 6-month postoperative period that was not a result of tube obstruction, retraction, or malfunction. Postoperative complications and visual acuity were analyzed as secondary outcome measures. Five out of 19 (26%) TA cases and 12 out of 23 (52%) non-TA cases developed the HP (P=0.027). Mean IOP (14.2±4.6 in TA cases versus [vs] 14.7±5.0 mmHg in non-TA cases; P=0.78), and number of glaucoma medications needed (1.8±1.3 in TA cases vs 1.6±1.1 in the comparison group; P=0.65) were similar between both groups at 6 months. Although rates of serious complications did not differ between the groups (13% in the TA group vs 16% in the non-TA group), early tube erosion (n=1) and bacterial endophthalmitis (n=1) were noted with TA but not in the non-TA group. Subtenon TA injection during AGV implantation may decrease the occurrence of the HP but does not alter the ultimate IOP outcome and may pose increased risk of serious complications within the first 6 months of surgery.
Turalba, Angela V; Pasquale, Louis R
2014-01-01
Objective To evaluate intraoperative subtenon triamcinolone acetonide (TA) as an adjunct to Ahmed glaucoma valve (AGV) implantation. Design Retrospective comparative case series. Participants Forty-two consecutive cases of uncontrolled glaucoma undergoing AGV implantation: 19 eyes receiving intraoperative subtenon TA and 23 eyes that did not receive TA. Methods A retrospective chart review was performed on consecutive pseudophakic adult patients with uncontrolled glaucoma undergoing AGV with and without intraoperative subtenon TA injection by a single surgeon. Clinical data were collected from 42 eyes and analyzed for the first 6 months after surgery. Main outcome measures Primary outcomes included intraocular pressure (IOP) and number of glaucoma medications prior to and after AGV implantation. The hypertensive phase (HP) was defined as an IOP measurement of greater than 21 mmHg (with or without medications) during the 6-month postoperative period that was not a result of tube obstruction, retraction, or malfunction. Postoperative complications and visual acuity were analyzed as secondary outcome measures. Results Five out of 19 (26%) TA cases and 12 out of 23 (52%) non-TA cases developed the HP (P=0.027). Mean IOP (14.2±4.6 in TA cases versus [vs] 14.7±5.0 mmHg in non-TA cases; P=0.78), and number of glaucoma medications needed (1.8±1.3 in TA cases vs 1.6±1.1 in the comparison group; P=0.65) were similar between both groups at 6 months. Although rates of serious complications did not differ between the groups (13% in the TA group vs 16% in the non-TA group), early tube erosion (n=1) and bacterial endophthalmitis (n=1) were noted with TA but not in the non-TA group. Conclusions Subtenon TA injection during AGV implantation may decrease the occurrence of the HP but does not alter the ultimate IOP outcome and may pose increased risk of serious complications within the first 6 months of surgery. PMID:25050061
The Ahmed shunt versus the Baerveldt shunt for refractory glaucoma: a meta-analysis.
Wang, Shiming; Gao, Xiaoming; Qian, Nana
2016-06-08
The purpose of this study was to compare the efficacy and tolerability of the Ahmed glaucoma valve (AGV) implant and the Baerveldt implant for the treatment of refractory glaucoma. We comprehensively searched four databases, including PubMed, EMBASE, Web of Science, and the Cochrane Library databases, selecting the relevant studies. The continuous variables, namely, intraocular pressure reduction (IOPR) and a reduction in glaucoma medication, were pooled by the weighted mean differences (WMDs), and the dichotomous outcomes, including success rates and tolerability estimates, were pooled by the odds ratio (ORs). A total of 929 patients from six studies were included. The WMDs of the IOPR between the AGV implant and the Baerveldt implant were 1.58 [95 % confidence interval (CI): -2.99 to 6.15] at 6 months, -1.01 (95 % CI: -3.40 to 1.98) at 12 months, -0.54 (95 % CI: -4.89 to 3.82) at 24 months, and -0.47 (95 % CI: -3.29 to 2.35) at 36 months. No significant difference was detected between the two groups at any point in time. The pooled ORs comparing the AGV implant with the Baerveldt implant were 0.51 (95 % CI: 0.33 to 0.80) for the complete success rate and 0.67 (95 % CI: 0.50 to 0.91) for qualified success rate. The Baerveldt implant was associated with a reduction in glaucoma medication at -0.51 (95 % CI: -0.90 to -0.12). There were no significant differences between the AGV implant and the Baerveldt implant on the rates of adverse events. The Baerveldt implant is more effective in both its surgical success rate and reducing glaucoma medication, but it is comparable to the AGV implant in lowering IOP. Both implants may have comparable incidences of adverse events.
Dual infection by streptococcus and atypical mycobacteria following Ahmed glaucoma valve surgery.
Rao, Aparna; Wallang, Batriti; Padhy, Tapas Ranjan; Mittal, Ruchi; Sharma, Savitri
2013-07-01
To report a case of late postoperative endophthalmitis caused by Streptococcus pneumoniae and conjunctival necrosis by Streptococcus pneumoniae and Mycobacterium fortuitum following Ahmed glaucoma valve (AGV) surgery in a young patient. Case report of a 13-year-old boy with purulent exudates and extensive conjunctival necrosis two months following amniotic membrane graft and conjunctival closure (for conjunctival retraction post AGV for secondary glaucoma). The conjunctiva showed extensive necrosis causing exposure of the tube and plate associated with frank exudates in the area adjoining the plate and anterior chamber mandating explantation of the plate along with intravitreal antibiotics. The vitreous aspirate grew Streptococcus pneumoniae while Streptococcus pneumoniae with Mycobacterium fortuitum was isolated from the explanted plate. Despite adequate control of infection following surgery, the final visual outcome was poor owing to disc pallor. Conjunctival necrosis and retraction post-AGV can cause late postoperative co-infections by fulminant and slow-growing organisms. A close follow-up is therefore essential in these cases to prevent sight-threatening complications.
Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle †
Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru
2018-01-01
We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy. PMID:29320434
Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.
Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru
2018-01-10
We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.
NASA Astrophysics Data System (ADS)
Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga
2018-06-01
This paper presents a nonlinear model predictive control (MPC) formulation for obstacle avoidance in high-speed, large-size autono-mous ground vehicles (AGVs) with high centre of gravity (CoG) that operate in unstructured environments, such as military vehicles. The term 'unstructured' in this context denotes that there are no lanes or traffic rules to follow. Existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a new nonlinear MPC formulation is developed to navigate an AGV from its initial position to a target position at high-speed safely. First, a new cost function formulation is used that aims to find the shortest path to the target position, since no reference trajectory exists in unstructured environments. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms the obstacle-free region can assume due to the presence of multiple obstacles in the prediction horizon in an unstructured environment. Third, the no-wheel-lift-off condition, which is the major dynamical safety concern for high-speed, high-CoG AGVs, is ensured by limiting the steering angle within a range obtained offline using a 14 degrees-of-freedom vehicle dynamics model. Thus, a safe, high-speed navigation is enabled in an unstructured environment. Simulations of an AGV approaching multiple obstacles are provided to demonstrate the effectiveness of the algorithm.
Outcomes of Ahmed Glaucoma Valve Revision in Pediatric Glaucoma.
Al-Omairi, Ahmed Mansour; Al Ameri, Aliah H; Al-Shahwan, Sami; Khan, Arif O; Al-Jadaan, Ibrahim; Mousa, Ahmed; Edward, Deepak P
2017-11-01
Encapsulation of the Ahmed glaucoma valve (AGV) plate is a common cause for postoperative elevation of intraocular pressure, especially in children. Many reports have described the outcomes of AGV revision in adults. However, the outcomes of AGV revision in children are poorly documented. The aim of this study was to determine the outcomes of AGV revision in children. Retrospective cross-sectional study. A retrospective chart review of patients less than 15 years of age who underwent AGV revision with a minimum postoperative follow-up of 6 months was conducted. Outcome measures included reduction in intraocular pressure from baseline, survival analysis, and reduction in the number of antiglaucoma medications. Postoperative complications were also noted. Complete success was defined as an IOP of 21 mm Hg or less without medications, while qualified success was defined as having an IOP of 21 mm Hg or less with medications. A total of 44 eyes met the inclusion criteria. Primary congenital glaucoma was present in 39 eyes (88.6%), aphakic glaucoma in 4 eyes (9.1%), and Peters anomaly-associated glaucoma in 1 eye (2.3%). The mean number of previous surgeries was 1.4, and the mean age was 6.7 years (range, 1.9-13 years) with a median follow-up of 12 months (range, 6-24 months). The IOP was reduced from a preoperative mean of 30.4 (± 10.3) to 24.9 (± 10.6) mm Hg at 6 months postoperatively. Kaplan-Meier analysis showed that the complete success rate at 1 month was 100% followed by a rapid decline at 6 months to 38.6%, 27.7% at 1 year, and 5.5% at 2 years. Qualified success rate was 100% at 1 month followed by a 6-month and 1-year survival rate of approximately 50% and a 2-year survival rate of approximately 16%. The median survival time was 14 months. No specific risk factors for failure were identified. Visual acuity remained unchanged following revision. The most common complication was recurrence of encapsulation with elevated IOP (15.9%). Other complications included hyphema (n = 3; 6.8%), endophthalmitis (n = 1; 2.3%), wound leak (n = 1; 2.3%), and choroidal detachment (n = 2; 4.5%). Although the short-term success rate of AGV revision in children is high, with longer follow-up the success rate decreases significantly. Copyright © 2017 Elsevier Inc. All rights reserved.
WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.
Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contactmore » angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.« less
Ahmed Glaucoma Valve Implantation in Vitrectomized Eyes.
Erçalık, Nimet Yeşim; İmamoğlu, Serhat
2018-01-01
To evaluate the outcomes of Ahmed glaucoma valve (AGV) implantation in vitrectomized eyes. The medical records of 13 eyes that developed glaucoma due to emulsified silicon oil or neovascularization following pars plana vitrectomy and underwent AGV implantation were retrospectively reviewed. The main outcome measures were intraocular pressure (IOP), best-corrected visual acuity (BCVA), number of antiglaucoma medications, and postoperative complications. Surgical success was defined as last IOP ≤21 mmHg or ≥6 mmHg and without loss of light perception. The mean follow-up duration was 11.7 ± 5.5 (range, 6-23) months. The mean IOP before the AGV implantation was 37.9 ± 6.7 mmHg with an average of 3.5 ± 1.2 drugs. At the final visit, the mean IOP was 15.9 ± 4.6 mmHg ( p =0.001) and the mean number of glaucoma medications decreased to 2.3 ± 1.3 ( p =0.021). At the last visit, 11 eyes (84.4%) had stable or improved VA and one eye (7.7%) had a final VA of no light perception. Surgical success was achieved in 11 of the 13 eyes (84.4%). Postoperative complications were bleb encapsulation (69.2%), early hypotony (38.5%), hyphema (23.1%), decompression retinopathy (23.1%), choroidal detachment (15.4%), intraocular hemorrhage (7.7%), and late endophthalmitis (7.7%). One eye (7.7%) was enucleated because of late endophthalmitis. Despite complications necessitating medical and surgical interventions, vitrectomized eyes were effectively managed with AGV implantation.
Akdemir, Mehmet Orcun; Acar, Banu Torun; Kokturk, Furuzan; Acar, Suphi
2016-08-01
The aim of this study was to compare the visual outcomes, intraocular pressure (IOP), and endothelial cell loss caused by trabeculectomy (TRAB) and Ahmed glaucoma valve (AGV) implantation in patients who had previously undergone penetrating keratoplasty (PKP). The data from all patients who underwent surgical treatment of glaucoma after PKP were reviewed at the Cornea Department of Haydarpasa Numune Education and Research Hospital. Eighteen patients who had undergone surgical treatment of glaucoma after PKP were included in this retrospective study. Time between PKP and glaucoma surgeries, visual acuity results, IOP results, endothelial cell counts (ECC) before the surgery, at 1st, 6th, and 12th month of surgery were recorded. Differences between two groups were evaluated. Mean loss of ECC was 315 cells/mm(2) in the AGV group and 197 cells/mm(2) in TRAB group at 12th month of glaucoma surgery. The difference between endothelial cell loss at 12th month of surgery was statistically significant and higher in AGV group (p < 0.001). The decrease in IOP was 64.2 % in AGV group and 46.9 % in TRAB group at 12th month of surgery. Both differences were statistically significant between 2 groups (p = 0.001, 0.001). TRAB successfully decreased both the IOP and endothelial cell loss in patients with post-PKP glaucoma. Ahmed glaucoma valve had a significantly better IOP lowering but higher endothelial cell loss effect.
Long-term clinical outcomes of Ahmed valve implantation in patients with refractory glaucoma.
Lee, Chang Kyu; Ma, Kyoung Tak; Hong, Young Jae; Kim, Chan Yun
2017-01-01
To evaluate the long-term efficacy of intraocular pressure (IOP) reduction and complications of Ahmed Glaucoma Valve (AGV) implantation in patients with refractory glaucoma. Retrospective study. The study involved 302 refractory glaucoma patients who underwent AGV implantation and had a minimum follow-up of 6 months between March 1995 and December 2013. An operation was defined as successful when (1) the postoperative IOP remained between 5 and 21 mmHg and was reduced 30% compared to the baseline IOP with or without medication, (2) there was no loss of light perception or vision-threatening severe complications, and (3) no additional filtering or aqueous drainage surgery was required. Clinical records were reviewed. IOP, anti-glaucoma medications, and complications. The mean follow-up period was 62.25 months (range, 6 to 190 months). The cumulative probability of success was 89% at 6 months, 81% at 1 year, 66% at 3 years, 44% at 10 years, and 26% at 15 years. IOP was reduced from a mean of 32.2 ± 10.5 mmHg to 18.6 ± 9.1 mmHg at 1 month, 15.2 ± 7.0 mmHg at 6 months, and 14.2 ± 3.5 mmHg at 15 years. Surgical failures were significantly increased when preoperative IOP was high, and when severe complications occurred after AGV implantation (P < 0.05). AGV implantation was successful for IOP control in patients with refractive glaucoma in the long term. However, the success rate of surgery decreased over time. Preoperative high IOP and severe complications related to the operation were significant risk factors for failure.
Mahale, Alka; Fikri, Fatma; Al Hati, Khitam; Al Shahwan, Sami; Al Jadaan, Ibrahim; Al Katan, Hind; Khandekar, Rajiv; Maktabi, Azza; Edward, Deepak P
2017-01-01
Impervious encapsulation around Ahmed glaucoma valve (AGV) results in surgical failure raising intraocular pressure (IOP). Dysregulation of extracellular matrix (ECM) molecules and cellular factors might contribute to increased hydraulic resistance to aqueous drainage. Therefore, we examined these molecules in failed AGV capsular tissue. Immunostaining for ECM molecules (collagen I, collagen III, decorin, lumican, chondroitin sulfate, aggrecan and keratan sulfate) and cellular factors (αSMA and TGFβ) was performed on excised capsules from failed AGVs and control tenon's tissue. Staining intensity of ECM molecules was assessed using Image J. Cellular factors were assessed based on positive cell counts. Histopathologically two distinct layers were visible in capsules. The inner layer (proximal to the AGV) showed significant decrease in most ECM molecules compared to outer layer. Furthermore, collagen III (p = 0.004), decorin (p = 0.02), lumican (p = 0.01) and chondroitin sulfate (p = 0.02) was significantly less in inner layer compared to tenon's tissue. Outer layer labelling however was similar to control tenon's for most ECM molecules. Significantly increased cellular expression of αSMA (p = 0.02) and TGFβ (p = 0.008) was detected within capsular tissue compared to controls. Our results suggest profibrotic activity indicated by increased αSMA and TGFβ expression and decreased expression of proteoglycan (decorin and lumican) and glycosaminoglycans (chondroitin sulfate). Additionally, we observed decreased collagen III which might reflect increased myofibroblast contractility when coupled with increased TGFβ and αSMA expression. Together these events lead to tissue dysfunction potentially resulting in hydraulic resistance that may affect aqueous flow through the capsular wall.
Tamcelik, Nevbahar; Ozkok, Ahmet; Sarıcı, Ahmet Murat; Atalay, Eray; Yetik, Huseyin; Gungor, Kivanc
2013-07-01
To present and compare the long-term results of Dr. Tamcelik's previously described technique of Tenon advancement and duplication with the conventional Ahmed glaucoma valve (AGV) implantation technique in patients with refractory glaucoma. This study was a multicenter, retrospective case series that included 303 eyes of 276 patients with refractory glaucoma who underwent glaucoma valve implantation surgery. The patients were divided into three groups according to the surgical technique applied and the outcomes compared. In group 1, 96 eyes of 86 patients underwent AGV implant surgery without patch graft; in group 2, 78 eyes of 72 patients underwent AGV implant surgery with donor scleral patch; in group 3, 129 eyes of 118 patients underwent Ahmed valve implant surgery with "combined short scleral tunnel with Tenon advancement and duplication technique". The endpoint assessed was tube exposure through the conjunctiva. In group 1, conjunctival tube exposure was seen in 11 eyes (12.9 %) after a mean 9.2 ± 3.7 years of follow-up. In group 2, conjunctival tube exposure was seen in six eyes (2.2 %) after a mean 8.9 ± 3.3 years of follow-up. In group 3, there was no conjunctival exposure after a mean 7.8 ± 2.8 years of follow-up. The difference between the groups was statistically significant. (P = 0.0001, Chi-square test). This novel surgical technique combining a short scleral tunnel with Tenon advancement and duplication was found to be effective and safe to prevent conjunctival tube exposure after AGV implantation surgery in patients with refractory glaucoma.
Study on store-space assignment based on logistic AGV in e-commerce goods to person picking pattern
NASA Astrophysics Data System (ADS)
Xu, Lijuan; Zhu, Jie
2017-10-01
This paper studied on the store-space assignment based on logistic AGV in E-commerce goods to person picking pattern, and established the store-space assignment model based on the lowest picking cost, and design for store-space assignment algorithm after the cluster analysis based on similarity coefficient. And then through the example analysis, compared the picking cost between store-space assignment algorithm this paper design and according to item number and storage according to ABC classification allocation, and verified the effectiveness of the design of the store-space assignment algorithm.
Ahmed Glaucoma Valve Implantation in Vitrectomized Eyes
İmamoğlu, Serhat
2018-01-01
Purpose To evaluate the outcomes of Ahmed glaucoma valve (AGV) implantation in vitrectomized eyes. Materials and Methods The medical records of 13 eyes that developed glaucoma due to emulsified silicon oil or neovascularization following pars plana vitrectomy and underwent AGV implantation were retrospectively reviewed. The main outcome measures were intraocular pressure (IOP), best-corrected visual acuity (BCVA), number of antiglaucoma medications, and postoperative complications. Surgical success was defined as last IOP ≤21 mmHg or ≥6 mmHg and without loss of light perception. Results The mean follow-up duration was 11.7 ± 5.5 (range, 6–23) months. The mean IOP before the AGV implantation was 37.9 ± 6.7 mmHg with an average of 3.5 ± 1.2 drugs. At the final visit, the mean IOP was 15.9 ± 4.6 mmHg (p=0.001) and the mean number of glaucoma medications decreased to 2.3 ± 1.3 (p=0.021). At the last visit, 11 eyes (84.4%) had stable or improved VA and one eye (7.7%) had a final VA of no light perception. Surgical success was achieved in 11 of the 13 eyes (84.4%). Postoperative complications were bleb encapsulation (69.2%), early hypotony (38.5%), hyphema (23.1%), decompression retinopathy (23.1%), choroidal detachment (15.4%), intraocular hemorrhage (7.7%), and late endophthalmitis (7.7%). One eye (7.7%) was enucleated because of late endophthalmitis. Conclusions Despite complications necessitating medical and surgical interventions, vitrectomized eyes were effectively managed with AGV implantation. PMID:29862068
Yakin, Mehmet; Eksioglu, Umit; Sungur, Gulten; Satana, Banu; Demirok, Gulizar; Ornek, Firdevs
2017-01-01
To evaluate short-term to long-term outcomes of Ahmed glaucoma valve (AGV) implantation in the management of uveitic glaucoma (UG) secondary to Behçet disease (BD). A retrospective chart review of 47 eyes of 35 patients with UG secondary to BD who underwent AGV implantation was conducted. Success was defined as having an intraocular pressure (IOP) between 6 and 21 mm Hg with (qualified success) or without (complete success) antiglaucomatous medications and without need for further glaucoma surgery. Mean postoperative follow-up was 57.72±26.13 months. Mean preoperative IOP was 35.40±8.33 mm Hg versus 12.28±2.90 mm Hg at the last follow-up visit (P<0.001). Mean number of preoperative topical antiglaucomatous medications was 2.96±0.29 versus 0.68±1.12 at the last follow-up visit (P<0.001). In all eyes, IOP could be maintained between 6 and 21 mm Hg with or without antiglaucomatous medications during follow-up. The cumulative probability of complete success was 46.8% at 6 months, 40.4% at 12 months, and 35.9% at 36 months, and the cumulative probability of eyes without complication was 53.2% at 6 months, 46.5% at 12 months, and 39.6% at 24 months postoperatively based on Kaplan-Meier survival analysis. No persistent or irreparable complications were observed. This study includes one of the largest series of AGV implantation in the management of UG with the longest follow-up reported. AGV implantation can be considered as a primary surgical option in the management of UG secondary to BD with 100% total success rate (with or without medications).
Chang, Ingrid T; Gupta, Divakar; Slabaugh, Mark A; Vemulakonda, Gurunadh A; Chen, Philip P
2016-10-01
To report the outcomes of combined Ahmed glaucoma valve (AGV) placement, intravitreal fluocinolone acetonide implant, and cataract extraction procedure in the treatment of chronic noninfectious uveitis. Retrospective case series of patients with chronic noninfectious uveitis who underwent AGV placement, intravitreal fluocinolone acetonide implantation, and cataract extraction in a single surgical session performed at 1 institution from January 2009 to November 2014. Outcome measures included intraocular pressure (IOP) and glaucoma medication use. Secondary outcome measures included visual acuity, systemic anti-inflammatory medications, number of uveitis flares, and complications. Fifteen eyes of 10 patients were studied, with a mean age of 40.3±15.7 and mean follow-up duration of 26 months (range, 13 to 39 mo). Before surgery, the IOP was 18.5±7.3 mm Hg and patients were using 1.5±1.5 topical glaucoma medications. At the 12-month follow-up, IOP was 12.8±3.2 mm Hg (P=0.01) and patients were using 0.5±0.8 (P=0.03) topical glaucoma medications. At 36 months of follow-up, late, nonsustained hypotony had occurred in 3 eyes (20%), and 1 eye (6%) had received a second AGV for IOP control. Before treatment, patients had 2.7±1.5 uveitis flares in the year before surgery while on an average of 2.1±0.6 systemic anti-inflammatory medications, which decreased to an average of 0.1±0.3 (P<0.01) flares the year after surgery while on an average of 0.4±1.1 (P<0.01) systemic medications. Combined AGV, intravitreal fluocinolone acetonide implant, and cataract extraction is effective in controlling IOP and reducing the number of glaucoma medications at 12 months after treatment in patients with chronic uveitis.
Dave, Paaraj; Senthil, Sirisha; Choudhari, Nikhil; Sekhar, Garudadri Chandra
2015-01-01
Purpose: The aim was to report the outcome of Ahmed glaucoma valve (AGV) (New World Medical, Inc., Rancho Cucamonga, CA, USA) implantation as a surgical intervention following an initial failed combined trabeculotomy + trabeculectomy (trab + trab) in refractory primary congenital glaucoma (RPCG). Materials and Methods: Retrospective chart review of 11 eyes of 8 patients who underwent implantation of AGV (model FP8) for RPCG between 2009 and 2011. Prior trab + trab had failed in all the eyes. Success was defined as an intraocular pressure (IOP) >5 and ≤ 18 mmHg during examination under anesthesia with or without medications and without serious complications or additional glaucoma surgery. Results: The mean age at AGV implantation was 15.4 ± 4.9 months. The mean preoperative IOP was 28 ± 5.7 mmHg which reduced to 13.6 ± 3.4 mmHg postoperatively at the last follow-up (P < 0.0001). The number of topical antiglaucoma medications reduced from a mean of 2.6 ± 0.5 to 1.6 ± 0.9 postoperatively (P = 0.009). The definition of qualified success was met in 10 (90%) eyes. One eye developed a shallow anterior chamber with choroidal detachment at 1-week, which resolved spontaneously with medications. None of the eyes developed a hypertensive phase. One eye had a long tube resulting in tube corneal touch that required trimming of the tube. One eye developed tube retraction, which was treated with a tube extender. The mean follow-up was 17.9 ± 9.3 (6.2-35.4) months. Conclusion: Managing RPCG remains a challenge. AGV implant was successful in a significant proportion of cases. PMID:25624676
Yang, Xuejiao; Deng, Shuifeng; Li, Zuohong; Li, Fei; Zhuo, Yehong
2015-01-01
Background To evaluate the efficacy and safety of the Ahmed glaucoma valve (AGV) and the risk factors associated with AGV implantation failure in a population of Chinese patients with refractory glaucoma. Method In total, 79 eyes with refractory glaucoma from 79 patients treated in our institution from November 2007 to November 2010 were enrolled in this retrospective study. The demographic data, preoperative and postoperative intraocular pressures (IOPs), best corrected visual acuity (BCVA), number of anti-glaucoma medications used, completed and qualified surgery success rates and postoperative complications were recorded to evaluate the outcomes of AGV implantation. Factors that were associated with implant failure were determined using Cox proportional hazard regression model analysis and multiple linear regression analysis. Principle Findings The average follow-up time was 12.7±5.8 months (mean±SD). We observed a significant reduction in the mean IOP from 39.9±12.6 mm Hg before surgery to 19.3±9.6 mm Hg at the final follow-up. The complete success rate was 59.5%, and the qualified success rate was 83.5%. The number of previous surgeries was negatively correlated with qualified success rate (P<0.05, OR=0.736, 95% CI 0.547-0.99). Patients with previous trabeculectomy were more likely to use multiple anti-glaucoma drugs to control IOP (P<0.01). The primary complication was determined to be a flat anterior chamber (AC). Conclusion AGV implantation was safe and effective for the management of refractory glaucoma. Patients with a greater number of previous surgeries were more likely to experience surgical failure, and patients with previous trabeculectomy were more likely to use multiple anti-glaucoma drugs to control postoperative IOP. PMID:25996991
Long-term clinical outcomes of Ahmed valve implantation in patients with refractory glaucoma
Lee, Chang Kyu; Ma, Kyoung Tak; Hong, Young Jae
2017-01-01
Purpose To evaluate the long-term efficacy of intraocular pressure (IOP) reduction and complications of Ahmed Glaucoma Valve (AGV) implantation in patients with refractory glaucoma. Design Retrospective study. Subjects The study involved 302 refractory glaucoma patients who underwent AGV implantation and had a minimum follow-up of 6 months between March 1995 and December 2013. Methods An operation was defined as successful when (1) the postoperative IOP remained between 5 and 21 mmHg and was reduced 30% compared to the baseline IOP with or without medication, (2) there was no loss of light perception or vision-threatening severe complications, and (3) no additional filtering or aqueous drainage surgery was required. Clinical records were reviewed. Main outcome measures IOP, anti-glaucoma medications, and complications Results The mean follow-up period was 62.25 months (range, 6 to 190 months). The cumulative probability of success was 89% at 6 months, 81% at 1 year, 66% at 3 years, 44% at 10 years, and 26% at 15 years. IOP was reduced from a mean of 32.2 ± 10.5 mmHg to 18.6 ± 9.1 mmHg at 1 month, 15.2 ± 7.0 mmHg at 6 months, and 14.2 ± 3.5 mmHg at 15 years. Surgical failures were significantly increased when preoperative IOP was high, and when severe complications occurred after AGV implantation (P < 0.05). Conclusion AGV implantation was successful for IOP control in patients with refractive glaucoma in the long term. However, the success rate of surgery decreased over time. Preoperative high IOP and severe complications related to the operation were significant risk factors for failure. PMID:29095931
Ahmed Glaucoma Valve Implantation for Uveitic Glaucoma Secondary to Behçet Disease.
Satana, Banu; Yalvac, Ilgaz S; Sungur, Gulten; Eksioglu, Umit; Basarir, Berna; Altan, Cigdem; Duman, Sunay
2015-01-01
To evaluate outcomes of patients with uveitic glaucoma secondary to Behçet disease (BD) who underwent Ahmed glaucoma valve (AGV) implantation. A retrospective chart review of 14 eyes of 10 patients with uveitic glaucoma associated with BD who underwent AGV implantation at a tertiary referral center. Treatment success was defined as intraocular pressure (IOP) between 6 and 21 mm Hg with or without antiglaucoma medication, without further additional glaucoma surgery or loss of light perception. The main outcome measures were IOP, best-corrected visual acuity measured with Snellen charts, and number of glaucoma medications. Mean duration of postoperative follow-up was 18.2±6.6 months (range, 6 to 31 mo). Of the 14 eyes, 10 (71.4%) were pseudophakic and 5 (35.7%) had primary AGV implantation without a history of previous glaucoma surgery. At the most recent follow-up visit, 13 of the 14 eyes had an IOP between 6 and 21 mm Hg. Mean IOP was significantly reduced during follow-up, as compared with preoperative values (P≤0.005). The cumulative probability of surgical success rate was 90.9% at 18 months based on Kaplan-Meier survival analysis. The mean number of antiglaucoma medications required to achieve the desired IOP decreased from 3.4±0.5 preoperatively to 1.0±1.1 postoperatively (P≤0.05). Visual acuity loss of >2 lines occurred in 4 eyes (28.5%) due to optic atrophy associated with retinal vasculitis. Temporary hypotony developed during follow-up in 4 eyes (28.5%) at first postoperative week. For the management of uveitic glaucoma associated with BD, AGV implantation is a successful method for glaucoma control but requires additional surgical interventions for high early hypotony rates.
Zhu, Yingting; Wei, Yantao; Yang, Xuejiao; Deng, Shuifeng; Li, Zuohong; Li, Fei; Zhuo, Yehong
2015-01-01
To evaluate the efficacy and safety of the Ahmed glaucoma valve (AGV) and the risk factors associated with AGV implantation failure in a population of Chinese patients with refractory glaucoma. In total, 79 eyes with refractory glaucoma from 79 patients treated in our institution from November 2007 to November 2010 were enrolled in this retrospective study. The demographic data, preoperative and postoperative intraocular pressures (IOPs), best corrected visual acuity (BCVA), number of anti-glaucoma medications used, completed and qualified surgery success rates and postoperative complications were recorded to evaluate the outcomes of AGV implantation. Factors that were associated with implant failure were determined using Cox proportional hazard regression model analysis and multiple linear regression analysis. The average follow-up time was 12.7±5.8 months (mean±SD). We observed a significant reduction in the mean IOP from 39.9±12.6 mm Hg before surgery to 19.3±9.6 mm Hg at the final follow-up. The complete success rate was 59.5%, and the qualified success rate was 83.5%. The number of previous surgeries was negatively correlated with qualified success rate (P<0.05, OR=0.736, 95% CI 0.547-0.99). Patients with previous trabeculectomy were more likely to use multiple anti-glaucoma drugs to control IOP (P<0.01). The primary complication was determined to be a flat anterior chamber (AC). AGV implantation was safe and effective for the management of refractory glaucoma. Patients with a greater number of previous surgeries were more likely to experience surgical failure, and patients with previous trabeculectomy were more likely to use multiple anti-glaucoma drugs to control postoperative IOP.
Photoelectric scanning-based method for positioning omnidirectional automatic guided vehicle
NASA Astrophysics Data System (ADS)
Huang, Zhe; Yang, Linghui; Zhang, Yunzhi; Guo, Yin; Ren, Yongjie; Lin, Jiarui; Zhu, Jigui
2016-03-01
Automatic guided vehicle (AGV) as a kind of mobile robot has been widely used in many applications. For better adapting to the complex working environment, more and more AGVs are designed to be omnidirectional by being equipped with Mecanum wheels for increasing their flexibility and maneuverability. However, as the AGV with this kind of wheels suffers from the position errors mainly because of the frequent slipping property, how to measure its position accurately in real time is an extremely important issue. Among the ways of achieving it, the photoelectric scanning methodology based on angle measurement is efficient. Hence, we propose a feasible method to ameliorate the positioning process, which mainly integrates four photoelectric receivers and one laser transmitter. To verify the practicality and accuracy, actual experiments and computer simulations have been conducted. In the simulation, the theoretical positioning error is less than 0.28 mm in a 10 m×10 m space. In the actual experiment, the performances about the stability, accuracy, and dynamic capability of this method were inspected. It demonstrates that the system works well and the performance of the position measurement is high enough to fulfill the mainstream tasks.
Superior versus inferior Ahmed glaucoma valve implantation.
Pakravan, Mohammad; Yazdani, Shahin; Shahabi, Camelia; Yaseri, Mehdi
2009-02-01
To compare the efficacy and safety of Ahmed glaucoma valve (AGV) (New World Medical Inc., Rancho Cucamonga, CA) implantation in the superior versus inferior quadrants. Prospective parallel cohort study. A total of 106 eyes of 106 patients with refractory glaucoma. Consecutive patients with refractory glaucoma underwent AGV implantation in the superior or inferior quadrants. Main outcome measures included intraocular pressure (IOP) and rate of complications. Other outcome measures included best corrected visual acuity (BCVA), number of glaucoma medications, and success rate (defined as at least 30% IOP reduction and 5
Kim, Tai Jun; Kang, Sohyun; Jeoung, Jin Wook; Kim, Young Kook; Park, Ki Ho
2018-02-14
Many studies have investigated the clinical benefits of Ologen for trabeculectomy. However, its benefits for Ahmed glaucoma valve (AGV) implantation have not been investigated as extensively. The aim of this study was to compare the 1-year outcomes of AGV implantation with and without Ologen adjuvant for the treatment of refractory glaucoma. This retrospective study included a total of 20 eyes of 20 glaucoma patients, who were followed for at least 1-year after undergoing AGV implantation. In 12 eyes of 12 patients, conventional AGV (CAGV) surgery was performed, while in 8 eyes of 8 patients, Ologen-augmented AGV (OAGV) implantation was performed. The outcomes were evaluated according to intraocular pressure (IOP) and the number of IOP-lowering medications. Complete success was defined as IOP ≤ 21 mmHg without medications throughout the 1-year follow-up period, and qualified success was defined as IOP ≤ 21 mmHg with or without medications throughout the 1-year follow-up period. The rate of complete success was significantly higher in the OAGV group (50.0%) than in the CAGV group (8.3%) (p = 0.035). There were no significant differences between the two groups in terms of qualified success or incidence of the early hypertensive phase. The IOP changes were similar between the groups within 1-year postoperatively, though the number of IOP-lowering medications was significantly lower in the OAGV group during the early hypertensive phase (p = 0.031, 0.031, and 0.025 at postoperative months 1, 2, and 3, respectively). When subjects were divided into groups according to the occurrence of the early hypertensive phase, the group with early hypertensive phase was more likely to use IOP-lowering medications at postoperative 6 months and 1 year (p = 0.002 and 0.005, respectively). OAGV surgery shows encouraging results for patients with refractory glaucoma, specifically with respect to the achievement of complete success and the reduction of the number of IOP-lowering medications during the early hypertensive phase. Furthermore, our results suggest that occurrence of the early hypertensive phase is predictive of which patients will require IOP-lowering medications at postoperative 6 months and 1 year.
Kugu, Suleyman; Erdogan, Gurkan; Sevim, M Sahin; Ozerturk, Yusuf
2015-01-01
To evaluate the efficacy of long scleral tunnel technique used in Ahmed glaucoma valve (AGV) implantation in preventing tube exposure through conjunctiva. Patients of adult age, who were unresponsive to maximum medical treatment and underwent AGV implantation, were divided into two groups and investigated retrospectively. Group 1 consisted of 40 eyes of 38 patients that underwent surgery by long scleral tunnel technique and Group 2 consisted of 38 eyes of 35 patients that underwent implantation by processed pericardium patch graft method. The mean age was 54.8 ± 14.6 years (range 26-68 years) and the mean follow-up duration was 46.7 ± 19.4 months (range 18-76 months) for the patients in Group 1, whereas the mean age was 58.6 ± 16.7 years (range 32-74 years) and mean follow-up period was 43.6 ± 15.7 months (range 20-72 months) for the patients in Group 2 (p > 0.05). In the course of follow-up, tube exposure was detected in one (2.5%) eye in Group 1 and in three (7.9%) eyes in Group 2 (p = 0.042). Long scleral tunnel technique is beneficial in preventing conjunctival tube exposure in AGV implantation surgery.
Initial Experience With the New Ahmed Glaucoma Valve Model M4: Short-term Results.
Cvintal, Victor; Moster, Marlene R; Shyu, Andrew P; McDermott, Katie; Ekici, Feyzahan; Pro, Michael J; Waisbourd, Michael
2016-05-01
To evaluate the clinical outcomes of the new Ahmed glaucoma valve (AGV) model M4. The device consists of a porous polyethylene shell designed for improved tissue integration and reduced encapsulation of the plate for better intraocular pressure (IOP) control. Medical records of patients with an AGV M4 implantation between December 1, 2012 and December 31, 2013 were reviewed. The main outcome measure was surgical failure, defined as either (1) IOP<5 mm Hg or >21 mm Hg and/or <20% reduction of IOP at last follow-up visit, (2) a reoperation for glaucoma, and/or (3) loss of light perception. Seventy-five eyes of 73 patients were included. Postoperative IOP at all follow-up visits significantly decreased from a baseline IOP of 31.2 mm Hg (P<0.01). However, IOP increased significantly at 3 months (20.4 mm Hg), 6 months (19.3 mm Hg), and 12 months (20.3 mm Hg) compared with 1 month (13.8 mm Hg) postoperatively (P<0.05). At 6 months and 1 year, the cumulative probability of failure was 32% and 72%, respectively. The AGV M4 effectively reduced IOP in the first postoperative month, but IOP steadily increased thereafter. Consequently, failure rates were high after 1 year of follow-up.
Use of Autologous Scleral Graft in Ahmed Glaucoma Valve Surgery.
Wolf, Alvit; Hod, Yair; Buckman, Gila; Stein, Nili; Geyer, Orna
2016-04-01
To compare the efficacy of an autoscleral free-flap graft versus an autoscleral rotational flap graft in Ahmed glaucoma valve (AGV) surgery. Medical records (2005 to 2012) of 51 consecutive patients (51 eyes) who underwent AGV surgery with the use of either an autoscleral free-flap graft or an autoscleral rotational flap graft to cover the external tube at the limbus were retrieved for review. The main outcome measure was the incidence of tube exposure associated with each surgical approach. Twenty-seven consecutive patients (27 eyes) received a free-flap graft and 24 consecutive patients (24 eyes) received a rotational flap graft. The mean follow-up time was 55.6 ± 18.3 months for the former and 24.2± 5 .0 months for the latter (P<0.0001). Two patients in the free-flap group (8.9%) developed tube exposure at 24 and 55 months postoperatively compared with none of the patients in the rotational flap group. Graft thinning without evidence of conjunctival erosion was observed in 15 patients (55%) in the free-flap group and in 7 patients (29.1%) in the rotational flap group. The use of an autoscleral rotational flap graft is an efficacious technique for primary tube patch grafting in routine AGV surgery, and yielded better results than an autoscleral free-flap graft. Its main advantages over donor graft material are availability and lower cost.
Excisional Bleb Revision for Management of Failed Ahmed Glaucoma Valve.
Eslami, Yadollah; Fakhraie, Ghasem; Moghimi, Sasan; Zarei, Reza; Mohammadi, Masoud; Nabavi, Amin; Yaseri, Mehdi; Izadi, Ali
2017-12-01
To evaluate the outcome of excisonal bleb revision in patients with failed Ahmed glaucoma valve (AGV). In total, 29 patients with uncontrolled intraocular pressure (IOP) despite of maximal tolerated medical therapy at least 6 months after AGV implantation were enrolled in this prospective interventional case series. Excision of fibrotic tissue around the reservoir with application of mitomycin C 0.02% was performed. IOP, number of glaucoma medications were evaluated at baseline and 1 week and 1, 3, 6, and 12 months postoperatively. Complete and qualified success was defined as IOP≤21 mm Hg with or without glaucoma medications, respectively. Intraoperative and postopervative complications were also recorded. Mean IOP was reduced from 30±4.2 mm Hg at baseline to 19.2±3.1 mm Hg at 12-month follow-up visit (P<0.001). Average number of glaucoma medications was decrease from 3.2±0.5 at baseline to 1.9±0.7 at 12-month follow-up (P<0.001). Qualified and complete success rates at 12-month follow-up were 65.5% and 6.9%, respectively. Younger age and higher number of previous glaucoma surgeries were significantly associated with the failure of excisonal bleb revision. Excisional bleb revision could be considered as a relatively effective alternative option for management of inadequate IOP control after AGV implantation.
Mechatronic description of a laser autoguided vehicle for greenhouse operations.
Sánchez-Hermosilla, Julián; González, Ramón; Rodríguez, Francisco; Donaire, Julián G
2013-01-08
This paper presents a novel approach for guiding mobile robots inside greenhouses demonstrated by promising preliminary physical experiments. It represents a comprehensive attempt to use the successful principles of AGVs (auto-guided vehicles) inside greenhouses, but avoiding the necessity of modifying the crop layout, and avoiding having to bury metallic pipes in the greenhouse floor. The designed vehicle can operate different tools, e.g., a spray system for applying plant-protection product, a lifting platform to reach the top part of the plants to perform pruning and harvesting tasks, and a trailer to transport fruits, plants, and crop waste. Regarding autonomous navigation, it follows the idea of AGVs, but now laser emitters are used to mark the desired route. The vehicle development is analyzed from a mechatronic standpoint (mechanics, electronics, and autonomous control).
Sano, Ichiya; Tanito, Masaki; Uchida, Koji; Katsube, Takashi; Kitagaki, Hajime; Ohira, Akihiro
2015-01-01
To evaluate ocular fluid filtration and endplate positioning in glaucomatous eyes with long-tube glaucoma drainage devices (GDDs) using magnetic resonance imaging (MRI) and the effects of various factors on postoperative intraocular pressure (IOP). This observational case series included 27 consecutive glaucomatous eyes (18 men, 7 women; mean age ± standard error, 63.0±2.0 years) who underwent GDD implantation (n = 8 Ahmed Glaucoma Valves [AGV] and n = 19 Baerveldt Glaucoma Implants [BGI]). Tubes were inserted into the pars plana in 23 eyes and anterior chamber in 4 eyes. Six months postoperatively, high-resolution orbital images were obtained using 3-Tesla MRI with head-array coils, and the filtering bleb volume, bleb height, and distances between the anterior endplate edge and corneal center or limbus or between the endplate and orbital wall were measured. In MR images obtained by three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) sequences, the shunt endplate was identified as low-intensity signal, and the filtering bleb was identified as high-intensity signals above and below the endplate in all eyes. The 6-month-postoperative IOP level was correlated negatively with bleb volume (r = -0.4510, P = 0.0182) and bleb height (r = -0.3954, P = 0.0412). The postoperative IOP was significantly (P = 0.0026) lower in BGI-implanted eyes (12.2±0.7 mmHg) than AGV-implanted eyes (16.7±1.2 mmHg); bleb volume was significantly (P = 0.0093) larger in BGI-implanted eyes (478.8±84.2 mm3) than AGV-implanted eyes (161.1±52.3 mm3). Other parameters did not differ. The presence of intraorbital/periocular accumulation of ocular fluid affects postoperative IOP levels in eyes implanted with long-tube GDDs. Larger filtering blebs after BGI than AGI implantations explain lower postoperative IOP levels achieved with BGI than AGV. The findings will contribute to better understanding of IOP reducing mechanism of long-tube GDDs.
The Results of the Use of Ahmed Valve in Refractory Glaucoma Surgery
Bikbov, Mukharram Mukhtaramovich
2015-01-01
ABSTRACT The treatment of refractory glaucoma (RG) is challenging. The commonly adopted strategy in RG treatment is a glaucoma drainage device (GDD) implantation, which despite its radical nature may not always provide the desired intraocular pressure (IOP) levels for a long term. This review is based on the scientific literature on Ahmed glaucoma valve (AGV) implantation for refractory glaucoma. The technique of AGV implantation is described and data for both the types, FP7 and FP8 performance are presented. The outcome with adjunct antimetabolite and anti-VEGF drugs are also highlighted. An insight is given about experimental and histological examinations of the filtering bleb encapsulation. The article also describes various complications and measures to prevent them. How to cite this article: Bikbov MM, Khusnitdinov II. The Results of the Use of Ahmed Valve in Refractory Glaucoma Surgery. J Curr Glaucoma Pract 2015;9(3):86-91. PMID:26997843
Outcomes of using a sutureless bovine pericardial patch graft for Ahmed glaucoma valve implantation.
Quaranta, Luciano; Riva, Ivano; Floriani, Irene C
2013-01-01
To evaluate the long-term outcomes of a surgical technique using a sutureless bovine pericardial patch graft for the implantation of an Ahmed glaucoma valve (AGV). This was a pilot study on patients with primary open-angle glaucoma refractory to repeated surgical filtering procedures. All patients underwent AGV implant technique using a sutureless bovine pericardial patch graft. The pericardial membrane was cut using an ordinary corneal trephine with a diameter of 9.0 or 10.0 mm. The anterior part of the tube was covered with the graft and kept in place with fibrin glue. Subsequently, the cap was stitched all around the tube and the dissected conjunctiva was laid over it. Intraocular pressure (IOP) and complications were evaluated 1 week and 1, 3, 6, 12, and 24 months after surgery. The procedure was used to treat 20 eyes of 20 consecutive patients (12 men and 8 women: mean age [SD] 64.8 [7.8] years). Mean IOP was 28.1 mm Hg (SD 4.9) at baseline and decreased to 14.9 mm Hg (SD 1.5) 24 months after surgery (p<0.001). The overall mean number of topical medications was 3.1 (SD 0.5) at baseline and decreased to 1.4 (SD 0.8) after 24 months (p<0.001). During follow-up, there was no conjunctival erosion, thinning of pericardial patch graft over the tube, or tube exposure; no signs of endophthalmitis were recorded. The results suggest that the sutureless technique using a bovine pericardial graft patch is a safe and rapid procedure for AGV implantation.
Albis-Donado, Oscar; Gil-Carrasco, Félix; Romero-Quijada, Rafael; Thomas, Ravi
2010-01-01
To evaluate the results and extrusion rates of the Ahmed glaucoma valve (AGV) implantation through a needle-generated scleral tunnel, without a tube-covering patch, in children. A retrospective review of the charts of 106 Mexican children implanted with 128 AGVs operated between 1994 and 2002, with the needle track technique, at our institution, with at least six months follow up was done. Main outcome measures were intraocular pressure (IOP) control, tube extrusions or exposure and other complications. Kaplan-Meier analysis demonstrated a 96.9% survival rate at six months, 82.4% at one year, 78.7% at two years, 70% at three years and 41.6% at four years. Total success at the last follow-up (IOP between 6 and 21 mm Hg without medications) was achieved in 30 eyes (23.5%), 58 eyes (45.3%) had qualified success (only topical hypotensive drugs) and 40 eyes (31.3%) were failures. The mean pre- and post-operative IOP at the last follow up was 28.4 mmHg (SD 9.3) and 14.5 mmHg (SD 6.3), respectively. No tube extrusions or exposures were observed. Tube-related complications included five retractions, a lens touch and a transitory endothelial touch. The risk of failure increased if the eye had any complication or previous glaucoma surgeries. Medium-term IOP control in Mexican children with glaucoma can be achieved with AGV implantation using a needle-generated tunnel, without constructing a scleral flap or using a patch to cover the tube. There were no tube extrusions, nor any tube exposures with this technique.
Lopilly Park, H-Y; Jung, K I; Park, C K
2012-09-01
To investigate serial changes of the Ahmed glaucoma valve (AGV) implant tube in the anterior chamber by anterior segment optical coherence tomography (AS-OCT). Patients who had received AGV implantation without complications (n=48) were included in this study. Each patient received follow-up examinations including AS-OCT at days 1 and 2, week 1, and months 1, 3, 6, and 12. Tube parameters were defined to measure its length and position. The intracameral length of the tube was from the tip of the bevel-edged tube to the sclerolimbal junction. The distance between the extremity of the tube and the anterior iris surface (T-I distance), and the angle between the tube and the posterior endothelial surface of the cornea (T-C angle) were defined. Factors that were related to tube parameters were analysed by multiple regression analysis. The mean change in tube length was -0.20 ± 0.17 mm, indicating that the tube length shortened from the initial inserted length. The mean T-I distance change was 0.11 ± 0.07 mm and the mean T-C angle change was -6.7 ± 5.6°. Uveitic glaucoma and glaucoma following penetrating keratoplasty showed the most changes in tube parameters. By multiple regression analysis, diagnosis of glaucoma including uveitic glaucoma (P=0.049) and glaucoma following penetrating keratoplasty (P=0.008) were related to the change of intracameral tube length. These results suggest that the length and position of the AGV tube changes after surgery. The change was prominent in uveitic glaucoma and glaucoma following penetrating keratoplasty.
Constraint-based integration of planning and scheduling for space-based observatory management
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Steven F.
1994-01-01
Progress toward the development of effective, practical solutions to space-based observatory scheduling problems within the HSTS scheduling framework is reported. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) short-term observation scheduling problem. The work was motivated by the limitations of the current solution and, more generally, by the insufficiency of classical planning and scheduling approaches in this problem context. HSTS has subsequently been used to develop improved heuristic solution techniques in related scheduling domains and is currently being applied to develop a scheduling tool for the upcoming Submillimeter Wave Astronomy Satellite (SWAS) mission. The salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research are summarized. Then, some key problem decomposition techniques underlying the integrated planning and scheduling approach to the HST problem are described; research results indicate that these techniques provide leverage in solving space-based observatory scheduling problems. Finally, more recently developed constraint-posting scheduling procedures and the current SWAS application focus are summarized.
A meta-heuristic method for solving scheduling problem: crow search algorithm
NASA Astrophysics Data System (ADS)
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
NASA Technical Reports Server (NTRS)
Smith, Stephen F.; Pathak, Dhiraj K.
1991-01-01
In this paper, we report work aimed at applying concepts of constraint-based problem structuring and multi-perspective scheduling to an over-subscribed scheduling problem. Previous research has demonstrated the utility of these concepts as a means for effectively balancing conflicting objectives in constraint-relaxable scheduling problems, and our goal here is to provide evidence of their similar potential in the context of HST observation scheduling. To this end, we define and experimentally assess the performance of two time-bounded heuristic scheduling strategies in balancing the tradeoff between resource setup time minimization and satisfaction of absolute time constraints. The first strategy considered is motivated by dispatch-based manufacturing scheduling research, and employs a problem decomposition that concentrates local search on minimizing resource idle time due to setup activities. The second is motivated by research in opportunistic scheduling and advocates a problem decomposition that focuses attention on the goal activities that have the tightest temporal constraints. Analysis of experimental results gives evidence of differential superiority on the part of each strategy in different problem solving circumstances. A composite strategy based on recognition of characteristics of the current problem solving state is then defined and tested to illustrate the potential benefits of constraint-based problem structuring and multi-perspective scheduling in over-subscribe scheduling problems.
Miao, Li; Shi, Liwei; Yang, Yi; Yan, Kunming; Sun, Hongliang; Mo, Zhaojun; Li, Li
2018-04-01
This study evaluated the immunological effect of an aGV rabies virus strain using the Essen and Zagreb immunization programs. A total of 1,944 subjects were enrolled and divided into three groups: the Essen test group, Essen control group, and Zagreb test group. Neutralizing antibody levels and antibody seroconversion rates were determined at 7 and 14 days after the initial inoculations and then 14 days after the final inoculation in all of the subjects. The seroconversion rates for the Essen test group, Essen control group, and Zagreb test group, which were assessed 7 days after the first dosing in a susceptible population, were 35.74%, 26.92%, and 45.49%, respectively, and at 14 days, the seroconversion rates in this population were 100%, 100%, and 99.63%, respectively. At 14 days after the final dosing, the seroconversion rates were 100% in all three of the groups. The neutralizing serum antibody levels of the Essen test group, Essen control group, and Zagreb test group at 7 days after the first dosing in the susceptible population were 0.37, 0.26, and 0.56 IU/mL, respectively, and at 14 days after the initial dosing, these levels were 16.71, 13.85, and 16.80 IU/mL. At 14 days after the final dosing, the neutralizing antibody levels were 22.9, 16.3, and 18.62 IU/mL, respectively. The results of this study suggested that the aGV rabies vaccine using the Essen program resulted in a good serum immune response, and the seroconversion rates and the neutralizing antibody levels generated with the Zagreb regimen were higher than those with the Essen regimen when measured 7 days after the first dose.
Albis-Donado, Oscar; Gil-Carrasco, Félix; Romero-Quijada, Rafael; Thomas, Ravi
2010-01-01
Purpose: To evaluate the results and extrusion rates of the Ahmed glaucoma valve (AGV) implantation through a needle-generated scleral tunnel, without a tube-covering patch, in children. Materials and Methods: A retrospective review of the charts of 106 Mexican children implanted with 128 AGVs operated between 1994 and 2002, with the needle track technique, at our institution, with at least six months follow up was done. Main outcome measures were intraocular pressure (IOP) control, tube extrusions or exposure and other complications. Results: Kaplan-Meier analysis demonstrated a 96.9% survival rate at six months, 82.4% at one year, 78.7% at two years, 70% at three years and 41.6% at four years. Total success at the last follow-up (IOP between 6 and 21 mm Hg without medications) was achieved in 30 eyes (23.5%), 58 eyes (45.3%) had qualified success (only topical hypotensive drugs) and 40 eyes (31.3%) were failures. The mean pre- and post-operative IOP at the last follow up was 28.4 mmHg (SD 9.3) and 14.5 mmHg (SD 6.3), respectively. No tube extrusions or exposures were observed. Tube-related complications included five retractions, a lens touch and a transitory endothelial touch. The risk of failure increased if the eye had any complication or previous glaucoma surgeries. Conclusion: Medium-term IOP control in Mexican children with glaucoma can be achieved with AGV implantation using a needle-generated tunnel, without constructing a scleral flap or using a patch to cover the tube. There were no tube extrusions, nor any tube exposures with this technique. PMID:20689189
Sungur, G; Yakin, M; Eksioglu, U; Satana, B; Ornek, F
2017-10-01
PurposeThere is little known about the long-term efficacy and safety of Ahmed glaucoma valve (AGV) implant and about the conditions affecting surgical success in uveitic glaucoma (UG).Patients and methodsThe charts of adult patients with UG who underwent AGV implantation from 2006 to 2015 were reviewed retrospectively.ResultsData of 46 eyes of 39 patients were evaluated. Mean follow-up was 51.93±23.08 months. Mean preoperative IOP was 37.05±9.62 mm Hg and mean number of preoperative topical anti-glaucomatous medications was 2.98±0.27. One eye (2%) was defined as failure because of implant extraction surgery. In the rest of the eyes, intraocular pressure (IOP) was under control with or without anti-glaucomatous medications during follow-up. The cumulative probability of complete success (IOP control without medications) was 78% at 6 months, 76% at 1 year, 71% at 2 years, 66% at 3 years, and 63% at 4 years (95% confidence interval, 61.24-87.81). The cumulative probability of eyes without complication was 64% at 6 months, 48% at 12 months, 44% at 24 months, 41% at 36 months, and 38% at 48 months (95% confidence interval, 34.64-62.85). Complete success was lower in eyes with previous ocular surgery than the eyes without (P=0.061) and it was lower in eyes with active inflammation at the time of surgery than the eyes without (P=0.011).ConclusionAGV implantation is an effective and safe alternative method in the management of UG, especially when it is performed as a primary surgical option and when no inflammation is present preoperatively.
Eslami, Yadolla; Mohammadi, Massood; Fakhraie, Ghasem; Zarei, Reza; Moghimi, Sasan
2014-02-01
To report the efficacy and safety of Ahmed glaucoma valve (AGV) insertion into the ciliary sulcus in pseudophakic/aphakic patients. A chart review was done on patients with uncontrolled glaucoma, who underwent AGV implantation with tube inserted into the ciliary sulcus. Baseline intraocular pressure (IOP) and number of medications were compared with that of postoperative follow-up visits. Surgical success was defined as last IOP <21 mm Hg and 20% reduction in IOP, without further surgery for complications or glaucoma control, and without loss of light perception. Postoperative complications were recorded. Twenty-three eyes of 23 patients were recruited with the mean follow-up of 9 months (range, 3 to 24 mo). The mean (SD) age of patients was 49.9 (16.9) years (range, 22 to 80 years). The mean (SD) IOP (mm Hg) was reduced from 37.9 (12.4) before surgery to 16.2 (3.6) at the last follow-up visit (P<0.001). The mean (SD) number of medications was reduced from 3.3 (0.9) preoperatively to 1 (1.1) at the last follow-up (P<0.001). Success rate was 18/23 (78.6%). Complications included endophthalmitis in 1 eye, tube exposure in 1 diabetic patient, and vitreous tube occlusion in 1 eye. No case of corneal decompensation or graft failure was seen during follow-up. Ciliary sulcus placement of the tube of AGV effectively reduces IOP and medication use in short term. It has the potential to lower corneal complications of anterior chamber tube insertion and avoids the need for pars plana vitrectomy and tube insertion in patients at higher risk of corneal decompensation.
Clinical outcomes of Ahmed glaucoma valve in anterior chamber versus ciliary sulcus.
Bayer, A; Önol, M
2017-04-01
PurposeTo evaluate the outcomes of Ahmed glaucoma valve (AGV) tube insertion through the anterior chamber angle (ACA) or through the ciliary sulcus (CS).Patients and methodsIn this case-control study, we retrospectively reviewed the charts of consecutive glaucoma patients who had undergone AGV implantation either through the ACA or the CS between March 2009 and December 2014. The main outcome measures were intraocular pressure (IOP), number of glaucoma medications prescribed, best corrected visual acuity (BCVA), glaucoma type, success rate, complications, and survival ratios. Statistical analysis was carried out using SPSS.ResultsThere were 68 eyes in the ACA group and 35 eyes in the CS group. There were no significant differences between the groups for age, sex, laterality, IOP, preoperative glaucoma medication number, BCVA or glaucoma type (P>0.05). The postoperative follow-up period was 27.2±16.5 months and 30.2±17.7 months for the ACA and the CS groups (P=0.28); IOP values were significantly reduced at the last visit to 16.4±7.2 mm Hg and 14.4±6.8 mm Hg. The difference in the last-visit IOP between the groups was not significant (P=0.06), but the IOP reduction ratio was higher in the CS group (P=0.03). There was no significant difference in the number of postoperative medications (P=0.18). Postoperative complications were similar, but the incidence of flat anterior chamber was higher in the ACA group (P=0.05).ConclusionsThe use of an AGV can control IOP in the majority of cases whether placed in the ACA or the CS. The IOP reduction ratio seemed to be higher in the CS group.
Zarei, Reza; Amini, Heidar; Daneshvar, Ramin; Nabi, Fahimeh Naderi; Moghimi, Sasan; Fakhraee, Ghasem; Eslami, Yadollah; Mohammadi, Masoud; Amini, Nima
2016-01-01
Purpose: To describe long-term outcomes and complications of Ahmed glaucoma valve (AGV) implantation in subjects with refractory glaucoma at Farabi Eye Hospital, Tehran, Iran. Materials and Methods: This retrospective cohort study evaluated patient records of all subjects with refractory glaucoma who had undergone AGV implantation up to January 2013. The main outcome measure was the surgical success rate. Complete success was defined as intraocular pressure (IOP) <22 mmHg, without anti-glaucoma medications or additional surgery. Qualified success was IOP <22 mmHg regardless of number of anti-glaucoma medications. In all cases, loss of vision (no light perception) was considered an independent indicator of failure. Data were also collected on intraoperative and postoperative complications. Results: Twenty-eight eyes were included in the study. With a mean follow-up of 48.2 ± 31.7 months (median: 40.50 months; range: 3–124 months), the IOP decreased from a mean preoperative value of 30.8 ± 5.6 mmHg to 20.0 ± 6.4 mmHg at last visit. The number of medications decreased from 3.7 ± 0.4 preoperatively to 2.5 ± 1.1 postoperatively. Cumulative qualified success was achieved in 69% of eyes. Mean time to failure according to qualified success criteria was 92.3 ± 9.4 months. Postoperative complications were recorded in 16 (57.1%) eyes. The most common complication was focal endothelial corneal decompensation at the site of tube-cornea touch. Conclusion: AGV implantation with adjunctive topical anti-glaucoma drops controlled IOP in approximately 70% of eyes with refractory glaucoma with a median of 40.5 months of follow-up. However, complication rates were higher. PMID:26957848
Clinical outcomes of Ahmed glaucoma valve in anterior chamber versus ciliary sulcus
Bayer, A; Önol, M
2017-01-01
Purpose To evaluate the outcomes of Ahmed glaucoma valve (AGV) tube insertion through the anterior chamber angle (ACA) or through the ciliary sulcus (CS). Patients and methods In this case-control study, we retrospectively reviewed the charts of consecutive glaucoma patients who had undergone AGV implantation either through the ACA or the CS between March 2009 and December 2014. The main outcome measures were intraocular pressure (IOP), number of glaucoma medications prescribed, best corrected visual acuity (BCVA), glaucoma type, success rate, complications, and survival ratios. Statistical analysis was carried out using SPSS. Results There were 68 eyes in the ACA group and 35 eyes in the CS group. There were no significant differences between the groups for age, sex, laterality, IOP, preoperative glaucoma medication number, BCVA or glaucoma type (P>0.05). The postoperative follow-up period was 27.2±16.5 months and 30.2±17.7 months for the ACA and the CS groups (P=0.28); IOP values were significantly reduced at the last visit to 16.4±7.2 mm Hg and 14.4±6.8 mm Hg. The difference in the last-visit IOP between the groups was not significant (P=0.06), but the IOP reduction ratio was higher in the CS group (P=0.03). There was no significant difference in the number of postoperative medications (P=0.18). Postoperative complications were similar, but the incidence of flat anterior chamber was higher in the ACA group (P=0.05). Conclusions The use of an AGV can control IOP in the majority of cases whether placed in the ACA or the CS. The IOP reduction ratio seemed to be higher in the CS group. PMID:27983734
Shah, Manali R.; Khandekar, Rajiv B.; Zutshi, Rajiv; Mahrooqi, Rahima
2013-01-01
Background: We present outcomes of Ahmed Glaucoma Valve (AGV) implantation in treating refractory glaucoma in a tertiary hospital in Oman. Refractory glaucoma was defined as previously failed conventional glaucoma surgery and an uncontrolled intraocular pressure (IOP) of more than 21 mm Hg despite treatment with three topical and/or oral therapy. Materials and Methods: This historical cohort study was conducted in 2010. Details of medical and surgical treatment were recorded. Ophthalmologists examined eyes and performed glaucoma surgeries using AGV. The best corrected distant vision, IOP, and glaucoma medications were prospectively reviewed on 1st day, 1st, 6th, 12th week postoperatively, and at the last follow up. Result: Glaucoma specialists examined and treated 40 eyes with refractory glaucoma of 39 patients (20 males + 19 females). Neo-vascular glaucoma was present in 23 eyes. Vision before surgery was <3/60 in 21 eyes. At 12 weeks, one eye had vision better than 6/12, seven eyes had vision 6/18 to 6/60, and eight eyes had vision 6/60 to 3/60. Mean IOP was reduced from 42.9 (SD 16) to 14.2 (SD 8) and 19.1 (SD 7.8) mmHg at one and 12 weeks after surgery, respectively. At 12 weeks, five (12.5%) eyes had IOP controlled without medication. In 33 (77.5%) eyes, pressure was controlled by using one or two eye drops. The mean number of preoperative anti-glaucoma medications (2.38; SD 1.1) was reduced compared to the mean number of postoperative medications (1.92; SD 0.9) at 12 weeks. Conclusion: We succeeded in reducing visual disabilities and the number of anti-glaucoma medications used to treat refractory glaucoma by AGV surgery. PMID:23772122
Zarei, Reza; Amini, Heidar; Daneshvar, Ramin; Nabi, Fahimeh Naderi; Moghimi, Sasan; Fakhraee, Ghasem; Eslami, Yadollah; Mohammadi, Masoud; Amini, Nima
2016-01-01
To describe long-term outcomes and complications of Ahmed glaucoma valve (AGV) implantation in subjects with refractory glaucoma at Farabi Eye Hospital, Tehran, Iran. This retrospective cohort study evaluated patient records of all subjects with refractory glaucoma who had undergone AGV implantation up to January 2013. The main outcome measure was the surgical success rate. Complete success was defined as intraocular pressure (IOP) <22 mmHg, without anti-glaucoma medications or additional surgery. Qualified success was IOP <22 mmHg regardless of number of anti-glaucoma medications. In all cases, loss of vision (no light perception) was considered an independent indicator of failure. Data were also collected on intraoperative and postoperative complications. Twenty-eight eyes were included in the study. With a mean follow-up of 48.2 ± 31.7 months (median: 40.50 months; range: 3-124 months), the IOP decreased from a mean preoperative value of 30.8 ± 5.6 mmHg to 20.0 ± 6.4 mmHg at last visit. The number of medications decreased from 3.7 ± 0.4 preoperatively to 2.5 ± 1.1 postoperatively. Cumulative qualified success was achieved in 69% of eyes. Mean time to failure according to qualified success criteria was 92.3 ± 9.4 months. Postoperative complications were recorded in 16 (57.1%) eyes. The most common complication was focal endothelial corneal decompensation at the site of tube-cornea touch. AGV implantation with adjunctive topical anti-glaucoma drops controlled IOP in approximately 70% of eyes with refractory glaucoma with a median of 40.5 months of follow-up. However, complication rates were higher.
Lee, Jong Joo; Kim, Dong Myung; Kim, Tae Woo
2009-01-01
Purpose To investigate the immediate and long-term outcomes of Ahmed glaucoma valve (AGV) implantation with silicone tube ligation and removable external stents. Methods This retrospective non-comparative study investigated the outcomes of AGV implantation with silicone tube ligation and removable external stents in 95 eyes (90 patients) with at least 12 months of postoperative follow-up. Qualified success was defined as an intraocular pressure (IOP) of ≤21 mmHg and ≥6 mmHg regardless of anti-glaucoma medication. Those who required additional glaucoma surgery, implant removal or who had phthisis bulbi were considered failures. Hypotony was defined as an IOP of <6 mmHg. Results Mean IOP reduced from 37.1±9.7 mmHg preoperatively to 15.2±5.6 mmHg at 12 months postoperatively (p<0.001). Qualified success was achieved in 84.2% at 1 year. Hypotony with an IOP of <6 mmHg was seen in 8.4% and an IOP of <5 mmHg in 3.2% on the first postoperative day. No case of hypotony required surgical intervention. Suprachoroidal hemorrhage did not occur in this study. When stents were removed on the first postoperative day because of an insufficient IOP decrease, the mean IOP decreased significantly from 42.0 mmHg to 14.1 mmHg (p<0.001) after 1 hour. The most common complication was hyphema, which occurred in 17.9%. Conclusions Hypotony-related early complications requiring surgical intervention were reduced by ligation and external stents in the tube. In addition, early postoperative high IOPs were managed by removing external stents. The described method can prevent postoperative hypotony after AGV implantation and showed long-term success rates comparable to those reported previously. PMID:19568356
Lee, Jong Joo; Park, Ki Ho; Kim, Dong Myung; Kim, Tae Woo
2009-06-01
To investigate the immediate and long-term outcomes of Ahmed glaucoma valve (AGV) implantation with silicone tube ligation and removable external stents. This retrospective non-comparative study investigated the outcomes of AGV implantation with silicone tube ligation and removable external stents in 95 eyes (90 patients) with at least 12 months of postoperative follow-up. Qualified success was defined as an intraocular pressure (IOP) of
Decomposability and scalability in space-based observatory scheduling
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Stephen F.
1992-01-01
In this paper, we discuss issues of problem and model decomposition within the HSTS scheduling framework. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) scheduling problem, motivated by the limitations of the current solution and, more generally, the insufficiency of classical planning and scheduling approaches in this problem context. We first summarize the salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research. Then, we describe some key problem decomposition techniques supported by HSTS and underlying our integrated planning and scheduling approach, and we discuss the leverage they provide in solving space-based observatory scheduling problems.
AI techniques for a space application scheduling problem
NASA Technical Reports Server (NTRS)
Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.
1991-01-01
Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).
Rabies in southeast Brazil: a change in the epidemiological pattern.
Queiroz, Luzia Helena; Favoretto, Silvana Regina; Cunha, Elenice Maria S; Campos, Angélica Cristine A; Lopes, Marissol Cardoso; de Carvalho, Cristiano; Iamamoto, Keila; Araújo, Danielle Bastos; Venditti, Leandro Lima R; Ribeiro, Erica S; Pedro, Wagner André; Durigon, Edison Luiz
2012-01-01
This epidemiological study was conducted using antigenic and genetic characterisation of rabies virus isolates obtained from different animal species in the southeast of Brazil from 1993 to 2007. An alteration in the epidemiological profile was observed. One hundred two samples were tested using a panel of eight monoclonal antibodies, and 94 were genetically characterised by sequencing the nucleoprotein gene. From 1993 to 1997, antigenic variant 2 (AgV-2), related to a rabies virus maintained in dog populations, was responsible for rabies cases in dogs, cats, cattle and horses. Antigenic variant 3 (AgV-3), associated with Desmodus rotundus, was detected in a few cattle samples from rural areas. From 1998 to 2007, rabies virus was detected in bats and urban pets, and four distinct variants were identified. A nucleotide similarity analysis resulted in two primary groups comprising the dog and bat antigenic variants and showing the distinct endemic cycles maintained in the different animal species in this region.
Case study of rotating sonar sensor application in unmanned automated guided vehicle
NASA Astrophysics Data System (ADS)
Chandak, Pravin; Cao, Ming; Hall, Ernest L.
2001-10-01
A single rotating sonar element is used with a restricted angle of sweep to obtain readings to develop a range map for the unobstructed path of an autonomous guided vehicle (AGV). A Polaroid ultrasound transducer element is mounted on a micromotor with an encoder feedback. The motion of this motor is controlled using a Galil DMC 1000 motion control board. The encoder is interfaced with the DMC 1000 board using an intermediate IMC 1100 break-out board. By adjusting the parameters of the Polaroid element, it is possible to obtain range readings at known angles with respect to the center of the robot. The readings are mapped to obtain a range map of the unobstructed path in front of the robot. The idea can be extended to a 360 degree mapping by changing the assembly level programming on the Galil Motion control board. Such a system would be compact and reliable over a range of environments and AGV applications.
SOFIA's Choice: Automating the Scheduling of Airborne Observations
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Norvig, Peter (Technical Monitor)
1999-01-01
This paper describes the problem of scheduling observations for an airborne telescope. Given a set of prioritized observations to choose from, and a wide range of complex constraints governing legitimate choices and orderings, how can we efficiently and effectively create a valid flight plan which supports high priority observations? This problem is quite different from scheduling problems which are routinely solved automatically in industry. For instance, the problem requires making choices which lead to other choices later, and contains many interacting complex constraints over both discrete and continuous variables. Furthermore, new types of constraints may be added as the fundamental problem changes. As a result of these features, this problem cannot be solved by traditional scheduling techniques. The problem resembles other problems in NASA and industry, from observation scheduling for rovers and other science instruments to vehicle routing. The remainder of the paper is organized as follows. In 2 we describe the observatory in order to provide some background. In 3 we describe the problem of scheduling a single flight. In 4 we compare flight planning and other scheduling problems and argue that traditional techniques are not sufficient to solve this problem. We also mention similar complex scheduling problems which may benefit from efforts to solve this problem. In 5 we describe an approach for solving this problem based on research into a similar problem, that of scheduling observations for a space-borne probe. In 6 we discuss extensions of the flight planning problem as well as other problems which are similar to flight planning. In 7 we conclude and discuss future work.
Fritz, Jennifer N; Jackson, Lynsey M; Stiefler, Nicole A; Wimberly, Barbara S; Richardson, Amy R
2017-07-01
The effects of noncontingent reinforcement (NCR) without extinction during treatment of problem behavior maintained by social positive reinforcement were evaluated for five individuals diagnosed with autism spectrum disorder. A continuous NCR schedule was gradually thinned to a fixed-time 5-min schedule. If problem behavior increased during NCR schedule thinning, a continuous NCR schedule was reinstated and NCR schedule thinning was repeated with differential reinforcement of alternative behavior (DRA) included. Results showed an immediate decrease in all participants' problem behavior during continuous NCR, and problem behavior maintained at low levels during NCR schedule thinning for three participants. Problem behavior increased and maintained at higher rates during NCR schedule thinning for two other participants; however, the addition of DRA to the intervention resulted in decreased problem behavior and increased mands. © 2017 Society for the Experimental Analysis of Behavior.
Job shop scheduling problem with late work criterion
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.
NASA Technical Reports Server (NTRS)
Moore, J. E.
1975-01-01
An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.
Research on Production Scheduling System with Bottleneck Based on Multi-agent
NASA Astrophysics Data System (ADS)
Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke
Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.
Completable scheduling: An integrated approach to planning and scheduling
NASA Technical Reports Server (NTRS)
Gervasio, Melinda T.; Dejong, Gerald F.
1992-01-01
The planning problem has traditionally been treated separately from the scheduling problem. However, as more realistic domains are tackled, it becomes evident that the problem of deciding on an ordered set of tasks to achieve a set of goals cannot be treated independently of the problem of actually allocating resources to the tasks. Doing so would result in losing the robustness and flexibility needed to deal with imperfectly modeled domains. Completable scheduling is an approach which integrates the two problems by allowing an a priori planning module to defer particular planning decisions, and consequently the associated scheduling decisions, until execution time. This allows a completable scheduling system to maximize plan flexibility by allowing runtime information to be taken into consideration when making planning and scheduling decision. Furthermore, through the criteria of achievability placed on deferred decision, a completable scheduling system is able to retain much of the goal-directedness and guarantees of achievement afforded by a priori planning. The completable scheduling approach is further enhanced by the use of contingent explanation-based learning, which enables a completable scheduling system to learn general completable plans from example and improve its performance through experience. Initial experimental results show that completable scheduling outperforms classical scheduling as well as pure reactive scheduling in a simple scheduling domain.
NASA Astrophysics Data System (ADS)
Buchner, Johannes
2011-12-01
Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the literature: The inability of a GA to properly improve schedules and the generation of schedules with frequent interruptions. Finally, we demonstrate the scheduling framework for several operating telescopes: (1) Dynamic re-scheduling with the AUT Warkworth 12m telescope, (2) Scheduling for the Australian Mopra 22m telescope and scheduling for the Allen Telescope Array. Furthermore, we discuss the applicability of the presented scheduling framework to the Atacama Large Millimeter/submillimeter Array (ALMA, in construction) and the SKA. In particular, during the development phase of the SKA, this dynamic, scalable scheduling framework can accommodate changing conditions.
An Optimization Model for Scheduling Problems with Two-Dimensional Spatial Resource Constraint
NASA Technical Reports Server (NTRS)
Garcia, Christopher; Rabadi, Ghaith
2010-01-01
Traditional scheduling problems involve determining temporal assignments for a set of jobs in order to optimize some objective. Some scheduling problems also require the use of limited resources, which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and other areas of logistics and supply chain management. This scheduling problem involves a twodimensional rectangular area as a limited resource. Each job, in addition to having temporal requirements, has a width and a height and utilizes a certain amount of space inside the area. We propose an optimization model for scheduling the jobs while respecting all temporal and spatial constraints.
An Implicit Enumeration Algorithm with Binary-Valued Constraints.
1986-03-01
problems is the National Basketball Association ( NBA -) schedul- ing problems developed by Bean (1980), as discussed in detail in the Appendix. These...fY! X F L- %n~ P ’ % -C-10 K7 K: K7 -L- -7".i - W. , W V APPENDIX The NBA Scheduling Problem §A.1 Formulation The National Basketball Association...16 2.2 4.9 40.2 15.14 §6.2.3 NBA Scheduling Problem The last set of testing problems involves the NBA scheduling problem. A detailed description of
Performance comparison of some evolutionary algorithms on job shop scheduling problems
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Rabies Virus in Bats, State of Pará, Brazil, 2005-2011.
Pereira, Armando de Souza; Casseb, Livia Medeiros Neves; Barbosa, Taciana Fernandes Souza; Begot, Alberto Lopes; Brito, Roberto Messias Oliveira; Vasconcelos, Pedro Fernando da Costa; Travassos da Rosa, Elizabeth Salbé
2017-08-01
Rabies is an acute, progressive zoonotic viral infection that in general produces a fatal outcome. This disease is responsible for deaths in humans and animals worldwide and, because it can affect all mammals, is considered one of the most important viral infections for public health. This study aimed to determine the prevalence of rabies in bats of different species found in municipalities of the state of Pará from 2005 to 2011. The rabies virus was detected in 12 (0.39%) bats in a total of 3100 analyzed, including hematophagous, frugivorous, and insectivorous bats. Of these, eleven were characterized as AgV3, which is characteristic of the hematophagous bat Desmodus rotundus (E. Geoffroy 1810); one insectivorous animal showed a different profile compatible with the Eptesicus pattern and may therefore be a new antigenic variant. This study identified the need for greater intensification of epidemiological surveillance in municipalities lacking rabies surveillance (silent areas); studies of rabies virus in bats with different alimentary habits, studies investigating the prevalence of AgV3, and prophylactic measures in areas where humans may be infected are also needed.
Huang, Jingjing; Lin, Jialiu; Wu, Ziqiang; Xu, Hongzhi; Zuo, Chengguo; Ge, Jian
2015-01-01
The purpose of this study was to evaluate the intermediate surgical results of Ahmed glaucoma valve (AGV) implantation in patients less than 7 years of age, with advanced primary congenital glaucoma who have failed previous surgeries. Consecutive patients with advanced primary congenital glaucoma that failed previous operations and had undergone subsequent AGV implantation were evaluated retrospectively. Surgical success was defined as 1) intraocular pressure (IOP) ≥6 and ≤21 mmHg; 2) IOP reduction of at least 30% relative to preoperative values; and 3) without the need for additional surgical intervention for IOP control, loss of light perception, or serious complications. Fourteen eyes of eleven patients were studied. Preoperatively, the average axial length was 27.71±1.52 (25.56-30.80) mm, corneal diameter was 14.71±1.07 (13.0-16.0) mm, cup-to-disc ratio was 0.95±0.04 (0.9-1.0), and IOP was 39.5±5.7 (30-55) mmHg. The mean follow-up time was 18.29±10.96 (5-44, median 18) months. There were significant reductions in IOPs and the number of glaucoma medications (P<0.001) postoperatively. The IOPs after operation were 11.3±3.4, 13.6±5.1, 16.3±2.7, and 16.1±2.6 mmHg at 1 month, 6 months, 12 months, and 18 months, respectively. Kaplan-Meier estimates of the cumulative probability of valve success were 85.7%, 71.4%, and 71.4% at 6, 12, and 18 months, respectively. Severe surgical complications, including erosion of tube, endophthalmitis, retinal detachment, choroidal detachment, and delayed suprachoroidal hemorrhage, occurred in 28.6% cases. AGV implantation remains a viable option for patients with advanced primary congenital glaucoma unresponsive to previous surgical intervention, despite a relatively high incidence of severe surgical complications.
Bao, Ning; Jiang, Zheng-Xuan; Coh, Paul; Tao, Li-Ming
2018-01-01
To report long-term outcomes of secondary glaucoma due to uveitis treated with Ahmed glaucoma valve (AGV) implantation in a series of Chinese patients. The retrospective study included 67 eyes from 56 patients with uveitic glaucoma who underwent AGV implantation. Success of the treatment was defined as patients achieving intraocular pressure (IOP) levels between 6 and 21 mm Hg with or without additional anti-glaucoma medications and/or a minimum of 20% reduction from baseline IOP. The main outcome measurements included IOP, the number of glaucoma medications at 1, 3, 6, 12, 24, 36, 48 and 60mo after surgery, surgical complications, final best-corrected vision acuity (BCVA), visual field (VF) and retinal nerve fiber layer (RNFL). The mean follow-up was 53.3±8.5 (range 48 to 60)mo. The cumulative probability of success rate was 98.5%, 95.5%, 89.6%, 83.6%, 76.1%, 70.1%, 65.7% and 61.2% at 1, 3, 6, 12, 24, 36, 48 and 60mo, respectively. IOP was reduced from a baseline of 30.8±6.8 to 9.9±4.1, 10.1±4.2, 10.9±3.7, 12.9±4.6, 13.8±3.9, 13.2±4.6, 12.3±3.5 and 13.1±3.7 mm Hg at 1, 3, 6, 12, 24, 36, 48 and 60mo, respectively ( P <0.01). The number of postoperative glaucoma medications was significantly decreased compared with baseline at all time points during the study period ( P <0.05). There was no significant difference between preoperative and postoperative BCVA. Remarkable surgical complications were not found after surgery. The VF and RNFL of the patients were stable after the surgery. AGV implantation is safe and effect in terms of reducing IOP, decreasing the number of glaucoma medications, and preserving vision for patients with uveitic glaucoma.
Zhou, Minwen; Wang, Wei; Huang, Wenbin; Zhang, Xiulan
2014-09-06
To evaluate the surgical outcome of Ahmed glaucoma valve (AGV) implantation with a new technique of mitomycin C (MMC) application. This is a retrospective study. All patients with refractory glaucoma underwent FP-7 AGV implantation. Two methods of MMC application were used. In the traditional technique, 6 × 4 mm cotton soaked with MMC (0.25-0.33 mg/ml) was placed in the implantation area for 2-5mins; in the new technique, the valve plate first was encompassed with a thin layer of cotton soaked with MMC, then inserted into the same area. A 200 ml balanced salt solution was applied for irrigation of MMC. The surgical success rate, intraocular pressure (IOP), number of anti-glaucoma medications used, and postoperative complications were analyzed between the groups. The surgical outcomes of two MMC applied techniques were compared. The new technique group had only one case (2.6%) of encapsulated cyst formation out of 38 eyes, while there were eight (19.5%) cases out of 41 eyes the in traditional group. The difference was statistically significant (P = 0.030). According to the definition of success rate, there was 89.5% in the new technique group and 70.7% in the traditional group at the follow-up end point. There was a significant difference between the two groups (P = 0.035). Mean IOP in the new technique group were significantly lower than those of the traditional group at 3 and 6 months (P < 0.05). By using a thin layer of cotton soaked with MMC to encompass the valve plate, the new MMC application technique could greatly decrease the incidence of encapsulated cyst and increase the success rate following AGV implantation.
Huang, Jingjing; Lin, Jialiu; Wu, Ziqiang; Xu, Hongzhi; Zuo, Chengguo; Ge, Jian
2015-01-01
Purpose The purpose of this study was to evaluate the intermediate surgical results of Ahmed glaucoma valve (AGV) implantation in patients less than 7 years of age, with advanced primary congenital glaucoma who have failed previous surgeries. Patients and methods Consecutive patients with advanced primary congenital glaucoma that failed previous operations and had undergone subsequent AGV implantation were evaluated retrospectively. Surgical success was defined as 1) intraocular pressure (IOP) ≥6 and ≤21 mmHg; 2) IOP reduction of at least 30% relative to preoperative values; and 3) without the need for additional surgical intervention for IOP control, loss of light perception, or serious complications. Results Fourteen eyes of eleven patients were studied. Preoperatively, the average axial length was 27.71±1.52 (25.56–30.80) mm, corneal diameter was 14.71±1.07 (13.0–16.0) mm, cup-to-disc ratio was 0.95±0.04 (0.9–1.0), and IOP was 39.5±5.7 (30–55) mmHg. The mean follow-up time was 18.29±10.96 (5–44, median 18) months. There were significant reductions in IOPs and the number of glaucoma medications (P<0.001) postoperatively. The IOPs after operation were 11.3±3.4, 13.6±5.1, 16.3±2.7, and 16.1±2.6 mmHg at 1 month, 6 months, 12 months, and 18 months, respectively. Kaplan–Meier estimates of the cumulative probability of valve success were 85.7%, 71.4%, and 71.4% at 6, 12, and 18 months, respectively. Severe surgical complications, including erosion of tube, endophthalmitis, retinal detachment, choroidal detachment, and delayed suprachoroidal hemorrhage, occurred in 28.6% cases. Conclusion AGV implantation remains a viable option for patients with advanced primary congenital glaucoma unresponsive to previous surgical intervention, despite a relatively high incidence of severe surgical complications. PMID:26082610
He, Ye; Tian, Ying; Song, Weitao; Su, Ting; Jiang, Haibo; Xia, Xiaobo
2017-01-01
Abstract This study aimed to evaluate the efficacy of Ahmed glaucoma valve (AGV) implantation in treating neovascular glaucoma (NVG) and to analyze the factors influencing the surgical success rate. This is a retrospective review of 40 eyes of 40 NVG patients who underwent AGV implantation at Xiangya Hospital of Central South University, China, between January 2014 and December 2016. Pre- and postoperative intraocular pressure (IOP), visual acuity, surgical success rate, medications, and complications were observed. Surgical success criteria were defined as IOP ≤21 and >6 mm Hg with or without additional medications. Kaplan–Meier survival curves and Multivariate cox regression analysis were used to examine success rates and risk factors for surgical outcomes. The mean follow-up period was 8.88 ± 3.12 months (range: 3–17). IOP declined at each visit postoperatively and it was statistically significant (P < .001). An average of 3.55 ± 0.86 drugs was applied preoperatively, while an average of 0.64 ± 0.90 drugs was used postoperatively, with the difference being of statistical significance (P < .05). The complete surgical success rate of 3, 6, and 12 months after the operation was 85%, 75%, and 65%, respectively. Meanwhile, the qualified success rate of 3, 6, and 12 months after the operation was 85%, 80%, and 77.5%, respectively. The multivariate cox regression analysis showed that age (hazard ratio: 3.717, 7.246; 95% confidence interval: 1.149–12.048, 1.349–38.461; P = .028, .021) was influencing factors for complete success rate and qualified success rate among all NVG patients. Gender, previous operation history, primary disease, and preoperative IOP were found to be not significant. AGV implantation is an effective and safe surgical method to treat NVG. Age is an important factor influencing the surgical success rate. PMID:29049253
Chiam, Patrick J; Cheeseman, Robert; Ho, Vivian W; Romano, Vito; Choudhary, Anshoo; Batterbury, Mark; Kaye, Stephen B; Willoughby, Colin E
2017-05-01
The purpose was to investigate the survival of Descemet stripping automated endothelial keratoplasty (DSAEK) in eyes with an Ahmed glaucoma valve (AGV). The study had a retrospective case-series of patients with an AGV in the anterior chamber undergoing a DSAEK. Included in the analysis were graft size, number of previous operations, post-operative glaucoma medications, post-operative intraocular pressure (IOP) control, graft size and donor factors (age, endothelial cell density, and post-mortem time). A generalised linear model with binary logistic regression was used to test for an effect on graft survival at 1 year and 1.5 years. Fourteen eyes from 13 patients were included. The survival rate of the first DSAEK at 6, 12, 18, 24 and 30-months was 85%, 71%, 50%, 36% and 30%, respectively. The mean duration to graft failure was 12.9 ± 6.2 months. Five of the seven failed first grafts went on to have a repeat DSAEK. The mean follow-up in this subgroup was 30.7 ± 18.4 months. The survival rate of second DSAEK at 6, 12, 18 and 24 months was 100% (5/5), 100% (5/5), 75% (3/4) and 67% (2/3). Only one second DSAEK failed in the duration of the study and went on to receive a third DSAEK which failed at 18-months. The mean IOP within the first year was significantly lower for grafts that survived at 1 and 1.5 years (17.4 mmHg, 16.9 mmHg) than for grafts that failed (19.4 mmHg, 19.4 mmHg) (p = 0.04, p = 0.009). DSAEK is a viable alternative to PK to restore visual function in eyes with an AGV sited in the anterior chamber. IOP is an important risk factor for graft failure.
Compiling Planning into Scheduling: A Sketch
NASA Technical Reports Server (NTRS)
Bedrax-Weiss, Tania; Crawford, James M.; Smith, David E.
2004-01-01
Although there are many approaches for compiling a planning problem into a static CSP or a scheduling problem, current approaches essentially preserve the structure of the planning problem in the encoding. In this pape: we present a fundamentally different encoding that more accurately resembles a scheduling problem. We sketch the approach and argue, based on an example, that it is possible to automate the generation of such an encoding for problems with certain properties and thus produce a compiler of planning into scheduling problems. Furthermore we argue that many NASA problems exhibit these properties and that such a compiler would provide benefits to both theory and practice.
Bridging the Gap Between Planning and Scheduling
NASA Technical Reports Server (NTRS)
Smith, David E.; Frank, Jeremy; Jonsson, Ari K.; Norvig, Peter (Technical Monitor)
2000-01-01
Planning research in Artificial Intelligence (AI) has often focused on problems where there are cascading levels of action choice and complex interactions between actions. In contrast. Scheduling research has focused on much larger problems where there is little action choice, but the resulting ordering problem is hard. In this paper, we give an overview of M planning and scheduling techniques, focusing on their similarities, differences, and limitations. We also argue that many difficult practical problems lie somewhere between planning and scheduling, and that neither area has the right set of tools for solving these vexing problems.
Interactive computer aided shift scheduling.
Gaertner, J
2001-12-01
This paper starts with a discussion of computer aided shift scheduling. After a brief review of earlier approaches, two conceptualizations of this field are introduced: First, shift scheduling as a field that ranges from extremely stable rosters at one pole to rather market-like approaches on the other pole. Unfortunately, already small alterations of a scheduling problem (e.g., the number of groups, the number of shifts) may call for rather different approaches and tools. Second, their environment shapes scheduling problems and scheduling has to be done within idiosyncratic organizational settings. This calls for the amalgamation of scheduling with other tasks (e.g., accounting) and for reflections whether better solutions might become possible by changes in the problem definition (e.g., other service levels, organizational changes). Therefore shift scheduling should be understood as a highly connected problem. Building upon these two conceptualizations, a few examples of software that ease scheduling in some areas of this field are given and future research questions are outlined.
Optimal recombination in genetic algorithms for flowshop scheduling problems
NASA Astrophysics Data System (ADS)
Kovalenko, Julia
2016-10-01
The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.
Integrated scheduling and resource management. [for Space Station Information System
NASA Technical Reports Server (NTRS)
Ward, M. T.
1987-01-01
This paper examines the problem of integrated scheduling during the Space Station era. Scheduling for Space Station entails coordinating the support of many distributed users who are sharing common resources and pursuing individual and sometimes conflicting objectives. This paper compares the scheduling integration problems of current missions with those anticipated for the Space Station era. It examines the facilities and the proposed operations environment for Space Station. It concludes that the pattern of interdependecies among the users and facilities, which are the source of the integration problem is well structured, allowing a dividing of the larger problem into smaller problems. It proposes an architecture to support integrated scheduling by scheduling efficiently at local facilities as a function of dependencies with other facilities of the program. A prototype is described that is being developed to demonstrate this integration concept.
Applications of dynamic scheduling technique to space related problems: Some case studies
NASA Astrophysics Data System (ADS)
Nakasuka, Shinichi; Ninomiya, Tetsujiro
1994-10-01
The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.
Solving a real-world problem using an evolving heuristically driven schedule builder.
Hart, E; Ross, P; Nelson, J
1998-01-01
This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.
Testing Task Schedulers on Linux System
NASA Astrophysics Data System (ADS)
Jelenković, Leonardo; Groš, Stjepan; Jakobović, Domagoj
Testing task schedulers on Linux operating system proves to be a challenging task. There are two main problems. The first one is to identify which properties of the scheduler to test. The second problem is how to perform it, e.g., which API to use that is sufficiently precise and in the same time supported on most platforms. This paper discusses the problems in realizing test framework for testing task schedulers and presents one potential solution. Observed behavior of the scheduler is the one used for “normal” task scheduling (SCHED_OTHER), unlike one used for real-time tasks (SCHED_FIFO, SCHED_RR).
Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220
Discrete bat algorithm for optimal problem of permutation flow shop scheduling.
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.
Two-machine flow shop scheduling integrated with preventive maintenance planning
NASA Astrophysics Data System (ADS)
Wang, Shijin; Liu, Ming
2016-02-01
This paper investigates an integrated optimisation problem of production scheduling and preventive maintenance (PM) in a two-machine flow shop with time to failure of each machine subject to a Weibull probability distribution. The objective is to find the optimal job sequence and the optimal PM decisions before each job such that the expected makespan is minimised. To investigate the value of integrated scheduling solution, computational experiments on small-scale problems with different configurations are conducted with total enumeration method, and the results are compared with those of scheduling without maintenance but with machine degradation, and individual job scheduling combined with independent PM planning. Then, for large-scale problems, four genetic algorithm (GA) based heuristics are proposed. The numerical results with several large problem sizes and different configurations indicate the potential benefits of integrated scheduling solution and the results also show that proposed GA-based heuristics are efficient for the integrated problem.
A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2003-01-01
Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.
NASA Technical Reports Server (NTRS)
Phillips, K.
1976-01-01
A mathematical model for job scheduling in a specified context is presented. The model uses both linear programming and combinatorial methods. While designed with a view toward optimization of scheduling of facility and plant operations at the Deep Space Communications Complex, the context is sufficiently general to be widely applicable. The general scheduling problem including options for scheduling objectives is discussed and fundamental parameters identified. Mathematical algorithms for partitioning problems germane to scheduling are presented.
User requirements for a patient scheduling system
NASA Technical Reports Server (NTRS)
Zimmerman, W.
1979-01-01
A rehabilitation institute's needs and wants from a scheduling system were established by (1) studying the existing scheduling system and the variables that affect patient scheduling, (2) conducting a human-factors study to establish the human interfaces that affect patients' meeting prescribed therapy schedules, and (3) developing and administering a questionnaire to the staff which pertains to the various interface problems in order to identify staff requirements to minimize scheduling problems and other factors that may limit the effectiveness of any new scheduling system.
Evaluation of scheduling techniques for payload activity planning
NASA Technical Reports Server (NTRS)
Bullington, Stanley F.
1991-01-01
Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.
Artificial intelligence approaches to astronomical observation scheduling
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Miller, Glenn
1988-01-01
Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.
NASA Astrophysics Data System (ADS)
Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.; Krenczyk, D.
2016-08-01
In the paper a survey of predictive and reactive scheduling methods is done in order to evaluate how the ability of prediction of reliability characteristics influences over robustness criteria. The most important reliability characteristics are: Mean Time to Failure, Mean Time of Repair. Survey analysis is done for a job shop scheduling problem. The paper answers the question: what method generates robust schedules in the case of a bottleneck failure occurrence before, at the beginning of planned maintenance actions or after planned maintenance actions? Efficiency of predictive schedules is evaluated using criteria: makespan, total tardiness, flow time, idle time. Efficiency of reactive schedules is evaluated using: solution robustness criterion and quality robustness criterion. This paper is the continuation of the research conducted in the paper [1], where the survey of predictive and reactive scheduling methods is done only for small size scheduling problems.
Planning and Scheduling for Fleets of Earth Observing Satellites
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)
2001-01-01
We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.
Deep Space Network Scheduling Using Evolutionary Computational Methods
NASA Technical Reports Server (NTRS)
Guillaume, Alexandre; Lee, Seugnwon; Wang, Yeou-Fang; Terrile, Richard J.
2007-01-01
The paper presents the specific approach taken to formulate the problem in terms of gene encoding, fitness function, and genetic operations. The genome is encoded such that a subset of the scheduling constraints is automatically satisfied. Several fitness functions are formulated to emphasize different aspects of the scheduling problem. The optimal solutions of the different fitness functions demonstrate the trade-off of the scheduling problem and provide insight into a conflict resolution process.
Enhanced Specification and Verification for Timed Planning
2009-02-28
Scheduling Problem The job-shop scheduling problem ( JSSP ) is a generic resource allocation problem in which common resources (“machines”) are required...interleaving of all processes Pi with the non-delay and mutual exclusion constraints: JSSP =̂ |||0<i6n Pi Where mutual-exclusion( JSSP ) For every complete...execution of JSSP (which terminates), its associated sched- ule S is a feasible schedule. An optimal schedule is a trace of JSSP with the minimum ending
Improving Resource Selection and Scheduling Using Predictions. Chapter 1
NASA Technical Reports Server (NTRS)
Smith, Warren
2003-01-01
The introduction of computational grids has resulted in several new problems in the area of scheduling that can be addressed using predictions. The first problem is selecting where to run an application on the many resources available in a grid. Our approach to help address this problem is to provide predictions of when an application would start to execute if submitted to specific scheduled computer systems. The second problem is gaining simultaneous access to multiple computer systems so that distributed applications can be executed. We help address this problem by investigating how to support advance reservations in local scheduling systems. Our approaches to both of these problems are based on predictions for the execution time of applications on space- shared parallel computers. As a side effect of this work, we also discuss how predictions of application run times can be used to improve scheduling performance.
Experiments with a decision-theoretic scheduler
NASA Technical Reports Server (NTRS)
Hansson, Othar; Holt, Gerhard; Mayer, Andrew
1992-01-01
This paper describes DTS, a decision-theoretic scheduler designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems, and using probabilistic inference to aggregate this information in light of features of a given problem. BPS, the Bayesian Problem-Solver, introduced a similar approach to solving single-agent and adversarial graph search problems, yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
Producing Satisfactory Solutions to Scheduling Problems: An Iterative Constraint Relaxation Approach
NASA Technical Reports Server (NTRS)
Chien, S.; Gratch, J.
1994-01-01
One drawback to using constraint-propagation in planning and scheduling systems is that when a problem has an unsatisfiable set of constraints such algorithms typically only show that no solution exists. While, technically correct, in practical situations, it is desirable in these cases to produce a satisficing solution that satisfies the most important constraints (typically defined in terms of maximizing a utility function). This paper describes an iterative constraint relaxation approach in which the scheduler uses heuristics to progressively relax problem constraints until the problem becomes satisfiable. We present empirical results of applying these techniques to the problem of scheduling spacecraft communications for JPL/NASA antenna resources.
A vision-based automated guided vehicle system with marker recognition for indoor use.
Lee, Jeisung; Hyun, Chang-Ho; Park, Mignon
2013-08-07
We propose an intelligent vision-based Automated Guided Vehicle (AGV) system using fiduciary markers. In this paper, we explore a low-cost, efficient vehicle guiding method using a consumer grade web camera and fiduciary markers. In the proposed method, the system uses fiduciary markers with a capital letter or triangle indicating direction in it. The markers are very easy to produce, manipulate, and maintain. The marker information is used to guide a vehicle. We use hue and saturation values in the image to extract marker candidates. When the known size fiduciary marker is detected by using a bird's eye view and Hough transform, the positional relation between the marker and the vehicle can be calculated. To recognize the character in the marker, a distance transform is used. The probability of feature matching was calculated by using a distance transform, and a feature having high probability is selected as a captured marker. Four directional signals and 10 alphabet features are defined and used as markers. A 98.87% recognition rate was achieved in the testing phase. The experimental results with the fiduciary marker show that the proposed method is a solution for an indoor AGV system.
Ecology and geography of transmission of two bat-borne rabies lineages in Chile.
Escobar, Luis E; Peterson, A Townsend; Favi, Myriam; Yung, Verónica; Pons, Daniel J; Medina-Vogel, Gonzalo
2013-01-01
Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985-2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances.
Ecology and Geography of Transmission of Two Bat-Borne Rabies Lineages in Chile
Escobar, Luis E.; Peterson, A. Townsend; Favi, Myriam; Yung, Verónica; Pons, Daniel J.; Medina-Vogel, Gonzalo
2013-01-01
Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances. PMID:24349592
A New Lagrangian Relaxation Method Considering Previous Hour Scheduling for Unit Commitment Problem
NASA Astrophysics Data System (ADS)
Khorasani, H.; Rashidinejad, M.; Purakbari-Kasmaie, M.; Abdollahi, A.
2009-08-01
Generation scheduling is a crucial challenge in power systems especially under new environment of liberalization of electricity industry. A new Lagrangian relaxation method for unit commitment (UC) has been presented for solving generation scheduling problem. This paper focuses on the economical aspect of UC problem, while the previous hour scheduling as a very important issue is studied. In this paper generation scheduling of present hour has been conducted by considering the previous hour scheduling. The impacts of hot/cold start-up cost have been taken in to account in this paper. Case studies and numerical analysis presents significant outcomes while it demonstrates the effectiveness of the proposed method.
Production scheduling with ant colony optimization
NASA Astrophysics Data System (ADS)
Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu
2017-10-01
The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.
Sensibility study in a flexible job shop scheduling problem
NASA Astrophysics Data System (ADS)
Curralo, Ana; Pereira, Ana I.; Barbosa, José; Leitão, Paulo
2013-10-01
This paper proposes the impact assessment of the jobs order in the optimal time of operations in a Flexible Job Shop Scheduling Problem. In this work a real assembly cell was studied: the AIP-PRIMECA cell at the Université de Valenciennes et du Hainaut-Cambrésis, in France, which is considered as a Flexible Job Shop problem. The problem consists in finding the machines operations schedule, taking into account the precedence constraints. The main objective is to minimize the batch makespan, i.e. the finish time of the last operation completed in the schedule. Shortly, the present study consists in evaluating if the jobs order affects the optimal time of the operations schedule. The genetic algorithm was used to solve the optimization problem. As a conclusion, it's assessed that the jobs order influence the optimal time.
Coordinating space telescope operations in an integrated planning and scheduling architecture
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela
1992-01-01
The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.
Preliminary Evaluation of BIM-based Approaches for Schedule Delay Analysis
NASA Astrophysics Data System (ADS)
Chou, Hui-Yu; Yang, Jyh-Bin
2017-10-01
The problem of schedule delay commonly occurs in construction projects. The quality of delay analysis depends on the availability of schedule-related information and delay evidence. More information used in delay analysis usually produces more accurate and fair analytical results. How to use innovative techniques to improve the quality of schedule delay analysis results have received much attention recently. As Building Information Modeling (BIM) technique has been quickly developed, using BIM and 4D simulation techniques have been proposed and implemented. Obvious benefits have been achieved especially in identifying and solving construction consequence problems in advance of construction. This study preforms an intensive literature review to discuss the problems encountered in schedule delay analysis and the possibility of using BIM as a tool in developing a BIM-based approach for schedule delay analysis. This study believes that most of the identified problems can be dealt with by BIM technique. Research results could be a fundamental of developing new approaches for resolving schedule delay disputes.
Campos, Claudia; Leon, Yanerys; Sleiman, Andressa; Urcuyo, Beatriz
2017-03-01
One potential limitation of functional communication training (FCT) is that after the functional communication response (FCR) is taught, the response may be emitted at high rates or inappropriate times. Thus, schedule thinning is often necessary. Previous research has demonstrated that multiple schedules can facilitate schedule thinning by establishing discriminative control of the communication response while maintaining low rates of problem behavior. To date, most applied research evaluating the clinical utility of multiple schedules has done so in the context of behavior maintained by positive reinforcement (e.g., attention or tangible items). This study examined the use of a multiple schedule with alternating Fixed Ratio (FR 1)/extinction (EXT) components for two individuals with developmental disabilities who emitted escape-maintained problem behavior. Although problem behavior remained low during all FCT and multiple schedule phases, the use of the multiple schedule alone did not result in discriminated manding.
Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching
NASA Astrophysics Data System (ADS)
Shen, Kaiming; Yu, Wei
2018-05-01
This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.
The Ames-Lockheed orbiter processing scheduling system
NASA Technical Reports Server (NTRS)
Zweben, Monte; Gargan, Robert
1991-01-01
A general purpose scheduling system and its application to Space Shuttle Orbiter Processing at the Kennedy Space Center (KSC) are described. Orbiter processing entails all the inspection, testing, repair, and maintenance necessary to prepare the Shuttle for launch and takes place within the Orbiter Processing Facility (OPF) at KSC, the Vehicle Assembly Building (VAB), and on the launch pad. The problems are extremely combinatoric in that there are thousands of tasks, resources, and other temporal considerations that must be coordinated. Researchers are building a scheduling tool that they hope will be an integral part of automating the planning and scheduling process at KSC. The scheduling engine is domain independent and is also being applied to Space Shuttle cargo processing problems as well as wind tunnel scheduling problems.
An investigation of the use of temporal decomposition in space mission scheduling
NASA Technical Reports Server (NTRS)
Bullington, Stanley E.; Narayanan, Venkat
1994-01-01
This research involves an examination of techniques for solving scheduling problems in long-duration space missions. The mission timeline is broken up into several time segments, which are then scheduled incrementally. Three methods are presented for identifying the activities that are to be attempted within these segments. The first method is a mathematical model, which is presented primarily to illustrate the structure of the temporal decomposition problem. Since the mathematical model is bound to be computationally prohibitive for realistic problems, two heuristic assignment procedures are also presented. The first heuristic method is based on dispatching rules for activity selection, and the second heuristic assigns performances of a model evenly over timeline segments. These heuristics are tested using a sample Space Station mission and a Spacelab mission. The results are compared with those obtained by scheduling the missions without any problem decomposition. The applicability of this approach to large-scale mission scheduling problems is also discussed.
NASA Technical Reports Server (NTRS)
Richards, Stephen F.
1991-01-01
Although computerized operations have significant gains realized in many areas, one area, scheduling, has enjoyed few benefits from automation. The traditional methods of industrial engineering and operations research have not proven robust enough to handle the complexities associated with the scheduling of realistic problems. To address this need, NASA has developed the computer-aided scheduling system (COMPASS), a sophisticated, interactive scheduling tool that is in wide-spread use within NASA and the contractor community. Therefore, COMPASS provides no explicit support for the large class of problems in which several people, perhaps at various locations, build separate schedules that share a common pool of resources. This research examines the issue of distributing scheduling, as applied to application domains characterized by the partial ordering of tasks, limited resources, and time restrictions. The focus of this research is on identifying issues related to distributed scheduling, locating applicable problem domains within NASA, and suggesting areas for ongoing research. The issues that this research identifies are goals, rescheduling requirements, database support, the need for communication and coordination among individual schedulers, the potential for expert system support for scheduling, and the possibility of integrating artificially intelligent schedulers into a network of human schedulers.
Automated telescope scheduling
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1988-01-01
With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.
Genetic algorithm parameters tuning for resource-constrained project scheduling problem
NASA Astrophysics Data System (ADS)
Tian, Xingke; Yuan, Shengrui
2018-04-01
Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.
Application of decentralized cooperative problem solving in dynamic flexible scheduling
NASA Astrophysics Data System (ADS)
Guan, Zai-Lin; Lei, Ming; Wu, Bo; Wu, Ya; Yang, Shuzi
1995-08-01
The object of this study is to discuss an intelligent solution to the problem of task-allocation in shop floor scheduling. For this purpose, the technique of distributed artificial intelligence (DAI) is applied. Intelligent agents (IAs) are used to realize decentralized cooperation, and negotiation is realized by using message passing based on the contract net model. Multiple agents, such as manager agents, workcell agents, and workstation agents, make game-like decisions based on multiple criteria evaluations. This procedure of decentralized cooperative problem solving makes local scheduling possible. And by integrating such multiple local schedules, dynamic flexible scheduling for the whole shop floor production can be realized.
Genetic algorithm to solve the problems of lectures and practicums scheduling
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.
Decision-theoretic control of EUVE telescope scheduling
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1993-01-01
This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1995-01-01
A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.
The Limits of Soviet Airpower: The Bear Versus the Mujahideen in Afghanistan, 1979-1989
1997-06-01
satellite imagery identified Soviet TMS-65 decontamination vehicles and AGV-3 detox chambers in the vicinity of combat areas. In addition, the...Vladislav Tamarov, Afghanistan: Soviet Vietnam, trans. Naomi Marcus, Marianne Clarke Trangen, and Vladislav Tamarov (San Francisco: Mercury House...Tamarov. San Francisco: Mercury House, 1992. Turbiville, Graham. Ambush! The Road War in Afghanistan. Fort Leavenworth, KS: Soviet Army Studies Office
Intraocular pressure control after the implantation of a second Ahmed glaucoma valve.
Jiménez-Román, Jesús; Gil-Carrasco, Félix; Costa, Vital Paulino; Schimiti, Rui Barroso; Lerner, Fabián; Santana, Priscila Rezende; Vascocellos, Jose Paulo Cabral; Castillejos-Chévez, Armando; Turati, Mauricio; Fabre-Miranda, Karina
2016-06-01
The objective of this study is to evaluate the efficacy and safety of a second Ahmed glaucoma valve (AGV) in eyes with refractory glaucoma that had undergone prior Ahmed device implantation. This multicenter, retrospective study evaluated 58 eyes (58 patients) that underwent a second AGV (model S2-n = 50, model FP7-n = 8) due to uncontrolled IOP under maximal medical therapy. Outcome measures included IOP, visual acuity, number of glaucoma medications, and postoperative complications. Success was defined as IOP <21 mmHg (criterion 1) or 30 % reduction of IOP (criterion 2) with or without hypotensive medications. Persistent hypotony (IOP <5 mmHg after 3 months of follow-up), loss of light perception, and reintervention for IOP control were defined as failure. Mean preoperative IOP and mean IOPs at 12 and 30 months were 27.55 ± 1.16 mmHg (n = 58), 14.45 ± 0.83 mmHg (n = 42), and 14.81 ± 0.87 mmHg (n = 16), respectively. The mean numbers of glaucoma medications preoperatively at 12 and 30 months were 3.17 ± 0.16 (n = 58), 1.81 ± 0.2 (n = 42), and 1.83 ± 0.35 (n = 18), respectively. The reductions in mean IOP and number of medications were statistically significant at all time intervals (P < 0.001). According to criterion 1, Kaplan-Meier survival curves disclosed success rates of 62.9 % at 12 months and 56.6 % at 30 months. According to criterion 2, Kaplan-Meier survival curves disclosed success rates of 43.9 % at 12 months and 32.9 % at 30 months. The most frequent early complication was hypertensive phase (10.3 %) and the most frequent late complication was corneal edema (17.2 %). Second AGV implantation may effectively reduce IOP in eyes with uncontrolled glaucoma, and is associated with relatively few complications.
Supra-Tenon Capsule Implantation of the Ahmed Glaucoma Valve in Refractory Pediatric Glaucoma.
Elhefney, Eman M; Al-Sharkawy, Hossam T; Kishk, Hanem M
2016-09-01
To evaluate the efficacy of supra-Tenon capsule implantation of an Ahmed glaucoma valve (AGV) as a measure to decrease the fibrotic potential of the Tenon capsule on bleb formation and its subsequent effect on intraocular pressure (IOP) control in children with refractory glaucoma. Mansoura Ophthalmic Centre, Faculty of Medicine, Mansoura University, Egypt. A prospective interventional study. Twenty-two eyes of 12 children with refractory glaucoma underwent supra-Tenon capsule implantation of AGV. Ophthalmic examinations under general anesthesia including measurement of the corneal diameter and the IOP with Perkin's tonometer were performed preoperatively, on the first postoperative day, the first postoperative week, weekly for the first month, 2-weekly for the following 3 months, and monthly for at least 18 months. Postoperative complications and the number of glaucoma medications used preoperatively and postoperatively were recorded. The paired Student t test was used to compare preoperative and postoperative data. There were 12 eyes (54.6%) with refractory congenital glaucoma, 7 eyes (31.8%) with refractory pseudophakic glaucoma, and 3 eyes (13.6%) with refractory aphakic glaucoma. Patients included 10 male (83.3%) and 2 female (16.7%) children with a mean age of 16.3±9.7 months. The mean follow-up duration was 24.1±4.3 months. There was a statistically significant difference between the mean preoperative IOP (30.7±2.88 mm Hg) and the mean postoperative IOP (16.1±3.60 mm Hg) (t=16.22 and P=0.000, with a mean decrease in the IOP by 47.6%). The difference between the mean number of antiglaucoma medications before surgery (1.86±0.4) and after surgery (1.0±0.9) was also statistically significant (t=4.31 and P=0.000). Total success was achieved in 18 eyes (81.9%). Postoperative complications included tube exposure and slippage (10%), hypotony (10%), and hyphema (5%). Supra-Tenon capsule implantation of the AGV was successful in controlling the IOP with few postoperative complications in the management of children with refractory glaucoma.
Designing a fuzzy scheduler for hard real-time systems
NASA Technical Reports Server (NTRS)
Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami
1992-01-01
In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.
DTS: Building custom, intelligent schedulers
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1994-01-01
DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.
Improving Hospital-wide Patient Scheduling Decisions by Clinical Pathway Mining.
Gartner, Daniel; Arnolds, Ines V; Nickel, Stefan
2015-01-01
Recent research has highlighted the need for solving hospital-wide patient scheduling problems. Inpatient scheduling, patient activities have to be scheduled on scarce hospital resources such that temporal relations between activities (e.g. for recovery times) are ensured. Common objectives are, among others, the minimization of the length of stay (LOS). In this paper, we consider a hospital-wide patient scheduling problem with LOS minimization based on uncertain clinical pathways. We approach the problem in three stages: First, we learn most likely clinical pathways using a sequential pattern mining approach. Second, we provide a mathematical model for patient scheduling and finally, we combine the two approaches. In an experimental study carried out using real-world data, we show that our approach outperforms baseline approaches on two metrics.
Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei
2017-12-01
As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, Guoliang; Xing, Lining; Chen, Yingwu
2017-11-01
The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.
NASA Astrophysics Data System (ADS)
Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke
2018-06-01
In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.
Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Steven S.
1996-01-01
This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.
Spike: Artificial intelligence scheduling for Hubble space telescope
NASA Technical Reports Server (NTRS)
Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert
1990-01-01
Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.
Scheduler Design Criteria: Requirements and Considerations
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2016-01-01
This presentation covers fundamental requirements and considerations for developing schedulers in airport operations. We first introduce performance and functional requirements for airport surface schedulers. Among various optimization problems in airport operations, we focus on airport surface scheduling problem, including runway and taxiway operations. We then describe a basic methodology for airport surface scheduling such as node-link network model and scheduling algorithms previously developed. Next, we explain how to design a mathematical formulation in more details, which consists of objectives, decision variables, and constraints. Lastly, we review other considerations, including optimization tools, computational performance, and performance metrics for evaluation.
Åkerstedt, Torbjörn; Kecklund, Göran
2017-03-01
The purpose was to investigate which detailed characteristics of shift schedules that are seen as problems to those exposed. A representative national sample of non-day workers (N = 2031) in Sweden was asked whether they had each of a number of particular work schedule characteristics and, if yes, to what extent this constituted a "big problem in life". It was also inquired whether the individual's work schedules had negative consequences for fatigue, sleep and social life. The characteristic with the highest percentage reporting a big problem was "short notice (<1 month) of a new work schedule" (30.5%), <11 h off between shifts (27.8%), and split duty (>1.5 h break at mid-shift, 27.2%). Overtime (>10 h/week), night work, morning work, day/night shifts showed lower prevalences of being a "big problem". Women indicated more problems in general. Short notice was mainly related to negative social effects, while <11 h off between shifts was related to disturbed sleep, fatigue and social difficulties. It was concluded that schedules involving unpredictable working hours (short notice), short daily rest between shifts, and split duty shifts constitute big problems. The results challenge current views of what aspects of shift work need improvement, and negative social consequences seem more important than those related to health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model
Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong
2014-01-01
Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005
A bicriteria heuristic for an elective surgery scheduling problem.
Marques, Inês; Captivo, M Eugénia; Vaz Pato, Margarida
2015-09-01
Resource rationalization and reduction of waiting lists for surgery are two main guidelines for hospital units outlined in the Portuguese National Health Plan. This work is dedicated to an elective surgery scheduling problem arising in a Lisbon public hospital. In order to increase the surgical suite's efficiency and to reduce the waiting lists for surgery, two objectives are considered: maximize surgical suite occupation and maximize the number of surgeries scheduled. This elective surgery scheduling problem consists of assigning an intervention date, an operating room and a starting time for elective surgeries selected from the hospital waiting list. Accordingly, a bicriteria surgery scheduling problem arising in the hospital under study is presented. To search for efficient solutions of the bicriteria optimization problem, the minimization of a weighted Chebyshev distance to a reference point is used. A constructive and improvement heuristic procedure specially designed to address the objectives of the problem is developed and results of computational experiments obtained with empirical data from the hospital are presented. This study shows that by using the bicriteria approach presented here it is possible to build surgical plans with very good performance levels. This method can be used within an interactive approach with the decision maker. It can also be easily adapted to other hospitals with similar scheduling conditions.
NASA Astrophysics Data System (ADS)
Izah Anuar, Nurul; Saptari, Adi
2016-02-01
This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.
Automatic Generation of Heuristics for Scheduling
NASA Technical Reports Server (NTRS)
Morris, Robert A.; Bresina, John L.; Rodgers, Stuart M.
1997-01-01
This paper presents a technique, called GenH, that automatically generates search heuristics for scheduling problems. The impetus for developing this technique is the growing consensus that heuristics encode advice that is, at best, useful in solving most, or typical, problem instances, and, at worst, useful in solving only a narrowly defined set of instances. In either case, heuristic problem solvers, to be broadly applicable, should have a means of automatically adjusting to the idiosyncrasies of each problem instance. GenH generates a search heuristic for a given problem instance by hill-climbing in the space of possible multi-attribute heuristics, where the evaluation of a candidate heuristic is based on the quality of the solution found under its guidance. We present empirical results obtained by applying GenH to the real world problem of telescope observation scheduling. These results demonstrate that GenH is a simple and effective way of improving the performance of an heuristic scheduler.
Procedural Tests for Anti-G Protective Devices. Volume II. G-Sensitivity Tests
1979-12-01
of these valves was used in only one type of aircraft--the ALAR AGV in ...pattern. 3) Total included, inexplicitly in the total for this column along with Failures au.d OTH/MAL’s are Type 6 HOW MALFUNCTION CODES--which...maintenance. Because Type 6 HOW MALFUNCTION CODESI. .were not considered pertinent to this investigation, they wer!. not included in the report. All figures of
Endophthalmitis associated with the Ahmed glaucoma valve implant
Al-Torbak, A A; Al-Shahwan, S; Al-Jadaan, I; Al-Hommadi, A; Edward, D P
2005-01-01
Aim: To investigate the rate, risk factors, clinical course, and treatment outcomes of endophthalmitis following glaucoma drainage implant (GDI) surgery. Methods: A computerised relational database search was conducted to identify all patients who were implanted with Ahmed glaucoma valve (AGV) and developed endophthalmitis following surgery at the King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, between 1 January 1994 and 30 November 2003. Only medical records of the patients who developed endophthalmitis were retrospectively reviewed. Results: 542 eyes of 505 patients who were on active follow up were included in the study. Endophthalmitis developed in nine (1.7%) eyes; the rate was five times higher in children than in adults. Delayed endophthalmitis (developed 6 weeks after surgery) occurred in eight of nine eyes. Conjunctival erosion overlying the AGV tube was present in six of nine eyes. Common organisms isolated in the vitreous included Haemophilus influenzae and Streptococcus species. Multiple regression analysis revealed that younger age and conjunctival erosion over the tube were significant risk factors associated with endophthalmitis. Conclusion: Endophthalmitis is a rare complication of GDI surgery that appears to be more common in children. Conjunctival dehiscence over the GDI tube seems to represent a major risk factor for endophthalmitis. Prompt surgical revision of an exposed GDI tube is highly recommended. PMID:15774923
Endophthalmitis associated with the Ahmed glaucoma valve implant.
Al-Torbak, A A; Al-Shahwan, S; Al-Jadaan, I; Al-Hommadi, A; Edward, D P
2005-04-01
To investigate the rate, risk factors, clinical course, and treatment outcomes of endophthalmitis following glaucoma drainage implant (GDI) surgery. A computerised relational database search was conducted to identify all patients who were implanted with Ahmed glaucoma valve (AGV) and developed endophthalmitis following surgery at the King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, between 1 January 1994 and 30 November 2003. Only medical records of the patients who developed endophthalmitis were retrospectively reviewed. 542 eyes of 505 patients who were on active follow up were included in the study. Endophthalmitis developed in nine (1.7%) eyes; the rate was five times higher in children than in adults. Delayed endophthalmitis (developed 6 weeks after surgery) occurred in eight of nine eyes. Conjunctival erosion overlying the AGV tube was present in six of nine eyes. Common organisms isolated in the vitreous included Haemophilus influenzae and Streptococcus species. Multiple regression analysis revealed that younger age and conjunctival erosion over the tube were significant risk factors associated with endophthalmitis. Endophthalmitis is a rare complication of GDI surgery that appears to be more common in children. Conjunctival dehiscence over the GDI tube seems to represent a major risk factor for endophthalmitis. Prompt surgical revision of an exposed GDI tube is highly recommended.
Optimizing an F-16 Squadron Weekly Pilot Schedule for the Turkish Air Force
2010-03-01
disrupted schedules are rescheduled , minimizing the total number of changes with respect to the previous schedule’s objective function. Output...producing rosters for a nursing staff in a large general hospital (Dowsland, 1998) and afterwards Aickelin and Dowsland use an Indirect Genetic...algorithm to improve the solutions of the nurse scheduling problem which is similar to the fighter squadron pilot scheduling problem (Aickelin and
Multi-trip vehicle routing and scheduling problem with time window in real life
NASA Astrophysics Data System (ADS)
Sze, San-Nah; Chiew, Kang-Leng; Sze, Jeeu-Fong
2012-09-01
This paper studies a manpower scheduling problem with multiple maintenance operations and vehicle routing considerations. Service teams located at a common service centre are required to travel to different customer sites. All customers must be served within given time window, which are known in advance. The scheduling process must take into consideration complex constraints such as a meal break during the team's shift, multiple travelling trips, synchronisation of service teams and working shifts. The main objective of this study is to develop a heuristic that can generate high quality solution in short time for large problem instances. A Two-stage Scheduling Heuristic is developed for different variants of the problem. Empirical results show that the proposed solution performs effectively and efficiently. In addition, our proposed approximation algorithm is very flexible and can be easily adapted to different scheduling environments and operational requirements.
NASA Technical Reports Server (NTRS)
Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.
1975-01-01
Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.
A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan
NASA Astrophysics Data System (ADS)
Bhongade, A. S.; Khodke, P. M.
2014-04-01
Manufacturing systems, in which, several parts are processed through machining workstations and later assembled to form final products, is common. Though scheduling of such problems are solved using heuristics, available solution approaches can provide solution for only moderate sized problems due to large computation time required. In this work, scheduling approach is developed for such flow-shop manufacturing system having machining workstations followed by assembly workstations. The initial schedule is generated using Disjunctive method and genetic algorithm (GA) is applied further for generating schedule for large sized problems. GA is found to give near optimal solution based on the deviation of makespan from lower bound. The lower bound of makespan of such problem is estimated and percent deviation of makespan from lower bounds is used as a performance measure to evaluate the schedules. Computational experiments are conducted on problems developed using fractional factorial orthogonal array, varying the number of parts per product, number of products, and number of workstations (ranging upto 1,520 number of operations). A statistical analysis indicated the significance of all the three factors considered. It is concluded that GA method can obtain optimal makespan.
Permutation flow-shop scheduling problem to optimize a quadratic objective function
NASA Astrophysics Data System (ADS)
Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu
2017-09-01
A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
Integrated resource scheduling in a distributed scheduling environment
NASA Technical Reports Server (NTRS)
Zoch, David; Hall, Gardiner
1988-01-01
The Space Station era presents a highly-complex multi-mission planning and scheduling environment exercised over a highly distributed system. In order to automate the scheduling process, customers require a mechanism for communicating their scheduling requirements to NASA. A request language that a remotely-located customer can use to specify his scheduling requirements to a NASA scheduler, thus automating the customer-scheduler interface, is described. This notation, Flexible Envelope-Request Notation (FERN), allows the user to completely specify his scheduling requirements such as resource usage, temporal constraints, and scheduling preferences and options. The FERN also contains mechanisms for representing schedule and resource availability information, which are used in the inter-scheduler inconsistency resolution process. Additionally, a scheduler is described that can accept these requests, process them, generate schedules, and return schedule and resource availability information to the requester. The Request-Oriented Scheduling Engine (ROSE) was designed to function either as an independent scheduler or as a scheduling element in a network of schedulers. When used in a network of schedulers, each ROSE communicates schedule and resource usage information to other schedulers via the FERN notation, enabling inconsistencies to be resolved between schedulers. Individual ROSE schedules are created by viewing the problem as a constraint satisfaction problem with a heuristically guided search strategy.
Decomposition of timed automata for solving scheduling problems
NASA Astrophysics Data System (ADS)
Nishi, Tatsushi; Wakatake, Masato
2014-03-01
A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Scheduling in the Face of Uncertain Resource Consumption and Utility
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Dearden, Richard
2003-01-01
We discuss the problem of scheduling tasks that consume uncertain amounts of a resource with known capacity and where the tasks have uncertain utility. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We show that the problems are NP- complete, and present some results that characterize the behavior of some simple heuristics over a variety of problem classes.
Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.
Contingency rescheduling of spacecraft operations
NASA Technical Reports Server (NTRS)
Britt, Daniel L.; Geoffroy, Amy L.; Gohring, John R.
1988-01-01
Spacecraft activity scheduling was a focus of attention in artificial intelligence recently. Several scheduling systems were devised which more-or-less successfully address various aspects of the activity scheduling problem, though most of these are not yet mature, with the notable expection of NASA's ESP. Few current scheduling systems, however, make any attempt to deal fully with the problem of modifying a schedule in near-real-time in the event of contingencies which may arise during schedule execution. These contingencies can include resources becoming unavailable unpredictably, a change in spacecraft conditions or environment, or the need to perform an activity not scheduled. In these cases it becomes necessary to repair an existing schedule, disrupting ongoing operations as little as possible. Normal scheduling is just a part of that which must be accomplished during contingency rescheduling. A prototype system named MAESTRO was developed for spacecraft activity scheduling. MAESTRO is briefly described with a focus on recent work in the area of real-time contingency handling. Included is a discussion of some of the complexities of the scheduling problem and how they affect contingency rescheduling, such as temporal constraints between activities, activities which may be interrupted and continued in any of several ways, and different ways to choose a resource complement which will allow continuation of an activity. Various heuristics used in MAESTRO for contingency rescheduling is discussed, as are operational concerns such as interaction of the scheduler with spacecraft subsystems controllers.
Fisher, Wayne W.; Greer, Brian D.; Fuhrman, Ashley M.; Querim, Angie C.
2016-01-01
Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects from one setting to the next and from one therapist to the next. With two children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. PMID:26384141
NASA Technical Reports Server (NTRS)
Golias, Mihalis M.
2011-01-01
Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.
Fisher, Wayne W; Greer, Brian D; Fuhrman, Ashley M; Querim, Angie C
2015-12-01
Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and therapists. With 2 children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. © Society for the Experimental Analysis of Behavior.
NASA Astrophysics Data System (ADS)
Ramli, Razamin; Tein, Lim Huai
2016-08-01
A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.
Scheduling multirobot operations in manufacturing by truncated Petri nets
NASA Astrophysics Data System (ADS)
Chen, Qin; Luh, J. Y.
1995-08-01
Scheduling of operational sequences in manufacturing processes is one of the important problems in automation. Methods of applying Petri nets to model and analyze the problem with constraints on precedence relations, multiple resources allocation, etc. have been available in literature. Searching for an optimum schedule can be implemented by combining the branch-and-bound technique with the execution of the timed Petri net. The process usually produces a large Petri net which is practically not manageable. This disadvantage, however, can be handled by a truncation technique which divides the original large Petri net into several smaller size subnets. The complexity involved in the analysis of each subnet individually is greatly reduced. However, when the locally optimum schedules of the resulting subnets are combined together, it may not yield an overall optimum schedule for the original Petri net. To circumvent this problem, algorithms are developed based on the concepts of Petri net execution and modified branch-and-bound process. The developed technique is applied to a multi-robot task scheduling problem of the manufacturing work cell.
Scheduling in the Face of Uncertain Resource Consumption and Utility
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Frank, Jeremy; Dearden, Richard
2003-01-01
We discuss the problem of scheduling tasks that consume a resource with known capacity and where the tasks have varying utility. We consider problems in which the resource consumption and utility of each activity is described by probability distributions. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We first show that while some of these problems are NP-complete, others are only NP-Hard. We then describe various heuristic search algorithms to solve these problems and their drawbacks. Finally, we present empirical results that characterize the behavior of these heuristics over a variety of problem classes.
A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan
NASA Astrophysics Data System (ADS)
Rameshkumar, K.; Rajendran, C.
2018-02-01
In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.
Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints
NASA Astrophysics Data System (ADS)
Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.
2018-01-01
Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.
Open shop scheduling problem to minimize total weighted completion time
NASA Astrophysics Data System (ADS)
Bai, Danyu; Zhang, Zhihai; Zhang, Qiang; Tang, Mengqian
2017-01-01
A given number of jobs in an open shop scheduling environment must each be processed for given amounts of time on each of a given set of machines in an arbitrary sequence. This study aims to achieve a schedule that minimizes total weighted completion time. Owing to the strong NP-hardness of the problem, the weighted shortest processing time block (WSPTB) heuristic is presented to obtain approximate solutions for large-scale problems. Performance analysis proves the asymptotic optimality of the WSPTB heuristic in the sense of probability limits. The largest weight block rule is provided to seek optimal schedules in polynomial time for a special case. A hybrid discrete differential evolution algorithm is designed to obtain high-quality solutions for moderate-scale problems. Simulation experiments demonstrate the effectiveness of the proposed algorithms.
Empirical results on scheduling and dynamic backtracking
NASA Technical Reports Server (NTRS)
Boddy, Mark S.; Goldman, Robert P.
1994-01-01
At the Honeywell Technology Center (HTC), we have been working on a scheduling problem related to commercial avionics. This application is large, complex, and hard to solve. To be a little more concrete: 'large' means almost 20,000 activities, 'complex' means several activity types, periodic behavior, and assorted types of temporal constraints, and 'hard to solve' means that we have been unable to eliminate backtracking through the use of search heuristics. At this point, we can generate solutions, where solutions exist, or report failure and sometimes why the system failed. To the best of our knowledge, this is among the largest and most complex scheduling problems to have been solved as a constraint satisfaction problem, at least that has appeared in the published literature. This abstract is a preliminary report on what we have done and how. In the next section, we present our approach to treating scheduling as a constraint satisfaction problem. The following sections present the application in more detail and describe how we solve scheduling problems in the application domain. The implemented system makes use of Ginsberg's Dynamic Backtracking algorithm, with some minor extensions to improve its utility for scheduling. We describe those extensions and the performance of the resulting system. The paper concludes with some general remarks, open questions and plans for future work.
Sensitivity and bias under conditions of equal and unequal academic task difficulty.
Reed, Derek D; Martens, Brian K
2008-01-01
We conducted an experimental analysis of children's relative problem-completion rates across two workstations under conditions of equal (Experiment 1) and unequal (Experiment 2) problem difficulty. Results were described using the generalized matching equation and were evaluated for degree of schedule versus stimulus control. Experiment 1 involved a symmetrical choice arrangement in which the children could earn points exchangeable for rewards contingent on correct math problem completion. Points were delivered according to signaled variable-interval schedules at each workstation. For 2 children, relative rates of problem completion appeared to have been controlled by the schedule requirements in effect and matched relative rates of reinforcement, with sensitivity values near 1 and bias values near 0. Experiment 2 involved increasing the difficulty of math problems at one of the workstations. Sensitivity values for all 3 participants were near 1, but a substantial increase in bias toward the easier math problems was observed. This bias was possibly associated with responding at the more difficult workstation coming under stimulus control rather than schedule control.
Analysis of Feeder Bus Network Design and Scheduling Problems
Almasi, Mohammad Hadi; Karim, Mohamed Rehan
2014-01-01
A growing concern for public transit is its inability to shift passenger's mode from private to public transport. In order to overcome this problem, a more developed feeder bus network and matched schedules will play important roles. The present paper aims to review some of the studies performed on Feeder Bus Network Design and Scheduling Problem (FNDSP) based on three distinctive parts of the FNDSP setup, namely, problem description, problem characteristics, and solution approaches. The problems consist of different subproblems including data preparation, feeder bus network design, route generation, and feeder bus scheduling. Subsequently, descriptive analysis and classification of previous works are presented to highlight the main characteristics and solution methods. Finally, some of the issues and trends for future research are identified. This paper is targeted at dealing with the FNDSP to exhibit strategic and tactical goals and also contributes to the unification of the field which might be a useful complement to the few existing reviews. PMID:24526890
A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.
Lee, I; Sikora, R; Shaw, M J
1997-01-01
Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.
NASA Astrophysics Data System (ADS)
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsson, Mats; Johansson, Mikael; Larson, Jeffrey
Previous approaches for scheduling a league with round-robin and divisional tournaments involved decomposing the problem into easier subproblems. This approach, used to schedule the top Swedish handball league Elitserien, reduces the problem complexity but can result in suboptimal schedules. This paper presents an integrated constraint programming model that allows to perform the scheduling in a single step. Particular attention is given to identifying implied and symmetry-breaking constraints that reduce the computational complexity significantly. The experimental evaluation of the integrated approach takes considerably less computational effort than the previous approach.
NASA Astrophysics Data System (ADS)
Konno, Yohko; Suzuki, Keiji
This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.
Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport
NASA Technical Reports Server (NTRS)
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon C.; Zhu, Zhifan; Jeong, Myeongsook; Kim, Hyounkong; Oh, Eunmi; Hong, Sungkwon
2017-01-01
This study aims to develop a controllers decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).
Optimization of Airport Surface Traffic: A Case-Study of Incheon International Airport
NASA Technical Reports Server (NTRS)
Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Jung, Yoon Chul; Zhu, Zhifan; Jeong, Myeong-Sook; Kim, Hyoun Kyoung; Oh, Eunmi; Hong, Sungkwon
2017-01-01
This study aims to develop a controllers' decision support tool for departure and surface management of ICN. Airport surface traffic optimization for Incheon International Airport (ICN) in South Korea was studied based on the operational characteristics of ICN and airspace of Korea. For surface traffic optimization, a multiple runway scheduling problem and a taxi scheduling problem were formulated into two Mixed Integer Linear Programming (MILP) optimization models. The Miles-In-Trail (MIT) separation constraint at the departure fix shared by the departure flights from multiple runways and the runway crossing constraints due to the taxi route configuration specific to ICN were incorporated into the runway scheduling and taxiway scheduling problems, respectively. Since the MILP-based optimization model for the multiple runway scheduling problem may be computationally intensive, computation times and delay costs of different solving methods were compared for a practical implementation. This research was a collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA).
Multi-Objective Scheduling for the Cluster II Constellation
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Giuliano, Mark
2011-01-01
This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.
Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.
Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue
2015-01-01
As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.
The application of artificial intelligence to astronomical scheduling problems
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1992-01-01
Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike to other problem domains, and plans for the future evolution of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne F. Boyer; Gurdeep S. Hura
2005-09-01
The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less
A novel flexible microfluidic meshwork to reduce fibrosis in glaucoma surgery.
Amoozgar, Behzad; Wei, Xiaoling; Hui Lee, Jun; Bloomer, Michele; Zhao, Zhengtuo; Coh, Paul; He, Fei; Luan, Lan; Xie, Chong; Han, Ying
2017-01-01
Fibrosis and hence capsule formation around the glaucoma implants are the main reasons for glaucoma implant failure. To address these issues, we designed a microfluidic meshwork and tested its biocompatibility in a rabbit eye model. The amount of fibrosis elicited by the microfluidic meshwork was compared to the amount elicited by the plate of conventional glaucoma drainage device. Six eyes from 3 New Zealand albino rabbits were randomized to receive either the novel microfluidic meshwork or a plate of Ahmed glaucoma valve model PF7 (AGV PF7). The flexible microfluidic implant was made from negative photoresist SU-8 by using micro-fabrication techniques. The overall size of the meshwork was 7 mm × 7 mm with a grid period of 100 μm. Both implants were placed in the subtenon space at the supratemporal quadrant in a standard fashion. There was no communication between the implants and the anterior chamber via a tube. All animal eyes were examined for signs of infection and implant erosion on days 1, 3, 7, and 14 and then monthly. Exenterations were performed in which the entire orbital contents were removed at 3 months. Histology slides of the implant and the surrounding tissues were prepared and stained with hematoxylin-eosin. Thickness of the fibrous capsules beneath the implants were measured and compared with paired student's t-test between the two groups. The gross histological sections showed that nearly no capsule formed around the microfluidic meshwork in contrast to the thick capsule formed around the plate of AGV PF7. Thickness of the fibrotic capsules beneath the AGV PF7 plate from the 3 rabbit eyes was 90μm, 82μm, and 95 μm, respectively. The thickness at the bottom of fibrotic capsules around the new microfluidic implant were 1μm, 2μm, and 1μm, respectively. The difference in thickness of capsule between the two groups was significant (P = 0.002). No complications were noticed in the 6 eyes, and both implants were tolerated well by all rabbits. The microfluidic meshwork elicited minimal fibrosis and capsule formation after 3-months implantation in a rabbit model. This provides promising evidence to aid in future development of a new glaucoma drainage implant that will elicit minimal scar formation and provide better long-term surgical outcomes.
Scheduling Future Water Supply Investments Under Uncertainty
NASA Astrophysics Data System (ADS)
Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.
2014-12-01
Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).
NASA Technical Reports Server (NTRS)
Zweben, Monte
1991-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1991-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
NASA Technical Reports Server (NTRS)
Zweben, Monte
1993-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
Blood Glucose Levels and Problem Behavior
ERIC Educational Resources Information Center
Valdovinos, Maria G.; Weyand, David
2006-01-01
The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…
Planning as a Precursor to Scheduling for Space Station Payload Operations
NASA Technical Reports Server (NTRS)
Howell, Eric; Maxwell, Theresa
1995-01-01
Contemporary schedulers attempt to solve the problem of best fitting a set of activities into an available timeframe while still satisfying the necessary constraints. This approach produces results which are optimized for the region of time the scheduler is able to process, satisfying the near term goals of the operation. In general the scheduler is not able to reason about the activities which precede or follow the window into which it is inputs to scheduling so that the intermediate placing activities. This creates a problem for operations which are composed of many activities spanning long durations (which exceed the scheduler's reasoning horizon) such as the continuous operations environment for payload operations on the Space Station. Not only must the near term scheduling objectives be met, but somehow the results of near term scheduling must be made to support the attainment of long term goals.
Spike: AI scheduling for Hubble Space Telescope after 18 months of orbital operations
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1992-01-01
This paper is a progress report on the Spike scheduling system, developed by the Space Telescope Science Institute for long-term scheduling of Hubble Space Telescope (HST) observations. Spike is an activity-based scheduler which exploits artificial intelligence (AI) techniques for constraint representation and for scheduling search. The system has been in operational use since shortly after HST launch in April 1990. Spike was adopted for several other satellite scheduling problems; of particular interest was the demonstration that the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. We describe the recent progress made in scheduling search techniques, the lessons learned from early HST operations, and the application of Spike to other problem domains. We also describe plans for the future evolution of the system.
Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model
NASA Astrophysics Data System (ADS)
Nouri, Houssem Eddine; Belkahla Driss, Olfa; Ghédira, Khaled
2018-03-01
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.
Periodic Heterogeneous Vehicle Routing Problem With Driver Scheduling
NASA Astrophysics Data System (ADS)
Mardiana Panggabean, Ellis; Mawengkang, Herman; Azis, Zainal; Filia Sari, Rina
2018-01-01
The paper develops a model for the optimal management of logistic delivery of a given commodity. The company has different type of vehicles with different capacity to deliver the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We propose a combined approach of heuristic algorithm and exact method to solve the problem.
Strategic Gang Scheduling for Railroad Maintenance
DOT National Transportation Integrated Search
2012-08-14
We address the railway track maintenance scheduling problem. The problem stems from the : significant percentage of the annual budget invested by the railway industry for maintaining its railway : tracks. The process requires consideration of human r...
Estimates of the absolute error and a scheme for an approximate solution to scheduling problems
NASA Astrophysics Data System (ADS)
Lazarev, A. A.
2009-02-01
An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.
Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning
NASA Technical Reports Server (NTRS)
Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte
1992-01-01
The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
Uncertainty management by relaxation of conflicting constraints in production process scheduling
NASA Technical Reports Server (NTRS)
Dorn, Juergen; Slany, Wolfgang; Stary, Christian
1992-01-01
Mathematical-analytical methods as used in Operations Research approaches are often insufficient for scheduling problems. This is due to three reasons: the combinatorial complexity of the search space, conflicting objectives for production optimization, and the uncertainty in the production process. Knowledge-based techniques, especially approximate reasoning and constraint relaxation, are promising ways to overcome these problems. A case study from an industrial CIM environment, namely high-grade steel production, is presented to demonstrate how knowledge-based scheduling with the desired capabilities could work. By using fuzzy set theory, the applied knowledge representation technique covers the uncertainty inherent in the problem domain. Based on this knowledge representation, a classification of jobs according to their importance is defined which is then used for the straightforward generation of a schedule. A control strategy which comprises organizational, spatial, temporal, and chemical constraints is introduced. The strategy supports the dynamic relaxation of conflicting constraints in order to improve tentative schedules.
Simulated annealing with probabilistic analysis for solving traveling salesman problems
NASA Astrophysics Data System (ADS)
Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan
2013-09-01
Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.
Guidance and Control Software,
1980-05-01
commitments of function, cost, and schedule . The phrase "software engineering" was intended to contrast with the phrase "computer science" the latter aims...the software problems of cost, delivery schedule , and quality were gradually being recognized at the highest management levels. Thus, in a project... schedule dates. Although the analysis of software problems indicated that the entire software development process (figure 1) needed new methods, only
High performance techniques for space mission scheduling
NASA Technical Reports Server (NTRS)
Smith, Stephen F.
1994-01-01
In this paper, we summarize current research at Carnegie Mellon University aimed at development of high performance techniques and tools for space mission scheduling. Similar to prior research in opportunistic scheduling, our approach assumes the use of dynamic analysis of problem constraints as a basis for heuristic focusing of problem solving search. This methodology, however, is grounded in representational assumptions more akin to those adopted in recent temporal planning research, and in a problem solving framework which similarly emphasizes constraint posting in an explicitly maintained solution constraint network. These more general representational assumptions are necessitated by the predominance of state-dependent constraints in space mission planning domains, and the consequent need to integrate resource allocation and plan synthesis processes. First, we review the space mission problems we have considered to date and indicate the results obtained in these application domains. Next, we summarize recent work in constraint posting scheduling procedures, which offer the promise of better future solutions to this class of problems.
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements
NASA Astrophysics Data System (ADS)
Pu, Xun; Lu, XianLiang
2011-10-01
Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.
The role of artificial intelligence techniques in scheduling systems
NASA Technical Reports Server (NTRS)
Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.
1990-01-01
Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.
A new distributed systems scheduling algorithm: a swarm intelligence approach
NASA Astrophysics Data System (ADS)
Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi
2011-12-01
The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.
Solution and reasoning reuse in space planning and scheduling applications
NASA Technical Reports Server (NTRS)
Verfaillie, Gerard; Schiex, Thomas
1994-01-01
In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.
Toward interactive scheduling systems for managing medical resources.
Oddi, A; Cesta, A
2000-10-01
Managers of medico-hospital facilities are facing two general problems when allocating resources to activities: (1) to find an agreement between several and contrasting requirements; (2) to manage dynamic and uncertain situations when constraints suddenly change over time due to medical needs. This paper describes the results of a research aimed at applying constraint-based scheduling techniques to the management of medical resources. A mixed-initiative problem solving approach is adopted in which a user and a decision support system interact to incrementally achieve a satisfactory solution to the problem. A running prototype is described called Interactive Scheduler which offers a set of functionalities for a mixed-initiative interaction to cope with the medical resource management. Interactive Scheduler is endowed with a representation schema used for describing the medical environment, a set of algorithms that address the specific problems of the domain, and an innovative interaction module that offers functionalities for the dialogue between the support system and its user. A particular contribution of this work is the explicit representation of constraint violations, and the definition of scheduling algorithms that aim at minimizing the amount of constraint violations in a solution.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.
A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path
Xie, Zhiqiang; Shao, Xia; Xin, Yu
2016-01-01
To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901
Multiagent scheduling method with earliness and tardiness objectives in flexible job shops.
Wu, Zuobao; Weng, Michael X
2005-04-01
Flexible job-shop scheduling problems are an important extension of the classical job-shop scheduling problems and present additional complexity. Such problems are mainly due to the existence of a considerable amount of overlapping capacities with modern machines. Classical scheduling methods are generally incapable of addressing such capacity overlapping. We propose a multiagent scheduling method with job earliness and tardiness objectives in a flexible job-shop environment. The earliness and tardiness objectives are consistent with the just-in-time production philosophy which has attracted significant attention in both industry and academic community. A new job-routing and sequencing mechanism is proposed. In this mechanism, two kinds of jobs are defined to distinguish jobs with one operation left from jobs with more than one operation left. Different criteria are proposed to route these two kinds of jobs. Job sequencing enables to hold a job that may be completed too early. Two heuristic algorithms for job sequencing are developed to deal with these two kinds of jobs. The computational experiments show that the proposed multiagent scheduling method significantly outperforms the existing scheduling methods in the literature. In addition, the proposed method is quite fast. In fact, the simulation time to find a complete schedule with over 2000 jobs on ten machines is less than 1.5 min.
NASA Technical Reports Server (NTRS)
Rash, James
2014-01-01
NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating optimal space-data communications schedules.
NASA Astrophysics Data System (ADS)
Santosa, B.; Siswanto, N.; Fiqihesa
2018-04-01
This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution
Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem
Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue
2015-01-01
As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764
NASA Technical Reports Server (NTRS)
Wang, Lui; Valenzuela-Rendon, Manuel
1993-01-01
The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.
Learning Search Control Knowledge for Deep Space Network Scheduling
NASA Technical Reports Server (NTRS)
Gratch, Jonathan; Chien, Steve; DeJong, Gerald
1993-01-01
While the general class of most scheduling problems is NP-hard in worst-case complexity, in practice, for specific distributions of problems and constraints, domain-specific solutions have been shown to perform in much better than exponential time.
Vehicle and driver scheduling for public transit.
DOT National Transportation Integrated Search
2009-08-01
The problem of driver scheduling involves the construction of a legal set of shifts, including allowance : of overtime, which cover the blocks in a particular vehicle schedule. A shift is the work scheduled to be performed by : a driver in one day, w...
An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai
Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.
Predit: A temporal predictive framework for scheduling systems
NASA Technical Reports Server (NTRS)
Paolucci, E.; Patriarca, E.; Sem, M.; Gini, G.
1992-01-01
Scheduling can be formalized as a Constraint Satisfaction Problem (CSP). Within this framework activities belonging to a plan are interconnected via temporal constraints that account for slack among them. Temporal representation must include methods for constraints propagation and provide a logic for symbolic and numerical deductions. In this paper we describe a support framework for opportunistic reasoning in constraint directed scheduling. In order to focus the attention of an incremental scheduler on critical problem aspects, some discrete temporal indexes are presented. They are also useful for the prediction of the degree of resources contention. The predictive method expressed through our indexes can be seen as a Knowledge Source for an opportunistic scheduler with a blackboard architecture.
Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning
NASA Astrophysics Data System (ADS)
Schumacher, André; Haanpää, Harri
We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with
A Solution Method of Scheduling Problem with Worker Allocation by a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Osawa, Akira; Ida, Kenichi
In a scheduling problem with worker allocation (SPWA) proposed by Iima et al, the worker's skill level to each machine is all the same. However, each worker has a different skill level for each machine in the real world. For that reason, we propose a new model of SPWA in which a worker has the different skill level to each machine. To solve the problem, we propose a new GA for SPWA consisting of the following new three procedures, shortening of idle time, modifying infeasible solution to feasible solution, and a new selection method for GA. The effectiveness of the proposed algorithm is clarified by numerical experiments using benchmark problems for job-shop scheduling.
ERIC Educational Resources Information Center
Tsakanikos, Elias; Underwood, Lisa; Sturmey, Peter; Bouras, Nick; McCarthy, Jane
2011-01-01
The present study employed the Disability Assessment Schedule (DAS) to assess problem behaviors in a large sample of adults with ID (N = 568) and evaluate the psychometric properties of this instrument. Although the DAS problem behaviors were found to be internally consistent (Cronbach's [alpha] = 0.87), item analysis revealed one weak item…
NASA Technical Reports Server (NTRS)
Rash, James L.
2010-01-01
NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.
Scheduling: A guide for program managers
NASA Technical Reports Server (NTRS)
1994-01-01
The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.
Automated Scheduling Via Artificial Intelligence
NASA Technical Reports Server (NTRS)
Biefeld, Eric W.; Cooper, Lynne P.
1991-01-01
Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.
Solidification Structure Synthesis in Undercooled Liquids
1993-10-18
Diagrams 32 1. Supersaturation in Sn-Sb Alloys 32 2. Microstructural Transitions in Fe-Ni alloys 33 E. Droplet Nucleation Kinetics 36 F . Controlled...indicated as - F ,,. The curves correspond to the extrapolation of experimental data (exp.). (b) to the approximation of AGv and TAS=-O by Dubey and...Thermodynamic stability of oxide particles in Sn Oxide A Grxn1 A Grxn2 A F (XmOn) (kJ) (kJ) (°C) AI20 3 +1605 +810 144 TiO- +367 +372 142 Y203 +2119 +1067 136
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
Dataflow Design Tool: User's Manual
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1996-01-01
The Dataflow Design Tool is a software tool for selecting a multiprocessor scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. The software tool implements graph-search algorithms and analysis techniques based on the dataflow paradigm. Dataflow analyses provided by the software are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool provides performance optimization through the inclusion of artificial precedence constraints among the schedulable tasks. The user interface and tool capabilities are described. Examples are provided to demonstrate the analysis, scheduling, and optimization functions facilitated by the tool.
Solving cyclical nurse scheduling problem using preemptive goal programming
NASA Astrophysics Data System (ADS)
Sundari, V. E.; Mardiyati, S.
2017-07-01
Nurse scheduling system in a hospital is being modeled as a preemptive goal programming problem that is solved by using LINGO software with the objective function to minimize deviation variable at each goal. The scheduling is done cyclically, so every nurse is treated fairly since they have the same work shift portion with the other nurses. By paying attention to the hospital's rules regarding nursing work shift cyclically, it can be obtained that numbers of nurse needed in every ward are 18 nurses and the numbers of scheduling periods are 18 periods where every period consists of 21 days.
Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems
NASA Astrophysics Data System (ADS)
Cruz-Chávez, Marco Antonio
2015-11-01
This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.
Block Scheduling in High Schools.
ERIC Educational Resources Information Center
Irmsher, Karen
1996-01-01
Block Scheduling has been considered a cure for a lengthy list of educational problems. This report reviews the literature on block schedules and describes some Oregon high schools that have integrated block scheduling. Major disadvantages included resistance to change and requirements that teachers change their teaching strategies. There is…
Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng
2012-06-01
Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.
ERIC Educational Resources Information Center
Sedwal, Mona; Kamat, Sangeeta
2008-01-01
The Scheduled Castes (SCs, also known as Dalits) and Scheduled Tribes (STs, also known as Adivasis) are among the most socially and educationally disadvantaged groups in India. This paper examines issues concerning school access and equity for Scheduled Caste and Scheduled Tribe communities and also highlights their unique problems, which may…
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
Cost-efficient scheduling of FAST observations
NASA Astrophysics Data System (ADS)
Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi
2018-03-01
A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.
Using the principles of circadian physiology enhances shift schedule design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, J.J.; Moore-Ede, M.C.
1987-01-01
Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance andmore » alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.« less
Meta-RaPS Algorithm for the Aerial Refueling Scheduling Problem
NASA Technical Reports Server (NTRS)
Kaplan, Sezgin; Arin, Arif; Rabadi, Ghaith
2011-01-01
The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on multiple tankers (machines). ARSP assumes that jobs have different release times and due dates, The total weighted tardiness is used to evaluate schedule's quality. Therefore, ARSP can be modeled as a parallel machine scheduling with release limes and due dates to minimize the total weighted tardiness. Since ARSP is NP-hard, it will be more appropriate to develop a pproimate or heuristic algorithm to obtain solutions in reasonable computation limes. In this paper, Meta-Raps-ATC algorithm is implemented to create high quality solutions. Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a recent and promising meta heuristic that is applied by introducing randomness to a construction heuristic. The Apparent Tardiness Rule (ATC), which is a good rule for scheduling problems with tardiness objective, is used to construct initial solutions which are improved by an exchanging operation. Results are presented for generated instances.
EUROPA2: Plan Database Services for Planning and Scheduling Applications
NASA Technical Reports Server (NTRS)
Bedrax-Weiss, Tania; Frank, Jeremy; Jonsson, Ari; McGann, Conor
2004-01-01
NASA missions require solving a wide variety of planning and scheduling problems with temporal constraints; simple resources such as robotic arms, communications antennae and cameras; complex replenishable resources such as memory, power and fuel; and complex constraints on geometry, heat and lighting angles. Planners and schedulers that solve these problems are used in ground tools as well as onboard systems. The diversity of planning problems and applications of planners and schedulers precludes a one-size fits all solution. However, many of the underlying technologies are common across planning domains and applications. We describe CAPR, a formalism for planning that is general enough to cover a wide variety of planning and scheduling domains of interest to NASA. We then describe EUROPA(sub 2), a software framework implementing CAPR. EUROPA(sub 2) provides efficient, customizable Plan Database Services that enable the integration of CAPR into a wide variety of applications. We describe the design of EUROPA(sub 2) from the perspective of both modeling, customization and application integration to different classes of NASA missions.
Hypertext-based design of a user interface for scheduling
NASA Technical Reports Server (NTRS)
Woerner, Irene W.; Biefeld, Eric
1993-01-01
Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.
Scheduling the resident 80-hour work week: an operations research algorithm.
Day, T Eugene; Napoli, Joseph T; Kuo, Paul C
2006-01-01
The resident 80-hour work week requires that programs now schedule duty hours. Typically, scheduling is performed in an empirical "trial-and-error" fashion. However, this is a classic "scheduling" problem from the field of operations research (OR). It is similar to scheduling issues that airlines must face with pilots and planes routing through various airports at various times. The authors hypothesized that an OR approach using iterative computer algorithms could provide a rational scheduling solution. Institution-specific constraints of the residency problem were formulated. A total of 56 residents are rotating through 4 hospitals. Additional constraints were dictated by the Residency Review Committee (RRC) rules or the specific surgical service. For example, at Hospital 1, during the weekday hours between 6 am and 6 pm, there will be a PGY4 or PGY5 and a PGY2 or PGY3 on-duty to cover Service "A." A series of equations and logic statements was generated to satisfy all constraints and requirements. These were restated in the Optimization Programming Language used by the ILOG software suite for solving mixed integer programming problems. An integer programming solution was generated to this resource-constrained assignment problem. A total of 30,900 variables and 12,443 constraints were required. A total of man-hours of programming were used; computer run-time was 25.9 hours. A weekly schedule was generated for each resident that satisfied the RRC regulations while fulfilling all stated surgical service requirements. Each required between 64 and 80 weekly resident duty hours. The authors conclude that OR is a viable approach to schedule resident work hours. This technique is sufficiently robust to accommodate changes in resident numbers, service requirements, and service and hospital rotations.
NASA Astrophysics Data System (ADS)
Tang, Dunbing; Dai, Min
2015-09-01
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
Li, Shanlin; Li, Maoqin
2015-01-01
We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time.
Scheduling Non-Preemptible Jobs to Minimize Peak Demand
Yaw, Sean; Mumey, Brendan
2017-10-28
Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less
Li, Shanlin; Li, Maoqin
2015-01-01
We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time. PMID:25785285
Scheduling Non-Preemptible Jobs to Minimize Peak Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaw, Sean; Mumey, Brendan
Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less
NASA Astrophysics Data System (ADS)
Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan
2015-02-01
An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.
NASA Astrophysics Data System (ADS)
Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.
2014-04-01
Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.
1993-02-01
the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively. In the Command...demonstrator CALIGULA for the problem of allocating frequencies to a radio link network. The problems in the domain of scheduling are dealt with. which has...demonstrating the (re)planning framework, incorporating the demonstrators CALIGULA and ALLOCATOR for resource allocation and scheduling respectively
Intercell scheduling: A negotiation approach using multi-agent coalitions
NASA Astrophysics Data System (ADS)
Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde
2016-10-01
Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.
A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm
NASA Astrophysics Data System (ADS)
Ida, Kenichi; Osawa, Akira
In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.
Active Solution Space and Search on Job-shop Scheduling Problem
NASA Astrophysics Data System (ADS)
Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo
In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.
Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V2O5 as Transparent Anodes.
Pang, Shangzheng; Li, Xueyi; Dong, Hang; Chen, Dazheng; Zhu, Weidong; Chang, Jingjing; Lin, Zhenhua; Xi, He; Zhang, Jincheng; Zhang, Chunfu; Hao, Yue
2018-04-18
Bifacial semitransparent inverted planar structured perovskite solar cells (PSCs) based on Cs 0.05 FA 0.3 MA 0.7 PbI 2.51 Br 0.54 using an Ag thin film electrode and V 2 O 5 optical coupling layer are investigated theoretically and experimentally. It is shown that the introduction of the cesium (Cs) ions in the perovskite could obviously improve the device performance and stability. When only the bare Ag film electrode is used, the PSCs show a bifacial performance with the power conversion efficiency (PCE) of 14.62% illuminated from the indium tin oxide (ITO) side and 5.45% from the Ag film side. By introducing a V 2 O 5 optical coupling layer, the PCE is enhanced to 8.91% illuminated from the Ag film side, which is 63% improvement compared with the bare Ag film electrode, whereas the PCE illuminated from the ITO side remains almost unchanged. Moreover, when a back-reflector is employed, the PCE of device could be further improved to 15.39% by illumination from the ITO side and 12.44% by illumination from the Ag side. The devices also show superior semitransparent properties and exhibit negligible photocurrent hysteresis, irrespective of the side from which the light is illuminated. In short, the Ag/V 2 O 5 double layer is a promising semitransparent electrode due to its low cost and simple preparation process, which also point to a new direction for the bifacial PSCs and tandem solar cells.
NASA Astrophysics Data System (ADS)
Stetter, R.; Simundsson, A.
2015-11-01
This paper is concerned with the integration of control and diagnosis functionalities into the development of complete systems which include mechanical, electrical and electronic subsystems. For the development of such systems the strategies, methods and tools of integrated product development have attracted significant attention during the last decades. Today, it is generally observed that product development processes of complex systems can only be successful if the activities in the different domains are well connected and synchronised and if an ongoing communication is present - an ongoing communication spanning the technical domains and also including functions such as production planning, marketing/distribution, quality assurance, service and project planning. Obviously, numerous approaches to tackle this challenge are present in scientific literature and in industrial practice, as well. Today, the functionality and safety of most products is to a large degree dependent on control and diagnosis functionalities. Still, there is comparatively little research concentrating on the integration of the development of these functionalities into the overall product development processes. The main source of insight of the presented research is the product development process of an Automated Guided Vehicle (AGV) which is intended to be used on rough terrain. The paper starts with a background describing Integrated Product Development. The second section deals with the product development of the sample product. The third part summarizes some insights and formulates first hypotheses concerning control and diagnosis in Integrated Product Development.
NASA Astrophysics Data System (ADS)
Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.
Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags
NASA Astrophysics Data System (ADS)
ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu
2017-05-01
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1989-01-01
A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.
Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments
Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361
Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.
Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.
Learning dominance relations in combinatorial search problems
NASA Technical Reports Server (NTRS)
Yu, Chee-Fen; Wah, Benjamin W.
1988-01-01
Dominance relations commonly are used to prune unnecessary nodes in search graphs, but they are problem-dependent and cannot be derived by a general procedure. The authors identify machine learning of dominance relations and the applicable learning mechanisms. A study of learning dominance relations using learning by experimentation is described. This system has been able to learn dominance relations for the 0/1-knapsack problem, an inventory problem, the reliability-by-replication problem, the two-machine flow shop problem, a number of single-machine scheduling problems, and a two-machine scheduling problem. It is considered that the same methodology can be extended to learn dominance relations in general.
Scheduling IT Staff at a Bank: A Mathematical Programming Approach
Labidi, M.; Mrad, M.; Gharbi, A.; Louly, M. A.
2014-01-01
We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules. PMID:24772032
Scheduling IT staff at a bank: a mathematical programming approach.
Labidi, M; Mrad, M; Gharbi, A; Louly, M A
2014-01-01
We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules.
Research on schedulers for astronomical observatories
NASA Astrophysics Data System (ADS)
Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian
2012-09-01
The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.
Systemic Sustainability in RtI Using Intervention-Based Scheduling Methodologies
ERIC Educational Resources Information Center
Dallas, William P.
2017-01-01
This study evaluated a scheduling methodology referred to as intervention-based scheduling to address the problem of practice regarding the fidelity of implementing Response to Intervention (RtI) in an existing school schedule design. Employing panel data, this study used fixed-effects regressions and first differences ordinary least squares (OLS)…
Scheduling Independent Partitions in Integrated Modular Avionics Systems
Du, Chenglie; Han, Pengcheng
2016-01-01
Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013
Temporal planning for transportation planning and scheduling
NASA Technical Reports Server (NTRS)
Frederking, Robert E.; Muscettola, Nicola
1992-01-01
In this paper we describe preliminary work done in the CORTES project, applying the Heuristic Scheduling Testbed System (HSTS) to a transportation planning and scheduling domain. First, we describe in more detail the transportation problems that we are addressing. We then describe the fundamental characteristics of HSTS and we concentrate on the representation of multiple capacity resources. We continue with a more detailed description of the transportation planning problem that we have initially addressed in HSTS and of its solution. Finally we describe future directions for our research.
Graph Coloring Used to Model Traffic Lights.
ERIC Educational Resources Information Center
Williams, John
1992-01-01
Two scheduling problems, one involving setting up an examination schedule and the other describing traffic light problems, are modeled as colorings of graphs consisting of a set of vertices and edges. The chromatic number, the least number of colors necessary for coloring a graph, is employed in the solutions. (MDH)
ERIC Educational Resources Information Center
Borrero, Carrie S. W.; Vollmer, Timothy R.; Borrero, John C.; Bourret, Jason C.; Sloman, Kimberly N.; Samaha, Andrew L.; Dallery, Jesse
2010-01-01
This study evaluated how children who exhibited functionally equivalent problem and appropriate behavior allocate responding to experimentally arranged reinforcer rates. Relative reinforcer rates were arranged on concurrent variable-interval schedules and effects on relative response rates were interpreted using the generalized matching equation.…
Shiftwork Scheduling for the 1990s.
ERIC Educational Resources Information Center
Coleman, Richard M.
1989-01-01
The author discusses the problems of scheduling shift work, touching on such topics as employee desires, health requirements, and business needs. He presents a method for developing shift schedules that addresses these three areas. Implementation hints are also provided. (CH)
Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.
Efficient Bounding Schemes for the Two-Center Hybrid Flow Shop Scheduling Problem with Removal Times
2014-01-01
We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures. PMID:25610911
An Extended Deterministic Dendritic Cell Algorithm for Dynamic Job Shop Scheduling
NASA Astrophysics Data System (ADS)
Qiu, X. N.; Lau, H. Y. K.
The problem of job shop scheduling in a dynamic environment where random perturbation exists in the system is studied. In this paper, an extended deterministic Dendritic Cell Algorithm (dDCA) is proposed to solve such a dynamic Job Shop Scheduling Problem (JSSP) where unexpected events occurred randomly. This algorithm is designed based on dDCA and makes improvements by considering all types of signals and the magnitude of the output values. To evaluate this algorithm, ten benchmark problems are chosen and different kinds of disturbances are injected randomly. The results show that the algorithm performs competitively as it is capable of triggering the rescheduling process optimally with much less run time for deciding the rescheduling action. As such, the proposed algorithm is able to minimize the rescheduling times under the defined objective and to keep the scheduling process stable and efficient.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
NASA Technical Reports Server (NTRS)
Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.
2005-01-01
Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.
Optimisation of assembly scheduling in VCIM systems using genetic algorithm
NASA Astrophysics Data System (ADS)
Dao, Son Duy; Abhary, Kazem; Marian, Romeo
2017-09-01
Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is quite different from one in traditional production systems because of the difference in the working principles of the two systems. In this article, the assembly scheduling problem in VCIM systems is modeled and then an integrated approach based on genetic algorithm (GA) is proposed to search for a global optimised solution to the problem. Because of dynamic nature of the scheduling problem, a novel GA with unique chromosome representation and modified genetic operations is developed herein. Robustness of the proposed approach is verified by a numerical example.
Some single-machine scheduling problems with learning effects and two competing agents.
Li, Hongjie; Li, Zeyuan; Yin, Yunqiang
2014-01-01
This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective functions addressed in this study include the maximum cost, the total weighted completion time, and the discounted total weighted completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The computational complexity of the problems is discussed and solution algorithms where possible are presented.
NASA Astrophysics Data System (ADS)
Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping
2012-05-01
In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.
Electricity Usage Scheduling in Smart Building Environments Using Smart Devices
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977
Jiang, Yuyi; Shao, Zhiqing; Guo, Yi
2014-01-01
A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.
2012-01-01
A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.
Electricity usage scheduling in smart building environments using smart devices.
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-01-01
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807
Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.
Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang
2016-11-28
The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.
Scheduling real-time, periodic jobs using imprecise results
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Natarajan, Swaminathan
1987-01-01
A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated.
NASA Astrophysics Data System (ADS)
Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu
2017-09-01
In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.
1990-02-16
Philadelphia, PA by Dr. Leo E. Hanifin, Director Center for Manufacturing Productivity and Technology Transfer and Co-Principal Investigator Background In...Is coordinated by Dr. Leo E. Hanifin and Involves an additional four graduate students, two programmers, one engineer and one technician. In addition...the transfer bit5 - Whether the transfer is a load or unload * 4 bit4 - Which side of the AGV to perform the transfer bit3 through bitO - The number of
Multicriteria meta-heuristics for AGV dispatching control based on computational intelligence.
Naso, David; Turchiano, Biagio
2005-04-01
In many manufacturing environments, automated guided vehicles are used to move the processed materials between various pickup and delivery points. The assignment of vehicles to unit loads is a complex problem that is often solved in real-time with simple dispatching rules. This paper proposes an automated guided vehicles dispatching approach based on computational intelligence. We adopt a fuzzy multicriteria decision strategy to simultaneously take into account multiple aspects in every dispatching decision. Since the typical short-term view of dispatching rules is one of the main limitations of such real-time assignment heuristics, we also incorporate in the multicriteria algorithm a specific heuristic rule that takes into account the empty-vehicle travel on a longer time-horizon. Moreover, we also adopt a genetic algorithm to tune the weights associated to each decision criteria in the global decision algorithm. The proposed approach is validated by means of a comparison with other dispatching rules, and with other recently proposed multicriteria dispatching strategies also based on computational Intelligence. The analysis of the results obtained by the proposed dispatching approach in both nominal and perturbed operating conditions (congestions, faults) confirms its effectiveness.
Algorithms for Scheduling and Network Problems
1991-09-01
time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and
Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio
2011-11-01
We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.
Space power system scheduling using an expert system
NASA Technical Reports Server (NTRS)
Bahrami, K. A.; Biefeld, E.; Costello, L.; Klein, J. W.
1986-01-01
A most pressing problem in space exploration is timely spacecraft power system sequence generation, which requires the scheduling of a set of loads given a set of resource constraints. This is particularly important after an anomaly or failure. This paper discusses the power scheduling problem and how the software program, Plan-It, can be used as a consultant for scheduling power system activities. Modeling of power activities, human interface, and two of the many strategies used by Plan-It are discussed. Preliminary results showing the development of a conflict-free sequence from an initial sequence with conflicts is presented. It shows that a 4-day schedule can be generated in a matter of a few minutes, which provides sufficient time in many cases to aid the crew in the replanning of loads and generation use following a failure or anomaly.
Daniel, Stephanie S.; Grzywacz, Joseph G.; Leerkes, Esther; Tucker, Jenna; Han, Wen-Jui
2009-01-01
This paper examines the associations between maternal nonstandard work schedules during infancy and children's early behavior problems, and the extent to which infant temperament may moderate these associations. Hypothesized associations were tested using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care (Phase I). Analyses focused on mothers who returned to work by the time the child was 6 months of age, and who worked an average of at least 35 h per week from 6 through 36 months. At 24 and 36 months, children whose mothers worked a nonstandard schedule had higher internalizing and externalizing behaviors. Modest, albeit inconsistent, evidence suggests that temperamentally reactive children may be more vulnerable to maternal work schedules. Maternal depressive symptoms partially mediated associations between nonstandard maternal work schedules and child behavior outcomes. PMID:19233479
Aiding USAF/UPT (Undergraduate Pilot Training) Aircrew Scheduling Using Network Flow Models.
1986-06-01
51 3.4 Heuristic Modifications ............ 55 CHAPTER 4 STUDENT SCHEDULING PROBLEM (LEVEL 2) 4.0 Introduction 4.01 Constraints ............. 60 4.02...Covering" Complete Enumeration . . .. . 71 4.14 Heuristics . ............. 72 4.2 Heuristic Method for the Level 2 Problem 4.21 Step I ............... 73...4.22 Step 2 ............... 74 4.23 Advantages to the Heuristic Method. .... .. 78 4.24 Problems with the Heuristic Method. . ... 79 :,., . * CHAPTER5
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Gross, Michael; Kuerklu, Elif
2003-01-01
We did cool stuff to reduce the number of IVPs and BVPs needed to schedule SOFIA by restricting the problem. The restriction costs us little in terms of the value of the flight plans we can build. The restriction allowed us to reformulate part of the search problem as a zero-finding problem. The result is a simplified planning model and significant savings in computation time.
A derived heuristics based multi-objective optimization procedure for micro-grid scheduling
NASA Astrophysics Data System (ADS)
Li, Xin; Deb, Kalyanmoy; Fang, Yanjun
2017-06-01
With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.
A methodological proposal for the development of an HPC-based antenna array scheduler
NASA Astrophysics Data System (ADS)
Bonvallet, Roberto; Hoffstadt, Arturo; Herrera, Diego; López, Daniela; Gregorio, Rodrigo; Almuna, Manuel; Hiriart, Rafael; Solar, Mauricio
2010-07-01
As new astronomy projects choose interferometry to improve angular resolution and to minimize costs, preparing and optimizing schedules for an antenna array becomes an increasingly critical task. This problem shares similarities with the job-shop problem, which is known to be a NP-hard problem, making a complete approach infeasible. In the case of ALMA, 18000 projects per season are expected, and the best schedule must be found in the order of minutes. The problem imposes severe difficulties: the large domain of observation projects to be taken into account; a complex objective function, composed of several abstract, environmental, and hardware constraints; the number of restrictions imposed and the dynamic nature of the problem, as weather is an ever-changing variable. A solution can benefit from the use of High-Performance Computing for the final implementation to be deployed, but also for the development process. Our research group proposes the use of both metaheuristic search and statistical learning algorithms, in order to create schedules in a reasonable time. How these techniques will be applied is yet to be determined as part of the ongoing research. Several algorithms need to be implemented, tested and evaluated by the team. This work presents the methodology proposed to lead the development of the scheduler. The basic functionality is encapsulated into software components implemented on parallel architectures. These components expose a domain-level interface to the researchers, enabling then to develop early prototypes for evaluating and comparing their proposed techniques.
Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron.
1987-06-01
Security Classification) Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron 12. PERSONAL AUTHOR(S) Thomas J. Kopf...Because of the great number of possible scheduling alternatives, it is difficult to find an optimal solution to-the scheduling problem. Additionally...changes to the original schedule make it even more difficult to find an optimal solution. The emergence of capable microcompu- ters, decision support
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Chih; Su, Ling-Huey
2018-02-01
This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.
Single-machine group scheduling problems with deteriorating and learning effect
NASA Astrophysics Data System (ADS)
Xingong, Zhang; Yong, Wang; Shikun, Bai
2016-07-01
The concepts of deteriorating jobs and learning effects have been individually studied in many scheduling problems. However, most studies considering the deteriorating and learning effects ignore the fact that production efficiency can be increased by grouping various parts and products with similar designs and/or production processes. This phenomenon is known as 'group technology' in the literature. In this paper, a new group scheduling model with deteriorating and learning effects is proposed, where learning effect depends not only on job position, but also on the position of the corresponding job group; deteriorating effect depends on its starting time of the job. This paper shows that the makespan and the total completion time problems remain polynomial optimal solvable under the proposed model. In addition, a polynomial optimal solution is also presented to minimise the maximum lateness problem under certain agreeable restriction.
Scheduling of an aircraft fleet
NASA Technical Reports Server (NTRS)
Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco
1992-01-01
Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.
An Optimization of Manufacturing Systems using a Feedback Control Scheduling Model
NASA Astrophysics Data System (ADS)
Ikome, John M.; Kanakana, Grace M.
2018-03-01
In complex production system that involves multiple process, unplanned disruption often turn to make the entire production system vulnerable to a number of problems which leads to customer’s dissatisfaction. However, this problem has been an ongoing problem that requires a research and methods to streamline the entire process or develop a model that will address it, in contrast to this, we have developed a feedback scheduling model that can minimize some of this problem and after a number of experiment, it shows that some of this problems can be eliminated if the correct remedial actions are implemented on time.
NASA Astrophysics Data System (ADS)
Birgin, Ernesto G.; Ronconi, Débora P.
2012-10-01
The single machine scheduling problem with a common due date and non-identical ready times for the jobs is examined in this work. Performance is measured by the minimization of the weighted sum of earliness and tardiness penalties of the jobs. Since this problem is NP-hard, the application of constructive heuristics that exploit specific characteristics of the problem to improve their performance is investigated. The proposed approaches are examined through a computational comparative study on a set of 280 benchmark test problems with up to 1000 jobs.
Optimizing integrated airport surface and terminal airspace operations under uncertainty
NASA Astrophysics Data System (ADS)
Bosson, Christabelle S.
In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is performed for the Los Angeles environment and probabilistic distributions of pertinent uncertainty sources are obtained. A sensitivity analysis is then carried out to assess the methodology performance and find optimal sampling parameters. Finally, simulations of increasing traffic density in the presence of uncertainty are conducted first for integrated arrivals and departures, then for integrated surface and air operations. To compare the optimization results and show the benefits of integrated operations, two aircraft separation methods are implemented that offer different routing options. The simulations of integrated air operations and the simulations of integrated air and surface operations demonstrate that significant traveling time savings, both total and individual surface and air times, can be obtained when more direct routes are allowed to be traveled even in the presence of uncertainty. The resulting routings induce however extra take off delay for departing flights. As a consequence, some flights cannot meet their initial assigned runway slot which engenders runway position shifting when comparing resulting runway sequences computed under both deterministic and stochastic conditions. The optimization is able to compute an optimal runway schedule that represents an optimal balance between total schedule delays and total travel times.
Scheduling Projects with Multiskill Learning Effect
2014-01-01
We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost. PMID:24683355
Scheduling projects with multiskill learning effect.
Zha, Hong; Zhang, Lianying
2014-01-01
We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost.
Human-Machine Collaborative Optimization via Apprenticeship Scheduling
2016-09-09
prenticeship Scheduling (COVAS), which performs ma- chine learning using human expert demonstration, in conjunction with optimization, to automatically and ef...ficiently produce optimal solutions to challenging real- world scheduling problems. COVAS first learns a policy from human scheduling demonstration via...apprentice- ship learning , then uses this initial solution to provide a tight bound on the value of the optimal solution, thereby substantially
Cui, Laizhong; Lu, Nan; Chen, Fu
2014-01-01
Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968
Solving Open Job-Shop Scheduling Problems by SAT Encoding
NASA Astrophysics Data System (ADS)
Koshimura, Miyuki; Nabeshima, Hidetomo; Fujita, Hiroshi; Hasegawa, Ryuzo
This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.
McGinnis, Molly A; Houchins-Juárez, Nealetta; McDaniel, Jill L; Kennedy, Craig H
2010-01-01
Three participants whose problem behavior was maintained by contingent attention were exposed to 45-min presessions in which attention was withheld, provided on a fixed-time (FT) 15-s schedule, or provided on an FT 120-s schedule. Following each presession, participants were then tested in a 15-min session similar to the social attention condition of an analogue functional analysis. The results showed establishing operation conditions increased problem behavior during tests and that abolishing operation conditions decreased problem behavior during tests. PMID:20808502
McGinnis, Molly A; Houchins-Juárez, Nealetta; McDaniel, Jill L; Kennedy, Craig H
2010-03-01
Three participants whose problem behavior was maintained by contingent attention were exposed to 45-min presessions in which attention was withheld, provided on a fixed-time (FT) 15-s schedule, or provided on an FT 120-s schedule. Following each presession, participants were then tested in a 15-min session similar to the social attention condition of an analogue functional analysis. The results showed establishing operation conditions increased problem behavior during tests and that abolishing operation conditions decreased problem behavior during tests.
Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode
NASA Astrophysics Data System (ADS)
Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.
2012-12-01
Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive and negative swinging angle and the computation of time window are analyzed and discussed. And many strategies to improve the efficiency of this model are also put forward. In order to solve the model, we bring forward the conception of activity sequence map. By using the activity sequence map, the activity choice and the start time of the activity can be divided. We also bring forward three neighborhood operators to search the result space. The front movement remaining time and the back movement remaining time are used to analyze the feasibility to generate solution from neighborhood operators. Lastly, the algorithm to solve the problem and model is put forward based genetic algorithm. Population initialization, crossover operator, mutation operator, individual evaluation, collision decrease operator, select operator and collision elimination operator is designed in the paper. Finally, the scheduling result and the simulation for a practical example on 5 satellites and 100 point targets with swinging mode is given, and the scheduling performances are also analyzed while the swinging angle in 0, 5, 10, 15, 25. It can be shown by the result that the model and the algorithm are more effective than those ones without swinging mode.
Frutos, M; Méndez, M; Tohmé, F; Broz, D
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.
Innately Split Model for Job-shop Scheduling Problem
NASA Astrophysics Data System (ADS)
Ikeda, Kokolo; Kobayashi, Sigenobu
Job-shop Scheduling Problem (JSP) is one of the most difficult benchmark problems. GA approaches often fail searching the global optimum because of the deception UV-structure of JSPs. In this paper, we introduce a novel framework model of GA, Innately Split Model (ISM) which prevents UV-phenomenon, and discuss on its power particularly. Next we analyze the structure of JSPs with the help of the UV-structure hypothesys, and finally we show ISM's excellent performance on JSP.
Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun
2016-02-01
As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.
Li, Guo; Lv, Fei; Guan, Xu
2014-01-01
This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment.
Lv, Fei; Guan, Xu
2014-01-01
This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment. PMID:24892104
Nurse Scheduling by Cooperative GA with Effective Mutation Operator
NASA Astrophysics Data System (ADS)
Ohki, Makoto
In this paper, we propose an effective mutation operators for Cooperative Genetic Algorithm (CGA) to be applied to a practical Nurse Scheduling Problem (NSP). The nurse scheduling is a very difficult task, because NSP is a complex combinatorial optimizing problem for which many requirements must be considered. In real hospitals, the schedule changes frequently. The changes of the shift schedule yields various problems, for example, a fall in the nursing level. We describe a technique of the reoptimization of the nurse schedule in response to a change. The conventional CGA is superior in ability for local search by means of its crossover operator, but often stagnates at the unfavorable situation because it is inferior to ability for global search. When the optimization stagnates for long generation cycle, a searching point, population in this case, would be caught in a wide local minimum area. To escape such local minimum area, small change in a population should be required. Based on such consideration, we propose a mutation operator activated depending on the optimization speed. When the optimization stagnates, in other words, when the optimization speed decreases, the mutation yields small changes in the population. Then the population is able to escape from a local minimum area by means of the mutation. However, this mutation operator requires two well-defined parameters. This means that user have to consider the value of these parameters carefully. To solve this problem, we propose a periodic mutation operator which has only one parameter to define itself. This simplified mutation operator is effective over a wide range of the parameter value.
The use of irradiated corneal patch grafts in pediatric Ahmed drainage implant surgery.
Nolan, Kaitlyn Wallace; Lucas, Jordyn; Abbasian, Javaneh
2015-10-01
To describe the use of irradiated cornea for scleral reinforcement in Ahmed glaucoma valve drainage implant (AGV) devices in children. The medical records of patients <18 years of age who underwent AGV surgery with irradiated cornea as scleral reinforcement were reviewed retrospectively. The primary outcome measure was erosion of the drainage tube through the corneal patch graft. Secondary outcome measures included other major complications: persistent inflammation, wound dehiscence, transmission of infectious disease, endophthalmitis, and tube/plate self-explantation. A total of 25 procedures (20 patients) met inclusion criteria. Average patient age was 70 months (range, 2 months to 17 years). Mean follow-up was 24.8 months (range, 6 months to 6.2 years). One tube experienced conjunctival exposure through two separate corneal grafts (2/25 cases [8%]), sequentially in the same eye. The first event occurred at month 3.5 after primary implantation of the tube shunt; the second erosion occurred following revision of the existing implant at month 1.5 postoperatively. There were 2 cases of auto-explantation, 2 cases of wound dehiscence, and 1 case of persistent inflammation. There were no cases of endophthalmitis or other infections. To our knowledge, this is the first report describing the use of corneal patch grafts in children. Irradiated cornea improves cosmesis and enhances visualization of the tube. The risk of tube exposure was found to be low and comparable to other materials used as a patch graft. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Yung-Chia; Li, Vincent C.; Chiang, Chia-Ju
2014-04-01
Make-to-order or direct-order business models that require close interaction between production and distribution activities have been adopted by many enterprises in order to be competitive in demanding markets. This article considers an integrated production and distribution scheduling problem in which jobs are first processed by one of the unrelated parallel machines and then distributed to corresponding customers by capacitated vehicles without intermediate inventory. The objective is to find a joint production and distribution schedule so that the weighted sum of total weighted job delivery time and the total distribution cost is minimized. This article presents a mathematical model for describing the problem and designs an algorithm using ant colony optimization. Computational experiments illustrate that the algorithm developed is capable of generating near-optimal solutions. The computational results also demonstrate the value of integrating production and distribution in the model for the studied problem.
Zhimeng, Li; Chuan, He; Dishan, Qiu; Jin, Liu; Manhao, Ma
2013-01-01
Aiming to the imaging tasks scheduling problem on high-altitude airship in emergency condition, the programming models are constructed by analyzing the main constraints, which take the maximum task benefit and the minimum energy consumption as two optimization objectives. Firstly, the hierarchy architecture is adopted to convert this scheduling problem into three subproblems, that is, the task ranking, value task detecting, and energy conservation optimization. Then, the algorithms are designed for the sub-problems, and the solving results are corresponding to feasible solution, efficient solution, and optimization solution of original problem, respectively. This paper makes detailed introduction to the energy-aware optimization strategy, which can rationally adjust airship's cruising speed based on the distribution of task's deadline, so as to decrease the total energy consumption caused by cruising activities. Finally, the application results and comparison analysis show that the proposed strategy and algorithm are effective and feasible. PMID:23864822
Minimizing conflicts: A heuristic repair method for constraint-satisfaction and scheduling problems
NASA Technical Reports Server (NTRS)
Minton, Steve; Johnston, Mark; Philips, Andrew; Laird, Phil
1992-01-01
This paper describes a simple heuristic approach to solving large-scale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a value-ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. The heuristic can be used with a variety of different search strategies. We demonstrate empirically that on the n-queens problem, a technique based on this approach performs orders of magnitude better than traditional backtracking techniques. We also describe a scheduling application where the approach has been used successfully. A theoretical analysis is presented both to explain why this method works well on certain types of problems and to predict when it is likely to be most effective.
NASA Astrophysics Data System (ADS)
Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.
2015-11-01
When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.
Applications of colored petri net and genetic algorithms to cluster tool scheduling
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng
2005-12-01
In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.
Naval Postgraduate School Scheduling Support System (NPS4)
1992-03-01
NPSS ...... .................. 156 2. Final Exam Scheduler .. .......... 159 F. PRESENTATION SYSTEM ... ............. . 160 G. USER INTERFACE... NPSS ...... .................. 185 2. Final Exam Model ... ............ 186 3. The Class Schedulers .. .......... 186 4. Assessment of Problem Model...Information Distribution ....... 150 4.13 NPSS Optimization Process .... ............ . 157 4.14 NPSS Performance ..... ................ . 159 4.15 Department
A scheduling algorithm for Spacelab telescope observations
NASA Technical Reports Server (NTRS)
Grone, B.
1982-01-01
An algorithm is developed for sequencing and scheduling of observations of stellar targets by equipment on Spacelab. The method is a general one. The scheduling problem is defined and examined. The method developed for its solution is documented. Suggestions for further development and implementation of this method are made.
Binary Trees and Parallel Scheduling Algorithms.
1980-09-01
been pro- cessed for p. time units. If a job does not complete by its due time, it is tardy. In a nonpreemptive schedule, job i is scheduled to process...the preemptive schedule obtained by the algorithm of section 2.1.2 also minimizes 5Ti, this problem is easily solved in parallel. When lci is to e...August 1978, pp. 657-661. 14. Horn, W. A., "Some simple scheduling algorithms," Naval Res. Logist . Qur., Vol. 21, pp. 177-185, 1974. i5. Hforowitz, E
New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times
NASA Astrophysics Data System (ADS)
Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid
2017-09-01
In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.
An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem
NASA Astrophysics Data System (ADS)
Afshar Nadjafi, Behrouz; Shadrokh, Shahram
This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.
Better approximation guarantees for job-shop scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, L.A.; Paterson, M.; Srinivasan, A.
1997-06-01
Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first polynomial-time approximation algorithm for this problem that has a good (polylogarithmic) approximation guarantee. We improve the approximation guarantee of their work, and present further improvements for some important NP-hard special cases of this problem (e.g., in the preemptive case where machines can suspend work on operations and later resume). We also present NC algorithms with improved approximation guarantees for some NP-hard special cases.
Continual planning and scheduling for managing patient tests in hospital laboratories.
Marinagi, C C; Spyropoulos, C D; Papatheodorou, C; Kokkotos, S
2000-10-01
Hospital laboratories perform examination tests upon patients, in order to assist medical diagnosis or therapy progress. Planning and scheduling patient requests for examination tests is a complicated problem because it concerns both minimization of patient stay in hospital and maximization of laboratory resources utilization. In the present paper, we propose an integrated patient-wise planning and scheduling system which supports the dynamic and continual nature of the problem. The proposed combination of multiagent and blackboard architecture allows the dynamic creation of agents that share a set of knowledge sources and a knowledge base to service patient test requests.
An Improved Memetic Algorithm for Break Scheduling
NASA Astrophysics Data System (ADS)
Widl, Magdalena; Musliu, Nysret
In this paper we consider solving a complex real life break scheduling problem. This problem of high practical relevance arises in many working areas, e.g. in air traffic control and other fields where supervision personnel is working. The objective is to assign breaks to employees such that various constraints reflecting legal demands or ergonomic criteria are satisfied and staffing requirement violations are minimised.
ERIC Educational Resources Information Center
McGinnis, Molly A.; Houchins-Juarez, Nealetta; McDaniel, Jill L.; Kennedy, Craig H.
2010-01-01
Three participants whose problem behavior was maintained by contingent attention were exposed to 45-min presessions in which attention was withheld, provided on a fixed-time (FT) 15-s schedule, or provided on an FT 120-s schedule. Following each presession, participants were then tested in a 15-min session similar to the social attention condition…
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Evaluation of fixed momentary dro schedules under signaled and unsignaled arrangements.
Hammond, Jennifer L; Iwata, Brian A; Fritz, Jennifer N; Dempsey, Carrie M
2011-01-01
Fixed momentary schedules of differential reinforcement of other behavior (FM DRO) generally have been ineffective as treatment for problem behavior. Because most early research on FM DRO included presentation of a signal at the end of the DRO interval, it is unclear whether the limited effects of FM DRO were due to (a) the momentary response requirement of the schedule per se or (b) discrimination of the contingency made more salient by the signal. To separate these two potential influences, we compared the effects of signaled versus unsignaled FM DRO with 4 individuals with developmental disabilities whose problem behavior was maintained by social-positive reinforcement. During signaled FM DRO, the experimenter presented a visual stimulus 3 s prior to the end of the DRO interval and delivered reinforcement contingent on the absence of problem behavior at the second the interval elapsed. Unsignaled DRO was identical except that interval termination was not signaled. Results indicated that signaled FM DRO was effective in decreasing 2 subjects' problem behavior, whereas an unsignaled schedule was required for the remaining 2 subjects. These results suggest that the response requirement per se of FM DRO may not be problematic if it is not easily discriminated.
Xiang, Wei; Li, Chong
2015-01-01
Operating Room (OR) is the core sector in hospital expenditure, the operation management of which involves a complete three-stage surgery flow, multiple resources, prioritization of the various surgeries, and several real-life OR constraints. As such reasonable surgery scheduling is crucial to OR management. To optimize OR management and reduce operation cost, a short-term surgery scheduling problem is proposed and defined based on the survey of the OR operation in a typical hospital in China. The comprehensive operation cost is clearly defined considering both under-utilization and overutilization. A nested Ant Colony Optimization (nested-ACO) incorporated with several real-life OR constraints is proposed to solve such a combinatorial optimization problem. The 10-day manual surgery schedules from a hospital in China are compared with the optimized schedules solved by the nested-ACO. Comparison results show the advantage using the nested-ACO in several measurements: OR-related time, nurse-related time, variation in resources' working time, and the end time. The nested-ACO considering real-life operation constraints such as the difference between first and following case, surgeries priority, and fixed nurses in pre/post-operative stage is proposed to solve the surgery scheduling optimization problem. The results clearly show the benefit of using the nested-ACO in enhancing the OR management efficiency and minimizing the comprehensive overall operation cost.
Decision support system for the operating room rescheduling problem.
van Essen, J Theresia; Hurink, Johann L; Hartholt, Woutske; van den Akker, Bernd J
2012-12-01
Due to surgery duration variability and arrivals of emergency surgeries, the planned Operating Room (OR) schedule is disrupted throughout the day which may lead to a change in the start time of the elective surgeries. These changes may result in undesirable situations for patients, wards or other involved departments, and therefore, the OR schedule has to be adjusted. In this paper, we develop a decision support system (DSS) which assists the OR manager in this decision by providing the three best adjusted OR schedules. The system considers the preferences of all involved stakeholders and only evaluates the OR schedules that satisfy the imposed resource constraints. The decision rules used for this system are based on a thorough analysis of the OR rescheduling problem. We model this problem as an Integer Linear Program (ILP) which objective is to minimize the deviation from the preferences of the considered stakeholders. By applying this ILP to instances from practice, we determined that the given preferences mainly lead to (i) shifting a surgery and (ii) scheduling a break between two surgeries. By using these changes in the DSS, the performed simulation study shows that less surgeries are canceled and patients and wards are more satisfied, but also that the perceived workload of several departments increases to compensate this. The system can also be used to judge the acceptability of a proposed initial OR schedule.
Generation of Look-Up Tables for Dynamic Job Shop Scheduling Decision Support Tool
NASA Astrophysics Data System (ADS)
Oktaviandri, Muchamad; Hassan, Adnan; Mohd Shaharoun, Awaluddin
2016-02-01
Majority of existing scheduling techniques are based on static demand and deterministic processing time, while most job shop scheduling problem are concerned with dynamic demand and stochastic processing time. As a consequence, the solutions obtained from the traditional scheduling technique are ineffective wherever changes occur to the system. Therefore, this research intends to develop a decision support tool (DST) based on promising artificial intelligent that is able to accommodate the dynamics that regularly occur in job shop scheduling problem. The DST was designed through three phases, i.e. (i) the look-up table generation, (ii) inverse model development and (iii) integration of DST components. This paper reports the generation of look-up tables for various scenarios as a part in development of the DST. A discrete event simulation model was used to compare the performance among SPT, EDD, FCFS, S/OPN and Slack rules; the best performances measures (mean flow time, mean tardiness and mean lateness) and the job order requirement (inter-arrival time, due dates tightness and setup time ratio) which were compiled into look-up tables. The well-known 6/6/J/Cmax Problem from Muth and Thompson (1963) was used as a case study. In the future, the performance measure of various scheduling scenarios and the job order requirement will be mapped using ANN inverse model.
Development of Watch Schedule Using Rules Approach
NASA Astrophysics Data System (ADS)
Jurkevicius, Darius; Vasilecas, Olegas
The software for schedule creation and optimization solves a difficult, important and practical problem. The proposed solution is an online employee portal where administrator users can create and manage watch schedules and employee requests. Each employee can login with his/her own account and see his/her assignments, manage requests, etc. Employees set as administrators can perform the employee scheduling online, manage requests, etc. This scheduling software allows users not only to see the initial and optimized watch schedule in a simple and understandable form, but also to create special rules and criteria and input their business. The system using rules automatically will generate watch schedule.
Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang
2014-01-01
We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.
A parallel-machine scheduling problem with two competing agents
NASA Astrophysics Data System (ADS)
Lee, Wen-Chiung; Chung, Yu-Hsiang; Wang, Jen-Ya
2017-06-01
Scheduling with two competing agents has become popular in recent years. Most of the research has focused on single-machine problems. This article considers a parallel-machine problem, the objective of which is to minimize the total completion time of jobs from the first agent given that the maximum tardiness of jobs from the second agent cannot exceed an upper bound. The NP-hardness of this problem is also examined. A genetic algorithm equipped with local search is proposed to search for the near-optimal solution. Computational experiments are conducted to evaluate the proposed genetic algorithm.
Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang
2014-01-01
We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms. PMID:24764774
Morrison, Heather; Roscoe, Eileen M; Atwell, Amy
2011-01-01
We evaluated antecedent exercise for treating the automatically reinforced problem behavior of 4 individuals with autism. We conducted preference assessments to identify leisure and exercise items that were associated with high levels of engagement and low levels of problem behavior. Next, we conducted three 3-component multiple-schedule sequences: an antecedent-exercise test sequence, a noncontingent leisure-item control sequence, and a social-interaction control sequence. Within each sequence, we used a 3-component multiple schedule to evaluate preintervention, intervention, and postintervention effects. Problem behavior decreased during the postintervention component relative to the preintervention component for 3 of the 4 participants during the exercise-item assessment; however, the effects could not be attributed solely to exercise for 1 of these participants. PMID:21941383
Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502
Constraint monitoring in TOSCA
NASA Technical Reports Server (NTRS)
Beck, Howard
1992-01-01
The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.
Space Shuttle processing - A case study in artificial intelligence
NASA Technical Reports Server (NTRS)
Mollikarimi, Cindy; Gargan, Robert; Zweben, Monte
1991-01-01
A scheduling system incorporating AI is described and applied to the automated processing of the Space Shuttle. The unique problem of addressing the temporal, resource, and orbiter-configuration requirements of shuttle processing is described with comparisons to traditional project management for manufacturing processes. The present scheduling system is developed to handle the late inputs and complex programs that characterize shuttle processing by incorporating fixed preemptive scheduling, constraint-based simulated annealing, and the characteristics of an 'anytime' algorithm. The Space-Shuttle processing environment is modeled with 500 activities broken down into 4000 subtasks and with 1600 temporal constraints, 8000 resource constraints, and 3900 state requirements. The algorithm is shown to scale to very large problems and maintain anytime characteristics suggesting that an automated scheduling process is achievable and potentially cost-effective.
Computer-Assisted Scheduling of Army Unit Training: An Application of Simulated Annealing.
ERIC Educational Resources Information Center
Hart, Roland J.; Goehring, Dwight J.
This report of an ongoing research project intended to provide computer assistance to Army units for the scheduling of training focuses on the feasibility of simulated annealing, a heuristic approach for solving scheduling problems. Following an executive summary and brief introduction, the document is divided into three sections. First, the Army…
Mothers' Night Work and Children's Behavior Problems
ERIC Educational Resources Information Center
Dunifon, Rachel; Kalil, Ariel; Crosby, Danielle A.; Su, Jessica Houston
2013-01-01
Many mothers work in jobs with nonstandard schedules (i.e., schedules that involve work outside of the traditional 9-5, Monday through Friday schedule); this is particularly true for economically disadvantaged mothers. In the present article, we used longitudinal data from the Fragile Families and Child Wellbeing Survey (n = 2,367 mothers of…
ERIC Educational Resources Information Center
Brackney, Ryan J.; Cheung, Timothy H. C.; Neisewander, Janet L.; Sanabria, Federico
2011-01-01
Dissociating motoric and motivational effects of pharmacological manipulations on operant behavior is a substantial challenge. To address this problem, we applied a response-bout analysis to data from rats trained to lever press for sucrose on variable-interval (VI) schedules of reinforcement. Motoric, motivational, and schedule factors (effort…
Temporal and Resource Reasoning for Planning, Scheduling and Execution in Autonomous Agents
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Hunsberger, Luke; Tsamardinos, Ioannis
2005-01-01
This viewgraph slide tutorial reviews methods for planning and scheduling events. The presentation reviews several methods and uses several examples of scheduling events for the successful and timely completion of the overall plan. Using constraint based models the presentation reviews planning with time, time representations in problem solving and resource reasoning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Faming; Cheng, Yichen; Lin, Guang
2014-06-13
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less
A Study on Real-Time Scheduling Methods in Holonic Manufacturing Systems
NASA Astrophysics Data System (ADS)
Iwamura, Koji; Taimizu, Yoshitaka; Sugimura, Nobuhiro
Recently, new architectures of manufacturing systems have been proposed to realize flexible control structures of the manufacturing systems, which can cope with the dynamic changes in the volume and the variety of the products and also the unforeseen disruptions, such as failures of manufacturing resources and interruptions by high priority jobs. They are so called as the autonomous distributed manufacturing system, the biological manufacturing system and the holonic manufacturing system. Rule-based scheduling methods were proposed and applied to the real-time production scheduling problems of the HMS (Holonic Manufacturing System) in the previous report. However, there are still remaining problems from the viewpoint of the optimization of the whole production schedules. New procedures are proposed, in the present paper, to select the production schedules, aimed at generating effective production schedules in real-time. The proposed methods enable the individual holons to select suitable machining operations to be carried out in the next time period. Coordination process among the holons is also proposed to carry out the coordination based on the effectiveness values of the individual holons.
Towards a dynamical scheduler for ALMA: a science - software collaboration
NASA Astrophysics Data System (ADS)
Avarias, Jorge; Toledo, Ignacio; Espada, Daniel; Hibbard, John; Nyman, Lars-Ake; Hiriart, Rafael
2016-07-01
State-of-the art astronomical facilities are costly to build and operate, hence it is essential that these facilities must be operated as much efficiently as possible, trying to maximize the scientific output and at the same time minimizing overhead times. Over the latest decades the scheduling problem has drawn attention of research because new facilities have been demonstrated that is unfeasible to try to schedule observations manually, due the complexity to satisfy the astronomical and instrumental constraints and the number of scientific proposals to be reviewed and evaluated in near real-time. In addition, the dynamic nature of some constraints make this problem even more difficult. The Atacama Large Millimeter/submillimeter Array (ALMA) is a major collaboration effort between European (ESO), North American (NRAO) and East Asian countries (NAOJ), under operations on the Chilean Chajnantor plateau, at 5.000 meters of altitude. During normal operations at least two independent arrays are available, aiming to achieve different types of science. Since ALMA does not observe in the visible spectrum, observations are not limited to night time only, thus a 24/7 operation with little downtime as possible is expected when full operations state will have been reached. However, during preliminary operations (early-science) ALMA has been operated on tied schedules using around half of the whole day-time to conduct scientific observations. The purpose of this paper is to explain how the observation scheduling and its optimization is done within ALMA, giving details about the problem complexity, its similarities and differences with traditional scheduling problems found in the literature. The paper delves into the current recommendation system implementation and the difficulties found during the road to its deployment in production.
NASA Technical Reports Server (NTRS)
Gaspin, Christine
1989-01-01
How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.
Johnson, R.G.; Wandless, G.A.
1984-01-01
A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.
Software For Integer Programming
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1992-01-01
Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.
A System for Automatically Generating Scheduling Heuristics
NASA Technical Reports Server (NTRS)
Morris, Robert
1996-01-01
The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.
2013-03-01
33 Mario Vanhoucke and Stephan Vandevoorde – “Measuring the Accuracy of Earned Value/Earned Schedule Forecasting Predictors” (2007...technical problem to the present day ‘ super projects’” (Clark and Lorenzoni, 1997: 2). Cost engineering has “application regardless of industry...large construction projects, but also the acceptance of earned schedule principles on an international scale. Mario Vanhoucke and Stephan Vandevoorde
A Network Flow Approach to the Initial Skills Training Scheduling Problem
2007-12-01
include (but are not limited to) queuing theory, stochastic analysis and simulation. After the demand schedule has been estimated, it can be ...software package has already been purchased and is in use by AFPC, AFPC has requested that the new algorithm be programmed in this language as well ...the discussed outputs from those schedules. Required Inputs A single input file details the students to be scheduled as well as the courses
Range and mission scheduling automation using combined AI and operations research techniques
NASA Technical Reports Server (NTRS)
Arbabi, Mansur; Pfeifer, Michael
1987-01-01
Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.
Xiang, Wei; Yin, Jiao; Lim, Gino
2015-02-01
Operating room (OR) surgery scheduling determines the individual surgery's operation start time and assigns the required resources to each surgery over a schedule period, considering several constraints related to a complete surgery flow and the multiple resources involved. This task plays a decisive role in providing timely treatments for the patients while balancing hospital resource utilization. The originality of the present study is to integrate the surgery scheduling problem with real-life nurse roster constraints such as their role, specialty, qualification and availability. This article proposes a mathematical model and an ant colony optimization (ACO) approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-level ant graph model is developed to solve such combinatorial optimization problems because of its computational complexity. The outer ant graph represents surgeries, while the inner graph is a dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related, and resource-related pheromone, fitting for a two-level model are defined. The iteration-best and feasible update strategy and local pheromone update rules are adopted to emphasize the information related to the good solution in makespan, and the balanced utilization of resources as well. The performance of the proposed ACO algorithm is then evaluated using the test cases from (1) the published literature data with complete nurse roster constraints, and 2) the real data collected from a hospital in China. The scheduling results using the proposed ACO approach are compared with the test case from both the literature and the real life hospital scheduling. Comparison results with the literature shows that the proposed ACO approach has (1) an 1.5-h reduction in end time; (2) a reduction in variation of resources' working time, i.e. 25% for ORs, 50% for nurses in shift 1 and 86% for nurses in shift 2; (3) an 0.25h reduction in individual maximum overtime (OT); and (4) an 42% reduction in the total OT of nurses. Comparison results with the real 10-workday hospital scheduling further show the advantage of the ACO in several measurements. Instead of assigning all surgeries by a surgeon to only one OR and the same nurses by traditional manual approach in hospital, ACO realizes a more balanced surgery arrangement by assigning the surgeries to different ORs and nurses. It eventually leads to shortening the end time within the confidential interval of [7.4%, 24.6%] with 95% confidence level. The ACO approach proposed in this paper efficiently solves the surgery scheduling problem with daily nurse roster while providing a shortened end time and relatively balanced resource allocations. It also supports the advantage of integrating the surgery scheduling with the nurse scheduling and the efficiency of systematic optimization considering a complete three-stage surgery flow and resources involved. Copyright © 2014 Elsevier B.V. All rights reserved.
Bulk Leisure--Problem or Blessing?
ERIC Educational Resources Information Center
Beland, Robert M.
1983-01-01
With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)
Energy latency tradeoffs for medium access and sleep scheduling in wireless sensor networks
NASA Astrophysics Data System (ADS)
Gang, Lu
Wireless sensor networks are expected to be used in a wide range of applications from environment monitoring to event detection. The key challenge is to provide energy efficient communication; however, latency remains an important concern for many applications that require fast response. The central thesis of this work is that energy efficient medium access and sleep scheduling mechanisms can be designed without necessarily sacrificing application-specific latency performance. We validate this thesis through results from four case studies that cover various aspects of medium access and sleep scheduling design in wireless sensor networks. Our first effort, DMAC, is to design an adaptive low latency and energy efficient MAC for data gathering to reduce the sleep latency. We propose staggered schedule, duty cycle adaptation, data prediction and the use of more-to-send packets to enable seamless packet forwarding under varying traffic load and channel contentions. Simulation and experimental results show significant energy savings and latency reduction while ensuring high data reliability. The second research effort, DESS, investigates the problem of designing sleep schedules in arbitrary network communication topologies to minimize the worst case end-to-end latency (referred to as delay diameter). We develop a novel graph-theoretical formulation, derive and analyze optimal solutions for the tree and ring topologies and heuristics for arbitrary topologies. The third study addresses the problem of minimum latency joint scheduling and routing (MLSR). By constructing a novel delay graph, the optimal joint scheduling and routing can be solved by M node-disjoint paths algorithm under multiple channel model. We further extended the algorithm to handle dynamic traffic changes and topology changes. A heuristic solution is proposed for MLSR under single channel interference. In the fourth study, EEJSPC, we first formulate a fundamental optimization problem that provides tunable energy-latency-throughput tradeoffs with joint scheduling and power control and present both exponential and polynomial complexity solutions. Then we investigate the problem of minimizing total transmission energy while satisfying transmission requests within a latency bound, and present an iterative approach which converges rapidly to the optimal parameter settings.
Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems.
Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao
2017-12-20
Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm.
Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems
Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao
2017-01-01
Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm. PMID:29261135
Protocols for distributive scheduling
NASA Technical Reports Server (NTRS)
Richards, Stephen F.; Fox, Barry
1993-01-01
The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of space shuttle mission planning.
Distributed project scheduling at NASA: Requirements for manual protocols and computer-based support
NASA Technical Reports Server (NTRS)
Richards, Stephen F.
1992-01-01
The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of Space Shuttle mission planning.
Production scheduling and rescheduling with genetic algorithms.
Bierwirth, C; Mattfeld, D C
1999-01-01
A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.
Applying Graph Theory to Problems in Air Traffic Management
NASA Technical Reports Server (NTRS)
Farrahi, Amir Hossein; Goldbert, Alan; Bagasol, Leonard Neil; Jung, Jaewoo
2017-01-01
Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it is shown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.
Applying Graph Theory to Problems in Air Traffic Management
NASA Technical Reports Server (NTRS)
Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo
2017-01-01
Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.
Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines
Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing
2014-01-01
m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933
Karakashian, A N; Lepeshkina, T R; Ratushnaia, A N; Glushchenko, S S; Zakharenko, M I; Lastovchenko, V B; Diordichuk, T I
1993-01-01
Weight, tension and harmfulness of professional activity, peculiarities of labour conditions and characteristics of work, shift dynamics of operative personnel's working capacity were studied in the course of 8-hour working day currently accepted at hydroelectric power stations (HEPS) and experimental 12-hour schedule. Working conditions classified as "admissible", positive dynamics of operators' state, their social and material contentment were a basis for 12-hour two-shift schedule to be recommended as more appropriate. At the same time, problem of optimal shift schedules for operative personnel of HEPS remains unsolved and needs to be further explored.
NASA Astrophysics Data System (ADS)
Moreno-Camacho, Carlos A.; Montoya-Torres, Jairo R.; Vélez-Gallego, Mario C.
2018-06-01
Only a few studies in the available scientific literature address the problem of having a group of workers that do not share identical levels of productivity during the planning horizon. This study considers a workforce scheduling problem in which the actual processing time is a function of the scheduling sequence to represent the decline in workers' performance, evaluating two classical performance measures separately: makespan and maximum tardiness. Several mathematical models are compared with each other to highlight the advantages of each approach. The mathematical models are tested with randomly generated instances available from a public e-library.
Transportation Network Analysis and Decomposition Methods
DOT National Transportation Integrated Search
1978-03-01
The report outlines research in transportation network analysis using decomposition techniques as a basis for problem solutions. Two transportation network problems were considered in detail: a freight network flow problem and a scheduling problem fo...
A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem
NASA Astrophysics Data System (ADS)
Jolai, Fariborz; Assadipour, Ghazal
Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.
Due-Window Assignment Scheduling with Variable Job Processing Times
Wu, Yu-Bin
2015-01-01
We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine, where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the problem can be solved in polynomial time. PMID:25918745
Single machine scheduling with slack due dates assignment
NASA Astrophysics Data System (ADS)
Liu, Weiguo; Hu, Xiangpei; Wang, Xuyin
2017-04-01
This paper considers a single machine scheduling problem in which each job is assigned an individual due date based on a common flow allowance (i.e. all jobs have slack due date). The goal is to find a sequence for jobs, together with a due date assignment, that minimizes a non-regular criterion comprising the total weighted absolute lateness value and common flow allowance cost, where the weight is a position-dependent weight. In order to solve this problem, an ? time algorithm is proposed. Some extensions of the problem are also shown.
Yang, S; Wang, D
2000-01-01
This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.
Future aircraft networks and schedules
NASA Astrophysics Data System (ADS)
Shu, Yan
2011-07-01
Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents computational results of these large-scale instances. To validate the models and solution algorithms developed, this thesis also compares the daily flight schedules that it designs with the schedules of the existing airlines. Furthermore, it creates instances that represent different economic and fuel-prices conditions and derives schedules under these different conditions. In addition, it discusses the implication of using new aircraft in the future flight schedules. Finally, future research in three areas---model, computational method, and simulation for validation---is proposed.
Task Scheduling in Desktop Grids: Open Problems
NASA Astrophysics Data System (ADS)
Chernov, Ilya; Nikitina, Natalia; Ivashko, Evgeny
2017-12-01
We survey the areas of Desktop Grid task scheduling that seem to be insufficiently studied so far and are promising for efficiency, reliability, and quality of Desktop Grid computing. These topics include optimal task grouping, "needle in a haystack" paradigm, game-theoretical scheduling, domain-imposed approaches, special optimization of the final stage of the batch computation, and Enterprise Desktop Grids.
Optimization Models for Scheduling of Jobs
Indika, S. H. Sathish; Shier, Douglas R.
2006-01-01
This work is motivated by a particular scheduling problem that is faced by logistics centers that perform aircraft maintenance and modification. Here we concentrate on a single facility (hangar) which is equipped with several work stations (bays). Specifically, a number of jobs have already been scheduled for processing at the facility; the starting times, durations, and work station assignments for these jobs are assumed to be known. We are interested in how best to schedule a number of new jobs that the facility will be processing in the near future. We first develop a mixed integer quadratic programming model (MIQP) for this problem. Since the exact solution of this MIQP formulation is time consuming, we develop a heuristic procedure, based on existing bin packing techniques. This heuristic is further enhanced by application of certain local optimality conditions. PMID:27274921
Improved NSGA model for multi objective operation scheduling and its evaluation
NASA Astrophysics Data System (ADS)
Li, Weining; Wang, Fuyu
2017-09-01
Reasonable operation can increase the income of the hospital and improve the patient’s satisfactory level. In this paper, by using multi object operation scheduling method with improved NSGA algorithm, it shortens the operation time, reduces the operation costand lowers the operation risk, the multi-objective optimization model is established for flexible operation scheduling, through the MATLAB simulation method, the Pareto solution is obtained, the standardization of data processing. The optimal scheduling scheme is selected by using entropy weight -Topsis combination method. The results show that the algorithm is feasible to solve the multi-objective operation scheduling problem, and provide a reference for hospital operation scheduling.
Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing
NASA Astrophysics Data System (ADS)
Suma, T.; Murugesan, R.
2018-04-01
The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.
Extended precedence preservative crossover for job shop scheduling problems
NASA Astrophysics Data System (ADS)
Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd
2013-04-01
Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.
Manipulating Tabu List to Handle Machine Breakdowns in Job Shop Scheduling Problems
NASA Astrophysics Data System (ADS)
Nababan, Erna Budhiarti; SalimSitompul, Opim
2011-06-01
Machine breakdowns in a production schedule may occur on a random basis that make the well-known hard combinatorial problem of Job Shop Scheduling Problems (JSSP) becomes more complex. One of popular techniques used to solve the combinatorial problems is Tabu Search. In this technique, moves that will be not allowed to be revisited are retained in a tabu list in order to avoid in gaining solutions that have been obtained previously. In this paper, we propose an algorithm to employ a second tabu list to keep broken machines, in addition to the tabu list that keeps the moves. The period of how long the broken machines will be kept on the list is categorized using fuzzy membership function. Our technique are tested to the benchmark data of JSSP available on the OR library. From the experiment, we found that our algorithm is promising to help a decision maker to face the event of machine breakdowns.
CABINS: Case-based interactive scheduler
NASA Technical Reports Server (NTRS)
Miyashita, Kazuo; Sycara, Katia
1992-01-01
In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.
A Study of the Operating Room Scheduling System at Tripler Army Medical Center, Hawaii
1981-08-01
PROCESSING CLASS V SYSTEM .... .......... . A BIBLIOGRAPHY ....... ........... . . . .. . ii ’I. INTRODUCTIO9 Development of the Problem Convinced that...of the most difficult administrativo tasks that a modern hospital must face, and proposed using a combination of a master posting sheet and a...deal with scheduling problems.9 This particular process also incorporates the two-room system doscribed earlier, and the author admits that this
Scheduling Jobs and a Variable Maintenance on a Single Machine with Common Due-Date Assignment
Wan, Long
2014-01-01
We investigate a common due-date assignment scheduling problem with a variable maintenance on a single machine. The goal is to minimize the total earliness, tardiness, and due-date cost. We derive some properties on an optimal solution for our problem. For a special case with identical jobs we propose an optimal polynomial time algorithm followed by a numerical example. PMID:25147861
Scheduling from the perspective of the application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, F.; Wolski, R.
1996-12-31
Metacomputing is the aggregation of distributed and high-performance resources on coordinated networks. With careful scheduling, resource-intensive applications can be implemented efficiently on metacomputing systems at the sizes of interest to developers and users. In this paper we focus on the problem of scheduling applications on metacomputing systems. We introduce the concept of application-centric scheduling in which everything about the system is evaluated in terms of its impact on the application. Application-centric scheduling is used by virtually all metacomputer programmers to achieve performance on metacomputing systems. We describe two successful metacomputing applications to illustrate this approach, and describe AppLeS scheduling agentsmore » which generalize the application-centric scheduling approach. Finally, we show preliminary results which compare AppLeS-derived schedules with conventional strip and blocked schedules for a two-dimensional Jacobi code.« less
Chandra mission scheduling on-orbit experience
NASA Astrophysics Data System (ADS)
Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David
2008-07-01
Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.
A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy
Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma
2013-01-01
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742
Developing optimal nurses work schedule using integer programming
NASA Astrophysics Data System (ADS)
Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena
2017-08-01
Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.
A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.
Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma
2013-01-01
Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.
Automated Long - Term Scheduling for the SOFIA Airborne Observatory
NASA Technical Reports Server (NTRS)
Civeit, Thomas
2013-01-01
The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.
Arcieri, Enyr S; Paula, Jayter S; Jorge, Rodrigo; Barella, Kleyton A; Arcieri, Rafael S; Secches, Danilo J; Costa, Vital P
2015-02-01
To evaluate the efficacy and safety of intravitreal bevacizumab (IVB) in eyes with neovascular glaucoma (NVG) undergoing Ahmed glaucoma valve (AGV) implantation. This was a multicentre, prospective, randomized clinical trial that enrolled 40 patients with uncontrolled neovascular glaucoma that had undergone panretinal photocoagulation and required glaucoma drainage device implantation. Patients were randomized to receive IVB (1.25 mg) or not during Ahmed valve implant surgery. Injections were administered intra-operatively, and 4 and 8 weeks after surgery. After a mean follow-up of 2.25 ± 0.67 years (range 1.5-3 years), both groups showed a significant decrease in IOP (p < 0.05). There was no difference in IOP between groups except at the 18-month interval, when IOP in IVB group was significantly lower (14.57 ± 1.72 mmHg vs. 18.37 ± 1.06 mmHg - p = 0.0002). There was no difference in survival success rates between groups. At 24 months, there was a trend to patients treated with IVB using less antiglaucoma medications than the control group (p = 0.0648). Complete regression of rubeosis iridis was significantly more frequent in the IVB group (80%) than in the control group (25%) (p = 0.0015). Intravitreal bevacizumab may lead to regression of new vessels both in the iris and in the anterior chamber angle in patients with neovascular glaucoma undergoing Ahmed glaucoma valve implantation. There is a trend to slightly lower IOPs and number of medications with IVB use during AGV implantation for neovascular glaucoma. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Song, Jian; Lou, Huan
2018-05-01
Investigations of the adsorptions of representative gases (NO2, NH3, H2S, SO2, CO, and HCHO) on different Ag-functionalized monolayer MoS2 surfaces were performed by first principles methods. The adsorption configurations, adsorption energies, electronic structure properties, and charge transfer were calculated, and the results show that the adsorption activities to gases of monolayer MoS2 are dramatically enhanced by the Ag-modification. The Ag-modified perfect MoS2 (Ag-P) and MoS2 with S-vacancy (Ag-Vs) substrates exhibit a more superior adsorption activity to NO2 than other gases, which is consistent with the experimental reports. The charge transfer processes of different molecules adsorbed on different surfaces exhibit various characteristics, with potential benefits to gas selectivity. For instance, the NO2 and SO2 obtain more electrons from both Ag-P and Ag-Vs substrates but the NH3 and H2S donate more electrons to materials than others. In addition, the CO and HCHO possess totally opposite charge transfer directs on both substrates, respectively. The BS and PDOS calculations show that semiconductor types of gas/Ag-MoS2 systems are more determined by the metal-functionalization of material, and the directs and numbers of charge transfer process between gases and adsorbents can cause the increase or decline of material resistance theoretically, which is helpful to gas detection and distinction. The further analysis indicates suitable co-operation between the gain-lost electron ability of gas and metallicity of featuring metal might adjust the resistivity of complex and contribute to new thought for metal-functionalization. Our works provide new valuable ideas and theoretical foundation for the potential improvement of MoS2-based gas sensor performances, such as sensitivity and selectivity.
Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem
Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh
2014-01-01
This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359
Fast Optimization for Aircraft Descent and Approach Trajectory
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John
2017-01-01
We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.
A three-stage heuristic for harvest scheduling with access road network development
Mark M. Clark; Russell D. Meller; Timothy P. McDonald
2000-01-01
In this article we present a new model for the scheduling of forest harvesting with spatial and temporal constraints. Our approach is unique in that we incorporate access road network development into the harvest scheduling selection process. Due to the difficulty of solving the problem optimally, we develop a heuristic that consists of a solution construction stage...
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.
On the number of different dynamics in Boolean networks with deterministic update schedules.
Aracena, J; Demongeot, J; Fanchon, E; Montalva, M
2013-04-01
Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
SPORT: An Algorithm for Divisible Load Scheduling with Result Collection on Heterogeneous Systems
NASA Astrophysics Data System (ADS)
Ghatpande, Abhay; Nakazato, Hidenori; Beaumont, Olivier; Watanabe, Hiroshi
Divisible Load Theory (DLT) is an established mathematical framework to study Divisible Load Scheduling (DLS). However, traditional DLT does not address the scheduling of results back to source (i. e., result collection), nor does it comprehensively deal with system heterogeneity. In this paper, the DLSRCHETS (DLS with Result Collection on HET-erogeneous Systems) problem is addressed. The few papers to date that have dealt with DLSRCHETS, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions to DLSRCHETS. In this paper, a new polynomial time heuristic algorithm, SPORT (System Parameters based Optimized Result Transfer), is proposed as a solution to the DLSRCHETS problem. With the help of simulations, it is proved that the performance of SPORT is significantly better than existing algorithms. The other major contributions of this paper include, for the first time ever, (a) the derivation of the condition to identify the presence of idle time in a FIFO schedule for two processors, (b) the identification of the limiting condition for the optimality of FIFO and LIFO schedules for two processors, and (c) the introduction of the concept of equivalent processor in DLS for heterogeneous systems with result collection.
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts. PMID:26357510
APGEN Scheduling: 15 Years of Experience in Planning Automation
NASA Technical Reports Server (NTRS)
Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel
2014-01-01
In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.
Shift scheduling model considering workload and worker’s preference for security department
NASA Astrophysics Data System (ADS)
Herawati, A.; Yuniartha, D. R.; Purnama, I. L. I.; Dewi, LT
2018-04-01
Security department operates for 24 hours and applies shift scheduling to organize its workers as well as in hotel industry. This research has been conducted to develop shift scheduling model considering the workers physical workload using rating of perceived exertion (RPE) Borg’s Scale and workers’ preference to accommodate schedule flexibility. The mathematic model is developed in integer linear programming and results optimal solution for simple problem. Resulting shift schedule of the developed model has equally distribution shift allocation among workers to balance the physical workload and give flexibility for workers in working hours arrangement.
NASA Astrophysics Data System (ADS)
Buddala, Raviteja; Mahapatra, Siba Sankar
2017-11-01
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.
Production Scheduling of Sequenced Tapes for Printed Circuit Pack Assembly.
1987-07-09
detail. L j 6 The subject matter of this thesis is inspired directly from their technical report. The goals of this research are twofold: 1) Test their...The subject matter of the following chapters describes a heuristic approach to another variation of the sequenced tape production scheduling problem...assignment problem, comprise the subject matter of Chapter 5. It is sufficient to note that the three definitions of the term common correspond to the
Resource-constrained scheduling with hard due windows and rejection penalties
NASA Astrophysics Data System (ADS)
Garcia, Christopher
2016-09-01
This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.
Simultaneous personnel and vehicle shift scheduling in the waste management sector.
Ghiani, Gianpaolo; Guerriero, Emanuela; Manni, Andrea; Manni, Emanuele; Potenza, Agostino
2013-07-01
Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the definition of shift schedules for both personnel and vehicles. This activity has a great incidence on the tactical and operational cost for companies. In this paper, we propose an integer programming model to find an optimal solution to the integrated problem. The aim is to determine optimal schedules at minimum cost. Moreover, we design a fast and effective heuristic to face large-size problems. Both approaches are tested on data from a real-world case in Southern Italy and compared to the current practice utilized by the company managing the service, showing that simultaneously solving these problems can lead to significant monetary savings. Copyright © 2013 Elsevier Ltd. All rights reserved.
SMEX-Lite Modular Solar Array Architecture
NASA Technical Reports Server (NTRS)
Lyons, John W.; Day, John (Technical Monitor)
2002-01-01
The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, Byravamurthy
2014-05-05
In this project, developed scheduling frameworks for dynamic bandwidth demands for large-scale science applications. In particular, we developed scheduling algorithms for dynamic bandwidth demands in this project. Apart from theoretical approaches such as Integer Linear Programming, Tabu Search and Genetic Algorithm heuristics, we have utilized practical data from ESnet OSCARS project (from our DOE lab partners) to conduct realistic simulations of our approaches. We have disseminated our work through conference paper presentations and journal papers and a book chapter. In this project we addressed the problem of scheduling of lightpaths over optical wavelength division multiplexed (WDM) networks. We published severalmore » conference papers and journal papers on this topic. We also addressed the problems of joint allocation of computing, storage and networking resources in Grid/Cloud networks and proposed energy-efficient mechanisms for operatin optical WDM networks.« less
Research on the ITOC based scheduling system for ship piping production
NASA Astrophysics Data System (ADS)
Li, Rui; Liu, Yu-Jun; Hamada, Kunihiro
2010-12-01
Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.
NASA Astrophysics Data System (ADS)
Goodwin, Graham. C.; Medioli, Adrian. M.
2013-08-01
Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.
Technology for planning and scheduling under complex constraints
NASA Astrophysics Data System (ADS)
Alguire, Karen M.; Pedro Gomes, Carla O.
1997-02-01
Within the context of law enforcement, several problems fall into the category of planning and scheduling under constraints. Examples include resource and personnel scheduling, and court scheduling. In the case of court scheduling, a schedule must be generated considering available resources, e.g., court rooms and personnel. Additionally, there are constraints on individual court cases, e.g., temporal and spatial, and between different cases, e.g., precedence. Finally, there are overall objectives that the schedule should satisfy such as timely processing of cases and optimal use of court facilities. Manually generating a schedule that satisfies all of the constraints is a very time consuming task. As the number of court cases and constraints increases, this becomes increasingly harder to handle without the assistance of automatic scheduling techniques. This paper describes artificial intelligence (AI) technology that has been used to develop several high performance scheduling applications including a military transportation scheduler, a military in-theater airlift scheduler, and a nuclear power plant outage scheduler. We discuss possible law enforcement applications where we feel the same technology could provide long-term benefits to law enforcement agencies and their operations personnel.
Enhancements of evolutionary algorithm for the complex requirements of a nurse scheduling problem
NASA Astrophysics Data System (ADS)
Tein, Lim Huai; Ramli, Razamin
2014-12-01
Over the years, nurse scheduling is a noticeable problem that is affected by the global nurse turnover crisis. The more nurses are unsatisfied with their working environment the more severe the condition or implication they tend to leave. Therefore, the current undesirable work schedule is partly due to that working condition. Basically, there is a lack of complimentary requirement between the head nurse's liability and the nurses' need. In particular, subject to highly nurse preferences issue, the sophisticated challenge of doing nurse scheduling is failure to stimulate tolerance behavior between both parties during shifts assignment in real working scenarios. Inevitably, the flexibility in shifts assignment is hard to achieve for the sake of satisfying nurse diverse requests with upholding imperative nurse ward coverage. Hence, Evolutionary Algorithm (EA) is proposed to cater for this complexity in a nurse scheduling problem (NSP). The restriction of EA is discussed and thus, enhancement on the EA operators is suggested so that the EA would have the characteristic of a flexible search. This paper consists of three types of constraints which are the hard, semi-hard and soft constraints that can be handled by the EA with enhanced parent selection and specialized mutation operators. These operators and EA as a whole contribute to the efficiency of constraint handling, fitness computation as well as flexibility in the search, which correspond to the employment of exploration and exploitation principles.
More reliable protein NMR peak assignment via improved 2-interval scheduling.
Chen, Zhi-Zhong; Lin, Guohui; Rizzi, Romeo; Wen, Jianjun; Xu, Dong; Xu, Ying; Jiang, Tao
2005-03-01
Protein NMR peak assignment refers to the process of assigning a group of "spin systems" obtained experimentally to a protein sequence of amino acids. The automation of this process is still an unsolved and challenging problem in NMR protein structure determination. Recently, protein NMR peak assignment has been formulated as an interval scheduling problem (ISP), where a protein sequence P of amino acids is viewed as a discrete time interval I (the amino acids on P one-to-one correspond to the time units of I), each subset S of spin systems that are known to originate from consecutive amino acids from P is viewed as a "job" j(s), the preference of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of executing job j(s) in the subinterval of I corresponding to P, and the goal is to maximize the total profit of executing the jobs (on a single machine) during I. The interval scheduling problem is max SNP-hard in general; but in the real practice of protein NMR peak assignment, each job j(s) usually requires at most 10 consecutive time units, and typically the jobs that require one or two consecutive time units are the most difficult to assign/schedule. In order to solve these most difficult assignments, we present an efficient 13/7-approximation algorithm for the special case of the interval scheduling problem where each job takes one or two consecutive time units. Combining this algorithm with a greedy filtering strategy for handling long jobs (i.e., jobs that need more than two consecutive time units), we obtain a new efficient heuristic for protein NMR peak assignment. Our experimental study shows that the new heuristic produces the best peak assignment in most of the cases, compared with the NMR peak assignment algorithms in the recent literature. The above algorithm is also the first approximation algorithm for a nontrivial case of the well-known interval scheduling problem that breaks the ratio 2 barrier.
Intelligent Planning and Scheduling for Controlled Life Support Systems
NASA Technical Reports Server (NTRS)
Leon, V. Jorge
1996-01-01
Planning in Controlled Ecological Life Support Systems (CELSS) requires special look ahead capabilities due to the complex and long-term dynamic behavior of biological systems. This project characterizes the behavior of CELSS, identifies the requirements of intelligent planning systems for CELSS, proposes the decomposition of the planning task into short-term and long-term planning, and studies the crop scheduling problem as an initial approach to long-term planning. CELSS is studied in the realm of Chaos. The amount of biomass in the system is modeled using a bounded quadratic iterator. The results suggests that closed ecological systems can exhibit periodic behavior when imposed external or artificial control. The main characteristics of CELSS from the planning and scheduling perspective are discussed and requirements for planning systems are given. Crop scheduling problem is identified as an important component of the required long-term lookahead capabilities of a CELSS planner. The main characteristics of crop scheduling are described and a model is proposed to represent the problem. A surrogate measure of the probability of survival is developed. The measure reflects the absolute deviation of the vital reservoir levels from their nominal values. The solution space is generated using a probability distribution which captures both knowledge about the system and the current state of affairs at each decision epoch. This probability distribution is used in the context of an evolution paradigm. The concepts developed serve as the basis for the development of a simple crop scheduling tool which is used to demonstrate its usefulness in the design and operation of CELSS.
Optimal radiotherapy dose schedules under parametric uncertainty
NASA Astrophysics Data System (ADS)
Badri, Hamidreza; Watanabe, Yoichi; Leder, Kevin
2016-01-01
We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.
Controle du vol longitudinal d'un avion civil avec satisfaction de qualiies de manoeuvrabilite
NASA Astrophysics Data System (ADS)
Saussie, David Alexandre
2010-03-01
Fulfilling handling qualities still remains a challenging problem during flight control design. These criteria of different nature are derived from a wide experience based upon flight tests and data analysis, and they have to be considered if one expects a good behaviour of the aircraft. The goal of this thesis is to develop synthesis methods able to satisfy these criteria with fixed classical architectures imposed by the manufacturer or with a new flight control architecture. This is applied to the longitudinal flight model of a Bombardier Inc. business jet aircraft, namely the Challenger 604. A first step of our work consists in compiling the most commonly used handling qualities in order to compare them. A special attention is devoted to the dropback criterion for which theoretical analysis leads us to establish a practical formulation for synthesis purpose. Moreover, the comparison of the criteria through a reference model highlighted dominant criteria that, once satisfied, ensure that other ones are satisfied too. Consequently, we are able to consider the fulfillment of these criteria in the fixed control architecture framework. Guardian maps (Saydy et al., 1990) are then considered to handle the problem. Initially for robustness study, they are integrated in various algorithms for controller synthesis. Incidently, this fixed architecture problem is similar to the static output feedback stabilization problem and reduced-order controller synthesis. Algorithms performing stabilization and pole assignment in a specific region of the complex plane are then proposed. Afterwards, they are extended to handle the gain-scheduling problem. The controller is then scheduled through the entire flight envelope with respect to scheduling parameters. Thereafter, the fixed architecture is put aside while only conserving the same output signals. The main idea is to use Hinfinity synthesis to obtain an initial controller satisfying handling qualities thanks to reference model pairing and robust versus mass and center of gravity variations. Using robust modal control (Magni, 2002), we are able to reduce substantially the controller order and to structure it in order to come close to a classical architecture. An auto-scheduling method finally allows us to schedule the controller with respect to scheduling parameters. Two different paths are used to solve the same problem; each one exhibits its own advantages and disadvantages.
Optimizing Department of Defense Acquisition Development Test and Evaluation Scheduling
2015-06-01
CPM Critical Path Method DOD Department of Defense DT&E development test and evaluation EMD engineering and manufacturing development GAMS...these, including the Program Evaluation Review Technique (PERT), the Critical Path Method ( CPM ), and the resource- constrained project-scheduling...problem (RCPSP). These are of particular interest to this thesis as the current scheduling method uses elements of the PERT/ CPM , and the test
A Mechanized Decision Support System for Academic Scheduling.
1986-03-01
an operational system called software. The first step in the development phase is Design . Designers destribute software control by factoring the Data...SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ELD GROUP SUB-GROUP Scheduling, Decision Support System , Software Design ...scheduling system . It will also examine software - design techniques to identify the most appropriate method- ology for this problem. " - Chapter 3 will
NASA Technical Reports Server (NTRS)
Chamberlain, R. A.; Cornick, D. E.; Flater, J. F.; Odoherty, R. J.; Peterson, F. M.; Ramsey, H. R.; Willoughby, J. K.
1974-01-01
The capabilities of the specified scheduling language and the program module library are outlined. The summary is written with the potential user in mind and, therefore, provides maximum insight on how the capabilities will be helpful in writing scheduling programs. Simple examples and illustrations are provided to assist the potential user in applying the capabilities of his problem.
Uplink Packet-Data Scheduling in DS-CDMA Systems
NASA Astrophysics Data System (ADS)
Choi, Young Woo; Kim, Seong-Lyun
In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.
NASA Astrophysics Data System (ADS)
Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping
2005-07-01
Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.
Advance Resource Provisioning in Bulk Data Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balman, Mehmet
2012-10-01
Today?s scientific and business applications generate mas- sive data sets that need to be transferred to remote sites for sharing, processing, and long term storage. Because of increasing data volumes and enhancement in current net- work technology that provide on-demand high-speed data access between collaborating institutions, data handling and scheduling problems have reached a new scale. In this paper, we present a new data scheduling model with ad- vance resource provisioning, in which data movement operations are defined with earliest start and latest comple- tion times. We analyze time-dependent resource assign- ment problem, and propose a new methodology to improvemore » the current systems by allowing researchers and higher-level meta-schedulers to use data-placement as-a-service, so they can plan ahead and submit transfer requests in advance. In general, scheduling with time and resource conflicts is NP-hard. We introduce an efficient algorithm to organize multiple requests on the fly, while satisfying users? time and resource constraints. We successfully tested our algorithm in a simple benchmark simulator that we have developed, and demonstrated its performance with initial test results.« less
Resource planning and scheduling of payload for satellite with particle swarm optimization
NASA Astrophysics Data System (ADS)
Li, Jian; Wang, Cheng
2007-11-01
The resource planning and scheduling technology of payload is a key technology to realize an automated control for earth observing satellite with limited resources on satellite, which is implemented to arrange the works states of various payloads to carry out missions by optimizing the scheme of the resources. The scheduling task is a difficult constraint optimization problem with various and mutative requests and constraints. Based on the analysis of the satellite's functions and the payload's resource constraints, a proactive planning and scheduling strategy based on the availability of consumable and replenishable resources in time-order is introduced along with dividing the planning and scheduling period to several pieces. A particle swarm optimization algorithm is proposed to address the problem with an adaptive mutation operator selection, where the swarm is divided into groups with different probabilities to employ various mutation operators viz., differential evolution, Gaussian and random mutation operators. The probabilities are adjusted adaptively by comparing the effectiveness of the groups to select a proper operator. The simulation results have shown the feasibility and effectiveness of the method.
Applying Squeaky-Wheel Optimization Schedule Airborne Astronomy Observations
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Kuerklue, Elif
2004-01-01
We apply the Squeaky Wheel Optimization (SWO) algorithm to the problem of scheduling astronomy observations for the Stratospheric Observatory for Infrared Astronomy, an airborne observatory. The problem contains complex constraints relating the feasibility of an astronomical observation to the position and time at which the observation begins, telescope elevation limits, special use airspace, and available fuel. Solving the problem requires making discrete choices (e.g. selection and sequencing of observations) and continuous ones (e.g. takeoff time and setting up observations by repositioning the aircraft). The problem also includes optimization criteria such as maximizing observing time while simultaneously minimizing total flight time. Previous approaches to the problem fail to scale when accounting for all constraints. We describe how to customize SWO to solve this problem, and show that it finds better flight plans, often with less computation time, than previous approaches.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry
1989-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry
1990-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
A neural network approach to job-shop scheduling.
Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E
1991-01-01
A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, L. Darrell; Watson, Jean-Paul; Howe, Adele E.
Over the last decade and a half, tabu search algorithms for machine scheduling have gained a near-mythical reputation by consistently equaling or establishing state-of-the-art performance levels on a range of academic and real-world problems. Yet, despite these successes, remarkably little research has been devoted to developing an understanding of why tabu search is so effective on this problem class. In this paper, we report results that provide significant progress in this direction. We consider Nowicki and Smutnicki's i-TSAB tabu search algorithm, which represents the current state-of-the-art for the makespan-minimization form of the classical jobshop scheduling problem. Via a series ofmore » controlled experiments, we identify those components of i-TSAB that enable it to achieve state-of-the-art performance levels. In doing so, we expose a number of misconceptions regarding the behavior and/or benefits of tabu search and other local search metaheuristics for the job-shop problem. Our results also serve to focus future research, by identifying those specific directions that are most likely to yield further improvements in performance.« less
Generating effective project scheduling heuristics by abstraction and reconstitution
NASA Technical Reports Server (NTRS)
Janakiraman, Bhaskar; Prieditis, Armand
1992-01-01
A project scheduling problem consists of a finite set of jobs, each with fixed integer duration, requiring one or more resources such as personnel or equipment, and each subject to a set of precedence relations, which specify allowable job orderings, and a set of mutual exclusion relations, which specify jobs that cannot overlap. No job can be interrupted once started. The objective is to minimize project duration. This objective arises in nearly every large construction project--from software to hardware to buildings. Because such project scheduling problems are NP-hard, they are typically solved by branch-and-bound algorithms. In these algorithms, lower-bound duration estimates (admissible heuristics) are used to improve efficiency. One way to obtain an admissible heuristic is to remove (abstract) all resources and mutual exclusion constraints and then obtain the minimal project duration for the abstracted problem; this minimal duration is the admissible heuristic. Although such abstracted problems can be solved efficiently, they yield inaccurate admissible heuristics precisely because those constraints that are central to solving the original problem are abstracted. This paper describes a method to reconstitute the abstracted constraints back into the solution to the abstracted problem while maintaining efficiency, thereby generating better admissible heuristics. Our results suggest that reconstitution can make good admissible heuristics even better.
Chuan, He; Dishan, Qiu; Jin, Liu
2012-01-01
The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522
A bi-objective integer programming model for partly-restricted flight departure scheduling
Guan, Wei; Zhang, Wenyi; Jiang, Shixiong; Fan, Lingling
2018-01-01
The normal studies on air traffic departure scheduling problem (DSP) mainly deal with an independent airport in which the departure traffic is not affected by surrounded airports, which, however, is not a consistent case. In reality, there still exist cases where several commercial airports are closely located and one of them possesses a higher priority. During the peak hours, the departure activities of the lower-priority airports are usually required to give way to those of higher-priority airport. These giving-way requirements can inflict a set of changes on the modeling of departure scheduling problem with respect to the lower-priority airports. To the best of our knowledge, studies on DSP under this condition are scarce. Accordingly, this paper develops a bi-objective integer programming model to address the flight departure scheduling of the partly-restricted (e.g., lower-priority) one among several adjacent airports. An adapted tabu search algorithm is designed to solve the current problem. It is demonstrated from the case study of Tianjin Binhai International Airport in China that the proposed method can obviously improve the operation efficiency, while still realizing superior equity and regularity among restricted flows. PMID:29715299
A bi-objective integer programming model for partly-restricted flight departure scheduling.
Zhong, Han; Guan, Wei; Zhang, Wenyi; Jiang, Shixiong; Fan, Lingling
2018-01-01
The normal studies on air traffic departure scheduling problem (DSP) mainly deal with an independent airport in which the departure traffic is not affected by surrounded airports, which, however, is not a consistent case. In reality, there still exist cases where several commercial airports are closely located and one of them possesses a higher priority. During the peak hours, the departure activities of the lower-priority airports are usually required to give way to those of higher-priority airport. These giving-way requirements can inflict a set of changes on the modeling of departure scheduling problem with respect to the lower-priority airports. To the best of our knowledge, studies on DSP under this condition are scarce. Accordingly, this paper develops a bi-objective integer programming model to address the flight departure scheduling of the partly-restricted (e.g., lower-priority) one among several adjacent airports. An adapted tabu search algorithm is designed to solve the current problem. It is demonstrated from the case study of Tianjin Binhai International Airport in China that the proposed method can obviously improve the operation efficiency, while still realizing superior equity and regularity among restricted flows.
NASA Astrophysics Data System (ADS)
Ramdhani, M. N.; Baihaqi, I.; Siswanto, N.
2018-04-01
Waste collection and disposal become a major problem for many metropolitan cities. Growing population, limited vehicles, and increased road traffic make the waste transportation become more complex. Waste collection involves some key considerations, such as vehicle assignment, vehicle routes, and vehicle scheduling. In the scheduling process, each vehicle has a scheduled departure that serve each route. Therefore, vehicle’s assignments should consider the time required to finish one assigment on that route. The objective of this study is to minimize the number of vehicles needed to serve all routes by developing a mathematical model which uses assignment problem approach. The first step is to generated possible routes from the existing routes, followed by vehicle assignments for those certain routes. The result of the model shows fewer vehicles required to perform waste collection asa well as the the number of journeys that the vehicle to collect the waste to the landfill. The comparison of existing conditions with the model result indicates that the latter’s has better condition than the existing condition because each vehicle with certain route has an equal workload, all the result’s model has the maximum of two journeys for each route.
NASA Astrophysics Data System (ADS)
Paksi, A. B. N.; Ma'ruf, A.
2016-02-01
In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.
A software tool for dataflow graph scheduling
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1994-01-01
A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on multiple processors. The dataflow paradigm is very useful in exposing the parallelism inherent in algorithms. It provides a graphical and mathematical model which describes a partial ordering of algorithm tasks based on data precedence.
Scheduling periodic jobs using imprecise results
NASA Technical Reports Server (NTRS)
Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay
1987-01-01
One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed.
An Improved Hierarchical Genetic Algorithm for Sheet Cutting Scheduling with Process Constraints
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony—hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem. PMID:24489491
NASA Astrophysics Data System (ADS)
Bai, Danyu
2015-08-01
This paper discusses the flow shop scheduling problem to minimise the total quadratic completion time (TQCT) with release dates in offline and online environments. For this NP-hard problem, the investigation is focused on the performance of two online algorithms based on the Shortest Processing Time among Available jobs rule. Theoretical results indicate the asymptotic optimality of the algorithms as the problem scale is sufficiently large. To further enhance the quality of the original solutions, the improvement scheme is provided for these algorithms. A new lower bound with performance guarantee is provided, and computational experiments show the effectiveness of these heuristics. Moreover, several results of the single-machine TQCT problem with release dates are also obtained for the deduction of the main theorem.
An improved hierarchical genetic algorithm for sheet cutting scheduling with process constraints.
Rao, Yunqing; Qi, Dezhong; Li, Jinling
2013-01-01
For the first time, an improved hierarchical genetic algorithm for sheet cutting problem which involves n cutting patterns for m non-identical parallel machines with process constraints has been proposed in the integrated cutting stock model. The objective of the cutting scheduling problem is minimizing the weighted completed time. A mathematical model for this problem is presented, an improved hierarchical genetic algorithm (ant colony--hierarchical genetic algorithm) is developed for better solution, and a hierarchical coding method is used based on the characteristics of the problem. Furthermore, to speed up convergence rates and resolve local convergence issues, a kind of adaptive crossover probability and mutation probability is used in this algorithm. The computational result and comparison prove that the presented approach is quite effective for the considered problem.
Space communications scheduler: A rule-based approach to adaptive deadline scheduling
NASA Technical Reports Server (NTRS)
Straguzzi, Nicholas
1990-01-01
Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.
Scheduling algorithm for flow shop with two batch-processing machines and arbitrary job sizes
NASA Astrophysics Data System (ADS)
Cheng, Bayi; Yang, Shanlin; Hu, Xiaoxuan; Li, Kai
2014-03-01
This article considers the problem of scheduling two batch-processing machines in flow shop where the jobs have arbitrary sizes and the machines have limited capacity. The jobs are processed in batches and the total size of jobs in each batch cannot exceed the machine capacity. Once a batch is being processed, no interruption is allowed until all the jobs in it are completed. The problem of minimising makespan is NP-hard in the strong sense. First, we present a mathematical model of the problem using integer programme. We show the scale of feasible solutions of the problem and provide optimality properties. Then, we propose a polynomial time algorithm with running time in O(nlogn). The jobs are first assigned in feasible batches and then scheduled on machines. For the general case, we prove that the proposed algorithm has a performance guarantee of 4. For the special case where the processing times of each job on the two machines satisfy p 1 j = ap 2 j , the performance guarantee is ? for a > 0.
NASA Astrophysics Data System (ADS)
Han, Yu-Yan; Gong, Dunwei; Sun, Xiaoyan
2015-07-01
A flow-shop scheduling problem with blocking has important applications in a variety of industrial systems but is underrepresented in the research literature. In this study, a novel discrete artificial bee colony (ABC) algorithm is presented to solve the above scheduling problem with a makespan criterion by incorporating the ABC with differential evolution (DE). The proposed algorithm (DE-ABC) contains three key operators. One is related to the employed bee operator (i.e. adopting mutation and crossover operators of discrete DE to generate solutions with good quality); the second is concerned with the onlooker bee operator, which modifies the selected solutions using insert or swap operators based on the self-adaptive strategy; and the last is for the local search, that is, the insert-neighbourhood-based local search with a small probability is adopted to improve the algorithm's capability in exploitation. The performance of the proposed DE-ABC algorithm is empirically evaluated by applying it to well-known benchmark problems. The experimental results show that the proposed algorithm is superior to the compared algorithms in minimizing the makespan criterion.
A Novel Particle Swarm Optimization Approach for Grid Job Scheduling
NASA Astrophysics Data System (ADS)
Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith
This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.
Nutritional and behavioral effects of gorge and fast feeding in captive lions.
Altman, Joanne D; Gross, Kathy L; Lowry, Stephen R
2005-01-01
Nonhuman animals in captivity manifest behaviors and physiological conditions that are not common in the wild. Lions in captivity face problems of obesity, inactivity, and stereotypy. To mediate common problems of captive lions, this study implemented a gorge and fast feeding schedule that better models naturalistic patterns: African lions (Panthera leo) gradually adapted from a conventional feeding program to a random gorge and fast feeding schedule. Digestibility increased significantly and food intake and metabolizable energy intake correspondingly decreased. Lions also showed an increase in appetitive active behaviors, no increase in agonistic behavior, and paced half as frequently on fast days as on feeding days. Thus, switching captive lions to a gorge and fast feeding schedule resulted in improved nutritional status and increased activity.
The Use of Megestrol Acetate in Some Feline Dermatological Problems
Gosselin, Y.; Chalifoux, A.; Papageorges, M.
1981-01-01
Twenty-one cats were treated with megestrol acetate because they were showing clinical signs associated with one of the following problems: eosinophilic ulcer, eosinophilic plaque, neurodermatitis, endocrine alopecia and miliary dermatitis. The dosage schedule was 5 mg orally per day per cat for seven days, then 5 mg every three days for 21 days. In all cats, we noted a good improvement of the lesions as soon as treatment was started. In 25% of the patients, one treatment schedule was sufficient to control the skin disease for at least 18 months. In the remaining 75%, two treatment schedules and/or a maintenance dosage had to be established. Side effects encountered were increased appetite, personality changes and depression. PMID:7337916
Integration of Optimal Scheduling with Case-Based Planning.
1995-08-01
integrates Case-Based Reasoning (CBR) and Rule-Based Reasoning (RBR) systems. ’ Tachyon : A Constraint-Based Temporal Reasoning Model and Its...Implementation’ provides an overview of the Tachyon temporal’s reasoning system and discusses its possible applications. ’Dual-Use Applications of Tachyon : From...Force Structure Modeling to Manufacturing Scheduling’ discusses the application of Tachyon to real world problems, specifically military force deployment and manufacturing scheduling.
Littoral Combat Ship Crew Scheduling
2015-03-01
events and schedules. The selection of u for each sub-problem also has the same tradeoff considerations of balancing solve time and overly myopic ...extending them beyond four months in a phase. Results are compared based on solve time and penalty value. The MIP solution has the best quality...benefits to crew alignment for longer-range schedules. The planner must balance solve time and solution quality when determining the approach to
Resource Control in Large-Scale Mobile-Agents Systems
2005-07-01
wakeup node schedule , much energy can be conserved. We also designed several protocols for global clock synchronization. The most interesting one is...choice as to which remote hosts to visit and in which order. Scheduling mobile-agent migration in a way that minimizes bandwidth and other resource...use, therefore, is both feasible and attractive. Dartmouth considered several variations of the scheduling problem, and devel- oped an algorithm for