Sample records for agv scheduling problem

  1. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization.

    PubMed

    Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah

    2017-01-01

    Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.

  2. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization

    PubMed Central

    Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah

    2017-01-01

    Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software. PMID:28263994

  3. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    NASA Astrophysics Data System (ADS)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  4. Reinforcement learning in scheduling

    NASA Technical Reports Server (NTRS)

    Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad

    1994-01-01

    The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.

  5. The vision guidance and image processing of AGV

    NASA Astrophysics Data System (ADS)

    Feng, Tongqing; Jiao, Bin

    2017-08-01

    Firstly, the principle of AGV vision guidance is introduced and the deviation and deflection angle are measured by image coordinate system. The visual guidance image processing platform is introduced. In view of the fact that the AGV guidance image contains more noise, the image has already been smoothed by a statistical sorting. By using AGV sampling way to obtain image guidance, because the image has the best and different threshold segmentation points. In view of this situation, the method of two-dimensional maximum entropy image segmentation is used to solve the problem. We extract the foreground image in the target band by calculating the contour area method and obtain the centre line with the least square fitting algorithm. With the help of image and physical coordinates, we can obtain the guidance information.

  6. Job Shop Scheduling Focusing on Role of Buffer

    NASA Astrophysics Data System (ADS)

    Hino, Rei; Kusumi, Tetsuya; Yoo, Jae-Kyu; Shimizu, Yoshiaki

    A scheduling problem is formulated in order to consistently manage each manufacturing resource, including machine tools, assembly robots, AGV, storehouses, material shelves, and so on. The manufacturing resources are classified into three types: producer, location, and mover. This paper focuses especially on the role of the buffer, and the differences among these types are analyzed. A unified scheduling formulation is derived from the analytical results based on the resource’s roles. Scheduling procedures based on dispatching rules are also proposed in order to numerically evaluate job shop-type production having finite buffer capacity. The influences of the capacity of bottle-necked production devices and the buffer on productivity are discussed.

  7. Surgically Induced Scleral Necrosis in a Patient With Rheumatoid Arthritis After AGV Implantation.

    PubMed

    Kumar, Suresh; Ichhpujani, Parul; Thakur, Sahil

    2018-03-01

    Surgically induced scleral necrosis (SINS) is a rare entity that has till date not been reported in a patient of glaucoma undergoing Ahmed glaucoma valve (AGV) implantation. We present a case of primary open-angle glaucoma who underwent AGV implantation followed by development of scleral necrosis, involving both the scleral patch graft and host sclera. After failure of surgical and medical management, AGV had to be explanted. The patient was diagnosed with rheumatoid arthritis and had to be treated with steroids and azathioprine for the same. SINS is a potentially disastrous complication of ocular surgery that can occur in patients with systemic diseases like rheumatoid arthritis and requires aggressive management to salvage the eye. SINS can occur with AGV implantation. Treatment may require aggressive medical and surgical intervention. It is imperative to evaluate patients for systemic illness before planning an AGV implant.

  8. Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment

    NASA Astrophysics Data System (ADS)

    Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro

    The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.

  9. Flow Test to Predict Early Hypotony and Hypertensive Phase After Ahmed Glaucoma Valve (AGV) Surgical Implantation.

    PubMed

    Cheng, Jason; Beltran-Agullo, Laura; Buys, Yvonne M; Moss, Edward B; Gonzalez, Johanna; Trope, Graham E

    2016-06-01

    To assess the validity of a preimplantation flow test to predict early hypotony [intraocular pressure (IOP)≤5 mm Hg on 2 consecutive visits and hypertensive phase (HP) (IOP>21 mm Hg) after Ahmed Glaucoma Valve (AGV) implantation. Prospective interventional study on patients receiving an AGV. A preimplantation flow test using a gravity-driven reservoir and an open manometer was performed on all AGVs. Opening pressure (OP) and closing pressure (CP) were defined as the pressure at which fluid was seen to flow or stop flowing through the AGV, respectively. OP and CP were measured twice per AGV. Patients were followed for 12 weeks. In total, 20 eyes from 19 patients were enrolled. At 12 weeks the mean IOP decreased from 29.2±9.1 to 16.8±5.2 mm Hg (P<0.01). The mean AGV OP was 17.5±5.4 mm Hg and the mean CP was 6.7±2.3 mm Hg. Early (within 2 wk postoperative) HP occurred in 37% and hypotony in 16% of cases. An 18 mm Hg cutoff for the OP gave a sensitivity of 0.71, specificity of 0.83, positive predictive value of 0.71, and negative predictive value of 0.83 for predicting an early HP. A 7 mm Hg cutoff for the CP yielded a sensitivity of 1.0, specificity of 0.38, positive predictive value of 0.23, and negative predictive value of 1.0 for predicting hypotony. Preoperative OP and CP may predict early hypotony or HP and may be used as a guide as to which AGV valves to discard before implantation surgery.

  10. AI techniques for a space application scheduling problem

    NASA Technical Reports Server (NTRS)

    Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.

    1991-01-01

    Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).

  11. Job shop scheduling problem with late work criterion

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.

  12. The comparison of predictive scheduling algorithms for different sizes of job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Paprocka, I.; Kempa, W. M.; Grabowik, C.; Kalinowski, K.; Krenczyk, D.

    2016-08-01

    In the paper a survey of predictive and reactive scheduling methods is done in order to evaluate how the ability of prediction of reliability characteristics influences over robustness criteria. The most important reliability characteristics are: Mean Time to Failure, Mean Time of Repair. Survey analysis is done for a job shop scheduling problem. The paper answers the question: what method generates robust schedules in the case of a bottleneck failure occurrence before, at the beginning of planned maintenance actions or after planned maintenance actions? Efficiency of predictive schedules is evaluated using criteria: makespan, total tardiness, flow time, idle time. Efficiency of reactive schedules is evaluated using: solution robustness criterion and quality robustness criterion. This paper is the continuation of the research conducted in the paper [1], where the survey of predictive and reactive scheduling methods is done only for small size scheduling problems.

  13. An algorithm for a single machine scheduling problem with sequence dependent setup times and scheduling windows

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1975-01-01

    An enumeration algorithm is presented for solving a scheduling problem similar to the single machine job shop problem with sequence dependent setup times. The scheduling problem differs from the job shop problem in two ways. First, its objective is to select an optimum subset of the available tasks to be performed during a fixed period of time. Secondly, each task scheduled is constrained to occur within its particular scheduling window. The algorithm is currently being used to develop typical observational timelines for a telescope that will be operated in earth orbit. Computational times associated with timeline development are presented.

  14. A meta-heuristic method for solving scheduling problem: crow search algorithm

    NASA Astrophysics Data System (ADS)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.

  15. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  16. Sensibility study in a flexible job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Curralo, Ana; Pereira, Ana I.; Barbosa, José; Leitão, Paulo

    2013-10-01

    This paper proposes the impact assessment of the jobs order in the optimal time of operations in a Flexible Job Shop Scheduling Problem. In this work a real assembly cell was studied: the AIP-PRIMECA cell at the Université de Valenciennes et du Hainaut-Cambrésis, in France, which is considered as a Flexible Job Shop problem. The problem consists in finding the machines operations schedule, taking into account the precedence constraints. The main objective is to minimize the batch makespan, i.e. the finish time of the last operation completed in the schedule. Shortly, the present study consists in evaluating if the jobs order affects the optimal time of the operations schedule. The genetic algorithm was used to solve the optimization problem. As a conclusion, it's assessed that the jobs order influence the optimal time.

  17. Decomposition of timed automata for solving scheduling problems

    NASA Astrophysics Data System (ADS)

    Nishi, Tatsushi; Wakatake, Masato

    2014-03-01

    A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.

  18. Balancing antagonistic time and resource utilization constraints in over-subscribed scheduling problems

    NASA Technical Reports Server (NTRS)

    Smith, Stephen F.; Pathak, Dhiraj K.

    1991-01-01

    In this paper, we report work aimed at applying concepts of constraint-based problem structuring and multi-perspective scheduling to an over-subscribed scheduling problem. Previous research has demonstrated the utility of these concepts as a means for effectively balancing conflicting objectives in constraint-relaxable scheduling problems, and our goal here is to provide evidence of their similar potential in the context of HST observation scheduling. To this end, we define and experimentally assess the performance of two time-bounded heuristic scheduling strategies in balancing the tradeoff between resource setup time minimization and satisfaction of absolute time constraints. The first strategy considered is motivated by dispatch-based manufacturing scheduling research, and employs a problem decomposition that concentrates local search on minimizing resource idle time due to setup activities. The second is motivated by research in opportunistic scheduling and advocates a problem decomposition that focuses attention on the goal activities that have the tightest temporal constraints. Analysis of experimental results gives evidence of differential superiority on the part of each strategy in different problem solving circumstances. A composite strategy based on recognition of characteristics of the current problem solving state is then defined and tested to illustrate the potential benefits of constraint-based problem structuring and multi-perspective scheduling in over-subscribe scheduling problems.

  19. A bicriteria heuristic for an elective surgery scheduling problem.

    PubMed

    Marques, Inês; Captivo, M Eugénia; Vaz Pato, Margarida

    2015-09-01

    Resource rationalization and reduction of waiting lists for surgery are two main guidelines for hospital units outlined in the Portuguese National Health Plan. This work is dedicated to an elective surgery scheduling problem arising in a Lisbon public hospital. In order to increase the surgical suite's efficiency and to reduce the waiting lists for surgery, two objectives are considered: maximize surgical suite occupation and maximize the number of surgeries scheduled. This elective surgery scheduling problem consists of assigning an intervention date, an operating room and a starting time for elective surgeries selected from the hospital waiting list. Accordingly, a bicriteria surgery scheduling problem arising in the hospital under study is presented. To search for efficient solutions of the bicriteria optimization problem, the minimization of a weighted Chebyshev distance to a reference point is used. A constructive and improvement heuristic procedure specially designed to address the objectives of the problem is developed and results of computational experiments obtained with empirical data from the hospital are presented. This study shows that by using the bicriteria approach presented here it is possible to build surgical plans with very good performance levels. This method can be used within an interactive approach with the decision maker. It can also be easily adapted to other hospitals with similar scheduling conditions.

  20. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  1. Genetic algorithm parameters tuning for resource-constrained project scheduling problem

    NASA Astrophysics Data System (ADS)

    Tian, Xingke; Yuan, Shengrui

    2018-04-01

    Project Scheduling Problem (RCPSP) is a kind of important scheduling problem. To achieve a certain optimal goal such as the shortest duration, the smallest cost, the resource balance and so on, it is required to arrange the start and finish of all tasks under the condition of satisfying project timing constraints and resource constraints. In theory, the problem belongs to the NP-hard problem, and the model is abundant. Many combinatorial optimization problems are special cases of RCPSP, such as job shop scheduling, flow shop scheduling and so on. At present, the genetic algorithm (GA) has been used to deal with the classical RCPSP problem and achieved remarkable results. Vast scholars have also studied the improved genetic algorithm for the RCPSP problem, which makes it to solve the RCPSP problem more efficiently and accurately. However, for the selection of the main parameters of the genetic algorithm, there is no parameter optimization in these studies. Generally, we used the empirical method, but it cannot ensure to meet the optimal parameters. In this paper, the problem was carried out, which is the blind selection of parameters in the process of solving the RCPSP problem. We made sampling analysis, the establishment of proxy model and ultimately solved the optimal parameters.

  2. Analysis of Feeder Bus Network Design and Scheduling Problems

    PubMed Central

    Almasi, Mohammad Hadi; Karim, Mohamed Rehan

    2014-01-01

    A growing concern for public transit is its inability to shift passenger's mode from private to public transport. In order to overcome this problem, a more developed feeder bus network and matched schedules will play important roles. The present paper aims to review some of the studies performed on Feeder Bus Network Design and Scheduling Problem (FNDSP) based on three distinctive parts of the FNDSP setup, namely, problem description, problem characteristics, and solution approaches. The problems consist of different subproblems including data preparation, feeder bus network design, route generation, and feeder bus scheduling. Subsequently, descriptive analysis and classification of previous works are presented to highlight the main characteristics and solution methods. Finally, some of the issues and trends for future research are identified. This paper is targeted at dealing with the FNDSP to exhibit strategic and tactical goals and also contributes to the unification of the field which might be a useful complement to the few existing reviews. PMID:24526890

  3. Periodic Heterogeneous Vehicle Routing Problem With Driver Scheduling

    NASA Astrophysics Data System (ADS)

    Mardiana Panggabean, Ellis; Mawengkang, Herman; Azis, Zainal; Filia Sari, Rina

    2018-01-01

    The paper develops a model for the optimal management of logistic delivery of a given commodity. The company has different type of vehicles with different capacity to deliver the commodity for customers. The problem is then called Periodic Heterogeneous Vehicle Routing Problem (PHVRP). The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We propose a combined approach of heuristic algorithm and exact method to solve the problem.

  4. The application of artificial intelligence to astronomical scheduling problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike

  5. An Optimization Model for Scheduling Problems with Two-Dimensional Spatial Resource Constraint

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher; Rabadi, Ghaith

    2010-01-01

    Traditional scheduling problems involve determining temporal assignments for a set of jobs in order to optimize some objective. Some scheduling problems also require the use of limited resources, which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and other areas of logistics and supply chain management. This scheduling problem involves a twodimensional rectangular area as a limited resource. Each job, in addition to having temporal requirements, has a width and a height and utilizes a certain amount of space inside the area. We propose an optimization model for scheduling the jobs while respecting all temporal and spatial constraints.

  6. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  7. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    PubMed

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  8. Application of decentralized cooperative problem solving in dynamic flexible scheduling

    NASA Astrophysics Data System (ADS)

    Guan, Zai-Lin; Lei, Ming; Wu, Bo; Wu, Ya; Yang, Shuzi

    1995-08-01

    The object of this study is to discuss an intelligent solution to the problem of task-allocation in shop floor scheduling. For this purpose, the technique of distributed artificial intelligence (DAI) is applied. Intelligent agents (IAs) are used to realize decentralized cooperation, and negotiation is realized by using message passing based on the contract net model. Multiple agents, such as manager agents, workcell agents, and workstation agents, make game-like decisions based on multiple criteria evaluations. This procedure of decentralized cooperative problem solving makes local scheduling possible. And by integrating such multiple local schedules, dynamic flexible scheduling for the whole shop floor production can be realized.

  9. Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning

    2018-02-01

    Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.

  10. Producing Satisfactory Solutions to Scheduling Problems: An Iterative Constraint Relaxation Approach

    NASA Technical Reports Server (NTRS)

    Chien, S.; Gratch, J.

    1994-01-01

    One drawback to using constraint-propagation in planning and scheduling systems is that when a problem has an unsatisfiable set of constraints such algorithms typically only show that no solution exists. While, technically correct, in practical situations, it is desirable in these cases to produce a satisficing solution that satisfies the most important constraints (typically defined in terms of maximizing a utility function). This paper describes an iterative constraint relaxation approach in which the scheduler uses heuristics to progressively relax problem constraints until the problem becomes satisfiable. We present empirical results of applying these techniques to the problem of scheduling spacecraft communications for JPL/NASA antenna resources.

  11. Solving a real-world problem using an evolving heuristically driven schedule builder.

    PubMed

    Hart, E; Ross, P; Nelson, J

    1998-01-01

    This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.

  12. Optimal pre-scheduling of problem remappings

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Saltz, Joel H.

    1987-01-01

    A large class of scientific computational problems can be characterized as a sequence of steps where a significant amount of computation occurs each step, but the work performed at each step is not necessarily identical. Two good examples of this type of computation are: (1) regridding methods which change the problem discretization during the course of the computation, and (2) methods for solving sparse triangular systems of linear equations. Recent work has investigated a means of mapping such computations onto parallel processors; the method defines a family of static mappings with differing degrees of importance placed on the conflicting goals of good load balance and low communication/synchronization overhead. The performance tradeoffs are controllable by adjusting the parameters of the mapping method. To achieve good performance it may be necessary to dynamically change these parameters at run-time, but such changes can impose additional costs. If the computation's behavior can be determined prior to its execution, it can be possible to construct an optimal parameter schedule using a low-order-polynomial-time dynamic programming algorithm. Since the latter can be expensive, the performance is studied of the effect of a linear-time scheduling heuristic on one of the model problems, and it is shown to be effective and nearly optimal.

  13. Open shop scheduling problem to minimize total weighted completion time

    NASA Astrophysics Data System (ADS)

    Bai, Danyu; Zhang, Zhihai; Zhang, Qiang; Tang, Mengqian

    2017-01-01

    A given number of jobs in an open shop scheduling environment must each be processed for given amounts of time on each of a given set of machines in an arbitrary sequence. This study aims to achieve a schedule that minimizes total weighted completion time. Owing to the strong NP-hardness of the problem, the weighted shortest processing time block (WSPTB) heuristic is presented to obtain approximate solutions for large-scale problems. Performance analysis proves the asymptotic optimality of the WSPTB heuristic in the sense of probability limits. The largest weight block rule is provided to seek optimal schedules in polynomial time for a special case. A hybrid discrete differential evolution algorithm is designed to obtain high-quality solutions for moderate-scale problems. Simulation experiments demonstrate the effectiveness of the proposed algorithms.

  14. Algorithms for Scheduling and Network Problems

    DTIC Science & Technology

    1991-09-01

    time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and

  15. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    NASA Astrophysics Data System (ADS)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  16. Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Morris, Robert; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We describe work in progress concerning multi-instrument, multi-satellite scheduling. Most, although not all, Earth observing instruments currently in orbit are unique. In the relatively near future, however, we expect to see fleets of Earth observing spacecraft, many carrying nearly identical instruments. This presents a substantially new scheduling challenge. Inspired by successful commercial applications of evolutionary algorithms in scheduling domains, this paper presents work in progress regarding the use of evolutionary algorithms to solve a set of Earth observing related model problems. Both the model problems and the software are described. Since the larger problems will require substantial computation and evolutionary algorithms are embarrassingly parallel, we discuss our parallelization techniques using dedicated and cycle-scavenged workstations.

  17. Genetic algorithm to solve the problems of lectures and practicums scheduling

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Apriani, R.; Sawaluddin; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Generally, the scheduling process is done manually. However, this method has a low accuracy level, along with possibilities that a scheduled process collides with another scheduled process. When doing theory class and practicum timetable scheduling process, there are numerous problems, such as lecturer teaching schedule collision, schedule collision with another schedule, practicum lesson schedules that collides with theory class, and the number of classrooms available. In this research, genetic algorithm is implemented to perform theory class and practicum timetable scheduling process. The algorithm will be used to process the data containing lists of lecturers, courses, and class rooms, obtained from information technology department at University of Sumatera Utara. The result of scheduling process using genetic algorithm is the most optimal timetable that conforms to available time slots, class rooms, courses, and lecturer schedules.

  18. Applications of dynamic scheduling technique to space related problems: Some case studies

    NASA Astrophysics Data System (ADS)

    Nakasuka, Shinichi; Ninomiya, Tetsujiro

    1994-10-01

    The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.

  19. Meta-RaPS Algorithm for the Aerial Refueling Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Kaplan, Sezgin; Arin, Arif; Rabadi, Ghaith

    2011-01-01

    The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on multiple tankers (machines). ARSP assumes that jobs have different release times and due dates, The total weighted tardiness is used to evaluate schedule's quality. Therefore, ARSP can be modeled as a parallel machine scheduling with release limes and due dates to minimize the total weighted tardiness. Since ARSP is NP-hard, it will be more appropriate to develop a pproimate or heuristic algorithm to obtain solutions in reasonable computation limes. In this paper, Meta-Raps-ATC algorithm is implemented to create high quality solutions. Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a recent and promising meta heuristic that is applied by introducing randomness to a construction heuristic. The Apparent Tardiness Rule (ATC), which is a good rule for scheduling problems with tardiness objective, is used to construct initial solutions which are improved by an exchanging operation. Results are presented for generated instances.

  20. Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints

    NASA Astrophysics Data System (ADS)

    Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.

    2018-01-01

    Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.

  1. Solving cyclical nurse scheduling problem using preemptive goal programming

    NASA Astrophysics Data System (ADS)

    Sundari, V. E.; Mardiyati, S.

    2017-07-01

    Nurse scheduling system in a hospital is being modeled as a preemptive goal programming problem that is solved by using LINGO software with the objective function to minimize deviation variable at each goal. The scheduling is done cyclically, so every nurse is treated fairly since they have the same work shift portion with the other nurses. By paying attention to the hospital's rules regarding nursing work shift cyclically, it can be obtained that numbers of nurse needed in every ward are 18 nurses and the numbers of scheduling periods are 18 periods where every period consists of 21 days.

  2. A New Lagrangian Relaxation Method Considering Previous Hour Scheduling for Unit Commitment Problem

    NASA Astrophysics Data System (ADS)

    Khorasani, H.; Rashidinejad, M.; Purakbari-Kasmaie, M.; Abdollahi, A.

    2009-08-01

    Generation scheduling is a crucial challenge in power systems especially under new environment of liberalization of electricity industry. A new Lagrangian relaxation method for unit commitment (UC) has been presented for solving generation scheduling problem. This paper focuses on the economical aspect of UC problem, while the previous hour scheduling as a very important issue is studied. In this paper generation scheduling of present hour has been conducted by considering the previous hour scheduling. The impacts of hot/cold start-up cost have been taken in to account in this paper. Case studies and numerical analysis presents significant outcomes while it demonstrates the effectiveness of the proposed method.

  3. Active Solution Space and Search on Job-shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo

    In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.

  4. Multi-trip vehicle routing and scheduling problem with time window in real life

    NASA Astrophysics Data System (ADS)

    Sze, San-Nah; Chiew, Kang-Leng; Sze, Jeeu-Fong

    2012-09-01

    This paper studies a manpower scheduling problem with multiple maintenance operations and vehicle routing considerations. Service teams located at a common service centre are required to travel to different customer sites. All customers must be served within given time window, which are known in advance. The scheduling process must take into consideration complex constraints such as a meal break during the team's shift, multiple travelling trips, synchronisation of service teams and working shifts. The main objective of this study is to develop a heuristic that can generate high quality solution in short time for large problem instances. A Two-stage Scheduling Heuristic is developed for different variants of the problem. Empirical results show that the proposed solution performs effectively and efficiently. In addition, our proposed approximation algorithm is very flexible and can be easily adapted to different scheduling environments and operational requirements.

  5. Extended precedence preservative crossover for job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Ong, Chung Sin; Moin, Noor Hasnah; Omar, Mohd

    2013-04-01

    Job shop scheduling problems (JSSP) is one of difficult combinatorial scheduling problems. A wide range of genetic algorithms based on the two parents crossover have been applied to solve the problem but multi parents (more than two parents) crossover in solving the JSSP is still lacking. This paper proposes the extended precedence preservative crossover (EPPX) which uses multi parents for recombination in the genetic algorithms. EPPX is a variation of the precedence preservative crossover (PPX) which is one of the crossovers that perform well to find the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in recombination for the next generation. Legalization of children (offspring) can be eliminated due to the JSSP representation encoded by using permutation with repetition that guarantees the feasibility of chromosomes. The simulations are performed on a set of benchmarks from the literatures and the results are compared to ensure the sustainability of multi parents recombination in solving the JSSP.

  6. Innately Split Model for Job-shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ikeda, Kokolo; Kobayashi, Sigenobu

    Job-shop Scheduling Problem (JSP) is one of the most difficult benchmark problems. GA approaches often fail searching the global optimum because of the deception UV-structure of JSPs. In this paper, we introduce a novel framework model of GA, Innately Split Model (ISM) which prevents UV-phenomenon, and discuss on its power particularly. Next we analyze the structure of JSPs with the help of the UV-structure hypothesys, and finally we show ISM's excellent performance on JSP.

  7. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.

    PubMed

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods.

  8. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem

    PubMed Central

    Chen, Xiaopan; Kong, Yunfeng; Dang, Lanxue; Hou, Yane; Ye, Xinyue

    2015-01-01

    As a class of hard combinatorial optimization problems, the school bus routing problem has received considerable attention in the last decades. For a multi-school system, given the bus trips for each school, the school bus scheduling problem aims at optimizing bus schedules to serve all the trips within the school time windows. In this paper, we propose two approaches for solving the bi-objective school bus scheduling problem: an exact method of mixed integer programming (MIP) and a metaheuristic method which combines simulated annealing with local search. We develop MIP formulations for homogenous and heterogeneous fleet problems respectively and solve the models by MIP solver CPLEX. The bus type-based formulation for heterogeneous fleet problem reduces the model complexity in terms of the number of decision variables and constraints. The metaheuristic method is a two-stage framework for minimizing the number of buses to be used as well as the total travel distance of buses. We evaluate the proposed MIP and the metaheuristic method on two benchmark datasets, showing that on both instances, our metaheuristic method significantly outperforms the respective state-of-the-art methods. PMID:26176764

  9. Single-machine group scheduling problems with deteriorating and learning effect

    NASA Astrophysics Data System (ADS)

    Xingong, Zhang; Yong, Wang; Shikun, Bai

    2016-07-01

    The concepts of deteriorating jobs and learning effects have been individually studied in many scheduling problems. However, most studies considering the deteriorating and learning effects ignore the fact that production efficiency can be increased by grouping various parts and products with similar designs and/or production processes. This phenomenon is known as 'group technology' in the literature. In this paper, a new group scheduling model with deteriorating and learning effects is proposed, where learning effect depends not only on job position, but also on the position of the corresponding job group; deteriorating effect depends on its starting time of the job. This paper shows that the makespan and the total completion time problems remain polynomial optimal solvable under the proposed model. In addition, a polynomial optimal solution is also presented to minimise the maximum lateness problem under certain agreeable restriction.

  10. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  11. Artificial immune algorithm for multi-depot vehicle scheduling problems

    NASA Astrophysics Data System (ADS)

    Wu, Zhongyi; Wang, Donggen; Xia, Linyuan; Chen, Xiaoling

    2008-10-01

    In the fast-developing logistics and supply chain management fields, one of the key problems in the decision support system is that how to arrange, for a lot of customers and suppliers, the supplier-to-customer assignment and produce a detailed supply schedule under a set of constraints. Solutions to the multi-depot vehicle scheduling problems (MDVRP) help in solving this problem in case of transportation applications. The objective of the MDVSP is to minimize the total distance covered by all vehicles, which can be considered as delivery costs or time consumption. The MDVSP is one of nondeterministic polynomial-time hard (NP-hard) problem which cannot be solved to optimality within polynomial bounded computational time. Many different approaches have been developed to tackle MDVSP, such as exact algorithm (EA), one-stage approach (OSA), two-phase heuristic method (TPHM), tabu search algorithm (TSA), genetic algorithm (GA) and hierarchical multiplex structure (HIMS). Most of the methods mentioned above are time consuming and have high risk to result in local optimum. In this paper, a new search algorithm is proposed to solve MDVSP based on Artificial Immune Systems (AIS), which are inspirited by vertebrate immune systems. The proposed AIS algorithm is tested with 30 customers and 6 vehicles located in 3 depots. Experimental results show that the artificial immune system algorithm is an effective and efficient method for solving MDVSP problems.

  12. Solving Open Job-Shop Scheduling Problems by SAT Encoding

    NASA Astrophysics Data System (ADS)

    Koshimura, Miyuki; Nabeshima, Hidetomo; Fujita, Hiroshi; Hasegawa, Ryuzo

    This paper tries to solve open Job-Shop Scheduling Problems (JSSP) by translating them into Boolean Satisfiability Testing Problems (SAT). The encoding method is essentially the same as the one proposed by Crawford and Baker. The open problems are ABZ8, ABZ9, YN1, YN2, YN3, and YN4. We proved that the best known upper bounds 678 of ABZ9 and 884 of YN1 are indeed optimal. We also improved the upper bound of YN2 and lower bounds of ABZ8, YN2, YN3 and YN4.

  13. A parallel-machine scheduling problem with two competing agents

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Chiung; Chung, Yu-Hsiang; Wang, Jen-Ya

    2017-06-01

    Scheduling with two competing agents has become popular in recent years. Most of the research has focused on single-machine problems. This article considers a parallel-machine problem, the objective of which is to minimize the total completion time of jobs from the first agent given that the maximum tardiness of jobs from the second agent cannot exceed an upper bound. The NP-hardness of this problem is also examined. A genetic algorithm equipped with local search is proposed to search for the near-optimal solution. Computational experiments are conducted to evaluate the proposed genetic algorithm.

  14. Completable scheduling: An integrated approach to planning and scheduling

    NASA Technical Reports Server (NTRS)

    Gervasio, Melinda T.; Dejong, Gerald F.

    1992-01-01

    The planning problem has traditionally been treated separately from the scheduling problem. However, as more realistic domains are tackled, it becomes evident that the problem of deciding on an ordered set of tasks to achieve a set of goals cannot be treated independently of the problem of actually allocating resources to the tasks. Doing so would result in losing the robustness and flexibility needed to deal with imperfectly modeled domains. Completable scheduling is an approach which integrates the two problems by allowing an a priori planning module to defer particular planning decisions, and consequently the associated scheduling decisions, until execution time. This allows a completable scheduling system to maximize plan flexibility by allowing runtime information to be taken into consideration when making planning and scheduling decision. Furthermore, through the criteria of achievability placed on deferred decision, a completable scheduling system is able to retain much of the goal-directedness and guarantees of achievement afforded by a priori planning. The completable scheduling approach is further enhanced by the use of contingent explanation-based learning, which enables a completable scheduling system to learn general completable plans from example and improve its performance through experience. Initial experimental results show that completable scheduling outperforms classical scheduling as well as pure reactive scheduling in a simple scheduling domain.

  15. Some single-machine scheduling problems with learning effects and two competing agents.

    PubMed

    Li, Hongjie; Li, Zeyuan; Yin, Yunqiang

    2014-01-01

    This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective functions addressed in this study include the maximum cost, the total weighted completion time, and the discounted total weighted completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The computational complexity of the problems is discussed and solution algorithms where possible are presented.

  16. A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan

    NASA Astrophysics Data System (ADS)

    Rameshkumar, K.; Rajendran, C.

    2018-02-01

    In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.

  17. Neighbourhood generation mechanism applied in simulated annealing to job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Cruz-Chávez, Marco Antonio

    2015-11-01

    This paper presents a neighbourhood generation mechanism for the job shop scheduling problems (JSSPs). In order to obtain a feasible neighbour with the generation mechanism, it is only necessary to generate a permutation of an adjacent pair of operations in a scheduling of the JSSP. If there is no slack time between the adjacent pair of operations that is permuted, then it is proven, through theory and experimentation, that the new neighbour (schedule) generated is feasible. It is demonstrated that the neighbourhood generation mechanism is very efficient and effective in a simulated annealing.

  18. Performance of Quantum Annealers on Hard Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Pokharel, Bibek; Venturelli, Davide; Rieffel, Eleanor

    Quantum annealers have been employed to attack a variety of optimization problems. We compared the performance of the current D-Wave 2X quantum annealer to that of the previous generation D-Wave Two quantum annealer on scheduling-type planning problems. Further, we compared the effect of different anneal times, embeddings of the logical problem, and different settings of the ferromagnetic coupling JF across the logical vertex-model on the performance of the D-Wave 2X quantum annealer. Our results show that at the best settings, the scaling of expected anneal time to solution for D-WAVE 2X is better than that of the DWave Two, but still inferior to that of state of the art classical solvers on these problems. We discuss the implication of our results for the design and programming of future quantum annealers. Supported by NASA Ames Research Center.

  19. A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Jolai, Fariborz; Assadipour, Ghazal

    Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.

  20. Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags

    NASA Astrophysics Data System (ADS)

    ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu

    2017-05-01

    Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.

  1. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.

    PubMed

    Wang, Zhaocai; Ji, Zuwen; Wang, Xiaoming; Wu, Tunhua; Huang, Wei

    2017-12-01

    As a promising approach to solve the computationally intractable problem, the method based on DNA computing is an emerging research area including mathematics, computer science and molecular biology. The task scheduling problem, as a well-known NP-complete problem, arranges n jobs to m individuals and finds the minimum execution time of last finished individual. In this paper, we use a biologically inspired computational model and describe a new parallel algorithm to solve the task scheduling problem by basic DNA molecular operations. In turn, we skillfully design flexible length DNA strands to represent elements of the allocation matrix, take appropriate biological experiment operations and get solutions of the task scheduling problem in proper length range with less than O(n 2 ) time complexity. Copyright © 2017. Published by Elsevier B.V.

  2. Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study

    NASA Astrophysics Data System (ADS)

    Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke

    2018-06-01

    In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.

  3. Performance of Extended Local Clustering Organization (LCO) for Large Scale Job-Shop Scheduling Problem (JSP)

    NASA Astrophysics Data System (ADS)

    Konno, Yohko; Suzuki, Keiji

    This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.

  4. Fuzzy logic control of an AGV

    NASA Astrophysics Data System (ADS)

    Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.

  5. A Solution Method of Scheduling Problem with Worker Allocation by a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Osawa, Akira; Ida, Kenichi

    In a scheduling problem with worker allocation (SPWA) proposed by Iima et al, the worker's skill level to each machine is all the same. However, each worker has a different skill level for each machine in the real world. For that reason, we propose a new model of SPWA in which a worker has the different skill level to each machine. To solve the problem, we propose a new GA for SPWA consisting of the following new three procedures, shortening of idle time, modifying infeasible solution to feasible solution, and a new selection method for GA. The effectiveness of the proposed algorithm is clarified by numerical experiments using benchmark problems for job-shop scheduling.

  6. Minimizing conflicts: A heuristic repair method for constraint-satisfaction and scheduling problems

    NASA Technical Reports Server (NTRS)

    Minton, Steve; Johnston, Mark; Philips, Andrew; Laird, Phil

    1992-01-01

    This paper describes a simple heuristic approach to solving large-scale constraint satisfaction and scheduling problems. In this approach one starts with an inconsistent assignment for a set of variables and searches through the space of possible repairs. The search can be guided by a value-ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. The heuristic can be used with a variety of different search strategies. We demonstrate empirically that on the n-queens problem, a technique based on this approach performs orders of magnitude better than traditional backtracking techniques. We also describe a scheduling application where the approach has been used successfully. A theoretical analysis is presented both to explain why this method works well on certain types of problems and to predict when it is likely to be most effective.

  7. A Clonal Selection Algorithm for Minimizing Distance Travel and Back Tracking of Automatic Guided Vehicles in Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit

    2018-03-01

    The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.

  8. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.

    PubMed

    Xiang, Wei; Yin, Jiao; Lim, Gino

    2015-02-01

    Operating room (OR) surgery scheduling determines the individual surgery's operation start time and assigns the required resources to each surgery over a schedule period, considering several constraints related to a complete surgery flow and the multiple resources involved. This task plays a decisive role in providing timely treatments for the patients while balancing hospital resource utilization. The originality of the present study is to integrate the surgery scheduling problem with real-life nurse roster constraints such as their role, specialty, qualification and availability. This article proposes a mathematical model and an ant colony optimization (ACO) approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-level ant graph model is developed to solve such combinatorial optimization problems because of its computational complexity. The outer ant graph represents surgeries, while the inner graph is a dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related, and resource-related pheromone, fitting for a two-level model are defined. The iteration-best and feasible update strategy and local pheromone update rules are adopted to emphasize the information related to the good solution in makespan, and the balanced utilization of resources as well. The performance of the proposed ACO algorithm is then evaluated using the test cases from (1) the published literature data with complete nurse roster constraints, and 2) the real data collected from a hospital in China. The scheduling results using the proposed ACO approach are compared with the test case from both the literature and the real life hospital scheduling. Comparison results with the literature shows that the proposed ACO approach has (1) an 1.5-h reduction in end time; (2) a reduction in variation of resources' working time, i.e. 25% for ORs, 50% for nurses in shift 1 and 86% for nurses in shift 2; (3) an 0.25h reduction in

  9. Integrated resource scheduling in a distributed scheduling environment

    NASA Technical Reports Server (NTRS)

    Zoch, David; Hall, Gardiner

    1988-01-01

    The Space Station era presents a highly-complex multi-mission planning and scheduling environment exercised over a highly distributed system. In order to automate the scheduling process, customers require a mechanism for communicating their scheduling requirements to NASA. A request language that a remotely-located customer can use to specify his scheduling requirements to a NASA scheduler, thus automating the customer-scheduler interface, is described. This notation, Flexible Envelope-Request Notation (FERN), allows the user to completely specify his scheduling requirements such as resource usage, temporal constraints, and scheduling preferences and options. The FERN also contains mechanisms for representing schedule and resource availability information, which are used in the inter-scheduler inconsistency resolution process. Additionally, a scheduler is described that can accept these requests, process them, generate schedules, and return schedule and resource availability information to the requester. The Request-Oriented Scheduling Engine (ROSE) was designed to function either as an independent scheduler or as a scheduling element in a network of schedulers. When used in a network of schedulers, each ROSE communicates schedule and resource usage information to other schedulers via the FERN notation, enabling inconsistencies to be resolved between schedulers. Individual ROSE schedules are created by viewing the problem as a constraint satisfaction problem with a heuristically guided search strategy.

  10. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  11. What work schedule characteristics constitute a problem to the individual? A representative study of Swedish shift workers.

    PubMed

    Åkerstedt, Torbjörn; Kecklund, Göran

    2017-03-01

    The purpose was to investigate which detailed characteristics of shift schedules that are seen as problems to those exposed. A representative national sample of non-day workers (N = 2031) in Sweden was asked whether they had each of a number of particular work schedule characteristics and, if yes, to what extent this constituted a "big problem in life". It was also inquired whether the individual's work schedules had negative consequences for fatigue, sleep and social life. The characteristic with the highest percentage reporting a big problem was "short notice (<1 month) of a new work schedule" (30.5%), <11 h off between shifts (27.8%), and split duty (>1.5 h break at mid-shift, 27.2%). Overtime (>10 h/week), night work, morning work, day/night shifts showed lower prevalences of being a "big problem". Women indicated more problems in general. Short notice was mainly related to negative social effects, while <11 h off between shifts was related to disturbed sleep, fatigue and social difficulties. It was concluded that schedules involving unpredictable working hours (short notice), short daily rest between shifts, and split duty shifts constitute big problems. The results challenge current views of what aspects of shift work need improvement, and negative social consequences seem more important than those related to health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nonstandard maternal work schedules during infancy: Implications for children's early behavior problems

    PubMed Central

    Daniel, Stephanie S.; Grzywacz, Joseph G.; Leerkes, Esther; Tucker, Jenna; Han, Wen-Jui

    2009-01-01

    This paper examines the associations between maternal nonstandard work schedules during infancy and children's early behavior problems, and the extent to which infant temperament may moderate these associations. Hypothesized associations were tested using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care (Phase I). Analyses focused on mothers who returned to work by the time the child was 6 months of age, and who worked an average of at least 35 h per week from 6 through 36 months. At 24 and 36 months, children whose mothers worked a nonstandard schedule had higher internalizing and externalizing behaviors. Modest, albeit inconsistent, evidence suggests that temperamentally reactive children may be more vulnerable to maternal work schedules. Maternal depressive symptoms partially mediated associations between nonstandard maternal work schedules and child behavior outcomes. PMID:19233479

  13. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  14. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Tang, Dunbing; Dai, Min

    2015-09-01

    The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production planning and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed smalland large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.

  15. Manipulating Tabu List to Handle Machine Breakdowns in Job Shop Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Nababan, Erna Budhiarti; SalimSitompul, Opim

    2011-06-01

    Machine breakdowns in a production schedule may occur on a random basis that make the well-known hard combinatorial problem of Job Shop Scheduling Problems (JSSP) becomes more complex. One of popular techniques used to solve the combinatorial problems is Tabu Search. In this technique, moves that will be not allowed to be revisited are retained in a tabu list in order to avoid in gaining solutions that have been obtained previously. In this paper, we propose an algorithm to employ a second tabu list to keep broken machines, in addition to the tabu list that keeps the moves. The period of how long the broken machines will be kept on the list is categorized using fuzzy membership function. Our technique are tested to the benchmark data of JSSP available on the OR library. From the experiment, we found that our algorithm is promising to help a decision maker to face the event of machine breakdowns.

  16. Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

    NASA Astrophysics Data System (ADS)

    Lazarev, A. A.

    2009-02-01

    An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.

  17. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  18. An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Afshar Nadjafi, Behrouz; Shadrokh, Shahram

    This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.

  19. Multi-objective problem of the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints

    NASA Astrophysics Data System (ADS)

    Amallynda, I.; Santosa, B.

    2017-11-01

    This paper proposes a new generalization of the distributed parallel machine and assembly scheduling problem (DPMASP) with eligibility constraints referred to as the modified distributed parallel machine and assembly scheduling problem (MDPMASP) with eligibility constraints. Within this generalization, we assume that there are a set non-identical factories or production lines, each one with a set unrelated parallel machine with different speeds in processing them disposed to a single assembly machine in series. A set of different products that are manufactured through an assembly program of a set of components (jobs) according to the requested demand. Each product requires several kinds of jobs with different sizes. Beside that we also consider to the multi-objective problem (MOP) of minimizing mean flow time and the number of tardy products simultaneously. This is known to be NP-Hard problem, is important to practice, as the former criterions to reflect the customer's demand and manufacturer's perspective. This is a realistic and complex problem with wide range of possible solutions, we propose four simple heuristics and two metaheuristics to solve it. Various parameters of the proposed metaheuristic algorithms are discussed and calibrated by means of Taguchi technique. All proposed algorithms are tested by Matlab software. Our computational experiments indicate that the proposed problem and fourth proposed algorithms are able to be implemented and can be used to solve moderately-sized instances, and giving efficient solutions, which are close to optimum in most cases.

  20. Performance evaluation of different types of particle representation procedures of Particle Swarm Optimization in Job-shop Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Izah Anuar, Nurul; Saptari, Adi

    2016-02-01

    This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.

  1. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  2. Solving a Production Scheduling Problem by Means of Two Biobjective Metaheuristic Procedures

    NASA Astrophysics Data System (ADS)

    Toncovich, Adrián; Oliveros Colay, María José; Moreno, José María; Corral, Jiménez; Corral, Rafael

    2009-11-01

    Production planning and scheduling problems emphasize the need for the availability of management tools that can help to assure proper service levels to customers, maintaining, at the same time, the production costs at acceptable levels and maximizing the utilization of the production facilities. In this case, a production scheduling problem that arises in the context of the activities of a company dedicated to the manufacturing of furniture for children and teenagers is addressed. Two bicriteria metaheuristic procedures are proposed to solve the sequencing problem in a production equipment that constitutes the bottleneck of the production process of the company. The production scheduling problem can be characterized as a general flow shop with sequence dependant setup times and additional inventory constraints. Two objectives are simultaneously taken into account when the quality of the candidate solutions is evaluated: the minimization of completion time of all jobs, or makespan, and the minimization of the total flow time of all jobs. Both procedures are based on a local search strategy that responds to the structure of the simulated annealing metaheuristic. In this case, both metaheuristic approaches generate a set of solutions that provides an approximation to the optimal Pareto front. In order to evaluate the performance of the proposed techniques a series of experiments was conducted. After analyzing the results, it can be said that the solutions provided by both approaches are adequate from the viewpoint of the quality as well as the computational effort involved in their generation. Nevertheless, a further refinement of the proposed procedures should be implemented with the aim of facilitating a quasi-automatic definition of the solution parameters.

  3. An ant colony optimization heuristic for an integrated production and distribution scheduling problem

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Chia; Li, Vincent C.; Chiang, Chia-Ju

    2014-04-01

    Make-to-order or direct-order business models that require close interaction between production and distribution activities have been adopted by many enterprises in order to be competitive in demanding markets. This article considers an integrated production and distribution scheduling problem in which jobs are first processed by one of the unrelated parallel machines and then distributed to corresponding customers by capacitated vehicles without intermediate inventory. The objective is to find a joint production and distribution schedule so that the weighted sum of total weighted job delivery time and the total distribution cost is minimized. This article presents a mathematical model for describing the problem and designs an algorithm using ant colony optimization. Computational experiments illustrate that the algorithm developed is capable of generating near-optimal solutions. The computational results also demonstrate the value of integrating production and distribution in the model for the studied problem.

  4. Capability of the Maximax&Maximin selection operator in the evolutionary algorithm for a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Tein, Lim Huai

    2016-08-01

    A good work schedule can improve hospital operations by providing better coverage with appropriate staffing levels in managing nurse personnel. Hence, constructing the best nurse work schedule is the appropriate effort. In doing so, an improved selection operator in the Evolutionary Algorithm (EA) strategy for a nurse scheduling problem (NSP) is proposed. The smart and efficient scheduling procedures were considered. Computation of the performance of each potential solution or schedule was done through fitness evaluation. The best so far solution was obtained via special Maximax&Maximin (MM) parent selection operator embedded in the EA, which fulfilled all constraints considered in the NSP.

  5. Automated problem scheduling and reduction of synchronization delay effects

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.

    1987-01-01

    It is anticipated that in order to make effective use of many future high performance architectures, programs will have to exhibit at least a medium grained parallelism. A framework is presented for partitioning very sparse triangular systems of linear equations that is designed to produce favorable preformance results in a wide variety of parallel architectures. Efficient methods for solving these systems are of interest because: (1) they provide a useful model problem for use in exploring heuristics for the aggregation, mapping and scheduling of relatively fine grained computations whose data dependencies are specified by directed acrylic graphs, and (2) because such efficient methods can find direct application in the development of parallel algorithms for scientific computation. Simple expressions are derived that describe how to schedule computational work with varying degrees of granularity. The Encore Multimax was used as a hardware simulator to investigate the performance effects of using the partitioning techniques presented in shared memory architectures with varying relative synchronization costs.

  6. Study on store-space assignment based on logistic AGV in e-commerce goods to person picking pattern

    NASA Astrophysics Data System (ADS)

    Xu, Lijuan; Zhu, Jie

    2017-10-01

    This paper studied on the store-space assignment based on logistic AGV in E-commerce goods to person picking pattern, and established the store-space assignment model based on the lowest picking cost, and design for store-space assignment algorithm after the cluster analysis based on similarity coefficient. And then through the example analysis, compared the picking cost between store-space assignment algorithm this paper design and according to item number and storage according to ABC classification allocation, and verified the effectiveness of the design of the store-space assignment algorithm.

  7. Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1989-01-01

    A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.

  8. A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements

    NASA Astrophysics Data System (ADS)

    Pu, Xun; Lu, XianLiang

    2011-10-01

    Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.

  9. Efficient bounding schemes for the two-center hybrid flow shop scheduling problem with removal times.

    PubMed

    Hidri, Lotfi; Gharbi, Anis; Louly, Mohamed Aly

    2014-01-01

    We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures.

  10. Efficient Bounding Schemes for the Two-Center Hybrid Flow Shop Scheduling Problem with Removal Times

    PubMed Central

    2014-01-01

    We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based on the optimal solution of the parallel machine scheduling problem with release dates and delivery times. The heuristic is composed of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed procedures. PMID:25610911

  11. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  12. Enhancements of evolutionary algorithm for the complex requirements of a nurse scheduling problem

    NASA Astrophysics Data System (ADS)

    Tein, Lim Huai; Ramli, Razamin

    2014-12-01

    Over the years, nurse scheduling is a noticeable problem that is affected by the global nurse turnover crisis. The more nurses are unsatisfied with their working environment the more severe the condition or implication they tend to leave. Therefore, the current undesirable work schedule is partly due to that working condition. Basically, there is a lack of complimentary requirement between the head nurse's liability and the nurses' need. In particular, subject to highly nurse preferences issue, the sophisticated challenge of doing nurse scheduling is failure to stimulate tolerance behavior between both parties during shifts assignment in real working scenarios. Inevitably, the flexibility in shifts assignment is hard to achieve for the sake of satisfying nurse diverse requests with upholding imperative nurse ward coverage. Hence, Evolutionary Algorithm (EA) is proposed to cater for this complexity in a nurse scheduling problem (NSP). The restriction of EA is discussed and thus, enhancement on the EA operators is suggested so that the EA would have the characteristic of a flexible search. This paper consists of three types of constraints which are the hard, semi-hard and soft constraints that can be handled by the EA with enhanced parent selection and specialized mutation operators. These operators and EA as a whole contribute to the efficiency of constraint handling, fitness computation as well as flexibility in the search, which correspond to the employment of exploration and exploitation principles.

  13. Aspects of job scheduling

    NASA Technical Reports Server (NTRS)

    Phillips, K.

    1976-01-01

    A mathematical model for job scheduling in a specified context is presented. The model uses both linear programming and combinatorial methods. While designed with a view toward optimization of scheduling of facility and plant operations at the Deep Space Communications Complex, the context is sufficiently general to be widely applicable. The general scheduling problem including options for scheduling objectives is discussed and fundamental parameters identified. Mathematical algorithms for partitioning problems germane to scheduling are presented.

  14. Psychometric Properties of the Disability Assessment Schedule (DAS) for Behavior Problems: An Independent Investigation

    ERIC Educational Resources Information Center

    Tsakanikos, Elias; Underwood, Lisa; Sturmey, Peter; Bouras, Nick; McCarthy, Jane

    2011-01-01

    The present study employed the Disability Assessment Schedule (DAS) to assess problem behaviors in a large sample of adults with ID (N = 568) and evaluate the psychometric properties of this instrument. Although the DAS problem behaviors were found to be internally consistent (Cronbach's [alpha] = 0.87), item analysis revealed one weak item…

  15. Analysis of Issues for Project Scheduling by Multiple, Dispersed Schedulers (distributed Scheduling) and Requirements for Manual Protocols and Computer-based Support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1991-01-01

    Although computerized operations have significant gains realized in many areas, one area, scheduling, has enjoyed few benefits from automation. The traditional methods of industrial engineering and operations research have not proven robust enough to handle the complexities associated with the scheduling of realistic problems. To address this need, NASA has developed the computer-aided scheduling system (COMPASS), a sophisticated, interactive scheduling tool that is in wide-spread use within NASA and the contractor community. Therefore, COMPASS provides no explicit support for the large class of problems in which several people, perhaps at various locations, build separate schedules that share a common pool of resources. This research examines the issue of distributing scheduling, as applied to application domains characterized by the partial ordering of tasks, limited resources, and time restrictions. The focus of this research is on identifying issues related to distributed scheduling, locating applicable problem domains within NASA, and suggesting areas for ongoing research. The issues that this research identifies are goals, rescheduling requirements, database support, the need for communication and coordination among individual schedulers, the potential for expert system support for scheduling, and the possibility of integrating artificially intelligent schedulers into a network of human schedulers.

  16. A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ida, Kenichi; Osawa, Akira

    In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.

  17. Improved teaching-learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Buddala, Raviteja; Mahapatra, Siba Sankar

    2017-11-01

    Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having `g' operations is performed on `g' operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem becomes a flexible flow shop problem (FFSP). FFSP which contains all the complexities involved in a simple flow shop and parallel machine scheduling problems is a well-known NP-hard (Non-deterministic polynomial time) problem. Owing to high computational complexity involved in solving these problems, it is not always possible to obtain an optimal solution in a reasonable computation time. To obtain near-optimal solutions in a reasonable computation time, a large variety of meta-heuristics have been proposed in the past. However, tuning algorithm-specific parameters for solving FFSP is rather tricky and time consuming. To address this limitation, teaching-learning-based optimization (TLBO) and JAYA algorithm are chosen for the study because these are not only recent meta-heuristics but they do not require tuning of algorithm-specific parameters. Although these algorithms seem to be elegant, they lose solution diversity after few iterations and get trapped at the local optima. To alleviate such drawback, a new local search procedure is proposed in this paper to improve the solution quality. Further, mutation strategy (inspired from genetic algorithm) is incorporated in the basic algorithm to maintain solution diversity in the population. Computational experiments have been conducted on standard benchmark problems to calculate makespan and computational time. It is found that the rate of convergence of TLBO is superior to JAYA. From the results, it is found that TLBO and JAYA outperform many algorithms reported in the literature and can be treated as efficient methods for solving the FFSP.

  18. Interactive computer aided shift scheduling.

    PubMed

    Gaertner, J

    2001-12-01

    This paper starts with a discussion of computer aided shift scheduling. After a brief review of earlier approaches, two conceptualizations of this field are introduced: First, shift scheduling as a field that ranges from extremely stable rosters at one pole to rather market-like approaches on the other pole. Unfortunately, already small alterations of a scheduling problem (e.g., the number of groups, the number of shifts) may call for rather different approaches and tools. Second, their environment shapes scheduling problems and scheduling has to be done within idiosyncratic organizational settings. This calls for the amalgamation of scheduling with other tasks (e.g., accounting) and for reflections whether better solutions might become possible by changes in the problem definition (e.g., other service levels, organizational changes). Therefore shift scheduling should be understood as a highly connected problem. Building upon these two conceptualizations, a few examples of software that ease scheduling in some areas of this field are given and future research questions are outlined.

  19. New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times

    NASA Astrophysics Data System (ADS)

    Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid

    2017-09-01

    In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.

  20. Integrated production and distribution scheduling problems related to fixed delivery departure dates and weights of late orders.

    PubMed

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time.

  1. A novel hybrid genetic algorithm to solve the make-to-order sequence-dependent flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.

    2014-04-01

    Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.

  2. Integrated Production and Distribution Scheduling Problems Related to Fixed Delivery Departure Dates and Weights of Late Orders

    PubMed Central

    Li, Shanlin; Li, Maoqin

    2015-01-01

    We consider an integrated production and distribution scheduling problem faced by a typical make-to-order manufacturer which relies on a third-party logistics (3PL) provider for finished product delivery to customers. In the beginning of a planning horizon, the manufacturer has received a set of orders to be processed on a single production line. Completed orders are delivered to customers by a finite number of vehicles provided by the 3PL company which follows a fixed daily or weekly shipping schedule such that the vehicles have fixed departure dates which are not part of the decisions. The problem is to find a feasible schedule that minimizes one of the following objective functions when processing times and weights are oppositely ordered: (1) the total weight of late orders and (2) the number of vehicles used subject to the condition that the total weight of late orders is minimum. We show that both problems are solvable in polynomial time. PMID:25785285

  3. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  4. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  5. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  6. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  7. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  8. Intelligent Transportation Systems: Automated Guided Vehicle Systems in Changing Logistics Environments

    NASA Astrophysics Data System (ADS)

    Schulze, L.; Behling, S.; Buhrs, S.

    2008-06-01

    The usage of Automated Guided Vehicle Systems (AGVS) is growing. This has not always been the case in the past. A new record of the sells numbers is the result of inventive developments, new applications and modern thinking. One market that AGVS were not able to thoroughly conquer yet were rapidly changing logistics environments. The advantages in recurrent transportation with AGVS used to be hindered by the needs of flexibility. When nowadays managers talk about Flexible Manufacturing Systems (FMS) there is no reason not to consider AGVS. Fixed guidelines, permanent transfer stations and static routes are no necessity for most AGVS producers. Flexible Manufacturing Systems can raise profitability with AGVS. When robots start saving billions in production costs, the next step at same plants are automated materials handling systems. Today, there are hundreds of instances of computer-controlled systems designed to handle and transport materials, many of which have replaced conventional human-driven platform trucks. Reduced costs due to damages and failures, tracking and tracing as well as improved production scheduling on top of fewer personnel needs are only some of the advantages.

  9. On Several Fundamental Problems of Optimization, Estimation, and Scheduling in Wireless Communications

    NASA Astrophysics Data System (ADS)

    Gao, Qian

    For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is

  10. A generalized network flow model for the multi-mode resource-constrained project scheduling problem with discounted cash flows

    NASA Astrophysics Data System (ADS)

    Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan

    2015-02-01

    An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.

  11. Task Scheduling in Desktop Grids: Open Problems

    NASA Astrophysics Data System (ADS)

    Chernov, Ilya; Nikitina, Natalia; Ivashko, Evgeny

    2017-12-01

    We survey the areas of Desktop Grid task scheduling that seem to be insufficiently studied so far and are promising for efficiency, reliability, and quality of Desktop Grid computing. These topics include optimal task grouping, "needle in a haystack" paradigm, game-theoretical scheduling, domain-imposed approaches, special optimization of the final stage of the batch computation, and Enterprise Desktop Grids.

  12. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  13. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James L.

    2010-01-01

    NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.

  14. Testing Task Schedulers on Linux System

    NASA Astrophysics Data System (ADS)

    Jelenković, Leonardo; Groš, Stjepan; Jakobović, Domagoj

    Testing task schedulers on Linux operating system proves to be a challenging task. There are two main problems. The first one is to identify which properties of the scheduler to test. The second problem is how to perform it, e.g., which API to use that is sufficiently precise and in the same time supported on most platforms. This paper discusses the problems in realizing test framework for testing task schedulers and presents one potential solution. Observed behavior of the scheduler is the one used for “normal” task scheduling (SCHED_OTHER), unlike one used for real-time tasks (SCHED_FIFO, SCHED_RR).

  15. Deconstructing Nowicki and Smutnickis i-TSAB tabu search algorithm for the job-shop scheduling problem.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitley, L. Darrell; Watson, Jean-Paul; Howe, Adele E.

    Over the last decade and a half, tabu search algorithms for machine scheduling have gained a near-mythical reputation by consistently equaling or establishing state-of-the-art performance levels on a range of academic and real-world problems. Yet, despite these successes, remarkably little research has been devoted to developing an understanding of why tabu search is so effective on this problem class. In this paper, we report results that provide significant progress in this direction. We consider Nowicki and Smutnicki's i-TSAB tabu search algorithm, which represents the current state-of-the-art for the makespan-minimization form of the classical jobshop scheduling problem. Via a series ofmore » controlled experiments, we identify those components of i-TSAB that enable it to achieve state-of-the-art performance levels. In doing so, we expose a number of misconceptions regarding the behavior and/or benefits of tabu search and other local search metaheuristics for the job-shop problem. Our results also serve to focus future research, by identifying those specific directions that are most likely to yield further improvements in performance.« less

  16. Decomposability and scalability in space-based observatory scheduling

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Stephen F.

    1992-01-01

    In this paper, we discuss issues of problem and model decomposition within the HSTS scheduling framework. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) scheduling problem, motivated by the limitations of the current solution and, more generally, the insufficiency of classical planning and scheduling approaches in this problem context. We first summarize the salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research. Then, we describe some key problem decomposition techniques supported by HSTS and underlying our integrated planning and scheduling approach, and we discuss the leverage they provide in solving space-based observatory scheduling problems.

  17. DTS: Building custom, intelligent schedulers

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Mayer, Andrew

    1994-01-01

    DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.

  18. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James

    2014-01-01

    NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial

  19. SOFIA's Choice: Automating the Scheduling of Airborne Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Norvig, Peter (Technical Monitor)

    1999-01-01

    This paper describes the problem of scheduling observations for an airborne telescope. Given a set of prioritized observations to choose from, and a wide range of complex constraints governing legitimate choices and orderings, how can we efficiently and effectively create a valid flight plan which supports high priority observations? This problem is quite different from scheduling problems which are routinely solved automatically in industry. For instance, the problem requires making choices which lead to other choices later, and contains many interacting complex constraints over both discrete and continuous variables. Furthermore, new types of constraints may be added as the fundamental problem changes. As a result of these features, this problem cannot be solved by traditional scheduling techniques. The problem resembles other problems in NASA and industry, from observation scheduling for rovers and other science instruments to vehicle routing. The remainder of the paper is organized as follows. In 2 we describe the observatory in order to provide some background. In 3 we describe the problem of scheduling a single flight. In 4 we compare flight planning and other scheduling problems and argue that traditional techniques are not sufficient to solve this problem. We also mention similar complex scheduling problems which may benefit from efforts to solve this problem. In 5 we describe an approach for solving this problem based on research into a similar problem, that of scheduling observations for a space-borne probe. In 6 we discuss extensions of the flight planning problem as well as other problems which are similar to flight planning. In 7 we conclude and discuss future work.

  20. Investigations into Generalization of Constraint-Based Scheduling Theories with Applications to Space Telescope Observation Scheduling

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven S.

    1996-01-01

    This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.

  1. A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems

    PubMed Central

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature. PMID:24672389

  2. A PSO-based hybrid metaheuristic for permutation flowshop scheduling problems.

    PubMed

    Zhang, Le; Wu, Jinnan

    2014-01-01

    This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.

  3. Skipping Strategy (SS) for Initial Population of Job-Shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Abdolrazzagh-Nezhad, M.; Nababan, E. B.; Sarim, H. M.

    2018-03-01

    Initial population in job-shop scheduling problem (JSSP) is an essential step to obtain near optimal solution. Techniques used to solve JSSP are computationally demanding. Skipping strategy (SS) is employed to acquire initial population after sequence of job on machine and sequence of operations (expressed in Plates-jobs and mPlates-jobs) are determined. The proposed technique is applied to benchmark datasets and the results are compared to that of other initialization techniques. It is shown that the initial population obtained from the SS approach could generate optimal solution.

  4. Compiling Planning into Scheduling: A Sketch

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Crawford, James M.; Smith, David E.

    2004-01-01

    Although there are many approaches for compiling a planning problem into a static CSP or a scheduling problem, current approaches essentially preserve the structure of the planning problem in the encoding. In this pape: we present a fundamentally different encoding that more accurately resembles a scheduling problem. We sketch the approach and argue, based on an example, that it is possible to automate the generation of such an encoding for problems with certain properties and thus produce a compiler of planning into scheduling problems. Furthermore we argue that many NASA problems exhibit these properties and that such a compiler would provide benefits to both theory and practice.

  5. Production scheduling with ant colony optimization

    NASA Astrophysics Data System (ADS)

    Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu

    2017-10-01

    The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.

  6. A modified generalized extremal optimization algorithm for the quay crane scheduling problem with interference constraints

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Cheng, Wenming; Wang, Yi

    2014-10-01

    The quay crane scheduling problem (QCSP) determines the handling sequence of tasks at ship bays by a set of cranes assigned to a container vessel such that the vessel's service time is minimized. A number of heuristics or meta-heuristics have been proposed to obtain the near-optimal solutions to overcome the NP-hardness of the problem. In this article, the idea of generalized extremal optimization (GEO) is adapted to solve the QCSP with respect to various interference constraints. The resulting GEO is termed the modified GEO. A randomized searching method for neighbouring task-to-QC assignments to an incumbent task-to-QC assignment is developed in executing the modified GEO. In addition, a unidirectional search decoding scheme is employed to transform a task-to-QC assignment to an active quay crane schedule. The effectiveness of the developed GEO is tested on a suite of benchmark problems introduced by K.H. Kim and Y.M. Park in 2004 (European Journal of Operational Research, Vol. 156, No. 3). Compared with other well-known existing approaches, the experiment results show that the proposed modified GEO is capable of obtaining the optimal or near-optimal solution in a reasonable time, especially for large-sized problems.

  7. Concurrent Reinforcement Schedules for Problem Behavior and Appropriate Behavior: Experimental Applications of the Matching Law

    ERIC Educational Resources Information Center

    Borrero, Carrie S. W.; Vollmer, Timothy R.; Borrero, John C.; Bourret, Jason C.; Sloman, Kimberly N.; Samaha, Andrew L.; Dallery, Jesse

    2010-01-01

    This study evaluated how children who exhibited functionally equivalent problem and appropriate behavior allocate responding to experimentally arranged reinforcer rates. Relative reinforcer rates were arranged on concurrent variable-interval schedules and effects on relative response rates were interpreted using the generalized matching equation.…

  8. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  9. Artificial intelligence approaches to astronomical observation scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  10. User requirements for a patient scheduling system

    NASA Technical Reports Server (NTRS)

    Zimmerman, W.

    1979-01-01

    A rehabilitation institute's needs and wants from a scheduling system were established by (1) studying the existing scheduling system and the variables that affect patient scheduling, (2) conducting a human-factors study to establish the human interfaces that affect patients' meeting prescribed therapy schedules, and (3) developing and administering a questionnaire to the staff which pertains to the various interface problems in order to identify staff requirements to minimize scheduling problems and other factors that may limit the effectiveness of any new scheduling system.

  11. Multi-objective flexible job shop scheduling problem using variable neighborhood evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Ji, Zhicheng; Wang, Yan

    2017-07-01

    In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.

  12. Maximizing the nurses' preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Jafari, Hamed; Salmasi, Nasser

    2015-09-01

    The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.

  13. Experiments with a decision-theoretic scheduler

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Holt, Gerhard; Mayer, Andrew

    1992-01-01

    This paper describes DTS, a decision-theoretic scheduler designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems, and using probabilistic inference to aggregate this information in light of features of a given problem. BPS, the Bayesian Problem-Solver, introduced a similar approach to solving single-agent and adversarial graph search problems, yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.

  14. An adaptive large neighborhood search procedure applied to the dynamic patient admission scheduling problem.

    PubMed

    Lusby, Richard Martin; Schwierz, Martin; Range, Troels Martin; Larsen, Jesper

    2016-11-01

    The aim of this paper is to provide an improved method for solving the so-called dynamic patient admission scheduling (DPAS) problem. This is a complex scheduling problem that involves assigning a set of patients to hospital beds over a given time horizon in such a way that several quality measures reflecting patient comfort and treatment efficiency are maximized. Consideration must be given to uncertainty in the length of stays of patients as well as the possibility of emergency patients. We develop an adaptive large neighborhood search (ALNS) procedure to solve the problem. This procedure utilizes a Simulated Annealing framework. We thoroughly test the performance of the proposed ALNS approach on a set of 450 publicly available problem instances. A comparison with the current state-of-the-art indicates that the proposed methodology provides solutions that are of comparable quality for small and medium sized instances (up to 1000 patients); the two approaches provide solutions that differ in quality by approximately 1% on average. The ALNS procedure does, however, provide solutions in a much shorter time frame. On larger instances (between 1000-4000 patients) the improvement in solution quality by the ALNS procedure is substantial, approximately 3-14% on average, and as much as 22% on a single instance. The time taken to find such results is, however, in the worst case, a factor 12 longer on average than the time limit which is granted to the current state-of-the-art. The proposed ALNS procedure is an efficient and flexible method for solving the DPAS problem. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Scheduler Design Criteria: Requirements and Considerations

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2016-01-01

    This presentation covers fundamental requirements and considerations for developing schedulers in airport operations. We first introduce performance and functional requirements for airport surface schedulers. Among various optimization problems in airport operations, we focus on airport surface scheduling problem, including runway and taxiway operations. We then describe a basic methodology for airport surface scheduling such as node-link network model and scheduling algorithms previously developed. Next, we explain how to design a mathematical formulation in more details, which consists of objectives, decision variables, and constraints. Lastly, we review other considerations, including optimization tools, computational performance, and performance metrics for evaluation.

  16. Processing time tolerance-based ACO algorithm for solving job-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Luo, Yabo; Waden, Yongo P.

    2017-06-01

    Ordinarily, Job Shop Scheduling Problem (JSSP) is known as NP-hard problem which has uncertainty and complexity that cannot be handled by a linear method. Thus, currently studies on JSSP are concentrated mainly on applying different methods of improving the heuristics for optimizing the JSSP. However, there still exist many problems for efficient optimization in the JSSP, namely, low efficiency and poor reliability, which can easily trap the optimization process of JSSP into local optima. Therefore, to solve this problem, a study on Ant Colony Optimization (ACO) algorithm combined with constraint handling tactics is carried out in this paper. Further, the problem is subdivided into three parts: (1) Analysis of processing time tolerance-based constraint features in the JSSP which is performed by the constraint satisfying model; (2) Satisfying the constraints by considering the consistency technology and the constraint spreading algorithm in order to improve the performance of ACO algorithm. Hence, the JSSP model based on the improved ACO algorithm is constructed; (3) The effectiveness of the proposed method based on reliability and efficiency is shown through comparative experiments which are performed on benchmark problems. Consequently, the results obtained by the proposed method are better, and the applied technique can be used in optimizing JSSP.

  17. Automated Scheduling Via Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  18. Hybrid Particle Swarm Optimization for Hybrid Flowshop Scheduling Problem with Maintenance Activities

    PubMed Central

    Li, Jun-qing; Pan, Quan-ke; Mao, Kun

    2014-01-01

    A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414

  19. Asymptotic analysis of SPTA-based algorithms for no-wait flow shop scheduling problem with release dates.

    PubMed

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.

  20. Asymptotic Analysis of SPTA-Based Algorithms for No-Wait Flow Shop Scheduling Problem with Release Dates

    PubMed Central

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms. PMID:24764774

  1. A Novel Joint Problem of Routing, Scheduling, and Variable-Width Channel Allocation in WMNs

    PubMed Central

    Liu, Wan-Yu; Chou, Chun-Hung

    2014-01-01

    This paper investigates a novel joint problem of routing, scheduling, and channel allocation for single-radio multichannel wireless mesh networks in which multiple channel widths can be adjusted dynamically through a new software technology so that more concurrent transmissions and suppressed overlapping channel interference can be achieved. Although the previous works have studied this joint problem, their linear programming models for the problem were not incorporated with some delicate constraints. As a result, this paper first constructs a linear programming model with more practical concerns and then proposes a simulated annealing approach with a novel encoding mechanism, in which the configurations of multiple time slots are devised to characterize the dynamic transmission process. Experimental results show that our approach can find the same or similar solutions as the optimal solutions for smaller-scale problems and can efficiently find good-quality solutions for a variety of larger-scale problems. PMID:24982990

  2. Space communications scheduler: A rule-based approach to adaptive deadline scheduling

    NASA Technical Reports Server (NTRS)

    Straguzzi, Nicholas

    1990-01-01

    Job scheduling is a deceptively complex subfield of computer science. The highly combinatorial nature of the problem, which is NP-complete in nearly all cases, requires a scheduling program to intelligently transverse an immense search tree to create the best possible schedule in a minimal amount of time. In addition, the program must continually make adjustments to the initial schedule when faced with last-minute user requests, cancellations, unexpected device failures, quests, cancellations, unexpected device failures, etc. A good scheduler must be quick, flexible, and efficient, even at the expense of generating slightly less-than-optimal schedules. The Space Communication Scheduler (SCS) is an intelligent rule-based scheduling system. SCS is an adaptive deadline scheduler which allocates modular communications resources to meet an ordered set of user-specified job requests on board the NASA Space Station. SCS uses pattern matching techniques to detect potential conflicts through algorithmic and heuristic means. As a result, the system generates and maintains high density schedules without relying heavily on backtracking or blind search techniques. SCS is suitable for many common real-world applications.

  3. Heuristic methods for the single machine scheduling problem with different ready times and a common due date

    NASA Astrophysics Data System (ADS)

    Birgin, Ernesto G.; Ronconi, Débora P.

    2012-10-01

    The single machine scheduling problem with a common due date and non-identical ready times for the jobs is examined in this work. Performance is measured by the minimization of the weighted sum of earliness and tardiness penalties of the jobs. Since this problem is NP-hard, the application of constructive heuristics that exploit specific characteristics of the problem to improve their performance is investigated. The proposed approaches are examined through a computational comparative study on a set of 280 benchmark test problems with up to 1000 jobs.

  4. Bridging the Gap Between Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Frank, Jeremy; Jonsson, Ari K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Planning research in Artificial Intelligence (AI) has often focused on problems where there are cascading levels of action choice and complex interactions between actions. In contrast. Scheduling research has focused on much larger problems where there is little action choice, but the resulting ordering problem is hard. In this paper, we give an overview of M planning and scheduling techniques, focusing on their similarities, differences, and limitations. We also argue that many difficult practical problems lie somewhere between planning and scheduling, and that neither area has the right set of tools for solving these vexing problems.

  5. The Ames-Lockheed orbiter processing scheduling system

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Gargan, Robert

    1991-01-01

    A general purpose scheduling system and its application to Space Shuttle Orbiter Processing at the Kennedy Space Center (KSC) are described. Orbiter processing entails all the inspection, testing, repair, and maintenance necessary to prepare the Shuttle for launch and takes place within the Orbiter Processing Facility (OPF) at KSC, the Vehicle Assembly Building (VAB), and on the launch pad. The problems are extremely combinatoric in that there are thousands of tasks, resources, and other temporal considerations that must be coordinated. Researchers are building a scheduling tool that they hope will be an integral part of automating the planning and scheduling process at KSC. The scheduling engine is domain independent and is also being applied to Space Shuttle cargo processing problems as well as wind tunnel scheduling problems.

  6. A Novel Algorithm Combining Finite State Method and Genetic Algorithm for Solving Crude Oil Scheduling Problem

    PubMed Central

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031

  7. Simultaneous planning of the project scheduling and material procurement problem under the presence of multiple suppliers

    NASA Astrophysics Data System (ADS)

    Tabrizi, Babak H.; Ghaderi, Seyed Farid

    2016-09-01

    Simultaneous planning of project scheduling and material procurement can improve the project execution costs. Hence, the issue has been addressed here by a mixed-integer programming model. The proposed model facilitates the procurement decisions by accounting for a number of suppliers offering a distinctive discount formula from which to purchase the required materials. It is aimed at developing schedules with the best net present value regarding the obtained benefit and costs of the project execution. A genetic algorithm is applied to deal with the problem, in addition to a modified version equipped with a variable neighbourhood search. The underlying factors of the solution methods are calibrated by the Taguchi method to obtain robust solutions. The performance of the aforementioned methods is compared for different problem sizes, in which the utilized local search proved efficient. Finally, a sensitivity analysis is carried out to check the effect of inflation on the objective function value.

  8. Protocols for distributive scheduling

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.; Fox, Barry

    1993-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of space shuttle mission planning.

  9. Immunological Effect of aGV Rabies Vaccine Administered Using the Essen and Zagreb Regimens: A Double-Blind, Randomized Clinical Trial.

    PubMed

    Miao, Li; Shi, Liwei; Yang, Yi; Yan, Kunming; Sun, Hongliang; Mo, Zhaojun; Li, Li

    2018-04-01

    This study evaluated the immunological effect of an aGV rabies virus strain using the Essen and Zagreb immunization programs. A total of 1,944 subjects were enrolled and divided into three groups: the Essen test group, Essen control group, and Zagreb test group. Neutralizing antibody levels and antibody seroconversion rates were determined at 7 and 14 days after the initial inoculations and then 14 days after the final inoculation in all of the subjects. The seroconversion rates for the Essen test group, Essen control group, and Zagreb test group, which were assessed 7 days after the first dosing in a susceptible population, were 35.74%, 26.92%, and 45.49%, respectively, and at 14 days, the seroconversion rates in this population were 100%, 100%, and 99.63%, respectively. At 14 days after the final dosing, the seroconversion rates were 100% in all three of the groups. The neutralizing serum antibody levels of the Essen test group, Essen control group, and Zagreb test group at 7 days after the first dosing in the susceptible population were 0.37, 0.26, and 0.56 IU/mL, respectively, and at 14 days after the initial dosing, these levels were 16.71, 13.85, and 16.80 IU/mL. At 14 days after the final dosing, the neutralizing antibody levels were 22.9, 16.3, and 18.62 IU/mL, respectively. The results of this study suggested that the aGV rabies vaccine using the Essen program resulted in a good serum immune response, and the seroconversion rates and the neutralizing antibody levels generated with the Zagreb regimen were higher than those with the Essen regimen when measured 7 days after the first dose.

  10. A discrete artificial bee colony algorithm incorporating differential evolution for the flow-shop scheduling problem with blocking

    NASA Astrophysics Data System (ADS)

    Han, Yu-Yan; Gong, Dunwei; Sun, Xiaoyan

    2015-07-01

    A flow-shop scheduling problem with blocking has important applications in a variety of industrial systems but is underrepresented in the research literature. In this study, a novel discrete artificial bee colony (ABC) algorithm is presented to solve the above scheduling problem with a makespan criterion by incorporating the ABC with differential evolution (DE). The proposed algorithm (DE-ABC) contains three key operators. One is related to the employed bee operator (i.e. adopting mutation and crossover operators of discrete DE to generate solutions with good quality); the second is concerned with the onlooker bee operator, which modifies the selected solutions using insert or swap operators based on the self-adaptive strategy; and the last is for the local search, that is, the insert-neighbourhood-based local search with a small probability is adopted to improve the algorithm's capability in exploitation. The performance of the proposed DE-ABC algorithm is empirically evaluated by applying it to well-known benchmark problems. The experimental results show that the proposed algorithm is superior to the compared algorithms in minimizing the makespan criterion.

  11. Evaluation of scheduling techniques for payload activity planning

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley F.

    1991-01-01

    Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.

  12. Block Scheduling in High Schools.

    ERIC Educational Resources Information Center

    Irmsher, Karen

    1996-01-01

    Block Scheduling has been considered a cure for a lengthy list of educational problems. This report reviews the literature on block schedules and describes some Oregon high schools that have integrated block scheduling. Major disadvantages included resistance to change and requirements that teachers change their teaching strategies. There is…

  13. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  14. The school bus routing and scheduling problem with transfers

    PubMed Central

    Doerner, Karl F.; Parragh, Sophie N.

    2015-01-01

    In this article, we study the school bus routing and scheduling problem with transfers arising in the field of nonperiodic public transportation systems. It deals with the transportation of pupils from home to their school in the morning taking the possibility that pupils may change buses into account. Allowing transfers has several consequences. On the one hand, it allows more flexibility in the bus network structure and can, therefore, help to reduce operating costs. On the other hand, transfers have an impact on the service level: the perceived service quality is lower due to the existence of transfers; however, at the same time, user ride times may be reduced and, thus, transfers may also have a positive impact on service quality. The main objective is the minimization of the total operating costs. We develop a heuristic solution framework to solve this problem and compare it with two solution concepts that do not consider transfers. The impact of transfers on the service level in terms of time loss (or user ride time) and the number of transfers is analyzed. Our results show that allowing transfers reduces total operating costs significantly while average and maximum user ride times are comparable to solutions without transfers. © 2015 Wiley Periodicals, Inc. NETWORKS, Vol. 65(2), 180–203 2015 PMID:28163329

  15. Research on Production Scheduling System with Bottleneck Based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhenqiang, Bao; Weiye, Wang; Peng, Wang; Pan, Quanke

    Aimed at the imbalance problem of resource capacity in Production Scheduling System, this paper uses Production Scheduling System based on multi-agent which has been constructed, and combines the dynamic and autonomous of Agent; the bottleneck problem in the scheduling is solved dynamically. Firstly, this paper uses Bottleneck Resource Agent to find out the bottleneck resource in the production line, analyses the inherent mechanism of bottleneck, and describes the production scheduling process based on bottleneck resource. Bottleneck Decomposition Agent harmonizes the relationship of job's arrival time and transfer time in Bottleneck Resource Agent and Non-Bottleneck Resource Agents, therefore, the dynamic scheduling problem is simplified as the single machine scheduling of each resource which takes part in the scheduling. Finally, the dynamic real-time scheduling problem is effectively solved in Production Scheduling System.

  16. On the asymptotic optimality and improved strategies of SPTB heuristic for open-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Bai, Danyu; Zhang, Zhihai

    2014-08-01

    This article investigates the open-shop scheduling problem with the optimal criterion of minimising the sum of quadratic completion times. For this NP-hard problem, the asymptotic optimality of the shortest processing time block (SPTB) heuristic is proven in the sense of limit. Moreover, three different improvements, namely, the job-insert scheme, tabu search and genetic algorithm, are introduced to enhance the quality of the original solution generated by the SPTB heuristic. At the end of the article, a series of numerical experiments demonstrate the convergence of the heuristic, the performance of the improvements and the effectiveness of the quadratic objective.

  17. Scheduling: A guide for program managers

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are discussed concerning scheduling: (1) milestone scheduling; (2) network scheduling; (3) program evaluation and review technique; (4) critical path method; (5) developing a network; (6) converting an ugly duckling to a swan; (7) network scheduling problem; (8) (9) network scheduling when resources are limited; (10) multi-program considerations; (11) influence on program performance; (12) line-of-balance technique; (13) time management; (14) recapitulization; and (15) analysis.

  18. Deep Space Network Scheduling Using Evolutionary Computational Methods

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Lee, Seugnwon; Wang, Yeou-Fang; Terrile, Richard J.

    2007-01-01

    The paper presents the specific approach taken to formulate the problem in terms of gene encoding, fitness function, and genetic operations. The genome is encoded such that a subset of the scheduling constraints is automatically satisfied. Several fitness functions are formulated to emphasize different aspects of the scheduling problem. The optimal solutions of the different fitness functions demonstrate the trade-off of the scheduling problem and provide insight into a conflict resolution process.

  19. Decision-theoretic control of EUVE telescope scheduling

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Mayer, Andrew

    1993-01-01

    This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.

  20. Automatic Generation of Heuristics for Scheduling

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Bresina, John L.; Rodgers, Stuart M.

    1997-01-01

    This paper presents a technique, called GenH, that automatically generates search heuristics for scheduling problems. The impetus for developing this technique is the growing consensus that heuristics encode advice that is, at best, useful in solving most, or typical, problem instances, and, at worst, useful in solving only a narrowly defined set of instances. In either case, heuristic problem solvers, to be broadly applicable, should have a means of automatically adjusting to the idiosyncrasies of each problem instance. GenH generates a search heuristic for a given problem instance by hill-climbing in the space of possible multi-attribute heuristics, where the evaluation of a candidate heuristic is based on the quality of the solution found under its guidance. We present empirical results obtained by applying GenH to the real world problem of telescope observation scheduling. These results demonstrate that GenH is a simple and effective way of improving the performance of an heuristic scheduler.

  1. Constraint-based integration of planning and scheduling for space-based observatory management

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven F.

    1994-01-01

    Progress toward the development of effective, practical solutions to space-based observatory scheduling problems within the HSTS scheduling framework is reported. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) short-term observation scheduling problem. The work was motivated by the limitations of the current solution and, more generally, by the insufficiency of classical planning and scheduling approaches in this problem context. HSTS has subsequently been used to develop improved heuristic solution techniques in related scheduling domains and is currently being applied to develop a scheduling tool for the upcoming Submillimeter Wave Astronomy Satellite (SWAS) mission. The salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research are summarized. Then, some key problem decomposition techniques underlying the integrated planning and scheduling approach to the HST problem are described; research results indicate that these techniques provide leverage in solving space-based observatory scheduling problems. Finally, more recently developed constraint-posting scheduling procedures and the current SWAS application focus are summarized.

  2. The nurse scheduling problem: a goal programming and nonlinear optimization approaches

    NASA Astrophysics Data System (ADS)

    Hakim, L.; Bakhtiar, T.; Jaharuddin

    2017-01-01

    Nurses scheduling is an activity of allocating nurses to conduct a set of tasks at certain room at a hospital or health centre within a certain period. One of obstacles in the nurse scheduling is the lack of resources in order to fulfil the needs of the hospital. Nurse scheduling which is undertaken manually will be at risk of not fulfilling some nursing rules set by the hospital. Therefore, this study aimed to perform scheduling models that satisfy all the specific rules set by the management of Bogor State Hospital. We have developed three models to overcome the scheduling needs. Model 1 is designed to schedule nurses who are solely assigned to a certain inpatient unit and Model 2 is constructed to manage nurses who are assigned to an inpatient room as well as at Polyclinic room as conjunct nurses. As the assignment of nurses on each shift is uneven, then we propose Model 3 to minimize the variance of the workload in order to achieve equitable assignment on every shift. The first two models are formulated in goal programming framework, while the last model is in nonlinear optimization form.

  3. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  4. A Network Flow Approach to the Initial Skills Training Scheduling Problem

    DTIC Science & Technology

    2007-12-01

    include (but are not limited to) queuing theory, stochastic analysis and simulation. After the demand schedule has been estimated, it can be ...software package has already been purchased and is in use by AFPC, AFPC has requested that the new algorithm be programmed in this language as well ...the discussed outputs from those schedules. Required Inputs A single input file details the students to be scheduled as well as the courses

  5. Spike: Artificial intelligence scheduling for Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  6. Optimization of municipal waste collection scheduling and routing using vehicle assignment problem (case study of Surabaya city waste collection)

    NASA Astrophysics Data System (ADS)

    Ramdhani, M. N.; Baihaqi, I.; Siswanto, N.

    2018-04-01

    Waste collection and disposal become a major problem for many metropolitan cities. Growing population, limited vehicles, and increased road traffic make the waste transportation become more complex. Waste collection involves some key considerations, such as vehicle assignment, vehicle routes, and vehicle scheduling. In the scheduling process, each vehicle has a scheduled departure that serve each route. Therefore, vehicle’s assignments should consider the time required to finish one assigment on that route. The objective of this study is to minimize the number of vehicles needed to serve all routes by developing a mathematical model which uses assignment problem approach. The first step is to generated possible routes from the existing routes, followed by vehicle assignments for those certain routes. The result of the model shows fewer vehicles required to perform waste collection asa well as the the number of journeys that the vehicle to collect the waste to the landfill. The comparison of existing conditions with the model result indicates that the latter’s has better condition than the existing condition because each vehicle with certain route has an equal workload, all the result’s model has the maximum of two journeys for each route.

  7. Planning and Scheduling for Fleets of Earth Observing Satellites

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Morris, Robert; Smith, David E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    We address the problem of scheduling observations for a collection of earth observing satellites. This scheduling task is a difficult optimization problem, potentially involving many satellites, hundreds of requests, constraints on when and how to service each request, and resources such as instruments, recording devices, transmitters, and ground stations. High-fidelity models are required to ensure the validity of schedules; at the same time, the size and complexity of the problem makes it unlikely that systematic optimization search methods will be able to solve them in a reasonable time. This paper presents a constraint-based approach to solving the Earth Observing Satellites (EOS) scheduling problem, and proposes a stochastic heuristic search method for solving it.

  8. Research on schedulers for astronomical observatories

    NASA Astrophysics Data System (ADS)

    Colome, Josep; Colomer, Pau; Guàrdia, Josep; Ribas, Ignasi; Campreciós, Jordi; Coiffard, Thierry; Gesa, Lluis; Martínez, Francesc; Rodler, Florian

    2012-09-01

    The main task of a scheduler applied to astronomical observatories is the time optimization of the facility and the maximization of the scientific return. Scheduling of astronomical observations is an example of the classical task allocation problem known as the job-shop problem (JSP), where N ideal tasks are assigned to M identical resources, while minimizing the total execution time. A problem of higher complexity, called the Flexible-JSP (FJSP), arises when the tasks can be executed by different resources, i.e. by different telescopes, and it focuses on determining a routing policy (i.e., which machine to assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each operation). In most cases there is no single best approach to solve the planning system and, therefore, various mathematical algorithms (Genetic Algorithms, Ant Colony Optimization algorithms, Multi-Objective Evolutionary algorithms, etc.) are usually considered to adapt the application to the system configuration and task execution constraints. The scheduling time-cycle is also an important ingredient to determine the best approach. A shortterm scheduler, for instance, has to find a good solution with the minimum computation time, providing the system with the capability to adapt the selected task to varying execution constraints (i.e., environment conditions). We present in this contribution an analysis of the task allocation problem and the solutions currently in use at different astronomical facilities. We also describe the schedulers for three different projects (CTA, CARMENES and TJO) where the conclusions of this analysis are applied to develop a suitable routine.

  9. Modeling and deadlock avoidance of automated manufacturing systems with multiple automated guided vehicles.

    PubMed

    Wu, Naiqi; Zhou, MengChu

    2005-12-01

    An automated manufacturing system (AMS) contains a number of versatile machines (or workstations), buffers, an automated material handling system (MHS), and is computer-controlled. An effective and flexible alternative for implementing MHS is to use automated guided vehicle (AGV) system. The deadlock issue in AMS is very important in its operation and has extensively been studied. The deadlock problems were separately treated for parts in production and transportation and many techniques were developed for each problem. However, such treatment does not take the advantage of the flexibility offered by multiple AGVs. In general, it is intractable to obtain maximally permissive control policy for either problem. Instead, this paper investigates these two problems in an integrated way. First we model an AGV system and part processing processes by resource-oriented Petri nets, respectively. Then the two models are integrated by using macro transitions. Based on the combined model, a novel control policy for deadlock avoidance is proposed. It is shown to be maximally permissive with computational complexity of O (n2) where n is the number of machines in AMS if the complexity for controlling the part transportation by AGVs is not considered. Thus, the complexity of deadlock avoidance for the whole system is bounded by the complexity in controlling the AGV system. An illustrative example shows its application and power.

  10. Integrated scheduling and resource management. [for Space Station Information System

    NASA Technical Reports Server (NTRS)

    Ward, M. T.

    1987-01-01

    This paper examines the problem of integrated scheduling during the Space Station era. Scheduling for Space Station entails coordinating the support of many distributed users who are sharing common resources and pursuing individual and sometimes conflicting objectives. This paper compares the scheduling integration problems of current missions with those anticipated for the Space Station era. It examines the facilities and the proposed operations environment for Space Station. It concludes that the pattern of interdependecies among the users and facilities, which are the source of the integration problem is well structured, allowing a dividing of the larger problem into smaller problems. It proposes an architecture to support integrated scheduling by scheduling efficiently at local facilities as a function of dependencies with other facilities of the program. A prototype is described that is being developed to demonstrate this integration concept.

  11. Capacitated vehicle-routing problem model for scheduled solid waste collection and route optimization using PSO algorithm.

    PubMed

    Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar

    2018-01-01

    Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Vehicle and driver scheduling for public transit.

    DOT National Transportation Integrated Search

    2009-08-01

    The problem of driver scheduling involves the construction of a legal set of shifts, including allowance : of overtime, which cover the blocks in a particular vehicle schedule. A shift is the work scheduled to be performed by : a driver in one day, w...

  13. Improving Resource Selection and Scheduling Using Predictions. Chapter 1

    NASA Technical Reports Server (NTRS)

    Smith, Warren

    2003-01-01

    The introduction of computational grids has resulted in several new problems in the area of scheduling that can be addressed using predictions. The first problem is selecting where to run an application on the many resources available in a grid. Our approach to help address this problem is to provide predictions of when an application would start to execute if submitted to specific scheduled computer systems. The second problem is gaining simultaneous access to multiple computer systems so that distributed applications can be executed. We help address this problem by investigating how to support advance reservations in local scheduling systems. Our approaches to both of these problems are based on predictions for the execution time of applications on space- shared parallel computers. As a side effect of this work, we also discuss how predictions of application run times can be used to improve scheduling performance.

  14. Empirical results on scheduling and dynamic backtracking

    NASA Technical Reports Server (NTRS)

    Boddy, Mark S.; Goldman, Robert P.

    1994-01-01

    At the Honeywell Technology Center (HTC), we have been working on a scheduling problem related to commercial avionics. This application is large, complex, and hard to solve. To be a little more concrete: 'large' means almost 20,000 activities, 'complex' means several activity types, periodic behavior, and assorted types of temporal constraints, and 'hard to solve' means that we have been unable to eliminate backtracking through the use of search heuristics. At this point, we can generate solutions, where solutions exist, or report failure and sometimes why the system failed. To the best of our knowledge, this is among the largest and most complex scheduling problems to have been solved as a constraint satisfaction problem, at least that has appeared in the published literature. This abstract is a preliminary report on what we have done and how. In the next section, we present our approach to treating scheduling as a constraint satisfaction problem. The following sections present the application in more detail and describe how we solve scheduling problems in the application domain. The implemented system makes use of Ginsberg's Dynamic Backtracking algorithm, with some minor extensions to improve its utility for scheduling. We describe those extensions and the performance of the resulting system. The paper concludes with some general remarks, open questions and plans for future work.

  15. Schedule Matters: Understanding the Relationship between Schedule Delays and Costs on Overruns

    NASA Technical Reports Server (NTRS)

    Majerowicz, Walt; Shinn, Stephen A.

    2016-01-01

    This paper examines the relationship between schedule delays and cost overruns on complex projects. It is generally accepted by many project practitioners that cost overruns are directly related to schedule delays. But what does "directly related to" actually mean? Some reasons or root causes for schedule delays and associated cost overruns are obvious, if only in hindsight. For example, unrealistic estimates, supply chain difficulties, insufficient schedule margin, technical problems, scope changes, or the occurrence of risk events can negatively impact schedule performance. Other factors driving schedule delays and cost overruns may be less obvious and more difficult to quantify. Examples of these less obvious factors include project complexity, flawed estimating assumptions, over-optimism, political factors, "black swan" events, or even poor leadership and communication. Indeed, is it even possible the schedule itself could be a source of delay and subsequent cost overrun? Through literature review, surveys of project practitioners, and the authors' own experience on NASA programs and projects, the authors will categorize and examine the various factors affecting the relationship between project schedule delays and cost growth. The authors will also propose some ideas for organizations to consider to help create an awareness of the factors which could cause or influence schedule delays and associated cost growth on complex projects.

  16. A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem

    NASA Astrophysics Data System (ADS)

    Pourrahimian, Parinaz

    2017-11-01

    Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Algorithm (MA) for optimizing partitioning problem of tandem AGVS. MAs employ a Genetic Algorithm (GA), as a global search, and apply a local search to bring the solutions to a local optimum point. A new Tabu Search (TS) has been developed and combined with a GA to refine the newly generated individuals by GA. The aim of the proposed algorithm is to minimize the maximum workload of the system. After all, the performance of the proposed algorithm is evaluated using Matlab. This study also compared the objective function of the proposed MA with GA. The results showed that the TS, as a local search, significantly improves the objective function of the GA for different system sizes with large and small numbers of zone by 1.26 in average.

  17. Scheduling Future Water Supply Investments Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Huskova, I.; Matrosov, E. S.; Harou, J. J.; Kasprzyk, J. R.; Reed, P. M.

    2014-12-01

    Uncertain hydrological impacts of climate change, population growth and institutional changes pose a major challenge to planning of water supply systems. Planners seek optimal portfolios of supply and demand management schemes but also when to activate assets whilst considering many system goals and plausible futures. Incorporation of scheduling into the planning under uncertainty problem strongly increases its complexity. We investigate some approaches to scheduling with many-objective heuristic search. We apply a multi-scenario many-objective scheduling approach to the Thames River basin water supply system planning problem in the UK. Decisions include which new supply and demand schemes to implement, at what capacity and when. The impact of different system uncertainties on scheme implementation schedules are explored, i.e. how the choice of future scenarios affects the search process and its outcomes. The activation of schemes is influenced by the occurrence of extreme hydrological events in the ensemble of plausible scenarios and other factors. The approach and results are compared with a previous study where only the portfolio problem is addressed (without scheduling).

  18. Asymptotic analysis of online algorithms and improved scheme for the flow shop scheduling problem with release dates

    NASA Astrophysics Data System (ADS)

    Bai, Danyu

    2015-08-01

    This paper discusses the flow shop scheduling problem to minimise the total quadratic completion time (TQCT) with release dates in offline and online environments. For this NP-hard problem, the investigation is focused on the performance of two online algorithms based on the Shortest Processing Time among Available jobs rule. Theoretical results indicate the asymptotic optimality of the algorithms as the problem scale is sufficiently large. To further enhance the quality of the original solutions, the improvement scheme is provided for these algorithms. A new lower bound with performance guarantee is provided, and computational experiments show the effectiveness of these heuristics. Moreover, several results of the single-machine TQCT problem with release dates are also obtained for the deduction of the main theorem.

  19. Designing a fuzzy scheduler for hard real-time systems

    NASA Technical Reports Server (NTRS)

    Yen, John; Lee, Jonathan; Pfluger, Nathan; Natarajan, Swami

    1992-01-01

    In hard real-time systems, tasks have to be performed not only correctly, but also in a timely fashion. If timing constraints are not met, there might be severe consequences. Task scheduling is the most important problem in designing a hard real-time system, because the scheduling algorithm ensures that tasks meet their deadlines. However, the inherent nature of uncertainty in dynamic hard real-time systems increases the problems inherent in scheduling. In an effort to alleviate these problems, we have developed a fuzzy scheduler to facilitate searching for a feasible schedule. A set of fuzzy rules are proposed to guide the search. The situation we are trying to address is the performance of the system when no feasible solution can be found, and therefore, certain tasks will not be executed. We wish to limit the number of important tasks that are not scheduled.

  20. Decision theory for computing variable and value ordering decisions for scheduling problems

    NASA Technical Reports Server (NTRS)

    Linden, Theodore A.

    1993-01-01

    Heuristics that guide search are critical when solving large planning and scheduling problems, but most variable and value ordering heuristics are sensitive to only one feature of the search state. One wants to combine evidence from all features of the search state into a subjective probability that a value choice is best, but there has been no solid semantics for merging evidence when it is conceived in these terms. Instead, variable and value ordering decisions should be viewed as problems in decision theory. This led to two key insights: (1) The fundamental concept that allows heuristic evidence to be merged is the net incremental utility that will be achieved by assigning a value to a variable. Probability distributions about net incremental utility can merge evidence from the utility function, binary constraints, resource constraints, and other problem features. The subjective probability that a value is the best choice is then derived from probability distributions about net incremental utility. (2) The methods used for rumor control in Bayesian Networks are the primary way to prevent cycling in the computation of probable net incremental utility. These insights lead to semantically justifiable ways to compute heuristic variable and value ordering decisions that merge evidence from all available features of the search state.

  1. Future aircraft networks and schedules

    NASA Astrophysics Data System (ADS)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  2. Multi-Objective Scheduling for the Cluster II Constellation

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Giuliano, Mark

    2011-01-01

    This paper describes the application of the MUSE multiobjecctive scheduling framework to the Cluster II WBD scheduling domain. Cluster II is an ESA four-spacecraft constellation designed to study the plasma environment of the Earth and it's magnetosphere. One of the instruments on each of the four spacecraft is the Wide Band Data (WBD) plasma wave experiment. We have applied the MUSE evolutionary algorithm to the scheduling problem represented by this instrument, and the result has been adopted and utilized by the WBD schedulers for nearly a year. This paper describes the WBD scheduling problem, its representation in MUSE, and some of the visualization elements that provide insight into objective value tradeoffs.

  3. Preliminary Evaluation of BIM-based Approaches for Schedule Delay Analysis

    NASA Astrophysics Data System (ADS)

    Chou, Hui-Yu; Yang, Jyh-Bin

    2017-10-01

    The problem of schedule delay commonly occurs in construction projects. The quality of delay analysis depends on the availability of schedule-related information and delay evidence. More information used in delay analysis usually produces more accurate and fair analytical results. How to use innovative techniques to improve the quality of schedule delay analysis results have received much attention recently. As Building Information Modeling (BIM) technique has been quickly developed, using BIM and 4D simulation techniques have been proposed and implemented. Obvious benefits have been achieved especially in identifying and solving construction consequence problems in advance of construction. This study preforms an intensive literature review to discuss the problems encountered in schedule delay analysis and the possibility of using BIM as a tool in developing a BIM-based approach for schedule delay analysis. This study believes that most of the identified problems can be dealt with by BIM technique. Research results could be a fundamental of developing new approaches for resolving schedule delay disputes.

  4. Cost-efficient scheduling of FAST observations

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi

    2018-03-01

    A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.

  5. Two-machine flow shop scheduling integrated with preventive maintenance planning

    NASA Astrophysics Data System (ADS)

    Wang, Shijin; Liu, Ming

    2016-02-01

    This paper investigates an integrated optimisation problem of production scheduling and preventive maintenance (PM) in a two-machine flow shop with time to failure of each machine subject to a Weibull probability distribution. The objective is to find the optimal job sequence and the optimal PM decisions before each job such that the expected makespan is minimised. To investigate the value of integrated scheduling solution, computational experiments on small-scale problems with different configurations are conducted with total enumeration method, and the results are compared with those of scheduling without maintenance but with machine degradation, and individual job scheduling combined with independent PM planning. Then, for large-scale problems, four genetic algorithm (GA) based heuristics are proposed. The numerical results with several large problem sizes and different configurations indicate the potential benefits of integrated scheduling solution and the results also show that proposed GA-based heuristics are efficient for the integrated problem.

  6. Scheduling with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Fennel, Theron R.; Underbrink, A. J., Jr.; Williams, George P. W., Jr.

    1994-01-01

    In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements.

  7. An innovative artificial bee colony algorithm and its application to a practical intercell scheduling problem

    NASA Astrophysics Data System (ADS)

    Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong

    2018-06-01

    In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.

  8. Job Scheduling in a Heterogeneous Grid Environment

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  9. High performance techniques for space mission scheduling

    NASA Technical Reports Server (NTRS)

    Smith, Stephen F.

    1994-01-01

    In this paper, we summarize current research at Carnegie Mellon University aimed at development of high performance techniques and tools for space mission scheduling. Similar to prior research in opportunistic scheduling, our approach assumes the use of dynamic analysis of problem constraints as a basis for heuristic focusing of problem solving search. This methodology, however, is grounded in representational assumptions more akin to those adopted in recent temporal planning research, and in a problem solving framework which similarly emphasizes constraint posting in an explicitly maintained solution constraint network. These more general representational assumptions are necessitated by the predominance of state-dependent constraints in space mission planning domains, and the consequent need to integrate resource allocation and plan synthesis processes. First, we review the space mission problems we have considered to date and indicate the results obtained in these application domains. Next, we summarize recent work in constraint posting scheduling procedures, which offer the promise of better future solutions to this class of problems.

  10. Shiftwork Scheduling for the 1990s.

    ERIC Educational Resources Information Center

    Coleman, Richard M.

    1989-01-01

    The author discusses the problems of scheduling shift work, touching on such topics as employee desires, health requirements, and business needs. He presents a method for developing shift schedules that addresses these three areas. Implementation hints are also provided. (CH)

  11. Improving Hospital-wide Patient Scheduling Decisions by Clinical Pathway Mining.

    PubMed

    Gartner, Daniel; Arnolds, Ines V; Nickel, Stefan

    2015-01-01

    Recent research has highlighted the need for solving hospital-wide patient scheduling problems. Inpatient scheduling, patient activities have to be scheduled on scarce hospital resources such that temporal relations between activities (e.g. for recovery times) are ensured. Common objectives are, among others, the minimization of the length of stay (LOS). In this paper, we consider a hospital-wide patient scheduling problem with LOS minimization based on uncertain clinical pathways. We approach the problem in three stages: First, we learn most likely clinical pathways using a sequential pattern mining approach. Second, we provide a mathematical model for patient scheduling and finally, we combine the two approaches. In an experimental study carried out using real-world data, we show that our approach outperforms baseline approaches on two metrics.

  12. Binary Trees and Parallel Scheduling Algorithms.

    DTIC Science & Technology

    1980-09-01

    been pro- cessed for p. time units. If a job does not complete by its due time, it is tardy. In a nonpreemptive schedule, job i is scheduled to process...the preemptive schedule obtained by the algorithm of section 2.1.2 also minimizes 5Ti, this problem is easily solved in parallel. When lci is to e...August 1978, pp. 657-661. 14. Horn, W. A., "Some simple scheduling algorithms," Naval Res. Logist . Qur., Vol. 21, pp. 177-185, 1974. i5. Hforowitz, E

  13. Scheduling multirobot operations in manufacturing by truncated Petri nets

    NASA Astrophysics Data System (ADS)

    Chen, Qin; Luh, J. Y.

    1995-08-01

    Scheduling of operational sequences in manufacturing processes is one of the important problems in automation. Methods of applying Petri nets to model and analyze the problem with constraints on precedence relations, multiple resources allocation, etc. have been available in literature. Searching for an optimum schedule can be implemented by combining the branch-and-bound technique with the execution of the timed Petri net. The process usually produces a large Petri net which is practically not manageable. This disadvantage, however, can be handled by a truncation technique which divides the original large Petri net into several smaller size subnets. The complexity involved in the analysis of each subnet individually is greatly reduced. However, when the locally optimum schedules of the resulting subnets are combined together, it may not yield an overall optimum schedule for the original Petri net. To circumvent this problem, algorithms are developed based on the concepts of Petri net execution and modified branch-and-bound process. The developed technique is applied to a multi-robot task scheduling problem of the manufacturing work cell.

  14. Coordinating space telescope operations in an integrated planning and scheduling architecture

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela

    1992-01-01

    The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.

  15. A Comparison of Techniques for Scheduling Fleets of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    Earth observing satellite (EOS) scheduling is a complex real-world domain representative of a broad class of over-subscription scheduling problems. Over-subscription problems are those where requests for a facility exceed its capacity. These problems arise in a wide variety of NASA and terrestrial domains and are .XI important class of scheduling problems because such facilities often represent large capital investments. We have run experiments comparing multiple variants of the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on two variants of a realistically-sized model of the EOS scheduling problem. These are implemented as permutation-based methods; methods that search in the space of priority orderings of observation requests and evaluate each permutation by using it to drive a greedy scheduler. Simulated annealing performs best and random mutation operators outperform our squeaky (more intelligent) operator. Furthermore, taking smaller steps towards the end of the search improves performance.

  16. Predit: A temporal predictive framework for scheduling systems

    NASA Technical Reports Server (NTRS)

    Paolucci, E.; Patriarca, E.; Sem, M.; Gini, G.

    1992-01-01

    Scheduling can be formalized as a Constraint Satisfaction Problem (CSP). Within this framework activities belonging to a plan are interconnected via temporal constraints that account for slack among them. Temporal representation must include methods for constraints propagation and provide a logic for symbolic and numerical deductions. In this paper we describe a support framework for opportunistic reasoning in constraint directed scheduling. In order to focus the attention of an incremental scheduler on critical problem aspects, some discrete temporal indexes are presented. They are also useful for the prediction of the degree of resources contention. The predictive method expressed through our indexes can be seen as a Knowledge Source for an opportunistic scheduler with a blackboard architecture.

  17. Scheduling and control strategies for the departure problem in air traffic control

    NASA Astrophysics Data System (ADS)

    Bolender, Michael Alan

    Two problems relating to the departure problem in air traffic control automation are examined. The first problem that is addressed is the scheduling of aircraft for departure. The departure operations at a major US hub airport are analyzed, and a discrete event simulation of the departure operations is constructed. Specifically, the case where there is a single departure runway is considered. The runway is fed by two queues of aircraft. Each queue, in turn, is fed by a single taxiway. Two salient areas regarding scheduling are addressed. The first is the construction of optimal departure sequences for the aircraft that are queued. Several greedy search algorithms are designed to minimize the total time to depart a set of queued aircraft. Each algorithm has a different set of heuristic rules to resolve situations within the search space whenever two branches of the search tree with equal edge costs are encountered. These algorithms are then compared and contrasted with a genetic search algorithm in order to assess the performance of the heuristics. This is done in the context of a static departure problem where the length of the departure queue is fixed. A greedy algorithm which deepens the search whenever two branches of the search tree with non-unique costs are encountered is shown to outperform the other heuristic algorithms. This search strategy is then implemented in the discrete event simulation. A baseline performance level is established, and a sensitivity analysis is performed by implementing changes in traffic mix, routing, and miles-in-trail restrictions for comparison. It is concluded that to minimize the average time spent in the queue for different traffic conditions, a queue assignment algorithm is needed to maintain an even balance of aircraft in the queues. A necessary consideration is to base queue assignment upon traffic management restrictions such as miles-in-trail constraints. The second problem addresses the technical challenges associated

  18. Steps Toward Optimal Competitive Scheduling

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen

    2006-01-01

    This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, se@sh preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource. This problem arises in many institutional settings where, e.g., different departments, agencies, or personal, compete for a single resource. We are particularly motivated by the problem of scheduling NASA's Deep Space Satellite Network (DSN) among different users within NASA. Access to DSN is needed for transmitting data from various space missions to Earth. Each mission has different needs for DSN time, depending on satellite and planetary orbits. Typically, the DSN is over-subscribed, in that not all missions will be allocated as much time as they want. This leads to various inefficiencies - missions spend much time and resource lobbying for their time, often exaggerating their needs. NASA, on the other hand, would like to make optimal use of this resource, ensuring that the good for NASA is maximized. This raises the thorny problem of how to measure the utility to NASA of each allocation. In the typical case, it is difficult for the central agency, NASA in our case, to assess the value of each interval to each user - this is really only known to the users who understand their needs. Thus, our problem is more precisely formulated as follows: find an allocation schedule for the resource that maximizes the sum of users preferences, when the preference values are private information of the users. We bypass this problem by making the assumptions that one can assign money to customers. This assumption is reasonable; a

  19. Development of Watch Schedule Using Rules Approach

    NASA Astrophysics Data System (ADS)

    Jurkevicius, Darius; Vasilecas, Olegas

    The software for schedule creation and optimization solves a difficult, important and practical problem. The proposed solution is an online employee portal where administrator users can create and manage watch schedules and employee requests. Each employee can login with his/her own account and see his/her assignments, manage requests, etc. Employees set as administrators can perform the employee scheduling online, manage requests, etc. This scheduling software allows users not only to see the initial and optimized watch schedule in a simple and understandable form, but also to create special rules and criteria and input their business. The system using rules automatically will generate watch schedule.

  20. Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    DTIC Science & Technology

    2016-09-09

    prenticeship Scheduling (COVAS), which performs ma- chine learning using human expert demonstration, in conjunction with optimization, to automatically and ef...ficiently produce optimal solutions to challenging real- world scheduling problems. COVAS first learns a policy from human scheduling demonstration via...apprentice- ship learning , then uses this initial solution to provide a tight bound on the value of the optimal solution, thereby substantially

  1. Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching

    NASA Astrophysics Data System (ADS)

    Shen, Kaiming; Yu, Wei

    2018-05-01

    This two-part paper develops novel methodologies for using fractional programming (FP) techniques to design and optimize communication systems. Part I of this paper proposes a new quadratic transform for FP and treats its application for continuous optimization problems. In this Part II of the paper, we study discrete problems, such as those involving user scheduling, which are considerably more difficult to solve. Unlike the continuous problems, discrete or mixed discrete-continuous problems normally cannot be recast as convex problems. In contrast to the common heuristic of relaxing the discrete variables, this work reformulates the original problem in an FP form amenable to distributed combinatorial optimization. The paper illustrates this methodology by tackling the important and challenging problem of uplink coordinated multi-cell user scheduling in wireless cellular systems. Uplink scheduling is more challenging than downlink scheduling, because uplink user scheduling decisions significantly affect the interference pattern in nearby cells. Further, the discrete scheduling variable needs to be optimized jointly with continuous variables such as transmit power levels and beamformers. The main idea of the proposed FP approach is to decouple the interaction among the interfering links, thereby permitting a distributed and joint optimization of the discrete and continuous variables with provable convergence. The paper shows that the well-known weighted minimum mean-square-error (WMMSE) algorithm can also be derived from a particular use of FP; but our proposed FP-based method significantly outperforms WMMSE when discrete user scheduling variables are involved, both in term of run-time efficiency and optimizing results.

  2. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

    PubMed

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.

  3. Pre-Scheduled and Self Organized Sleep-Scheduling Algorithms for Efficient K-Coverage in Wireless Sensor Networks

    PubMed Central

    Hwang, I-Shyan

    2017-01-01

    The K-coverage configuration that guarantees coverage of each location by at least K sensors is highly popular and is extensively used to monitor diversified applications in wireless sensor networks. Long network lifetime and high detection quality are the essentials of such K-covered sleep-scheduling algorithms. However, the existing sleep-scheduling algorithms either cause high cost or cannot preserve the detection quality effectively. In this paper, the Pre-Scheduling-based K-coverage Group Scheduling (PSKGS) and Self-Organized K-coverage Scheduling (SKS) algorithms are proposed to settle the problems in the existing sleep-scheduling algorithms. Simulation results show that our pre-scheduled-based KGS approach enhances the detection quality and network lifetime, whereas the self-organized-based SKS algorithm minimizes the computation and communication cost of the nodes and thereby is energy efficient. Besides, SKS outperforms PSKGS in terms of network lifetime and detection quality as it is self-organized. PMID:29257078

  4. A System for Automatically Generating Scheduling Heuristics

    NASA Technical Reports Server (NTRS)

    Morris, Robert

    1996-01-01

    The goal of this research is to improve the performance of automated schedulers by designing and implementing an algorithm by automatically generating heuristics by selecting a schedule. The particular application selected by applying this method solves the problem of scheduling telescope observations, and is called the Associate Principal Astronomer. The input to the APA scheduler is a set of observation requests submitted by one or more astronomers. Each observation request specifies an observation program as well as scheduling constraints and preferences associated with the program. The scheduler employs greedy heuristic search to synthesize a schedule that satisfies all hard constraints of the domain and achieves a good score with respect to soft constraints expressed as an objective function established by an astronomer-user.

  5. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  6. Three hybridization models based on local search scheme for job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Balbi Fraga, Tatiana

    2015-05-01

    This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.

  7. Control and Diagnosis in Integrated Product Development - Observations during the Development of an AGV

    NASA Astrophysics Data System (ADS)

    Stetter, R.; Simundsson, A.

    2015-11-01

    This paper is concerned with the integration of control and diagnosis functionalities into the development of complete systems which include mechanical, electrical and electronic subsystems. For the development of such systems the strategies, methods and tools of integrated product development have attracted significant attention during the last decades. Today, it is generally observed that product development processes of complex systems can only be successful if the activities in the different domains are well connected and synchronised and if an ongoing communication is present - an ongoing communication spanning the technical domains and also including functions such as production planning, marketing/distribution, quality assurance, service and project planning. Obviously, numerous approaches to tackle this challenge are present in scientific literature and in industrial practice, as well. Today, the functionality and safety of most products is to a large degree dependent on control and diagnosis functionalities. Still, there is comparatively little research concentrating on the integration of the development of these functionalities into the overall product development processes. The main source of insight of the presented research is the product development process of an Automated Guided Vehicle (AGV) which is intended to be used on rough terrain. The paper starts with a background describing Integrated Product Development. The second section deals with the product development of the sample product. The third part summarizes some insights and formulates first hypotheses concerning control and diagnosis in Integrated Product Development.

  8. Chandra mission scheduling on-orbit experience

    NASA Astrophysics Data System (ADS)

    Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David

    2008-07-01

    Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.

  9. Scheduling periodic jobs using imprecise results

    NASA Technical Reports Server (NTRS)

    Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay

    1987-01-01

    One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed.

  10. Scheduling Projects with Multiskill Learning Effect

    PubMed Central

    2014-01-01

    We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost. PMID:24683355

  11. Scheduling projects with multiskill learning effect.

    PubMed

    Zha, Hong; Zhang, Lianying

    2014-01-01

    We investigate the project scheduling problem with multiskill learning effect. A new model is proposed to deal with the problem, where both autonomous and induced learning are considered. In order to obtain the optimal solution, a genetic algorithm with specific encoding and decoding schemes is introduced. A numerical example is used to illustrate the proposed model. The computational results show that the learning effect cannot be neglected in project scheduling. By means of determining the level of induced learning, the project manager can balance the project makespan with total cost.

  12. Toward interactive scheduling systems for managing medical resources.

    PubMed

    Oddi, A; Cesta, A

    2000-10-01

    Managers of medico-hospital facilities are facing two general problems when allocating resources to activities: (1) to find an agreement between several and contrasting requirements; (2) to manage dynamic and uncertain situations when constraints suddenly change over time due to medical needs. This paper describes the results of a research aimed at applying constraint-based scheduling techniques to the management of medical resources. A mixed-initiative problem solving approach is adopted in which a user and a decision support system interact to incrementally achieve a satisfactory solution to the problem. A running prototype is described called Interactive Scheduler which offers a set of functionalities for a mixed-initiative interaction to cope with the medical resource management. Interactive Scheduler is endowed with a representation schema used for describing the medical environment, a set of algorithms that address the specific problems of the domain, and an innovative interaction module that offers functionalities for the dialogue between the support system and its user. A particular contribution of this work is the explicit representation of constraint violations, and the definition of scheduling algorithms that aim at minimizing the amount of constraint violations in a solution.

  13. Scheduling Independent Partitions in Integrated Modular Avionics Systems

    PubMed Central

    Du, Chenglie; Han, Pengcheng

    2016-01-01

    Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013

  14. Scheduling from the perspective of the application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, F.; Wolski, R.

    1996-12-31

    Metacomputing is the aggregation of distributed and high-performance resources on coordinated networks. With careful scheduling, resource-intensive applications can be implemented efficiently on metacomputing systems at the sizes of interest to developers and users. In this paper we focus on the problem of scheduling applications on metacomputing systems. We introduce the concept of application-centric scheduling in which everything about the system is evaluated in terms of its impact on the application. Application-centric scheduling is used by virtually all metacomputer programmers to achieve performance on metacomputing systems. We describe two successful metacomputing applications to illustrate this approach, and describe AppLeS scheduling agentsmore » which generalize the application-centric scheduling approach. Finally, we show preliminary results which compare AppLeS-derived schedules with conventional strip and blocked schedules for a two-dimensional Jacobi code.« less

  15. Strategic Gang Scheduling for Railroad Maintenance

    DOT National Transportation Integrated Search

    2012-08-14

    We address the railway track maintenance scheduling problem. The problem stems from the : significant percentage of the annual budget invested by the railway industry for maintaining its railway : tracks. The process requires consideration of human r...

  16. Production scheduling and rescheduling with genetic algorithms.

    PubMed

    Bierwirth, C; Mattfeld, D C

    1999-01-01

    A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs.

  17. Littoral Combat Ship Crew Scheduling

    DTIC Science & Technology

    2015-03-01

    events and schedules. The selection of u for each sub-problem also has the same tradeoff considerations of balancing solve time and overly myopic ...extending them beyond four months in a phase. Results are compared based on solve time and penalty value. The MIP solution has the best quality...benefits to crew alignment for longer-range schedules. The planner must balance solve time and solution quality when determining the approach to

  18. Schedule-Aware Workflow Management Systems

    NASA Astrophysics Data System (ADS)

    Mans, Ronny S.; Russell, Nick C.; van der Aalst, Wil M. P.; Moleman, Arnold J.; Bakker, Piet J. M.

    Contemporary workflow management systems offer work-items to users through specific work-lists. Users select the work-items they will perform without having a specific schedule in mind. However, in many environments work needs to be scheduled and performed at particular times. For example, in hospitals many work-items are linked to appointments, e.g., a doctor cannot perform surgery without reserving an operating theater and making sure that the patient is present. One of the problems when applying workflow technology in such domains is the lack of calendar-based scheduling support. In this paper, we present an approach that supports the seamless integration of unscheduled (flow) and scheduled (schedule) tasks. Using CPN Tools we have developed a specification and simulation model for schedule-aware workflow management systems. Based on this a system has been realized that uses YAWL, Microsoft Exchange Server 2007, Outlook, and a dedicated scheduling service. The approach is illustrated using a real-life case study at the AMC hospital in the Netherlands. In addition, we elaborate on the experiences obtained when developing and implementing a system of this scale using formal techniques.

  19. Optimization Models for Scheduling of Jobs

    PubMed Central

    Indika, S. H. Sathish; Shier, Douglas R.

    2006-01-01

    This work is motivated by a particular scheduling problem that is faced by logistics centers that perform aircraft maintenance and modification. Here we concentrate on a single facility (hangar) which is equipped with several work stations (bays). Specifically, a number of jobs have already been scheduled for processing at the facility; the starting times, durations, and work station assignments for these jobs are assumed to be known. We are interested in how best to schedule a number of new jobs that the facility will be processing in the near future. We first develop a mixed integer quadratic programming model (MIQP) for this problem. Since the exact solution of this MIQP formulation is time consuming, we develop a heuristic procedure, based on existing bin packing techniques. This heuristic is further enhanced by application of certain local optimality conditions. PMID:27274921

  20. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  1. Education and Social Equity: With a Special Focus on Scheduled Castes and Scheduled Tribes in Elementary Education. CREATE Pathways to Access. Research Monograph No. 19

    ERIC Educational Resources Information Center

    Sedwal, Mona; Kamat, Sangeeta

    2008-01-01

    The Scheduled Castes (SCs, also known as Dalits) and Scheduled Tribes (STs, also known as Adivasis) are among the most socially and educationally disadvantaged groups in India. This paper examines issues concerning school access and equity for Scheduled Caste and Scheduled Tribe communities and also highlights their unique problems, which may…

  2. Scheduling real-time, periodic jobs using imprecise results

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Natarajan, Swaminathan

    1987-01-01

    A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated.

  3. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    DOE PAGES

    Yaw, Sean; Mumey, Brendan

    2017-10-28

    Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less

  4. Scheduling Non-Preemptible Jobs to Minimize Peak Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaw, Sean; Mumey, Brendan

    Our paper examines an important problem in smart grid energy scheduling; peaks in power demand are proportionally more expensive to generate and provision for. The issue is exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact that there is often flexibility in job start times. We then focus attention on the case where the jobs are non-preemptible, meaning once started, they run to completion. The associated optimization problem is called the peak demand minimization problem, and has been previously shown tomore » be NP-hard. These results include an optimal fixed-parameter tractable algorithm, a polynomial-time approximation algorithm, as well as an effective heuristic that can also be used in an online setting of the problem. Simulation results show that these methods can reduce peak demand by up to 50% versus on-demand scheduling for household power jobs.« less

  5. Local navigation and fuzzy control realization for autonomous guided vehicle

    NASA Astrophysics Data System (ADS)

    El-Konyaly, El-Sayed H.; Saraya, Sabry F.; Shehata, Raef S.

    1996-10-01

    This paper addresses the problem of local navigation for an autonomous guided vehicle (AGV) in a structured environment that contains static and dynamic obstacles. Information about the environment is obtained via a CCD camera. The problem is formulated as a dynamic feedback control problem in which speed and steering decisions are made on the fly while the AGV is moving. A decision element (DE) that uses local information is proposed. The DE guides the vehicle in the environment by producing appropriate navigation decisions. Dynamic models of a three-wheeled vehicle for driving and steering mechanisms are derived. The interaction between them is performed via the local feedback DE. A controller, based on fuzzy logic, is designed to drive the vehicle safely in an intelligent and human-like manner. The effectiveness of the navigation and control strategies in driving the AGV is illustrated and evaluated.

  6. Scheduling Software for Complex Scenarios

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Preparing a vehicle and its payload for a single launch is a complex process that involves thousands of operations. Because the equipment and facilities required to carry out these operations are extremely expensive and limited in number, optimal assignment and efficient use are critically important. Overlapping missions that compete for the same resources, ground rules, safety requirements, and the unique needs of processing vehicles and payloads destined for space impose numerous constraints that, when combined, require advanced scheduling. Traditional scheduling systems use simple algorithms and criteria when selecting activities and assigning resources and times to each activity. Schedules generated by these simple decision rules are, however, frequently far from optimal. To resolve mission-critical scheduling issues and predict possible problem areas, NASA historically relied upon expert human schedulers who used their judgment and experience to determine where things should happen, whether they will happen on time, and whether the requested resources are truly necessary.

  7. Conception of Self-Construction Production Scheduling System

    NASA Astrophysics Data System (ADS)

    Xue, Hai; Zhang, Xuerui; Shimizu, Yasuhiro; Fujimura, Shigeru

    With the high speed innovation of information technology, many production scheduling systems have been developed. However, a lot of customization according to individual production environment is required, and then a large investment for development and maintenance is indispensable. Therefore now the direction to construct scheduling systems should be changed. The final objective of this research aims at developing a system which is built by it extracting the scheduling technique automatically through the daily production scheduling work, so that an investment will be reduced. This extraction mechanism should be applied for various production processes for the interoperability. Using the master information extracted by the system, production scheduling operators can be supported to accelerate the production scheduling work easily and accurately without any restriction of scheduling operations. By installing this extraction mechanism, it is easy to introduce scheduling system without a lot of expense for customization. In this paper, at first a model for expressing a scheduling problem is proposed. Then the guideline to extract the scheduling information and use the extracted information is shown and some applied functions are also proposed based on it.

  8. Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1995-01-01

    A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.

  9. A scheduling algorithm for Spacelab telescope observations

    NASA Technical Reports Server (NTRS)

    Grone, B.

    1982-01-01

    An algorithm is developed for sequencing and scheduling of observations of stellar targets by equipment on Spacelab. The method is a general one. The scheduling problem is defined and examined. The method developed for its solution is documented. Suggestions for further development and implementation of this method are made.

  10. An improved robust buffer allocation method for the project scheduling problem

    NASA Astrophysics Data System (ADS)

    Ghoddousi, Parviz; Ansari, Ramin; Makui, Ahmad

    2017-04-01

    Unpredictable uncertainties cause delays and additional costs for projects. Often, when using traditional approaches, the optimizing procedure of the baseline project plan fails and leads to delays. In this study, a two-stage multi-objective buffer allocation approach is applied for robust project scheduling. In the first stage, some decisions are made on buffer sizes and allocation to the project activities. A set of Pareto-optimal robust schedules is designed using the meta-heuristic non-dominated sorting genetic algorithm (NSGA-II) based on the decisions made in the buffer allocation step. In the second stage, the Pareto solutions are evaluated in terms of the deviation from the initial start time and due dates. The proposed approach was implemented on a real dam construction project. The outcomes indicated that the obtained buffered schedule reduces the cost of disruptions by 17.7% compared with the baseline plan, with an increase of about 0.3% in the project completion time.

  11. Space power system scheduling using an expert system

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Biefeld, E.; Costello, L.; Klein, J. W.

    1986-01-01

    A most pressing problem in space exploration is timely spacecraft power system sequence generation, which requires the scheduling of a set of loads given a set of resource constraints. This is particularly important after an anomaly or failure. This paper discusses the power scheduling problem and how the software program, Plan-It, can be used as a consultant for scheduling power system activities. Modeling of power activities, human interface, and two of the many strategies used by Plan-It are discussed. Preliminary results showing the development of a conflict-free sequence from an initial sequence with conflicts is presented. It shows that a 4-day schedule can be generated in a matter of a few minutes, which provides sufficient time in many cases to aid the crew in the replanning of loads and generation use following a failure or anomaly.

  12. Scheduling Real-Time Mixed-Criticality Jobs

    NASA Astrophysics Data System (ADS)

    Baruah, Sanjoy K.; Bonifaci, Vincenzo; D'Angelo, Gianlorenzo; Li, Haohan; Marchetti-Spaccamela, Alberto; Megow, Nicole; Stougie, Leen

    Many safety-critical embedded systems are subject to certification requirements; some systems may be required to meet multiple sets of certification requirements, from different certification authorities. Certification requirements in such "mixed-criticality" systems give rise to interesting scheduling problems, that cannot be satisfactorily addressed using techniques from conventional scheduling theory. In this paper, we study a formal model for representing such mixed-criticality workloads. We demonstrate first the intractability of determining whether a system specified in this model can be scheduled to meet all its certification requirements, even for systems subject to two sets of certification requirements. Then we quantify, via the metric of processor speedup factor, the effectiveness of two techniques, reservation-based scheduling and priority-based scheduling, that are widely used in scheduling such mixed-criticality systems, showing that the latter of the two is superior to the former. We also show that the speedup factors are tight for these two techniques.

  13. A space station onboard scheduling assistant

    NASA Technical Reports Server (NTRS)

    Brindle, A. F.; Anderson, B. H.

    1988-01-01

    One of the goals for the Space Station is to achieve greater autonomy, and have less reliance on ground commanding than previous space missions. This means that the crew will have to take an active role in scheduling and rescheduling their activities onboard, perhaps working from preliminary schedules generated on the ground. Scheduling is a time intensive task, whether performed manually or automatically, so the best approach to solving onboard scheduling problems may involve crew members working with an interactive software scheduling package. A project is described which investigates a system that uses knowledge based techniques for the rescheduling of experiments within the Materials Technology Laboratory of the Space Station. Particular attention is paid to: (1) methods for rapid response rescheduling to accommodate unplanned changes in resource availability, (2) the nature of the interface to the crew, (3) the representation of the many types of data within the knowledge base, and (4) the possibility of applying rule-based and constraint-based reasoning methods to onboard activity scheduling.

  14. Electric power scheduling - A distributed problem-solving approach

    NASA Technical Reports Server (NTRS)

    Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

    1990-01-01

    Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity.

  15. Scheduling in the Face of Uncertain Resource Consumption and Utility

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Dearden, Richard

    2003-01-01

    We discuss the problem of scheduling tasks that consume uncertain amounts of a resource with known capacity and where the tasks have uncertain utility. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We show that the problems are NP- complete, and present some results that characterize the behavior of some simple heuristics over a variety of problem classes.

  16. Temporal planning for transportation planning and scheduling

    NASA Technical Reports Server (NTRS)

    Frederking, Robert E.; Muscettola, Nicola

    1992-01-01

    In this paper we describe preliminary work done in the CORTES project, applying the Heuristic Scheduling Testbed System (HSTS) to a transportation planning and scheduling domain. First, we describe in more detail the transportation problems that we are addressing. We then describe the fundamental characteristics of HSTS and we concentrate on the representation of multiple capacity resources. We continue with a more detailed description of the transportation planning problem that we have initially addressed in HSTS and of its solution. Finally we describe future directions for our research.

  17. Planning as a Precursor to Scheduling for Space Station Payload Operations

    NASA Technical Reports Server (NTRS)

    Howell, Eric; Maxwell, Theresa

    1995-01-01

    Contemporary schedulers attempt to solve the problem of best fitting a set of activities into an available timeframe while still satisfying the necessary constraints. This approach produces results which are optimized for the region of time the scheduler is able to process, satisfying the near term goals of the operation. In general the scheduler is not able to reason about the activities which precede or follow the window into which it is inputs to scheduling so that the intermediate placing activities. This creates a problem for operations which are composed of many activities spanning long durations (which exceed the scheduler's reasoning horizon) such as the continuous operations environment for payload operations on the Space Station. Not only must the near term scheduling objectives be met, but somehow the results of near term scheduling must be made to support the attainment of long term goals.

  18. Efficient Bifacial Semitransparent Perovskite Solar Cells Using Ag/V2O5 as Transparent Anodes.

    PubMed

    Pang, Shangzheng; Li, Xueyi; Dong, Hang; Chen, Dazheng; Zhu, Weidong; Chang, Jingjing; Lin, Zhenhua; Xi, He; Zhang, Jincheng; Zhang, Chunfu; Hao, Yue

    2018-04-18

    Bifacial semitransparent inverted planar structured perovskite solar cells (PSCs) based on Cs 0.05 FA 0.3 MA 0.7 PbI 2.51 Br 0.54 using an Ag thin film electrode and V 2 O 5 optical coupling layer are investigated theoretically and experimentally. It is shown that the introduction of the cesium (Cs) ions in the perovskite could obviously improve the device performance and stability. When only the bare Ag film electrode is used, the PSCs show a bifacial performance with the power conversion efficiency (PCE) of 14.62% illuminated from the indium tin oxide (ITO) side and 5.45% from the Ag film side. By introducing a V 2 O 5 optical coupling layer, the PCE is enhanced to 8.91% illuminated from the Ag film side, which is 63% improvement compared with the bare Ag film electrode, whereas the PCE illuminated from the ITO side remains almost unchanged. Moreover, when a back-reflector is employed, the PCE of device could be further improved to 15.39% by illumination from the ITO side and 12.44% by illumination from the Ag side. The devices also show superior semitransparent properties and exhibit negligible photocurrent hysteresis, irrespective of the side from which the light is illuminated. In short, the Ag/V 2 O 5 double layer is a promising semitransparent electrode due to its low cost and simple preparation process, which also point to a new direction for the bifacial PSCs and tandem solar cells.

  19. An extended abstract: A heuristic repair method for constraint-satisfaction and scheduling problems

    NASA Technical Reports Server (NTRS)

    Minton, Steven; Johnston, Mark D.; Philips, Andrew B.; Laird, Philip

    1992-01-01

    The work described in this paper was inspired by a surprisingly effective neural network developed for scheduling astronomical observations on the Hubble Space Telescope. Our heuristic constraint satisfaction problem (CSP) method was distilled from an analysis of the network. In the process of carrying out the analysis, we discovered that the effectiveness of the network has little to do with its connectionist implementation. Furthermore, the ideas employed in the network can be implemented very efficiently within a symbolic CSP framework. The symbolic implementation is extremely simple. It also has the advantage that several different search strategies can be employed, although we have found that hill-climbing methods are particularly well-suited for the applications that we have investigated. We begin the paper with a brief review of the neural network. Following this, we describe our symbolic method for heuristic repair.

  20. CABINS: Case-based interactive scheduler

    NASA Technical Reports Server (NTRS)

    Miyashita, Kazuo; Sycara, Katia

    1992-01-01

    In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.

  1. Optimal radiotherapy dose schedules under parametric uncertainty

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Watanabe, Yoichi; Leder, Kevin

    2016-01-01

    We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.

  2. Advancing Air Force Scheduling through Modeling Problem Topologies

    DTIC Science & Technology

    2006-08-03

    Merrill on August 23, 2005 and corresponded with Major David Van Veldhuizen in Fall 2005 about obtaining data. 3.4.3 Transitions Analytical Graphics and...observation satellite orbit. Technical Report CRT-2003-27, Centre de recherche sur les transports, July 2003. [5] Van -Dat Cung. ROADEF 2003: Results of the...collaborateurs/etd/default.htm. January, 2004. [15] P.J.M van Laarhoven, E.H.L. Aarts, and J.K. Lenstra. Job shop scheduling by simulated annealing

  3. Developing optimal nurses work schedule using integer programming

    NASA Astrophysics Data System (ADS)

    Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena

    2017-08-01

    Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.

  4. Observation Scheduling System

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Tran, Daniel Q.; Rabideau, Gregg R.; Schaffer, Steven R.

    2011-01-01

    Software has been designed to schedule remote sensing with the Earth Observing One spacecraft. The software attempts to satisfy as many observation requests as possible considering each against spacecraft operation constraints such as data volume, thermal, pointing maneuvers, and others. More complex constraints such as temperature are approximated to enable efficient reasoning while keeping the spacecraft within safe limits. Other constraints are checked using an external software library. For example, an attitude control library is used to determine the feasibility of maneuvering between pairs of observations. This innovation can deal with a wide range of spacecraft constraints and solve large scale scheduling problems like hundreds of observations and thousands of combinations of observation sequences.

  5. An investigation of the use of temporal decomposition in space mission scheduling

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley E.; Narayanan, Venkat

    1994-01-01

    This research involves an examination of techniques for solving scheduling problems in long-duration space missions. The mission timeline is broken up into several time segments, which are then scheduled incrementally. Three methods are presented for identifying the activities that are to be attempted within these segments. The first method is a mathematical model, which is presented primarily to illustrate the structure of the temporal decomposition problem. Since the mathematical model is bound to be computationally prohibitive for realistic problems, two heuristic assignment procedures are also presented. The first heuristic method is based on dispatching rules for activity selection, and the second heuristic assigns performances of a model evenly over timeline segments. These heuristics are tested using a sample Space Station mission and a Spacelab mission. The results are compared with those obtained by scheduling the missions without any problem decomposition. The applicability of this approach to large-scale mission scheduling problems is also discussed.

  6. Scheduling IT staff at a bank: a mathematical programming approach.

    PubMed

    Labidi, M; Mrad, M; Gharbi, A; Louly, M A

    2014-01-01

    We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules.

  7. A Comparison of Earned Value Management and Earned Schedule as Schedule Predictors on DoD ACAT I Programs

    DTIC Science & Technology

    2013-03-01

    33 Mario Vanhoucke and Stephan Vandevoorde – “Measuring the Accuracy of Earned Value/Earned Schedule Forecasting Predictors” (2007...technical problem to the present day ‘ super projects’” (Clark and Lorenzoni, 1997: 2). Cost engineering has “application regardless of industry...large construction projects, but also the acceptance of earned schedule principles on an international scale. Mario Vanhoucke and Stephan Vandevoorde

  8. Further Evaluation of the Use of Multiple Schedules for Behavior Maintained by Negative Reinforcement.

    PubMed

    Campos, Claudia; Leon, Yanerys; Sleiman, Andressa; Urcuyo, Beatriz

    2017-03-01

    One potential limitation of functional communication training (FCT) is that after the functional communication response (FCR) is taught, the response may be emitted at high rates or inappropriate times. Thus, schedule thinning is often necessary. Previous research has demonstrated that multiple schedules can facilitate schedule thinning by establishing discriminative control of the communication response while maintaining low rates of problem behavior. To date, most applied research evaluating the clinical utility of multiple schedules has done so in the context of behavior maintained by positive reinforcement (e.g., attention or tangible items). This study examined the use of a multiple schedule with alternating Fixed Ratio (FR 1)/extinction (EXT) components for two individuals with developmental disabilities who emitted escape-maintained problem behavior. Although problem behavior remained low during all FCT and multiple schedule phases, the use of the multiple schedule alone did not result in discriminated manding.

  9. Systemic Sustainability in RtI Using Intervention-Based Scheduling Methodologies

    ERIC Educational Resources Information Center

    Dallas, William P.

    2017-01-01

    This study evaluated a scheduling methodology referred to as intervention-based scheduling to address the problem of practice regarding the fidelity of implementing Response to Intervention (RtI) in an existing school schedule design. Employing panel data, this study used fixed-effects regressions and first differences ordinary least squares (OLS)…

  10. Using the principles of circadian physiology enhances shift schedule design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.J.; Moore-Ede, M.C.

    1987-01-01

    Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance andmore » alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.« less

  11. Non-Evolutionary Algorithms for Scheduling Dependent Tasks in Distributed Heterogeneous Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne F. Boyer; Gurdeep S. Hura

    2005-09-01

    The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less

  12. Dynamic scheduling and planning parallel observations on large Radio Telescope Arrays with the Square Kilometre Array in mind

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes

    2011-12-01

    Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the

  13. Technology for planning and scheduling under complex constraints

    NASA Astrophysics Data System (ADS)

    Alguire, Karen M.; Pedro Gomes, Carla O.

    1997-02-01

    Within the context of law enforcement, several problems fall into the category of planning and scheduling under constraints. Examples include resource and personnel scheduling, and court scheduling. In the case of court scheduling, a schedule must be generated considering available resources, e.g., court rooms and personnel. Additionally, there are constraints on individual court cases, e.g., temporal and spatial, and between different cases, e.g., precedence. Finally, there are overall objectives that the schedule should satisfy such as timely processing of cases and optimal use of court facilities. Manually generating a schedule that satisfies all of the constraints is a very time consuming task. As the number of court cases and constraints increases, this becomes increasingly harder to handle without the assistance of automatic scheduling techniques. This paper describes artificial intelligence (AI) technology that has been used to develop several high performance scheduling applications including a military transportation scheduler, a military in-theater airlift scheduler, and a nuclear power plant outage scheduler. We discuss possible law enforcement applications where we feel the same technology could provide long-term benefits to law enforcement agencies and their operations personnel.

  14. Electric power scheduling: A distributed problem-solving approach

    NASA Technical Reports Server (NTRS)

    Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.

    1990-01-01

    Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity. The value-driven free-market economic model is such a tool.

  15. Intercell scheduling: A negotiation approach using multi-agent coalitions

    NASA Astrophysics Data System (ADS)

    Tian, Yunna; Li, Dongni; Zheng, Dan; Jia, Yunde

    2016-10-01

    Intercell scheduling problems arise as a result of intercell transfers in cellular manufacturing systems. Flexible intercell routes are considered in this article, and a coalition-based scheduling (CBS) approach using distributed multi-agent negotiation is developed. Taking advantage of the extended vision of the coalition agents, the global optimization is improved and the communication cost is reduced. The objective of the addressed problem is to minimize mean tardiness. Computational results show that, compared with the widely used combinatorial rules, CBS provides better performance not only in minimizing the objective, i.e. mean tardiness, but also in minimizing auxiliary measures such as maximum completion time, mean flow time and the ratio of tardy parts. Moreover, CBS is better than the existing intercell scheduling approach for the same problem with respect to the solution quality and computational costs.

  16. A new distributed systems scheduling algorithm: a swarm intelligence approach

    NASA Astrophysics Data System (ADS)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  17. Naval Postgraduate School Scheduling Support System (NPS4)

    DTIC Science & Technology

    1992-03-01

    NPSS ...... .................. 156 2. Final Exam Scheduler .. .......... 159 F. PRESENTATION SYSTEM ... ............. . 160 G. USER INTERFACE... NPSS ...... .................. 185 2. Final Exam Model ... ............ 186 3. The Class Schedulers .. .......... 186 4. Assessment of Problem Model...Information Distribution ....... 150 4.13 NPSS Optimization Process .... ............ . 157 4.14 NPSS Performance ..... ................ . 159 4.15 Department

  18. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    PubMed

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  19. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times

    PubMed Central

    Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems. PMID:27907163

  20. Scheduling IT Staff at a Bank: A Mathematical Programming Approach

    PubMed Central

    Labidi, M.; Mrad, M.; Gharbi, A.; Louly, M. A.

    2014-01-01

    We address a real-world optimization problem: the scheduling of a Bank Information Technologies (IT) staff. This problem can be defined as the process of constructing optimized work schedules for staff. In a general sense, it requires the allocation of suitably qualified staff to specific shifts to meet the demands for services of an organization while observing workplace regulations and attempting to satisfy individual work preferences. A monthly shift schedule is prepared to determine the shift duties of each staff considering shift coverage requirements, seniority-based workload rules, and staff work preferences. Due to the large number of conflicting constraints, a multiobjective programming model has been proposed to automate the schedule generation process. The suggested mathematical model has been implemented using Lingo software. The results indicate that high quality solutions can be obtained within a few seconds compared to the manually prepared schedules. PMID:24772032

  1. Scheduling for energy and reliability management on multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Qi, Xuan

    Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.

  2. Scheduling in the Face of Uncertain Resource Consumption and Utility

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Frank, Jeremy; Dearden, Richard

    2003-01-01

    We discuss the problem of scheduling tasks that consume a resource with known capacity and where the tasks have varying utility. We consider problems in which the resource consumption and utility of each activity is described by probability distributions. In these circumstances, we would like to find schedules that exceed a lower bound on the expected utility when executed. We first show that while some of these problems are NP-complete, others are only NP-Hard. We then describe various heuristic search algorithms to solve these problems and their drawbacks. Finally, we present empirical results that characterize the behavior of these heuristics over a variety of problem classes.

  3. Solution and reasoning reuse in space planning and scheduling applications

    NASA Technical Reports Server (NTRS)

    Verfaillie, Gerard; Schiex, Thomas

    1994-01-01

    In the space domain, as in other domains, the CSP (Constraint Satisfaction Problems) techniques are increasingly used to represent and solve planning and scheduling problems. But these techniques have been developed to solve CSP's which are composed of fixed sets of variables and constraints, whereas many planning and scheduling problems are dynamic. It is therefore important to develop methods which allow a new solution to be rapidly found, as close as possible to the previous one, when some variables or constraints are added or removed. After presenting some existing approaches, this paper proposes a simple and efficient method, which has been developed on the basis of the dynamic backtracking algorithm. This method allows previous solution and reasoning to be reused in the framework of a CSP which is close to the previous one. Some experimental results on general random CSPs and on operation scheduling problems for remote sensing satellites are given.

  4. Scheduling of an aircraft fleet

    NASA Technical Reports Server (NTRS)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  5. Scheduling language and algorithm development study. Volume 1, phase 2: Design considerations for a scheduling and resource allocation system

    NASA Technical Reports Server (NTRS)

    Morrell, R. A.; Odoherty, R. J.; Ramsey, H. R.; Reynolds, C. C.; Willoughby, J. K.; Working, R. D.

    1975-01-01

    Data and analyses related to a variety of algorithms for solving typical large-scale scheduling and resource allocation problems are presented. The capabilities and deficiencies of various alternative problem solving strategies are discussed from the viewpoint of computer system design.

  6. Nurse Scheduling by Cooperative GA with Effective Mutation Operator

    NASA Astrophysics Data System (ADS)

    Ohki, Makoto

    In this paper, we propose an effective mutation operators for Cooperative Genetic Algorithm (CGA) to be applied to a practical Nurse Scheduling Problem (NSP). The nurse scheduling is a very difficult task, because NSP is a complex combinatorial optimizing problem for which many requirements must be considered. In real hospitals, the schedule changes frequently. The changes of the shift schedule yields various problems, for example, a fall in the nursing level. We describe a technique of the reoptimization of the nurse schedule in response to a change. The conventional CGA is superior in ability for local search by means of its crossover operator, but often stagnates at the unfavorable situation because it is inferior to ability for global search. When the optimization stagnates for long generation cycle, a searching point, population in this case, would be caught in a wide local minimum area. To escape such local minimum area, small change in a population should be required. Based on such consideration, we propose a mutation operator activated depending on the optimization speed. When the optimization stagnates, in other words, when the optimization speed decreases, the mutation yields small changes in the population. Then the population is able to escape from a local minimum area by means of the mutation. However, this mutation operator requires two well-defined parameters. This means that user have to consider the value of these parameters carefully. To solve this problem, we propose a periodic mutation operator which has only one parameter to define itself. This simplified mutation operator is effective over a wide range of the parameter value.

  7. Optimizing an F-16 Squadron Weekly Pilot Schedule for the Turkish Air Force

    DTIC Science & Technology

    2010-03-01

    disrupted schedules are rescheduled , minimizing the total number of changes with respect to the previous schedule’s objective function. Output...producing rosters for a nursing staff in a large general hospital (Dowsland, 1998) and afterwards Aickelin and Dowsland use an Indirect Genetic...algorithm to improve the solutions of the nurse scheduling problem which is similar to the fighter squadron pilot scheduling problem (Aickelin and

  8. Two phase genetic algorithm for vehicle routing and scheduling problem with cross-docking and time windows considering customer satisfaction

    NASA Astrophysics Data System (ADS)

    Baniamerian, Ali; Bashiri, Mahdi; Zabihi, Fahime

    2018-03-01

    Cross-docking is a new warehousing policy in logistics which is widely used all over the world and attracts many researchers attention to study about in last decade. In the literature, economic aspects has been often studied, while one of the most significant factors for being successful in the competitive global market is improving quality of customer servicing and focusing on customer satisfaction. In this paper, we introduce a vehicle routing and scheduling problem with cross-docking and time windows in a three-echelon supply chain that considers customer satisfaction. A set of homogeneous vehicles collect products from suppliers and after consolidation process in the cross-dock, immediately deliver them to customers. A mixed integer linear programming model is presented for this problem to minimize transportation cost and early/tardy deliveries with scheduling of inbound and outbound vehicles to increase customer satisfaction. A two phase genetic algorithm (GA) is developed for the problem. For investigating the performance of the algorithm, it was compared with exact and lower bound solutions in small and large-size instances, respectively. Results show that there are at least 86.6% customer satisfaction by the proposed method, whereas customer satisfaction in the classical model is at most 33.3%. Numerical examples results show that the proposed two phase algorithm could achieve optimal solutions in small-size instances. Also in large-size instances, the proposed two phase algorithm could achieve better solutions with less gap from the lower bound in less computational time in comparison with the classic GA.

  9. A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan

    NASA Astrophysics Data System (ADS)

    Bhongade, A. S.; Khodke, P. M.

    2014-04-01

    Manufacturing systems, in which, several parts are processed through machining workstations and later assembled to form final products, is common. Though scheduling of such problems are solved using heuristics, available solution approaches can provide solution for only moderate sized problems due to large computation time required. In this work, scheduling approach is developed for such flow-shop manufacturing system having machining workstations followed by assembly workstations. The initial schedule is generated using Disjunctive method and genetic algorithm (GA) is applied further for generating schedule for large sized problems. GA is found to give near optimal solution based on the deviation of makespan from lower bound. The lower bound of makespan of such problem is estimated and percent deviation of makespan from lower bounds is used as a performance measure to evaluate the schedules. Computational experiments are conducted on problems developed using fractional factorial orthogonal array, varying the number of parts per product, number of products, and number of workstations (ranging upto 1,520 number of operations). A statistical analysis indicated the significance of all the three factors considered. It is concluded that GA method can obtain optimal makespan.

  10. Advance Resource Provisioning in Bulk Data Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balman, Mehmet

    2012-10-01

    Today?s scientific and business applications generate mas- sive data sets that need to be transferred to remote sites for sharing, processing, and long term storage. Because of increasing data volumes and enhancement in current net- work technology that provide on-demand high-speed data access between collaborating institutions, data handling and scheduling problems have reached a new scale. In this paper, we present a new data scheduling model with ad- vance resource provisioning, in which data movement operations are defined with earliest start and latest comple- tion times. We analyze time-dependent resource assign- ment problem, and propose a new methodology to improvemore » the current systems by allowing researchers and higher-level meta-schedulers to use data-placement as-a-service, so they can plan ahead and submit transfer requests in advance. In general, scheduling with time and resource conflicts is NP-hard. We introduce an efficient algorithm to organize multiple requests on the fly, while satisfying users? time and resource constraints. We successfully tested our algorithm in a simple benchmark simulator that we have developed, and demonstrated its performance with initial test results.« less

  11. Automated Long - Term Scheduling for the SOFIA Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Civeit, Thomas

    2013-01-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  12. Multiagent scheduling method with earliness and tardiness objectives in flexible job shops.

    PubMed

    Wu, Zuobao; Weng, Michael X

    2005-04-01

    Flexible job-shop scheduling problems are an important extension of the classical job-shop scheduling problems and present additional complexity. Such problems are mainly due to the existence of a considerable amount of overlapping capacities with modern machines. Classical scheduling methods are generally incapable of addressing such capacity overlapping. We propose a multiagent scheduling method with job earliness and tardiness objectives in a flexible job-shop environment. The earliness and tardiness objectives are consistent with the just-in-time production philosophy which has attracted significant attention in both industry and academic community. A new job-routing and sequencing mechanism is proposed. In this mechanism, two kinds of jobs are defined to distinguish jobs with one operation left from jobs with more than one operation left. Different criteria are proposed to route these two kinds of jobs. Job sequencing enables to hold a job that may be completed too early. Two heuristic algorithms for job sequencing are developed to deal with these two kinds of jobs. The computational experiments show that the proposed multiagent scheduling method significantly outperforms the existing scheduling methods in the literature. In addition, the proposed method is quite fast. In fact, the simulation time to find a complete schedule with over 2000 jobs on ten machines is less than 1.5 min.

  13. Spike: AI scheduling for Hubble Space Telescope after 18 months of orbital operations

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    This paper is a progress report on the Spike scheduling system, developed by the Space Telescope Science Institute for long-term scheduling of Hubble Space Telescope (HST) observations. Spike is an activity-based scheduler which exploits artificial intelligence (AI) techniques for constraint representation and for scheduling search. The system has been in operational use since shortly after HST launch in April 1990. Spike was adopted for several other satellite scheduling problems; of particular interest was the demonstration that the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. We describe the recent progress made in scheduling search techniques, the lessons learned from early HST operations, and the application of Spike to other problem domains. We also describe plans for the future evolution of the system.

  14. EUROPA2: Plan Database Services for Planning and Scheduling Applications

    NASA Technical Reports Server (NTRS)

    Bedrax-Weiss, Tania; Frank, Jeremy; Jonsson, Ari; McGann, Conor

    2004-01-01

    NASA missions require solving a wide variety of planning and scheduling problems with temporal constraints; simple resources such as robotic arms, communications antennae and cameras; complex replenishable resources such as memory, power and fuel; and complex constraints on geometry, heat and lighting angles. Planners and schedulers that solve these problems are used in ground tools as well as onboard systems. The diversity of planning problems and applications of planners and schedulers precludes a one-size fits all solution. However, many of the underlying technologies are common across planning domains and applications. We describe CAPR, a formalism for planning that is general enough to cover a wide variety of planning and scheduling domains of interest to NASA. We then describe EUROPA(sub 2), a software framework implementing CAPR. EUROPA(sub 2) provides efficient, customizable Plan Database Services that enable the integration of CAPR into a wide variety of applications. We describe the design of EUROPA(sub 2) from the perspective of both modeling, customization and application integration to different classes of NASA missions.

  15. Electricity usage scheduling in smart building environments using smart devices.

    PubMed

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.

  16. A hybrid online scheduling mechanism with revision and progressive techniques for autonomous Earth observation satellite

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Xing, Lining; Chen, Yingwu

    2017-11-01

    The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.

  17. Uncertainty management by relaxation of conflicting constraints in production process scheduling

    NASA Technical Reports Server (NTRS)

    Dorn, Juergen; Slany, Wolfgang; Stary, Christian

    1992-01-01

    Mathematical-analytical methods as used in Operations Research approaches are often insufficient for scheduling problems. This is due to three reasons: the combinatorial complexity of the search space, conflicting objectives for production optimization, and the uncertainty in the production process. Knowledge-based techniques, especially approximate reasoning and constraint relaxation, are promising ways to overcome these problems. A case study from an industrial CIM environment, namely high-grade steel production, is presented to demonstrate how knowledge-based scheduling with the desired capabilities could work. By using fuzzy set theory, the applied knowledge representation technique covers the uncertainty inherent in the problem domain. Based on this knowledge representation, a classification of jobs according to their importance is defined which is then used for the straightforward generation of a schedule. A control strategy which comprises organizational, spatial, temporal, and chemical constraints is introduced. The strategy supports the dynamic relaxation of conflicting constraints in order to improve tentative schedules.

  18. SARDA Surface Schedulers

    NASA Technical Reports Server (NTRS)

    Malik, Waqar

    2016-01-01

    Provide an overview of algorithms used in SARDA (Spot and Runway Departure Advisor) HITL (Human-in-the-Loop) simulation for Dallas Fort-Worth International Airport and Charlotte Douglas International airport. Outline a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the single runway scheduling (SRS) problem, and discuss heuristics to restrict the search space for the DP based algorithm and provide improvements.

  19. Utilizing AI in Temporal, Spatial, and Resource Scheduling

    NASA Technical Reports Server (NTRS)

    Stottler, Richard; Kalton, Annaka; Bell, Aaron

    2006-01-01

    Aurora is a software system enabling the rapid, easy solution of complex scheduling problems involving spatial and temporal constraints among operations and scarce resources (such as equipment, workspace, and human experts). Although developed for use in the International Space Station Processing Facility, Aurora is flexible enough that it can be easily customized for application to other scheduling domains and adapted as the requirements change or become more precisely known over time. Aurora s scheduling module utilizes artificial-intelligence (AI) techniques to make scheduling decisions on the basis of domain knowledge, including knowledge of constraints and their relative importance, interdependencies among operations, and possibly frequent changes in governing schedule requirements. Unlike many other scheduling software systems, Aurora focuses on resource requirements and temporal scheduling in combination. For example, Aurora can accommodate a domain requirement to schedule two subsequent operations to locations adjacent to a shared resource. The graphical interface allows the user to quickly visualize the schedule and perform changes reflecting additional knowledge or alterations in the situation. For example, the user might drag the activity corresponding to the start of operations to reflect a late delivery.

  20. Hypertext-based design of a user interface for scheduling

    NASA Technical Reports Server (NTRS)

    Woerner, Irene W.; Biefeld, Eric

    1993-01-01

    Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.

  1. Scheduling the resident 80-hour work week: an operations research algorithm.

    PubMed

    Day, T Eugene; Napoli, Joseph T; Kuo, Paul C

    2006-01-01

    The resident 80-hour work week requires that programs now schedule duty hours. Typically, scheduling is performed in an empirical "trial-and-error" fashion. However, this is a classic "scheduling" problem from the field of operations research (OR). It is similar to scheduling issues that airlines must face with pilots and planes routing through various airports at various times. The authors hypothesized that an OR approach using iterative computer algorithms could provide a rational scheduling solution. Institution-specific constraints of the residency problem were formulated. A total of 56 residents are rotating through 4 hospitals. Additional constraints were dictated by the Residency Review Committee (RRC) rules or the specific surgical service. For example, at Hospital 1, during the weekday hours between 6 am and 6 pm, there will be a PGY4 or PGY5 and a PGY2 or PGY3 on-duty to cover Service "A." A series of equations and logic statements was generated to satisfy all constraints and requirements. These were restated in the Optimization Programming Language used by the ILOG software suite for solving mixed integer programming problems. An integer programming solution was generated to this resource-constrained assignment problem. A total of 30,900 variables and 12,443 constraints were required. A total of man-hours of programming were used; computer run-time was 25.9 hours. A weekly schedule was generated for each resident that satisfied the RRC regulations while fulfilling all stated surgical service requirements. Each required between 64 and 80 weekly resident duty hours. The authors conclude that OR is a viable approach to schedule resident work hours. This technique is sufficiently robust to accommodate changes in resident numbers, service requirements, and service and hospital rotations.

  2. Telematic Problems of Unmanned Vehicles Positioning at Container Terminals and Warehouses

    NASA Astrophysics Data System (ADS)

    Kwasniowski, Stanisław; Zajac, Mateusz; Zajac, Paweł

    This paper describes the issues of transshipment container terminals operations, in the light of the development of this kind of transport. An increase in handling requires an expansion of stacking yard and automation of handling and transport processes. The development in this area first and foremost depends on modern handling technologies and automatic identification systems. AGV trucks play a key role in in those systems. The role of universities is to promote innovative technologies. Paper [2] contains the status of intermodal terminals development in Poland, which was awarded the prize of the Minister of Infrastructure of Poland in the field of "organization and management." The paper contains a detailed description of the principles of positioning, control and propulsion of AGV vehicles. The content was developed to make it understandable to logisticians responsible for the implementation question in Poland.

  3. Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model

    PubMed Central

    Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong

    2014-01-01

    Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005

  4. APGEN Scheduling: 15 Years of Experience in Planning Automation

    NASA Technical Reports Server (NTRS)

    Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel

    2014-01-01

    In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.

  5. A Combined Adaptive Tabu Search and Set Partitioning Approach for the Crew Scheduling Problem with an Air Tanker Crew Application

    DTIC Science & Technology

    2002-08-15

    Agency Name(s) and Address(es) Maj Juan Vasquez AFOSR/NM 801 N. Randolph St., Rm 732 Arlington, VA 22203-1977 Sponsor/Monitor’s Acronym(s) Sponsor... Gelman , E., Patty, B., and R. Tanga. 1991. Recent Advances in Crew-Pairing Optimization at American Airlines, Interfaces, 21(1):62-74. Baker, E.K...Operations Research, 25(11):887-894. Chu, H.D., Gelman , E., and E.L. Johnson. 1997. Solving Large Scale Crew Scheduling Problems, European

  6. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    PubMed Central

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  7. Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.

    PubMed

    Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  8. Optimisation of assembly scheduling in VCIM systems using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-09-01

    Assembly plays an important role in any production system as it constitutes a significant portion of the lead time and cost of a product. Virtual computer-integrated manufacturing (VCIM) system is a modern production system being conceptually developed to extend the application of traditional computer-integrated manufacturing (CIM) system to global level. Assembly scheduling in VCIM systems is quite different from one in traditional production systems because of the difference in the working principles of the two systems. In this article, the assembly scheduling problem in VCIM systems is modeled and then an integrated approach based on genetic algorithm (GA) is proposed to search for a global optimised solution to the problem. Because of dynamic nature of the scheduling problem, a novel GA with unique chromosome representation and modified genetic operations is developed herein. Robustness of the proposed approach is verified by a numerical example.

  9. Using Multiple Schedules During Functional Communication Training to Promote Rapid Transfer of Treatment Effects

    PubMed Central

    Fisher, Wayne W.; Greer, Brian D.; Fuhrman, Ashley M.; Querim, Angie C.

    2016-01-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects from one setting to the next and from one therapist to the next. With two children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. PMID:26384141

  10. Using multiple schedules during functional communication training to promote rapid transfer of treatment effects.

    PubMed

    Fisher, Wayne W; Greer, Brian D; Fuhrman, Ashley M; Querim, Angie C

    2015-12-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and therapists. With 2 children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. © Society for the Experimental Analysis of Behavior.

  11. Electricity Usage Scheduling in Smart Building Environments Using Smart Devices

    PubMed Central

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860

  12. Dynamic Appliances Scheduling in Collaborative MicroGrids System

    PubMed Central

    Bilil, Hasnae; Aniba, Ghassane; Gharavi, Hamid

    2017-01-01

    In this paper a new approach which is based on a collaborative system of MicroGrids (MG’s), is proposed to enable household appliance scheduling. To achieve this, appliances are categorized into flexible and non-flexible Deferrable Loads (DL’s), according to their electrical components. We propose a dynamic scheduling algorithm where users can systematically manage the operation of their electric appliances. The main challenge is to develop a flattening function calculus (reshaping) for both flexible and non-flexible DL’s. In addition, implementation of the proposed algorithm would require dynamically analyzing two successive multi-objective optimization (MOO) problems. The first targets the activation schedule of non-flexible DL’s and the second deals with the power profiles of flexible DL’s. The MOO problems are resolved by using a fast and elitist multi-objective genetic algorithm (NSGA-II). Finally, in order to show the efficiency of the proposed approach, a case study of a collaborative system that consists of 40 MG’s registered in the load curve for the flattening program has been developed. The results verify that the load curve can indeed become very flat by applying the proposed scheduling approach. PMID:28824226

  13. Wave scheduling - Decentralized scheduling of task forces in multicomputers

    NASA Technical Reports Server (NTRS)

    Van Tilborg, A. M.; Wittie, L. D.

    1984-01-01

    Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.

  14. Joint optimization of green vehicle scheduling and routing problem with time-varying speeds.

    PubMed

    Zhang, Dezhi; Wang, Xin; Li, Shuangyan; Ni, Nan; Zhang, Zhuo

    2018-01-01

    Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions.

  15. Alternative work schedules for female pharmacists.

    PubMed

    Mason, N A; Perry, W R; Ryan, M L

    1991-01-01

    The impact of the increased proportion of women in pharmacy is discussed, and two leadership positions for which part-time work schedules were implemented are described. Issues associated with the increased representation of women include pharmacist shortages, loss of future leaders, decreased staff productivity related to inadequate day-care services, and a reduced earning potential of pharmacists. Many of these problems can be addressed by altering benefit packages and work schedules to enable employees to raise children while continuing to work. Specific strategies include legislation, day-care programs, flex time and flex scheduling, telecommuting, and the creation of alternative work schedules or permanent part-time positions. At the University of Michigan, a part-time position that combines faculty and clinical responsibilities has been in place since 1988. At The Washington Hospital Center, one of the three assistant director of pharmacy positions is part-time. The women in both positions have met or exceeded job performance requirements while raising a family. Issues raised by the increasing number of female pharmacists must be addressed by the profession. Part-time work schedules are one strategy for enabling female pharmacists to meet both their family and career responsibilities.

  16. A Mechanized Decision Support System for Academic Scheduling.

    DTIC Science & Technology

    1986-03-01

    an operational system called software. The first step in the development phase is Design . Designers destribute software control by factoring the Data...SUBJECT TERMS (Continue on reverse if necessary and identify by block number) ELD GROUP SUB-GROUP Scheduling, Decision Support System , Software Design ...scheduling system . It will also examine software - design techniques to identify the most appropriate method- ology for this problem. " - Chapter 3 will

  17. Uplink Packet-Data Scheduling in DS-CDMA Systems

    NASA Astrophysics Data System (ADS)

    Choi, Young Woo; Kim, Seong-Lyun

    In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.

  18. Competitive two-agent scheduling problems to minimize the weighted combination of makespans in a two-machine open shop

    NASA Astrophysics Data System (ADS)

    Jiang, Fuhong; Zhang, Xingong; Bai, Danyu; Wu, Chin-Chia

    2018-04-01

    In this article, a competitive two-agent scheduling problem in a two-machine open shop is studied. The objective is to minimize the weighted sum of the makespans of two competitive agents. A complexity proof is presented for minimizing the weighted combination of the makespan of each agent if the weight α belonging to agent B is arbitrary. Furthermore, two pseudo-polynomial-time algorithms using the largest alternate processing time (LAPT) rule are presented. Finally, two approximation algorithms are presented if the weight is equal to one. Additionally, another approximation algorithm is presented if the weight is larger than one.

  19. Intelligent Planning and Scheduling for Controlled Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leon, V. Jorge

    1996-01-01

    Planning in Controlled Ecological Life Support Systems (CELSS) requires special look ahead capabilities due to the complex and long-term dynamic behavior of biological systems. This project characterizes the behavior of CELSS, identifies the requirements of intelligent planning systems for CELSS, proposes the decomposition of the planning task into short-term and long-term planning, and studies the crop scheduling problem as an initial approach to long-term planning. CELSS is studied in the realm of Chaos. The amount of biomass in the system is modeled using a bounded quadratic iterator. The results suggests that closed ecological systems can exhibit periodic behavior when imposed external or artificial control. The main characteristics of CELSS from the planning and scheduling perspective are discussed and requirements for planning systems are given. Crop scheduling problem is identified as an important component of the required long-term lookahead capabilities of a CELSS planner. The main characteristics of crop scheduling are described and a model is proposed to represent the problem. A surrogate measure of the probability of survival is developed. The measure reflects the absolute deviation of the vital reservoir levels from their nominal values. The solution space is generated using a probability distribution which captures both knowledge about the system and the current state of affairs at each decision epoch. This probability distribution is used in the context of an evolution paradigm. The concepts developed serve as the basis for the development of a simple crop scheduling tool which is used to demonstrate its usefulness in the design and operation of CELSS.

  20. Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional Domatic Partitioning

    NASA Astrophysics Data System (ADS)

    Schumacher, André; Haanpää, Harri

    We consider setting up sleep scheduling in sensor networks. We formulate the problem as an instance of the fractional domatic partition problem and obtain a distributed approximation algorithm by applying linear programming approximation techniques. Our algorithm is an application of the Garg-Könemann (GK) scheme that requires solving an instance of the minimum weight dominating set (MWDS) problem as a subroutine. Our two main contributions are a distributed implementation of the GK scheme for the sleep-scheduling problem and a novel asynchronous distributed algorithm for approximating MWDS based on a primal-dual analysis of Chvátal's set-cover algorithm. We evaluate our algorithm with ns2 simulations.

  1. An Extended Deterministic Dendritic Cell Algorithm for Dynamic Job Shop Scheduling

    NASA Astrophysics Data System (ADS)

    Qiu, X. N.; Lau, H. Y. K.

    The problem of job shop scheduling in a dynamic environment where random perturbation exists in the system is studied. In this paper, an extended deterministic Dendritic Cell Algorithm (dDCA) is proposed to solve such a dynamic Job Shop Scheduling Problem (JSSP) where unexpected events occurred randomly. This algorithm is designed based on dDCA and makes improvements by considering all types of signals and the magnitude of the output values. To evaluate this algorithm, ten benchmark problems are chosen and different kinds of disturbances are injected randomly. The results show that the algorithm performs competitively as it is capable of triggering the rescheduling process optimally with much less run time for deciding the rescheduling action. As such, the proposed algorithm is able to minimize the rescheduling times under the defined objective and to keep the scheduling process stable and efficient.

  2. Estimation of distribution algorithm with path relinking for the blocking flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2018-05-01

    This article presents an effective estimation of distribution algorithm, named P-EDA, to solve the blocking flow-shop scheduling problem (BFSP) with the makespan criterion. In the P-EDA, a Nawaz-Enscore-Ham (NEH)-based heuristic and the random method are combined to generate the initial population. Based on several superior individuals provided by a modified linear rank selection, a probabilistic model is constructed to describe the probabilistic distribution of the promising solution space. The path relinking technique is incorporated into EDA to avoid blindness of the search and improve the convergence property. A modified referenced local search is designed to enhance the local exploitation. Moreover, a diversity-maintaining scheme is introduced into EDA to avoid deterioration of the population. Finally, the parameters of the proposed P-EDA are calibrated using a design of experiments approach. Simulation results and comparisons with some well-performing algorithms demonstrate the effectiveness of the P-EDA for solving BFSP.

  3. An extended continuous estimation of distribution algorithm for solving the permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2017-11-01

    This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.

  4. An Integrated Constraint Programming Approach to Scheduling Sports Leagues with Divisional and Round-robin Tournaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson, Mats; Johansson, Mikael; Larson, Jeffrey

    Previous approaches for scheduling a league with round-robin and divisional tournaments involved decomposing the problem into easier subproblems. This approach, used to schedule the top Swedish handball league Elitserien, reduces the problem complexity but can result in suboptimal schedules. This paper presents an integrated constraint programming model that allows to perform the scheduling in a single step. Particular attention is given to identifying implied and symmetry-breaking constraints that reduce the computational complexity significantly. The experimental evaluation of the integrated approach takes considerably less computational effort than the previous approach.

  5. Minimizing metastatic risk in radiotherapy fractionation schedules

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Ramakrishnan, Jagdish; Leder, Kevin

    2015-11-01

    Metastasis is the process by which cells from a primary tumor disperse and form new tumors at distant anatomical locations. The treatment and prevention of metastatic cancer remains an extremely challenging problem. This work introduces a novel biologically motivated objective function to the radiation optimization community that takes into account metastatic risk instead of the status of the primary tumor. In this work, we consider the problem of developing fractionated irradiation schedules that minimize production of metastatic cancer cells while keeping normal tissue damage below an acceptable level. A dynamic programming framework is utilized to determine the optimal fractionation scheme. We evaluated our approach on a breast cancer case using the heart and the lung as organs-at-risk (OAR). For small tumor α /β values, hypo-fractionated schedules were optimal, which is consistent with standard models. However, for relatively larger α /β values, we found the type of schedule depended on various parameters such as the time when metastatic risk was evaluated, the α /β values of the OARs, and the normal tissue sparing factors. Interestingly, in contrast to standard models, hypo-fractionated and semi-hypo-fractionated schedules (large initial doses with doses tapering off with time) were suggested even with large tumor α/β values. Numerical results indicate the potential for significant reduction in metastatic risk.

  6. Learning Search Control Knowledge for Deep Space Network Scheduling

    NASA Technical Reports Server (NTRS)

    Gratch, Jonathan; Chien, Steve; DeJong, Gerald

    1993-01-01

    While the general class of most scheduling problems is NP-hard in worst-case complexity, in practice, for specific distributions of problems and constraints, domain-specific solutions have been shown to perform in much better than exponential time.

  7. Diverse task scheduling for individualized requirements in cloud manufacturing

    NASA Astrophysics Data System (ADS)

    Zhou, Longfei; Zhang, Lin; Zhao, Chun; Laili, Yuanjun; Xu, Lida

    2018-03-01

    Cloud manufacturing (CMfg) has emerged as a new manufacturing paradigm that provides ubiquitous, on-demand manufacturing services to customers through network and CMfg platforms. In CMfg system, task scheduling as an important means of finding suitable services for specific manufacturing tasks plays a key role in enhancing the system performance. Customers' requirements in CMfg are highly individualized, which leads to diverse manufacturing tasks in terms of execution flows and users' preferences. We focus on diverse manufacturing tasks and aim to address their scheduling issue in CMfg. First of all, a mathematical model of task scheduling is built based on analysis of the scheduling process in CMfg. To solve this scheduling problem, we propose a scheduling method aiming for diverse tasks, which enables each service demander to obtain desired manufacturing services. The candidate service sets are generated according to subtask directed graphs. An improved genetic algorithm is applied to searching for optimal task scheduling solutions. The effectiveness of the scheduling method proposed is verified by a case study with individualized customers' requirements. The results indicate that the proposed task scheduling method is able to achieve better performance than some usual algorithms such as simulated annealing and pattern search.

  8. An Efficient Downlink Scheduling Strategy Using Normal Graphs for Multiuser MIMO Wireless Systems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh; Wu, Cheng-Hsuan; Lee, Yao-Nan; Wen, Chao-Kai

    Inspired by the success of the low-density parity-check (LDPC) codes in the field of error-control coding, in this paper we propose transforming the downlink multiuser multiple-input multiple-output scheduling problem into an LDPC-like problem using the normal graph. Based on the normal graph framework, soft information, which indicates the probability that each user will be scheduled to transmit packets at the access point through a specified angle-frequency sub-channel, is exchanged among the local processors to iteratively optimize the multiuser transmission schedule. Computer simulations show that the proposed algorithm can efficiently schedule simultaneous multiuser transmission which then increases the overall channel utilization and reduces the average packet delay.

  9. Integration of Optimal Scheduling with Case-Based Planning.

    DTIC Science & Technology

    1995-08-01

    integrates Case-Based Reasoning (CBR) and Rule-Based Reasoning (RBR) systems. ’ Tachyon : A Constraint-Based Temporal Reasoning Model and Its...Implementation’ provides an overview of the Tachyon temporal’s reasoning system and discusses its possible applications. ’Dual-Use Applications of Tachyon : From...Force Structure Modeling to Manufacturing Scheduling’ discusses the application of Tachyon to real world problems, specifically military force deployment and manufacturing scheduling.

  10. A Study on Real-Time Scheduling Methods in Holonic Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Iwamura, Koji; Taimizu, Yoshitaka; Sugimura, Nobuhiro

    Recently, new architectures of manufacturing systems have been proposed to realize flexible control structures of the manufacturing systems, which can cope with the dynamic changes in the volume and the variety of the products and also the unforeseen disruptions, such as failures of manufacturing resources and interruptions by high priority jobs. They are so called as the autonomous distributed manufacturing system, the biological manufacturing system and the holonic manufacturing system. Rule-based scheduling methods were proposed and applied to the real-time production scheduling problems of the HMS (Holonic Manufacturing System) in the previous report. However, there are still remaining problems from the viewpoint of the optimization of the whole production schedules. New procedures are proposed, in the present paper, to select the production schedules, aimed at generating effective production schedules in real-time. The proposed methods enable the individual holons to select suitable machining operations to be carried out in the next time period. Coordination process among the holons is also proposed to carry out the coordination based on the effectiveness values of the individual holons.

  11. Solving a supply chain scheduling problem with non-identical job sizes and release times by applying a novel effective heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Pei, Jun; Liu, Xinbao; Pardalos, Panos M.; Fan, Wenjuan; Wang, Ling; Yang, Shanlin

    2016-03-01

    Motivated by applications in manufacturing industry, we consider a supply chain scheduling problem, where each job is characterised by non-identical sizes, different release times and unequal processing times. The objective is to minimise the makespan by making batching and sequencing decisions. The problem is formalised as a mixed integer programming model and proved to be strongly NP-hard. Some structural properties are presented for both the general case and a special case. Based on these properties, a lower bound is derived, and a novel two-phase heuristic (TP-H) is developed to solve the problem, which guarantees to obtain a worst case performance ratio of ?. Computational experiments with a set of different sizes of random instances are conducted to evaluate the proposed approach TP-H, which is superior to another two heuristics proposed in the literature. Furthermore, the experimental results indicate that TP-H can effectively and efficiently solve large-size problems in a reasonable time.

  12. Automatic generation of efficient orderings of events for scheduling applications

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1994-01-01

    In scheduling a set of tasks, it is often not known with certainty how long a given event will take. We call this duration uncertainty. Duration uncertainty is a primary obstacle to the successful completion of a schedule. If a duration of one task is longer than expected, the remaining tasks are delayed. The delay may result in the abandonment of the schedule itself, a phenomenon known as schedule breakage. One response to schedule breakage is on-line, dynamic rescheduling. A more recent alternative is called proactive rescheduling. This method uses statistical data about the durations of events in order to anticipate the locations in the schedule where breakage is likely prior to the execution of the schedule. It generates alternative schedules at such sensitive points, which can be then applied by the scheduler at execution time, without the delay incurred by dynamic rescheduling. This paper proposes a technique for making proactive error management more effective. The technique is based on applying a similarity-based method of clustering to the problem of identifying similar events in a set of events.

  13. Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Fox, Mark; Tate, Austin; Zweben, Monte

    1992-01-01

    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques.

  14. Mission Operations Planning and Scheduling System (MOPSS)

    NASA Technical Reports Server (NTRS)

    Wood, Terri; Hempel, Paul

    2011-01-01

    MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.

  15. Car painting process scheduling with harmony search algorithm

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.

    2018-02-01

    Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.

  16. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission.

    PubMed

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-06-09

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami- m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs.

  17. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission

    PubMed Central

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-01-01

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami-m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs. PMID:28598395

  18. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks

    PubMed Central

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-01-01

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN. PMID:27916807

  19. Task and Participant Scheduling of Trading Platforms in Vehicular Participatory Sensing Networks.

    PubMed

    Shi, Heyuan; Song, Xiaoyu; Gu, Ming; Sun, Jiaguang

    2016-11-28

    The vehicular participatory sensing network (VPSN) is now becoming more and more prevalent, and additionally has shown its great potential in various applications. A general VPSN consists of many tasks from task, publishers, trading platforms and a crowd of participants. Some literature treats publishers and the trading platform as a whole, which is impractical since they are two independent economic entities with respective purposes. For a trading platform in markets, its purpose is to maximize the profit by selecting tasks and recruiting participants who satisfy the requirements of accepted tasks, rather than to improve the quality of each task. This scheduling problem for a trading platform consists of two parts: which tasks should be selected and which participants to be recruited? In this paper, we investigate the scheduling problem in vehicular participatory sensing with the predictable mobility of each vehicle. A genetic-based trading scheduling algorithm (GTSA) is proposed to solve the scheduling problem. Experiments with a realistic dataset of taxi trajectories demonstrate that GTSA algorithm is efficient for trading platforms to gain considerable profit in VPSN.

  20. Improved NSGA model for multi objective operation scheduling and its evaluation

    NASA Astrophysics Data System (ADS)

    Li, Weining; Wang, Fuyu

    2017-09-01

    Reasonable operation can increase the income of the hospital and improve the patient’s satisfactory level. In this paper, by using multi object operation scheduling method with improved NSGA algorithm, it shortens the operation time, reduces the operation costand lowers the operation risk, the multi-objective optimization model is established for flexible operation scheduling, through the MATLAB simulation method, the Pareto solution is obtained, the standardization of data processing. The optimal scheduling scheme is selected by using entropy weight -Topsis combination method. The results show that the algorithm is feasible to solve the multi-objective operation scheduling problem, and provide a reference for hospital operation scheduling.

  1. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing

    NASA Astrophysics Data System (ADS)

    Suma, T.; Murugesan, R.

    2018-04-01

    The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.

  2. A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.

    PubMed

    Hajri, S; Liouane, N; Hammadi, S; Borne, P

    2000-01-01

    Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.

  3. Towards a dynamical scheduler for ALMA: a science - software collaboration

    NASA Astrophysics Data System (ADS)

    Avarias, Jorge; Toledo, Ignacio; Espada, Daniel; Hibbard, John; Nyman, Lars-Ake; Hiriart, Rafael

    2016-07-01

    State-of-the art astronomical facilities are costly to build and operate, hence it is essential that these facilities must be operated as much efficiently as possible, trying to maximize the scientific output and at the same time minimizing overhead times. Over the latest decades the scheduling problem has drawn attention of research because new facilities have been demonstrated that is unfeasible to try to schedule observations manually, due the complexity to satisfy the astronomical and instrumental constraints and the number of scientific proposals to be reviewed and evaluated in near real-time. In addition, the dynamic nature of some constraints make this problem even more difficult. The Atacama Large Millimeter/submillimeter Array (ALMA) is a major collaboration effort between European (ESO), North American (NRAO) and East Asian countries (NAOJ), under operations on the Chilean Chajnantor plateau, at 5.000 meters of altitude. During normal operations at least two independent arrays are available, aiming to achieve different types of science. Since ALMA does not observe in the visible spectrum, observations are not limited to night time only, thus a 24/7 operation with little downtime as possible is expected when full operations state will have been reached. However, during preliminary operations (early-science) ALMA has been operated on tied schedules using around half of the whole day-time to conduct scientific observations. The purpose of this paper is to explain how the observation scheduling and its optimization is done within ALMA, giving details about the problem complexity, its similarities and differences with traditional scheduling problems found in the literature. The paper delves into the current recommendation system implementation and the difficulties found during the road to its deployment in production.

  4. Automated Planning and Scheduling for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Jonsson, Ari; Knight, Russell

    2005-01-01

    Research Trends: a) Finite-capacity scheduling under more complex constraints and increased problem dimensionality (subcontracting, overtime, lot splitting, inventory, etc.) b) Integrated planning and scheduling. c) Mixed-initiative frameworks. d) Management of uncertainty (proactive and reactive). e) Autonomous agent architectures and distributed production management. e) Integration of machine learning capabilities. f) Wider scope of applications: 1) analysis of supplier/buyer protocols & tradeoffs; 2) integration of strategic & tactical decision-making; and 3) enterprise integration.

  5. Scheduling of flow shop problems on 3 machines in fuzzy environment with double transport facility

    NASA Astrophysics Data System (ADS)

    Sathish, Shakeela; Ganesan, K.

    2016-06-01

    Flow shop scheduling is a decision making problem in production and manufacturing field which has a significant impact on the performance of an organization. When the machines on which jobs are to be processed are placed at different places, the transportation time plays a significant role in production. Further two different transport agents where 1st takes the job from 1st machine to 2nd machine and then returns back to the first machine and the 2nd takes the job from 2nd machine to 3rd machine and then returns back to the 2nd machine are also considered. We propose a method to minimize the total make span; without converting the fuzzy processing time to classical numbers by using a new type of fuzzy arithmetic and a fuzzy ranking method. A numerical example is provided to explain the proposed method.

  6. Training and Operations Integrated Calendar Scheduler - TROPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.E. Oppenlander; A.J. Levy; V.A. Arbige

    2003-01-27

    TROPICS is a rule-based scheduling system that optimizes the training experience for students in a power (note this change should be everywhere, i.e. Not reactor) plant environment. The problem is complicated by the condition that plant resources and users' time must be simultaneously scheduled to make best use of both. The training facility is highly constrained in how it is used, and, as in many similar environments, subject to dynamic change with little or no advance notice. The flexibility required extends to changes resulting from students' actions such as absences. Even though the problem is highly constrained by plant usagemore » and student objectives, the large number of possible schedules is a concern. TROPICS employs a control strategy for rule firing to prune the possibility tree and avoid combinatorial explosion. The application has been in use since 1996, first as a prototype for testing and then in production. Training Coordinators have a philosophical aspect to teaching students that has made the rule-based approach much more verifiable and satisfying to the domain experts than other forms of capturing expertise.« less

  7. Joint optimization of green vehicle scheduling and routing problem with time-varying speeds

    PubMed Central

    Zhang, Dezhi; Wang, Xin; Ni, Nan; Zhang, Zhuo

    2018-01-01

    Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. PMID:29466370

  8. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path.

    PubMed

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective.

  9. A Scheduling Algorithm for Cloud Computing System Based on the Driver of Dynamic Essential Path

    PubMed Central

    Xie, Zhiqiang; Shao, Xia; Xin, Yu

    2016-01-01

    To solve the problem of task scheduling in the cloud computing system, this paper proposes a scheduling algorithm for cloud computing based on the driver of dynamic essential path (DDEP). This algorithm applies a predecessor-task layer priority strategy to solve the problem of constraint relations among task nodes. The strategy assigns different priority values to every task node based on the scheduling order of task node as affected by the constraint relations among task nodes, and the task node list is generated by the different priority value. To address the scheduling order problem in which task nodes have the same priority value, the dynamic essential long path strategy is proposed. This strategy computes the dynamic essential path of the pre-scheduling task nodes based on the actual computation cost and communication cost of task node in the scheduling process. The task node that has the longest dynamic essential path is scheduled first as the completion time of task graph is indirectly influenced by the finishing time of task nodes in the longest dynamic essential path. Finally, we demonstrate the proposed algorithm via simulation experiments using Matlab tools. The experimental results indicate that the proposed algorithm can effectively reduce the task Makespan in most cases and meet a high quality performance objective. PMID:27490901

  10. Multimode resource-constrained multiple project scheduling problem under fuzzy random environment and its application to a large scale hydropower construction project.

    PubMed

    Xu, Jiuping; Feng, Cuiying

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method.

  11. Multimode Resource-Constrained Multiple Project Scheduling Problem under Fuzzy Random Environment and Its Application to a Large Scale Hydropower Construction Project

    PubMed Central

    Xu, Jiuping

    2014-01-01

    This paper presents an extension of the multimode resource-constrained project scheduling problem for a large scale construction project where multiple parallel projects and a fuzzy random environment are considered. By taking into account the most typical goals in project management, a cost/weighted makespan/quality trade-off optimization model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform the fuzzy random parameters into fuzzy variables that are subsequently defuzzified using an expected value operator with an optimistic-pessimistic index. Then a combinatorial-priority-based hybrid particle swarm optimization algorithm is developed to solve the proposed model, where the combinatorial particle swarm optimization and priority-based particle swarm optimization are designed to assign modes to activities and to schedule activities, respectively. Finally, the results and analysis of a practical example at a large scale hydropower construction project are presented to demonstrate the practicality and efficiency of the proposed model and optimization method. PMID:24550708

  12. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  13. A Novel Particle Swarm Optimization Approach for Grid Job Scheduling

    NASA Astrophysics Data System (ADS)

    Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith

    This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.

  14. Planning, scheduling, and control for automatic telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Swanson, Keith; Philips, Andy; Levinson, Rich; Bresina, John

    1992-01-01

    This paper presents an argument for the appropriateness of Entropy Reduction Engine (ERE) technology to the planning, scheduling, and control components of Automatic Photoelectric Telescope (APT) management. The paper is organized as follows. In the next section, we give a brief summary of the planning and scheduling requirements for APTs. Following this, in section 3, we give an ERE project precis, couched primarily in terms of project objectives. Section 4 gives a sketch of the match-up between problem and technology, and section 5 outlines where we want to go with this work.

  15. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    PubMed Central

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  16. An Improved Memetic Algorithm for Break Scheduling

    NASA Astrophysics Data System (ADS)

    Widl, Magdalena; Musliu, Nysret

    In this paper we consider solving a complex real life break scheduling problem. This problem of high practical relevance arises in many working areas, e.g. in air traffic control and other fields where supervision personnel is working. The objective is to assign breaks to employees such that various constraints reflecting legal demands or ergonomic criteria are satisfied and staffing requirement violations are minimised.

  17. Research on the ITOC based scheduling system for ship piping production

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Yu-Jun; Hamada, Kunihiro

    2010-12-01

    Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.

  18. Better approximation guarantees for job-shop scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, L.A.; Paterson, M.; Srinivasan, A.

    1997-06-01

    Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented the first polynomial-time approximation algorithm for this problem that has a good (polylogarithmic) approximation guarantee. We improve the approximation guarantee of their work, and present further improvements for some important NP-hard special cases of this problem (e.g., in the preemptive case where machines can suspend work on operations and later resume). We also present NC algorithms with improved approximation guarantees for some NP-hard special cases.

  19. Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy.

    PubMed

    Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng

    2012-06-01

    Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.

  20. A neural network approach to job-shop scheduling.

    PubMed

    Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E

    1991-01-01

    A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.

  1. A derived heuristics based multi-objective optimization procedure for micro-grid scheduling

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deb, Kalyanmoy; Fang, Yanjun

    2017-06-01

    With the availability of different types of power generators to be used in an electric micro-grid system, their operation scheduling as the load demand changes with time becomes an important task. Besides satisfying load balance constraints and the generator's rated power, several other practicalities, such as limited availability of grid power and restricted ramping of power output from generators, must all be considered during the operation scheduling process, which makes it difficult to decide whether the optimization results are accurate and satisfactory. In solving such complex practical problems, heuristics-based customized optimization algorithms are suggested. However, due to nonlinear and complex interactions of variables, it is difficult to come up with heuristics in such problems off-hand. In this article, a two-step strategy is proposed in which the first task deciphers important heuristics about the problem and the second task utilizes the derived heuristics to solve the original problem in a computationally fast manner. Specifically, the specific operation scheduling is considered from a two-objective (cost and emission) point of view. The first task develops basic and advanced level knowledge bases offline from a series of prior demand-wise optimization runs and then the second task utilizes them to modify optimized solutions in an application scenario. Results on island and grid connected modes and several pragmatic formulations of the micro-grid operation scheduling problem clearly indicate the merit of the proposed two-step procedure.

  2. An Algorithm for Automatically Modifying Train Crew Schedule

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Kataoka, Kenji; Kojima, Teruhito; Asami, Masayuki

    Once the break-down of the train schedule occurs, the crew schedule as well as the train schedule has to be modified as quickly as possible to restore them. In this paper, we propose an algorithm for automatically modifying a crew schedule that takes all constraints into consideration, presenting a model of the combined problem of crews and trains. The proposed algorithm builds an initial solution by relaxing some of the constraint conditions, and then uses a Taboo-search method to revise this solution in order to minimize the degree of constraint violation resulting from these relaxed conditions. Then we show not only that the algorithm can generate a constraint satisfaction solution, but also that the solution will satisfy the experts. That is, we show the proposed algorithm is capable of producing a usable solution in a short time by applying to actual cases of train-schedule break-down, and that the solution is at least as good as those produced manually, by comparing the both solutions with several point of view.

  3. Evaluation of fixed momentary dro schedules under signaled and unsignaled arrangements.

    PubMed

    Hammond, Jennifer L; Iwata, Brian A; Fritz, Jennifer N; Dempsey, Carrie M

    2011-01-01

    Fixed momentary schedules of differential reinforcement of other behavior (FM DRO) generally have been ineffective as treatment for problem behavior. Because most early research on FM DRO included presentation of a signal at the end of the DRO interval, it is unclear whether the limited effects of FM DRO were due to (a) the momentary response requirement of the schedule per se or (b) discrimination of the contingency made more salient by the signal. To separate these two potential influences, we compared the effects of signaled versus unsignaled FM DRO with 4 individuals with developmental disabilities whose problem behavior was maintained by social-positive reinforcement. During signaled FM DRO, the experimenter presented a visual stimulus 3 s prior to the end of the DRO interval and delivered reinforcement contingent on the absence of problem behavior at the second the interval elapsed. Unsignaled DRO was identical except that interval termination was not signaled. Results indicated that signaled FM DRO was effective in decreasing 2 subjects' problem behavior, whereas an unsignaled schedule was required for the remaining 2 subjects. These results suggest that the response requirement per se of FM DRO may not be problematic if it is not easily discriminated.

  4. Range and mission scheduling automation using combined AI and operations research techniques

    NASA Technical Reports Server (NTRS)

    Arbabi, Mansur; Pfeifer, Michael

    1987-01-01

    Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.

  5. Affirmative Action: The Scheduled Castes and the Scheduled Tribes.

    ERIC Educational Resources Information Center

    Sivaramayya, B.

    This paper considers Indian affirmative action policies that provide reservations (quotas) in favor of two disadvantaged groups, the scheduled castes and the scheduled tribes. First, definitions and background are presented. The scheduled castes ("untouchables") are said to suffer from social segregation, and the scheduled tribes from…

  6. Optimizing Department of Defense Acquisition Development Test and Evaluation Scheduling

    DTIC Science & Technology

    2015-06-01

    CPM Critical Path Method DOD Department of Defense DT&E development test and evaluation EMD engineering and manufacturing development GAMS...these, including the Program Evaluation Review Technique (PERT), the Critical Path Method ( CPM ), and the resource- constrained project-scheduling...problem (RCPSP). These are of particular interest to this thesis as the current scheduling method uses elements of the PERT/ CPM , and the test

  7. Shift scheduling model considering workload and worker’s preference for security department

    NASA Astrophysics Data System (ADS)

    Herawati, A.; Yuniartha, D. R.; Purnama, I. L. I.; Dewi, LT

    2018-04-01

    Security department operates for 24 hours and applies shift scheduling to organize its workers as well as in hotel industry. This research has been conducted to develop shift scheduling model considering the workers physical workload using rating of perceived exertion (RPE) Borg’s Scale and workers’ preference to accommodate schedule flexibility. The mathematic model is developed in integer linear programming and results optimal solution for simple problem. Resulting shift schedule of the developed model has equally distribution shift allocation among workers to balance the physical workload and give flexibility for workers in working hours arrangement.

  8. 75 FR 42831 - Proposed Collection; Comment Request for Form 1065, Schedule C, Schedule D, Schedule K-1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Income, Credits, Deductions and Other Items), Schedule L (Balance Sheets per Books), Schedule M-1..., Deductions, etc. (Schedule K-1), Balance Sheets per Books (Schedule L), Reconciliation of Income (Loss) per...

  9. Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron.

    DTIC Science & Technology

    1987-06-01

    Security Classification) Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron 12. PERSONAL AUTHOR(S) Thomas J. Kopf...Because of the great number of possible scheduling alternatives, it is difficult to find an optimal solution to-the scheduling problem. Additionally...changes to the original schedule make it even more difficult to find an optimal solution. The emergence of capable microcompu- ters, decision support

  10. A Comparison of Techniques for Scheduling Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2004-01-01

    Scheduling observations by coordinated fleets of Earth Observing Satellites (EOS) involves large search spaces, complex constraints and poorly understood bottlenecks, conditions where evolutionary and related algorithms are often effective. However, there are many such algorithms and the best one to use is not clear. Here we compare multiple variants of the genetic algorithm: stochastic hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling on ten realistically-sized EOS scheduling problems. Schedules are represented by a permutation (non-temperal ordering) of the observation requests. A simple deterministic scheduler assigns times and resources to each observation request in the order indicated by the permutation, discarding those that violate the constraints created by previously scheduled observations. Simulated annealing performs best. Random mutation outperform a more 'intelligent' mutator. Furthermore, the best mutator, by a small margin, was a novel approach we call temperature dependent random sampling that makes large changes in the early stages of evolution and smaller changes towards the end of search.

  11. A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.

    PubMed

    Lee, I; Sikora, R; Shaw, M J

    1997-01-01

    Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.

  12. Automation Improves Schedule Quality and Increases Scheduling Efficiency for Residents.

    PubMed

    Perelstein, Elizabeth; Rose, Ariella; Hong, Young-Chae; Cohn, Amy; Long, Micah T

    2016-02-01

    Medical resident scheduling is difficult due to multiple rules, competing educational goals, and ever-evolving graduate medical education requirements. Despite this, schedules are typically created manually, consuming hours of work, producing schedules of varying quality, and yielding negative consequences for resident morale and learning. To determine whether computerized decision support can improve the construction of residency schedules, saving time and improving schedule quality. The Optimized Residency Scheduling Assistant was designed by a team from the University of Michigan Department of Industrial and Operations Engineering. It was implemented in the C.S. Mott Children's Hospital Pediatric Emergency Department in the 2012-2013 academic year. The 4 metrics of schedule quality that were compared between the 2010-2011 and 2012-2013 academic years were the incidence of challenging shift transitions, the incidence of shifts following continuity clinics, the total shift inequity, and the night shift inequity. All scheduling rules were successfully incorporated. Average schedule creation time fell from 22 to 28 hours to 4 to 6 hours per month, and 3 of 4 metrics of schedule quality significantly improved. For the implementation year, the incidence of challenging shift transitions decreased from 83 to 14 (P < .01); the incidence of postclinic shifts decreased from 72 to 32 (P < .01); and the SD of night shifts dropped by 55.6% (P < .01). This automated shift scheduling system improves the current manual scheduling process, reducing time spent and improving schedule quality. Embracing such automated tools can benefit residency programs with shift-based scheduling needs.

  13. More reliable protein NMR peak assignment via improved 2-interval scheduling.

    PubMed

    Chen, Zhi-Zhong; Lin, Guohui; Rizzi, Romeo; Wen, Jianjun; Xu, Dong; Xu, Ying; Jiang, Tao

    2005-03-01

    Protein NMR peak assignment refers to the process of assigning a group of "spin systems" obtained experimentally to a protein sequence of amino acids. The automation of this process is still an unsolved and challenging problem in NMR protein structure determination. Recently, protein NMR peak assignment has been formulated as an interval scheduling problem (ISP), where a protein sequence P of amino acids is viewed as a discrete time interval I (the amino acids on P one-to-one correspond to the time units of I), each subset S of spin systems that are known to originate from consecutive amino acids from P is viewed as a "job" j(s), the preference of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of executing job j(s) in the subinterval of I corresponding to P, and the goal is to maximize the total profit of executing the jobs (on a single machine) during I. The interval scheduling problem is max SNP-hard in general; but in the real practice of protein NMR peak assignment, each job j(s) usually requires at most 10 consecutive time units, and typically the jobs that require one or two consecutive time units are the most difficult to assign/schedule. In order to solve these most difficult assignments, we present an efficient 13/7-approximation algorithm for the special case of the interval scheduling problem where each job takes one or two consecutive time units. Combining this algorithm with a greedy filtering strategy for handling long jobs (i.e., jobs that need more than two consecutive time units), we obtain a new efficient heuristic for protein NMR peak assignment. Our experimental study shows that the new heuristic produces the best peak assignment in most of the cases, compared with the NMR peak assignment algorithms in the recent literature. The above algorithm is also the first approximation algorithm for a nontrivial case of the well-known interval scheduling problem that breaks the ratio 2 barrier.

  14. Distributed project scheduling at NASA: Requirements for manual protocols and computer-based support

    NASA Technical Reports Server (NTRS)

    Richards, Stephen F.

    1992-01-01

    The increasing complexity of space operations and the inclusion of interorganizational and international groups in the planning and control of space missions lead to requirements for greater communication, coordination, and cooperation among mission schedulers. These schedulers must jointly allocate scarce shared resources among the various operational and mission oriented activities while adhering to all constraints. This scheduling environment is complicated by such factors as the presence of varying perspectives and conflicting objectives among the schedulers, the need for different schedulers to work in parallel, and limited communication among schedulers. Smooth interaction among schedulers requires the use of protocols that govern such issues as resource sharing, authority to update the schedule, and communication of updates. This paper addresses the development and characteristics of such protocols and their use in a distributed scheduling environment that incorporates computer-aided scheduling tools. An example problem is drawn from the domain of Space Shuttle mission planning.

  15. Quantifying Scheduling Challenges for Exascale System Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondragon, Oscar; Bridges, Patrick G.; Jones, Terry R

    2015-01-01

    The move towards high-performance computing (HPC) ap- plications comprised of coupled codes and the need to dra- matically reduce data movement is leading to a reexami- nation of time-sharing vs. space-sharing in HPC systems. In this paper, we discuss and begin to quantify the perfor- mance impact of a move away from strict space-sharing of nodes for HPC applications. Specifically, we examine the po- tential performance cost of time-sharing nodes between ap- plication components, we determine whether a simple coor- dinated scheduling mechanism can address these problems, and we research how suitable simple constraint-based opti- mization techniques are for solvingmore » scheduling challenges in this regime. Our results demonstrate that current general- purpose HPC system software scheduling and resource al- location systems are subject to significant performance de- ciencies which we quantify for six representative applica- tions. Based on these results, we discuss areas in which ad- ditional research is needed to meet the scheduling challenges of next-generation HPC systems.« less

  16. An Approximation Solution to Refinery Crude Oil Scheduling Problem with Demand Uncertainty Using Joint Constrained Programming

    PubMed Central

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation. PMID:24757433

  17. An approximation solution to refinery crude oil scheduling problem with demand uncertainty using joint constrained programming.

    PubMed

    Duan, Qianqian; Yang, Genke; Xu, Guanglin; Pan, Changchun

    2014-01-01

    This paper is devoted to develop an approximation method for scheduling refinery crude oil operations by taking into consideration the demand uncertainty. In the stochastic model the demand uncertainty is modeled as random variables which follow a joint multivariate distribution with a specific correlation structure. Compared to deterministic models in existing works, the stochastic model can be more practical for optimizing crude oil operations. Using joint chance constraints, the demand uncertainty is treated by specifying proximity level on the satisfaction of product demands. However, the joint chance constraints usually hold strong nonlinearity and consequently, it is still hard to handle it directly. In this paper, an approximation method combines a relax-and-tight technique to approximately transform the joint chance constraints to a serial of parameterized linear constraints so that the complicated problem can be attacked iteratively. The basic idea behind this approach is to approximate, as much as possible, nonlinear constraints by a lot of easily handled linear constraints which will lead to a well balance between the problem complexity and tractability. Case studies are conducted to demonstrate the proposed methods. Results show that the operation cost can be reduced effectively compared with the case without considering the demand correlation.

  18. Algorithm of composing the schedule of construction and installation works

    NASA Astrophysics Data System (ADS)

    Nehaj, Rustam; Molotkov, Georgij; Rudchenko, Ivan; Grinev, Anatolij; Sekisov, Aleksandr

    2017-10-01

    An algorithm for scheduling works is developed, in which the priority of the work corresponds to the total weight of the subordinate works, the vertices of the graph, and it is proved that for graphs of the tree type the algorithm is optimal. An algorithm is synthesized to reduce the search for solutions when drawing up schedules of construction and installation works, allocating a subset with the optimal solution of the problem of the minimum power, which is determined by the structure of its initial data and numerical values. An algorithm for scheduling construction and installation work is developed, taking into account the schedule for the movement of brigades, which is characterized by the possibility to efficiently calculate the values of minimizing the time of work performance by the parameters of organizational and technological reliability through the use of the branch and boundary method. The program of the computational algorithm was compiled in the MatLAB-2008 program. For the initial data of the matrix, random numbers were taken, uniformly distributed in the range from 1 to 100. It takes 0.5; 2.5; 7.5; 27 minutes to solve the problem. Thus, the proposed method for estimating the lower boundary of the solution is sufficiently accurate and allows efficient solution of the minimax task of scheduling construction and installation works.

  19. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  20. A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.

    PubMed

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.

  1. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  2. Planning and Scheduling for Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Frank, J. D.

    2005-12-01

    Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory

  3. JIGSAW: Preference-directed, co-operative scheduling

    NASA Technical Reports Server (NTRS)

    Linden, Theodore A.; Gaw, David

    1992-01-01

    Techniques that enable humans and machines to cooperate in the solution of complex scheduling problems have evolved out of work on the daily allocation and scheduling of Tactical Air Force resources. A generalized, formal model of these applied techniques is being developed. It is called JIGSAW by analogy with the multi-agent, constructive process used when solving jigsaw puzzles. JIGSAW begins from this analogy and extends it by propagating local preferences into global statistics that dynamically influence the value and variable ordering decisions. The statistical projections also apply to abstract resources and time periods--allowing more opportunities to find a successful variable ordering by reserving abstract resources and deferring the choice of a specific resource or time period.

  4. Energy latency tradeoffs for medium access and sleep scheduling in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Gang, Lu

    Wireless sensor networks are expected to be used in a wide range of applications from environment monitoring to event detection. The key challenge is to provide energy efficient communication; however, latency remains an important concern for many applications that require fast response. The central thesis of this work is that energy efficient medium access and sleep scheduling mechanisms can be designed without necessarily sacrificing application-specific latency performance. We validate this thesis through results from four case studies that cover various aspects of medium access and sleep scheduling design in wireless sensor networks. Our first effort, DMAC, is to design an adaptive low latency and energy efficient MAC for data gathering to reduce the sleep latency. We propose staggered schedule, duty cycle adaptation, data prediction and the use of more-to-send packets to enable seamless packet forwarding under varying traffic load and channel contentions. Simulation and experimental results show significant energy savings and latency reduction while ensuring high data reliability. The second research effort, DESS, investigates the problem of designing sleep schedules in arbitrary network communication topologies to minimize the worst case end-to-end latency (referred to as delay diameter). We develop a novel graph-theoretical formulation, derive and analyze optimal solutions for the tree and ring topologies and heuristics for arbitrary topologies. The third study addresses the problem of minimum latency joint scheduling and routing (MLSR). By constructing a novel delay graph, the optimal joint scheduling and routing can be solved by M node-disjoint paths algorithm under multiple channel model. We further extended the algorithm to handle dynamic traffic changes and topology changes. A heuristic solution is proposed for MLSR under single channel interference. In the fourth study, EEJSPC, we first formulate a fundamental optimization problem that provides tunable

  5. Dedicated heterogeneous node scheduling including backfill scheduling

    DOEpatents

    Wood, Robert R [Livermore, CA; Eckert, Philip D [Livermore, CA; Hommes, Gregg [Pleasanton, CA

    2006-07-25

    A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.

  6. Noncontingent reinforcement without extinction plus differential reinforcement of alternative behavior during treatment of problem behavior.

    PubMed

    Fritz, Jennifer N; Jackson, Lynsey M; Stiefler, Nicole A; Wimberly, Barbara S; Richardson, Amy R

    2017-07-01

    The effects of noncontingent reinforcement (NCR) without extinction during treatment of problem behavior maintained by social positive reinforcement were evaluated for five individuals diagnosed with autism spectrum disorder. A continuous NCR schedule was gradually thinned to a fixed-time 5-min schedule. If problem behavior increased during NCR schedule thinning, a continuous NCR schedule was reinstated and NCR schedule thinning was repeated with differential reinforcement of alternative behavior (DRA) included. Results showed an immediate decrease in all participants' problem behavior during continuous NCR, and problem behavior maintained at low levels during NCR schedule thinning for three participants. Problem behavior increased and maintained at higher rates during NCR schedule thinning for two other participants; however, the addition of DRA to the intervention resulted in decreased problem behavior and increased mands. © 2017 Society for the Experimental Analysis of Behavior.

  7. Computer-aided resource planning and scheduling for radiological services

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.; Ge, Yiqun; Khan, Javed I.

    1996-05-01

    There exists tremendous opportunity in hospital-wide resource optimization based on system integration. This paper defines the resource planning and scheduling requirements integral to PACS, RIS and HIS integration. An multi-site case study is conducted to define the requirements. A well-tested planning and scheduling methodology, called Constrained Resource Planning model, has been applied to the chosen problem of radiological service optimization. This investigation focuses on resource optimization issues for minimizing the turnaround time to increase clinical efficiency and customer satisfaction, particularly in cases where the scheduling of multiple exams are required for a patient. How best to combine the information system efficiency and human intelligence in improving radiological services is described. Finally, an architecture for interfacing a computer-aided resource planning and scheduling tool with the existing PACS, HIS and RIS implementation is presented.

  8. A methodological proposal for the development of an HPC-based antenna array scheduler

    NASA Astrophysics Data System (ADS)

    Bonvallet, Roberto; Hoffstadt, Arturo; Herrera, Diego; López, Daniela; Gregorio, Rodrigo; Almuna, Manuel; Hiriart, Rafael; Solar, Mauricio

    2010-07-01

    As new astronomy projects choose interferometry to improve angular resolution and to minimize costs, preparing and optimizing schedules for an antenna array becomes an increasingly critical task. This problem shares similarities with the job-shop problem, which is known to be a NP-hard problem, making a complete approach infeasible. In the case of ALMA, 18000 projects per season are expected, and the best schedule must be found in the order of minutes. The problem imposes severe difficulties: the large domain of observation projects to be taken into account; a complex objective function, composed of several abstract, environmental, and hardware constraints; the number of restrictions imposed and the dynamic nature of the problem, as weather is an ever-changing variable. A solution can benefit from the use of High-Performance Computing for the final implementation to be deployed, but also for the development process. Our research group proposes the use of both metaheuristic search and statistical learning algorithms, in order to create schedules in a reasonable time. How these techniques will be applied is yet to be determined as part of the ongoing research. Several algorithms need to be implemented, tested and evaluated by the team. This work presents the methodology proposed to lead the development of the scheduler. The basic functionality is encapsulated into software components implemented on parallel architectures. These components expose a domain-level interface to the researchers, enabling then to develop early prototypes for evaluating and comparing their proposed techniques.

  9. Generation of Look-Up Tables for Dynamic Job Shop Scheduling Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Oktaviandri, Muchamad; Hassan, Adnan; Mohd Shaharoun, Awaluddin

    2016-02-01

    Majority of existing scheduling techniques are based on static demand and deterministic processing time, while most job shop scheduling problem are concerned with dynamic demand and stochastic processing time. As a consequence, the solutions obtained from the traditional scheduling technique are ineffective wherever changes occur to the system. Therefore, this research intends to develop a decision support tool (DST) based on promising artificial intelligent that is able to accommodate the dynamics that regularly occur in job shop scheduling problem. The DST was designed through three phases, i.e. (i) the look-up table generation, (ii) inverse model development and (iii) integration of DST components. This paper reports the generation of look-up tables for various scenarios as a part in development of the DST. A discrete event simulation model was used to compare the performance among SPT, EDD, FCFS, S/OPN and Slack rules; the best performances measures (mean flow time, mean tardiness and mean lateness) and the job order requirement (inter-arrival time, due dates tightness and setup time ratio) which were compiled into look-up tables. The well-known 6/6/J/Cmax Problem from Muth and Thompson (1963) was used as a case study. In the future, the performance measure of various scheduling scenarios and the job order requirement will be mapped using ANN inverse model.

  10. Needle Revision With 5-fluorouracil for the Treatment of Ahmed Glaucoma Valve Filtering Blebs: 5-Fluoruracil Needling Revision can be a Useful and Safe Tool in the Management of Failing Ahmed Glaucoma Valve Filtering Blebs.

    PubMed

    Quaranta, Luciano; Floriani, Irene; Hollander, Lital; Poli, Davide; Katsanos, Andreas; Konstas, Anastasios G P

    2016-04-01

    To determine the outcome of needling with adjunctive 5-fluorouracil (5-FU) in patients with a failing Ahmed glaucoma valve (AGV) implant, and to identify predictors of long-term intraocular pressure (IOP) control. A prospective observational study was performed on consecutive patients with medically uncontrolled primary open-angle glaucoma (POAG) with AGV encapsulation or fibrosis and inadequate IOP control. Bleb needling with 5-FU injection (0.1 mL of 50 mg/mL) was performed at the slit-lamp. Patients were examined 1 week following the needling, and then at months 1, 3, and 6. Subsequent follow-up visits were scheduled at 6-month intervals for at least 2 years. Needling with 5-FU was repeated no more than twice during the first 3 months of the follow-up. Procedure outcome was determined on the basis of the recorded IOP levels. Thirty-six patients with an encapsulated or fibrotic AGV underwent 67procedures (mean 1.86 ± 0.83). Complete success, defined as IOP ≤ 18 mm Hg without medications, was obtained in 25% at 24 months of observation. The cumulative proportion of cases achieving either qualified (ie, IOP ≤ 18 mm Hg with medications) or complete success at 24 months of observation was 72.2%. In a univariate Cox proportional hazards model, age was the only variable that independently influenced the risk of failing 5-FU needling revision. Fourteen eyes (38.8%) had a documented complication. Needling over the plate of an AGV supplemented with 5-FU is an effective and safe choice in a significant proportion of POAG patients with elevated IOP due to encapsulation or fibrosis.

  11. Continual planning and scheduling for managing patient tests in hospital laboratories.

    PubMed

    Marinagi, C C; Spyropoulos, C D; Papatheodorou, C; Kokkotos, S

    2000-10-01

    Hospital laboratories perform examination tests upon patients, in order to assist medical diagnosis or therapy progress. Planning and scheduling patient requests for examination tests is a complicated problem because it concerns both minimization of patient stay in hospital and maximization of laboratory resources utilization. In the present paper, we propose an integrated patient-wise planning and scheduling system which supports the dynamic and continual nature of the problem. The proposed combination of multiagent and blackboard architecture allows the dynamic creation of agents that share a set of knowledge sources and a knowledge base to service patient test requests.

  12. Computer-Assisted Scheduling of Army Unit Training: An Application of Simulated Annealing.

    ERIC Educational Resources Information Center

    Hart, Roland J.; Goehring, Dwight J.

    This report of an ongoing research project intended to provide computer assistance to Army units for the scheduling of training focuses on the feasibility of simulated annealing, a heuristic approach for solving scheduling problems. Following an executive summary and brief introduction, the document is divided into three sections. First, the Army…

  13. Temporal and Resource Reasoning for Planning, Scheduling and Execution in Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Hunsberger, Luke; Tsamardinos, Ioannis

    2005-01-01

    This viewgraph slide tutorial reviews methods for planning and scheduling events. The presentation reviews several methods and uses several examples of scheduling events for the successful and timely completion of the overall plan. Using constraint based models the presentation reviews planning with time, time representations in problem solving and resource reasoning.

  14. A DAG Scheduling Scheme on Heterogeneous Computing Systems Using Tuple-Based Chemical Reaction Optimization

    PubMed Central

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems. PMID:25143977

  15. A DAG scheduling scheme on heterogeneous computing systems using tuple-based chemical reaction optimization.

    PubMed

    Jiang, Yuyi; Shao, Zhiqing; Guo, Yi

    2014-01-01

    A complex computing problem can be solved efficiently on a system with multiple computing nodes by dividing its implementation code into several parallel processing modules or tasks that can be formulated as directed acyclic graph (DAG) problems. The DAG jobs may be mapped to and scheduled on the computing nodes to minimize the total execution time. Searching an optimal DAG scheduling solution is considered to be NP-complete. This paper proposed a tuple molecular structure-based chemical reaction optimization (TMSCRO) method for DAG scheduling on heterogeneous computing systems, based on a very recently proposed metaheuristic method, chemical reaction optimization (CRO). Comparing with other CRO-based algorithms for DAG scheduling, the design of tuple reaction molecular structure and four elementary reaction operators of TMSCRO is more reasonable. TMSCRO also applies the concept of constrained critical paths (CCPs), constrained-critical-path directed acyclic graph (CCPDAG) and super molecule for accelerating convergence. In this paper, we have also conducted simulation experiments to verify the effectiveness and efficiency of TMSCRO upon a large set of randomly generated graphs and the graphs for real world problems.

  16. A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy

    PubMed Central

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742

  17. Scheduling Policies for an Antiterrorist Surveillance System

    DTIC Science & Technology

    2008-06-27

    times; for example, see Reiman and Wein [17] and Olsen [15]. For real-time scheduling problems involving impatient customers, see Gaver et al. [2...heavy traffic with throughput time constraints: Asymptotically optimal dynamic controls. Queueing Systems 39, 23–54. 30 [17] Reiman , M. I. and Wein

  18. Clinical outcomes after combined Ahmed glaucoma valve implantation and penetrating keratoplasty or pars plana vitrectomy.

    PubMed

    Lee, Jin Young; Sung, Kyung Rim; Tchah, Hung Won; Yoon, Young Hee; Kim, June Gone; Kim, Myoung Joon; Kim, Jae Yong; Yun, Sung-Cheol; Lee, Joo Yong

    2012-12-01

    To evaluate whether a combination of penetrating keratoplasty (PKP) or pars plana vitrectomy (PPV) and Ahmed glaucoma valve (AGV) implantation affords a level of success similar to that of AGV implantation alone. Eighteen eyes underwent simultaneous PPV and AGV, 14 eyes with PKP and AGV and 30 eyes with AGV implantation alone were evaluated. Success was defined as attainment of an intraocular pressure (IOP) >5 and <22 mmHg, with or without use of anti-glaucoma medication. Kaplan-Meier survival analysis was performed to compare cumulative survival between the combined surgery groups and the AGV implantation-alone group. Cox proportional hazard regression analysis was conducted to identify factors predictive of success in each of the three groups. Mean (±standard deviation) preoperative IOP was 30.2 ± 10.2 mmHg in the PKP + AGV, 35.2 ± 9.8 mmHg in the PPV + AGV, and 36.2 ± 10.1 mmHg in the AGV implantation-alone group. The cumulative success rate at 18 months was 66.9%, 73.2%, and 70.8% in the three groups, respectively. Neither combined surgery group differed significantly in terms of cumulative success rate compared with the AGV implantation-alone group (p = 0.556, p = 0.487, respectively). The mean number of preoperative anti-glaucoma medications prescribed was significantly associated with success in the PKP + AGV implantation group (hazard ratio, 2.942; p = 0.024). Either PKP or PPV performed in conjunction with AGV implantation afforded similar success rates compared to patients treated with AGV implantation alone. Therefore, in patients with refractory glaucoma who have underlying corneal or retinal pathology requiring treatment with PKP or PPV, AGV implantation can be performed simultaneously.

  19. Learning dominance relations in combinatorial search problems

    NASA Technical Reports Server (NTRS)

    Yu, Chee-Fen; Wah, Benjamin W.

    1988-01-01

    Dominance relations commonly are used to prune unnecessary nodes in search graphs, but they are problem-dependent and cannot be derived by a general procedure. The authors identify machine learning of dominance relations and the applicable learning mechanisms. A study of learning dominance relations using learning by experimentation is described. This system has been able to learn dominance relations for the 0/1-knapsack problem, an inventory problem, the reliability-by-replication problem, the two-machine flow shop problem, a number of single-machine scheduling problems, and a two-machine scheduling problem. It is considered that the same methodology can be extended to learn dominance relations in general.

  20. A software tool for dataflow graph scheduling

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1994-01-01

    A graph-theoretic design process and software tool is presented for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described using a dataflow graph and are intended to be executed repetitively on multiple processors. The dataflow paradigm is very useful in exposing the parallelism inherent in algorithms. It provides a graphical and mathematical model which describes a partial ordering of algorithm tasks based on data precedence.

  1. Generating effective project scheduling heuristics by abstraction and reconstitution

    NASA Technical Reports Server (NTRS)

    Janakiraman, Bhaskar; Prieditis, Armand

    1992-01-01

    A project scheduling problem consists of a finite set of jobs, each with fixed integer duration, requiring one or more resources such as personnel or equipment, and each subject to a set of precedence relations, which specify allowable job orderings, and a set of mutual exclusion relations, which specify jobs that cannot overlap. No job can be interrupted once started. The objective is to minimize project duration. This objective arises in nearly every large construction project--from software to hardware to buildings. Because such project scheduling problems are NP-hard, they are typically solved by branch-and-bound algorithms. In these algorithms, lower-bound duration estimates (admissible heuristics) are used to improve efficiency. One way to obtain an admissible heuristic is to remove (abstract) all resources and mutual exclusion constraints and then obtain the minimal project duration for the abstracted problem; this minimal duration is the admissible heuristic. Although such abstracted problems can be solved efficiently, they yield inaccurate admissible heuristics precisely because those constraints that are central to solving the original problem are abstracted. This paper describes a method to reconstitute the abstracted constraints back into the solution to the abstracted problem while maintaining efficiency, thereby generating better admissible heuristics. Our results suggest that reconstitution can make good admissible heuristics even better.

  2. A retrospective study on the outcomes of Ahmed valve versus Ahmed valve combined with fluocinolone implant in uveitic glaucoma

    PubMed Central

    Sevgi, Duriye D.; Davoudi, Samaneh; Talcott, Katherine E.; Cho, Heeyoon; Guo, Rong; Lobo, Ann-Marie; Papaliodis, George N.; Turalba, Angela; Sobrin, Lucia; Shen, Lucy Q.

    2017-01-01

    Purpose To compare the intraocular pressure (IOP) outcomes of Ahmed glaucoma valve (AGV) surgery alone versus AGV with fluocinolone implant in uveitic glaucoma patients. Methods We identified uveitic glaucoma patients with AGV surgery alone and AGV surgery combined with fluocinolone implant from the Massachusetts Eye and Ear Ocular Inflammation Database. Demographic information, visual acuity, and IOP were recorded at preoperative visits and 1, 6, and 12 months after surgery. Incidence of hypertensive phase, defined as an IOP of >21 mm Hg or use of additional treatment to lower IOP occurring any time between 7 days to 6 months postoperatively, was investigated. Multilevel mixed effects models were performed to compare the outcomes between groups. Results Eighteen eyes of 13 uveitic glaucoma patients with 1-year follow-up data were included. There were 11 eyes of 9 patients (mean age, 56.5 years; 63.6% male) in the AGV group and 7 eyes of 4 patients (mean age, 61.3 years; 71.4% male) in the AGV + fluocinolone group. There was no significant difference in visual acuity change at 1 year after surgery between groups (P = 0.25), although visual acuity improvement was significant in the AGV group (P = 0.01). The hypertensive phase occurred in 91% of AGV patients and 43% of AGV + fluocinolone patients (P = 0.30), with onset of 8-40 days (mean, 18 days) after surgery. IOP and number of glaucoma medications decreased at the 1-year postoperative visits in both the AGV group (P < 0.0001, P < 0.0001) and the AGV + fluocinolone group (P = 0.001, P < 0.0001). Compared to the AGV group, the AGV + fluocinolone group used fewer glaucoma medications (0.28 vs 1.30 [P = 0.01]) and had better inflammation control (P = 0.02). The surgical complication rates were similar between groups. Conclusions In uveitic glaucoma, AGV with fluocinolone achieves a similar, desired IOP control but with fewer glaucoma medications than AGV alone. PMID:29162989

  3. A retrospective study on the outcomes of Ahmed valve versus Ahmed valve combined with fluocinolone implant in uveitic glaucoma.

    PubMed

    Sevgi, Duriye D; Davoudi, Samaneh; Talcott, Katherine E; Cho, Heeyoon; Guo, Rong; Lobo, Ann-Marie; Papaliodis, George N; Turalba, Angela; Sobrin, Lucia; Shen, Lucy Q

    2017-01-01

    To compare the intraocular pressure (IOP) outcomes of Ahmed glaucoma valve (AGV) surgery alone versus AGV with fluocinolone implant in uveitic glaucoma patients. We identified uveitic glaucoma patients with AGV surgery alone and AGV surgery combined with fluocinolone implant from the Massachusetts Eye and Ear Ocular Inflammation Database. Demographic information, visual acuity, and IOP were recorded at preoperative visits and 1, 6, and 12 months after surgery. Incidence of hypertensive phase, defined as an IOP of >21 mm Hg or use of additional treatment to lower IOP occurring any time between 7 days to 6 months postoperatively, was investigated. Multilevel mixed effects models were performed to compare the outcomes between groups. Eighteen eyes of 13 uveitic glaucoma patients with 1-year follow-up data were included. There were 11 eyes of 9 patients (mean age, 56.5 years; 63.6% male) in the AGV group and 7 eyes of 4 patients (mean age, 61.3 years; 71.4% male) in the AGV + fluocinolone group. There was no significant difference in visual acuity change at 1 year after surgery between groups ( P = 0.25), although visual acuity improvement was significant in the AGV group ( P = 0.01). The hypertensive phase occurred in 91% of AGV patients and 43% of AGV + fluocinolone patients ( P = 0.30), with onset of 8-40 days (mean, 18 days) after surgery. IOP and number of glaucoma medications decreased at the 1-year postoperative visits in both the AGV group ( P < 0.0001, P < 0.0001) and the AGV + fluocinolone group ( P = 0.001, P < 0.0001). Compared to the AGV group, the AGV + fluocinolone group used fewer glaucoma medications (0.28 vs 1.30 [ P = 0.01]) and had better inflammation control ( P = 0.02). The surgical complication rates were similar between groups. In uveitic glaucoma, AGV with fluocinolone achieves a similar, desired IOP control but with fewer glaucoma medications than AGV alone.

  4. A collaborative scheduling model for the supply-hub with multiple suppliers and multiple manufacturers.

    PubMed

    Li, Guo; Lv, Fei; Guan, Xu

    2014-01-01

    This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment.

  5. 77 FR 64848 - Proposed Collection; Comment Request for Form 1120S, Schedule D, Schedule K-1, and Schedule M-3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... 1120S, Schedule D, Schedule K-1, and Schedule M-3 AGENCY: Internal Revenue Service (IRS), Treasury... (Loss) Reconciliation for S Corporations With Total Assets of $10 Million or More, and Schedule K-1... Corporation, Schedule D (Form 1120S), Capital Gains and Losses and Built-in Gains, Schedule K-1 (Form 1120S...

  6. The Swedish Experiment with Localised Control of Time Schedules: Policy Problem Representations

    ERIC Educational Resources Information Center

    Ronnberg, Linda

    2007-01-01

    Swedish compulsory schools are the most autonomous in Europe regarding time allocation and time management. Still, the Swedish state decided to take this even further, when introducing an experiment that permits some compulsory schools to abandon the regulations of the national time schedule. The aim of this study is to explore and analyse the…

  7. Research on Scheduling Algorithm for Multi-satellite and Point Target Task on Swinging Mode

    NASA Astrophysics Data System (ADS)

    Wang, M.; Dai, G.; Peng, L.; Song, Z.; Chen, G.

    2012-12-01

    Nowadays, using satellite in space to observe ground is an important and major method to obtain ground information. With the development of the scientific technology in the field of space, many fields such as military and economic and other areas have more and more requirement of space technology because of the benefits of the satellite's widespread, timeliness and unlimited of area and country. And at the same time, because of the wide use of all kinds of satellites, sensors, repeater satellites and ground receiving stations, ground control system are now facing great challenge. Therefore, how to make the best value of satellite resources so as to make full use of them becomes an important problem of ground control system. Satellite scheduling is to distribute the resource to all tasks without conflict to obtain the scheduling result so as to complete as many tasks as possible to meet user's requirement under considering the condition of the requirement of satellites, sensors and ground receiving stations. Considering the size of the task, we can divide tasks into point task and area task. This paper only considers point targets. In this paper, a description of satellite scheduling problem and a chief introduction of the theory of satellite scheduling are firstly made. We also analyze the restriction of resource and task in scheduling satellites. The input and output flow of scheduling process are also chiefly described in the paper. On the basis of these analyses, we put forward a scheduling model named as multi-variable optimization model for multi-satellite and point target task on swinging mode. In the multi-variable optimization model, the scheduling problem is transformed the parametric optimization problem. The parameter we wish to optimize is the swinging angle of every time-window. In the view of the efficiency and accuracy, some important problems relating the satellite scheduling such as the angle relation between satellites and ground targets, positive

  8. Learning to integrate reactivity and deliberation in uncertain planning and scheduling problems

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Gervasio, Melinda T.; Dejong, Gerald F.

    1992-01-01

    This paper describes an approach to planning and scheduling in uncertain domains. In this approach, a system divides a task on a goal by goal basis into reactive and deliberative components. Initially, a task is handled entirely reactively. When failures occur, the system changes the reactive/deliverative goal division by moving goals into the deliberative component. Because our approach attempts to minimize the number of deliberative goals, we call our approach Minimal Deliberation (MD). Because MD allows goals to be treated reactively, it gains some of the advantages of reactive systems: computational efficiency, the ability to deal with noise and non-deterministic effects, and the ability to take advantage of unforseen opportunities. However, because MD can fall back upon deliberation, it can also provide some of the guarantees of classical planning, such as the ability to deal with complex goal interactions. This paper describes the Minimal Deliberation approach to integrating reactivity and deliberation and describe an ongoing application of the approach to an uncertain planning and scheduling domain.

  9. Linear-parameter-varying gain-scheduled control of aerospace systems

    NASA Astrophysics Data System (ADS)

    Barker, Jeffrey Michael

    The dynamics of many aerospace systems vary significantly as a function of flight condition. Robust control provides methods of guaranteeing performance and stability goals across flight conditions. In mu-syntthesis, changes to the dynamical system are primarily treated as uncertainty. This method has been successfully applied to many control problems, and here is applied to flutter control. More recently, two techniques for generating robust gain-scheduled controller have been developed. Linear fractional transformation (LFT) gain-scheduled control is an extension of mu-synthesis in which the plant and controller are explicit functions of parameters measurable in real-time. This LFT gain-scheduled control technique is applied to the Benchmark Active Control Technology (BACT) wing, and compared with mu-synthesis control. Linear parameter-varying (LPV) gain-scheduled control is an extension of Hinfinity control to parameter varying systems. LPV gain-scheduled control directly incorporates bounds on the rate of change of the scheduling parameters, and often reduces conservatism inherent in LFT gain-scheduled control. Gain-scheduled LPV control of the BACT wing compares very favorably with the LFT controller. Gain-scheduled LPV controllers are generated for the lateral-directional and longitudinal axes of the Innovative Control Effectors (ICE) aircraft and implemented in nonlinear simulations and real-time piloted nonlinear simulations. Cooper-Harper and pilot-induced oscillation ratings were obtained for an initial design, a reference aircraft and a redesign. Piloted simulation results for the initial LPV gain-scheduled control of the ICE aircraft are compared with results for a conventional fighter aircraft in discrete pitch and roll angle tracking tasks. The results for the redesigned controller are significantly better than both the previous LPV controller and the conventional aircraft.

  10. Resource planning and scheduling of payload for satellite with particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wang, Cheng

    2007-11-01

    The resource planning and scheduling technology of payload is a key technology to realize an automated control for earth observing satellite with limited resources on satellite, which is implemented to arrange the works states of various payloads to carry out missions by optimizing the scheme of the resources. The scheduling task is a difficult constraint optimization problem with various and mutative requests and constraints. Based on the analysis of the satellite's functions and the payload's resource constraints, a proactive planning and scheduling strategy based on the availability of consumable and replenishable resources in time-order is introduced along with dividing the planning and scheduling period to several pieces. A particle swarm optimization algorithm is proposed to address the problem with an adaptive mutation operator selection, where the swarm is divided into groups with different probabilities to employ various mutation operators viz., differential evolution, Gaussian and random mutation operators. The probabilities are adjusted adaptively by comparing the effectiveness of the groups to select a proper operator. The simulation results have shown the feasibility and effectiveness of the method.

  11. Scheduling Results for the THEMIS Observation Scheduling Tool

    NASA Technical Reports Server (NTRS)

    Mclaren, David; Rabideau, Gregg; Chien, Steve; Knight, Russell; Anwar, Sadaat; Mehall, Greg; Christensen, Philip

    2011-01-01

    We describe a scheduling system intended to assist in the development of instrument data acquisitions for the THEMIS instrument, onboard the Mars Odyssey spacecraft, and compare results from multiple scheduling algorithms. This tool creates observations of both (a) targeted geographical regions of interest and (b) general mapping observations, while respecting spacecraft constraints such as data volume, observation timing, visibility, lighting, season, and science priorities. This tool therefore must address both geometric and state/timing/resource constraints. We describe a tool that maps geometric polygon overlap constraints to set covering constraints using a grid-based approach. These set covering constraints are then incorporated into a greedy optimization scheduling algorithm incorporating operations constraints to generate feasible schedules. The resultant tool generates schedules of hundreds of observations per week out of potential thousands of observations. This tool is currently under evaluation by the THEMIS observation planning team at Arizona State University.

  12. Personalized Education; Solving a Group Formation and Scheduling Problem for Educational Content

    ERIC Educational Resources Information Center

    Bahargam, Sanaz; Erdos, Dóra; Bestavros, Azer; Terzi, Evimaria

    2015-01-01

    Whether teaching in a classroom or a Massive Online Open Course it is crucial to present the material in a way that benefits the audience as a whole. We identify two important tasks to solve towards this objective; (1) group students so that they can maximally benefit from peer interaction and (2) find an optimal schedule of the educational…

  13. Applications of colored petri net and genetic algorithms to cluster tool scheduling

    NASA Astrophysics Data System (ADS)

    Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng

    2005-12-01

    In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.

  14. Scheduling techniques in the Request Oriented Scheduling Engine (ROSE)

    NASA Technical Reports Server (NTRS)

    Zoch, David R.

    1991-01-01

    Scheduling techniques in the ROSE are presented in the form of the viewgraphs. The following subject areas are covered: agenda; ROSE summary and history; NCC-ROSE task goals; accomplishments; ROSE timeline manager; scheduling concerns; current and ROSE approaches; initial scheduling; BFSSE overview and example; and summary.

  15. AWAS: A dynamic work scheduling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.; Hao, J.; Kocur, G.

    1994-12-31

    The Automated Work Administration System (AWAS) is an automated scheduling system developed at GTE. A typical work center has 1000 employees and processes 4000 jobs each day. Jobs are geographically distributed within the service area of the work center, require different skills, and have to be done within specified time windows. Each job can take anywhere from 12 minutes to several hours to complete. Each employee can have his/her individual schedule, skill, or working area. The jobs can enter and leave the system at any time The employees dial up to the system to request for their next job atmore » the beginning of a day or after a job is done. The system is able to respond to the changes dynamically and produce close to optimum solutions at real time. We formulate the real world problem as a minimum cost network flow problem. Both employees and jobs are formulated as nodes. Relationship between jobs and employees are formulated as arcs, and working hours contributed by employees and consumed by jobs are formulated as flow. The goal is to minimize missed commitments. We solve the problem with the successive shortest path algorithm. Combined with pre-processing and post-processing, the system produces reasonable outputs and the response time is very good.« less

  16. Interference Cognizant Network Scheduling

    NASA Technical Reports Server (NTRS)

    Hall, Brendan (Inventor); Bonk, Ted (Inventor); DeLay, Benjamin F. (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor)

    2017-01-01

    Systems and methods for interference cognizant network scheduling are provided. In certain embodiments, a method of scheduling communications in a network comprises identifying a bin of a global timeline for scheduling an unscheduled virtual link, wherein a bin is a segment of the timeline; identifying a pre-scheduled virtual link in the bin; and determining if the pre-scheduled and unscheduled virtual links share a port. In certain embodiments, if the unscheduled and pre-scheduled virtual links don't share a port, scheduling transmission of the unscheduled virtual link to overlap with the scheduled transmission of the pre-scheduled virtual link; and if the unscheduled and pre-scheduled virtual links share a port: determining a start time delay for the unscheduled virtual link based on the port; and scheduling transmission of the unscheduled virtual link in the bin based on the start time delay to overlap part of the scheduled transmission of the pre-scheduled virtual link.

  17. The role of the production scheduling system in rescheduling

    NASA Astrophysics Data System (ADS)

    Kalinowski, K.; Grabowik, C.; Kempa, W.; Paprocka, I.

    2015-11-01

    The paper presents the rescheduling problem in the context of cooperation between production scheduling system (PSS) and other units in an integrated manufacturing environment - decision makers and software systems. The main aim is to discuss the PSS functionality for maximizing automation of the rescheduling process, reducing the response time and improving the quality of generated solutions. PSSs operate in the meeting of tactical and operational level of planning and control, and play an important role in the production preparation and control. On the basis of information about orders, technology and production system state (e.g. resources availability) they prepare and/or update a detailed plan of production flow - a schedule. All necessary data for scheduling and rescheduling are usually collected in other systems both from organizational and technical production preparation, e.g. ERP, PLM, MES, CAPP or others, as well as they are entered directly by the decision- makers/operators. Data acquired in this way are often incomplete and inconsistent. Therefore the existing rescheduling software works according to interactive method - rather support but does not replace the human decision maker in tasks planning. When rescheduling, due to the limited amount of time to make a decision this interaction is particularly important. An additional problem arises in data acquisition, in the process of data exchanging between systems or in the identification of new data sources and their processing. Different approaches to rescheduling were characterized, including those solutions, where all these operations are carried out by an autonomous system and those in which scheduling is performed only upon request from the outside, for the newly created scheduling data representing the current state of the production system.

  18. Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines

    PubMed Central

    Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing

    2014-01-01

    m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933

  19. On the number of different dynamics in Boolean networks with deterministic update schedules.

    PubMed

    Aracena, J; Demongeot, J; Fanchon, E; Montalva, M

    2013-04-01

    Deterministic Boolean networks are a type of discrete dynamical systems widely used in the modeling of genetic networks. The dynamics of such systems is characterized by the local activation functions and the update schedule, i.e., the order in which the nodes are updated. In this paper, we address the problem of knowing the different dynamics of a Boolean network when the update schedule is changed. We begin by proving that the problem of the existence of a pair of update schedules with different dynamics is NP-complete. However, we show that certain structural properties of the interaction diagraph are sufficient for guaranteeing distinct dynamics of a network. In [1] the authors define equivalence classes which have the property that all the update schedules of a given class yield the same dynamics. In order to determine the dynamics associated to a network, we develop an algorithm to efficiently enumerate the above equivalence classes by selecting a representative update schedule for each class with a minimum number of blocks. Finally, we run this algorithm on the well known Arabidopsis thaliana network to determine the full spectrum of its different dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root Cooling Schedule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-06-13

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less

  1. SPORT: An Algorithm for Divisible Load Scheduling with Result Collection on Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Ghatpande, Abhay; Nakazato, Hidenori; Beaumont, Olivier; Watanabe, Hiroshi

    Divisible Load Theory (DLT) is an established mathematical framework to study Divisible Load Scheduling (DLS). However, traditional DLT does not address the scheduling of results back to source (i. e., result collection), nor does it comprehensively deal with system heterogeneity. In this paper, the DLSRCHETS (DLS with Result Collection on HET-erogeneous Systems) problem is addressed. The few papers to date that have dealt with DLSRCHETS, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions to DLSRCHETS. In this paper, a new polynomial time heuristic algorithm, SPORT (System Parameters based Optimized Result Transfer), is proposed as a solution to the DLSRCHETS problem. With the help of simulations, it is proved that the performance of SPORT is significantly better than existing algorithms. The other major contributions of this paper include, for the first time ever, (a) the derivation of the condition to identify the presence of idle time in a FIFO schedule for two processors, (b) the identification of the limiting condition for the optimality of FIFO and LIFO schedules for two processors, and (c) the introduction of the concept of equivalent processor in DLS for heterogeneous systems with result collection.

  2. A three-stage heuristic for harvest scheduling with access road network development

    Treesearch

    Mark M. Clark; Russell D. Meller; Timothy P. McDonald

    2000-01-01

    In this article we present a new model for the scheduling of forest harvesting with spatial and temporal constraints. Our approach is unique in that we incorporate access road network development into the harvest scheduling selection process. Due to the difficulty of solving the problem optimally, we develop a heuristic that consists of a solution construction stage...

  3. A Collaborative Scheduling Model for the Supply-Hub with Multiple Suppliers and Multiple Manufacturers

    PubMed Central

    Lv, Fei; Guan, Xu

    2014-01-01

    This paper investigates a collaborative scheduling model in the assembly system, wherein multiple suppliers have to deliver their components to the multiple manufacturers under the operation of Supply-Hub. We first develop two different scenarios to examine the impact of Supply-Hub. One is that suppliers and manufacturers make their decisions separately, and the other is that the Supply-Hub makes joint decisions with collaborative scheduling. The results show that our scheduling model with the Supply-Hub is a NP-complete problem, therefore, we propose an auto-adapted differential evolution algorithm to solve this problem. Moreover, we illustrate that the performance of collaborative scheduling by the Supply-Hub is superior to separate decision made by each manufacturer and supplier. Furthermore, we also show that the algorithm proposed has good convergence and reliability, which can be applicable to more complicated supply chain environment. PMID:24892104

  4. Surgery scheduling optimization considering real life constraints and comprehensive operation cost of operating room.

    PubMed

    Xiang, Wei; Li, Chong

    2015-01-01

    Operating Room (OR) is the core sector in hospital expenditure, the operation management of which involves a complete three-stage surgery flow, multiple resources, prioritization of the various surgeries, and several real-life OR constraints. As such reasonable surgery scheduling is crucial to OR management. To optimize OR management and reduce operation cost, a short-term surgery scheduling problem is proposed and defined based on the survey of the OR operation in a typical hospital in China. The comprehensive operation cost is clearly defined considering both under-utilization and overutilization. A nested Ant Colony Optimization (nested-ACO) incorporated with several real-life OR constraints is proposed to solve such a combinatorial optimization problem. The 10-day manual surgery schedules from a hospital in China are compared with the optimized schedules solved by the nested-ACO. Comparison results show the advantage using the nested-ACO in several measurements: OR-related time, nurse-related time, variation in resources' working time, and the end time. The nested-ACO considering real-life operation constraints such as the difference between first and following case, surgeries priority, and fixed nurses in pre/post-operative stage is proposed to solve the surgery scheduling optimization problem. The results clearly show the benefit of using the nested-ACO in enhancing the OR management efficiency and minimizing the comprehensive overall operation cost.

  5. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  6. DSN Scheduling Engine

    NASA Technical Reports Server (NTRS)

    Clement, Bradley; Johnston, Mark; Wax, Allan; Chouinard, Caroline

    2008-01-01

    The DSN (Deep Space Network) Scheduling Engine targets all space missions that use DSN services. It allows clients to issue scheduling, conflict identification, conflict resolution, and status requests in XML over a Java Message Service interface. The scheduling requests may include new requirements that represent a set of tracks to be scheduled under some constraints. This program uses a heuristic local search to schedule a variety of schedule requirements, and is being infused into the Service Scheduling Assembly, a mixed-initiative scheduling application. The engine resolves conflicting schedules of resource allocation according to a range of existing and possible requirement specifications, including optional antennas; start of track and track duration ranges; periodic tracks; locks on track start, duration, and allocated antenna; MSPA (multiple spacecraft per aperture); arraying/VLBI (very long baseline interferometry)/delta DOR (differential one-way ranging); continuous tracks; segmented tracks; gap-to-track ratio; and override or block-out of requirements. The scheduling models now include conflict identification for SOA(start of activity), BOT (beginning of track), RFI (radio frequency interference), and equipment constraints. This software will search through all possible allocations while providing a best-effort solution at any time. The engine reschedules to accommodate individual emergency tracks in 0.2 second, and emergency antenna downtime in 0.2 second. The software handles doubling of one mission's track requests over one week (to 42 total) in 2.7 seconds. Further tests will be performed in the context of actual schedules.

  7. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment.

    PubMed

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.

  8. Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment

    PubMed Central

    Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda

    2017-01-01

    Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505

  9. Single machine scheduling with slack due dates assignment

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Hu, Xiangpei; Wang, Xuyin

    2017-04-01

    This paper considers a single machine scheduling problem in which each job is assigned an individual due date based on a common flow allowance (i.e. all jobs have slack due date). The goal is to find a sequence for jobs, together with a due date assignment, that minimizes a non-regular criterion comprising the total weighted absolute lateness value and common flow allowance cost, where the weight is a position-dependent weight. In order to solve this problem, an ? time algorithm is proposed. Some extensions of the problem are also shown.

  10. Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP.

    PubMed

    Tsai, Meng-Hsun; Chou, Chien-Ming; Lan, Kun-Chan

    2016-01-01

    Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance.

  11. Avoiding Biased-Feeding in the Scheduling of Collaborative Multipath TCP

    PubMed Central

    2016-01-01

    Smartphones have become the major communication and portable computing devices that access the Internet through Wi-Fi or mobile networks. Unfortunately, users without a mobile data subscription can only access the Internet at limited locations, such as hotspots. In this paper, we propose a collaborative bandwidth sharing protocol (CBSP) built on top of MultiPath TCP (MPTCP). CBSP enables users to buy bandwidth on demand from neighbors (called Helpers) and uses virtual interfaces to bind the subflows of MPTCP to avoid modifying the implementation of MPTCP. However, although MPTCP provides the required multi-homing functionality for bandwidth sharing, the current packet scheduling in collaborative MPTCP (e.g., Co-MPTCP) leads to the so-called biased-feeding problem. In this problem, the fastest link might always be selected to send packets whenever it has available cwnd, which results in other links not being fully utilized. In this work, we set out to design an algorithm, called Scheduled Window-based Transmission Control (SWTC), to improve the performance of packet scheduling in MPTCP, and we perform extensive simulations to evaluate its performance. PMID:27529783

  12. Comparison of multiobjective evolutionary algorithms for operations scheduling under machine availability constraints.

    PubMed

    Frutos, M; Méndez, M; Tohmé, F; Broz, D

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.

  13. Comparison of Multiobjective Evolutionary Algorithms for Operations Scheduling under Machine Availability Constraints

    PubMed Central

    Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502

  14. A human factors approach to range scheduling for satellite control

    NASA Technical Reports Server (NTRS)

    Wright, Cameron H. G.; Aitken, Donald J.

    1991-01-01

    Range scheduling for satellite control presents a classical problem: supervisory control of a large-scale dynamic system, with unwieldy amounts of interrelated data used as inputs to the decision process. Increased automation of the task, with the appropriate human-computer interface, is highly desirable. The development and user evaluation of a semi-automated network range scheduling system is described. The system incorporates a synergistic human-computer interface consisting of a large screen color display, voice input/output, a 'sonic pen' pointing device, a touchscreen color CRT, and a standard keyboard. From a human factors standpoint, this development represents the first major improvement in almost 30 years to the satellite control network scheduling task.

  15. The efficacy of Ahmed glaucoma valve drainage devices in cases of adult refractory glaucoma in Indian eyes

    PubMed Central

    Parihar, Jitendra K S; Vats, Devendra P; Maggon, Rakesh; Mathur, Vijay; Singh, Anirudh; Mishra, Sanjay K

    2009-01-01

    Aim: To evaluate the efficacy of Ahmed glaucoma valve (AGV) drainage devices in cases of adult refractory glaucoma in Indian eyes. Settings and Design: Retrospective interventional case series study. Materials and Methods: Fifty two eyes of 32 patients of refractory glaucoma in the age group of 35 to 60 years who underwent AGV implantation with or without concomitant procedures from January 2003 to Jan 2007 were studied. Of these, 46 eyes (88%) had undergone filtering surgery earlier whereas remaining eyes underwent primary AGV implantation following failure of maximal medical therapy. The follow up ranged between 12 months to 48 months Results: Eighteen eyes (35%) had undergone phacoemulsification with AGV implantation, penetrating keratoplasty (PK) with AGV and intraocular lens (IOL) implantation in 13 eyes (25%), AGV over preexisting IOL in eight eyes (15%). AGV implantation alone was done in six (11%) eyes. Anterior chamber (AC) reconstruction with secondary IOL and AGV was performed in the remaining eyes. The mean intra ocular pressure (IOP) decreased from 36.3 ± 15.7 mm Hg to 19.6 ± 9.2 mm Hg. Complete success as per criteria was achieved in 46 eyes (88%). None of the eyes had failure to maintain IOP control following AGV. Conclusion: The AGV resulted in effective and sustained control of IOP in cases of adult refractory glaucoma in intermediate follow up. PMID:19700871

  16. NASA scheduling technologies

    NASA Technical Reports Server (NTRS)

    Adair, Jerry R.

    1994-01-01

    This paper is a consolidated report on ten major planning and scheduling systems that have been developed by the National Aeronautics and Space Administration (NASA). A description of each system, its components, and how it could be potentially used in private industry is provided in this paper. The planning and scheduling technology represented by the systems ranges from activity based scheduling employing artificial intelligence (AI) techniques to constraint based, iterative repair scheduling. The space related application domains in which the systems have been deployed vary from Space Shuttle monitoring during launch countdown to long term Hubble Space Telescope (HST) scheduling. This paper also describes any correlation that may exist between the work done on different planning and scheduling systems. Finally, this paper documents the lessons learned from the work and research performed in planning and scheduling technology and describes the areas where future work will be conducted.

  17. Scheduling, revenue management, and fairness in an academic-hospital radiology division.

    PubMed

    Baum, Richard; Bertsimas, Dimitris; Kallus, Nathan

    2014-10-01

    Physician staff of academic hospitals today practice in several geographic locations including their main hospital. This is referred to as the extended campus. With extended campuses expanding, the growing complexity of a single division's schedule means that a naive approach to scheduling compromises revenue. Moreover, it may provide an unfair allocation of individual revenue, desirable or burdensome assignments, and the extent to which the preferences of each individual are met. This has adverse consequences on incentivization and employee satisfaction and is simply against business policy. We identify the daily scheduling of physicians in this context as an operational problem that incorporates scheduling, revenue management, and fairness. Noting previous success of operations research and optimization in each of these disciplines, we propose a simple unified optimization formulation of this scheduling problem using mixed-integer optimization. Through a study of implementing the approach at the Division of Angiography and Interventional Radiology at the Brigham and Women's Hospital, which is directed by one of the authors, we exemplify the flexibility of the model to adapt to specific applications, the tractability of solving the model in practical settings, and the significant impact of the approach, most notably in increasing revenue by 8.2% over previous operating revenue while adhering strictly to a codified fairness and objectivity. We found that the investment in implementing such a system is far outweighed by the large potential revenue increase and the other benefits outlined. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  18. The GBT Dynamic Scheduling System: A New Scheduling Paradigm

    NASA Astrophysics Data System (ADS)

    O'Neil, K.; Balser, D.; Bignell, C.; Clark, M.; Condon, J.; McCarty, M.; Marganian, P.; Shelton, A.; Braatz, J.; Harnett, J.; Maddalena, R.; Mello, M.; Sessoms, E.

    2009-09-01

    The Robert C. Byrd Green Bank Telescope (GBT) is implementing a new Dynamic Scheduling System (DSS) designed to maximize the observing efficiency of the telescope while ensuring that none of the flexibility and ease of use of the GBT is harmed and that the data quality of observations is not adversely affected. To accomplish this, the GBT DSS is implementing a dynamic scheduling system which schedules observers, rather than running scripts. The DSS works by breaking each project into one or more sessions which have associated observing criteria such as RA, Dec, and frequency. Potential observers may also enter dates when members of their team will not be available for either on-site or remote observing. The scheduling algorithm uses those data, along with the predicted weather, to determine the most efficient schedule for the GBT. The DSS provides all observers at least 24 hours notice of their upcoming observing. In the uncommon (< 20%) case where the actual weather does not match the predictions, a backup project, chosen from the database, is run instead. Here we give an overview of the GBT DSS project, including the ranking and scheduling algorithms for the sessions, the scheduling probabilities generation, the web framework for the system, and an overview of the results from the beta testing which were held from June - September, 2008.

  19. Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems.

    PubMed

    Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao

    2017-12-20

    Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm.

  20. Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems

    PubMed Central

    Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao

    2017-01-01

    Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm. PMID:29261135

  1. Switching State-Feedback LPV Control with Uncertain Scheduling Parameters

    NASA Technical Reports Server (NTRS)

    He, Tianyi; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming G.

    2017-01-01

    This paper presents a new method to design Robust Switching State-Feedback Gain-Scheduling (RSSFGS) controllers for Linear Parameter Varying (LPV) systems with uncertain scheduling parameters. The domain of scheduling parameters are divided into several overlapped subregions to undergo hysteresis switching among a family of simultaneously designed LPV controllers over the corresponding subregion with the guaranteed H-infinity performance. The synthesis conditions are given in terms of Parameterized Linear Matrix Inequalities that guarantee both stability and performance at each subregion and associated switching surfaces. The switching stability is ensured by descent parameter-dependent Lyapunov function on switching surfaces. By solving the optimization problem, RSSFGS controller can be obtained for each subregion. A numerical example is given to illustrate the effectiveness of the proposed approach over the non-switching controllers.

  2. Considerations for Using an Incremental Scheduler for Human Exploration Task Scheduling

    NASA Technical Reports Server (NTRS)

    Jaap, John; Phillips, Shaun

    2005-01-01

    As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks.

  3. Schedule Risk Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Greg

    2003-01-01

    Schedule risk assessments determine the likelihood of finishing on time. Each task in a schedule has a varying degree of probability of being finished on time. A schedule risk assessment quantifies these probabilities by assigning values to each task. This viewgraph presentation contains a flow chart for conducting a schedule risk assessment, and profiles applicable several methods of data analysis.

  4. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.

    PubMed

    Li, Bin-Bin; Wang, Ling

    2007-06-01

    This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.

  5. The Isolation of Motivational, Motoric, and Schedule Effects on Operant Performance: A Modeling Approach

    ERIC Educational Resources Information Center

    Brackney, Ryan J.; Cheung, Timothy H. C.; Neisewander, Janet L.; Sanabria, Federico

    2011-01-01

    Dissociating motoric and motivational effects of pharmacological manipulations on operant behavior is a substantial challenge. To address this problem, we applied a response-bout analysis to data from rats trained to lever press for sucrose on variable-interval (VI) schedules of reinforcement. Motoric, motivational, and schedule factors (effort…

  6. Using Knowledge Base for Event-Driven Scheduling of Web Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Kim, Yang Sok; Kang, Sung Won; Kang, Byeong Ho; Compton, Paul

    Web monitoring systems report any changes to their target web pages by revisiting them frequently. As they operate under significant resource constraints, it is essential to minimize revisits while ensuring minimal delay and maximum coverage. Various statistical scheduling methods have been proposed to resolve this problem; however, they are static and cannot easily cope with events in the real world. This paper proposes a new scheduling method that manages unpredictable events. An MCRDR (Multiple Classification Ripple-Down Rules) document classification knowledge base was reused to detect events and to initiate a prompt web monitoring process independent of a static monitoring schedule. Our experiment demonstrates that the approach improves monitoring efficiency significantly.

  7. A bi-objective integer programming model for partly-restricted flight departure scheduling

    PubMed Central

    Guan, Wei; Zhang, Wenyi; Jiang, Shixiong; Fan, Lingling

    2018-01-01

    The normal studies on air traffic departure scheduling problem (DSP) mainly deal with an independent airport in which the departure traffic is not affected by surrounded airports, which, however, is not a consistent case. In reality, there still exist cases where several commercial airports are closely located and one of them possesses a higher priority. During the peak hours, the departure activities of the lower-priority airports are usually required to give way to those of higher-priority airport. These giving-way requirements can inflict a set of changes on the modeling of departure scheduling problem with respect to the lower-priority airports. To the best of our knowledge, studies on DSP under this condition are scarce. Accordingly, this paper develops a bi-objective integer programming model to address the flight departure scheduling of the partly-restricted (e.g., lower-priority) one among several adjacent airports. An adapted tabu search algorithm is designed to solve the current problem. It is demonstrated from the case study of Tianjin Binhai International Airport in China that the proposed method can obviously improve the operation efficiency, while still realizing superior equity and regularity among restricted flows. PMID:29715299

  8. A bi-objective integer programming model for partly-restricted flight departure scheduling.

    PubMed

    Zhong, Han; Guan, Wei; Zhang, Wenyi; Jiang, Shixiong; Fan, Lingling

    2018-01-01

    The normal studies on air traffic departure scheduling problem (DSP) mainly deal with an independent airport in which the departure traffic is not affected by surrounded airports, which, however, is not a consistent case. In reality, there still exist cases where several commercial airports are closely located and one of them possesses a higher priority. During the peak hours, the departure activities of the lower-priority airports are usually required to give way to those of higher-priority airport. These giving-way requirements can inflict a set of changes on the modeling of departure scheduling problem with respect to the lower-priority airports. To the best of our knowledge, studies on DSP under this condition are scarce. Accordingly, this paper develops a bi-objective integer programming model to address the flight departure scheduling of the partly-restricted (e.g., lower-priority) one among several adjacent airports. An adapted tabu search algorithm is designed to solve the current problem. It is demonstrated from the case study of Tianjin Binhai International Airport in China that the proposed method can obviously improve the operation efficiency, while still realizing superior equity and regularity among restricted flows.

  9. A transportation-scheduling system for managing silvicultural projects

    Treesearch

    Jorge F. Valenzuela; H. Hakan Balci; Timothy McDonald

    2005-01-01

    A silvicultural project encompasses tasks such as sitelevel planning, regeneration, harvestin, and stand-tending treatments. an essential problem in managing silvicultural projects is to efficiently schedule the operations while considering project task due dates and costs of moving scarce resources to specific job locations. Transportation costs represent a...

  10. A note on resource allocation scheduling with group technology and learning effects on a single machine

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu

    2017-09-01

    In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.

  11. Exploring a QoS Driven Scheduling Approach for Peer-to-Peer Live Streaming Systems with Network Coding

    PubMed Central

    Cui, Laizhong; Lu, Nan; Chen, Fu

    2014-01-01

    Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968

  12. Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments.

    PubMed

    Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio

    2011-11-01

    We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.

  13. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    PubMed

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  14. Scheduling periodic jobs that allow imprecise results

    NASA Technical Reports Server (NTRS)

    Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay

    1990-01-01

    The problem of scheduling periodic jobs in hard real-time systems that support imprecise computations is discussed. Two workload models of imprecise computations are presented. These models differ from traditional models in that a task may be terminated any time after it has produced an acceptable result. Each task is logically decomposed into a mandatory part followed by an optional part. In a feasible schedule, the mandatory part of every task is completed before the deadline of the task. The optional part refines the result produced by the mandatory part to reduce the error in the result. Applications are classified as type N and type C, according to undesirable effects of errors. The two workload models characterize the two types of applications. The optional parts of the tasks in an N job need not ever be completed. The resulting quality of each type-N job is measured in terms of the average error in the results over several consecutive periods. A class of preemptive, priority-driven algorithms that leads to feasible schedules with small average error is described and evaluated.

  15. Simultaneous personnel and vehicle shift scheduling in the waste management sector.

    PubMed

    Ghiani, Gianpaolo; Guerriero, Emanuela; Manni, Andrea; Manni, Emanuele; Potenza, Agostino

    2013-07-01

    Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the definition of shift schedules for both personnel and vehicles. This activity has a great incidence on the tactical and operational cost for companies. In this paper, we propose an integer programming model to find an optimal solution to the integrated problem. The aim is to determine optimal schedules at minimum cost. Moreover, we design a fast and effective heuristic to face large-size problems. Both approaches are tested on data from a real-world case in Southern Italy and compared to the current practice utilized by the company managing the service, showing that simultaneously solving these problems can lead to significant monetary savings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Single machine total completion time minimization scheduling with a time-dependent learning effect and deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Bo; Wang, Ming-Zheng; Ji, Ping

    2012-05-01

    In this article, we consider a single machine scheduling problem with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the job processing time is defined by a function of its starting time and total normal processing time of jobs in front of it in the sequence. The objective is to determine an optimal schedule so as to minimize the total completion time. This problem remains open for the case of -1 < a < 0, where a denotes the learning index; we show that an optimal schedule of the problem is V-shaped with respect to job normal processing times. Three heuristic algorithms utilising the V-shaped property are proposed, and computational experiments show that the last heuristic algorithm performs effectively and efficiently in obtaining near-optimal solutions.

  17. Concurrent Schedules of Reinforcement as "Challenges" to Maintenance

    ERIC Educational Resources Information Center

    Peterson, Stephanie M.; Frieder, Jessica E.; Quigley, Shawn P.; Kestner, Kathryn M.; Goyal, Manish; Smith, Shilo L.; Dayton, Elizabeth; Brower-Breitwieser, Carrie

    2017-01-01

    One measure of success for interventions treating problem behavior is the effects achieved in the face of a challenge (e.g., changes in reinforcement schedules, lapses in treatment integrity); one hopes to demonstrate persistence of appropriate alternatives and the absence of resurgence of target behaviors. The present study successfully treated…

  18. Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman

    2012-01-01

    In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.

  19. Conflict-Aware Scheduling Algorithm

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Borden, Chester

    2006-01-01

    conflict-aware scheduling algorithm is being developed to help automate the allocation of NASA s Deep Space Network (DSN) antennas and equipment that are used to communicate with interplanetary scientific spacecraft. The current approach for scheduling DSN ground resources seeks to provide an equitable distribution of tracking services among the multiple scientific missions and is very labor intensive. Due to the large (and increasing) number of mission requests for DSN services, combined with technical and geometric constraints, the DSN is highly oversubscribed. To help automate the process, and reduce the DSN and spaceflight project labor effort required for initiating, maintaining, and negotiating schedules, a new scheduling algorithm is being developed. The scheduling algorithm generates a "conflict-aware" schedule, where all requests are scheduled based on a dynamic priority scheme. The conflict-aware scheduling algorithm allocates all requests for DSN tracking services while identifying and maintaining the conflicts to facilitate collaboration and negotiation between spaceflight missions. These contrast with traditional "conflict-free" scheduling algorithms that assign tracks that are not in conflict and mark the remainder as unscheduled. In the case where full schedule automation is desired (based on mission/event priorities, fairness, allocation rules, geometric constraints, and ground system capabilities/ constraints), a conflict-free schedule can easily be created from the conflict-aware schedule by removing lower priority items that are in conflict.

  20. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  1. Sort-Mid tasks scheduling algorithm in grid computing.

    PubMed

    Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M

    2015-11-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.

  2. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  3. Due-Window Assignment Scheduling with Variable Job Processing Times

    PubMed Central

    Wu, Yu-Bin

    2015-01-01

    We consider a common due-window assignment scheduling problem jobs with variable job processing times on a single machine, where the processing time of a job is a function of its position in a sequence (i.e., learning effect) or its starting time (i.e., deteriorating effect). The problem is to determine the optimal due-windows, and the processing sequence simultaneously to minimize a cost function includes earliness, tardiness, the window location, window size, and weighted number of tardy jobs. We prove that the problem can be solved in polynomial time. PMID:25918745

  4. Decision Model for Planning and Scheduling of Seafood Product Considering Traceability

    NASA Astrophysics Data System (ADS)

    Agustin; Mawengkang, Herman; Mathelinea, Devy

    2018-01-01

    Due to the global challenges, it is necessary for an industrial company to integrate production scheduling and distribution planning, in order to be more efficient and to get more economics advantages. This paper presents seafood production planning and scheduling of a seafood manufacture company which produces simultaneously multi kind of seafood products, located at Aceh Province, Indonesia. The perishability nature of fish highly restricts its storage duration and delivery conditions. Traceability is a tracking requirement to check whether the quality of the product is satisfied. The production and distribution planning problem aims to meet customer demand subject to traceability of the seafood product and other restrictions. The problem is modeled as a mixed integer linear program, and then it is solved using neighborhood search approach.

  5. Submarine watch schedules: underway evaluation of rotating (contemporary) and compressed (alternative) schedules.

    PubMed

    Duplessis, C A; Miller, J C; Crepeau, L J; Osborn, C M; Dyche, J

    2007-01-01

    With a desire to increase health, cognitive performance effectiveness, and quality of life for submarine watch-standers underway, we performed an evaluation comparing an alternative, compressed-work (ALT) schedule, designed to enhance circadian rhythm entrainment and sleep hygiene, to the contemporary submarine (SUB) forward rotating schedule, aboard the ballistic-missile submarine, USS Henry M. Jackson (SSBN-730 Gold). We assessed a compressed close-6 watch-schedule ("ALT") relative to the existing backward rotating 6-hr on, 12-hr off 18-hr watch schedule ("SUB") employed underway aboard submarines. We monitored 40 subjects' sleep, and temperature and salivary cortisol from 10 of the 40 for approximately two weeks on each respective schedule underway. The cortisol cosinor mesors (midline estimating statistic of rhythm), and amplitudes did not differ significantly between conditions. The temperature cosinor mesors, and the cosinor amplitude were not significantly different, while the cosine curve fit accounted for significantly more variance in the ALT condition than in the SUB condition. The SUB schedule garnered significantly more sleep (7.1 +/- 0.2 hours) than that of the ALTMID schedule (6.3 +/- 0.3 hours). Surveys revealed that 52% of respondents preferred the SUB schedule, 15% preferred the ALT, and 33% were either indifferent or submitted uninterpretable surveys. The ALT schedule was not superior to the existing SUB schedule by physiological or subjective measures and was incompatible to accommodating operational constraints.

  6. Practical quantum appointment scheduling

    NASA Astrophysics Data System (ADS)

    Touchette, Dave; Lovitz, Benjamin; Lütkenhaus, Norbert

    2018-04-01

    We propose a protocol based on coherent states and linear optics operations for solving the appointment-scheduling problem. Our main protocol leaks strictly less information about each party's input than the optimal classical protocol, even when considering experimental errors. Along with the ability to generate constant-amplitude coherent states over two modes, this protocol requires the ability to transfer these modes back-and-forth between the two parties multiple times with very low losses. The implementation requirements are thus still challenging. Along the way, we develop tools to study quantum information cost of interactive protocols in the finite regime.

  7. Web Publishing Schedule

    EPA Pesticide Factsheets

    Section 207(f)(2) of the E-Gov Act requires federal agencies to develop an inventory and establish a schedule of information to be published on their Web sites, make those schedules available for public comment. To post the schedules on the web site.

  8. A random-key encoded harmony search approach for energy-efficient production scheduling with shared resources

    NASA Astrophysics Data System (ADS)

    Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.

    2015-11-01

    When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.

  9. Hybrid glowworm swarm optimization for task scheduling in the cloud environment

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Dong, Shoubin

    2018-06-01

    In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.

  10. Schedule Risk Assessment

    NASA Technical Reports Server (NTRS)

    Smith, Greg

    2003-01-01

    Schedule Risk Assessment needs to determine the probability of finishing on or before a given point in time. Task in a schedule should reflect the "most likely" duration for each task. IN reality, each task is different and has a varying degree of probability of finishing within or after the duration specified. Schedule risk assessment attempt to quantify these probabilities by assigning values to each task. Bridges the gap between CPM scheduling and the project's need to know the likelihood of "when".

  11. A Mixed Integer Linear Program for Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Jung, Yoon Chul

    2009-01-01

    Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced

  12. Two-Level Scheduling for Video Transmission over Downlink OFDMA Networks

    PubMed Central

    Tham, Mau-Luen

    2016-01-01

    This paper presents a two-level scheduling scheme for video transmission over downlink orthogonal frequency-division multiple access (OFDMA) networks. It aims to maximize the aggregate quality of the video users subject to the playback delay and resource constraints, by exploiting the multiuser diversity and the video characteristics. The upper level schedules the transmission of video packets among multiple users based on an overall target bit-error-rate (BER), the importance level of packet and resource consumption efficiency factor. Instead, the lower level renders unequal error protection (UEP) in terms of target BER among the scheduled packets by solving a weighted sum distortion minimization problem, where each user weight reflects the total importance level of the packets that has been scheduled for that user. Frequency-selective power is then water-filled over all the assigned subcarriers in order to leverage the potential channel coding gain. Realistic simulation results demonstrate that the proposed scheme significantly outperforms the state-of-the-art scheduling scheme by up to 6.8 dB in terms of peak-signal-to-noise-ratio (PSNR). Further test evaluates the suitability of equal power allocation which is the common assumption in the literature. PMID:26906398

  13. CMS Readiness for Multi-Core Workload Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.

    In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides amore » solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.« less

  14. CMS readiness for multi-core workload scheduling

    NASA Astrophysics Data System (ADS)

    Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.; Aftab Khan, F.; Letts, J.; Mason, D.; Verguilov, V.

    2017-10-01

    In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides a solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.

  15. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  16. Optimal stimulus scheduling for active estimation of evoked brain networks.

    PubMed

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  17. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  18. Applying Squeaky-Wheel Optimization Schedule Airborne Astronomy Observations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Kuerklue, Elif

    2004-01-01

    We apply the Squeaky Wheel Optimization (SWO) algorithm to the problem of scheduling astronomy observations for the Stratospheric Observatory for Infrared Astronomy, an airborne observatory. The problem contains complex constraints relating the feasibility of an astronomical observation to the position and time at which the observation begins, telescope elevation limits, special use airspace, and available fuel. Solving the problem requires making discrete choices (e.g. selection and sequencing of observations) and continuous ones (e.g. takeoff time and setting up observations by repositioning the aircraft). The problem also includes optimization criteria such as maximizing observing time while simultaneously minimizing total flight time. Previous approaches to the problem fail to scale when accounting for all constraints. We describe how to customize SWO to solve this problem, and show that it finds better flight plans, often with less computation time, than previous approaches.

  19. An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm

    PubMed Central

    Lu, Guangquan; Xiong, Ying; Wang, Yunpeng

    2016-01-01

    The schedule of urban road network recovery caused by rainstorms, snow, and other bad weather conditions, traffic incidents, and other daily events is essential. However, limited studies have been conducted to investigate this problem. We fill this research gap by proposing an optimal schedule for urban road network repair with limited repair resources based on the greedy algorithm. Critical links will be given priority in repair according to the basic concept of the greedy algorithm. In this study, the link whose restoration produces the ratio of the system-wide travel time of the current network to the worst network is the minimum. We define such a link as the critical link for the current network. We will re-evaluate the importance of damaged links after each repair process is completed. That is, the critical link ranking will be changed along with the repair process because of the interaction among links. We repair the most critical link for the specific network state based on the greedy algorithm to obtain the optimal schedule. The algorithm can still quickly obtain an optimal schedule even if the scale of the road network is large because the greedy algorithm can reduce computational complexity. We prove that the problem can obtain the optimal solution using the greedy algorithm in theory. The algorithm is also demonstrated in the Sioux Falls network. The problem discussed in this paper is highly significant in dealing with urban road network restoration. PMID:27768732

  20. 29 CFR 825.203 - Scheduling of intermittent or reduced schedule leave.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Employee Leave Entitlements Under the Family and Medical Leave Act § 825.203 Scheduling of intermittent or reduced schedule leave. Eligible... leave intermittently or on a reduced leave schedule for planned medical treatment, then the employee...

  1. 29 CFR 825.203 - Scheduling of intermittent or reduced schedule leave.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Employee Leave Entitlements Under the Family and Medical Leave Act § 825.203 Scheduling of intermittent or reduced schedule leave. Eligible... leave intermittently or on a reduced leave schedule for planned medical treatment, then the employee...

  2. 29 CFR 825.203 - Scheduling of intermittent or reduced schedule leave.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Employee Leave Entitlements Under the Family and Medical Leave Act § 825.203 Scheduling of intermittent or reduced schedule leave. Eligible... leave intermittently or on a reduced leave schedule for planned medical treatment, then the employee...

  3. 29 CFR 825.203 - Scheduling of intermittent or reduced schedule leave.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF LABOR OTHER LAWS THE FAMILY AND MEDICAL LEAVE ACT OF 1993 Employee Leave Entitlements Under the Family and Medical Leave Act § 825.203 Scheduling of intermittent or reduced schedule leave. Eligible... leave intermittently or on a reduced leave schedule for planned medical treatment, then the employee...

  4. IOPS advisor: Research in progress on knowledge-intensive methods for irregular operations airline scheduling

    NASA Technical Reports Server (NTRS)

    Borse, John E.; Owens, Christopher C.

    1992-01-01

    Our research focuses on the problem of recovering from perturbations in large-scale schedules, specifically on the ability of a human-machine partnership to dynamically modify an airline schedule in response to unanticipated disruptions. This task is characterized by massive interdependencies and a large space of possible actions. Our approach is to apply the following: qualitative, knowledge-intensive techniques relying on a memory of stereotypical failures and appropriate recoveries; and quantitative techniques drawn from the Operations Research community's work on scheduling. Our main scientific challenge is to represent schedules, failures, and repairs so as to make both sets of techniques applicable to the same data. This paper outlines ongoing research in which we are cooperating with United Airlines to develop our understanding of the scientific issues underlying the practicalities of dynamic, real-time schedule repair.

  5. Taking the Lag out of Jet Lag through Model-Based Schedule Design

    PubMed Central

    Dean, Dennis A.; Forger, Daniel B.; Klerman, Elizabeth B.

    2009-01-01

    Travel across multiple time zones results in desynchronization of environmental time cues and the sleep–wake schedule from their normal phase relationships with the endogenous circadian system. Circadian misalignment can result in poor neurobehavioral performance, decreased sleep efficiency, and inappropriately timed physiological signals including gastrointestinal activity and hormone release. Frequent and repeated transmeridian travel is associated with long-term cognitive deficits, and rodents experimentally exposed to repeated schedule shifts have increased death rates. One approach to reduce the short-term circadian, sleep–wake, and performance problems is to use mathematical models of the circadian pacemaker to design countermeasures that rapidly shift the circadian pacemaker to align with the new schedule. In this paper, the use of mathematical models to design sleep–wake and countermeasure schedules for improved performance is demonstrated. We present an approach to designing interventions that combines an algorithm for optimal placement of countermeasures with a novel mode of schedule representation. With these methods, rapid circadian resynchrony and the resulting improvement in neurobehavioral performance can be quickly achieved even after moderate to large shifts in the sleep–wake schedule. The key schedule design inputs are endogenous circadian period length, desired sleep–wake schedule, length of intervention, background light level, and countermeasure strength. The new schedule representation facilitates schedule design, simulation studies, and experiment design and significantly decreases the amount of time to design an appropriate intervention. The method presented in this paper has direct implications for designing jet lag, shift-work, and non-24-hour schedules, including scheduling for extreme environments, such as in space, undersea, or in polar regions. PMID:19543382

  6. Single-Pass Serial Scheduling Heuristic for Eglin AFB Range Services Division Schedule

    DTIC Science & Technology

    2009-06-01

    scheduling tool for this RCPSP. Research on a schedule improvement metaheuristic and coding of the complete algorithm is required before it can be...a schedule better by applying metaheuristic improvement algorithms to a feasible schedule after it is created. 2.5.1. Greedy Algorithm The...next available position, the algorithm will not utilize all the available range time and manpower. An improvement metaheuristic is required to

  7. Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.R.

    This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.

  8. Scheduling Nonconsumable Resources

    NASA Technical Reports Server (NTRS)

    Porta, Harry J.

    1990-01-01

    Users manual describes computer program SWITCH that schedules use of resources - by appliances switched on and off and use resources while they are on. Plans schedules according to predetermined goals; revises schedules when new goals imposed. Program works by depth-first searching with strict chronological back-tracking. Proceeds to evaluate alternatives as necessary, sometimes interacting with user.

  9. Scheduling Aircraft Landings under Constrained Position Shifting

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Hamsa; Chandran, Bala

    2006-01-01

    Optimal scheduling of airport runway operations can play an important role in improving the safety and efficiency of the National Airspace System (NAS). Methods that compute the optimal landing sequence and landing times of aircraft must accommodate practical issues that affect the implementation of the schedule. One such practical consideration, known as Constrained Position Shifting (CPS), is the restriction that each aircraft must land within a pre-specified number of positions of its place in the First-Come-First-Served (FCFS) sequence. We consider the problem of scheduling landings of aircraft in a CPS environment in order to maximize runway throughput (minimize the completion time of the landing sequence), subject to operational constraints such as FAA-specified minimum inter-arrival spacing restrictions, precedence relationships among aircraft that arise either from airline preferences or air traffic control procedures that prevent overtaking, and time windows (representing possible control actions) during which each aircraft landing can occur. We present a Dynamic Programming-based approach that scales linearly in the number of aircraft, and describe our computational experience with a prototype implementation on realistic data for Denver International Airport.

  10. Surgical Outcomes of Additional Ahmed Glaucoma Valve Implantation in Refractory Glaucoma.

    PubMed

    Ko, Sung Ju; Hwang, Young Hoon; Ahn, Sang Il; Kim, Hwang Ki

    2016-06-01

    To evaluate the surgical outcomes of the implantation of an additional Ahmed glaucoma valve (AGV) into the eyes of patients with refractory glaucoma following previous AGV implantation. This study is a retrospective review of the clinical histories of 23 patients who had undergone a second AGV implantation after a failed initial implantation. Age, sex, prior surgery, glaucoma type, number of medications, intraocular pressure (IOP), visual acuity, and surgical complications were analyzed. Surgical success was defined as IOP maintained below 21 mm Hg, with at least a 20% overall reduction in IOP, regardless of the use of IOP-lowering medications. Following the implantation of a second AGV, the mean IOP decreased from 39.3 to 18.5 mm Hg (52.9% reduction, P<0.001). The mean number of postoperative IOP-lowering medications administered decreased from 2.8 to 1.7 after the second AGV implantation (P<0.001). The cumulative probability of success for the procedure was 87% after 1 year and 52% after 3 years. Three patients (13.0%) experienced bullous keratopathy after the second AGV implantation. None of the patients showed any evidence of diplopia or ocular movement limitation as a result of the presence of 2 AGVs in the same eye. Prior trabeculectomy was found to be a significant risk factor for failure (P=0.027). A second AGV implantation can be a good choice of surgical treatment when the first AGV has failed to control IOP.

  11. Scheduling in Sensor Grid Middleware for Telemedicine Using ABC Algorithm

    PubMed Central

    Vigneswari, T.; Mohamed, M. A. Maluk

    2014-01-01

    Advances in microelectromechanical systems (MEMS) and nanotechnology have enabled design of low power wireless sensor nodes capable of sensing different vital signs in our body. These nodes can communicate with each other to aggregate data and transmit vital parameters to a base station (BS). The data collected in the base station can be used to monitor health in real time. The patient wearing sensors may be mobile leading to aggregation of data from different BS for processing. Processing real time data is compute-intensive and telemedicine facilities may not have appropriate hardware to process the real time data effectively. To overcome this, sensor grid has been proposed in literature wherein sensor data is integrated to the grid for processing. This work proposes a scheduling algorithm to efficiently process telemedicine data in the grid. The proposed algorithm uses the popular swarm intelligence algorithm for scheduling to overcome the NP complete problem of grid scheduling. Results compared with other heuristic scheduling algorithms show the effectiveness of the proposed algorithm. PMID:25548557

  12. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems.

    PubMed

    Li, Xuejun; Xu, Jia; Yang, Yun

    2015-01-01

    Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  13. Multiobjective optimisation design for enterprise system operation in the case of scheduling problem with deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei

    2016-03-01

    The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.

  14. Aiding USAF/UPT (Undergraduate Pilot Training) Aircrew Scheduling Using Network Flow Models.

    DTIC Science & Technology

    1986-06-01

    51 3.4 Heuristic Modifications ............ 55 CHAPTER 4 STUDENT SCHEDULING PROBLEM (LEVEL 2) 4.0 Introduction 4.01 Constraints ............. 60 4.02...Covering" Complete Enumeration . . .. . 71 4.14 Heuristics . ............. 72 4.2 Heuristic Method for the Level 2 Problem 4.21 Step I ............... 73...4.22 Step 2 ............... 74 4.23 Advantages to the Heuristic Method. .... .. 78 4.24 Problems with the Heuristic Method. . ... 79 :,., . * CHAPTER5

  15. PLAN-IT-2: The next generation planning and scheduling tool

    NASA Technical Reports Server (NTRS)

    Eggemeyer, William C.; Cruz, Jennifer W.

    1990-01-01

    PLAN-IT is a scheduling program which has been demonstrated and evaluated in a variety of scheduling domains. The capability enhancements being made for the next generation of PLAN-IT, called PLAN-IT-2 is discussed. PLAN-IT-2 represents a complete rewrite of the original PLAN-IT incorporating major changes as suggested by the application experiences with the original PLAN-IT. A few of the enhancements described are additional types of constraints, such as states and resettable-depletables (batteries), dependencies between constraints, multiple levels of activity planning during the scheduling process, pattern constraint searching for opportunities as opposed to just minimizing the amount of conflicts, additional customization construction features for display and handling of diverse multiple time systems, and reduction in both the size and the complexity for creating the knowledge-base to address the different problem domains.

  16. Sort-Mid tasks scheduling algorithm in grid computing

    PubMed Central

    Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.

    2014-01-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937

  17. A Generic Expert Scheduling System Architecture and Toolkit: GUESS (Generically Used Expert Scheduling System)

    NASA Technical Reports Server (NTRS)

    Liebowitz, Jay; Krishnamurthy, Vijaya; Rodens, Ira; Houston, Chapman; Liebowitz, Alisa; Baek, Seung; Radko, Joe; Zeide, Janet

    1996-01-01

    Scheduling has become an increasingly important element in today's society and workplace. Within the NASA environment, scheduling is one of the most frequently performed and challenging functions. Towards meeting NASA's scheduling needs, a research version of a generic expert scheduling system architecture and toolkit has been developed. This final report describes the development and testing of GUESS (Generically Used Expert Scheduling System).

  18. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry

    1989-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  19. Run-time scheduling and execution of loops on message passing machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry

    1990-01-01

    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.

  20. Simulated annealing with probabilistic analysis for solving traveling salesman problems

    NASA Astrophysics Data System (ADS)

    Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan

    2013-09-01

    Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.

  1. An Optimization of Manufacturing Systems using a Feedback Control Scheduling Model

    NASA Astrophysics Data System (ADS)

    Ikome, John M.; Kanakana, Grace M.

    2018-03-01

    In complex production system that involves multiple process, unplanned disruption often turn to make the entire production system vulnerable to a number of problems which leads to customer’s dissatisfaction. However, this problem has been an ongoing problem that requires a research and methods to streamline the entire process or develop a model that will address it, in contrast to this, we have developed a feedback scheduling model that can minimize some of this problem and after a number of experiment, it shows that some of this problems can be eliminated if the correct remedial actions are implemented on time.

  2. Agents, assemblers, and ANTS: scheduling assembly with market and biological software mechanisms

    NASA Astrophysics Data System (ADS)

    Toth-Fejel, Tihamer T.

    2000-06-01

    Nanoscale assemblers will need robust, scalable, flexible, and well-understood mechanisms such as software agents to control them. This paper discusses assemblers and agents, and proposes a taxonomy of their possible interaction. Molecular assembly is seen as a special case of general assembly, subject to many of the same issues, such as the advantages of convergent assembly, and the problem of scheduling. This paper discusses the contract net architecture of ANTS, an agent-based scheduling application under development. It also describes an algorithm for least commitment scheduling, which uses probabilistic committed capacity profiles of resources over time, along with realistic costs, to provide an abstract search space over which the agents can wander to quickly find optimal solutions.

  3. Optimal infrastructure maintenance scheduling problem under budget uncertainty.

    DOT National Transportation Integrated Search

    2010-05-01

    This research addresses a general class of infrastructure asset management problems. Infrastructure : agencies usually face budget uncertainties that will eventually lead to suboptimal planning if : maintenance decisions are made without taking the u...

  4. Operational VGOS Scheduling

    NASA Astrophysics Data System (ADS)

    Searle, Anthony; Petrachenko, Bill

    2016-12-01

    The VLBI Global Observing System (VGOS) has been designed to take advantage of advances in data recording speeds and storage capacity, allowing for smaller and faster antennas, wider bandwidths, and shorter observation durations. Here, schedules for a ``realistic" VGOS network, frequency sequences, and expanded source lists are presented using a new source-based scheduling algorithm. The VGOS aim for continuous observations presents new operational challenges. As the source-based strategy is independent of the observing network, there are operational advantages which allow for more flexible scheduling of continuous VLBI observations. Using VieVS, simulations of several schedules are presented and compared with previous VGOS studies.

  5. Production Scheduling of Sequenced Tapes for Printed Circuit Pack Assembly.

    DTIC Science & Technology

    1987-07-09

    detail. L j 6 The subject matter of this thesis is inspired directly from their technical report. The goals of this research are twofold: 1) Test their...The subject matter of the following chapters describes a heuristic approach to another variation of the sequenced tape production scheduling problem...assignment problem, comprise the subject matter of Chapter 5. It is sufficient to note that the three definitions of the term common correspond to the

  6. Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model

    NASA Astrophysics Data System (ADS)

    Nouri, Houssem Eddine; Belkahla Driss, Olfa; Ghédira, Khaled

    2018-03-01

    The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based clustered holonic multiagent model. First, a neighborhood-based genetic algorithm (NGA) is applied by a scheduler agent for a global exploration of the search space. Second, a local search technique is used by a set of cluster agents to guide the research in promising regions of the search space and to improve the quality of the NGA final population. The efficiency of our approach is explained by the flexible selection of the promising parts of the search space by the clustering operator after the genetic algorithm process, and by applying the intensification technique of the tabu search allowing to restart the search from a set of elite solutions to attain new dominant scheduling solutions. Computational results are presented using four sets of well-known benchmark literature instances. New upper bounds are found, showing the effectiveness of the presented approach.

  7. Projecting Future Scheduled Airline Demand, Schedules and NGATS Benefits Using TSAM

    NASA Technical Reports Server (NTRS)

    Dollyhigh, Samuel; Smith, Jeremy; Viken, Jeff; Trani, Antonio; Baik, Hojong; Hinze, Nickolas; Ashiabor, Senanu

    2006-01-01

    The Transportation Systems Analysis Model (TSAM) developed by Virginia Tech s Air Transportation Systems Lab and NASA Langley can provide detailed analysis of the effects on the demand for air travel of a full range of NASA and FAA aviation projects. TSAM has been used to project the passenger demand for very light jet (VLJ) air taxi service, scheduled airline demand growth and future schedules, Next Generation Air Transportation System (NGATS) benefits, and future passenger revenues for the Airport and Airway Trust Fund. TSAM can project the resulting demand when new vehicles and/or technology is inserted into the long distance (100 or more miles one-way) transportation system, as well as, changes in demand as a result of fare yield increases or decreases, airport transit times, scheduled flight times, ticket taxes, reductions or increases in flight delays, and so on. TSAM models all long distance travel in the contiguous U.S. and determines the mode choice of the traveler based on detailed trip costs, travel time, schedule frequency, purpose of the trip (business or non-business), and household income level of the traveler. Demand is modeled at the county level, with an airport choice module providing up to three airports as part of the mode choice. Future enplanements at airports can be projected for different scenarios. A Fratar algorithm and a schedule generator are applied to generate future flight schedules. This paper presents the application of TSAM to modeling future scheduled air passenger demand and resulting airline schedules, the impact of NGATS goals and objectives on passenger demand, along with projections for passenger fee receipts for several scenarios for the FAA Airport and Airway Trust Fund.

  8. Flexible Job-Shop Scheduling with Dual-Resource Constraints to Minimize Tardiness Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Paksi, A. B. N.; Ma'ruf, A.

    2016-02-01

    In general, both machines and human resources are needed for processing a job on production floor. However, most classical scheduling problems have ignored the possible constraint caused by availability of workers and have considered only machines as a limited resource. In addition, along with production technology development, routing flexibility appears as a consequence of high product variety and medium demand for each product. Routing flexibility is caused by capability of machines that offers more than one machining process. This paper presents a method to address scheduling problem constrained by both machines and workers, considering routing flexibility. Scheduling in a Dual-Resource Constrained shop is categorized as NP-hard problem that needs long computational time. Meta-heuristic approach, based on Genetic Algorithm, is used due to its practical implementation in industry. Developed Genetic Algorithm uses indirect chromosome representative and procedure to transform chromosome into Gantt chart. Genetic operators, namely selection, elitism, crossover, and mutation are developed to search the best fitness value until steady state condition is achieved. A case study in a manufacturing SME is used to minimize tardiness as objective function. The algorithm has shown 25.6% reduction of tardiness, equal to 43.5 hours.

  9. Task scheduling in dataflow computer architectures

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1994-01-01

    Dataflow computers provide a platform for the solution of a large class of computational problems, which includes digital signal processing and image processing. Many typical applications are represented by a set of tasks which can be repetitively executed in parallel as specified by an associated dataflow graph. Research in this area aims to model these architectures, develop scheduling procedures, and predict the transient and steady state performance. Researchers at NASA have created a model and developed associated software tools which are capable of analyzing a dataflow graph and predicting its runtime performance under various resource and timing constraints. These models and tools were extended and used in this work. Experiments using these tools revealed certain properties of such graphs that require further study. Specifically, the transient behavior at the beginning of the execution of a graph can have a significant effect on the steady state performance. Transformation and retiming of the application algorithm and its initial conditions can produce a different transient behavior and consequently different steady state performance. The effect of such transformations on the resource requirements or under resource constraints requires extensive study. Task scheduling to obtain maximum performance (based on user-defined criteria), or to satisfy a set of resource constraints, can also be significantly affected by a transformation of the application algorithm. Since task scheduling is performed by heuristic algorithms, further research is needed to determine if new scheduling heuristics can be developed that can exploit such transformations. This work has provided the initial development for further long-term research efforts. A simulation tool was completed to provide insight into the transient and steady state execution of a dataflow graph. A set of scheduling algorithms was completed which can operate in conjunction with the modeling and performance tools

  10. Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling.

    PubMed

    Yang, S; Wang, D

    2000-01-01

    This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.

  11. Second-order schedules of token reinforcement with pigeons: effects of fixed- and variable-ratio exchange schedules.

    PubMed

    Foster, T A; Hackenberg, T D; Vaidya, M

    2001-09-01

    Pigeons' key pecks produced food under second-order schedules of token reinforcement, with light-emitting diodes serving as token reinforcers. In Experiment 1, tokens were earned according to a fixed-ratio 50 schedule and were exchanged for food according to either fixed-ratio or variable-ratio exchange schedules, with schedule type varied across conditions. In Experiment 2, schedule type was varied within sessions using a multiple schedule. In one component, tokens were earned according to a fixed-ratio 50 schedule and exchanged according to a variable-ratio schedule. In the other component, tokens were earned according to a variable-ratio 50 schedule and exchanged according to a fixed-ratio schedule. In both experiments, the number of responses per exchange was varied parametrically across conditions, ranging from 50 to 400 responses. Response rates decreased systematically with increases in the fixed-ratio exchange schedules, but were much less affected by changes in the variable-ratio exchange schedules. Response rates were consistently higher under variable-ratio exchange schedules than tinder comparable fixed-ratio exchange schedules, especially at higher exchange ratios. These response-rate differences were due both to greater pre-ratio pausing and to lower local rates tinder the fixed-ratio exchange schedules. Local response rates increased with proximity to food under the higher fixed-ratio exchange schedules, indicative of discriminative control by the tokens.

  12. Scheduling the future NASA Space Network: Experiences with a flexible scheduling prototype

    NASA Technical Reports Server (NTRS)

    Happell, Nadine; Moe, Karen L.; Minnix, Jay

    1993-01-01

    NASA's Space Network (SN) provides telecommunications and tracking services to low earth orbiting spacecraft. One proposal for improving resource allocation and automating conflict resolution for the SN is the concept of flexible scheduling. In this concept, each Payload Operations Control Center (POCC) will possess a Space Network User POCC Interface (SNUPI) to support the development and management of flexible requests. Flexible requests express the flexibility, constraints, and repetitious nature of the user's communications requirements. Flexible scheduling is expected to improve SN resource utilization and user satisfaction, as well as reduce the effort to produce and maintain a schedule. A prototype testbed has been developed to better understand flexible scheduling as it applies to the SN. This testbed consists of a SNUPI workstation, an SN scheduler, and a flexible request language that conveys information between the two systems. All three are being evaluated by operations personnel. Benchmark testing is being conducted on the scheduler to quantify the productivity improvements achieved with flexible requests.

  13. DSN Resource Scheduling

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Baldwin, John

    2007-01-01

    TIGRAS is client-side software, which provides tracking-station equipment planning, allocation, and scheduling services to the DSMS (Deep Space Mission System). TIGRAS provides functions for schedulers to coordinate the DSN (Deep Space Network) antenna usage time and to resolve the resource usage conflicts among tracking passes, antenna calibrations, maintenance, and system testing activities. TIGRAS provides a fully integrated multi-pane graphical user interface for all scheduling operations. This is a great improvement over the legacy VAX VMS command line user interface. TIGRAS has the capability to handle all DSN resource scheduling aspects from long-range to real time. TIGRAS assists NASA mission operations for DSN tracking of station equipment resource request processes from long-range load forecasts (ten years or longer), to midrange, short-range, and real-time (less than one week) emergency tracking plan changes. TIGRAS can be operated by NASA mission operations worldwide to make schedule requests for the DSN station equipment.

  14. Comparison of the Ahmed and Baerveldt glaucoma shunts with combined cataract extraction.

    PubMed

    Rai, Amrit S; Shoham-Hazon, Nir; Christakis, Panos G; Rai, Amandeep S; Ahmed, Iqbal Ike K

    2018-04-01

    To compare the surgical outcomes of combined phacoemulsification with either Ahmed glaucoma valve (AGV) or Baerveldt glaucoma implant (BGI). Retrospective cohort study. A total of 104 eyes that underwent combined phacoemulsification with either AGV (PhacoAGV; n = 57) or BGI (PhacoBGI; n = 47) implantation. Failure was defined as uncontrolled intraocular pressure (IOP; <5 mm Hg, ≥18 mm Hg, or <20% reduction), additional glaucoma surgery, vision-threatening complications, or progression to no-light-perception vision. The PhacoAGV group was older (p = 0.03), had poorer baseline visual acuity (VA; p = 0.001), and had fewer previous glaucoma surgeries (p = 0.04). Both groups had similar baseline IOP (PhacoAGV: 26.4 ± 8.3 mm Hg; PhacoBGI: 25.7 ± 7.3; p = 0.66) and glaucoma medications (PhacoAGV: 3.8 ± 1.0; PhacoBGI: 3.6 ± 1.5; p = 0.54). At 2 years, failure rates were 44% in the PhacoAGV group and 23% in the PhacoBGI group (p = 0.02). Both groups had similar mean IOP reduction (PhacoAGV: 45%; PhacoBGI: 47%, p = 0.67) and medication use reduction (PhacoAGV: 47%; PhacoBGI: 58%, p = 0.38). The PhacoBGI group had higher IOP and medication use up to 1 month (p < 0.05). Both groups improved in VA from baseline (p < 0.05) and had similar overall complication rates (p = 0.31). The PhacoBGI group required more overall interventions (p < 0.0005). This comparative study found no difference in IOP, glaucoma medications, or complication rates between PhacoAGV and PhacoBGI at 2 years, despite BGIs being implanted in patients at higher risk for failure. The PhacoAGV group had higher failure rates at 2 years. Both groups had significant improvements in VA due to removal of their cataracts. The PhacoBGI group required more interventions, but most of these were minor slit-lamp procedures. Copyright © 2018. Published by Elsevier Inc.

  15. Perceptions of randomized security schedules.

    PubMed

    Scurich, Nicholas; John, Richard S

    2014-04-01

    Security of infrastructure is a major concern. Traditional security schedules are unable to provide omnipresent coverage; consequently, adversaries can exploit predictable vulnerabilities to their advantage. Randomized security schedules, which randomly deploy security measures, overcome these limitations, but public perceptions of such schedules have not been examined. In this experiment, participants were asked to make a choice between attending a venue that employed a traditional (i.e., search everyone) or a random (i.e., a probability of being searched) security schedule. The absolute probability of detecting contraband was manipulated (i.e., 1/10, 1/4, 1/2) but equivalent between the two schedule types. In general, participants were indifferent to either security schedule, regardless of the probability of detection. The randomized schedule was deemed more convenient, but the traditional schedule was considered fairer and safer. There were no differences between traditional and random schedule in terms of perceived effectiveness or deterrence. Policy implications for the implementation and utilization of randomized schedules are discussed. © 2013 Society for Risk Analysis.

  16. Heuristic approach to Satellite Range Scheduling with Bounds using Lagrangian Relaxation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nathanael J. K.; Arguello, Bryan; Nozick, Linda Karen

    This paper focuses on scheduling antennas to track satellites using a heuristic method. In order to validate the performance of the heuristic, bounds are developed using Lagrangian relaxation. The performance of the algorithm is established using several illustrative problems.

  17. A ranking algorithm for spacelab crew and experiment scheduling

    NASA Technical Reports Server (NTRS)

    Grone, R. D.; Mathis, F. H.

    1980-01-01

    The problem of obtaining an optimal or near optimal schedule for scientific experiments to be performed on Spacelab missions is addressed. The current capabilities in this regard are examined and a method of ranking experiments in order of difficulty is developed to support the existing software. Experimental data is obtained from applying this method to the sets of experiments corresponding to Spacelab mission 1, 2, and 3. Finally, suggestions are made concerning desirable modifications and features of second generation software being developed for this problem.

  18. Pars Plana-Modified versus Conventional Ahmed Glaucoma Valve in Patients Undergoing Penetrating Keratoplasty: A Prospective Comparative Randomized Study.

    PubMed

    Parihar, Jitendra Kumar Singh; Jain, Vaibhav Kumar; Kaushik, Jaya; Mishra, Avinash

    2017-03-01

    To compare the outcome of pars-plana-modified Ahmed glaucoma valve (AGV) versus limbal-based conventional AGV into the anterior chamber, in patients undergoing penetrating keratoplasty (PK) for glaucoma with coexisting corneal diseases. In this prospective randomized clinical trial, 58 eyes of 58 patients with glaucoma and coexisting corneal disease were divided into two groups. Group 1 (29 eyes of 29 patients) included patients undergoing limbal-based conventional AGV into the anterior chamber (AC) along-with PK and group 2 (29 eyes of 29 patients) included those undergoing pars-plana-modified AGV along-with PK. Outcome measures included corneal graft clarity, intraocular pressure (IOP), number of antiglaucoma medications, and postoperative complications. Patients were followed up for a minimum period of 2 years. Out of 58 eyes (58 patients), 50 eyes (50 patients: 25 eyes of 25 patients each in group 1 and group 2) completed the study and were analyzed. Complete success rate for AGV (group 1: 76%; group 2: 72%; p = 0.842) and corneal graft clarity (group 1: 68%; group 2: 76%; p = 0.081) were comparable between the two groups at 2 years. Graft failure was more in conventional AGV (32%) as compared to pars plana-modified AGV (24%) but not statistically significant (p = 0.078) at 2 years. Though both procedures were comparable in various outcome measures, pars-plana-modified AGV is a viable option for patients undergoing PK, as it provides a relatively better corneal graft survival rate and lesser complications that were associated with conventional AGV.

  19. Parallel-Batch Scheduling and Transportation Coordination with Waiting Time Constraint

    PubMed Central

    Gong, Hua; Chen, Daheng; Xu, Ke

    2014-01-01

    This paper addresses a parallel-batch scheduling problem that incorporates transportation of raw materials or semifinished products before processing with waiting time constraint. The orders located at the different suppliers are transported by some vehicles to a manufacturing facility for further processing. One vehicle can load only one order in one shipment. Each order arriving at the facility must be processed in the limited waiting time. The orders are processed in batches on a parallel-batch machine, where a batch contains several orders and the processing time of the batch is the largest processing time of the orders in it. The goal is to find a schedule to minimize the sum of the total flow time and the production cost. We prove that the general problem is NP-hard in the strong sense. We also demonstrate that the problem with equal processing times on the machine is NP-hard. Furthermore, a dynamic programming algorithm in pseudopolynomial time is provided to prove its ordinarily NP-hardness. An optimal algorithm in polynomial time is presented to solve a special case with equal processing times and equal transportation times for each order. PMID:24883385

  20. A Review of the Ahmed Glaucoma Valve Implant and Comparison with Other Surgical Operations.

    PubMed

    Riva, Ivano; Roberti, Gloria; Katsanos, Andreas; Oddone, Francesco; Quaranta, Luciano

    2017-04-01

    The Ahmed glaucoma valve (AGV) is a popular glaucoma drainage implant used for the control of intraocular pressure in patients with glaucoma. While in the past AGV implantation was reserved for glaucoma patients poorly controlled after one or more filtration procedures, mounting evidence has recently encouraged its use as a primary surgery in selected cases. AGV has been demonstrated to be safe and effective in reducing intraocular pressure in patients with primary or secondary refractory glaucoma. Compared to other glaucoma surgeries, AGV implantation has shown favorable efficacy and safety. The aim of this article is to review the results of studies directly comparing AGV with other surgical procedures in patients with glaucoma.