Science.gov

Sample records for ah receptor binding

  1. Binding of aromatic amines to the rat hepatic Ah receptor in vitro and in vivo and the 8S and 4S estrogen receptor of rat uterus and rat liver

    SciTech Connect

    Cikryt, P.; Kaiser, T.; Gottlicher, M. )

    1990-08-01

    Studies on structurally related aromatic amines with different carcinogenic properties have shown that 2-acetylaminofluorene (2-AAF) and 2-acetylaminophenanthrene (AAP) inhibit the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the Ah receptor in vitro. The apparent inhibitor constants (K{sub i}) are 2.3 {mu}M for 2-AAF and 2.7 {mu}M for AAP. In contrast, 4-acetylaminofluorene, an isomer of 2-AAF, and trans-4-acetylaminostilbene do not bind to the rat hepatic cytosolic Ah receptor. Pretreating female Wistar rats with 2-AAF or AAP leads to the induction of the P-450 isoenzymes that are under the control of the Ah receptor. Ornithine decarboxylase activity is induced by all aromatic amines tested irrespective of their Ah receptor affinity. The aromatic amines used as model compounds do not inhibit the binding of 17-{beta}-estradiol to the 8S and 4S estrogen receptor of rat uterus or rat liver in a competition assay analyzed using sucrose density gradient centrifugation. On the other hand, the aromatic amines bind to varying extents to another estrogen-binding protein of rat liver whose function and identity is still unknown. The study demonstrates that structurally related aromatic amines in their unmetabolized form interact differentially with a cellular target protein, the Ah receptor, in vitro as well as in vivo. However, a relationship between these effects and the postulated promoting properties of 2-AAF remains to be established.

  2. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  3. Amino acid substitution D222N from fatal influenza infection affects receptor-binding properties of the influenza A(H1N1)pdm09 virus.

    PubMed

    Matos-Patrón, Adriana; Byrd-Leotis, Lauren; Steinhauer, David A; Barclay, Wendy S; Ayora-Talavera, Guadalupe

    2015-10-01

    We have analyzed the receptor binding profile of A(H1N1)pdm09 recombinant influenza viruses containing the amino acid substitution D222N which has been associated with a fatal case of infection. This mutation was investigated in conjunction with a secondary mutation, S185N. Using human tracheobronchial epithelial cells (HTBE), we found that single mutation D222N affects the binding and replication of the virus during initial stages of infection, with limited but preferred tropism to non-ciliated cells expressing α2,6-SA. However, in conjunction with the S185N change, the (D222N, S185N) virus shows a remarkable increase in binding and replication efficiency, with tropism for both ciliated and non-ciliated cells. Glycan microarray analysis demonstrated correlation between the binding profile and the cell tropism observed in the HTBE cells. These findings suggest that viruses with D222N required compensatory mutations such as S185N to maintain viral fitness, and in combination, affect the pathogenicity of the virus and the clinical outcome.

  4. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances

    SciTech Connect

    Rannug, A.; Rannug, U.; Rosenkranz, H.S.; Winqvist, L.; Westerholm, R.; Agurell, E.; Grafstroem, A.K.

    1987-11-15

    The purpose of the present study was to determine whether ultraviolet light (UV) irradiation of amino acids produces compounds with affinity for the Ah receptor. Aqueous solutions of L-tryptophan were exposed to radiation from an unfiltered high-pressure mercury lamp. The photoproducts formed were solvent-extracted or concentrated on Sep-Pak C18 cartridges. The concentrated extracts or eluants were treated for their ability to compete with /sup 3/H-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Binding was assayed in liver cytosolic preparations from Sprague-Dawley rats using a technique based on hydroxylapatite separation. Photoproducts with receptor affinity were formed in a time-dependent manner. Histidine and tryptamine also gave products upon UV irradiation that competed with TCDD. Commercial tryptophan, at least aged, contained trace amounts of impurities with receptor affinity. Analysis by TLC and high-pressure liquid chromatography of the photo-products of tryptophan showed a minimum of three different binding compounds. Two of the products were studied in greater detail. One of them, showing UV absorbance and yellow fluorescence, gave a molecular ion (M+) of 284 and the other gave M+ 312 but showed little UV absorption and fluorescence. The concentration, based on mass spectrometry quantifications, of the two compounds that displaced more than 50% of TCDD was found to be extremely low, giving Kd values of 0.44 nM (M+ 312) and 0.07 nM (M+ 284). The existence of high affinity receptors for oxidized amino acids is postulated and their possible role in the proliferative cellular responses to TCDD and tryptophan is discussed briefly.

  5. Ah receptor ligands in tobacco smoke.

    PubMed

    Löfroth, G; Rannug, A

    1988-08-01

    Tar particulates from cigarette smoke contain compounds with affinity for the Ah receptor. The sidestream activity is larger than that of the mainstream with a ratio of about 5. The compounds causing the affinity appear in the neutral fraction after chemical fractionation excluding basic and acidic components as major contributors to the affinity. The affinity cannot be explained by benzo[a]pyrene and other polycyclic aromatic hydrocarbons but it might be caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds and by oxidized tryptophan derivatives.

  6. Comparative Analysis of Homology Models of the Ah Receptor Ligand Binding Domain: Verification of Structure-Function Predictions by Site-Directed Mutagenesis of a Non-Functional AHR†

    PubMed Central

    Fraccalvieri, Domenico; Soshilov, Anatoly A.; Karchner, Sibel I.; Franks, Diana G.; Pandini, Alessandro; Bonati, Laura; Hahn, Mark E.; Denison, Michael S.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity and response have been observed, the structural determinants responsible have not been determined and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of sixteen AHRs from twelve mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, His388) that reduce the internal space available to TCDD. Mutagenesis of two of these residues in zfAhR1a to those present in zfAHR2 (Y296H, T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue to examine species specific differences in AHR responsiveness. PMID:23286227

  7. Studies on the role of the Ah receptor in hexachloro-benzene-induced porphyria

    SciTech Connect

    Hahn, M.E.

    1987-01-01

    Many of the effects of hexachlorobenzene (HCB) resemble those of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), whose effects are initiated by its binding to the AH receptor, the regulatory gene product of the Ah locus. I investigated the ability of HCB to interact with the AH receptor and the involvement of this protein in HCB-induced porphyria. The induction of two cytochrome P450 isozymes regulated by the Ah locus was also examined in light of their possible role in the pathogenesis of HCB- and TCDD-induced porphyria. HCB competitively inhibited the in vitro specific binding of ({sup 3}H)-TCDD to the rat hepatic Ah receptor (K{sub I} = 2.1 {mu}M) without affecting the solubility of ({sup 3}H)TCDD. Following the administration of HCB to rats, the number of ({sup 3}H)TCDD specific binding sites was reduced by up to 40%. HCB induced cytochromes P450b, P450e, P450c, and P450d, confirming that it is a mixed-type P450 inducer. The presence of porphyria in mice was assessed by measuring urinary and hepatic porphyrins and hepatic uroporphyrinogen decarboxylase activity.

  8. Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR

    PubMed Central

    Szöllősi, Dániel; Erdei, Áron; Gyimesi, Gergely; Magyar, Csaba; Hegedűs, Tamás

    2016-01-01

    Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics. PMID:26727491

  9. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue.

    PubMed

    Silkworth, J B; Antrim, L A; Sack, G

    1986-12-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue.

  10. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    PubMed

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  11. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    PubMed

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  12. A human intervention study with foods containing natural Ah-receptor agonists does not significantly show AhR-mediated effects as measured in blood cells and urine.

    PubMed

    de Waard, Pim W J; Peijnenburg, Ad A C M; Baykus, Hakan; Aarts, Jac M M J G; Hoogenboom, Ron L A P; van Schooten, Frederik J; de Kok, Theo M C M

    2008-10-22

    Binding and activation of the aryl hydrocarbon receptor (AhR) is thought to be an essential step in the toxicity of the environmental pollutants dioxins and dioxin-like PCBs. However, also a number of natural compounds, referred to as NAhRAs (natural Ah-receptor agonists), which are present in, for example, fruits and vegetables, can bind and activate this receptor. To study their potential effects in humans, we first investigated the effect of the prototypical AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gene expression in ex vivo exposed freshly isolated human lymphocytes, and compared the resulting gene expression profile with those caused by the well-known NAhRA indolo[3,2-b]carbazole (ICZ), originating from cruciferous vegetables, and by a hexane extract of NAhRA-containing grapefruit juice (GJE). Only ICZ induced a gene expression profile similar to TCDD in the lymphocytes, and both significantly up-regulated CYP1B1 and TIPARP (TCDD-inducible poly (ADP-ribose) polymerase) mRNA. Next, we performed a human intervention study with NAhRA-containing cruciferous vegetables and grapefruit juice. The expression of the prototypical AhR-responsive genes CYP1A1, CYP1B1 and NQO1 in whole blood cells and in freshly isolated lymphocytes was not significantly affected. Also enzyme activities of CYP1A2, CYP2A6, N-acetyltransferase 2 (NAT2) and xanthine oxidase (XO), as judged by caffeine metabolites in urine, were unaffected, except for a small down-regulation of NAT2 activity by grapefruit juice. Examination of blood plasma with DR CALUX showed a 12% increased AhR agonist activity 3 and 24 h after consumption of cruciferous vegetables, but did not show a significant effect of grapefruit juice consumption. We conclude that intake of NAhRAs from food may result in minor AhR-related effects measurable in human blood and urine. PMID:18762178

  13. Persistent Binding of Ligands to the Aryl Hydrocarbon Receptor

    PubMed Central

    Bohonowych, Jessica E.; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxic effects of halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), and other structurally diverse ligands. While HAHs are several orders of magnitude more potent in producing AhR-dependent biochemical effects than PAHs or other AhR agonists, only the HAHs have been observed to produce AhR-dependent toxicity in vivo. Here we have characterized the dissociation of a prototypical HAH ligand ([3H] 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) and PAH-like ligand ([3H] β-naphthoflavone [βNF]) from the guinea pig, hamster, mouse, and rat hepatic cytosolic AhR in order to elucidate the relationship between the apparent ligand-binding affinities and the divergent potency of these chemicals. Both compounds dissociated very slowly from the AhR with the amount of specific binding remaining at 96 h ranging from 53% to 70% for [3H]TCDD and 26% to 85% for [3H] βNF, depending upon the species examined. The rate of ligand dissociation was unaffected by protein concentration or incubation temperature. Preincubation of cytosol with 2,3,7,8-tetrachlorodibenzofuran, carbaryl, or primaquine, prior to the addition of [3H]TCDD, shifted the apparent IC50 of these compounds as competitive AhR ligands by ∼10- to 50-fold. Our results support the need for reassessment of previous AhR ligand-binding affinity calculations and competitive binding analysis since these measurements are not carried out at equilibrium binding conditions. Our studies suggest that AhR binding affinity/occupancy has little effect on the observed differences in the persistence of gene expression by HAHs and PAHs. PMID:17431010

  14. Agonistic effect of selected isoflavones on arylhydrocarbon receptor in a novel AZ-AhR transgenic gene reporter human cell line.

    PubMed

    Bialesova, Lucia; Novotna, Aneta; Macejova, Dana; Brtko, Julius; Dvorak, Zdenek

    2015-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. Structurally diverse compounds bind to AhR and act as AhR agonists. Well characterised family of natural AhR ligands are isoflavones, which are compounds found predominantly in soy beans or red clover. In this study we have examined agonistic effect of selected isoflavones (genistein, daidzein, biochanin A, formononetin and equol) on AhR in the novel transgenic gene reporter human cell line AZ-AhR, a stably transfected AhR-responsive cell line allowing rapid and sensitive assessment of AhR transcriptional activity. We demonstrated that biochanin A, formononetin and genistein at concentration 10(-4) mol/l exerted agonistic effects on AhR with fold activation of 309- fold, 108-fold and 27-fold, which is about 84.8%, 29.6% and 7.4%, respectively, of the value attained by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Daidzein and equol did not show any significant effects on AhR. PMID:25926549

  15. Transgenic Overexpression of Aryl Hydrocarbon Receptor Repressor (AhRR) and AhR-Mediated Induction of CYP1A1, Cytokines, and Acute Toxicity

    PubMed Central

    Vogel, Christoph F.A.; Chang, W.L. William; Kado, Sarah; McCulloh, Kelly; Vogel, Helena; Wu, Dalei; Haarmann-Stemmann, Thomas; Yang, GuoXiang; Leung, Patrick S.C.; Matsumura, Fumio; Gershwin, M. Eric

    2016-01-01

    Background: The aryl hydrocarbon receptor repressor (AhRR) is known to repress aryl hydrocarbon receptor (AhR) signaling, but very little is known regarding the role of the AhRR in vivo. Objective: This study tested the role of AhRR in vivo in AhRR overexpressing mice on molecular and toxic end points mediated through a prototypical AhR ligand. Methods: We generated AhRR-transgenic mice (AhRR Tg) based on the genetic background of C57BL/6J wild type (wt) mice. We tested the effect of the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of cytochrome P450 (CYP)1A1 and cytokines in various tissues of mice. We next analyzed the infiltration of immune cells in adipose tissue of mice after treatment with TCDD using flow cytometry. Results: AhRR Tg mice express significantly higher levels of AhRR compared to wt mice. Activation of AhR by TCDD caused a significant increase of the inflammatory cytokines Interleukin (IL)-1β, IL-6 and IL-10, and CXCL chemokines in white epididymal adipose tissue from both wt and AhRR Tg mice. However, the expression of IL-1β, CXCL2 and CXCL3 were significantly lower in AhRR Tg versus wt mice following TCDD treatment. Exposure to TCDD caused a rapid accumulation of neutrophils and macrophages in white adipose tissue of wt and AhRR Tg mice. Furthermore we found that male AhRR Tg mice were protected from high-dose TCDD-induced lethality associated with a reduced inflammatory response and liver damage as indicated by lower levels of TCDD-induced alanine aminotransferase and hepatic triglycerides. Females from both wt and AhRR Tg mice were less sensitive than male mice to acute toxicity induced by TCDD. Conclusion: In conclusion, the current study identifies AhRR as a previously uncharacterized regulator of specific inflammatory cytokines, which may protect from acute toxicity induced by TCDD. Citation: Vogel CF, Chang WL, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang GX, Leung PS, Matsumura F

  16. Measured and predicted affinities of binding and relative potencies to activate the AhR of PAHs and their alkylated analogues.

    PubMed

    Lee, Sangwoo; Shin, Woong-Hee; Hong, Seongjin; Kang, Habyeong; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Seok, Chaok; Giesy, John P; Choi, Kyungho

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAHs) and their alkylated forms are important components of crude oil. Both groups of PAHs have been reported to cause dioxin-like responses, mediated by aryl hydrocarbon receptor (AhR). Thus, characterization of binding affinity to the AhR of unsubstituted or alkylated PAHs is important to understand the toxicological consequences of oil contamination on ecosystems. We investigated the potencies of major PAHs of crude oil, e.g., chrysene, phenanthrene and dibenzothiophene, and their alkylated forms (n=17) to upregulate expression of AhR-mediated processes by use of the H4IIE-luc transactivation bioassay. In addition, molecular descriptors of different AhR activation potencies among PAHs were investigated by use of computational molecular docking models. Based on responses of the H4IIE-luc in vitro assay, it was shown that potencies of PAHs were determined by alkylation in addition to the number and conformation of rings. Potencies of AhR-mediated processes were generally greater when a chrysene group was substituted, especially in 1-methyl-chrysene. Significant negative correlations were observed between the in vitro dioxin-like potency measured in H4IIE-luc cells and the binding distance estimated from the in silico modeling. The difference in relative potency for AhR activation observed among PAHs and their alkylated forms could be explained by differences among binding distances in the ligand binding domain of the AhR caused by alkylation. The docking model developed in the present study may have utility in predicting risks of environmental contaminants of which toxicities are mediated by AhR binding.

  17. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. PMID:27180721

  18. Divergent Ah Receptor Ligand Selectivity during Hominin Evolution.

    PubMed

    Hubbard, Troy D; Murray, Iain A; Bisson, William H; Sullivan, Alexis P; Sebastian, Aswathy; Perry, George H; Jablonski, Nina G; Perdew, Gary H

    2016-10-01

    We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150-1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking. PMID:27486223

  19. Divergent Ah Receptor Ligand Selectivity during Hominin Evolution.

    PubMed

    Hubbard, Troy D; Murray, Iain A; Bisson, William H; Sullivan, Alexis P; Sebastian, Aswathy; Perry, George H; Jablonski, Nina G; Perdew, Gary H

    2016-10-01

    We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150-1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking.

  20. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    SciTech Connect

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  1. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. PMID:25797602

  2. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    PubMed

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver.

  3. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    PubMed

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. PMID:24769090

  4. Detecting Polychlorinated Biphenyls by Ah Receptor and Fluorescence Quantitative PCR with Exonuclease

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoxiang; Zhuang, Huisheng

    2010-11-01

    Tetrachlorobiphenyls as ligands were cultivated with goldfish, Ah receptors were extracted from the liver of goldfish and purified by hydroxyapatite. The complex of TCB ligands-receptors were analyzed by Surface Plasmon Resonance. DNA probes were amplified by PCR using Primers F1 and F2 with the DNA recognition site of responsive enhancer. DNA probes bound to the complex were not digested by exonuclease. The DNA that bound to the complex was quantified by real time PCR. A standard curve with TCB concentration to Ct values was obtained in the range of 10-12mol/L to 10-8 mol/L, according to TCB concentration in samples. The detection limit of the assay was below 10-12mol/L of TCB. Compared with HPLC, this assay is much more sensitive. These results suggest that fluorescence quantitative PCR with exonuclease by Ah receptors fits for detection of trace PCB.

  5. Ah-receptor controlled luciferase expression: A novel species-specific bioassay for Ah-receptor active compounds in environmental matrices

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Koeman, J.H.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) are persistent lipophilic compounds that accumulate especially in sediments and in top predators of the aquatic foodchain. PHAHs elicit a number of common toxic responses, which are highly species-specific. The most toxic, planar, PHAHs share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on this mechanism, the toxic equivalency factor (TEF) concept has been developed, allowing hazard and risk assessment for mixtures of PHAHs. The TEF-approach assumes additive responses, but also synergistic and antagonistic interactions have been observed. In addition, the often large number of compounds in a mixture, low levels of individual congeners, possible presence of unknown AhR-active substances, and species differences in inducibility, ask for an comprehensive approach in hazard assessment. A number of recombinant cell lines, including Hepa1c1c7 mouse and H411E rat hepatoma cell lines, were developed, showing AhR-mediated firefly (Photinuspyralis) luciferase gene expression. The response by 2,3,7,8-TCDD in the CALUX (chemical activated luciferase expression) assay with these cell lines is dose-dependent, and not subjected to substrate inhibition at higher ligand concentrations. The detection limit for 2,3,7,8-TCDD is below 1 pM (0.2 fmol). The luciferase assay has been successfully applied for monitoring the amount of AhR-active compounds in small aliquots of blood plasma and in both sediment and pore-water samples, of which examples will be presented.

  6. Receptor binding properties of amperozide.

    PubMed

    Svartengren, J; Simonsson, P

    1990-01-01

    The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the receptor moiety. The affinity for several other rat brain receptors such as 5-HT1A, alpha 2-adrenergic, dopamine D1, muscarinic M1 and M2, opiate sigma and beta 2-adrenergic was low. The pseudo-Hill coefficient of the amperozide competition binding curve was consistently higher than one indicating antagonistic and complex interactions with the 5-HT2 receptor or with alpha 1-adrenergic and dopamine D2 receptors. The antagonistic properties of amperozide were investigated by its ability to antagonize the serotonin-induced formation of inositol-1-phosphate in human blood platelets. Amperozide inhibited this 5-HT2 receptor-mediated intracellular response with similar potency as ketanserin. These results suggest that amperozide is a selective 5-HT2 receptor antagonist.

  7. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs

    PubMed Central

    Kemble, David J.; McCullough, Laura L.; Whitby, Frank G.; Formosa, Tim; Hill, Christopher P.

    2015-01-01

    SUMMARY FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C-termini of each subunit. Mutations throughout these regions impact binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions. PMID:26455391

  8. Relationship between Ah receptor-mediated polychlorinated biphenyl (PCB)-induced humoral immunosuppression and thymic atrophy.

    PubMed

    Silkworth, J B; Antrim, L

    1985-12-01

    Thymic atrophy and humoral immunosuppression by certain polychlorinated biphenyls is associated with the aromatic hydrocarbon (Ah) receptor in mice. We examined the relationship between these two toxic effects. 3,3',4,4'-Tetrachlorobiphenyl (TCB), which causes immunosuppression and thymic atrophy, and 2,3,3',4,4',5-hexachlorobiphenyl, which causes immunosuppression without thymic atrophy, were administered i.p. to C57BL/6 mice at 0, 35 and 350 mumol/kg b.wt. 2 days before i.v. immunization with 10 micrograms of Escherichia coli lipopolysaccharide. Both congeners caused significant suppression of the day 4 anti-lipopolysaccharide plaque-forming cell response/spleen (less than or equal to 46% of control). TCB (350 mumol/kg) was also administered 2 days before either a primary or secondary i.p. immunization with sheep erythrocytes. TCB treatment before primary immunization had no effects on the day 5 secondary response, whereas treatment before the secondary immunization significantly inhibited both day 5 immunoglobulin M and immunoglobulin G plaque-forming cells (less than 10 and less than 2% of control, respectively) and decreased serum antibody. TCB administered either 8 or 2 days before or 2 or 4 days after immunization with sheep erythrocytes demonstrated that significant suppression of both plaque-forming cells and serum antibody could occur without thymic atrophy. Immunity was most impaired when TCB was given 2 days before immunization. These results demonstrate that thymic atrophy does not always accompany the severe immunosuppression caused by Ah receptor ligands and suggests that it may not be a sensitive measure of Ah receptor-mediated immunosuppression. The data also suggests that differentiation of B lymphocytes into antibody producing cells is impaired during Ah receptor-mediated gene activation.

  9. Glucocorticoid receptor transformation and DNA binding

    SciTech Connect

    Tienrungroj, W.

    1986-01-01

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, (/sup 3/H)dexamethasone-bound receptors at 0/sup 0/C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing (/sup 32/P)orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA.

  10. Arylhydrocarbon receptor (AhR) activation in airway epithelial cells induces MUC5AC via reactive oxygen species (ROS) production.

    PubMed

    Chiba, Takahito; Uchi, Hiroshi; Tsuji, Gaku; Gondo, Hisaki; Moroi, Yoichi; Furue, Masutaka

    2011-02-01

    The dioxins and dioxin-like compounds in cigarette smoke regulate various immunological responses via the arylhydrocarbon receptor (AhR). These environmental toxicants are known to cause bronchitis, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have demonstrated that AhR activation upregulates the expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) in the airway epithelial cell line. However, the mechanism for the production of mucin has not been clarified. In this study, we investigated the role and pathway of AhR in airway epithelial cells by using selective agonists and antagonists. After stimulation with or without benzopyrene (B[a]P), an AhR agonist, MUC5AC expression was measured by real-time RT-PCR. The mechanism of AhR-induced MUC5AC expression in airway epithelial cells was studied in terms of the production of cytokine and reactive oxygen species (ROS). Treatment with B[a]P increased ROS generation in NCI-H₂₉₂ cells. Furthermore, B[a]P-induced MUC5AC upregulation and mucin production were inhibited by AhR siRNA or the use of an antioxidative agent. These results suggest that the AhR-induced increase of mucin production is partially mediated by ROS generation. An antioxidant therapy approach may help to cure AhR-induced mucus hypersecretory diseases. PMID:20709182

  11. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  12. The immune phenotype of AhR null mouse mutants: not a simple mirror of xenobiotic receptor over-activation.

    PubMed

    Esser, Charlotte

    2009-02-15

    Intrinsic and induced cell differentiation and the cellular response to endogenous and exogenous signals are hallmarks of the immune system. Specific and common signalling cascades ensure a highly flexible and adapted response. Increasing evidence suggests that gene modulation by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is an important part of these processes. For decades the AhR has been studied mainly for its toxic effects after artificial activation by man-made chemical pollutants such as dioxins. These studies gave important, albeit to some extent skewed, evidence for a mechanistic link between the AhR and the immune system. AhR null mutants and other mutants of the AhR signalling pathway have been generated and used to analyse the physiological function of the AhR, including for the developing and antigen-responding immune system. In this review I look at the natural immunological function(s) of the AhR.

  13. Binding of ATP to the progesterone receptor.

    PubMed Central

    Moudgil, V K; Toft, D O

    1975-01-01

    The possible interaction of progesterone--receptor complexes with nucleotides was tested by affinity chromatography. The cytosol progesterone receptor from hen oviduct was partially purified by ammonium sulfate precipitation before use. When progesterone was bound to the receptor, the resulting complex could be selectively adsorbed onto columns of ATP-Sepharose. This interaction was reversible and of an ionic nature since it could be disrupted by high-salt conditions. A competitive binding assay was used to test the specificity of receptor binding to several other nucleotides, including ADP, AMP, and cAMP. A clear specificity for binding ATP was evident from these studies. When ATP was added to receptor preparations, the nucleotide did not affect the sedimentation properties or hormone binding characteristics of the receptor. Although the function of ATP remains unknown, these studies indicate a role of this nucleotide in some aspect of hormone receptor activity. PMID:165493

  14. Binding characteristics of swine erythrocyte insulin receptors

    SciTech Connect

    Dieberg, G.; Bryan, G.S.; Sartin, J.L.; Williams, J.C.; Prince, T.J.; Kemppainen, R.J.

    1985-09-01

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of ( SVI)insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine.

  15. Inhibition of constitutive aryl hydrocarbon receptor (AhR) signaling attenuates androgen independent signaling and growth in (C4-2) prostate cancer cells

    PubMed Central

    Tran, Cindy; Richmond, Oliver; Aaron, LaTayia; Powell, Joann B.

    2013-01-01

    The aryl hydrocarbon receptor is a member of the basic-helix-loop-helix family of transcription factors. AhR mediates the biochemical and toxic effects of a number of polyaromatic hydrocarbons such as 2,3,7,8,-tetrachloro-dibenzo-p-dioxin (TCDD). AhR is widely known for regulating the transcription of drug metabolizing enzymes involved in the xenobiotic metabolism of carcinogens and therapeutic agents, such as cytochrome P450-1B1 (CYP1B1). Additionally, AhR has also been reported to interact with multiple signaling pathways during prostate development. Here we investigate the effect of sustained AhR signaling on androgen receptor function in prostate cancer cells. Immunoblot analysis shows that AhR expression is increased in androgen independent (C4-2) prostate cancer cells when compared to androgen sensitive (LNCaP) cells. RT-PCR studies revealed constitutive AhR signaling in C4-2 cells without the ligand induced activation required in LNCaP cells. A reduction of AhR activity by short RNA mediated silencing in C4-2 cells reduced expression of both AhR and androgen responsive genes. The decrease in androgen responsive genes correlates to a decrease in phosphorylated androgen receptor and androgen receptor expression in the nucleus. Furthermore, the forced decrease in AhR expression resulted in a 50% decline in the growth rate of C4-2 cells. These data indicates that AhR is required to maintain hormone independent signaling and growth by the androgen receptor in C4-2 cells. Collectively, these data provide evidence of a direct role for AhR in androgen independent signaling and provides insight into the molecular mechanisms responsible for sustained androgen receptor signaling in hormone refractory prostate cancer. PMID:23266674

  16. Ligand-dependent interactions of the Ah receptor with coactivators in a mammalian two-hybrid assay

    SciTech Connect

    Zhang Shu; Rowlands, Craig; Safe, Stephen

    2008-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a high affinity ligand for the aryl hydrocarbon receptor (AhR). In this study, we investigated structure-dependent differences in activation of the AhR by a series of halogenated aromatic hydrocarbons. TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 3,3',4,4',5-pentachlorobiphenyl (PCB126) induced CYP1A1-dependent activities in HEK293 human embryonic kidney, Panc1 pancreatic cancer, and Hepa1c1c7 mouse hepatoma cell lines. There was a structure-dependent difference in the efficacy of TCDF and PCB126 in HEK293 and Panc1 cells since induced CYP1A1 mRNA levels were lower than observed for the other congeners. A mammalian two-hybrid assay in cells transfected with GAL4-coactivator and AhR-VP16 chimeras was used to investigate structure-dependent interactions of these chimeras in Panc1, HEK293, and Hepa1c1c7 cells. The reporter construct pGAL4-luc contains five tandem GAL4 response elements linked to the luciferase gene and the GAL4-coactivator chimeras express several coactivators including steroid receptor coactivator 1 (SRC-1), SRC-2 and SRC-3, the mediator coactivator TRAP220, coactivator associated arginine methyl transferase 1 (CARM-1), and peroxisome proliferator-activated receptor {gamma} coactivator 1 (PGC-1). Results of the mammalian two-hybrid studies clearly demonstrate that activation of pGAL4-luc in cells transfected with VP-AhR and GAL4-coactivator chimeras is dependent on the structure of the HAH congener, cell context, and coactivator, suggesting that the prototypical HAH congeners used in this study exhibit selective AhR modulator activity.

  17. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation

    PubMed Central

    Hubbard, Troy D.; Murray, Iain A.

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor recognized for its role in xenobiotic metabolism. The physiologic function of AHR has expanded to include roles in immune regulation, organogenesis, mucosal barrier function, and the cell cycle. These functions are likely dependent upon ligand-mediated activation of the receptor. High-affinity ligands of AHR have been classically defined as xenobiotics, such as polychlorinated biphenyls and dioxins. Identification of endogenous AHR ligands is key to understanding the physiologic functions of this enigmatic receptor. Metabolic pathways targeting the amino acid tryptophan and indole can lead to a myriad of metabolites, some of which are AHR ligands. Many of these ligands exhibit species selective preferential binding to AHR. The discovery of specific tryptophan metabolites as AHR ligands may provide insight concerning where AHR is activated in an organism, such as at the site of inflammation and within the intestinal tract. PMID:26041783

  18. The Ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines.

    PubMed

    John, Kaarthik; Lahoti, Tejas S; Wagner, Kelly; Hughes, Jarod M; Perdew, Gary H

    2014-10-01

    Previous studies in head and neck squamous cell carcinoma (HNSCC) cell lines have revealed that the Ah receptor (AHR) plays a significant role in mediating the "aggressive" phenotype of these cells, which includes enhanced inflammatory signaling (e.g., IL6) and migratory potential. Here we sought to identify putative novel targets of the AHR associated with enhanced tumor invasiveness. Global gene expression analysis identified a number of genes that are repressed upon treatment of OSC-19 or HN30 cells with an AHR antagonist. Three growth factors were targets of AHR activity; amphiregulin (AREG), epiregulin (EREG), and platelet-derived growth factor A (PDGFA) were repressed by an AHR antagonist and further examined. Quantitative PCR analysis, ELISA, and siRNA-mediated knock down of AHR revealed an attenuation of basal and/or induced levels of expression of these growth factors in two HNSCC lines, following AHR antagonism. In silico analysis revealed that these growth factors possess dioxin-like response elements. Two other AHR ligands, 6-formylindolo[3,2-b]carbazole and benzo(a)pyrene (BP) also elicited similar responses. In conclusion, this study identified AREG, EREG, and PDGFA as growth factor targets of AHR activity associated with metastatic phenotype of HNSCC cells, suggesting that attenuation of AHR activity may be a therapeutic strategy.

  19. Siaα2-3Galβ1- Receptor Genetic Variants Are Associated with Influenza A(H1N1)pdm09 Severity.

    PubMed

    Maestri, Alvino; Sortica, Vinicius Albuquerque; Tovo-Rodrigues, Luciana; Santos, Mirleide Cordeiro; Barbagelata, Luana; Moraes, Milene Raiol; Alencar de Mello, Wyller; Gusmão, Leonor; Sousa, Rita Catarina Medeiros; Emanuel Batista Dos Santos, Sidney

    2015-01-01

    Different host genetic variants may be related to the virulence and transmissibility of pandemic Influenza A(H1N1)pdm09, influencing events such as binding of the virus to the entry receptor on the cell of infected individuals and the host immune response. In the present study, two genetic variants of the ST3GAL1 gene, which encodes the Siaα2-3Galβ1- receptor to which influenza A(H1N1)pdm09 virus binds for entry into the host cell, were investigated in an admixed Brazilian population. First, the six exons encoding the ST3GAL1 gene were sequenced in 68 patients infected with strain A(H1N1)pdm09. In a second phase of the study, the rs113350588 and rs1048479 polymorphisms identified in this sample were genotyped in a sample of 356 subjects from the northern and northeastern regions of Brazil with a diagnosis of pandemic influenza. Functional analysis of the polymorphisms was performed in silico and the influence of these variants on the severity of infection was evaluated. The results suggest that rs113350588 and rs1048479 may alter the function of ST3GAL1 either directly through splicing regulation alteration and/or indirectly through LD with SNP with regulatory function. In the study the rs113350588 and rs1048479 polymorphisms were in linkage disequilibrium in the population studied (D' = 0.65). The GC haplotype was associated with an increased risk of death in subjects with influenza (OR = 4.632, 95% CI = 2.10;1.21). The AT haplotype was associated with an increased risk of severe disease and death (OR = 1.993, 95% CI = 1.09;3.61 and OR 4.476, 95% CI = 2.37;8.44, respectively). This study demonstrated for the first time the association of ST3GAL1 gene haplotypes on the risk of more severe disease and death in patients infected with Influenza A(H1N1)pdm09 virus. PMID:26436774

  20. Role of receptor binding specificity in influenza A virus transmission and pathogenesis

    PubMed Central

    de Graaf, Miranda; Fouchier, Ron A M

    2014-01-01

    The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)-binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed. PMID:24668228

  1. Structure and Receptor Binding Preferences of Recombinant Hemagglutinins from Avian and Human H6 and H10 Influenza A Virus Subtypes

    PubMed Central

    Yang, Hua; Carney, Paul J.; Chang, Jessie C.; Villanueva, Julie M.

    2015-01-01

    ABSTRACT During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. IMPORTANCE Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. PMID:25673707

  2. Identification of ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China.

    PubMed

    Shen, Chaofeng; Huang, Shengbiao; Wang, Zijian; Qiao, Min; Tang, Xianjin; Yu, Chunna; Shi, Dezhi; Zhu, Youfeng; Shi, Jiyan; Chen, Xincai; Setty, Karen; Chen, Yingxu

    2008-01-01

    In recent years, increasing concern has surrounded the consequences of improper electric and electronic waste (e-waste) disposal. In order to mitigate or remediate the potentially severe toxic effects of e-waste recycling on the environment, organisms, and humans, many contaminated sites must first be well-characterized. In this study, soil samples were taken from Taizhou city, one of the largest e-waste disposal centers in China, which was involved in recycling for nearly 30 years. The extracts of the samples were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-O-deethylase (EROD) induction in the rat hepatoma cell line H4IIE. Some of the target AhR agonists, including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs), were instrumentally analyzed as well. The cause-effect relationship and dose-response relationship between the chemical concentrations of AhR agonists and observed EROD activity were examined. The results showed that soil extracts could induce AhR activity significantly, and the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQcal) were perfectly correlated to bioassay-derived TCDD equivalents (TEQbio; R = 0.96, P < 0.001), which indicated that the known AhR agonists could account for the observed responses. Among different contributors, PCBs accounted for 87.2-98.2% and PCDD/Fs contributed 1.7-11.6% of TEQcal, while the contribution of PAHs could almost be neglected. Under these conditions, a quantitative dose-effect relationship between TEQ(PCB) and EROD activity could be evaluated, suggesting that the observed AhR effect was mainly caused by PCBs. Further source identification by congener profiles analysis showed that the crude dismantling of electric power devices and open burning of electric wires and printed circuit boards may be the main sources of these dioxin-like compounds. This study suggests that

  3. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene

    SciTech Connect

    Erichsen, Thomas J.; Ehmer, Ursula; Kalthoff, Sandra; Lankisch, Tim O.; Mueller, Tordis M.; Munzel, Peter A.; Manns, Michael P.; Strassburg, Christian P.

    2008-07-15

    UDP glucuronosyltransferases (UGTs) play an important role for drug detoxification and toxicity. UGT function is genetically modulated by single nucleotide polymorphisms (SNPs) which lead to the expression of functionally altered protein, or altered expression levels. UGT1A4 activity includes anticonvulsants, antidepressants and environmental mutagens. In this study the induction of the human UGT1A4 gene and a potential influence of genetic variation in its promoter region were analyzed. SNPs at bp - 219 and - 163 occurred in 9% among 109 blood donors reducing UGT1A4 transcription by 40%. UGT1A4 transcription was dioxin inducible. Reporter gene experiments identified 2 xenobiotic response elements (XRE), which were functionally confirmed by mutagenesis analyses, and binding was demonstrated by electromobility shift assays. Constitutive human UGT1A4 gene expression and induction was aryl hydrocarbon receptor (AhR)-dependent, and reduced in the presence of SNPs at bp - 219 and - 163. AhR-mediated regulation of the human UGT1A4 gene by two XRE and a modulation by naturally occurring genetic variability by SNPs is demonstrated, which indicates gene-environment interaction with potential relevance for drug metabolism.

  4. Receptor-binding sites: bioinformatic approaches.

    PubMed

    Flower, Darren R

    2006-01-01

    It is increasingly clear that both transient and long-lasting interactions between biomacromolecules and their molecular partners are the most fundamental of all biological mechanisms and lie at the conceptual heart of protein function. In particular, the protein-binding site is the most fascinating and important mechanistic arbiter of protein function. In this review, I examine the nature of protein-binding sites found in both ligand-binding receptors and substrate-binding enzymes. I highlight two important concepts underlying the identification and analysis of binding sites. The first is based on knowledge: when one knows the location of a binding site in one protein, one can "inherit" the site from one protein to another. The second approach involves the a priori prediction of a binding site from a sequence or a structure. The full and complete analysis of binding sites will necessarily involve the full range of informatic techniques ranging from sequence-based bioinformatic analysis through structural bioinformatics to computational chemistry and molecular physics. Integration of both diverse experimental and diverse theoretical approaches is thus a mandatory requirement in the evaluation of binding sites and the binding events that occur within them. PMID:16671408

  5. Effects of Water Models on Binding Affinity: Evidence from All-Atom Simulation of Binding of Tamiflu to A/H5N1 Neuraminidase

    PubMed Central

    Nguyen, Trang Truc; Viet, Man Hoang

    2014-01-01

    The influence of water models SPC, SPC/E, TIP3P, and TIP4P on ligand binding affinity is examined by calculating the binding free energy ΔGbind of oseltamivir carboxylate (Tamiflu) to the wild type of glycoprotein neuraminidase from the pandemic A/H5N1 virus. ΔGbind is estimated by the Molecular Mechanic-Poisson Boltzmann Surface Area method and all-atom simulations with different combinations of these aqueous models and four force fields AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L. It is shown that there is no correlation between the binding free energy and the water density in the binding pocket in CHARMM. However, for three remaining force fields ΔGbind decays with increase of water density. SPC/E provides the lowest binding free energy for any force field, while the water effect is the most pronounced in CHARMM. In agreement with the popular GROMACS recommendation, the binding score obtained by combinations of AMBER-TIP3P, OPLS-TIP4P, and GROMOS-SPC is the most relevant to the experiments. For wild-type neuraminidase we have found that SPC is more suitable for CHARMM than TIP3P recommended by GROMACS for studying ligand binding. However, our study for three of its mutants reveals that TIP3P is presumably the best choice for CHARMM. PMID:24672329

  6. Identification of the Ah-receptor structural determinants for ligand preferences.

    PubMed

    Xing, Yongna; Nukaya, Manabu; Satyshur, Kenneth A; Jiang, Li; Stanevich, Vitali; Korkmaz, Elif Nihal; Burdette, Lisa; Kennedy, Gregory D; Cui, Qiang; Bradfield, Christopher A

    2012-09-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor that responds to diverse ligands and plays a critical role in toxicology, immune function, and cardiovascular physiology. The structural basis of the AHR for ligand promiscuity and preferences is critical for understanding AHR function. Based on the structure of a closely related protein HIF2α, we modeled the AHR ligand binding domain (LBD) bound to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo(a)pyrene (BaP) and identified residues that control ligand preferences by shape and H-bond potential. Mutations to these residues, particularly Q377 and G298, resulted in robust and opposite changes in the potency of TCDD and BaP and up to a 20-fold change in the ratio of TCDD/BaP efficacy. The model also revealed a flexible "belt" structure; molecular dynamic (MD) simulation suggested that the "belt" and several other structural elements in the AHR-LBD are more flexible than HIF2α and likely contribute to ligand promiscuity. Molecular docking of TCDD congeners to a model of human AHR-LBD ranks their binding affinity similar to experimental ranking of their toxicity. Our study reveals key structural basis for prediction of toxicity and understanding the AHR signaling through diverse ligands. PMID:22659362

  7. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays.

    PubMed

    Wang, Jingxian; Bovee, Toine F H; Bi, Yonghong; Bernhöft, Silke; Schramm, Karl-Werner

    2014-02-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activities. The estrogenic activity was assessed using a rapid yeast estrogen bioassay, based on the expression of a green fluorescent reporter protein. Weak anti-estrogenic activity was detected in sediments from an area close to the dam of the reservoir, and weak estrogenic activities ranging from 0.3 to 1 ng 17β-estradiol (E2) equivalents (EQ) g(-1) dry weight sediment (dw) were detected in sediments from the Wanzhou to Guojiaba areas. In the upstream areas Wanzhou and Wushan, sediments demonstrated additive effects in co-administration of 1 nM E2 in the yeast test system, while sediments from the downstream Badong and Guojiaba areas showed estrogenic activities which seemed to be more than additive (synergistic activity). There was an increasing tendency in estrogenic activity from upstream of TGR to downstream, while this tendency terminated and converted into anti-estrogenic activity in the area close to the dam. The AhR activity was detected employing rat hepatoma cell line (H4IIE). EROD activities were found homogenously distributed in sediments in TGR ranging from 200 to 311 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) EQ g(-1) dw for total AhR agonists and from 45 to 76 pg TCDD EQ g(-1) dw for more persistent AhR agonists. The known AhR agonists polycyclic aromatic hydrocarbon, polychlorinated biphenyl, and PCDD/F only explained up to 8 % of the more persistent AhR agonist activity in the samples, which suggests that unidentified AhR-active compounds represented a great proportion of the TCDD EQ in sediments from TGR. These findings of estrogenic potential and dioxin-like activity in TGR sediments provide possible weight-of-evidence of potential

  8. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays.

    PubMed

    Wang, Jingxian; Bovee, Toine F H; Bi, Yonghong; Bernhöft, Silke; Schramm, Karl-Werner

    2014-02-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activities. The estrogenic activity was assessed using a rapid yeast estrogen bioassay, based on the expression of a green fluorescent reporter protein. Weak anti-estrogenic activity was detected in sediments from an area close to the dam of the reservoir, and weak estrogenic activities ranging from 0.3 to 1 ng 17β-estradiol (E2) equivalents (EQ) g(-1) dry weight sediment (dw) were detected in sediments from the Wanzhou to Guojiaba areas. In the upstream areas Wanzhou and Wushan, sediments demonstrated additive effects in co-administration of 1 nM E2 in the yeast test system, while sediments from the downstream Badong and Guojiaba areas showed estrogenic activities which seemed to be more than additive (synergistic activity). There was an increasing tendency in estrogenic activity from upstream of TGR to downstream, while this tendency terminated and converted into anti-estrogenic activity in the area close to the dam. The AhR activity was detected employing rat hepatoma cell line (H4IIE). EROD activities were found homogenously distributed in sediments in TGR ranging from 200 to 311 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) EQ g(-1) dw for total AhR agonists and from 45 to 76 pg TCDD EQ g(-1) dw for more persistent AhR agonists. The known AhR agonists polycyclic aromatic hydrocarbon, polychlorinated biphenyl, and PCDD/F only explained up to 8 % of the more persistent AhR agonist activity in the samples, which suggests that unidentified AhR-active compounds represented a great proportion of the TCDD EQ in sediments from TGR. These findings of estrogenic potential and dioxin-like activity in TGR sediments provide possible weight-of-evidence of potential

  9. Mechanism for ordered receptor binding by human prolactin.

    PubMed

    Sivaprasad, Umasundari; Canfield, Jeffrey M; Brooks, Charles L

    2004-11-01

    Prolactin, a lactogenic hormone, binds to two prolactin receptors sequentially, the first receptor binding at site 1 of the hormone followed by the second receptor binding at site 2. We have investigated the mechanism by which human prolactin (hPRL) binds the extracellular domain of the human prolactin receptor (hPRLbp) using surface plasmon resonance (SPR) technology. We have covalently coupled hPRL to the SPR chip surface via coupling chemistries that reside in and block either site 1 or site 2. Equilibrium binding experiments using saturating hPRLbp concentrations show that site 2 receptor binding is dependent on site 1 receptor occupancy. In contrast, site 1 binding is independent of site 2 occupancy. Thus, sites 1 and 2 are functionally coupled, site 1 binding inducing the functional organization of site 2. Site 2 of hPRL does not have a measurable binding affinity prior to hPRLbp binding at site 1. After site 1 receptor binding, site 2 affinity is increased to values approaching that of site 1. Corruption of either site 1 or site 2 by mutagenesis is consistent with a functional coupling of sites 1 and 2. Fluorescence resonance energy transfer (FRET) experiments indicate that receptor binding at site 1 induces a conformation change in the hormone. These data support an "induced-fit" model for prolactin receptor binding where binding of the first receptor to hPRL induces a conformation change in the hormone creating the second receptor-binding site.

  10. Functionality of aryl hydrocarbon receptors (AhR1 and AhR2) of white sturgeon (Acipenser transmontanus) and implications for the risk assessment of dioxin-like compounds.

    PubMed

    Doering, Jon A; Farmahin, Reza; Wiseman, Steve; Kennedy, Sean W; Giesy, John P; Hecker, Markus

    2014-07-15

    Worldwide, populations of sturgeons are endangered, and it is hypothesized that anthropogenic chemicals, including dioxin-like compounds (DLCs), might be contributing to the observed declines in populations. DLCs elicit their toxic action through activation of the aryl hydrocarbon receptor (AhR), which is believed to regulate most, if not all, adverse effects associated with exposure to these chemicals. Currently, risk assessment of DLCs in fishes uses toxic equivalency factors (TEFs) developed for the World Health Organization (WHO) that are based on studies of embryo-lethality with salmonids. However, there is a lack of knowledge of the sensitivity of sturgeons to DLCs, and it is uncertain whether TEFs developed by the WHO are protective of these fishes. Sturgeons are evolutionarily distinct from salmonids, and the AhRs of sturgeons differ from those of salmonids. Therefore, this study investigated the sensitivity of white sturgeon (Acipenser transmontanus) to DLCs in vitro via the use of luciferase reporter gene assays using COS-7 cells transfected with AhR1 or AhR2 of white sturgeon. Specifically, activation and relative potencies (RePs) of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachloro-dibenzofuran, 2,3,7,8-tetrachloro-dibenzofuran, 3,3',4,4',5-pentachlorobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, and 2,3,3',4,4'-pentachlorobiphenyl were determined for each AhR. It was demonstrated that white sturgeon expresses AhR1s and AhR2s that are both activated by DLCs with EC50 values for 2,3,7,8-TCDD that are lower than those of any other AhR of vertebrates tested to date. Both AhRs of white sturgeon had RePs for polychlorinated dibenzofurans more similar to TEFs for birds, while RePs for polychlorinated biphenyls were most similar to TEFs for fishes. Measured concentrations of select DLCs in tissues of white sturgeon from British Columbia, Canada, were used to calculate toxic equivalents (TEQs) by use of TEFs for fishes used by the WHO and TCDD

  11. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    SciTech Connect

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K. . E-mail: mkwalker@unm.edu

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.

  12. Radiobrominated triphenylethylenes as estrogen receptor binding radiopharmaceuticals

    SciTech Connect

    Seevers, R.H.; Meese, R.C.; Friedman, A.M.; DeSombre, E.R.

    1985-05-01

    Estrogen receptor binding radiopharmaceuticals have potential for use in the diagnosis and treatment of cancers of the female reproductive system. Tamoxifen is an antiestrogen derived from the triphenylethylene skeleton which is used in the treatment of mammary carcinoma. Hydroxytamoxifen is a metabolite of tamoxifen which binds tightly to the estrogen receptor. Two triphenylethylene derivatives based on the structure of hydroxytamoxifen have been prepared: 1-bromo-1-phenyl-2- (2-dimethylamino)-4-ethoxyphenyl -2-(4-hydroxyphenyl) ethene (1) where the ethyl group of hydroxytamoxifen has been replaced by a bromine, and 1-bromo-1-phenyl-2,2-(4-hydroxyphenyl) ethene (2) with a similar substitution and also lacking the aminoethoxy side chain believed to confer antiestrogenicity. Both 1 and 2 bind strongly to the estrogen receptor. 2 has been labeled with the Auger electron emitting nuclide Br-80m in moderate yields in high specific activity using either N-bromosuccinimide or N-bromophthalimide and shows promise as a potential radiotherapy agent.

  13. Molecular characterization of the aryl hydrocarbon receptor (AhR) pathway in goldfish (Carassius auratus) exposure to TCDD: the mRNA and protein levels.

    PubMed

    Lu, Ming; Chang, Ziwei; Bae, Min-Ji; Oh, Seung Min; Chung, Kyu-Hyuck; Park, Jang-Su

    2013-08-01

    In bony fish or other aquatic vertebrates, the aryl hydrocarbon receptor (AhR) signaling pathway is initiated by exposure to polycyclic (or/and halogenated) aromatic hydrocarbons (PAHs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), which subsequently induces the up-regulated expression of a series of related genes (such as cytochrome P4501A (CYP1A)). However, a lack of applicable protein reagents hinders our further understanding of the AhR signaling pathway, which focuses only on gene-based investigations. The goldfish (Carassius auratus) is an ideal model for a study of environmental pollution in whole-Asian fresh water. Here, three sensitive and specific polyclonal antisera against goldfish AhR1, AhR2, and CYP1A proteins were developed. These antisera not only bound the in-vitro synthesized target proteins, but recognized the real proteins expressed in goldfish tissues, with minimal cross-reactivity to non-specific proteins. Together with the analysis of semi-quantitative RT-PCR and polyclonal-antibody-based sandwich ELISA, we confirmed that goldfish AhRs differed in the expression (mRNA and protein levels) patterns among test tissues. Importantly, the relative abundance of each AhR mRNA levels from the different tissues showed no obvious consistency with their protein levels. After exposure to TCDD, goldfish AhR2 showed a more sensitivity than AhR1, and stimulated CYP1A expression directly, similar with the other reported fish models. Overall, development of these antibodies in this study will allow valuable and versatile investigations to further understand the AhR signaling pathway, and different expression (mRNA and protein) patterns represent the first step in determining the regulatory mechanisms underlying the TCDD-exposed aquatic environment.

  14. AhR signalling and dioxin toxicity.

    PubMed

    Sorg, Olivier

    2014-10-15

    Dioxins are a family of molecules associated to several industrial accidents such as Ludwigshafen in 1953 or Seveso in 1976, to the Agent Orange used during the war of Vietnam, and more recently to the poisoning of the former president of Ukraine, Victor Yushchenko. These persistent organic pollutants are by-products of industrial activity and bind to an intracellular receptor, AhR, with a high potency. In humans, exposure to dioxins, in particular 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a cutaneous syndrome known as chloracne, consisting in the development of many small skin lesions (hamartoma), lasting for 2-5 years. Although TCDD has been classified by the WHO as a human carcinogen, its carcinogenic potential to humans is not clearly demonstrated. It was first believed that AhR activation accounted for most, if not all, biological properties of dioxins. However, certain AhR agonists found in vegetables do not induce chloracne, and other chemicals, in particular certain therapeutic agents, may induce a chloracne-like syndrome without activating AhR. It is time to rethink the mechanism of dioxin toxicity and analyse in more details the biological events following exposure to these compounds and other AhR agonists, some of which have a very different chemical structure than TCDD. In particular various food-containing AhR agonists are non-toxic and may on the contrary have beneficial properties to human health. PMID:24239782

  15. Transgenic mouse lines expressing rat AH receptor variants - A new animal model for research on AH receptor function and dioxin toxicity mechanisms

    SciTech Connect

    Pohjanvirta, Raimo

    2009-04-15

    Han/Wistar (Kuopio; H/W) rats are exceptionally resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity mainly because of their mutated aryl hydrocarbon receptor (AHR) gene. In H/W rats, altered splicing of the AHR mRNA generates two AHR proteins: deletion (DEL) and insertion (INS) variants, with the INS isoform being predominantly expressed. To gain further insight into their functional properties, cDNAs of these and rat wild-type (rWT) isoform were transferred into C57BL/6J-derived mice by microinjection. The endogenous mouse AHR was eliminated by selective crossing with Ahr-null mice. A single mouse line was obtained for each of the three constructs. The AHR mRNA levels in tissues were generally close to those of C57BL/6 mice in INS and DEL mice and somewhat higher in rWT mice; in testis, however, all 3 constructs exhibited marked overexpression. The transgenic mouse lines were phenotypically normal except for increased testis weight. Induction of drug-metabolizing enzymes by TCDD occurred similarly to that in C57BL/6 mice, but there tended to be a correlation with AHR concentrations, especially in testis. In contrast to C57BL/6 mice, the transgenics did not display any major gender difference in susceptibility to the acute lethality and hepatotoxicity of TCDD; rWT mice were highly sensitive, DEL mice moderately resistant and INS mice highly resistant. Co-expression of mouse AHR and rWT resulted in augmented sensitivity to TCDD and abolished the natural resistance of female C57BL/6 mice, whereas mice co-expressing mouse AHR and INS were resistant. Thus, these transgenic mouse lines provide a novel promising tool for molecular studies on dioxin toxicity and AHR function.

  16. Differences in activation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain.

    PubMed

    Doering, Jon A; Farmahin, Reza; Wiseman, Steve; Beitel, Shawn C; Kennedy, Sean W; Giesy, John P; Hecker, Markus

    2015-04-01

    Dioxin-like compounds (DLCs) are pollutants of global environmental concern. DLCs elicit their adverse outcomes through activation of the aryl hydrocarbon receptor (AhR). However, there is limited understanding of the mechanisms that result in differences in sensitivity to DLCs among different species of fishes. Understanding these mechanisms is critical for protection of the diversity of fishes exposed to DLCs, including endangered species. This study investigated specific mechanisms that drive responses of two endangered fishes, white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens) to DLCs. It determined whether differences in sensitivity to activation of AhRs (AhR1 and AhR2) can be predicted based on identities of key amino acids in the ligand binding domain (LBD). White sturgeon were 3- to 30-fold more sensitive than lake sturgeon to exposure to 5 different DLCs based on activation of AhR2. There were no differences in sensitivity between white sturgeon and lake sturgeon based on activation of AhR1. Adverse outcomes as a result of exposure to DLCs have been shown to be mediated through activation of AhR2, but not AhR1, in all fishes studied to date. This indicates that white sturgeon are likely to have greater sensitivity in vivo relative to lake sturgeon. Homology modeling and in silico mutagenesis suggests that differences in sensitivity to activation of AhR2 result from differences in key amino acids at position 388 in the LBD of AhR2 of white sturgeon (Ala-388) and lake sturgeon (Thr-388). This indicates that identities of key amino acids in the LBD of AhR2 could be predictive of both in vitro activation by DLCs and in vivo sensitivity to DLCs in these, and potentially other, fishes.

  17. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    SciTech Connect

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  18. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  19. Complementary PLS and KNN algorithms for improved 3D-QSDAR consensus modeling of AhR binding

    PubMed Central

    2013-01-01

    Multiple validation techniques (Y-scrambling, complete training/test set randomization, determination of the dependence of R2test on the number of randomization cycles, etc.) aimed to improve the reliability of the modeling process were utilized and their effect on the statistical parameters of the models was evaluated. A consensus partial least squares (PLS)-similarity based k-nearest neighbors (KNN) model utilizing 3D-SDAR (three dimensional spectral data-activity relationship) fingerprint descriptors for prediction of the log(1/EC50) values of a dataset of 94 aryl hydrocarbon receptor binders was developed. This consensus model was constructed from a PLS model utilizing 10 ppm x 10 ppm x 0.5 Å bins and 7 latent variables (R2test of 0.617), and a KNN model using 2 ppm x 2 ppm x 0.5 Å bins and 6 neighbors (R2test of 0.622). Compared to individual models, improvement in predictive performance of approximately 10.5% (R2test of 0.685) was observed. Further experiments indicated that this improvement is likely an outcome of the complementarity of the information contained in 3D-SDAR matrices of different granularity. For similarly sized data sets of Aryl hydrocarbon (AhR) binders the consensus KNN and PLS models compare favorably to earlier reports. The ability of 3D-QSDAR (three dimensional quantitative spectral data-activity relationship) to provide structural interpretation was illustrated by a projection of the most frequently occurring bins on the standard coordinate space, thus allowing identification of structural features related to toxicity. PMID:24257141

  20. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    PubMed Central

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2005-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl hydrocarbon receptor (AhR). In order to characterize compounds that mediate estrogenic activity in river water and sediment samples, we developed a tool based on the ER-αligand-binding domain, which permitted us to estimate contaminating estrogenic compound affinities. We designed a simple transactivation assay in which compounds of high affinity were captured by limited amounts of recombinant ER-αand whose capture led to a selective inhibition of transactivation. This approach allowed us to bring to light that water samples contain estrogenic compounds that display a high affinity for ERs but are present at low concentrations. In sediment samples, on the contrary, we showed that estrogenic compounds possess a low affinity and are present at high concentration. Finally, we used immobilized recombinant ER-αto separate ligands for ER and AhR that are present in river sediments. Immobilized ER-α, which does not retain dioxin-like compounds, enabled us to isolate and concentrate ER ligands to facilitate their further analysis. PMID:15743715

  1. Aromatic hydrocarbons upregulate glyceraldehyde-3-phosphate dehydrogenase and induce changes in actin cytoskeleton. Role of the aryl hydrocarbon receptor (AhR).

    PubMed

    Reyes-Hernández, O D; Mejía-García, A; Sánchez-Ocampo, E M; Castro-Muñozledo, F; Hernández-Muñoz, R; Elizondo, G

    2009-12-21

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme involved in several cellular functions including glycolysis, membrane transport, microtubule assembly, DNA replication and repair, nuclear RNA export, apoptosis, and the detection of nitric oxide stress. Therefore, modifications in the regulatory ability and function of GAPDH may alter cellular homeostasis. We report here that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and beta-naphthoflavone, which are well-known ligands for the aryl hydrocarbon receptor (AhR), increase GAPDH mRNA levels in vivo and in vitro, respectively. These compounds fail to induce GAPDH transcription in an AhR-null mouse model, suggesting that the increase in GAPDH level is dependent upon AhR activation. To analyse the consequences of AhR ligands on GAPDH function, mice were treated with TCDD and the level of liver activity of GAPDH was determined. The results showed that TCDD treatment increased GAPDH activity. On the other hand, treatment of Hepa-1 cells with beta-naphthoflavone leads to an increase in microfilament density when compared to untreated cultures. Collectively, these results suggest that AhR ligands, such as polycyclic hydrocarbons, can modify GAPDH expression and, therefore, have the potential to alter the multiple functions of this enzyme.

  2. NMDA receptor binding in focal epilepsies

    PubMed Central

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-01-01

    Objective To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [18F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Methods Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [18F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [18F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Results Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [18F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [18F]GE-179 VT (−29%; p<0.002). There were no focal abnormalities common to the epilepsy group. Conclusions In patients with focal epilepsies, we detected primarily global increases of [18F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [18F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. PMID:25991402

  3. Docking-based three-dimensional quantitative structure-activity relationship (3D-QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls.

    PubMed

    Yuan, Jintao; Pu, Yuepu; Yin, Lihong

    2013-07-01

    Polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) cause toxic effects after binding to an intracellular cytosolic receptor called the aryl hydrocarbon receptor (AhR). Thymic atrophy, weight loss, immunotoxicity, acute lethality, and induction of cytochrome P4501A1 have all been correlated with the binding affinity to AhR. To study the key molecular features for determining binding affinity to AhR, a homology model of AhR ligand-binding domains was developed, a molecular docking approach was employed to obtain docking-based conformations of all molecules in the whole set, and 3-dimensional quantitative structure-activity relationship (3D-QSAR) methodology, namely, comparative molecular field analysis (CoMFA), was applied. A partial least square analysis was performed, and QSAR models were generated for a training set of 59 compounds. The generated QSAR model showed good internal and external statistical reliability, and in a comparison with other reported CoMFA models using different alignment methods, the docking-based CoMFA model showed some advantages.

  4. Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors.

    PubMed

    Hellmuth, Antje; Calderón Villalobos, Luz Irina A

    2016-01-01

    In receptor-ligand interactions, dissociation constants provide a key parameter for characterizing binding. Here, we describe filter-based radioligand binding assays at equilibrium, either varying ligand concentrations up to receptor saturation or outcompeting ligand from its receptor with increasing concentrations of ligand analogue. Using the auxin coreceptor system, we illustrate how to use a saturation binding assay to determine the apparent dissociation constant (K D (') ) for the formation of a ternary TIR1-auxin-AUX/IAA complex. Also, we show how to determine the inhibitory constant (K i) for auxin binding by the coreceptor complex via a competition binding assay. These assays can be applied broadly to characterize a one-site binding reaction of a hormone to its receptor. PMID:27424743

  5. Differences in (-)citronellal binding to various odorant receptors.

    PubMed

    Stary, Anna; Suwattanasophon, Chonticha; Wolschann, Peter; Buchbauer, Gerhard

    2007-10-01

    To test the hypothesis that olfactory receptors (ORs) recognize different molecular features of odor molecules termed "odotypes", we studied receptor-ligand interactions of two human and two mouse ORs, recognizing (-)citronellal. Structurally similar receptors provide identical binding pockets (OLFR43, OR1A1, and OR1A2), and have comparable EC(50) values. Other ORs with lower sequence identity bind (-)citronellal in a different way, leading to different EC(50) values.

  6. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors.

    PubMed

    Seol, W; Choi, H S; Moore, D D

    1996-05-31

    SHP is an orphan member of the nuclear hormone receptor superfamily that contains the dimerization and ligand-binding domain found in other family members but lacks the conserved DNA binding domain. In the yeast two-hybrid system, SHP interacted with several conventional and orphan members of the receptor superfamily, including retinoid receptors, the thyroid hormone receptor, and the orphan receptor MB67. SHP also interacted directly with these receptors in vitro. In mammalian cells, SHP specifically inhibited transactivation by the superfamily members with which it interacted. These results suggest that SHP functions as a negative regulator of receptor-dependent signaling pathways. PMID:8650544

  7. Ah Receptor Signaling Controls the Expression of Cardiac Development and Homeostasis Genes.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Wang, Qing; Zhang, Xiang; Kurita, Hisaka; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-10-01

    Congenital heart disease (CHD) is the most common congenital abnormality and one of the leading causes of newborn death throughout the world. Despite much emerging scientific information, the precise etiology of this disease remains elusive. Here, we show that the aryl hydrocarbon receptor (AHR) regulates the expression of crucial cardiogenesis genes and that interference with endogenous AHR functions, either by gene ablation or by agonist exposure during early development, causes overlapping structural and functional cardiac abnormalities that lead to altered fetal heart physiology, including higher heart rates, right and left ventricle dilation, higher stroke volume, and reduced ejection fraction. With striking similarity between AHR knockout (Ahr(-/-)) and agonist-exposed wild type (Ahr(+/+)) embryos, in utero disruption of endogenous AHR functions converge into dysregulation of molecular mechanisms needed for attainment and maintenance of cardiac differentiation, including the pivotal signals regulated by the cardiogenic transcription factor NKH2.5, energy balance via oxidative phosphorylation and TCA cycle and global mitochondrial function and homeostasis. Our findings suggest that AHR signaling in the developing mammalian heart is central to the regulation of pathways crucial for cellular metabolism, cardiogenesis, and cardiac function, which are potential targets of environmental factors associated with CHD.

  8. DDE and PCB 153 independently induce aryl hydrocarbon receptor (AhR) expression in peripheral blood mononuclear cells.

    PubMed

    Gaspar-Ramírez, Octavio; Pérez-Vázquez, Francisco J; Salgado-Bustamante, Mariana; González-Amaro, Roberto; Hernandez-Castro, Berenice; Pérez-Maldonado, Ivan N

    2015-01-01

    Recent studies have demonstrated that compounds inducing pro-inflammatory cytokines enhance AhR expression. The aim of this study was 2-fold: (1) to determine if two pro-inflammatory compounds, dichlorodiphenyldichloroethylene (DDE) and 2,2',4,4',5,5'-hexa-chlorobiphenyl (PCB 153), independently affect AhR gene expression in peripheral blood mononuclear cells (PBMC); and (2) if affected, to determine whether the mechanism involved was due to AhR activation or to a pro-inflammatory effect of the chemicals. PBMC isolated from healthy individuals were incubated in the presence of DDE (10 µg/ml) and PCB 153 (20 ng/ml) over time and AhR and CYP1A1 expression was assessed with a real-time PCR technique. The results indicated there was over-expression of the AhR mRNA in PBMC when the cells were treated with DDE and PCB 153. No changes in expression levels of CYP1A1 mRNA were found. Importantly, when the cells were exposed to DDE and PCB 153 in the presence of an antagonist of tumor necrosis factor (TNF)-α, the over-expression of AhR was abolished; as expected, the expression of CYP1A1 was unaffected. In conclusion, these studies demonstrated for the first time an increment of AhR expression "in vitro" in PBMC treated with two pro-inflammatory environmental pollutants, DDE and PCB153. Moreover, the over-expression of AhR was dependent of TNFα induced by DDE and PCB 153 and was independent of AhR activation.

  9. Characterization of pulmonary sigma receptors by radioligand binding.

    PubMed

    Lever, John R; Litton, Tyler P; Fergason-Cantrell, Emily A

    2015-09-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo.

  10. Characterization of pulmonary sigma receptors by radioligand binding

    PubMed Central

    Lever, John R.; Litton, Tyler P.; Fergason-Cantrell, Emily A.

    2015-01-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [3H](+)-pentazocine reached steady state within 6 h at 37 °C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36 ± 0.04 nM; Bmax 967 ± 11 fmol / mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (−)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [3H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2 min at 25 °C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8 ± 8.3 nM; Bmax 921 ± 228 fmol / mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2 µmol / kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  11. Characterization of pulmonary sigma receptors by radioligand binding.

    PubMed

    Lever, John R; Litton, Tyler P; Fergason-Cantrell, Emily A

    2015-09-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  12. Selective Aryl Hydrocarbon Receptor Modulator 3,3'-Diindolylmethane Impairs AhR and ARNT Signaling and Protects Mouse Neuronal Cells Against Hypoxia.

    PubMed

    Rzemieniec, J; Litwa, E; Wnuk, A; Lason, W; Krzeptowski, W; Kajta, M

    2016-10-01

    The neuroprotective potential of 3,3'-diindolylmethane (DIM), which is a selective aryl hydrocarbon receptor modulator, has recently been shown in cellular and animal models of Parkinson's disease and lipopolysaccharide-induced inflammation. However, there are no data concerning the protective capacity and mechanisms of DIM action in neuronal cells exposed to hypoxia. The aim of the present study was to investigate the neuroprotective potential of DIM against the hypoxia-induced damage in mouse hippocampal cells in primary cultures, with a particular focus on DIM interactions with the aryl hydrocarbon receptor (AhR), its nuclear translocator ARNT, and estrogen receptor β (ERβ). In the present study, 18 h of hypoxia induced apoptotic processes, in terms of the mitochondrial membrane potential, activation of caspase-3, and fragmentation of cell nuclei. These effects were accompanied by substantial lactate dehydrogenase release and neuronal cell death. The results of the present study demonstrated strong neuroprotective and anti-apoptotic actions of DIM in hippocampal cells exposed to hypoxia. In addition, DIM decreased the Ahr and Arnt mRNA expression and stimulated Erβ mRNA expression level. DIM-induced mRNA alterations were mirrored by changes in protein levels, except for ERβ, as detected by ELISA, Western blotting, and immunofluorescence labeling. We also demonstrated that DIM decreased the expression of AhR-regulated CYP1A1. Using specific siRNAs, we provided evidence that impairment of AhR and ARNT, but not ERβ plays a key role in the neuroprotective action of DIM against hypoxia-induced cell damage. This study may have implication for identifying new agents that could protect neurons against hypoxia by targeting AhR/ARNT signaling. PMID:26476840

  13. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.

    PubMed

    Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida

    2015-02-01

    One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.

  14. Imaging the Met Receptor Tyrosine Kinase (Met) and Assessing Tumor Responses to a Met Tyrosine Kinase Inhibitor in Human Xenograft Mouse Models with a [99mTc] (AH-113018) or Cy 5** (AH-112543) Labeled Peptide.

    PubMed

    Jagoda, Elaine M; Bhattacharyya, Sibaprasad; Kalen, Joseph; Riffle, Lisa; Leeder, Avrum; Histed, Stephanie; Williams, Mark; Wong, Karen J; Xu, Biying; Szajek, Lawrence P; Elbuluk, Osama; Cecchi, Fabiola; Raffensperger, Kristen; Golla, Meghana; Bottaro, Donald P; Choyke, Peter

    2015-01-01

    Developing an imaging agent targeting the hepatocyte growth factor receptor protein (Met) status of cancerous lesions would aid in the diagnosis and monitoring of Met-targeted tyrosine kinase inhibitors (TKIs). A peptide targeting Met labeled with [(99m)Tc] had high affinity in vitro (Kd = 3.3 nM) and detected relative changes in Met in human cancer cell lines. In vivo [(99m)Tc]-Met peptide (AH-113018) was retained in Met-expressing tumors, and high-expressing Met tumors (MKN-45) were easily visualized and quantitated using single-photon emission computed tomography or optical imaging. In further studies, MKN-45 mouse xenografts treated with PHA 665752 (Met TKI) or vehicle were monitored weekly for tumor responses by [(99m)Tc]-Met peptide imaging and measurement of tumor volumes. Tumor uptake of [(99m)Tc]-Met peptide was significantly decreased as early as 1 week after PHA 665752 treatment, corresponding to decreases in tumor volumes. These results were comparable to Cy5**-Met peptide (AH-112543) fluorescence imaging using the same treatment model. [(99m)Tc] or Cy5**-Met peptide tumor uptake was further validated by histologic (necrosis, apoptosis) and immunoassay (total Met, p Met, and plasma shed Met) assessments in imaged and nonimaged cohorts. These data suggest that [(99m)Tc] or Cy5**-Met peptide imaging may have clinical diagnostic, prognostic, and therapeutic monitoring applications. PMID:26461980

  15. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  16. Unique Expression of Angiotensin Type-2 Receptor in Sex-Specific Distribution of Myelinated Ah-Type Baroreceptor Neuron Contributing to Sex-Dimorphic Neurocontrol of Circulation.

    PubMed

    Liu, Yang; Zhou, Jia-Ying; Zhou, Yu-Hong; Wu, Di; He, Jian-Li; Han, Li-Min; Liang, Xiao-Bo; Wang, Lu-Qi; Lu, Xiao-Long; Chen, Hanying; Qiao, Guo-Fen; Shou, Weinian; Li, Bai-Yan

    2016-04-01

    This study aims to understand the special expression patterns of angiotensin-II receptor (AT1R and AT2R) in nodose ganglia and nucleus of tractus solitary of baroreflex afferent pathway and their contribution in sex difference of neurocontrol of blood pressure regulation. In this regard, action potentials were recorded in baroreceptor neurons (BRNs) using whole-cell patch techniques; mRNA and protein expression of AT1R and AT2R in nodose ganglia and nucleus of tractus solitary were evaluated using real time-polymerase chain reaction, Western blot, and immunohistochemistry at both tissue and single-cell levels. The in vivo effects of 17β-estradiol on blood pressure and AT2R expression were also tested. The data showed that AT2R, rather than AT1R, expression was higher in female than age-matched male rats. Moreover, AT2R was downregulated in ovariectomized rats, which was restored by the administration of 17β-estradiol. Single-cell real time-polymerase chain reaction data indicated that AT2R was uniquely expressed in Ah-type BRNs. Functional study showed that long-term administration of 17β-estradiol significantly alleviated the blood pressure increase in ovariectomized rats. Electrophysiological recordings showed that angiotensin-II treatment increased the neuroexcitability more in Ah- than C-type BRNs, whereas no such effect was observed in A-types. In addition, angiotensin-II treatment prolonged action potential duration, which was not further changed by iberiotoxin. The density of angiotensin-II-sensitive K(+) currents recorded in Ah-types was equivalent with iberiotoxin-sensitive component. In summary, the unique, sex- and afferent-specific expression of AT2R was identified in Ah-type BRNs, and AT2R-mediated KCa1.1 inhibition in Ah-type BRNs may exert great impacts on baroreflex afferent function and blood pressure regulation in females. PMID:26883269

  17. Limited proteolysis for assaying ligand binding affinities of nuclear receptors.

    PubMed

    Benkoussa, M; Nominé, B; Mouchon, A; Lefebvre, B; Bernardon, J M; Formstecher, P; Lefebvre, P

    1997-01-01

    The binding of natural or synthetic ligands to nuclear receptors is the triggering event leading to gene transcription activation or repression. Ligand binding to the ligand binding domain of these receptors induces conformational changes that are evidenced by an increased resistance of this domain to proteases. In vitro labeled receptors were incubated with various synthetic or natural agonists or antagonists and submitted to trypsin digestion. Proteolysis products were separated by SDS-PAGE and quantified. The amount of trypsin-resistant fragments was proportional to receptor occupancy by the ligand, and allowed the determination of dissociation constants (kDa). Using the wild-type or mutated human retinoic acid receptor alpha as a model, kDa values determined by classical competition binding assays using tritiated ligands are in agreement with those measured by the proteolytic assay. This method was successfully extended to human retinoic X receptor alpha, glucocorticoid receptor, and progesterone receptor, thus providing a basis for a new, faster assay to determine simultaneously the affinity and conformation of receptors when bound to a given ligand.

  18. Activation of muscarinic acetylcholine receptors via their allosteric binding sites.

    PubMed Central

    Jakubík, J; Bacáková, L; Lisá, V; el-Fakahany, E E; Tucek, S

    1996-01-01

    Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation. PMID:8710935

  19. CONTAMINANT INTERACTIONS WITH STEROID RECEPTORS: EVIDENCE FOR RECEPTOR BINDING.

    EPA Science Inventory

    Steroid receptors are important determinants of endocrine disrupter consequences. As the most frequently proposed mechanism of endocrine-disrupting contaminant (EDC) action, steroid receptors are not only targets of natural steroids but are also commonly sites of nonsteroidal com...

  20. Affinity Regulates Spatial Range of EGF Receptor Autocrine Ligand Binding

    SciTech Connect

    Dewitt, Ann; Iida, Tomoko; Lam, Ho-Yan; Hill, Virginia; Wiley, H S.; Lauffenburger, Douglas A.

    2002-08-08

    Proper spatial localization of EGFR signaling activated by autocrine ligands represents a critical factor in embryonic development as well as tissue organization and function, and ligand/receptor binding affinity is among the molecular and cellular properties suggested to play a role in governing this localization. The authors employ a computational model to predict how receptor-binding affinity affects local capture of autocrine ligand vis-a-vis escape to distal regions, and provide experimental test by constructing cell lines expressing EGFR along with either wild-type EGF or a low-affinity mutant, EGF{sup L47M}. The model predicts local capture of a lower affinity autocrine ligand to be less efficient when the ligand production rate is small relative to receptor appearance rate. The experimental data confirm this prediction, demonstrating that cells can use ligand/receptor binding affinity to regulate ligand spatial distribution when autocrine ligand production is limiting for receptor signaling.

  1. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  2. Assaying binding of nerve growth factor to cell surface receptors

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1985-01-01

    The paper describes methods both for the radioiodination of nerve growth factor (NGF) and for assaying NFG receptors by reversible binding techniques. Preparation of (/sup 125/I)NGF along with a rapid method for determining the amount of cell-bound ligand have allowed the detection of NGF receptors on a number of cell types.

  3. In Vivo Dioxin Favors Interleukin-22 Production by Human CD4+ T Cells in an Aryl Hydrocarbon Receptor (AhR)-Dependent Manner

    PubMed Central

    Brembilla, Nicolò Costantino; Ramirez, Jean-Marie; Chicheportiche, Rachel; Sorg, Olivier; Saurat, Jean-Hilaire; Chizzolini, Carlo

    2011-01-01

    Background The transcription factor aryl hydrocarbon receptor (AhR) mediates the effects of a group of chemicals known as dioxins, ubiquitously present in our environment. However, it is poorly known how the in vivo exposure to these chemicals affects in humans the adaptive immune response. We therefore assessed the functional phenotype of T cells from an individual who developed a severe cutaneous and systemic syndrome after having been exposed to an extremely high dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Methodology/Principal Findings T cells of the TCDD-exposed individual were studied for their capacity to produce cytokines in response to polyclonal and superantigenic stimulation, and for the expression of chemokine receptors involved in skin homing. The supernatants from T cells of the exposed individual contained a substantially increased amount of interleukin (IL)-22 but not of IL-17A, interferon (IFN)-γ or IL-10 when compared to nine healthy controls. In vitro experiments confirmed a direct, AhR-dependent, enhancing effect of TCDD on IL-22 production by CD4+ T cells. The increased production of IL-22 was not dependent on AhR occupancy by residual TCDD molecules, as demonstrated in competition experiments with the specific AhR antagonist CH-223191. In contrast, it was due to an increased frequency of IL-22 single producing cells accompanied by an increased percentage of cells expressing the skin-homing chemokine receptors CCR6 and CCR4, identified through a multiparameter flow cytometry approach. Of interest, the frequency of CD4+CD25hiFoxP3+ T regulatory cells was similar in the TCDD-exposed and healthy individuals. Conclusions/Significance This case strongly supports the contention that human exposure to persistent AhR ligands in vivo induce a long-lasting effect on the human adaptive immune system and specifically polarizes CD4+ T cells to produce IL-22 and not other T cell cytokines with no effect on T regulatory cells. PMID:21525997

  4. Functional and receptor binding characterization of recombinant murine macrophage inflammatory protein 2: sequence analysis and mutagenesis identify receptor binding epitopes.

    PubMed Central

    Jerva, L. F.; Sullivan, G.; Lolis, E.

    1997-01-01

    Murine macrophage inflammatory protein-2 (MIP-2), a member of the alpha-chemokine family, is one of several proteins secreted by cells in response to lipopolysaccharide. Many of the alpha-chemokines, such as interleukin-8, gro-alpha/MGSA, and neutrophil activating peptide-2 (NAP-2), are associated with neutrophil activation and chemotaxis. We describe the expression, purification, and characterization of murine MIP-2 from Pichia pastoris. Circular dichroism spectroscopy reveals that MIP-2 exhibits a highly ordered secondary structure consistent with the alpha/beta structures of other chemokines. Recombinant MIP-2 is chemotactic for human and murine neutrophils and up-regulates cell surface expression of Mac-1. MIP-2 binds to human and murine neutrophils with dissociation constants of 6.4 nM and 2.9 nM, respectively. We further characterize the binding of MIP-2 to the human types A and B IL-8 receptors and the murine homologue of the IL-8 receptor. MIP-2 displays low-affinity binding to the type A IL-8 receptor (Kd > 120 nM) and high-affinity binding to the type B IL-8 receptor (Kd 5.7 nM) and the murine receptor (Kd 6.8 nM). The three-dimensional structure of IL-8 and sequence analysis of six chemokines (IL-8, gro-alpha, NAP-2, ENA-78, KC, and MIP-2) that display high-affinity binding to the IL-8 type B receptor are used to identify an extended N-terminal surface that interacts with this receptor. Two mutants of MIP-2 establish that this region is also involved in binding and activating the murine homologue of the IL-8 receptor. Differences in the sequence between IL-8 and related chemokines identify a unique hydrophobic/aromatic region surrounded by charged residues that is likely to impart specificity to IL-8 for binding to the type A receptor. PMID:9260277

  5. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast

    PubMed Central

    Mexia, Nikitia; Gaitanis, George; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S.; Magiatis, Prokopios

    2015-01-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on L-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assays in recombinant cell lines derived from four different species, although significant species differences in relative potency was observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. Malassezia furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.1 PMID:25721496

  6. Effect of desipramine on dopamine receptor binding in vivo

    SciTech Connect

    Suhara, Tetsuya Jikei Univ., Tokyo ); Inoue, Osamu; Kobayasi, Kaoru )

    1990-01-01

    Effect of desipramine on the in vivo binding of {sup 3}H-SCH23390 and {sup 3}H-N-methylspiperone ({sup 3}H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of {sup 3}H-SCH23390 or 45 min after injection of {sup 3}H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.

  7. Extra-helical binding site of a glucagon receptor antagonist.

    PubMed

    Jazayeri, Ali; Doré, Andrew S; Lamb, Daniel; Krishnamurthy, Harini; Southall, Stacey M; Baig, Asma H; Bortolato, Andrea; Koglin, Markus; Robertson, Nathan J; Errey, James C; Andrews, Stephen P; Teobald, Iryna; Brown, Alastair J H; Cooke, Robert M; Weir, Malcolm; Marshall, Fiona H

    2016-05-12

    Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors. PMID:27111510

  8. Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China - A comprehensive perspective.

    PubMed

    Floehr, Tilman; Scholz-Starke, Björn; Xiao, Hongxia; Hercht, Hendrik; Wu, Lingling; Hou, Junli; Schmidt-Posthaus, Heike; Segner, Helmut; Kammann, Ulrike; Yuan, Xingzhong; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2015-12-15

    The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1

  9. Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China - A comprehensive perspective.

    PubMed

    Floehr, Tilman; Scholz-Starke, Björn; Xiao, Hongxia; Hercht, Hendrik; Wu, Lingling; Hou, Junli; Schmidt-Posthaus, Heike; Segner, Helmut; Kammann, Ulrike; Yuan, Xingzhong; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2015-12-15

    The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1

  10. Molecular modulators of benzodiazepine receptor ligand binding

    SciTech Connect

    Villar, H.O.; Loew, G.H. )

    1989-01-01

    Ten derivatives of {beta}-carbolines with known affinities to the GABA{sub A}/BDZ (benzodiazepine) receptor were studied using the Am 1 and MNDO/H Semiempirical techniques to identify and characterize molecular modulators of receptor recognition. Steric, lipophilic, and electrostatic properties of these compounds were calculated and examined for their possible role in recognition. Particular attention was paid to the regions around the two most favorable proton-accepting sites, the ON and the substituent at the C{sub 3} position, already implicated in recognition, as well as to the acidic N9H group that could be a proton donating center. To probe further the role of these three ligand sites in receptor interactions, a model of the receptor using three methanol molecules was made and optimum interactions of these three sites with them characterized. The results indicate some similarity in the shape of these ligands, which could reflect a steric requirement. The receptor affinity appears to be modulated to some extent by the ratio of lipophilic to hydrophilic surface, the negative potential at the {beta}N, provided there is also one at the C{sub 3} substituent confirming the importance of two accepting sites in recognition. The acidic N9H does not appear to be a modulator of affinity or does it form a stable H-bond with methanol as acceptor. The two proton donating molecules do form such a stable complex, and both are needed for high affinity.

  11. Responses of mixtures of polyhalogenated aromatic compounds or single compounds in the CALUX-assay a novel species-specific bioassay for Ah-receptor active compounds

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Jonas, A.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) elicit a number of common toxic responses, including reproductive toxicity, teratogenicity, impairment of immune responses, alterations in vitamin A and thyroid hormone metabolism and carcinogenesis. The toxic effects however are highly dependent on the animal species used, The most toxic PHAHs are approximate isostereomeres of 2,3,7,8 tetrachlorinated dibenzo-p-dioxin (TCDD) and share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on the common receptor mediated mechanism, the toxic equivalency factor concept was developed, in which the potency of each individual congener is expressed relative to TCDD, thus allowing hazard and risk assessment for mixtures of PHAHs. A number of recombinant cell lines were developed, including hepalclc7 mouse and H4IIE rat hepatoma cell lines, with AhR-mediated firefly (Photinus pyralis) luciferase gene expression. The response in this so-called CALUX (chemical activated luciferase expression) assay is additive for polychlorinated dibenzofurans (PCDFs) and PCDDS, but for polychlorinated biphenyls (PCBs) both synergistic and antagonistic interactions have been demonstrated, which are partially species-dependent. Also some structurally related compounds, like polybrominated diphenyl ether, pentachlorinated phenol, benzo(a)pyrene, pyrene, tetrachlorobenzyltoluene (Ugilec 141) and mixtures of polychlorinated terphenyls have been tested in the CALUX assay. The responses of these compounds were sometimes agonistic, but also antagonistic and synergistic effects on the TCDO response were observed.

  12. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  13. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  14. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    SciTech Connect

    Kikuchi, M.; Ishii, S. )

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  15. Structural Allostery and Binding of the Transferring Receptor Complex

    SciTech Connect

    Xu,G.; Liu, R.; Zak, O.; Aisen, P.; Chance, M.

    2005-01-01

    The structural allostery and binding interface for the human serum transferrin (Tf){center_dot}transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions. The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.

  16. Development of a homogeneous binding assay for histamine receptors.

    PubMed

    Crane, Kathy; Shih, Daw-Tsun

    2004-12-01

    Histamine is critically involved in a wide range of physiological and pathological processes through its actions at different receptors. Thus, histamine receptors have been actively pursued as therapeutic targets in the pharmaceutical industry for the treatment of a variety of diseases. There are currently four histamine receptors that have been cloned, all of which are G protein-coupled receptors. Studies from both academia and pharmaceutical companies have identified compounds that modulate the function of specific histamine receptors. These efforts led to the successful introduction of histamine H(1) and H(2) receptor antagonists for the treatment of allergy and excess gastric acid secretion, respectively. Histamine H(3) receptor ligands are currently under investigation for the treatment of obesity and neurological disorders. The recently identified histamine H(4) receptor is preferentially expressed in the immune tissues, suggesting a potential role in normal immune functions and possibly in the pathogenesis of inflammatory diseases. Even with the long history of histamine research and the important applications of histamine receptor ligands, assays to measure the affinity of compounds binding to histamine receptors are still routinely analyzed using a filtration assay, a very low-throughput assay involving washing and filtration steps. This article describes a simple, robust, and homogeneous binding assay based on the scintillation proximity assay (SPA) technology that provides results equivalent to those obtained using the more complex filtration assay. The SPA format is easily adapted to high-throughput screening because it is amenable to automation. In summary, this technique allows high-throughput screening of compounds against multiple histamine receptors and, thus, facilitates drug discovery efforts.

  17. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands

    PubMed Central

    Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N–H and O–H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  18. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands.

    PubMed

    Kržan, Mojca; Vianello, Robert; Maršavelski, Aleksandra; Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  19. Effects of enzyme induction on the distribution of the food carcinogen 2-amino-3,8-dimethyl-imidazo[4,5-ss]-quinoxaline (MeIQx) in Ah-receptor- responsive- and Ah-receptor-non-responsive mice.

    PubMed

    Vikse, R; Ingebrigtsen, K; Klungsøyr, L; Alexander, J

    1995-07-01

    The distribution of the food carcinogen 2-amino-3,8-dimethyl-imidazo[4,5-ss]quinoxaline (MeIQx) was studied in Ah-responsive-(C57BL/6J) and Ah-non-responsive mice (DBA/2N). The time dependent organ distribution of radioactivity after 14C-MeIQx (10 mg/kg) administration in C57BL/6J showed that at day 4 most of the radioactivity had been excreted and that the remaining radioactivity was found in liver, kidneys, lungs and spleen. C57BL/6J bound more radioactivity in the kidneys than the DBA/2N strain whereas approximately the same amount was left in the liver and lungs in both strains 4 days after MeIQx exposure. Liver microsomes of the two strains had approximately the same ability to activate MeIQx in the Ames Salmonella assay. beta-Naphthoflavone treatment of the animals greatly increased microsomal activating capacity, but only in the C57BL/6J strain. Isosafrole treatment of the animals only slightly increased the activating capacity, but particularly with microsomes from the DBA/2N strain, displacement of the putative inhibitory isosafrole metabolite greatly increased their activating capacity. In the whole animals pretreatment with beta-naphthoflavone, which induces P450IA only in the C57BL/6J strain, did not significantly change the amount of retained radioactivity in any of the strains. Isosafrole induces only P450IA2, the major N2-hydroxylating enzyme of heterocyclic amines, in both strains. Such pretreatment reduced the amount retained in the kidney of both strains whereas it reduced the retained amount of radioactivity in the liver with about 60% only in the Ah-non-responsive strain (DBA/2N). The effect of isosafrole did not persist when MeIQx was given three days after the last injection.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed

    Brunner, F; Kukovetz, W R

    1991-02-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell. Binding to enzymatically harvested and cultured endothelial cells, or membranes derived therefrom, showed no atropine-displaceable binding. 5. The results suggest that (1) bovine aortic endothelial cells contain muscarinic binding sites with all necessary

  1. Metallosupramolecular receptors for fullerene binding and release.

    PubMed

    García-Simón, Cristina; Costas, Miquel; Ribas, Xavi

    2016-01-01

    Fullerene extracts are easily available from fullerene soot, but finding an efficient strategy to obtain them in pure form remains elusive, especially for higher fullerenes (Cx, x > 70). The properties of the latter remain unclear and their potential application to multiple research fields has not been developed mainly due to their purification difficulties. In this Tutorial Review we cover the use of molecular receptors for the separation of fullerenes by means of host-guest interactions. This strategy allows gaining selectivity, no specialized equipment is required and, ideally, recyclable systems can be designed. We focus on the metallosupramolecular receptors using the metal-ligand coordination approach, which offers a controlled and versatile strategy to design fullerene hosts, and the latest strategies to release the fullerene guest will be described. The field is probably in its beginnings but it is rapidly evolving and we are confident that this tutorial review will help researchers to rapidly gain a general overview of the main works and concepts that are leading this promising strategy and that may lead towards a useful methodology to purify fullerenes.

  2. Evidence for a second receptor binding site on human prolactin.

    PubMed

    Goffin, V; Struman, I; Mainfroid, V; Kinet, S; Martial, J A

    1994-12-23

    The existence of a second receptor binding site on human prolactin (hPRL) was investigated by site-directed mutagenesis. First, 12 residues of helices 1 and 3 were mutated to alanine. Since none of the resulting mutants exhibit reduced bioactivity in the Nb2 cell proliferation bioassay, the mutated residues do not appear to be functionally necessary. Next, small residues surrounding the helix 1-helix 3 interface were replaced with Arg and/or Trp, the aim being to sterically hinder the second binding site. Several of these mutants exhibit only weak agonistic properties, supporting our hypothesis that the channel between helices 1 and 3 is involved in a second receptor binding site. We then analyzed the antagonistic and self-antagonistic properties of native hPRL and of several hPRLs analogs altered at binding site 1 or 2. Even at high concentrations (approximately 10 microM), no self-inhibition was observed with native hPRL; site 2 hPRL mutants self-antagonized while site 1 mutants did not. From these data, we propose a model of hPRL-PRL receptor interaction which slightly differs from that proposed earlier for the homologous human growth hormone (hGH) (Fuh, G., Cunningham, B. C., Fukunaga, R., Nagata, S., and Goeddel, D. V., and Well, J. A. (1992) Science 256, 1677-1680). Like hGH, hPRL would bind sequentially to two receptor molecules, first through site 1, then through site 2, but we would expect the two sites of hPRL to display, unlike the two binding sites of hGH, about the same binding affinity, thus preventing self-antagonism at high concentrations. PMID:7798264

  3. Cannabinoid receptors in developing rats: detection of mRNA and receptor binding.

    PubMed

    McLaughlin, C R; Martin, B R; Compton, D R; Abood, M E

    1994-08-01

    Despite a large body of research directed at assessing the effects of perinatal cannabinoid exposure, little is known about the development of the cannabinoid receptor. Recent advances, including the cloning of the cannabinoid receptor, have afforded us the opportunity to plot the postnatal ontogeny of the cannabinoid receptor and its mRNA in whole brain using the methods of receptor binding and RNA blot hybridization, respectively. Our results indicate that cannabinoid receptor mRNA is present at adult levels as early as postnatal day 3. The Bmax, on the other hand, increases almost fifty percent with increasing postnatal age, while the affinity does not change. The Hill coefficients for all ages studied were approximately 1. These findings suggest the possibility of a developmental progression for cannabinoid receptor development with receptor mRNA appearing first, followed by a period of rapid proliferation of the receptors themselves. PMID:7988356

  4. The EGF receptor is an actin-binding protein

    PubMed Central

    1992-01-01

    In a number of recent studies it has been shown that in vivo part of the EGF receptor (EGFR) population is associated to the actin filament system. In this paper we demonstrate that the purified EGFR can be cosedimented with purified filamentous actin (F-actin) indicating a direct association between EGFR and actin. A truncated EGFR, previously shown not to be associated to the cytoskeleton, was used as a control and this receptor did not cosediment with actin filaments. Determination of the actin-binding domain of the EGFR was done by measuring competition of either a polyclonal antibody or synthetic peptides on EGFR cosedimentation with F-actin. A synthetic peptide was made homologous to amino acid residues 984-996 (HL-33) of the EGFR which shows high homology with the actin-binding domain of Acanthamoeba profilin. A polyclonal antibody raised against HL-33 was found to prevent cosedimentation of EGFR with F-actin. This peptide HL-33 was shown to bind directly to actin in contrast with a synthetic peptide homologous to residues 1001-1013 (HL-34). During cosedimentation, HL-33 competed for actin binding of the EGFR and HL-34 did not, indicating that the EGFR contains one actin-binding site. These results demonstrate that the EGFR is an actin-binding protein which binds to actin via a domain containing amino acids residues 984-996. PMID:1383230

  5. Autoradiographic 3H-Gaboxadol Receptor Binding Protocol

    PubMed Central

    Ling, Lynne; Caspary, Donald

    2016-01-01

    Gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, THIP), a GABAA receptor δ-subunit specific agonist, when present at low (μM) concentrations, preferentially binds and activates extrasynaptic (non-γ2, δ-subunit-containing) GABAARs (Storustovu and Ebert, 2006; Richardson et al., 2011, 2013). In this prototype saturation binding experiment, a series of concentrations of [3H]gaboxadol (5, 10, 25, 50, 75, 100, 250 and 400 nM) will be used. GABA at 200 μM will be added into binding mixtures as a cold displacer for [3H]gaboxadol. Slide mailers are used and each requires 7 ml binding mixture. Pre-, post-washing and binding buffer is 50 mM Tris-Citrate (pH 7.1). The detailed procedure is outlined below.

  6. A tricatecholic receptor for carbohydrate recognition: synthesis and binding studies.

    PubMed

    Cacciarini, Martina; Cordiano, Elisa; Nativi, Cristina; Roelens, Stefano

    2007-05-11

    A new tripodal receptor bearing three catechol subunits on a benzene platform has been synthesized in four steps from 1,3,5-triethylbenzene and pyrogallol. The binding ability of the tricatecholic receptor was investigated toward several monosaccharides in CDCl3, where multiple equilibria were detected, and compared to that of a previously reported trisureidic receptor of analogous structure. Association constants were measured by 1H NMR titrations, and the corresponding affinities were assessed through the BC50 parameter, a binding descriptor univocally defining the affinity of a host for a guest in multi-equilibrium systems. Results show that the tripodal catecholic receptor binds the octyl glycosides with affinities ranging from 0.87 to 5.2 mM and with a 6-fold selectivity factor for the alpha-mannoside over the beta-glucoside. Although the affinity for glycosides was not appreciably improved with respect to the ureidic receptor, a significant change in selectivity was obtained by the H-bonding group replacement.

  7. Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP).

    PubMed

    Yu, Richard Man Kit; Ng, Patrick Kwok Shing; Tan, Tianfeng; Chu, Daniel Ling Ho; Wu, Rudolf Shiu Sun; Kong, Richard Yuen Chong

    2008-11-21

    Fish in polluted coastal habitats commonly suffer simultaneous exposure to both hypoxia and xenobiotics. Although the adaptive molecular responses to each stress have been described, little is known about the interaction between the signaling pathways mediating these responses. Previous studies in mammalian hepatoma cell lines have shown that hypoxia-inducible factor (HIF)- and/or aryl hydrocarbon receptor (AhR)-activated gene expression is suppressed following co-exposure to hypoxia and the hallmark AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, whether similar crosstalk exists in the non-tumor liver tissues of fish and whether other non-TCDD ligands also play the same inhibitory role in this crosstalk remain unknown. Here, the in vivo hepatic mRNA expression profiles of multiple hypoxia- and AhR-responsive genes (later gene expression=mRNA expression of the gene) were examined in the orange-spotted grouper (Epinephelus coioides) upon single and combined exposures to hypoxia and benzo[a]pyrene (BaP). Combined exposure enhanced hypoxia-induced gene expression but did not significantly alter BaP-induced gene expression. Protein carbonyl content was markedly elevated in fish subjected to combined exposure, indicating accumulation of reactive oxygen species (ROS). Application of diethyldithiocarbamate (DDC) to hypoxia-treated grouper liver explants similarly exaggerated hypoxia-induced gene expression as in the combined stress tissues in vivo. These observations suggest that ROS derived from the combined hypoxia and BaP stress have a role in enhancing hypoxia-induced gene expression.

  8. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  9. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding.

    PubMed

    Hansen, Mathilde J Kaas; Olsen, Johan G; Bernichtein, Sophie; O'Shea, Charlotte; Sigurskjold, Bent W; Goffin, Vincent; Kragelund, Birthe B

    2011-01-01

    The cytokine hormone prolactin has a vast number of diverse functions. Unfortunately, it also exhibits tumor growth promoting properties, which makes the development of prolactin receptor antagonists a priority. Prolactin binds to its cognate receptor with much lower affinity at low pH than at physiological pH and since the extracellular environment around solid tumors often is acidic, it is desirable to develop antagonists that have improved binding affinity at low pH. The pK(a) value of a histidine side chain is ∼6.8 making histidine residues obvious candidates for examination. From evaluation of known molecular structures of human prolactin, of the prolactin receptor and of different complexes of the two, three histidine residues in the hormone-receptor binding site 1 were selected for mutational studies. We analyzed 10 variants by circular dichroism spectroscopy, affinity and thermodynamic characterization of receptor binding by isothermal titration calorimetry combined with in vitro bioactivity in living cells. Histidine residue 27 was recognized as a central hot spot for pH sensitivity and conservative substitutions at this site resulted in strong receptor binding at low pH. Pure antagonists were developed earlier and the histidine mutations were introduced within such background. The antagonistic properties were maintained and the high affinity at low pH conserved. The implications of these findings may open new areas of research in the field of prolactin cancer biology.

  10. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  11. Evaluation of the Ecotoxicity of Sediments from Yangtze River Estuary and Contribution of Priority PAHs to Ah Receptor-Mediated Activities

    PubMed Central

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants. PMID:25111307

  12. Evaluation of the ecotoxicity of sediments from Yangtze river estuary and contribution of priority PAHs to ah receptor--mediated activities.

    PubMed

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants.

  13. Pneumocystis carinii glycoprotein A binds macrophage mannose receptors.

    PubMed Central

    O'Riordan, D M; Standing, J E; Limper, A H

    1995-01-01

    Pneumocystis carinii causes life-threatening pneumonia in patients with impaired immunity. Recent studies suggest that alveolar macrophages interact with P. carinii through macrophage mannose receptors. However, the ligand(s) on P. carinii that is recognized by these receptors has not been fully defined. P. carinii contains a major mannose-rich surface antigen complex termed glycoprotein A (gpA). It was therefore hypothesized that gpA binds directly to macrophage mannose receptors and mediates organism attachment to these phagocytes. To assess this, gpA was purified from P. carinii by continuous-elution gel electrophoresis. 125I-labeled gpA bound to alveolar macrophages in a saturable fashion. In addition, gpA binding was substantially inhibited by both alpha-mannan and EDTA, further suggesting that gpA interacts with macrophage mannose receptors. Macrophage membrane proteins capable of binding to gpA were isolated with a gpA-Sepharose column. A 165-kDa membrane-associated protein was specifically eluted from the gpA-Sepharose column with EDTA (20 mM). This protein was identified as the macrophage mannose receptor by immunoprecipitation with a polyclonal anti-mannose receptor antiserum. To further investigate the role of gpA in P. carinii-macrophage interactions, 51Cr-labeled P. carinii cells were incubated with macrophages in the presence of increasing concentrations of soluble gpA, and organism attachment was quantified. Soluble gpA (2.5 mg/dl) competitively inhibited P. carinii attachment to alveolar macrophages by 51.3% +/- 3.7% (P = 0.01). Our findings demonstrate that gpA present on P. carinii interacts directly with mannose receptors, thereby mediating organism attachment to alveolar macrophages. PMID:7868247

  14. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation

    PubMed Central

    Corrada, Dario; Soshilov, Anatoly A.; Denison, Michael S.

    2016-01-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  15. Crustacean retinoid-X receptor isoforms: distinctive DNA binding and receptor-receptor interaction with a cognate ecdysteroid receptor.

    PubMed

    Wu, Xiaohui; Hopkins, Penny M; Palli, Subba R; Durica, David S

    2004-04-15

    We have identified cDNA clones that encode homologs of the ecdysteroid receptor (EcR) and retinoid-X receptor (RXR)/USP classes of nuclear receptors from the fiddler crab Uca pugilator (UpEcR and UpRXR). Several UpRXR cDNA splicing variants were found in coding regions that could potentially influence function. A five-amino acid (aa) insertion/deletion is located in the "T" box in the hinge region. Another 33-aa insertion/deletion is found inside the ligand-binding domain (LBD), between helix 1 and helix 3. Ribonuclease protection assays (RPA) showed that four UpRXR transcripts [UpRXR(+5+33), UpRXR(-5+33), UpRXR(+5-33) and UpRXR(-5-33)] were present in regenerating limb buds. UpRXR(-5+33) was the most abundant transcript present in regenerating limb buds in both early blastema and late premolt growth stages. Expression vectors for these UpRXR variants and UpEcR were constructed, and the proteins expressed in E. coli and in vitro expression systems. The expressed crab nuclear receptors were then characterized by electrophoretic mobility shift assay (EMSA) and glutathione S-transferase (GST) pull down experiments. EMSA results showed that UpEcR/UpRXR(-5+33) heterocomplexes bound with a series of hormone response elements (HREs) including eip28/29, IRper-1, DR-4, and IRhsp-1 with appreciable affinity. Competition EMSA also showed that the affinity decreased as sequence composition deviated from a perfect consensus element. Binding to IRper-1 HREs occurred only if the heterodimer partner UpRXR contained the 33-aa LBD insertion. UpRXR lacking both the 5-aa and 33-aa insertion bound to a DR-1G HRE in the absence of UpEcR. The results of GST-pull down experiments showed that UpEcR interacted only with UpRXR variants containing the 33-aa insertion, and not with those lacking the 33-aa insertion. These in vitro receptor protein-DNA and receptor protein-protein interactions occurred in the absence of hormone (20-hydroxyecdysone and 9-cis retinoid acid, 9-cis RA

  16. Inhibition of insulin receptor binding by phorbol esters.

    PubMed

    Thomopoulos, P; Testa, U; Gourdin, M F; Hervy, C; Titeux, M; Vainchenker, W

    1982-12-15

    Phorbol esters inhibit the binding of insulin to its receptors on U-937 monocyte-like and HL-60 promyelocytic leukemia human cell lines. Within 20-30 min, exposure of these cells to 12-O-tetradecanoylphorbol 13-acetate (TPA) at 37 degrees C results in a 50% reduction of the specific binding of 125I-insulin. Half-maximal inhibition occurs at 1 nM TPA. Other tumor-promoting phorbol esters also inhibit 125I-insulin binding in a dose-dependent manner which parallels their known promoting activity in vivo. TPA does not alter the degradation of the hormone nor does it induce any shedding of its receptors in the medium. The effect of phorbol esters is dependent on temperature and cell type. It is less prominent at 22 degrees C than at 37 degrees C. It is reversible within 2 h at 37 degrees C. TPA reduces the binding of insulin predominantly by increasing its dissociation rate. This effect results in an accelerated turnover of the hormone on its receptors. PMID:6891320

  17. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  18. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  19. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor.

    PubMed

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W; Kaplan, David L; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-02-26

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.

  20. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  1. Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies.

    PubMed

    Nguyen, Emily C; McCracken, Kari A; Liu, Yun; Pouw, Buddy; Matsumoto, Rae R

    2005-10-01

    Methamphetamine interacts with sigma (sigma) receptors, suggesting that the drug produces some of its physiological and behavioral effects through these sites. Therefore, in the present report, receptor binding and pharmacological studies were performed to characterize the interaction between methamphetamine and sigma receptors. Of the two major sigma receptor subtypes, sigma1 and sigma2, competition binding studies showed that methamphetamine has a 22-fold preferential affinity for the sigma1 subtype. Saturation binding studies using the sigma1 selective radioligand [3H]+-pentazocine showed that in the presence of methamphetamine, there was a significant change in Kd, but not Bmax, suggesting competitive interactions. In behavioral studies, pretreatment of Swiss Webster mice with the sigma1 receptor antagonists, BD1063 or BD1047, significantly attenuated the locomotor stimulatory effects of methamphetamine. Mice that were administered an antisense oligodeoxynucleotide to down-regulate brain sigma1 receptors also exhibited a reduced locomotor stimulatory response to methamphetamine, as compared to control mice receiving mismatch oligonucleotides. Together, the data suggest that sigma1 receptors are involved in the acute actions of methamphetamine and that antagonism of this subtype is sufficient to prevent the locomotor stimulatory effects of methamphetamine. PMID:15939443

  2. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  3. Induction of human UGT1A1 by bilirubin through AhR dependent pathway.

    PubMed

    Togawa, Hiroshi; Shinkai, Shigeko; Mizutani, Takaharu

    2008-12-01

    UDP-glucuronosyltransferase1A1 (UGT1A1) plays a key role to conjugate bilirubin and preventing jaundice, but there is no report showing the induction of human UGT1A1 (UGT1A1) by bilirubin. In this report, we show findings of the induction of the reporter gene (-3475/+14) of UGT1A1 in HepG2 cells by bilirubin at 50 microM, 100 microM, with human aryl hydrocarbon receptor (hAhR). We confirmed that induction of the reporter gene by bilirubin is dependent on the position of the xenobiotic responsive element (XRE) (-3328/-3319) of UGT1A1, because the XRE deletion UGT1A1 gene did not respond to stimulation by a complex of bilirubin and hAhR. alpha-Naphthoflavone (alpha-NF) of a typical AhR antagonist at 50 microM inhibited induction by bilirubin, suggesting that bilirubin stimulates through binding with hAhR. Meanwhile, bilirubin itself did not stimulate the induction of AhR, because we detected no-elevation of the mRNA level of AhR by RT-PCR. These results indicate that the induction of UGT1A1 by bilirubin-AhR did not depend on the elevation of AhR but on ligand binding. From this result, we considered that high bilirubin in neonates must induce the elevation of UGT1A1 after birth to prevent jaundice, and bilirubin in adults also regulates the level of UGT1A1. This is the first report showing direct induction of UGT1A1 by a bilirubin through AhR pathway. PMID:19356098

  4. Beta 2-adrenergic receptors on eosinophils. Binding and functional studies

    SciTech Connect

    Yukawa, T.; Ukena, D.; Kroegel, C.; Chanez, P.; Dent, G.; Chung, K.F.; Barnes, P.J. )

    1990-06-01

    We have studied the binding characteristics and functional effects of beta-adrenoceptors on human and guinea pig eosinophils. We determined the binding of the beta-antagonist radioligand (125I)pindolol (IPIN) to intact eosinophils obtained from the peritoneal cavity of guinea pigs and from blood of patients with eosinophilia. Specific binding was saturable, and Scatchard analysis showed a single binding site with a dissociation constant (Kd) of 24.6 pM and maximal number of binding sites (Bmax) of 7,166 per cell. ICI 118,551, a beta 2-selective antagonist, inhibited IPIN binding with a Ki value of 0.28 nM and was approximately 5,000-fold more effective than the beta 1-selective antagonist, atenolol. Isoproterenol increased cAMP levels about 5.5-fold above basal levels (EC50 = 25 microM); albuterol, a beta 2-agonist, behaved as a partial agonist with a maximal stimulation of 80%. Binding to human eosinophils gave similar results with a Kd of 25.3 pM and a Bmax corresponding to 4,333 sites per cell. Incubation of both human and guinea pig eosinophils with opsonized zymosan (2 mg/ml) or with phorbol myristate acetate (PMA) (10(-8) and 10(-6) M) resulted in superoxide anion generation and the release of eosinophil peroxidase; albuterol (10(-7) to 10(-5) M) had no inhibitory effect on the release of these products. Thus, eosinophils from patients with eosinophilia and from the peritoneal cavity of guinea pigs possess beta-receptors of the beta 2-subtype that are coupled to adenylate cyclase; however, these receptors do not modulate oxidative metabolism or degranulation. The possible therapeutic consequences of these observations to asthma are discussed.

  5. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  6. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    NASA Astrophysics Data System (ADS)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  7. Computational Reprogramming of T Cell Antigen Receptor Binding Properties.

    PubMed

    Riley, Timothy P; Singh, Nishant K; Pierce, Brian G; Baker, Brian M; Weng, Zhiping

    2016-01-01

    T-cell receptor (TCR) binding to peptide/MHC is key to antigen-specific cellular immunity, and there has been considerable interest in modulating TCR affinity and specificity for the development of therapeutics and imaging reagents. While in vitro engineering efforts using molecular evolution have yielded remarkable improvements in TCR affinity, such approaches do not offer structural control and can adversely affect receptor specificity, particularly if the attraction towards the MHC is enhanced independently of the peptide. Here we describe an approach to computational design that begins with structural information and offers the potential for more controlled manipulation of binding properties. Our design process models point mutations in selected regions of the TCR and ranks the resulting change in binding energy. Consideration is given to designing optimized scoring functions tuned to particular TCR-peptide/MHC interfaces. Validation of highly ranked predictions can be used to refine the modeling methodology and scoring functions, improving the design process. Our approach results in a strong correlation between predicted and measured changes in binding energy, as well as good agreement between modeled and experimental structures. PMID:27094299

  8. Binding Mode Prediction of Evodiamine within Vanilloid Receptor TRPV1

    PubMed Central

    Wang, Zhanli; Sun, Lidan; Yu, Hui; Zhang, Yanhui; Gong, Wuzhuang; Jin, Hongwei; Zhang, Liangren; Liang, Huaping

    2012-01-01

    Accurate assessment of the potential binding mode of drugs is crucial to computer-aided drug design paradigms. It has been reported that evodiamine acts as an agonist of the vanilloid receptor Transient receptor potential vanilloid-1 (TRPV1). However, the precise interaction between evodiamine and TRPV1 was still not fully understood. In this perspective, the homology models of TRPV1 were generated using the crystal structure of the voltage-dependent shaker family K+ channel as a template. We then performed docking and molecular dynamics simulation to gain a better understanding of the probable binding modes of evodiamine within the TRPV1 binding pocket. There are no significant interspecies differences in evodiamine binding in rat, human and rabbit TRPV1 models. Pharmacophore modeling further provided confidence for the validity of the docking studies. This study is the first to shed light on the structural determinants required for the interaction between TRPV1 and evodiamine, and gives new suggestions for the rational design of novel TRPV1 ligands. PMID:22942745

  9. Multivalent Ligand-Receptor Binding on Supported Lipid Bilayers

    PubMed Central

    Jung, Hyunsook; Robison, Aaron D.; Cremer, Paul S.

    2009-01-01

    Fluid supported lipid bilayers provide an excellent platform for studying multivalent protein-ligand interactions because the two-dimensional fluidity of the membrane allows for lateral rearrangement of ligands in order to optimize binding. Our laboratory has combined supported lipid bilayer-coated microfluidic platforms with total internal reflection fluorescence microscopy (TIRFM) to obtain equilibrium dissociation constant (KD) data for these systems. This high throughput, on-chip approach provides highly accurate thermodynamic information about multivalent binding events while requiring only very small sample volumes. Herein, we review some of the most salient findings from these studies. In particular, increasing ligand density on the membrane surface can provide a modest enhancement or attenuation of ligand-receptor binding depending upon whether the surface ligands interact strongly with each other. Such effects, however, lead to little more than one order of magnitude change in the apparent KD values. On the other hand, the lipophilicity and presentation of lipid bilayer-conjugated ligands can have a much greater impact. Indeed, changing the way a particular ligand is conjugated to the membrane can alter the apparent KD value by at least three orders of magnitude. Such a result speaks strongly to the role of ligand availability for multivalent ligand-receptor binding. PMID:19508894

  10. Quantitative Comparison of Human Parainfluenza Virus Hemagglutinin-Neuraminidase Receptor Binding and Receptor Cleavage

    PubMed Central

    Tappert, Mary M.; Porterfield, J. Zachary; Mehta-D'Souza, Padmaja; Gulati, Shelly

    2013-01-01

    The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN′s two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galβ1-4GlcNAc bind HN with Kd values in the 10 to 100 μM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146–12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high. PMID:23740997

  11. Prebending the estrogen response element destabilizes binding of the estrogen receptor DNA binding domain.

    PubMed Central

    Kim, J; de Haan, G; Nardulli, A M; Shapiro, D J

    1997-01-01

    Binding of many eukaryotic transcription regulatory proteins to their DNA recognition sequences results in conformational changes in DNA. To test the effect of altering DNA topology by prebending a transcription factor binding site, we examined the interaction of the estrogen receptor (ER) DNA binding domain (DBD) with prebent estrogen response elements (EREs). When the ERE in minicircle DNA was prebent toward the major groove, which is in the same direction as the ER-induced DNA bend, there was no significant effect on ER DBD binding relative to the linear counterparts. However, when the ERE was bent toward the minor groove, in a direction that opposes the ER-induced DNA bend, there was a four- to eightfold reduction in ER DBD binding. Since reduced binding was also observed with the ERE in nicked circles, the reduction in binding was not due to torsional force induced by binding of ER DBD to the prebent ERE in covalently closed minicircles. To determine the mechanism responsible for reduced binding to the prebent ERE, we examined the effect of prebending the ERE on the association and dissociation of the ER DBD. Binding of the ER DBD to ERE-containing minicircles was rapid when the EREs were prebent toward either the major or minor groove of the DNA (k(on) of 9.9 x 10(6) to 1.7 x 10(7) M(-1) s(-1)). Prebending the ERE toward the minor groove resulted in an increase in k(off) of four- to fivefold. Increased dissociation of the ER DBD from the ERE is, therefore, the major factor responsible for reduced binding of the ER DBD to an ERE prebent toward the minor groove. These data provide the first direct demonstration that the interaction of a eukaryotic transcription factor with its recognition sequence can be strongly influenced by altering DNA topology through prebending the DNA. PMID:9154816

  12. A novel 4 S [3H]beta-naphthoflavone-binding protein in liver cytosol of female Sprague-Dawley rats treated with aryl hydrocarbon receptor agonists.

    PubMed Central

    Brauze, D; Malejka-Giganti, D

    2000-01-01

    beta-Naphthoflavone (beta-NF) is a widely used inducer of phase-I and phase-II enzymes controlled by aryl hydrocarbon receptor (AhR). Studies of competitive binding with (3)H-labelled 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3-MC) and benzo[a]pyrene (B[a]P) have shown that beta-NF is a high-affinity ligand for AhR and also for polycyclic aromatic hydrocarbon (PAH)-binding protein, both soluble proteins of rat liver in 8 S and 4 S fractions, respectively, of sucrose gradients. This study examined binding of [(3)H]beta-NF to liver cytosolic proteins of female Sprague-Dawley rats. Treatment of rats with beta-NF, 3-MC, TCDD or alpha-naphthoflavone (alpha-NF) increased the specific [(3)H]beta-NF binding to liver cytosol up to 125-fold that of vehicle (corn oil)-treated rats (<100 fmol/mg of protein). Sucrose gradients revealed a large 4 S and a small 8 S peak of radioactivity from [(3)H]beta-NF binding to cytosols of beta-NF-, 3-MC-, TCDD- or alpha-NF-treated rats. Whereas co-incubation with the unlabelled beta-NF eliminated both peaks, co-incubation with 2,3, 7,8-tetrachlorodibenzofuran (TCDF) eliminated only the 8 S peak. The sucrose density gradient from [(3)H]TCDD binding to cytosol of beta-NF- or TCDD-treated rats yielded a small 4 S and a larger 8 S peak; only the latter was abolished by co-incubation with TCDF. Thus, the patterns of sedimentation, distribution and elimination of radioactivity from the 8 S fraction of the liver cytosols from beta-NF-, 3-MC-, TCDD- or alpha-NF-treated rats were characteristic for the AhR, whereas those from the 4 S fraction appeared specific for [(3)H]beta-NF binding. The data indicate that potent AhR agonists, TCDD, 3-MC and beta-NF, and to a lesser extent alpha-NF, a weak AhR agonist, induce a 4 S [(3)H]beta-NF-binding protein in liver cytosol of female rats. alpha-NF, beta-NF and 3-MC were effective competitors (80-85% inhibition) of the [(3)H]beta-NF-specific binding to the beta-NF-, 3 MC- or TCDD

  13. Genome-Wide Binding Patterns of Thyroid Hormone Receptor Beta

    PubMed Central

    Ayers, Stephen; Switnicki, Michal Piotr; Angajala, Anusha; Lammel, Jan; Arumanayagam, Anithachristy S.; Webb, Paul

    2014-01-01

    Thyroid hormone (TH) receptors (TRs) play central roles in metabolism and are major targets for pharmaceutical intervention. Presently, however, there is limited information about genome wide localizations of TR binding sites. Thus, complexities of TR genomic distribution and links between TRβ binding events and gene regulation are not fully appreciated. Here, we employ a BioChIP approach to capture TR genome-wide binding events in a liver cell line (HepG2). Like other NRs, TRβ appears widely distributed throughout the genome. Nevertheless, there is striking enrichment of TRβ binding sites immediately 5′ and 3′ of transcribed genes and TRβ can be detected near 50% of T3 induced genes. In contrast, no significant enrichment of TRβ is seen at negatively regulated genes or genes that respond to unliganded TRs in this system. Canonical TRE half-sites are present in more than 90% of TRβ peaks and classical TREs are also greatly enriched, but individual TRE organization appears highly variable with diverse half-site orientation and spacing. There is also significant enrichment of binding sites for TR associated transcription factors, including AP-1 and CTCF, near TR peaks. We conclude that T3-dependent gene induction commonly involves proximal TRβ binding events but that far-distant binding events are needed for T3 induction of some genes and that distinct, indirect, mechanisms are often at play in negative regulation and unliganded TR actions. Better understanding of genomic context of TR binding sites will help us determine why TR regulates genes in different ways and determine possibilities for selective modulation of TR action. PMID:24558356

  14. Hepatic microsomal cytochrome p450s and chlorinated hydrocarbons in largha and ribbon seals from Hokkaido, Japan: differential response of seal species to Ah receptor agonist exposure.

    PubMed

    Chiba, Issei; Sakakibara, Akihito; Iwata, T Hisato; Ishizuka, Mayumi; Tanabe, Shinsuke; Akahori, Fumiaki; Kazusaka, Akio; Fujita, Shoichi

    2002-04-01

    From 16 largha seals (Phoca largha) and 15 ribbon seals (Phoca fasciata) in the coastal waters of Hokkaido, Japan, blubber chlorinated hydrocarbon (CHC) levels and hepatic cytochrome P450 (CYP) catalytic activities and their immunochemically detected protein content levels were measured. Concentrations of DDTs (2,2-bis(4-chlorophenyl)-1,1-dichloroethylene,p,p'-DDE; 2,2-bis(4-chlorophenyl)-1,1-dichloroethane, p,p'-DDD; dichlorodiphenyltrichloroethane, p,p'-DDT), polychlorinated biphenyl congeners (PCBs), and chlordane compounds (oxychlordane, chlordanes, and nonachlors) in both species were in the range of 290 to 5,300, 420 to 4,000, and 130 to 1,500 ng/g lipid weight, respectively. Aryl hydrocarbon receptor (AhR) agonists, non-ortho (IUPAC 77 and 126) and mono-ortho (IUPAC 105, 118, and 156) coplanar PCB congeners, were also detected, and the 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) toxic equivalents (TEQs) were 4.9 to 120 pg TEQ/g lipid weight. Cross-reactive proteins with polyclonal antibodies against rat CYP1A1 and CYP3A2 were notably detected in seal liver microsomes. Interestingly, a polyclonal antibody against rat CYP2B1 recognized proteins only at trace levels. In largha seals, both levels of alkoxyresorufin- (methoxy-, ethoxy-, pentoxy-, and benzyloxyresorufin) O-dealkylase (AROD) activities and proteins detected by polyclonal antibodies against rat CYP1A1 were significantly correlated with the concentrations of individual coplanar PCB congeners, total TEQs, and total PCBs. Threshold concentrations for TEQs in blubber of the largha seal to induce hepatic CYP1A protein and EROD activity were estimated to be 8.5 and 19 pg TEQ/g fat weight, respectively. In ribbon seals, similar correlations were not detected, although the TEQ levels were not significantly lower than those in largha seals. These results suggest that AROD activity and CYP1A1 protein in the liver of the largha seal could be a biomarker for the exposure to AhR agonists such as coplanar PCB

  15. Tumor necrosis factor: receptor binding and expression of receptors in cultured mouse hepatocytes.

    PubMed

    Adamson, G M; Billings, R E

    1994-04-01

    Recombinant murine tumor necrosis factor (TNF-alpha) was labeled with 125I and used to determine the binding characteristics, internalization and intracellular degradation in cultured mouse hepatocytes. [125I]TNF-alpha bound specifically to hepatocytes and Scatchard analysis of the data indicated binding to both a low-affinity (Kd = 20 nM) high capacity (51225 sites/cell) component and high-affinity component (Kd = 4 pM), with low capacity (290 sites/cell). The extent of TNF-alpha binding to hepatocytes correlated closely with its biological activity in hepatocytes, as indexed by depletion of intracellular ATP. At concentrations lower than 0.06 nM there was minimal binding and no effect on cellular ATP, whereas maximal binding at concentrations greater than 45 nM caused 80% depletion (in comparison to controls) of hepatocyte ATP. Incubation at 37 degrees C resulted in rapid uptake, internalization and degradation of [125I]TNF-alpha. This was followed by release of degraded material from hepatocytes. Examination, by reverse transcriptase/polymerase chain reaction technology, of hepatocyte RNA extracted after the 4-hr adherence period revealed that mouse hepatocytes expressed mRNA for both TNF-alpha receptor 1 and TNF-alpha receptor 2, and that the relative abundance of TNF-alpha receptor 1 was approximately 7-fold greater than that for TNF-alpha receptor 2. Because it has been shown that these receptors have different affinities for TNF-alpha, this may explain the high- and low-affinity binding sites present on cultured mouse hepatocytes.

  16. Aryl hydrocarbon receptor (AhR) activation during pregnancy, and in adult nulliparous mice, delays the subsequent development of DMBA-induced mammary tumors

    PubMed Central

    Wang, Tao; Gavin, Heather M.; Arlt, Volker M.; Lawrence, B. Paige; Fenton, Suzanne E.; Medina, Daniel; Vorderstrasse, Beth A.

    2010-01-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), the prototypic ligand for the aryl hydrocarbon receptor (AhR), promotes tumor formation in some model systems. However with regard to breast cancer, epidemiological and animal studies are inconclusive as to whether exposure increases tumor incidence or may instead be protective. We have previously reported that mice exposed to TCDD during pregnancy have impaired differentiation of mammary tissue, including decreased branching and poor development of lobuloalveolar structures. Because normal pregnancy-induced mammary differentiation may protect against subsequent neoplastic transformation, we hypothesized that TCDD-treated mice would be more susceptible to chemical carcinogenesis after parturition. To test this, mice were treated with TCDD or vehicle during pregnancy. Four weeks later, DMBA (7,12-dimethylbenz[a]anthracene) was administered to induce mammary tumor formation. Contrary to our hypothesis, TCDD-exposed parous mice showed a four-week delay in tumor formation relative to controls, and had a lower tumor incidence throughout the 27-week time course. The same results were obtained in nulliparous mice given TCDD and DMBA on the same schedule. We next addressed whether the delayed tumor incidence was a reflection of decreased tumor initiation, by testing the formation of DMBA-DNA adducts and preneoplastic lesions, induction of cytochrome P450s, and cell proliferation. None of these markers of tumor initiation differed between vehicle- and TCDD-treated animals. The expression of CXCL12 and CXCR4 was also measured to address their possible role in tumorigenesis. Taken together, our results suggest that AhR activation by TCDD slows the promotion of preneoplastic lesions to overt mammary tumors. PMID:20521247

  17. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  18. Development of Gamma-Emitting Receptor Binding Radiopharmace

    SciTech Connect

    Reba, Richard

    2003-02-20

    The long-term objective is to develop blood-brain barrier (BBB) permeable m2-selective (relative to m1, m3, and m4) receptor-binding radiotracers and utilize these radiotracers for quantifying receptor concentrations obtained from PET or SPECT images of human brain. In initial studies, we concluded that the lipophilicity and high affinity prevented (R,S)-I-QNB from reaching a flow-independent and receptor-dependent state in a reasonable time. Thus, it was clear that (R,S)-I-QNB should be modified. Therefore, during the last portion of this funded research, we proposed that more polar heterocycles should help accomplish that. Since reports of others concluded that radiobromination and radiofluorination of the unactivated phenyl ring is not feasible (Newkome et al,,1982), we, therefore, explored during this grant period a series of analogues of (R)-QNB in which one or both of the six-membered phenyl rings is replaced by a five-membered thienyl (Boulay et al., 1995), or furyl ring. The chemistry specific aims were to synthesize novel compounds designed to be m2-selective mAChR ligands capable of penetrating into the CNS, and develop methods for efficient radiolabeling of promising m2-selective muscarinic ligands. The pharmacology specific aims were to determine the affinity and subtype-selectivity of the novel compounds using competition binding studies with membranes from cells that express each of the five muscarinic receptor subtypes, to determine the ability of the promising non-radioactive compounds and radiolabeled novel compounds to cross the BBB, to determine the biodistribution, in-vivo pharmacokinetics, and in-vitm kinetics of promising m2-selective radioligands and to determine the distribution of receptors for the novel m2-selective radioligands using quantitative autoradiography of rat brain, and compare this distribution to the distribution of known m2-selective compounds.

  19. Binding kinetics differentiates functional antagonism of orexin-2 receptor ligands

    PubMed Central

    Mould, R; Brown, J; Marshall, FH; Langmead, CJ

    2014-01-01

    Orexin receptor antagonism represents a novel approach for the treatment of insomnia that directly targets sleep/wake regulation. Several such compounds have entered into clinical development, including the dual orexin receptor antagonists, suvorexant and almorexant. In this study, we have used equilibrium and kinetic binding studies with the orexin-2 (OX2) selective antagonist radioligand, [3H]-EMPA, to profile several orexin receptor antagonists. Furthermore, selected compounds were studied in cell-based assays of inositol phosphate accumulation and ERK-1/2 phosphorylation in CHO cells stably expressing the OX2 receptor that employ different agonist incubation times (30 and 5 min, respectively). EMPA, suvorexant, almorexant and TCS-OX-29 all bind to the OX2 receptor with moderate to high affinity (pKI values ≥ 7.5), whereas the primarily OX1 selective antagonists SB-334867 and SB-408124 displayed low affinity (pKI values ca. 6). Competition kinetic analysis showed that the compounds displayed a range of dissociation rates from very fast (TCS-OX2-29, koff = 0.22 min−1) to very slow (almorexant, koff = 0.005 min−1). Notably, there was a clear correlation between association rate and affinity. In the cell-based assays, fast-offset antagonists EMPA and TCS-OX2-29 displayed surmountable antagonism of orexin-A agonist activity. However, both suvorexant and particularly almorexant cause concentration-dependent depression in the maximal orexin-A response, a profile that is more evident with a shorter agonist incubation time. Analysis according to a hemi-equilibrium model suggests that antagonist dissociation is slower in a cellular system than in membrane binding; under these conditions, almorexant effectively acts as a pseudo-irreversible antagonist. Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 PMID:23692283

  20. Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus

    SciTech Connect

    Allen, A.M.; Dampney, R.A.L.; Mendelsohn, F.A.O. Univ. of Sydney )

    1988-11-01

    Central administration of angiotensin II (ANG II) increases arterial blood pressure via increased sympathetic activity. The authors have examined the possibility that one site of action of ANG II is the subretrofacial (SRF) nucleus in the rostral ventrolateral medulla, since this nucleus is known to play a critical role in the tonic and phasic control of arterial pressure. In vitro autoradiography, employing {sup 125}I-labeled (Sar{sup 1}, Ile{sup 8})ANG II as radioligand, was used to localize binding sites for ANG-II in the cat ventrolateral medulla. A high density of ANG II-receptor binding sites was found confined to the SRF nucleus. In a second group of experiments in anesthetized cats, microinjections of ANG II, in doses ranging from 10 to 50 pmol, were made into histologically identified sites within and outside the SRF nucleus. Microinjections into the nucleus resulted in a dose-dependent increase in arterial pressure, which was abolished by systemic administration of the ganglion-blocking drug hexamethonium bromide. In contrast, microinjections just outside the SRF nucleus had no effect on arterial pressure. It is concluded that activation of ANG II-receptor binding sites within the SRF nucleus leads to an increase in arterial pressure via increased sympathetic efferent activity.

  1. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    PubMed

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion. PMID:27102288

  2. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site.

  3. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  4. Muscarinic receptor binding and muscarinic receptor-mediated inhibition of adenylate cyclase in rat brain myelin

    SciTech Connect

    Larocca, J.N.; Ledeen, R.W.; Dvorkin, B.; Makman, M.H.

    1987-12-01

    High-affinity muscarinic cholinergic receptors were detected in myelin purified from rat brain stem with use of the radioligands /sup 3/H-N-methylscopolamine (/sup 3/H-NMS), /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and /sup 3/H-pirenzepine. /sup 3/H-NMS binding was also present in myelin isolated from corpus callosum. In contrast, several other receptor types, including alpha 1- and alpha 2-adrenergic receptors, present in the starting brain stem, were not detected in myelin. Based on Bmax values from Scatchard analyses, /sup 3/H-pirenzepine, a putative M1 selective ligand, bound to about 25% of the sites in myelin labeled by /sup 3/H-NMS, a nonselective ligand that binds to both M1 and M2 receptor subtypes. Agonist affinity for /sup 3/H-NMS binding sites in myelin was markedly decreased by Gpp(NH)p, indicating that a major portion of these receptors may be linked to a second messenger system via a guanine-nucleotide regulatory protein. Purified myelin also contained adenylate cyclase activity; this activity was stimulated several fold by forskolin and to small but significant extents by prostaglandin E1 and the beta-adrenergic agonist isoproterenol. Myelin adenylate cyclase activity was inhibited by carbachol and other muscarinic agonists; this inhibition was blocked by the antagonist atropine. Levels in myelin of muscarinic receptors were 20-25% and those of forskolin-stimulated adenylate cyclase 10% of the values for total particulate fraction of whole brain stem. These levels in myelin are appreciably greater than would be predicted on the basis of contamination. Also, additional receptors and adenylate cyclase, added by mixing nonmyelin tissue with whole brain stem, were quantitatively removed during the purification procedure.

  5. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model. PMID:27062579

  6. 1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity.

    PubMed

    Davis, A Sally; Chertow, Daniel S; Kindrachuk, Jason; Qi, Li; Schwartzman, Louis M; Suzich, Jon; Alsaaty, Sara; Logun, Carolea; Shelhamer, James H; Taubenberger, Jeffery K

    2016-06-01

    The 1918 influenza pandemic caused ~50 million deaths. Many questions remain regarding the origin, pathogenicity, and mechanisms of human adaptation of this virus. Avian-adapted influenza A viruses preferentially bind α2,3-linked sialic acids (Sia) while human-adapted viruses preferentially bind α2,6-linked Sia. A change in Sia preference from α2,3 to α2,6 is thought to be a requirement for human adaptation of avian influenza viruses. Autopsy data from 1918 cases, however, suggest that factors other than Sia preference played a role in viral binding and entry to human airway cells. Here, we evaluated binding and entry of five 1918 influenza receptor binding domain variants in a primary human airway cell model along with control avian and human influenza viruses. We observed that all five variants bound and entered cells efficiently and that Sia preference did not predict entry of influenza A virus to primary human airway cells evaluated in this model.

  7. Binding site structure of one LRP-RAP complex: implications for a common ligand-receptor binding motif.

    PubMed

    Jensen, Gitte A; Andersen, Olav M; Bonvin, Alexandre M J J; Bjerrum-Bohr, Ida; Etzerodt, Michael; Thøgersen, Hans C; O'Shea, Charlotte; Poulsen, Flemming M; Kragelund, Birthe B

    2006-09-29

    The low-density lipoprotein receptor-related protein (LRP) interacts with more than 30 ligands of different sizes and structures that can all be replaced by the receptor-associated protein (RAP). The double module of complement type repeats, CR56, of LRP binds many ligands including all three domains of RAP and alpha2-macroglobulin, which promotes the catabolism of the Abeta-peptide implicated in Alzheimer's disease. To understand the receptor-ligand cross-talk, the NMR structure of CR56 has been solved and ligand binding experiments with RAP domain 1 (RAPd1) have been performed. From chemical shift perturbations of both binding partners upon complex formation, a HADDOCK model of the complex between CR56 and RAPd1 has been obtained. The binding residues are similar to a common binding motif suggested from alpha2-macroglobulin binding studies and provide evidence for an understanding of their mutual cross-competition pattern. The present structural results convey a simultaneous description of both binding partners of an LRP-ligand complex and open a route to a broader understanding of the binding specificity of the LRP receptor, which may involve a general four-residue receptor-ligand recognition motif common to all LRP ligands. The present result may be beneficial in the design of antagonists of ligand binding to the LDL receptor family, and especially of drugs for treatment of Alzheimer's disease.

  8. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  9. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish

    PubMed Central

    Hardison, D. Ransom; Holland, William C.; McCall, Jennifer R.; Bourdelais, Andrea J.; Baden, Daniel G.; Darius, H. Taiana; Chinain, Mireille; Tester, Patricia A.; Shea, Damian; Flores Quintana, Harold A.; Morris, James A.; Litaker, R. Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®- PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®- PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  10. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    PubMed

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  11. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents.

  12. The structural basis of pregnane X receptor binding promiscuity

    PubMed Central

    Ngan, Chi-Ho; Beglov, Dmitri; Rudnitskaya, Aleksandra N.; Kozakov, Dima; Waxman, David J.; Vajda, Sandor

    2009-01-01

    The steroid and xenobiotic-responsive human pregnane X receptor (PXR) binds a broad range of structurally diverse compounds. The structures of the apo and ligand-bound forms of PXR are very similar, in contrast to most promiscuous proteins that generally adapt their shape to different ligands. We investigated the structural origins of PXR's recognition promiscuity using computational solvent mapping, a technique developed for the identification and characterization of hot spots, i.e., regions of the protein surface that are major contributors to the binding free energy. Results reveal that the smooth and nearly spherical binding site of PXR has a well-defined hot spot structure, with four hot spots located on four different sides of the pocket and a fifth close to its center. Three of these hot spots are already present in the ligand-free protein. The most important hot spot is defined by three structurally and sequentially conserved residues, W299, F288, and Y306. This largely hydrophobic site is not very specific, and interacts with all known PXR ligands. Depending on their sizes and shapes, individual PXR ligands extend into 2, 3, or 4 more hot spot regions. The large number of potential arrangements within the binding site explains why PXR is able to accommodate a large variety of compounds. All five hot spots include at least one important residue, which is conserved in all mammalian PXRs, suggesting that the hot spot locations have remained largely invariant during mammalian evolution. The same side chains also show a high level of structural conservation across hPXR structures. However, each of the hPXR hot spots also includes residues with moveable side chains, further increasing the size variation in ligands that PXR can bind. Results also suggest a unique signal transduction mechanism between the PXR homodimerization interface and its co-activator binding site. PMID:19856963

  13. Functional differences between neurotransmitter binding sites of muscle acetylcholine receptors.

    PubMed

    Nayak, Tapan K; Bruhova, Iva; Chakraborty, Srirupa; Gupta, Shaweta; Zheng, Wenjun; Auerbach, Anthony

    2014-12-01

    A muscle acetylcholine receptor (AChR) has two neurotransmitter binding sites located in the extracellular domain, at αδ and either αε (adult) or αγ (fetal) subunit interfaces. We used single-channel electrophysiology to measure the effects of mutations of five conserved aromatic residues at each site with regard to their contribution to the difference in free energy of agonist binding to active versus resting receptors (ΔGB1). The two binding sites behave independently in both adult and fetal AChRs. For four different agonists, including ACh and choline, ΔGB1 is ∼-2 kcal/mol more favorable at αγ compared with at αε and αδ. Only three of the aromatics contribute significantly to ΔGB1 at the adult sites (αY190, αY198, and αW149), but all five do so at αγ (as well as αY93 and γW55). γW55 makes a particularly large contribution only at αγ that is coupled energetically to those contributions of some of the α-subunit aromatics. The hydroxyl and benzene groups of loop C residues αY190 and αY198 behave similarly with regard to ΔGB1 at all three kinds of site. ACh binding energies estimated from molecular dynamics simulations are consistent with experimental values from electrophysiology and suggest that the αγ site is more compact, better organized, and less dynamic than αε and αδ. We speculate that the different sensitivities of the fetal αγ site versus the adult αε and αδ sites to choline and ACh are important for the proper maturation and function of the neuromuscular synapse. PMID:25422413

  14. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed Central

    Brunner, F.; Kukovetz, W. R.

    1991-01-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2015420

  15. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  16. Common Commercial and Consumer Products Contain Activators of the Aryl Hydrocarbon (Dioxin) Receptor

    PubMed Central

    Zhao, Bin; Bohonowych, Jessica E. S.; Timme-Laragy, Alicia; Jung, Dawoon; Affatato, Alessandra A.; Rice, Robert H.; Di Giulio, Richard T.; Denison, Michael S.

    2013-01-01

    Activation of the Ah receptor (AhR) by halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products. PMID:23441220

  17. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif.

    PubMed

    Jehle, Katja; Cato, Laura; Neeb, Antje; Muhle-Goll, Claudia; Jung, Nicole; Smith, Emmanuel W; Buzon, Victor; Carbó, Laia R; Estébanez-Perpiñá, Eva; Schmitz, Katja; Fruk, Ljiljana; Luy, Burkhard; Chen, Yu; Cox, Marc B; Bräse, Stefan; Brown, Myles; Cato, Andrew C B

    2014-03-28

    The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.

  18. Implication of cytochrome P-450 1A isoforms and the AH receptor in the genotoxicity of coal-tar fume condensate and bitumen fume condensates.

    PubMed

    Genevois, C; Pfohl-Leszkowicz, A; Boillot, K; Brandt, H; Castegnaro, M

    1998-06-01

    During the hot application of bitumen- or coal-tar-containing materials, fumes are emitted that contain polycyclic aromatic compounds. Although workers' exposure to these fumes is low, it might lead to health problems. No study has reported the metabolic pathways involved in the genotoxicity of coal tar or bitumen fume condensates (CTFC, BFCs). We have therefore studied the DNA adducts formed by incubation of CTFC or BFCs with liver microsomes from several type of mice and with yeast microsomes expressing individual human CYP enzymes. Our results demonstrates that: (1) the aryl hydrocarbon receptor (AHR) plays an important role in the biotransformation of BFCs and to a lesser extent of CTFC; (2) for CTFC, both cytochrome P450 (CYP) 1A isoforms are involved in the formation of genotoxic compounds, and the reactive metabolites formed via CYP 1A1, are substrates for epoxide hydrolase (mEH); (3) for BFCs, the genotoxicity is partially dependent upon CYP 1A1 and the reactive metabolites are not substrates for mEH; (4) CYP 1A isoforms are not exclusively responsible for the genotoxicity of the CTFC and BFCs as other CYPs and also enzymes of the [AH] gene battery, may play an important role. PMID:21781875

  19. Implication of cytochrome P-450 1A isoforms and the AH receptor in the genotoxicity of coal-tar fume condensate and bitumen fume condensates.

    PubMed

    Genevois, C; Pfohl-Leszkowicz, A; Boillot, K; Brandt, H; Castegnaro, M

    1998-06-01

    During the hot application of bitumen- or coal-tar-containing materials, fumes are emitted that contain polycyclic aromatic compounds. Although workers' exposure to these fumes is low, it might lead to health problems. No study has reported the metabolic pathways involved in the genotoxicity of coal tar or bitumen fume condensates (CTFC, BFCs). We have therefore studied the DNA adducts formed by incubation of CTFC or BFCs with liver microsomes from several type of mice and with yeast microsomes expressing individual human CYP enzymes. Our results demonstrates that: (1) the aryl hydrocarbon receptor (AHR) plays an important role in the biotransformation of BFCs and to a lesser extent of CTFC; (2) for CTFC, both cytochrome P450 (CYP) 1A isoforms are involved in the formation of genotoxic compounds, and the reactive metabolites formed via CYP 1A1, are substrates for epoxide hydrolase (mEH); (3) for BFCs, the genotoxicity is partially dependent upon CYP 1A1 and the reactive metabolites are not substrates for mEH; (4) CYP 1A isoforms are not exclusively responsible for the genotoxicity of the CTFC and BFCs as other CYPs and also enzymes of the [AH] gene battery, may play an important role.

  20. Dendroaspis natriuretic peptide binds to the natriuretic peptide clearance receptor

    SciTech Connect

    Johns, Douglas G. . E-mail: Douglas.G.Johns@gsk.com; Ao, Zhaohui; Heidrich, Bradley J.; Hunsberger, Gerald E.; Graham, Taylor; Payne, Lisa; Elshourbagy, Nabil; Lu, Quinn; Aiyar, Nambi; Douglas, Stephen A.

    2007-06-22

    Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [{sup 125}I]-ANP from NPR-C with pM-to-nM K {sub i} values. DNP displaced [{sup 125}I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K {sub i} > 1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.

  1. Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses

    PubMed Central

    Koel, Björn F.; Mögling, Ramona; Chutinimitkul, Salin; Fraaij, Pieter L.; Burke, David F.; van der Vliet, Stefan; de Wit, Emmie; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT The majority of currently circulating influenza A(H1N1) viruses are antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as population immunity increases. Amino acid substitutions in the hemagglutinin protein can result in escape from neutralizing antibodies, affect viral fitness, and change receptor preference. In this study, we constructed mutants with substitutions in the hemagglutinin of A/Netherlands/602/09 in an attenuated backbone to explore amino acid changes that may contribute to emergence of antigenic variants in the human population. Our analysis revealed that single substitutions affecting the loop that consists of amino acid positions 151 to 159 located adjacent to the receptor binding site caused escape from ferret and human antibodies elicited after primary A(H1N1)pdm09 virus infection. The majority of these substitutions resulted in similar or increased replication efficiency in vitro compared to that of the virus carrying the wild-type hemagglutinin and did not result in a change of receptor preference. However, none of the substitutions was sufficient for escape from the antibodies in sera from individuals that experienced both seasonal and pandemic A(H1N1) virus infections. These results suggest that antibodies directed against epitopes on seasonal A(H1N1) viruses contribute to neutralization of A(H1N1)pdm09 antigenic variants, thereby limiting the number of possible substitutions that could lead to escape from population immunity. IMPORTANCE Influenza A viruses can cause significant morbidity and mortality in humans. Amino acid substitutions in the hemagglutinin protein can result in escape from antibody-mediated neutralization. This allows the virus to reinfect individuals that have acquired immunity to previously circulating strains through infection or vaccination. To date, the vast majority of A(H1N1)pdm09 strains remain antigenically similar to the virus

  2. EFFECTS OF SOG ON DPP-RECEPTOR BINDING*

    PubMed Central

    LOU, YUAN; NIE, QING; WAN, FREDERIC Y. M.

    2007-01-01

    Concentration gradients of morphogens are known to be instrumental in cell signaling and tissue patterning. Of interest here is how the presence of a competitor of BMP ligands affects cell signaling. The effects of Sog on the binding of Dpp with cell receptors are analyzed for dorsal-ventral morphogen gradient formation in vertebrate and Drosophila embryos. This prototype system includes diffusing ligands, degradation of morphogens, and cleavage of Dpp-Sog complexes by Tolloid to free up Dpp. Simple and biologically meaningful necessary and sufficient conditions for the existence of a steady state gradient configuration are established, and existence theorems are proved. For high Sog production rates (relative to the Dpp production rate), it is found that the steady state configuration exhibits a more intense Dpp-receptor concentration near the dorsal midline. Numerical simulations of the evolution of the system show that, beyond some threshold Sog production rate, the transient Dpp-receptor concentration at the dorsal midline would become more intense than that of the steady state, before subsiding and approaching a nonuniform steady state of lower magnitude. The magnitude of the transient concentration has been found to increase by several fold with increasing Sog production rate. The highly intense Dpp activity at and around the dorsal midline is consistent with available experimental observations and other analytical studies. PMID:17377624

  3. Benzodiazepine receptor binding in vivo with (/sup 3/)-Ro 15-1788

    SciTech Connect

    Goeders, N.E.; Kuhar, M.J.

    1985-07-29

    In vivo benzodiazepine receptor binding has generally been studied by ex vivo techniques. In this investigation, the authors identify the conditions where (/sup 3/H)-Ro 15-1788 labels benzodiazepine receptors by true in vivo binding, i.e. where workable specific to nonspecific ratios are obtained in intact tissues without homogenization or washing. (/sup 3/H)-Flunitrazepam and (/sup 3/H)-clonazepam did not exhibit useful in vivo receptor binding. 39 references, 5 figures, 1 table.

  4. Substitution of synthetic chimpanzee androgen receptor for human androgen receptor in competitive binding and transcriptional activation assays for EDC screening

    EPA Science Inventory

    The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...

  5. The opioid receptor selectivity for trimebutine in isolated tissues experiments and receptor binding studies.

    PubMed

    Kaneto, H; Takahashi, M; Watanabe, J

    1990-07-01

    Differences of affinity to and selectivity for trimebutine between peripheral and central opioid receptors have been investigated. Trimebutine inhibited electrically induced contraction of guinea-pig ileum (GPI) and mouse vas deferens (MVD) but not of rabbit vas deferens, and the inhibition was antagonized by naloxone and, to lesser extent, by nor-binaltorphimine (nor-BNI). The pA2 values for morphine and trimebutine with naloxone were higher than the values for these compounds with nor-BNI in both GPI and MVD preparations. GPI preparations incubated with a high concentration of morphine or trimebutine developed tolerance; however, there was no cross-tolerance between them, suggesting difference in the underlying mechanisms. In mouse and guinea-pig brain homogenate trimebutine was about 1/13 as potent as morphine to displace the [3H]naloxone binding, while it has no appreciable affinity for kappa-opioid receptors in [3H]U-69593, a selective kappa-receptor agonist. These results suggest that trimebutine, showing its low affinity to opioid receptors, possesses mu-receptor selective properties rather than those of kappa-opioid receptor in the peripheral tissues and in the central brain homogenate. PMID:1963196

  6. Managing tight-binding receptors for new separations technologies. 1998 annual progress report

    SciTech Connect

    Busch, D.H.; Givens, R.S.

    1998-06-01

    'Whereas such traditional separation methodologies as ion exchange and solvent extraction require rapid interaction between ligands and metal ions, the most strongly binding ligands invariably bind slowly; e.g., cryptates bind and dissociate more slowly than macrocycles, which are slower than open-chain chelating ligands. This project seeks to maximize the binding and dissociation rates for tight-binding receptors in order to make them more useful to separations science. An alternative slow-binding technology is also under exploration.'

  7. Endothelin B receptors on human endothelial and smooth-muscle cells show equivalent binding pharmacology.

    PubMed

    Flynn, M A; Haleen, S J; Welch, K M; Cheng, X M; Reynolds, E E

    1998-07-01

    We have described the pharmacologic profiles of endothelin B receptors in human endothelial cells and vascular and nonvascular smooth-muscle cells. First, by amplifying endothelin B receptor numbers through the use of phosphoramidon and intact cell-binding techniques, we demonstrated the presence of these receptors in human umbilical vein endothelial cells (100% endothelin B receptors), human aortic smooth-muscle cells (22% endothelin B, 78% endothelin A receptors), and human bronchial smooth-muscle cells (55% endothelin B, 45% endothelin A receptors) by using [125I]-endothelin-1 radioligand binding. The typical binding profiles of the endothelin B receptors were established through competition binding curve analysis with endothelin-1, endothelin-3, sarafotoxin 6c, and the endothelin A receptor-selective antagonist BQ-123. In the presence of BQ-123, a diverse group of antagonists, including PD 142893, BQ-788, SB 209670, and Ro 47-0203, were used to probe for binding differences indicative of multiple endothelin B-receptor subtypes. The results indicate a rank order of potency for the antagonists of BQ-788 > SB 209670 > PD 142893 > Ro 47-0203 for each cell line, and that between any of these human cell lines, measurements of [125I]-endothelin-1-binding antagonism for each of the four test compounds differed by less than twofold. Although this study cannot discount the possibility of more than one endothelin B-receptor subtype in humans, it does indicate that these tissues express receptors that show equivalent binding pharmacology. PMID:9676729

  8. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  9. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  10. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  11. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    SciTech Connect

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark . E-mail: dan@bc.georgetown.edu

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.

  12. Disentangling Viral Membrane Fusion from Receptor Binding Using Synthetic DNA-Lipid Conjugates.

    PubMed

    Rawle, Robert J; Boxer, Steven G; Kasson, Peter M

    2016-07-12

    Enveloped viruses must bind to a receptor on the host membrane to initiate infection. Membrane fusion is subsequently initiated by a conformational change in the viral fusion protein, triggered by receptor binding, an environmental change, or both. Here, we present a strategy to disentangle the two processes of receptor binding and fusion using synthetic DNA-lipid conjugates to bind enveloped viruses to target membranes in the absence of receptor. This permits direct testing of whether receptor engagement affects the fusion mechanism as well as a comparison of fusion behavior across viruses with different receptor binding specificities. We demonstrate this approach by binding X-31 influenza virus to target vesicles and measuring the rates of individual pH-triggered lipid mixing events using fluorescence microscopy. Influenza lipid mixing kinetics are found to be independent of receptor binding, supporting the common yet previously unproven assumption that receptor binding does not produce any clustering or spatial rearrangement of viral hemagglutinin, which affects the rate-limiting step of pH-triggered fusion. This DNA-lipid tethering strategy should also allow the study of viruses where challenging receptor reconstitution has previously prevented single-virus fusion experiments. PMID:27410740

  13. Disentangling Viral Membrane Fusion from Receptor Binding Using Synthetic DNA-Lipid Conjugates.

    PubMed

    Rawle, Robert J; Boxer, Steven G; Kasson, Peter M

    2016-07-12

    Enveloped viruses must bind to a receptor on the host membrane to initiate infection. Membrane fusion is subsequently initiated by a conformational change in the viral fusion protein, triggered by receptor binding, an environmental change, or both. Here, we present a strategy to disentangle the two processes of receptor binding and fusion using synthetic DNA-lipid conjugates to bind enveloped viruses to target membranes in the absence of receptor. This permits direct testing of whether receptor engagement affects the fusion mechanism as well as a comparison of fusion behavior across viruses with different receptor binding specificities. We demonstrate this approach by binding X-31 influenza virus to target vesicles and measuring the rates of individual pH-triggered lipid mixing events using fluorescence microscopy. Influenza lipid mixing kinetics are found to be independent of receptor binding, supporting the common yet previously unproven assumption that receptor binding does not produce any clustering or spatial rearrangement of viral hemagglutinin, which affects the rate-limiting step of pH-triggered fusion. This DNA-lipid tethering strategy should also allow the study of viruses where challenging receptor reconstitution has previously prevented single-virus fusion experiments.

  14. Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization.

    PubMed

    Kuznetsova, Irina M; Sulatskaya, Anna I; Povarova, Olga I; Turoverov, Konstantin K

    2012-01-01

    In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA) and ANS - bovine serum albumin (BSA) interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.

  15. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.

    PubMed

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia

    2014-01-01

    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  16. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    NASA Astrophysics Data System (ADS)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  17. Structure of human Aichi virus and implications for receptor binding.

    PubMed

    Zhu, Ling; Wang, Xiangxi; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Yuan, Shuai; Yamashita, Teruo; Tuthill, Tobias J; Fry, Elizabeth E; Rao, Zihe; Stuart, David I

    2016-01-01

    Aichi virus (AiV), an unusual and poorly characterized picornavirus, classified in the genus Kobuvirus, can cause severe gastroenteritis and deaths in children below the age of five years, especially in developing countries(1,2). The seroprevalence of AiV is approximately 60% in children under the age of ten years and reaches 90% later in life(3,4). There is no available vaccine or effective antiviral treatment. Here, we describe the structure of AiV at 3.7 Å. This first high-resolution structure for a kobuvirus is intermediate between those of the enteroviruses and cardioviruses, with a shallow, narrow depression bounded by the prominent VP0 CD loops (linking the C and D strands of the β-barrel), replacing the depression known as the canyon, frequently the site of receptor attachment in enteroviruses. VP0 is not cleaved to form VP2 and VP4, so the 'VP2' β-barrel structure is complemented with a unique extended structure on the inside of the capsid. On the outer surface, a polyproline helix structure, not seen previously in picornaviruses is present at the C terminus of VP1, a position where integrin binding motifs are found in some other picornaviruses. A peptide corresponding to this polyproline motif somewhat attenuates virus infectivity, presumably blocking host-cell attachment. This may guide cellular receptor identification. PMID:27595320

  18. THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS

    EPA Science Inventory

    THE INFLUENCE OF SERUM BINDING PROTEINS AND CLEARANCE ON THE COMPARATIVE RECEPTOR BINDING POTENCY OF ENDOCRINE ACTIVE COMPOUNDS. JG Teeguarden1 and HA Barton2. 1ENVIRON International, Ruston LA; 2US EPA, ORD, NHEERL, ETD, Pharmacokinetics Branch, RTP, NC.

    One measure of th...

  19. Plasma binding proteins for platelet-derived growth factor that inhibit its binding to cell-surface receptors.

    PubMed Central

    Raines, E W; Bowen-Pope, D F; Ross, R

    1984-01-01

    Evidence is presented that the binding of platelet-derived growth factor (PDGF) to plasma constituents inhibits the binding of PDGF to its cell-surface mitogen receptor. Approximately equivalent amounts of PDGF-binding activity were found in plasma from a number of different species known by radioreceptor assay to contain PDGF homologues in their clotted blood. Activation of the coagulation cascade did not significantly alter the PDGF-binding activity of the plasma components. Three molecular weight classes of plasma fractions that inhibit PDGF binding to its cell-surface receptor were defined by gel filtration: approximately equal to 40,000, 150,000, and greater than 500,000. Specific binding of 125I-labeled PDGF to the highest molecular weight plasma fraction could also be demonstrated by gel filtration. The binding of PDGF to these plasma components was reversible under conditions of low pH or with guanidine X HCl, and active PDGF could be recovered from the higher molecular weight fractions. Immunologic and functional evidence is presented that the highest molecular weight plasma fraction may be alpha 2-macroglobulin. A model is proposed in which the activity of PDGF released in vivo may be regulated by association with these plasma binding components and by high-affinity binding to cell-surface PDGF receptors. PMID:6203121

  20. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  1. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury

    SciTech Connect

    Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.; Catton, M.D.; Vinters, H.V.; Maggio, J.E.; Too, Hengphon; Vigna, S.R. )

    1989-07-01

    In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve and tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.

  2. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    PubMed

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms. PMID:25330347

  3. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    PubMed

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms.

  4. Competitive inhibition of (TH)dexamethasone binding to mammary glucocorticoid receptor by leupeptin

    SciTech Connect

    Hsieh, L.C.C.; Su, C.; Markland, F.S. Jr.

    1987-03-01

    The inhibitory effect of leupeptin on (TH)dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of (TH)dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of (TH)dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S).

  5. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  6. Metal binding sites of the estradiol receptor from calf uterus and their possible role in the regulation of receptor function

    SciTech Connect

    Medici, N.; Minucci, S.; Nigro, V.; Abbondanza, C.; Armetta, I.; Molinari, A.M.; Puca, G.A. )

    1989-01-10

    The existence of putative metal binding sites on the estradiol receptor (ER) molecule from calf uterus was evaluated by immobilizing various divalent metals to iminodiacetate-Sepharose. ER from both crude and highly purified preparations binds to metal-containing adsorbents complexed with Zn(II), Ni(II), Co(II), and Cu(II), but not to those complexed with Fe(II) and Cd(II). Analysis of affinity-labeled ER by ({sup 3}H)tamoxifen aziridine after elution from a column of Zn(II)-charged iminodiacetate-Sepharose showed that ER fragments obtained by extensive trypsinization were also bound. Zn(II) and the same other metals able to bind ER, when immobilized on resins, inhibit the binding of estradiol to the receptor at micromolar concentration. This inhibition is noncompetitive and can be reversed by EDTA. The inhibition of the hormone binding was still present after trypsin treatment of the cytosol, and it was abolished by preincubation with the hormone. Micromolar concentrations of these metals were able to block those chemical-physical changes occurring during the process of ER transformation in vitro. The presence of metal binding sites that modulate the ER activity in the hormone binding domain of ER is speculated. Since progesterone receptor showed the same pattern of binding and elution from metal-containing adsorbents, the presence of metal binding regulatory sites could be a property of all steroid receptors.

  7. Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node

    PubMed Central

    Vorrink, Sabine U.; Domann, Frederick E.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the responses to toxic environmental chemicals such as TCDD or dioxin-like PCBs. To regulate gene expression, the AhR requires its binding partner, the aryl hydrocarbon receptor nuclear translocator (ARNT). ARNT is also required by the hypoxia-inducible factor-1α (HIF-1α), a crucial regulator of responses to conditions of reduced oxygen. The important role of ARNT in both the AhR and HIF-1α signaling pathways establishes a meaningful foundation for a possible crosstalk between these two vitally important signaling pathways. This crosstalk might lead to interference between the two signaling pathways and thus might play a role in the variety of cellular responses after exposure to AhR ligands and reduced oxygen availability. This review focuses on studies that have analyzed the effect of low oxygen environments and hypoxiamimetic agents on AhR signaling and conversely, the effect of AhR ligands, with a special emphasis on PCBs, on HIF-1α signaling. We highlight studies that assess the role of ARNT, elucidate the mechanism of the crosstalk, and discuss the physiological implications for exposure to AhR-inducing compounds in the context of hypoxia. PMID:24824450

  8. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  9. Detection of persistent organic pollutants binding modes with androgen receptor ligand binding domain by docking and molecular dynamics

    PubMed Central

    2013-01-01

    Background Persistent organic pollutants (POPs) are persistent in the environment after release from industrial compounds, combustion productions or pesticides. The exposure of POPs has been related to various reproductive disturbances, such as reduced semen quality, testicular cancer, and imbalanced sex ratio. Among POPs, dichlorodiphenyldichloroethylene (4,4’-DDE) and polychlorinated biphenyls (PCBs) are the most widespread and well-studied compounds. Recent studies have revealed that 4,4’-DDE is an antagonist of androgen receptor (AR). However, the mechanism of the inhibition remains elusive. CB-153 is the most common congener of PCBs, while the action of CB-153 on AR is still under debate. Results Molecular docking and molecular dynamics (MD) approaches have been employed to study binding modes and inhibition mechanism of 4,4’-DDE and CB-153 against AR ligand binding domain (LBD). Several potential binding sites have been detected and analyzed. One possible binding site is the same binding site of AR natural ligand androgen 5α-dihydrotestosterone (DHT). Another one is on the ligand-dependent transcriptional activation function (AF2) region, which is crucial for the co-activators recruitment. Besides, a novel possible binding site was observed for POPs with low binding free energy with the receptor. Detailed interactions between ligands and the receptor have been represented. The disrupting mechanism of POPs against AR has also been discussed. Conclusions POPs disrupt the function of AR through binding to three possible biding sites on AR/LBD. One of them shares the same binding site of natural ligand of AR. Another one is on AF2 region. The third one is in a cleft near N-terminal of the receptor. Significantly, values of binding free energy of POPs with AR/LBD are comparable to that of natural ligand androgen DHT. PMID:24053684

  10. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY.
    MC Cardon, PC Hartig,LE Gray, Jr. and VS Wilson.
    U.S. EPA, ORD, NHEERL, RTD, Research Triangle Park, NC, USA.
    Typically, in vitro hazard assessments for ...

  11. RAINBOW TROUT ANDROGEN RECEPTOR ALPHA AND THE HUMAN ANDROGEN RECEPTOR: COMPARISONS IN THE COS WHOLE CELL BINDING ASSAY

    EPA Science Inventory

    Rainbow Trout Androgen Receptor Alpha And Human Androgen Receptor: Comparisons in the COS Whole Cell Binding Assay
    Mary C. Cardon, L. Earl Gray, Jr. and Vickie S. Wilson
    U.S. Environmental Protection Agency, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle...

  12. Impact of D2 Receptor Internalization on Binding Affinity of Neuroimaging Radiotracers

    PubMed Central

    Guo, Ningning; Guo, Wen; Kralikova, Michaela; Jiang, Man; Schieren, Ira; Narendran, Raj; Slifstein, Mark; Abi-Dargham, Anissa; Laruelle, Marc; Javitch, Jonathan A; Rayport, Stephen

    2010-01-01

    Synaptic dopamine (DA) levels seem to affect the in vivo binding of many D2 receptor radioligands. Thus, release of endogenous DA induced by the administration of amphetamine decreases ligand binding, whereas DA depletion increases binding. This is generally thought to be due to competition between endogenous DA and the radioligands for D2 receptors. However, the temporal discrepancy between amphetamine-induced increases in DA as measured by microdialysis, which last on the order of 2 h, and the prolonged decrease in ligand binding, which lasts up to a day, has suggested that agonist-induced D2 receptor internalization may contribute to the sustained decrease in D2 receptor-binding potential seen following a DA surge. To test this hypothesis, we developed an in vitro system showing robust agonist-induced D2 receptor internalization following treatment with the agonist quinpirole. Human embryonic kidney 293 (HEK293) cells were stably co-transfected with human D2 receptor, G-protein-coupled receptor kinase 2 and arrestin 3. Agonist-induced D2 receptor internalization was demonstrated by fluorescence microscopy, flow cytometry, and radioligand competition binding. The binding of seven D2 antagonists and four agonists to the surface and internalized receptors was measured in intact cells. All the imaging ligands bound with high affinity to both surface and internalized D2 receptors. Affinity of most of the ligands to internalized receptors was modestly lower, indicating that internalization would reduce the binding potential measured in imaging studies carried out with these ligands. However, between-ligand differences in the magnitude of the internalization-associated affinity shift only partly accounted for the data obtained in neuroimaging experiments, suggesting the involvement of mechanisms beyond competition and internalization. PMID:19956086

  13. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    SciTech Connect

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-11-05

    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  14. Effects of the binding of a dextran derivative on fibroblast growth factor 2: secondary structure and receptor-binding studies.

    PubMed

    Bittoun, P; Bagheri-Yarmand, R; Chaubet, F; Crépin, M; Jozefonvicz, J; Fermandjian, S

    1999-06-15

    CMDB (carboxymethyldextran-benzylamide) are dextrans statistically substituted with carboxymethyl and benzylamide groups which can mimick some of the biological properties of heparin. It has previously been shown that CMDB inhibit autocrine growth of breast tumor cells (Bagheri-Yarmand et al., Biochem. Biophys. Res. Commun. 239: 424-428, 1997) and selectively displace fibroblast growth factor 2 (FGF-2) from its receptor. Here, we used circular dichroism and fluorescence anisotropy measurements to show that the conformation of FGF-2 was significantly altered upon its binding to CMDB and to short CMDB fragments prepared within this study. CMDB and fragments formed a stable 1:1 complex with FGF-2, with affinities being estimated as 20+/-10 nM from fluorescence anisotropy analysis. No such a complex was formed with insulin-like growth factor (IGF-1) or epidermal growth factor (EGF). CMDB competed with the FGF-2 receptor for binding to FGF-2 but did not disturb the binding of IGF-1 and EGF to their receptors. Thus, our results highlight the selectivity of CMDB and their fragments towards FGF-2. Heparin, however, competes with CMDB and their fragments for binding to FGF-2. The carboxymethyl and benzylamide groups of these molecules likely interact directly with a heparin-binding region of FGF-2. The resulting change in conformation disturbs the binding of FGF-2 to its receptor and consecutively its mitogenic activity.

  15. G Protein-Coupled Receptor Heteromerization: A Role in Allosteric Modulation of Ligand BindingS⃞

    PubMed Central

    Gomes, Ivone; IJzerman, Adriaan P.; Ye, Kai; Maillet, Emeline L.

    2011-01-01

    It is becoming increasingly recognized that G protein-coupled receptors physically interact. These interactions may provide a mechanism for allosteric modulation of receptor function. In this study, we examined this possibility by using an established model system of a receptor heteromer consisting of μ and δ opioid receptors. We examined the effect of a number of μ receptor ligands on the binding equilibrium and association and dissociation kinetics of a radiolabeled δ receptor agonist, [3H]deltorphin II. We also examined the effect of δ receptor ligands on the binding equilibrium and association and dissociation kinetics of a radiolabeled μ receptor agonist, [3H][d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin ([3H]DAMGO). We show that μ receptor ligands are capable of allosterically enhancing δ receptor radioligand binding and vice versa. Thus, there is strong positive cooperativity between the two receptor units with remarkable consequences for ligand pharmacology. We find that the data can be simulated by adapting an allosteric receptor model previously developed for small molecules, suggesting that the ligand-occupied protomers function as allosteric modulators of the partner receptor's activity. PMID:21415307

  16. Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets

    PubMed Central

    Herfst, Sander; Schrauwen, Eefje J. A.; Linster, Martin; Chutinimitkul, Salin; de Wit, Emmie; Munster, Vincent J.; Sorrell, Erin M.; Bestebroer, Theo M.; Burke, David F.; Smith, Derek J.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Fouchier, Ron A. M.

    2016-01-01

    Highly pathogenic avian influenza A/H5N1 virus can cause morbidity and mortality in humans but thus far has not acquired the ability to be transmitted by aerosol or respiratory droplet (“airborne transmission”) between humans. To address the concern that the virus could acquire this ability under natural conditions, we genetically modified A/H5N1 virus by site-directed mutagenesis and subsequent serial passage in ferrets. The genetically modified A/H5N1 virus acquired mutations during passage in ferrets, ultimately becoming airborne transmissible in ferrets. None of the recipient ferrets died after airborne infection with the mutant A/H5N1 viruses. Four amino acid substitutions in the host receptor-binding protein hemagglutinin, and one in the polymerase complex protein basic polymerase 2, were consistently present in airborne-transmitted viruses. The transmissible viruses were sensitive to the antiviral drug oseltamivir and reacted well with antisera raised against H5 influenza vaccine strains. Thus, avian A/H5N1 influenza viruses can acquire the capacity for airborne transmission between mammals without recombination in an intermediate host and therefore constitute a risk for human pandemic influenza. PMID:22723413

  17. Contribution of Priority PAHs and POPs to Ah Receptor-Mediated Activities in Sediment Samples from the River Elbe Estuary, Germany

    PubMed Central

    Otte, Jens C.; Keiter, Steffen; Faßbender, Christopher; Higley, Eric B.; Rocha, Paula Suares; Brinkmann, Markus; Wahrendorf, Dierk-Steffen; Manz, Werner; Wetzel, Markus A.; Braunbeck, Thomas; Giesy, John P.; Hecker, Markus; Hollert, Henner

    2013-01-01

    The estuary of the River Elbe between Hamburg and the North Sea (Germany) is a sink for contaminated sediment and suspended particulate matter (SPM). One major concern is the effect of human activities on the hydrodynamics, particularly the intensive dredging activities in this area that may result in remobilization of sediment-bound pollutants. The aim of this study was to identify pollutants contributing to the toxicological risk associated with re-suspension of sediments in the Elbe Estuary by use of an effect-directed analysis that combines chemical and biological analyses in with specific fractionation techniques. Sediments were collected from sites along the Elbe Estuary and a site from a small harbor basin of the Elbe Estuary that is known to be polluted. The sixteen priority EPA-PAHs were quantified in organic extracts of sediments. In addition, dioxin equivalents of sediments were investigated by use of the 7-ethoxyresorufin O-deethylase assay with RTL-W1 cells and the Ah receptor-mediated luciferase transactivation assay with H4IIE-luc cells. Quantification of the 16 priority PAHs revealed that sediments were moderately contaminated at all of the sites in the Elbe River Estuary (<0.02–0.906 µg/g dw). Sediments contained relatively small concentrations of dioxin equivalents (Bio-TEQ) with concentrations ranging from 15.5 to 322 pg/g dw, which were significantly correlated with dioxin equivalents calculated based on toxicity reference values and concentrations of PAH. The concentration of Bio-TEQ at the reference site exceeded 200,000 pg/g dw. In a potency balance the 16 PAHs explained between 47 and 118% of the Bio-TEQ in the luciferase assay, which can be explained by the constant input of PAHs bound to SPM from the upper course of the Elbe River into its estuary. Successful identification of a significant portion of dioxin-like activity to priority PAHs in complex environmental samples such as sediments has rarely been reported. PMID:24146763

  18. Evidence for a vasopressin receptor-GTP binding protein complex

    SciTech Connect

    Fitzgerald, T.J.; Uhing, R.J.; Exton, J.H.

    1986-05-01

    Plasma membranes from the livers of rats were able to hydrolyze the ..gamma..-phosphate from guanosine-5'-triphosphate (GTP). The rate of GTP hydrolysis could be decreased to 10% of its initial rate by the addition of adenosine-5'-triphosphate with a concomitant decrease in the K/sub m/ for GTP from approx. 10/sup -3/ M to 10/sup -6/ M. The low K/sub m/ GTPase activity was inhibited by the addition of nonhydrolyzable analogs of GTP. In addition, the GTPase activity was stimulated from 10 to 30% over basal by the addition of vasopressin. A dose dependency curve showed that the maximum stimulation was obtained with 10/sup -8/ M vasopressin. Identical results were obtained from plasma membranes that had been solubilized with 1% digitonin. When membranes that had been solubilized in the presence of (Phenylalanyl-3,4,5-/sup 3/H(N))vasopressin were subjected to sucrose gradient centrifugation, the majority of bound (/sup 3/H)vasopressin migrated with an approximate molecular weight of 300,000. Moreover, there was a GTPase activity that migrated with the bound (/sup 3/H)vasopressin. This peak of bound (/sup 3/H)vasopressin was decreased by 90% when the sucrose gradient centrifugation was run in the presence of 10/sup -5/ M guanosine-5'-O-(3-thiotriphosphate). These results support the conclusion that liver plasma membranes contain a GTP-binding protein that can complex with the vasopressin receptor.

  19. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  20. Neurotensin receptor binding levels in basal ganglia are not altered in Huntington's chorea or schizophrenia

    SciTech Connect

    Palacios, J.M.; Chinaglia, G.; Rigo, M.; Ulrich, J.; Probst, A. )

    1991-02-01

    Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of control cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.

  1. Effects of vitamin B-6 nutrition on benzodiazepine (BDZ) receptor binding in the developing rat brain

    SciTech Connect

    Borek, J.P.; Guilarte, T.R. )

    1990-02-26

    A dietary deficiency of vitamin B-6 promotes seizure activity in neonatal animals and human infants. Previous studied have shown that neonatal vitamin B-6 deprivation results in reduced levels of brain gamma-aminobutyric acid (GABA) and increased binding at the GABA site of the GABA/BDZ receptor complex. Since the GABA and BDZ receptors are allosterically linked, this study was undertaken to determine if vitamin B-6 deprivation had an effect on BDZ receptor binding. Benzodiazepine receptor binding isotherms using {sup 3}H-flunitrazepam as ligand were performed in the presence and absence of 10 {mu}M GABA. The results indicate a significant increase in the binding affinity (Kd) in the presence of GABA in cerebellar membranes from deficient rat pups at 14 days of age with no effect on receptor number (Bmax). By 28 days of age, the increase in Kd was no longer present. No change in Kd or Bmax was observed in cortical tissue from deficient animals at 14 or 28 days of age. Preliminary studies of GABA-enhancement of {sup 3}H-flunitrazepam binding indicate that vitamin B-6 deficiency also induces alterations in the ability of GABA to enhance BZD receptor binding. In summary, these results indicate that the effects of vitamin B-6 deprivation on BDZ receptor binding are region specific and age related.

  2. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers.

    PubMed

    Zoenen, Maxime; Urizar, Eneko; Swillens, Stéphane; Vassart, Gilbert; Costagliola, Sabine

    2012-01-01

    Glycoprotein hormone receptors show strong negative cooperativity. As a consequence, at physiological hormone concentrations, a single agonist binds to a receptor dimer. Here we present evidence that constitutively active receptors lose cooperative allosteric regulation in direct relation with their basal activity. The most constitutive mutants lost nearly all cooperativity and showed an increase of initial tracer binding, reflecting the ability of each protomer to bind with equal affinity. Allosteric interaction between the protomers takes place at the transmembrane domain. The allosteric message resulting from hormone binding to the ectodomain of one protomer travels 'downward' to its transmembrane domain, before affecting the transmembrane domain of the other protomer. This results in transmission of an 'upward' message lowering the binding affinity of the ectodomain of the second protomer. Our results demonstrate a direct relation between the conformational changes associated with activation of the transmembrane domain and the allosteric behaviour of glycoprotein hormone receptors dimers.

  3. Stacking interaction and its role in kynurenic acid binding to glutamate ionotropic receptors.

    PubMed

    Zhuravlev, Alexander V; Zakharov, Gennady A; Shchegolev, Boris F; Savvateeva-Popova, Elena V

    2012-05-01

    Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation. PMID:21833825

  4. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    SciTech Connect

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/sup 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.

  5. The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element.

    PubMed Central

    Rajendra, S; Vandenberg, R J; Pierce, K D; Cunningham, A M; French, P W; Barry, P H; Schofield, P R

    1995-01-01

    A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily. Images PMID:7621814

  6. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  7. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    PubMed Central

    Jen, Angela; Parkyn, Celia J.; Mootoosamy, Roy C.; Ford, Melanie J.; Warley, Alice; Liu, Qiang; Bu, Guojun; Baskakov, Ilia V.; Moestrup, Søren; McGuinness, Lindsay; Emptage, Nigel; Morris, Roger J.

    2010-01-01

    For infectious prion protein (designated PrPSc) to act as a template to convert normal cellular protein (PrPC) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrPC is the low-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor clusters 2 and 4, PrPC and PrPSc fibrils bind only to receptor cluster 4. PrPSc fibrils out-compete PrPC for internalization. When endocytosed, PrPSc fibrils are routed to lysosomes, rather than recycled to the cell surface with PrPC. Thus, although LRP1 binds both forms of PrP, it traffics them to separate fates within sensory neurons. The binding of both to ligand cluster 4 should enable genetic modification of PrP binding without disrupting other roles of LRP1 essential to neuronal viability and function, thereby enabling in vivo analysis of the role of this interaction in controlling both prion and LRP1 biology. PMID:20048341

  8. Dye-labeled benzodiazepines: development of small ligands for receptor binding studies using fluorescence correlation spectroscopy.

    PubMed

    Hegener, Oliver; Jordan, Randolf; Häberlein, Hanns

    2004-07-01

    To investigate benzodiazepine receptor binding studies by fluorescence correlation spectroscopy (FCS), the four fluorophores fluorescein, tetramethylrhodamine, Oregon Green 488, and Alexa 532 were coupled to the benzodiazepine Ro 07-1986/602 (Ro). Binding assays to polyclonal antibodies to benzodiazepines and at the native benzodiazepine receptor on the membrane of rat hippocampal neurons were established to examine the dye-labeled ligands for their benzodiazepine character and their binding behavior. Both the fluorescein and the Oregon Green488 moiety led to a loss of the benzodiazepine receptor binding of the corresponding Ro derivatives. Antibody recognition and interactions to the receptor were observed for the tetramethylrhodamine derivative (K(D) = 96.0 +/- 9.5 nM) but with a high amount of nonspecific binding at the cell membrane of about 50%. In saturation experiments a K(D) value of 97.2 +/- 8.5 nM was found for the Alexa Fluor 532 derivative-antibody interaction. Investigation of the binding of this ligand to the benzodiazepine receptor in FCS cell measurements led to confirmation of high specific binding behavior with a K(D) value of 9.9 +/- 1.9 nM. A nonspecific binding of <10% was observed after coincubation with 1 microM of midazolam. The different properties of the labeled benzodiazepine derivatives and the requirements of the fluorophore in small dye-labeled ligands in FCS binding studies, at the membrane of living cells, are discussed.

  9. Expression of profibrotic growth factors and their receptors by mouse lung macrophages and fibroblasts under conditions of acute viral inflammation in influenza A/H5N1 virus.

    PubMed

    Anikina, A G; Shkurupii, V A; Potapova, O V; Kovner, A V; Shestopalov, A M

    2014-04-01

    Morphological signs of early interstitial fibrosis, developing under conditions of acute viral inflammation (postinfection days 1-14), were observed in C57Bl/6 mice infected with influenza A/H5N1 A/goose/Krasnoozerskoye/627/05 virus. The development of fibrosis was confirmed by an increase in the number of lung cells expressing TNF-α. These changes were recorded in the presence of a many-fold increase in the counts of macrophages and fibroblasts expressing FGF, EGF, and their receptors.

  10. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  11. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    SciTech Connect

    Cuthill, S.; Poellinger, L.

    1988-04-19

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant (/sup 3/H)dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin.

  12. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  13. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference.

    PubMed

    Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F

    2015-06-12

    The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference.

  14. Mu receptor binding of some commonly used opioids and their metabolites

    SciTech Connect

    Chen, Zhaorong; Irvine, R.J. ); Somogyi, A.A.; Bochner, F. Royal Adelaide Hospital )

    1991-01-01

    The binding affinity to the {mu} receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with {sup 3}H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding. Decreasing the length of the alkyl group at position 3 decreased the K{sub i} values (morphine < codeine < ethylmorphine < pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 had relatively weak receptor binding, while their O-demethylated metabolites had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.

  15. Measuring relative acetylcholine receptor agonist binding by selective proton nuclear magnetic resonance relaxation experiments.

    PubMed Central

    Behling, R W; Yamane, T; Navon, G; Sammon, M J; Jelinski, L W

    1988-01-01

    A method is presented that uses selective proton Nuclear Magnetic Resonance (NMR) relaxation measurements of nicotine in the presence of the acetylcholine receptor to obtain relative binding constants for acetylcholine, carbamylcholine, and muscarine. For receptors from Torpedo californica the results show that (a) the binding constants are in the order acetylcholine greater than nicotine greater than carbamylcholine greater than muscarine; (b) selective NMR measurements provide a rapid and direct method for monitoring both the specific and nonspecific binding of agonists to these receptors and to the lipid; (c) alpha-bungarotoxin can be used to distinguish between specific and nonspecific binding to the receptor; (d) the receptor--substrate interaction causes a large change in the selective relaxation time of the agonists even at concentrations 100x greater than that of the receptor. This last observation means that these measurements provide a rapid method to monitor drug binding when only small amounts of receptor are available. Furthermore, the binding strategies presented here may be useful for the NMR determination of the conformation of the ligand in its bound state. Images FIGURE 1 PMID:3395661

  16. An analysis of the binding of the chick oviduct progesterone-receptor to chromatin.

    PubMed

    Jaffe, R C; Socher, S H; O'Malley, B W

    1975-08-13

    The binding of progesterone-receptor complexes to chromatin from target and nontarget tissues was studied in vitro. Chromatin from both target and nontarget tissues responds in a similar manner to saly and cofactors and has the same K(D) (approx. 3.10(-9) M) for the progesterone-receptor complex. The only observed difference in the binding of the progesterone-receptor complex to target and nontarget chromatins is the difference in total number of acceptor sites. oviduct chromatin has approx. 1300 sites/pg DNA, spleen chromatin has approx. 840 sites/pg DNA, and erythrocyte chromatin has about 330 sites/pg DNA. The K(D) and number of acceptor sites for progesterone-receptor complex binding to oviduct chromatin remains the same even after extensive purification of the progesterone-receptor complex. Activation of cytosol labeled with [3H]progesterone by preincubation at 25 degrees C, analogous to that required for maximal nuclear binding, occurs if the binding studies to chromatin are performed in 0.025 M salt. The absence of an observable temperature effect when the studies are performed at 0.15 M salt is due to the activation of the receptor by salt. The dissociation of the progesterone-receptor complex from chromatin exhibits a single dissociation rate and the initial event is the appearance of free progesterone rather than a progesterone-receptor complex. Lastly, the treatment of chromatin with an antibody prepared against either single-stranded DNA or double-stranded DNA does not alter the extent of binding of the progesterone-receptor complex. Similarly, pretreatment of chromatin with a single-stranded nuclease does not inhibit the capacity of chromatin to bind the hormone-receptor complex.

  17. Analyzing machupo virus-receptor binding by molecular dynamics simulations

    PubMed Central

    Sawyer, Sara L.; Ellington, Andrew D.; Wilke, Claus O.

    2014-01-01

    In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions. PMID:24624315

  18. Analyzing machupo virus-receptor binding by molecular dynamics simulations.

    PubMed

    Meyer, Austin G; Sawyer, Sara L; Ellington, Andrew D; Wilke, Claus O

    2014-01-01

    In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein-protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host-virus protein-protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein-protein interactions.

  19. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  20. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    SciTech Connect

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.

  1. Day length and sociosexual cohabitation alter central oxytocin receptor binding in female meadow voles (Microtus pennsylvanicus).

    PubMed

    Parker, K J; Phillips, K M; Kinney, L F; Lee, T M

    2001-12-01

    In voles (Microtus), central oxytocin (OT) receptor patterns are associated with interspecific social organization. Social, monogamous voles have more OT receptors in the extended amygdala than asocial, nonmonogamous voles. Nonmonogamous meadow voles (Microtus pennsylvanicus), which exhibit seasonal changes in social organization (long day [LD] females are territorial, short day [SD] females live socially), provide a model for examining whether OT receptor patterns are associated with seasonal changes in intraspecific social behaviors. The authors examined whether sexually inexperienced (naive) SD females had more OT receptor binding than naive LD females. Naive SD females had greater OT receptor binding in the lateral septum (LS), lateral amygdala (LatAmyg), and central amygdala (CenAmyg) than less social, naive LD females. Because both SD and LD females acquire partner preferences, the authors assessed whether OT receptor binding was associated with partner preference onset. For LD females, partner preference onset corresponded with greater OT receptor binding in the anterior olfactory nucleus, LS, and bed nucleus of the stria terminalis, compared with naive LD females. In contrast, naive SD females and those exhibiting partner preferences did not differ. However, SD females that failed to acquire partner preferences showed less OT binding in the LatAmyg and CenAmyg. This study is the first to show that central OT receptor patterns are associated with seasonal changes in intraspecific social organization and partner preference onset in a nonmonogamous rodent.

  2. Epidermal growth factor receptors on PC12 cells: alteration of binding properties by lectins

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1983-01-01

    The PC12 cell line displays cell surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). It has been previously shown that the lectin wheat germ agglutinin (WGA) alters the properties of NGF receptors on these cells. We now report that preincubations with either WGA or concanavalin A (Con A) decrease the binding of /sup 125/I-EGF to PC12 cells by greater than 50%. The inhibition of binding occurred at 37 degrees C and 4 degrees C and could be blocked or reversed by the addition of sugars which bind specifically to WGA or Con A. Scatchard analysis revealed that these lectins decreased binding primarily by lowering the affinity of the receptor and to a lesser extent by decreasing receptor number. Succinylation of Con A (sCon A) produced a derivative that was less effective than the native lectin in decreasing EGF binding; however, addition of an antibody against Con A restored the ability of sCon A to decrease binding. Similar to results obtained with /sup 125/I-NGF binding, WGA but not Con A was found to increase, by severalfold, the proportion of /sup 125/I-EGF binding that is resistant to solubilization by Triton X-100 detergent. A potential association of the EGF receptor with cytoskeletal elements is discussed which could account for such results.

  3. Characterization of ( sup 3 H)alprazolam binding to central benzodiazepine receptors

    SciTech Connect

    McCabe, R.T.; Mahan, D.R.; Smith, R.B.; Wamsley, J.K. )

    1990-10-01

    The binding of the triazolobenzodiazepine ({sup 3}H)alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat brain. Studies using nonequilibrium and equilibrium binding conditions for ({sup 3}H)alprazolam resulted in high specific to nonspecific (signal to noise) binding ratios. The binding of ({sup 3}H)alprazolam was saturable and specific with a low nanomolar affinity for benzodiazepine receptors in the rat brain. The Kd was 4.6 nM and the Bmax was 2.6 pmol/mg protein. GABA enhanced ({sup 3}H)alprazolam binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptor sites had a very weak or negligible effect on ({sup 3}H)alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other benzodiazepines in its class.

  4. Effect of ethanol administration and withdrawal on GABA receptor binding in rat cerebral cortex

    SciTech Connect

    Volicer, L.; Biagioni, T.M.

    1982-01-01

    Sodium independent GABA receptor binding was measured in synaptosomes prepared from cerebral cortex of rats made ethanol dependent by three daily ethanol administrations. In rats sacrificed 1 hour after the last ethanol dose there was a lower number of low affinity binding sites and lower affinity of the high affinity binding than in controls. The decreased affinity was present only in rats who showed symptoms of ethanol withdrawal during the course of ethanol administration. In rats sacrificed during ethanol withdrawal the affinity of the high affinity binding was lower than in controls and other binding characteristics were unchanged. This decreased binding was normalized by repeated Triton X-100 incubations indicating involvement of an endogenous inhibitor in this ethanol effect. Acute ethanol administration did not change GABA receptor binding.

  5. Identification of a new hormone-binding site on the surface of thyroid hormone receptor.

    PubMed

    Souza, P C T; Puhl, A C; Martínez, L; Aparício, R; Nascimento, A S; Figueira, A C M; Nguyen, P; Webb, P; Skaf, M S; Polikarpov, I

    2014-04-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.

  6. Central phencyclidine (PCP) receptor binding is glutamate dependent: evidence for a PCP/excitatory amino acid receptor (EAAR) complex

    SciTech Connect

    Loo, P.; Braunwalder, A.; Lehmann, J.; Williams, M.

    1986-03-01

    PCP and other dissociative anesthetica block the increase in neuronal firing rate evoked by the EAAR agonist, N-methyl-Daspartate. NMDA and other EAAs such as glutamate (glu) have not been previously shown to affect PCP ligand binding. In the present study, using once washed rat forebrain membranes, 10 ..mu..M-glu was found to increase the binding of (/sup 3/H)TCP, a PCP analog, to defined PCP recognition sites by 20%. Removal of glu and aspartate (asp) by extensive washing decreased TCP binding by 75-90%. In these membranes, 10 ..mu..M L-glu increased TCP binding 3-fold. This effect was stereospecific and evoked by other EAAs with the order of activity, L-glu > D-asp > L- asp > NMDA > D-glu > quisqualate. Kainate, GABA, NE, DA, 5-HT, 2-chloroadenosine, oxotremorine and histamine had no effect on TCP binding at concentrations up to 100 ..mu..M. The effects of L-glu were attenuated by the NMDA-type receptor antagonist, 2-amino-7--phosphonoheptanoate (AP7; 10 ..mu..M-1 mM). These findings indicate that EAAS facilitate TCP binding, possibly through NMDA-type receptors. The observed interaction between the PCP receptor and EAARs may reflect the existence of a macromolecular receptor complex similar to that demonstrated for the benzodiazepines and GABA.

  7. Synthesis and binding profile of haloperidol-based bivalent ligands targeting dopamine D(2)-like receptors.

    PubMed

    Salama, Ismail; Löber, Stefan; Hübner, Harald; Gmeiner, Peter

    2014-08-15

    Homodimers of dopamine D2-like receptors are suggested to be of particular importance in the pathophysiology of schizophrenia and, thus, serve as promising targets for the discovery of atypical antipsychotics. This study describes the development of a series of novel bivalent molecules with a pharmacophore derived from the dopamine receptor antagonist haloperidol. These dimers were investigated in comparison to their monomeric analogues for their D2long, D2short, D3, and D4 receptor binding and the ability to bridge two neighboring receptor protomers. Radioligand binding studies provided diagnostic insights when Hill slopes close to two for the bivalent ligand 13 incorporating 22 spacer atoms and a comparative analysis with monovalent control ligands indicated a bivalent binding mode with a simultaneous occupancy of two neighboring binding sites. PMID:25047579

  8. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  9. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R.

    2015-12-01

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  10. ( sup 3 H)cytisine binding to nicotinic cholinergic receptors in brain

    SciTech Connect

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J. )

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic {sup 3}H-agonist ligands. Here we have examined the binding of ({sup 3}H)cytisine in rat brain homogenates. ({sup 3}H)Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for ({sup 3}H)cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that ({sup 3}H)cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of ({sup 3}H)cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of ({sup 3}H)cytisine should make it a very useful ligand for studying neuronal nicotinic receptors.

  11. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory.

    PubMed

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R

    2015-12-28

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  12. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  13. Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D

    SciTech Connect

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  14. Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D

    SciTech Connect

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin; Robinson, Howard; Varnum, Susan M.

    2010-10-28

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.

  15. Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge.

    PubMed

    Vishnivetskiy, Sergey A; Hirsch, Joel A; Velez, Maria-Gabriela; Gurevich, Yulia V; Gurevich, Vsevolod V

    2002-11-15

    Arrestins selectively bind to the phosphorylated activated form of G protein-coupled receptors, thereby blocking further G protein activation. Structurally, arrestins consist of two domains topologically connected by a 12-residue long loop, which we term the "hinge" region. Both domains contain receptor-binding elements. The relative size and shape of arrestin and rhodopsin suggest that dramatic changes in arrestin conformation are required to bring all of its receptor-binding elements in contact with the cytoplasmic surface of the receptor. Here we use the visual arrestin/rhodopsin system to test the hypothesis that the transition of arrestin into its active receptor-binding state involves a movement of the two domains relative to each other that might be limited by the length of the hinge. We have introduced three insertions and 24 deletions in the hinge region and measured the binding of all of these mutants to light-activated phosphorylated (P-Rh*), dark phosphorylated (P-Rh), dark unphosphorylated (Rh), and light-activated unphosphorylated rhodopsin (Rh*). The addition of 1-3 extra residues to the hinge has no effect on arrestin function. In contrast, sequential elimination of 1-8 residues results in a progressive decrease in P-Rh* binding without changing arrestin selectivity for P-Rh*. These results suggest that there is a minimum length of the hinge region necessary for high affinity binding, consistent with the idea that the two domains move relative to each other in the process of arrestin transition into its active receptor-binding state. The same length of the hinge is also necessary for the binding of "constitutively active" arrestin mutants to P-Rh*, dark P-Rh, and Rh*, suggesting that the active (receptor-bound) arrestin conformation is essentially the same in both wild type and mutant forms.

  16. Stereospecificity in binding studies. A useful criterion though insufficient to prove the presence of receptors.

    PubMed

    Laduron, P M

    1988-01-01

    In binding studies, stereospecificity is not a property restricted to receptor sites; indeed stereospecific binding has also been observed for acceptor sites. Therefore it does not represent a decisive criterion to make a binding site, a receptor site. However, in some well established cases, it can be useful especially when the difference between the active and inactive enantiomer exceeds 1000-fold as is the case for dexetimide and levetimide on muscarinic receptors. Stereospecific effect is also detectable with acceptor sites, e.g. spirodecanone sites, levocabastine displaceable neurotensin and, presumably, many other ones. Since the membrane is chiral (L-aminoacid) one should expect that non-specific displaceable binding would also display stereospecificity. In this regard, as most of the Scatchard plots reported throughout the literature are curvilinear, even if a straight line is drawn, one may assume that this is due to the presence of acceptor sites that are labelled by the ligand in addition to receptor sites. One cannot exclude the repetition of another "levocabastine story" with other neuropeptides. Hence, as the biochemical criteria like high affinity, saturability, reversibility and stereospecificity cannot differentiate a receptor from an acceptor (see Table 1), the most important and decisive criteria remain: (1) the drug displacement with compounds belonging to different pharmacological classes but mostly to different chemical classes, and (2) the functional correlates between the binding affinity and the potency in pharmacological or physiological tests in vitro or in vivo. When these points are fulfilled a binding site may be called a receptor site. PMID:2827683

  17. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    SciTech Connect

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  18. Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation

    PubMed Central

    Lahti, Jennifer L.; Lui, Bertrand H.; Beck, Stayce E.; Lee, Stephen S.; Ly, Daphne P.; Longaker, Michael T.; Yang, George P.; Cochran, Jennifer R.

    2011-01-01

    Receptor tyrosine kinases (RTKs) regulate critical cell signaling pathways, yet the properties of their cognate ligands that influence receptor activation are not fully understood. There is great interest in parsing these complex ligand-receptor relationships using engineered proteins with altered binding properties. Here we focus on the interaction between two engineered epidermal growth factor (EGF) mutants and the EGF receptor (EGFR), a model member of the RTK superfamily. We found that EGF mutants with faster kinetic on-rates stimulate increased EGFR activation compared to wild-type EGF. These findings support previous predictions that faster association rates correlate with enhanced receptor activity. PMID:21439278

  19. In vitro binding of the asialoglycoprotein receptor to the beta adaptin of plasma membrane coated vesicles.

    PubMed Central

    Beltzer, J P; Spiess, M

    1991-01-01

    The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897

  20. Binding and transactivation of the largemouth bass estrogen receptors by model compounds

    EPA Science Inventory

    Environmental estrogens (EEs) are chemicals in the environment that can elicit adverse effects on estrogen (E2) signaling by binding with the estrogen receptors (ERs). In largemouth bass (LMB), the physiological actions of E2 are primarily mediated via three receptors (ERα, ERßb ...

  1. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  2. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.

  3. [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain.

    PubMed

    Wright, R A; Arnold, M B; Wheeler, W J; Ornstein, P L; Schoepp, D D

    2001-08-01

    [3H]LY341495 is a highly potent and selective antagonist for group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3), which has been used to label these receptors in cells expressing recombinant receptor subtypes. In this study, we characterized the kinetics, pharmacology, and distribution of [3H]LY341495 binding to mGlu receptors in rat brain tissue. Equilibrium experiments in the rat forebrain demonstrated binding to a single site that was saturable, reversible, and of high affinity (Bmax, 3.9 +/- 0.65 pmol/mg of protein, Kd, 0.84 +/- 0.11 nM). The relative order of potencies for displacement of [3H]LY341495 by mGlu receptor ligands was LY341495 > L-glutamic acid > LY354740 > (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine > 4-(2R,4R)-aminopyrrolidine-2,4-dicarboxylate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (R,S)-alpha-methyl-4-phosphonophenylglycine > (R,S)3,5-dihydroxyphenylglycine > L-(+)-2-amino-4-phosphonobutyric acid. [3H]LY341495 was not displaced by the selective ionotropic glutamate receptor agonists N-methyl-D-aspartic acid, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, or kainate at concentrations up to 1 mM. Comparison of [3H]LY341495 binding in rat brain with recombinant mGlu receptor subtypes demonstrated a very high correlation with mGlu3 receptor binding (r2 = 0.957), a significant, but lower, correlation with mGlu2 receptor binding (r2 = 0.869), but no significant correlation to mGlu8 receptor binding (r2 = 0.284). Regional studies using autoradiography showed a similar distribution of [3H]LY341495 binding to that for group II mGlu receptors previously reported by others using immunocytochemical techniques. These studies indicate that [3H]LY341495 selectively labels group II (mGlu2/3) receptors, but under the conditions used, [3H]LY341495 may bind predominately to mGlu3 receptor populations in the rat forebrain. PMID:11454905

  4. Ah Receptor–Mediated Suppression of Liver Regeneration through NC-XRE–Driven p21Cip1 Expression

    PubMed Central

    Jackson, Daniel P.; Li, Hui; Mitchell, Kristen A.; Joshi, Aditya D.

    2014-01-01

    Previous studies in hepatocyte-derived cell lines and the whole liver established that the aryl hydrocarbon receptor (AhR) can disrupt G1-phase cell cycle progression following exposure to persistent AhR agonists, such as TCDD (dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin). Growth arrest was attributed to inhibition of G1-phase cyclin-dependent kinase 2 (CDK2) activity. The present study examined the effect of TCDD exposure on liver regeneration following 70% partial hepatectomy in mice lacking the Cip/Kip inhibitors p21Cip1 or p27Kip1 responsible for regulating CDK2 activity. Assessment of the regenerative process in wild-type, p21Cip1 knockout, and p27Kip1 knockout mice confirmed that TCDD-induced inhibition of liver regeneration is entirely dependent on p21Cip1 expression. Compared with wild-type mice, the absence of p21Cip1 expression completely abrogated the TCDD inhibition, and accelerated hepatocyte progression through G1 phase during the regenerative process. Analysis of the transcriptional response determined that increased p21Cip1 expression during liver regeneration involved an AhR-dependent mechanism. Chromatin immunoprecipitation studies revealed that p21Cip1 induction required AhR binding to the newly characterized nonconsensus xenobiotic response element, in conjunction with the tumor suppressor protein Kruppel-like factor 6 functioning as an AhR binding partner. The evidence also suggests that AhR functionality following partial hepatectomy is dependent on a p21Cip1-regulated signaling process, intimately linking AhR biology to the G1-phase cell cycle program. PMID:24431146

  5. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    ERIC Educational Resources Information Center

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  6. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  7. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    PubMed Central

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V.; Ecker, Gerhard F.; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  8. Specific beta-adrenergic receptor binding of carazolol measured with PET

    SciTech Connect

    Berridge, M.S.; Nelson, A.D.; Zheng, L.

    1994-10-01

    Carazolol is a promising high-affinity beta-adrenergic receptor ligand for the noninvasive determination of beta receptor status using PET> Earlier investigations demonstrated specific receptor binding of carazolol in mice. These PET studies with S(-)-[2{double_prime}-{sup 11}C]carazolol in pigs were performed to explore the utility of the tracer for PET receptor studies. Tracer uptake in the heart and lung was measured by PET as a function of time. Receptors were blocked with propranolol and different doses of ICI 118,551 to estimate specific binding. Fluorine-18-1{double_prime}-Fluorocarazolol and the less active R-enantiomer of [{sup 11}C]-carazolol were also studied. Specific receptor binding was 75% of the total uptake in the heart, preventable and displaceable by propranolol. Dose-dependent competition showed that carazolol binds in vivo to {beta}{sub 1} and to {beta}{sub 2} subtypes. Uptake of the labeled R(=) enantiomer of carazolol was not receptor-specific. Carazolol labeled with {sup 11}C or {sup 18}F is a strong candidate for use in receptor estimation with PET. The in vivo observations were consistent with its known high affinity and slow receptor dissociation rate. Its high specific receptor uptake and low metabolism allow existing kinetic models to be applied for receptor measurements. The {sup 11}C label is convenient for repeated administrations, though {sup 13}F allowed the long observation periods necessary for measurement of the receptor dissociation rate. If needed, nonspecific uptake can be estimated without pharmacologic intervention by using the labeled R enantiomer. 32 refs., 11 figs.

  9. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  10. A Natural Mutation in Helix 5 of the Ligand Binding Domain of Glucocorticoid Receptor Enhances Receptor-Ligand Interaction

    PubMed Central

    Reyer, Henry; Ponsuksili, Siriluck; Kanitz, Ellen; Pöhland, Ralf; Wimmers, Klaus; Murani, Eduard

    2016-01-01

    The glucocorticoid receptor (GR) is a central player in the neuroendocrine stress response; it mediates feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis and physiological actions of glucocorticoids in the periphery. Despite intensive investigations of GR in the context of receptor-ligand interaction, only recently the first naturally occurring gain-of-function substitution, Ala610Val, of the ligand binding domain was identified in mammals. We showed that this mutation underlies a major quantitative trait locus for HPA axis activity in pigs, reducing cortisol production by about 40–50 percent. To unravel the molecular mechanisms behind this gain of function, receptor-ligand interactions were evaluated in silico, in vitro and in vivo. In accordance with previously observed phenotypic effects, the mutant Val610 GR showed significantly increased activation in response to glucocorticoid and non-glucocorticoid steroids, and, as revealed by GR-binding studies in vitro and in pituitary glands, enhanced ligand binding. Concordantly, the protein structure prediction depicted reduced binding distances between the receptor and ligand, and altered interactions in the ligand binding pocket. Consequently, the Ala610Val substitution opens up new structural information for the design of potent GR ligands and to examine effects of the enhanced GR responsiveness to glucocorticoids on the entire organism. PMID:27736993

  11. Platelet-derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissociable.

    PubMed Central

    Williams, L T; Tremble, P; Antoniades, H N

    1982-01-01

    Radioiodinated platelet-derived growth factor (125I-PDGF) was used in studies of PDGF binding sites on vascular smooth muscle cells. There was an excellent correlation between the ability of 125I-PDGF to stimulate cell proliferation and to bind specifically to cultured vascular smooth muscle cells. The half-maximal concentration for both processes was 0.1 nM. There were 50,000 binding sites per cell. Reduced PDGF, prepared by treatment of PDGF with 20 mM dithiothreitol, had neither the ability to bind to smooth muscle cells nor to stimulate cellular proliferation. Epidermal growth factor, nerve growth factor, fibroblast growth factor, and histone B did not compete for the binding sites at a concentration of 10 nM. 125I-PDGF binding was slowly reversible at 4 degrees C and was rapidly and totally reversible after a 1-min incubation at 37 degrees C. After continued incubation at 37 degrees C, the binding became irreversible. The half-time for formation of the nondissociable state of 125I-PDGF binding was approximately equal to 5 min at 37 degrees C. The nondissociable state of binding was not formed at 4 degrees C even after 1 hr of incubation. These data suggest that the sites we labeled are the PDGF receptors that mediate PDGF's mitogenic action and that a nondissociable state of PDGF binding is formed at 37 degrees C. It is likely that nondissociable PDGF represents internalized ligand or binding to sites that are converted to a high-affinity state after the ligand binds. PMID:6310551

  12. DIFFERENCES IN SENSITIVITY BUT NOT SELECTIVITY OF XENOESTROGEN BINDING TO ALLIGATOR VERSUS HUMAN ESTROGEN RECEPTOR ALPHA

    PubMed Central

    Rider, Cynthia V.; Hartig, Phillip C.; Cardon, Mary C.; Lambright, Christy R.; Bobseine, Kathy L.; Guillette, Louis J.; Gray, L. Earl; Wilson, Vickie S.

    2010-01-01

    Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERα) and alligator (aERα) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERα and aERα were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p′-Dicofol was able to bind to aERα with a concentration inhibiting 50% of binding (IC50) of 4 μM, while only partially displacing 17β-estradiol (E2) from hERα and yielding a projected IC50 of 45 μM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERα than hERα. p,p′-Dicofol-mediated transcriptional activation through aERα and hERα was assessed to further explore the preferential binding of p,p′-dicofol to aERα over hERα. p,p′-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p′-dicofol were not reflected in an in vivo mammalian model, where Kelthane™ (mixed o,p′-and p,p′-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p′-dicofol, had a higher affinity for aERα than for hERα. PMID:20821664

  13. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  14. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor.

    PubMed Central

    Moore, D D; Marks, A R; Buckley, D I; Kapler, G; Payvar, F; Goodman, H M

    1985-01-01

    Glucocorticoid receptor (GCR) protein stimulates transcription from a variety of cellular genes. We show here that GCR partially purified from rat liver binds specifically to a site within the first intron of the human growth hormone (hGH) gene, approximately 100 base pairs downstream from the start of hGH transcription. GCR binding is selectively inhibited by methylation of two short, symmetrically arranged clusters of guanine residues within this site. A cloned synthetic 24-base-pair deoxyoligonucleotide containing the predicted GCR binding sequence interacts specifically with GCR. The hGH binding site shares sequence homology with a GCR binding site upstream from the human metallothionein II gene and a subset of GCR binding sites from mouse mammary tumor virus. All of these binding sites for this eukaryotic transcriptional regulatory protein show remarkable similarity in overall geometry to the binding sites for several prokaryotic transcriptional regulatory proteins. Images PMID:2983311

  15. Different behavior toward muscarinic receptor binding between quaternary anticholinergics and their tertiary analogues.

    PubMed

    Ensing, K; de Zeeuw, R A

    1986-12-01

    A number of corresponding tertiary and quaternary anticholinergic analogues were examined for their ability to inhibit specific (3)H-dexetimide binding to calf brain muscarinic receptors. In all cases the tertiary antagonists (except pirenzepine) showed steep and monophasic inhibition curves, whereas those of the quaternary derivatives were shallow (thiazinamium, methylbenactyzine) or even biphasic (oxyphenonium, methylatropine, methylscopolamine). These observations show that the addition of a methyl group to the nitrogen atom changes the mode of interaction of the anticholinergics to muscarinic receptor binding sites. Whether there are separate binding sites present or differences in interaction mode for only the quaternary moiety is discussed. PMID:24271831

  16. Stoichiometry of Heteromeric BAFF and APRIL Cytokines Dictates Their Receptor Binding and Signaling Properties*

    PubMed Central

    Schuepbach-Mallepell, Sonia; Das, Dolon; Willen, Laure; Vigolo, Michele; Tardivel, Aubry; Lebon, Luc; Kowalczyk-Quintas, Christine; Nys, Josquin; Smulski, Cristian; Zheng, Timothy S.; Maskos, Klaus; Lammens, Alfred; Jiang, Xuliang; Hess, Henry; Tan, Seng-Lai; Schneider, Pascal

    2015-01-01

    The closely related TNF family ligands B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) serve in the generation and maintenance of mature B-lymphocytes. Both BAFF and APRIL assemble as homotrimers that bind and activate several receptors that they partially share. However, heteromers of BAFF and APRIL that occur in patients with autoimmune diseases are incompletely characterized. The N and C termini of adjacent BAFF or APRIL monomers are spatially close and can be linked to create single-chain homo- or hetero-ligands of defined stoichiometry. Similar to APRIL, heteromers consisting of one BAFF and two APRILs (BAA) bind to the receptors B cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) but not to the BAFF receptor (BAFFR). Heteromers consisting of one APRIL and two BAFF (ABB) bind to TACI and BCMA and weakly to BAFFR in accordance with the analysis of the receptor interaction sites in the crystallographic structure of ABB. Receptor binding correlated with activity in reporter cell line assays specific for BAFFR, TACI, or BCMA. Single-chain BAFF (BBB) and to a lesser extent single-chain ABB, but not APRIL or single-chain BAA, rescued BAFFR-dependent B cell maturation in BAFF-deficient mice. In conclusion, BAFF-APRIL heteromers of different stoichiometries have distinct receptor-binding properties and activities. Based on the observation that heteromers are less active than BAFF, we speculate that their physiological role might be to down-regulate BAFF activity. PMID:25953898

  17. Differential receptor binding characteristics of consecutive phenylalanines in micro-opioid specific peptide ligand endomorphin-2.

    PubMed

    Honda, Takeshi; Shirasu, Naoto; Isozaki, Kaname; Kawano, Michiaki; Shigehiro, Daiki; Chuman, Yoshiro; Fujita, Tsugumi; Nose, Takeru; Shimohigashi, Yasuyuki

    2007-06-01

    Endogenous opioid peptides consist of a conserved amino acid residue of Phe(3) and Phe(4), although their binding modes for opioid receptors have not been elucidated in detail. Endomorphin-2, which is highly selective and specific for the mu opioid receptor, possesses two Phe residues at the consecutive positions 3 and 4. In order to clarify the role of Phe(3) and Phe(4) in binding to the mu receptor, we synthesized a series of analogs in which Phe(3) and Phe(4) were replaced by various amino acids. It was found that the aromaticity of the Phe-beta-phenyl groups of Phe(3) and Phe(4) is a principal determinant of how strongly it binds to the receptor, although better molecular hydrophobicity reinforces the activity. The receptor binding subsites of Phe(3) and Phe(4) of endomorphin-2 were found to exhibit different structural requirements. The results suggest that [Trp(3)]endomorphin-2 (native endomorphin-1) and endomorphin-2 bind to different receptor subclasses. PMID:17395470

  18. Position 4 substituted somatostatin analogs: increased binding to somatostatin receptors in pituitary and brain.

    PubMed

    Srikant, C B; Coy, D H; Patel, Y C

    1983-07-11

    Somatostatin (S-14) analogs with Phe4 substitutions bound to pituitary and cerebrocortical S-14 receptors more avidly than did S-14. The 2-4 fold greater affinities of the Phe4 S-14 as well as analogs with structural modification of the Phe4 residue for binding to pituitary S-14 receptors showed good correlation with their reported potencies for in vivo Gh inhibition. In the cerebral cortex, [Phe4] S-14, [Phe4, D-Trp8] S-14 and [F5-Phe4] S14 were 2-3 times more potent while [p-NH2-Phe4] S-14 was 6 times more potent compared to S-14 in binding to S-14 receptors. The increased binding affinities of the Phe4 analogs in these two tissues does not appear to be due to differential stability of the analogs compared to S-14 under the experimental conditions used. [Thr4] S-14 exhibited very low binding in both these tissues. Thus structural modification of the position 4 moiety of the S-14 molecule does not result in dissociated affinities for binding to S-14 receptors in the brain and the pituitary. The increased receptor binding affinities of the Phe4 analogs in the cerebral cortex suggest that they may be more potent than S-14 in the CNS.

  19. Characterization of a second ligand binding site of the insulin receptor

    SciTech Connect

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan . E-mail: jonathan.whittaker@case.edu

    2006-08-18

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the {alpha} subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K {sub d} of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.

  20. Structure of the bacteriophage T4 long tail fiber receptor-binding tip

    PubMed Central

    Bartual, Sergio G.; Otero, José M.; Garcia-Doval, Carmela; Llamas-Saiz, Antonio L.; Kahn, Richard; Fox, Gavin C.; van Raaij, Mark J.

    2010-01-01

    Bacteriophages are the most numerous organisms in the biosphere. In spite of their biological significance and the spectrum of potential applications, little high-resolution structural detail is available on their receptor-binding fibers. Here we present the crystal structure of the receptor-binding tip of the bacteriophage T4 long tail fiber, which is highly homologous to the tip of the bacteriophage lambda side tail fibers. This structure reveals an unusual elongated six-stranded antiparallel beta-strand needle domain containing seven iron ions coordinated by histidine residues arranged colinearly along the core of the biological unit. At the end of the tip, the three chains intertwine forming a broader head domain, which contains the putative receptor interaction site. The structure reveals a previously unknown beta-structured fibrous fold, provides insights into the remarkable stability of the fiber, and suggests a framework for mutations to expand or modulate receptor-binding specificity. PMID:21041684

  1. Imaging G protein–coupled receptors while quantifying their ligand-binding free-energy landscape

    PubMed Central

    Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2016-01-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve–based atomic force microscopy to simultaneously image single native G protein–coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1’s ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  2. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes. PMID:17168764

  3. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  4. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    PubMed

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  5. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus.

    PubMed

    Tzarum, Netanel; de Vries, Robert P; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-03-11

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and human receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. This binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics. PMID:25766295

  6. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites.

    PubMed

    Specht, Christian G; Izeddin, Ignacio; Rodriguez, Pamela C; El Beheiry, Mohamed; Rostaing, Philippe; Darzacq, Xavier; Dahan, Maxime; Triller, Antoine

    2013-07-24

    The strength of synaptic transmission is controlled by the number and activity of neurotransmitter receptors. However, little is known about absolute numbers and densities of receptor and scaffold proteins and the stoichiometry of molecular interactions at synapses. Here, we conducted three-dimensional and quantitative nanoscopic imaging based on single-molecule detections to characterize the ultrastructure of inhibitory synapses and to count scaffold proteins and receptor binding sites. We observed a close correspondence between the spatial organization of gephyrin scaffolds and glycine receptors at spinal cord synapses. Endogenous gephyrin was clustered at densities of 5,000-10,000 molecules/μm(2). The stoichiometry between gephyrin molecules and receptor binding sites was approximately 1:1, consistent with a two-dimensional scaffold in which all gephyrin molecules can contribute to receptor binding. The competition of glycine and GABAA receptor complexes for synaptic binding sites highlights the potential of single-molecule imaging to quantify synaptic plasticity on the nanoscopic scale.

  7. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

    PubMed Central

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-01-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  8. Are receptor concentrations correlated across tissues within individuals? A case study examining glucocorticoid and mineralocorticoid receptor binding.

    PubMed

    Lattin, Christine R; Keniston, Daniel E; Reed, J Michael; Romero, L Michael

    2015-04-01

    Hormone receptors are a necessary (although not sufficient) part of the process through which hormones like corticosterone create physiological responses. However, it is currently unknown to what extent receptor concentrations across different target tissues may be correlated within individual animals. In this study, we examined this question using a large dataset of radioligand binding data for glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in 13 different tissues in the house sparrow (Passer domesticus) (n=72). Our data revealed that individual house sparrows tended to exhibit higher or lower receptor binding across all tissues, which could be part of what creates the physiological and behavioral syndromes associated with different hormonal profiles. However, although statistically significant, the correlations between tissues were very weak. Thus, when each tissue was independently regressed on receptor concentrations in the other tissues, multivariate analysis revealed significant relationships only for sc fat (for GR) and whole brain, hippocampus, kidney, omental fat, and sc fat (for MR). We also found significant pairwise correlations only between receptor concentrations in brain and hippocampus, and brain and kidney (both for MR). This research reveals that although there are generalized individual consistencies in GR and MR concentrations, possibly due to such factors as hormonal regulation and genetic effects, the ability of 2 different tissues to respond to the same hormonal signal appears to be affected by additional factors that remain to be identified.

  9. Complement Component C3 Binds to Activated Normal Platelets without Preceding Proteolytic Activation and Promotes Binding to Complement Receptor 1

    PubMed Central

    Hamad, Osama A.; Nilsson, Per H.; Wouters, Diana; Lambris, John D.; Ekdahl, Kristina N.; Nilsson, Bo

    2010-01-01

    It has been reported that complement is activated on the surface of activated platelets, despite the presence of multiple regulators of complement activation. To reinvestigate the mechanisms by which activated platelets bind to complement components, the presence of complement proteins on the surfaces of nonactivated and thrombin receptor-activating peptide-activated platelets was analyzed by flow cytometry and Western blot analyses. C1q, C4, C3, and C9 were found to bind to thrombin receptor-activating peptide-activated platelets in lepirudin-anticoagulated platelet-rich plasma (PRP) and whole blood. However, inhibiting complement activation at the C1q or C3 level did not block the binding of C3 to activated platelets. Diluting PRP and chelating divalent cations also had no effect, further indicating that the deposition of complement components was independent of complement activation. Furthermore, washed, activated platelets bound added C1q and C3 to the same extent as platelets in PRP. The use of mAbs against different forms of C3 demonstrated that the bound C3 consisted of C3(H2O). Furthermore, exogenously added soluble complement receptor 1 was shown to bind to this form of platelet-bound C3. These observations indicate that there is no complement activation on the surface of platelets under physiological conditions. This situation is in direct contrast to a number of pathological conditions in which regulators of complement activation are lacking and thrombocytopenia and thrombotic disease are the ultimate result. However, the generation of C3(H2O) represents nonproteolytic activation of C3 and after factor I cleavage may act as a ligand for receptor binding. PMID:20139276

  10. Multiple opioid receptor binding in dissociated intact guinea pig brain cells

    SciTech Connect

    Tam, S.W.; James, D.W.

    1986-03-05

    Dissociated intact guinea pig brain cells were prepared by the method of Rogers and El-Fakahany. Over 95% of these cells are viable as demonstrated by their exclusion of the dye trypan blue. Opioid receptor binding assays were performed in a modified Kreb-Ringers physiological buffer. The following radiolabeled ligands and conditions were used to selectively labeled multiple opioid receptors: mu binding, 1 nM (/sup 3/H)naloxone + 20 nM DADLE + 300 nM U50,488H; kappa binding, 4 nM (-)-(/sup 3/H)-EKC + 100 nM DAGO + 500 nM DADLE; delta binding, 2 nM (/sup 3/H)-DADLE + 100 nM DAGO + 300 nM U50,488H; sigma binding, 4 nM (+)-(/sup 3/H)SKF 10,047. The intact brain cells in physiological buffer demonstrated specific binding for mu, kappa, delta, and sigma receptors. The relative binding potency of naloxone for each of the receptor types is arbitrarily set at 1.

  11. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  12. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface

    PubMed Central

    Becker, Björn; Shaebani, M. Reza; Rammo, Domenik; Bubel, Tobias; Santen, Ludger; Schmitt, Manfred J.

    2016-01-01

    Transmembrane receptor clustering is a ubiquitous phenomenon in pro- and eukaryotic cells to physically sense receptor/ligand interactions and subsequently translate an exogenous signal into a cellular response. Despite that receptor cluster formation has been described for a wide variety of receptors, ranging from chemotactic receptors in bacteria to growth factor and neurotransmitter receptors in mammalian cells, a mechanistic understanding of the underlying molecular processes is still puzzling. In an attempt to fill this gap we followed a combined experimental and theoretical approach by dissecting and modulating cargo binding, internalization and cellular response mediated by KDEL receptors (KDELRs) at the mammalian cell surface after interaction with a model cargo/ligand. Using a fluorescent variant of ricin toxin A chain as KDELR-ligand (eGFP-RTAH/KDEL), we demonstrate that cargo binding induces dose-dependent receptor cluster formation at and subsequent internalization from the membrane which is associated and counteracted by anterograde and microtubule-assisted receptor transport to preferred docking sites at the plasma membrane. By means of analytical arguments and extensive numerical simulations we show that cargo-synchronized receptor transport from and to the membrane is causative for KDELR/cargo cluster formation at the mammalian cell surface. PMID:27353000

  13. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  14. Sequence-specific DNA binding by glucocorticoid receptor "zinc finger peptides".

    PubMed

    Archer, T K; Hager, G L; Omichinski, J G

    1990-10-01

    Steroid hormone receptors can activate or repress transcription from responsive loci by binding to DNA. We have examined the mechanism of DNA binding by individually synthesizing the putative "zinc finger peptides" from the rat glucocorticoid receptor. Atomic absorption studies show that the peptides will bind zinc on an equimolar basis, and circular dichroism experiments demonstrate a significant alteration in secondary structure in the presence of zinc. The results from a series of experiments establish that metal ion is required for binding to DNA and that the amino-terminal zinc finger shows a significantly greater affinity for glucocorticoid response element-containing DNA over control DNA. These observations indicate that a single synthetic "zinc finger peptide" is able to bind to DNA in a sequence-specific manner. PMID:2120703

  15. Characteristics of albumin binding to opossum kidney cells and identification of potential receptors.

    PubMed

    Brunskill, N J; Nahorski, S; Walls, J

    1997-02-01

    Albumin re-absorption in the kidney proximal tubule may be pathophysiological in disease. Opossum kidney (OK) cell monolayers were used to investigate the characteristics of [125I]-labelled albumin binding at 4 degrees C. Two binding sites were identified, one with high affinity (KD 154.8 +/-7 mg/l) and low capacity, the other with low affinity (KD 8300 +/- 1000 mg/l) and high capacity. Binding was sensitive to lectins Glycine max and Ulex europaeus I, but not other lectins, indicating involvement of a glycoprotein(s) in the binding process. Binding was also sensitive to a number of agents known to inhibit binding to scavenger receptors. [125I]-Labelled albumin ligand blotting of OK cell membrane proteins identified several albumin-binding proteins with identical lectin affinities to those proteins mediating albumin binding to OK cell monolayers. These results provide initial evidence of the identity of albumin receptors in kidney tubules, and suggest that they may be members of the family of scavenger receptors. PMID:9000429

  16. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity

    PubMed Central

    Ayres, Cory M.; Scott, Daniel R.; Corcelli, Steven A.; Baker, Brian M.

    2016-01-01

    Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling. PMID:27118724

  17. A receptor binding assay applied to monitoring the neurotoxicity of parathion to Peromyscus after oral exposure

    USGS Publications Warehouse

    Jett, D.A.; Eldefrawi, A.T.; Eldefrawi, M.E.

    1993-01-01

    Many naturally occurring toxins, as well as pesticides, metals, and other compounds that occur in our environment from anthropogenic activities, stimulate or antagonize neuro-receptors to produce acute and/or chronic toxicities. Recent advances in laboratory instrumentation and the availability of a variety of radiolabeled ligands and type-specific drugs for numerous receptors make it possible to easily screen large numbers of samples and detect changes in sensitivity and density of receptor types and subtypes. A receptor binding assay for examining the chronic dietary toxicity of parathion will be used as a model to describe the methodology.

  18. Brain Serotonin 1A Receptor Binding as a Predictor of Treatment Outcome in Major Depressive Disorder

    PubMed Central

    Miller, Jeffrey M.; Hesselgrave, Natalie; Ogden, R. Todd; Zanderigo, Francesca; Oquendo, Maria A.; Mann, J. John; Parsey, Ramin V.

    2013-01-01

    Background We previously reported higher serotonin 1A receptor (5-HT1A) binding in subjects with major depressive disorder (MDD) during a major depressive episode using positron emission tomography imaging with [11C]WAY-100635. 5-HT1A receptor binding is also associated with treatment outcome after nonstandardized antidepressant treatment. We examined whether pretreatment 5-HT1A binding is associated with treatment outcome following standardized escitalopram treatment in MDD. We also compared 5-HT1A binding between all MDD subjects in this cohort and a sample of healthy control subjects. Methods Twenty-four MDD subjects in a current major depressive episode and 51 previously studied healthy control subjects underwent positron emission tomography scanning with [11C]WAY-100635, acquiring a metabolite-corrected arterial input function and free-fraction measurement to estimate 5-HT1A binding potential (BPF = Bmax/KD, where Bmax = available receptors and KD = dissociation constant). Major depressive disorder subjects then received 8 weeks of treatment with escitalopram; remission was defined as a posttreatment 24-item Hamilton Depression Rating Scale <10 and ≥50% reduction in Hamilton Depression Rating Scale. Results Remitters to escitalopram had 33% higher baseline 5-HT1A binding in the raphe nuclei than nonremitters (p = .047). Across 12 cortical and subcortical regions, 5-HT1A binding did not differ between remitters and nonremitters (p = .86). Serotonin 1A receptor binding was higher in MDD than control subjects across all regions (p = .0003). Remitters did not differ from nonremitters in several relevant clinical measures. Conclusions Elevated 5-HT1A binding in raphe nuclei is associated with subsequent remission with the selective serotonin reuptake inhibitor escitalopram; this is consistent with data from a separate cohort receiving naturalistic antidepressant treatment. We confirmed our previous findings of higher 5-HT1A binding in current MDD compared with

  19. MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES

    SciTech Connect

    DARYLE H BUSCH RICHARD S GIVENS

    2004-12-10

    Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are even

  20. Dioxin sensitivity-related two critical amino acids of arylhydrocarbon receptor may not correlate with the taxonomy or phylogeny in avian species.

    PubMed

    Fujisawa, Nozomi; Kawai, Yusuke K; Nakayama, Shouta M M; Ikenaka, Yoshinori; Yamamoto, Hideaki; Ishizuka, Mayumi

    2013-12-30

    There are two arylhydrocarbon receptor (AhR) isoforms in birds, AhR1 and AhR2. The varying sensitivity of AhR is reported to be related to two critical amino acids at positions 325 and 381 in the AhR1 ligand-binding domain. In this study, seven avian species whose in vivo dioxin sensitivity was known, and 13 species with no data regarding their in vivo dioxin sensitivity were examined. The two critical amino acids in the ligand-binding domain were investigated in avian species, and the results were compared with the taxonomy or phylogenetic trees for the bird AhR proteins. We found that the two critical amino acids did not correlate with the taxonomy or phylogeny of these proteins, suggesting that dioxin sensitivity was independent of taxonomy.

  1. Dioxin Sensitivity-Related Two Critical Amino Acids of Arylhydrocarbon Receptor May Not Correlate with the Taxonomy or Phylogeny in Avian Species

    PubMed Central

    FUJISAWA, Nozomi; KAWAI, Yusuke K.; NAKAYAMA, Shouta M. M.; IKENAKA, Yoshinori; YAMAMOTO, Hideaki; ISHIZUKA, Mayumi

    2013-01-01

    ABSTRACT There are two arylhydrocarbon receptor (AhR) isoforms in birds, AhR1 and AhR2. The varying sensitivity of AhR is reported to be related to two critical amino acids at positions 325 and 381 in the AhR1 ligand-binding domain. In this study, seven avian species whose in vivo dioxin sensitivity was known, and 13 species with no data regarding their in vivo dioxin sensitivity were examined. The two critical amino acids in the ligand-binding domain were investigated in avian species, and the results were compared with the taxonomy or phylogenetic trees for the bird AhR proteins. We found that the two critical amino acids did not correlate with the taxonomy or phylogeny of these proteins, suggesting that dioxin sensitivity was independent of taxonomy. PMID:23912877

  2. In vivo evidence against the existence of antiprogestins disrupting receptor binding to DNA.

    PubMed Central

    Delabre, K; Guiochon-Mantel, A; Milgrom, E

    1993-01-01

    The binding of a steroid hormone to its receptor elicits a sequence of events: activation of the receptor (probably through dissociation from a complex of heat shock proteins), dimerization, binding to hormone responsive elements, and finally modulation of gene transcription. RU 486, the first antiprogestin studied, has been shown to act at the last step of this sequence: provoking an inefficient binding of the receptor to hormone responsive elements. Recently, based on in vitro studies, it has been proposed that ZK 98299 was the prototype of a second class of antiprogestins that were supposed to act through disruption of the binding to DNA. We have devised methods allowing us to study the various steps of agonist or antagonist action in vivo. We show here that RU 486 and ZK 98299 have the same effects on receptor activation, dimerization, and binding to hormone responsive elements; differences in their action are explained by the 10-fold difference in their affinity for the receptor (ZK 98299 having the lower affinity). Images Fig. 2 Fig. 3 Fig. 4 PMID:8506282

  3. NK cell inhibitory receptor Ly-49C residues involved in MHC class I binding.

    PubMed

    Sundbäck, Jonas; Achour, Adnane; Michaëlsson, Jakob; Lindström, Hannah; Kärre, Klas

    2002-01-15

    Mouse NK cells express Ly-49 receptors specific for classical MHC class I molecules. Several of the Ly-49 receptors have been characterized in terms of function and ligand specificity. However, the only Ly-49 receptor-ligand interaction previously described in detail is that between Ly-49A and H-2D(d), as studied by point mutations in the ligand and the crystal structure of the co-complex of these molecules. It is not known whether other Ly-49 receptors bind MHC class I in a similar manner as Ly-49A. Here we have studied the effect of mutations in Ly-49C on binding to the MHC class I molecules H-2K(b), H-2D(b), and H-2D(d). The MHC class I molecules were used as soluble tetramers to stain transiently transfected 293T cells expressing the mutated Ly-49C receptors. Three of nine mutations in Ly-49C led to loss of MHC class I binding. The three Ly-49C mutations that affected MHC binding correspond to Ly-49A residues that are in contact or close to H-2D(d) in the co-crystal, demonstrating that MHC class I binding by Ly-49C is dependent on residues in the same area as that used by Ly-49A for ligand contacts.

  4. Opioid binding properties of the purified kappa receptor from human placenta

    SciTech Connect

    Ahmed, M.S.; Zhou, D.; Cavinato, A.G.; Maulik, D.

    1989-01-01

    A glycoprotein with a molecular weight of 63,000 has been purified, in an active form, from human placental villus tissue membranes. The binding properties of this glycoprotein to opioid alkaloids and peptides indicates that it is the kappa opiate receptor of human placenta. The receptor binds the tritiated ligands etorphine, bremazocine, ethylketocyclazocine and naloxone specifically and reversibly with Kd values of 3.3, 4.4, 5.1 and 7.0nM, respectively. The binding of /sup 3/H-Bremazocine to the purified receptor is inhibited by the following compounds with the corresponding Ki values EKC, 1.3 x 10/sup -8/M; Dynorphin 1-8, 3.03 x 10/sup -7/; U50,488H, 4.48 x 10/sup -9/; U69-593,2.28 x 10/sup -8/, morphine, 4.05 x 10/sup -6/ DADLE, 6.47 x 10/sup -6/ and naloxone, 2.64 x 10/sup -8/. The purified receptor binds 8 nmole of /sup 3/H-Etorphine and 1.7 nmole /sup 3/H-BZC per mg protein. The theoretical binding capacity of a protein of this molecular weight is 15.8. Although the iodinated purified receptor appears by autoradiography as one band on SDS-PAGE, yet homogeneity of the preparation is not claimed.

  5. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  6. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  7. Angiotensin II receptor binding in the rat hypothalamus and circumventricular organs during dietary sodium deprivation.

    PubMed

    Yamada, H; Mendelsohn, F A

    1989-10-01

    The effect of dietary sodium intake on angiotensin II (Ang II) receptor binding in the rat brain was studied using quantitative in vitro autoradiography. After 2 weeks of sodium deprivation, the peripheral angiotensin system was activated as shown by increased plasma renin activity (4-fold) and plasma aldosterone concentration (approximately 40-fold). At the same time, Ang II receptor binding in the adrenal glomerulosa zone increased by 40%. Frozen brain sections prepared from 12 male Sprague-Dawley rats (6 control, 6 sodium-deprived) were incubated with 125I[Sar1, Ile8] Ang II, exposed to X-ray film, and Ang II receptor binding in individual brain nuclei was quantitated by computerized densitometry. Ang II binding in the area postrema was significantly suppressed in the sodium-deprived rats (60% of control; p less than 0.05). No change was observed in the other circumventricular organs studied, the subfornical organ or organum vasculosum of the lamina terminalis. Ang II binding in the solitary tract nucleus was not affected by the dietary salt treatment. In the hypothalamic paraventricular nucleus, there was a small (9%) but significant (p less than 0.001) increase in Ang II receptor binding in the sodium-deprived group. However, no change was observed in the hypothalamic median preoptic or suprachiasmatic nuclei, areas with similarly high Ang II receptor binding. These results suggest that only a limited subset of brain Ang II receptors respond to sodium deprivation and do so in a region-specific manner. These results support evidence that the central angiotensin system may contribute to the regulation of fluid and electrolyte homeostasis.

  8. Ligand Binding and Subtype Selectivity of the Human A2A Adenosine Receptor

    PubMed Central

    Jaakola, Veli-Pekka; Lane, J. Robert; Lin, Judy Y.; Katritch, Vsevolod; IJzerman, Adriaan P.; Stevens, Raymond C.

    2010-01-01

    The crystal structure of the human A2A adenosine receptor bound to the A2A receptor-specific antagonist, ZM241385, was recently determined at 2.6-Å resolution. Surprisingly, the antagonist binds in an extended conformation, perpendicular to the plane of the membrane, and indicates a number of interactions unidentified before in ZM241385 recognition. To further understand the selectivity of ZM241385 for the human A2A adenosine receptor, we examined the effect of mutating amino acid residues within the binding cavity likely to have key interactions and that have not been previously examined. Mutation of Phe-168 to Ala abolishes both agonist and antagonist binding as well as receptor activity, whereas mutation of this residue to Trp or Tyr had only moderate effects. The Met-177 → Ala mutation impeded antagonist but not agonist binding. Finally, the Leu-249 → Ala mutant showed neither agonist nor antagonist binding affinity. From our results and previously published mutagenesis data, we conclude that conserved residues Phe-168(5.29), Glu-169(5.30), Asn-253(6.55), and Leu-249(6.51) play a central role in coordinating the bicyclic core present in both agonists and antagonists. By combining the analysis of the mutagenesis data with a comparison of the sequences of different adenosine receptor subtypes from different species, we predict that the interactions that determine subtype selectivity reside in the more divergent “upper” region of the binding cavity while the “lower” part of the binding cavity is conserved across adenosine receptor subtypes. PMID:20147292

  9. Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases.

    PubMed

    Floss, Doreen M; Klöcker, Tobias; Schröder, Jutta; Lamertz, Larissa; Mrotzek, Simone; Strobl, Birgit; Hermanns, Heike; Scheller, Jürgen

    2016-07-15

    The interleukin (IL)-12-type cytokines IL-12 and IL-23 are involved in T-helper (Th) 1 and Th17 immunity, respectively. They share the IL-12 receptor β1 (IL-12Rβ1) as one component of their receptor signaling complexes, with IL-12Rβ2 as second receptor for IL-12 and IL-23R for IL-23 signal transduction. Stimulation with IL-12 and IL-23 results in activation of receptor-associated Janus kinases (Jak) and phosphorylation of STAT proteins in target cells. The Janus kinase tyrosine kinase (Tyk) 2 associates with IL-12Rβ1, whereas Jak2 binds to IL-23R and also to IL-12Rβ2. Receptor association of Jak2 is mediated by Box1 and Box2 motifs located within the intracellular domain of the receptor chains. Here we define the Box1 and Box2 motifs in IL-12Rβ1 and an unusual Jak2-binding site in IL-23R by the use of deletion and site-directed mutagenesis. Our data show that nonfunctional box motifs abolish IL-12- and IL-23-induced STAT3 phosphorylation and cytokine-dependent proliferation of Ba/F3 cells. Coimmunoprecipitation of Tyk2 by IL-12Rβ1 and Jak2 by IL‑23R supported these findings. In addition, our data demonstrate that association of Jak2 with IL-23R is mandatory for IL-12 and/or IL-23 signaling, whereas Tyk2 seems to be dispensable.

  10. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    SciTech Connect

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M. )

    1989-05-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increased the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.

  11. Differentiation between ligand trapping into intact cells and binding on muscarinic receptors.

    PubMed

    Gossuin, A; Maloteaux, J M; Trouet, A; Laduron, P

    1984-05-22

    Binding properties of [3H] dexetimide , L-quinuclidinyl[phenyl-4-3H] benzilate and [3H]methylscopolamine were compared with intact 108 CC 15 cells and membrane preparations of those. The ability of the three ligands to label specifically muscarinic receptors on membrane fractions was quite similar. By contrast, when performed with intact cells, [3H] dexetimide and L-quinuclidinyl [phenyl-4-3H]benzilate revealed higher nonspecific binding which was prevented by methylamine, suggesting a trapping of the ligands within the cells presumably in the lysosomes. To the contrary, such nonspecific 'binding' or trapping was not detectable when [3H]methylscopolamine was used as ligand, a fact which makes this ligand particularly appropriate for labelling cell surface muscarinic receptors. It is concluded that more caution is needed in binding studies when performed with intact cells; indeed, besides specific binding on receptor sites, [3H]ligand can be entrapped within the cell and can even sometimes give the illusion of specific binding. The use of lysosomal agents which do not interfere with specific receptors on membrane preparations should allow one, in most cases, to discard the possibility of a trapping phenomenon in intact cells. PMID:6722181

  12. Glycans on influenza hemagglutinin affect receptor binding and immune response

    PubMed Central

    Wang, Cheng-Chi; Chen, Juine-Ruey; Tseng, Yung-Chieh; Hsu, Che-Hsiung; Hung, Yu-Fu; Chen, Shih-Wei; Chen, Chin-Mei; Khoo, Kay-Hooi; Cheng, Ting-Jen; Cheng, Yih-Shyun E.; Jan, Jia-Tsrong; Wu, Chung-Yi; Ma, Che; Wong, Chi-Huey

    2009-01-01

    Recent cases of avian influenza H5N1 and the swine-origin 2009 H1N1 have caused a great concern that a global disaster like the 1918 influenza pandemic may occur again. Viral transmission begins with a critical interaction between hemagglutinin (HA) glycoprotein, which is on the viral coat of influenza, and sialic acid (SA) containing glycans, which are on the host cell surface. To elucidate the role of HA glycosylation in this important interaction, various defined HA glycoforms were prepared, and their binding affinity and specificity were studied by using a synthetic SA microarray. Truncation of the N-glycan structures on HA increased SA binding affinities while decreasing specificity toward disparate SA ligands. The contribution of each monosaccharide and sulfate group within SA ligand structures to HA binding energy was quantitatively dissected. It was found that the sulfate group adds nearly 100-fold (2.04 kcal/mol) in binding energy to fully glycosylated HA, and so does the biantennary glycan to the monoglycosylated HA glycoform. Antibodies raised against HA protein bearing only a single N-linked GlcNAc at each glycosylation site showed better binding affinity and neutralization activity against influenza subtypes than the fully glycosylated HAs elicited. Thus, removal of structurally nonessential glycans on viral surface glycoproteins may be a very effective and general approach for vaccine design against influenza and other human viruses. PMID:19822741

  13. Increased cytosolic androgen receptor binding in rat striated muscle following denervation and disuse

    NASA Technical Reports Server (NTRS)

    Bernard, P. A.; Fishman, P. S.; Max, S. R.; Rance, N. E.

    1984-01-01

    The effects of denervation and disuse on cytosolic androgen receptor binding by rat striated muscle are investigated. Denervation of the extensor digitorum longus and tibialis anterior muscles caused by a 40-50-percent increase in cytosolic androgen receptor concentration with no change in apparent binding affinity. This effect was evident at 6 h postdenervation, maximal at 24 h, and declined to 120 percent of the control level 72 h after denervation. A 40-percent increase in cytosolic androgen receptor concentration was also noted 24 hr after denervation of the hormone-sensitive levator ani muscle. The effect of denervation on androgen receptors was blocked by in vivo injection of cycloheximide; therefore, de novo receptor synthesis probably is not involved in the observed increase. Disuse, produced by subperineurial injection of tetrodotoxin into the tibial and common peroneal branches of the sciatic nerve, mimicked the effect of denervation on androgen receptor binding, suggesting that neuromuscular activity is important in regulation of receptor concentration. Possible mechanisms subserving this effect are discussed.

  14. Insulin binding and receptor tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish.

    PubMed

    Párrizas, M; Planas, J; Plisetskaya, E M; Gutiérrez, J

    1994-06-01

    We characterized the insulin receptors in skeletal muscle from several fish species with different nutritional preferences: brown trout (Salmo trutta fario), gilthead sea bream (Sparus aurata), tilapia (Tilapia mossambica), and carp (Cyprinus carpio), semipurified by affinity chromatography (wheat germ agglutinin-agarose). Total specific binding and number of receptors per unit weight of piscine white skeletal muscle were lower than those values found in mammalian skeletal muscle. The same parameters in carp muscle receptor preparations were severalfold higher than in trout muscle (binding capacity 440 +/- 47 fmol/mg glycoprotein in carp and 82 +/- 23 fmol/mg glycoprotein in trout). Piscine insulin receptors phosphorylated exogenous substrate poly(Glu,Tyr) but less so than mammalian receptors. Tyrosine kinase activity of receptors, calculated as percent of 32P incorporated into substrate in the presence of insulin compared with basal incorporation, was also highest in carp (210 +/- 4%) and lowest in trout (150 +/- 2%). In both trout and carp deprived of food for 15 days, specific binding of insulin decreased. Nevertheless, differences between the two species were retained. Our results demonstrate that particular properties of insulin receptors in fish skeletal muscle may be related to nutritional preferences. This finding coincides with the phenomenon of differential glucose tolerance in fish: carnivorous fish, such as trout, are less tolerant, whereas omnivorous fish, such as carp, readily utilize a carbohydrate-rich diet. PMID:8024051

  15. Distinct ETA Receptor Binding Mode of Macitentan As Determined by Site Directed Mutagenesis

    PubMed Central

    Gatfield, John; Mueller Grandjean, Celia; Bur, Daniel; Bolli, Martin H.; Nayler, Oliver

    2014-01-01

    The competitive endothelin receptor antagonists (ERA) bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min) occupancy half-lives at the ETA receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ETA receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ETA receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ETA receptor-antagonist interaction modes, we performed functional studies using ETA receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ETA receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that – in contrast to bosentan and ambrisentan - macitentan-ETA receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and insurmountable antagonism. PMID

  16. Distinct ETA receptor binding mode of macitentan as determined by site directed mutagenesis.

    PubMed

    Gatfield, John; Mueller Grandjean, Celia; Bur, Daniel; Bolli, Martin H; Nayler, Oliver

    2014-01-01

    The competitive endothelin receptor antagonists (ERA) bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min) occupancy half-lives at the ET(A) receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ET(A) receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ET(A) receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ET(A) receptor-antagonist interaction modes, we performed functional studies using ET(A) receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ET(A) receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that--in contrast to bosentan and ambrisentan--macitentan-ET(A) receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and insurmountable

  17. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W.; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M.; Castro, L. Filipe C.; Bourguet, William

    2014-01-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  18. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    PubMed Central

    Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  19. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1.

    PubMed

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  20. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1.

    PubMed

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.

  1. AH Her Observing Campaign

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2013-05-01

    Dr. Juan Echevarria (Universidad Nacional Autónoma de México) and colleagues request AAVSO assistance in a campaign on the Z Cam-type cataclysmic variable AH Her being carried out 2013 May 29 - June 18. They will be making photometric and spectroscopic observations of AH Her using the 2.1m and 0.84m telescopes at San Pedro Martir Observatory (SPM). Their goal is to carry out a radial velocity study of the system components using modern detectors; no study of AH Her has been made since the one by Horne, Wade, and Szkody in 1980-1981 (1986MNRAS.219..791H). Photometry and spectroscopy are requested. AH Her, for decades a reasonably "regular" Z Cam system, began exhibiting significantly anomalous behavior in ~2007. Since then it has experienced brief periods of fairly typical behavior interspersed with more anomalous intervals, including some unprecedented behavior. Most recently, it has returned to a more normal pattern of outbursts shape-wise but it is not back to its normal amplitude or frequency. AAVSO data will be essential for correlation in order to determine the precise time(s) of minimum occurring during the campaign. Finder charts with sequences may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  2. Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains.

    PubMed Central

    Carlstedt-Duke, J; Okret, S; Wrange, O; Gustafsson, J A

    1982-01-01

    The glucocorticoid-receptor complex can be subdivided into three separate domains by limited proteolysis with trypsin or alpha-chymotrypsin. The following characteristics can be separated: steroid-binding activity (domain A), DNA-binding activity (domain B), and immunoactivity (domain C). We have previously reported the separation of the steroid-binding domain from the DNA-binding domain by limited proteolysis of the receptor with trypsin. In this paper, we report the detection by immunochemical analysis of a third domain of the glucocorticoid receptor, which does not bind hormone. Immunoactivity was detected by using specific antiglucocorticoid receptor antibodies raised in rabbits against purified rat liver glucocorticoid receptor and the assay used was an enzyme-linked immunosorbent assay. After digestion with alpha-chymotrypsin, the immunoactive region of the receptor (domain C) was separated from the other two domains (A and B). The immunoactive fragment was found to have a Stokes radius of 2.6 nm. Further digestion with alpha-chymotrypsin resulted in separation of the immunoactive fragment to give a fragment having a Stokes radius of 1.4 nm. The immunoactive domain could be separated from the half of the glucocorticoid receptor containing the steroid-binding and the DNA-binding domains (Stokes radius, 3.3 nm), by limited proteolysis of the receptor by alpha-chymotrypsin followed by gel filtration or chromatography on DNA-cellulose. PMID:6181503

  3. Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species

    PubMed Central

    Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter

    2012-01-01

    Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462

  4. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  5. In vivo (/sup 3/H)flunitrazepam binding: imaging of receptor regulation

    SciTech Connect

    Ciliax, B.J.; Penney, J.B. Jr.; Young, A.B.

    1986-08-01

    The use of (/sup 3/H)flunitrazepam as a ligand to measure alterations in benzodiazepine receptors in vivo in rats was investigated. Animals were injected with (/sup 3/H)flunitrazepam i.v., arterial samples of (/sup 3/H)flunitrazepam were obtained and, later, the animals were sacrificed to assay brain binding. (/sup 3/H)flunitrazepam enters the brain rapidly and binds to benzodiazepine receptors. About two-thirds of this binding is blocked by predosing the animals with 5 mg/kg of clonazepam. The amount of remaining (nonspecific) binding correlates very well (r = 0.88) with the amount of radioactivity found in plasma at the time of death. A series of rats were lesioned unilaterally with kainic acid in the caudate-putamen several months before the infusion of (/sup 3/H)flunitrazepam. In vivo autoradiography in lesioned rats showed that benzodiazepine binding in globus pallidus and substantia nigra on the side of the lesion was increased significantly as compared to the intact side. The observed changes in benzodiazepine binding were similar to those observed previously in lesioned rats using in vitro techniques. Thus, benzodiazepine receptor regulation can be imaged quantitatively using in vivo binding techniques.

  6. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    PubMed Central

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  7. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes.

    PubMed

    Schneider, Erwin; Eckey, Viola; Weidlich, Daniela; Wiesemann, Nicole; Vahedi-Faridi, Ardeshir; Thaben, Paul; Saenger, Wolfram

    2012-04-01

    ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium. PMID:21561685

  8. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    NASA Astrophysics Data System (ADS)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  9. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  10. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  11. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes.

    PubMed

    Schneider, Erwin; Eckey, Viola; Weidlich, Daniela; Wiesemann, Nicole; Vahedi-Faridi, Ardeshir; Thaben, Paul; Saenger, Wolfram

    2012-04-01

    ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium.

  12. Differential Binding Activity of TGF-β Family Proteins to Select TGF-β Receptors.

    PubMed

    Khalil, Ashraf M; Dotimas, Hyna; Kahn, Julius; Lamerdin, Jane E; Hayes, David B; Gupta, Priyanka; Franti, Michael

    2016-09-01

    Growth differentiation factor-11 (GDF11) and myostatin (MSTN) are highly related transforming growth factor-β (TGF-β) ligands with 89% amino acid sequence homology. They have different biologic activities and diverse tissue distribution patterns. However, the activities of these ligands are indistinguishable in in vitro assays. SMAD2/3 signaling has been identified as the canonical pathway for GDF11 and MSTN, However, it remains unclear which receptor heterodimer and which antagonists preferentially mediate and regulate signaling. In this study, we investigated the initiation and regulation of GDF11 and MSTN signaling at the receptor level using a novel receptor dimerization detection technology. We used the dimerization platform to link early receptor binding events to intracellular downstream signaling. This approach was instrumental in revealing differential receptor binding activity within the TGF-β family. We verified the ActR2b/ALK5 heterodimer as the predominant receptor for GDF11- and MSTN-induced SMAD2/3 signaling. We also showed ALK7 specifically mediates activin-B signaling. We verified follistatin as a potent antagonist to neutralize both SMAD2/3 signaling and receptor dimerization. More remarkably, we showed that the two related antagonists, growth and differentiation factor-associated serum protein (GASP)-1 and GASP2, differentially regulate GDF11 (and MSTN) signaling. GASP1 blocks both receptor dimerization and downstream signaling. However, GASP2 blocks only downstream signaling without interference from receptor dimerization. Our data strongly suggest that physical binding of GDF11 (and MSTN) to both ActR2b and ALK5 receptors is required for initiation of signaling. PMID:27340210

  13. Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay.

    PubMed

    Martínez-Pinilla, Eva; Rabal, Obdulia; Reyes-Resina, Irene; Zamarbide, Marta; Navarro, Gemma; Sánchez-Arias, Juan A; de Miguel, Irene; Lanciego, José L; Oyarzabal, Julen; Franco, Rafael

    2016-09-01

    Endocannabinoids act on G protein-coupled receptors that are considered potential targets for a variety of diseases. There are two different cannabinoid receptor types: ligands for cannabinoid type 2 receptors (CB2Rs) show more promise than those for cannabinoid type 1 receptors (CB1Rs) because they lack psychotropic actions. However, the complex pharmacology of these receptors, coupled with the lipophilic nature of ligands, is delaying the translational success of medications targeting the endocannabinoid system. We here report the discovery and synthesis of a fluorophore-conjugated CB2R-selective compound, CM-157 (3-[[4-[2-tert-butyl-1-(tetrahydropyran-4-ylmethyl)benzimidazol-5-yl]sulfonyl-2-pyridyl]oxy]propan-1-amine), which was useful for pharmacological characterization of CB2R by using a time-resolved fluorescence resonance energy transfer assay. This methodology does not require radiolabeled compounds and may be undertaken in homogeneous conditions and in living cells (i.e., without the need to isolate receptor-containing membranes). The affinity of the labeled compound was similar to that of the unlabeled molecule. Time-resolved fluorescence resonance energy transfer assays disclosed a previously unreported second affinity site and showed conformational changes in CB2R forming receptor heteromers with G protein-coupled receptor GPR55, a receptor for l-α-lysophosphatidylinositol. The populations displaying subnanomolar and nanomolar affinities were undisclosed in competitive assays using a well known cannabinoid receptor ligand, AM630 (1-[2-(morpholin-4-yl)ethyl]-2-methyl-3-(4-methoxybenzoyl)-6-iodoindole), and TH-chrysenediol, not previously tested on binding to cannabinoid receptors. Variations in binding parameters upon formation of dimers with GPR55 may reflect decreases in binding sites or alterations of the quaternary structure of the macromolecular G protein-coupled receptor complexes. In summary, the homogeneous binding assay described here may

  14. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    SciTech Connect

    Bennion, B J; Kulp, K S; Cosman, M; Lightstone, F C

    2005-08-26

    Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here we describe our work with the human estrogen receptor alpha (hERa) and the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We found that PhIP, in contrast to the other heterocyclic amines, increased cell-proliferation in MCF-7 human breast cancer cells and activated the hERa receptor. We show mechanistic data supporting this activation both computationally by homology modeling and docking, and by NMR confirmation that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ER activation presumably by binding into another cavity on the LBD. Moreover, molecular dynamics simulations of inhibitory heterocyclic amines reveal a disruption of the surface of the receptor protein involved with protein-protein signaling. We therefore propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation.

  15. Dynamics of Virus-Receptor Interactions in Virus Binding, Signaling, and Endocytosis

    PubMed Central

    Boulant, Steeve; Stanifer, Megan; Lozach, Pierre-Yves

    2015-01-01

    During viral infection the first challenge that viruses have to overcome is gaining access to the intracellular compartment. The infection process starts when the virus contacts the surface of the host cell. A complex series of events ensues, including diffusion at the host cell membrane surface, binding to receptors, signaling, internalization, and delivery of the genetic information. The focus of this review is on the very initial steps of virus entry, from receptor binding to particle uptake into the host cell. We will discuss how viruses find their receptor, move to sub-membranous regions permissive for entry, and how they hijack the receptor-mediated signaling pathway to promote their internalization. PMID:26043381

  16. Unusual features of Self-Peptide/MHC Binding by Autoimmune T Cell Receptors

    SciTech Connect

    Nicholson,M.; Hahn, M.; Wucherpfennig, K.

    2005-01-01

    Structural studies on T cell receptors (TCRs) specific for foreign antigens demonstrated a remarkably similar topology characterized by a central, diagonal TCR binding mode that maximizes interactions with the MHC bound peptide. However, three recent structures involving autoimmune TCRs demonstrated unusual interactions with self-peptide/MHC complexes. Two TCRs from multiple sclerosis patients bind with unconventional topologies, and both TCRs are shifted toward the peptide N terminus and the MHC class II {beta} chain helix. A TCR from the experimental autoimmune encephalomyelitis (EAE) model binds in a conventional orientation, but the structure is unusual because the self-peptide only partially fills the binding site. For all three TCRs, interaction with the MHC bound self-peptide is suboptimal, and only two or three TCR loops contact the peptide. Optimal TCR binding modes confer a competitive advantage for antimicrobial T cells during an infection, whereas altered binding properties may permit survival of a subset of autoreactive T cells during thymic selection.

  17. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

    PubMed

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-09-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes.

  18. Heterogeneous receptor binding of classical quaternary muscarinic antagonists. I. Bovine tissue distribution.

    PubMed

    Roffel, A F; Ensing, K; in 't Hout, W G; de Zeeuw, R A; Zaagsma, J

    1991-01-01

    In competition experiments with the tertiary radioligand [3H]dexetimide, classical quaternary muscarinic antagonists like ipratropium bromide and N-methylscopolamine bromide distinguished two muscarinic binding sites in bovine brain (total brain minus cerebellum) membranes, in contrast to their tertiary analogues, atropine and scopolamine, which recognized only one binding site. This binding behavior was found to be almost identical in bovine striatal membranes, both in terms of binding affinities and proportions of high (Q1) and low (Q2) affinity binding sites. Both in total brain and in striatal membranes, the Q1/Q2 binding heterogeneity was independent of pirenzepine binding heterogeneity (M1/M2). In peripheral tissues, the binding properties of quaternary muscarinic antagonists varied. Whereas tertiary as well as quaternary compounds showed only high affinity binding towards muscarinic receptors in bovine atrial and left ventricular membranes, heterogeneous binding behavior was observed with quaternary but not with tertiary antagonists in bovine tracheal smooth muscle membranes. The tissue distribution found in the present study suggests that bovine tracheal smooth muscle contraction studies might shed light on the functional significance of the anomalous binding behavior of quaternary muscarinic antagonists. PMID:1824191

  19. Epidermal growth factor binding and receptor distribution in the mouse reproductive tract during development

    SciTech Connect

    Bossert, N.L.; Nelson, K.G.; Ross, K.A.; Takahashi, T.; McLachlan, J.A. )

    1990-11-01

    The ontogeny of the epidermal growth factor (EGF) receptor in the different cell types in the neonatal and immature mouse uterus and vagina was examined. Immunohistochemical examination of prenatal and neonatal reproductive tracts with a polyclonal antibody to the EGF receptor shows immunoreactive EGF receptors as early as Day 13 of gestation. Autoradiographic analysis of tissue sections at 3 to 17 days of age (the day of birth is Day 1) demonstrates that both uterine and vaginal epithelial and stromal cells are capable of binding 125I-labeled EGF. Both the 125I-labeled EGF autoradiography and immunohistochemistry in whole tissue show higher EGF receptor levels in the uterine epithelium than the uterine stroma. The presence of EGF receptors was also confirmed by affinity labeling and Scatchard analysis of isolated uterine cell types at 7 and/or 17 days of age. However, in contrast to the autoradiography and immunohistochemistry data of intact tissue, the affinity labeling and Scatchard data of isolated cells indicate that the uterine stroma contains higher levels of EGF receptor than that of the uterine epithelium. The reason for this discrepancy between the different techniques is, as yet, unknown. Regardless of the differences in the actual numbers of EGF receptors obtained, our data demonstrate that the developing mouse reproductive tract contains immunoreactive EGF receptors that are capable of binding 125I-labeled EGF.

  20. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    SciTech Connect

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  1. Site-specific basicities regulate molecular recognition in receptor binding: in silico docking of thyroid hormones.

    PubMed

    Tóth, Gergő; Baska, Ferenc; Schretner, András; Rácz, Akos; Noszál, Béla

    2013-09-01

    Interactions between thyroid hormone α and β receptors and the eight protonation microspecies of each of the main thyroid hormones (thyroxine, liothyronine, and reverse liothyronine) were investigated and quantitated by molecular modeling. Flexible docking of the various protonation forms of thyroid hormones and high-affinity thyromimetics to the two thyroid receptors was carried out. In this method the role of the ionization state of each basic site could be studied in the composite process of molecular recognition. Our results quantitate at the molecular level how the ionization state and the charge distribution influence the protein binding. The anionic form of the carboxyl group (i.e., carboxylate site) is essential for protein binding, whereas the protonated form of amino group worsens the binding. The protonation state of the phenolate plays a less important role in the receptor affinity; its protonation, however, alters the electron density and the concomitant stacking propensity of the aromatic rings, resulting in a different binding score. The combined results of docking and microspeciation studies show that microspecies with the highest concentration at the pH of blood are not the strongest binding ones. The calculated binding free energy values can be well interpreted in terms of the interactions between the actual sites of the microspecies and the receptor amino acids. Our docking results were validated and compared with biological data from the literature. Since the thyroid hormone receptors influence several physiologic functions, such as metabolic rate, cholesterol and triglyceride levels, and heart frequency, our binding results provide a molecular basis for drug design and development in related therapeutic indications. PMID:23907234

  2. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    SciTech Connect

    James, I.F.; Goldstein, A.

    1984-05-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, (/sup 3/H) dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for (/sup 3/H) (D-Ala2, D-Leu5)enkephalin and (3H)ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites.

  3. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. PMID:26188619

  4. Does the tissue concentration in receptor binding studies change the affinity of the labelled ligand?

    PubMed

    Ensing, K; De Zeeuw, R A

    1984-12-14

    When the tissue concentration in a radioreceptor assay for anticholinergic drugs was varied in order to obtain optimum conditions, and the receptor concentration Cr and the equilibrium dissociation constant KD were determined by Scatchard analysis, the KD increased with increasing tissue concentrations. This phenomenon was considered as an artefact caused by non-specific binding of the labelled ligand to constituents of the receptor preparation which were not completely retained on the glass-fibre filters used for the separation of bound and free fraction of radio-labelled ligand. The increase in KD in these experiments could be described with a mathematical model of the binding experiments. PMID:6514542

  5. Rectification of skeletal muscle ryanodine receptor mediated by FK506 binding protein.

    PubMed Central

    Ma, J; Bhat, M B; Zhao, J

    1995-01-01

    The cytosolic receptor for immunosuppressant drugs, FK506 binding protein (FKBP12), maintains a tight association with ryanodine receptors of sarcoplasmic reticulum (SR) membrane in skeletal muscle. The interaction between FKBP12 and ryanodine receptors resulted in distinct rectification of the Ca release channel. The endogenous FKBP-bound Ca release channel conducted current unidirectionally from SR lumen to myoplasm; in the opposite direction, the channel deactivated with fast kinetics. The binding of FKBP12 is likely to alter subunit interactions within the ryanodine receptor complex, as revealed by changes in conductance states of the channel. Both on- and off-rates of FKBP12 binding to the ryanodine receptor showed clear dependence on the membrane potential, suggesting that the binding sites of FKBP12 reside in or near the conduction pore of the Ca release channel. Rectification of the Ca release channel would prevent counter-current flow during the rapid release of Ca from SR membrane, and thus may serve as a negative feedback mechanism that participates in the process of muscle excitation-contraction coupling. PMID:8599646

  6. G-CSF receptor-binding cyclic peptides designed with artificial amino-acid linkers

    SciTech Connect

    Shibata, Kenji . E-mail: kshibata@kyowa.co.jp; Maruyama-Takahashi, Kumiko; Yamasaki, Motoo; Hirayama, Noriaki . E-mail: hirayama@is.icc.u-tokai.ac.jp

    2006-03-10

    Designing small molecules that mimic the receptor-binding local surface structure of large proteins such as cytokines or growth factors is fascinating and challenging. In this study, we designed cyclic peptides that reproduce the receptor-binding loop structures of G-CSF. We found it is important to select a suitable linker to join two or more discontinuous sequences and both termini of the peptide corresponding to the receptor-binding loop. Structural simulations based on the crystallographic structure of KW-2228, a stable and potent analog of human G-CSF, led us to choose 4-aminobenzoic acid (Abz) as a part of the linker. A combination of 4-Abz with {beta}-alanine or glycine, and disulfide bridges between cysteins or homocysteins, gave a structure suitable for receptor binding. In this structure, the side-chains of several amino acids important for the interactions with the receptor are protruding from one side of the peptide ring. This artificial peptide showed G-CSF antagonistic activity in a cell proliferation assay.

  7. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    PubMed Central

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-01-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution. PMID:26561004

  8. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions. PMID:26318763

  9. Influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic brain receptors.

    PubMed

    Weckesser, M; Fixmann, A; Holschbach, M; Müller-Gärtner, H W

    1998-11-01

    The distribution of nicotinic and muscarinic cholinergic receptors in the human brain in vivo has been successfully characterized using radiolabeled tracers and emission tomography. The effect of acetylcholine release into the synaptic cleft on receptor binding of these tracers has not yet been investigated. The present study examined the influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic cholinergic receptors of porcine brain synaptosomes in vitro. 4-Iododexetimide is a subtype-unspecific muscarinic receptor antagonist with high affinity. Acetylcholine competed with 4-[125I]iododexetimide in a dose-dependent manner. A concentration of 500 microM acetylcholine inhibited 50% of total specific 4-[125I]iododexetimide binding to synaptosomes when both substances were given simultaneously. An 800 microM acetylcholine solution reduced total specific 4-[125I]iododexetimide binding by about 35%, when acetylcholine was given 60 min after incubation of synaptosomes with 4-[125I]iododexetimide. Variations in the synaptic acetylcholine concentration might influence muscarinic cholinergic receptor imaging in vivo using 4-[123I]iododexetimide. Conversely, 4-[123I]iododexetimide might be an appropriate molecule to investigate alterations of acetylcholine release into the synaptic cleft in vivo using single photon emission computed tomography. PMID:9863566

  10. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    NASA Astrophysics Data System (ADS)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  11. Importin {beta}-type nuclear transport receptors have distinct binding affinities for Ran-GTP

    SciTech Connect

    Hahn, Silvia; Schlenstedt, Gabriel

    2011-03-18

    Highlights: {yields} Determination of binding properties of nuclear transport receptor/Ran-GTP complexes. {yields} Biosensor measurements provide constants for dissociation, on-rates, and off-rates. {yields} The affinity of receptors for Ran-GTP is widely divergent. {yields} Dissociation constants differ for three orders of magnitude. {yields} The cellular concentration of yeast Ran is not limiting. -- Abstract: Cargos destined to enter or leave the cell nucleus are typically transported by receptors of the importin {beta} family to pass the nuclear pore complex. The yeast Saccharomyces cerevisiae comprises 14 members of this protein family, which can be divided in importins and exportins. The Ran GTPase regulates the association and dissociation of receptors and cargos as well as the transport direction through the nuclear pore. All receptors bind to Ran exclusively in its GTP-bound state and this event is restricted to the nuclear compartment. We determined the Ran-GTP binding properties of all yeast transport receptors by biosensor measurements and observed that the affinity of importins for Ran-GTP differs significantly. The dissociation constants range from 230 pM to 270 nM, which is mostly based on a variability of the off-rate constants. The divergent affinity of importins for Ran-GTP suggests the existence of a novel mode of nucleocytoplasmic transport regulation. Furthermore, the cellular concentration of {beta}-receptors and of other Ran-binding proteins was determined. We found that the number of {beta}-receptors altogether about equals the amounts of yeast Ran, but Ran-GTP is not limiting in the nucleus. The implications of our results for nucleocytoplasmic transport mechanisms are discussed.

  12. Selectivity in progesterone and androgen receptor binding of progestagens used in oral contraceptives

    SciTech Connect

    Kloosterboer, H.J.; Vonk-Noordegraaf, C.A.; Turpijn, E.W.

    1988-09-01

    The relative binding affinities (RBAs) of four progestational compounds (norethisterone, levonorgestrel, 3-keto-desogestrel and gestodene) for the human progesterone and androgen receptors were measured in MCF-7 cytosol and intact MCF-7 cells. For the binding to the progesterone receptor, both Org 2058 and Org 3236 (or 3-keto-desogestrel) were used as labelled ligands. The following ranking (low to high) for the RBA of the nuclear (intact cells) progesterone receptor irrespective of the ligand used is found: norethisterone much less than levonorgestrel less than 3-keto-destogestrel less than gestodene. The difference between the various progestagens is significant with the exception of that between 3-keto-desogestrel and gestodene, when Org 2058 is used as ligand. For the cytosolic progesterone receptor, the same order is found with the exception that similar RBAs are found for gestodene and 3-keto-desogestrel. The four progestagens clearly differ with respect to binding to the androgen receptor using dihydrotestosterone as labelled ligand in intact cells; the ranking (low to high) is: norethisterone less than 3 keto-desogestrel less than levonorgestrel and gestodene. The difference between 3-keto-desogestrel and levonorgestrel or gestodene is significant. The selectivity indices (ratio of the mean RBA for the progesterone receptor to that of androgen receptor) in intact cells are significantly higher for 3-keto-desogestrel and gestodene than for levonorgestrel and norethisterone. From these results we conclude that the introduction of the 18-methyl in norethisterone (levonorgestel) increases both the binding to the progesterone and androgen receptors.

  13. Mechanism-based common reactivity pattern (COREPA) modelling of aryl hydrocarbon receptor binding affinity

    PubMed Central

    Petkov, P.I.; Rowlands, J.C.; Budinsky, R.; Zhao, B.; Denison, M.S.; Mekenyan, O.

    2011-01-01

    The aryl hydrocarbon receptor is a ligand-activated transcription factor responsive to both natural and synthetic environmental compounds, with the most potent agonist being 2,3,7,8-tetrachlotrodibenzo-p-dioxin. The aim of this work was to develop a categorical COmmon REactivity PAttern (COREPA)-based structure–activity relationship model for predicting aryl hydrocarbon receptor ligands within different binding ranges. The COREPA analysis suggested two different binding mechanisms called dioxin- and biphenyl-like, respectively. The dioxin-like model predicts a mechanism that requires a favourable interaction with a receptor nucleophilic site in the central part of the ligand and with electrophilic sites at both sides of the principal molecular axis, whereas the biphenyl-like model predicted a stacking-type interaction with the aryl hydrocarbon receptor allowing electron charge transfer from the receptor to the ligand. The current model was also adjusted to predict agonistic/antagonistic properties of chemicals. The mechanism of antagonistic properties was related to the possibility that these chemicals have a localized negative charge at the molecule's axis and ultimately bind with the receptor surface through the electron-donating properties of electron-rich groups. The categorization of chemicals as agonists/antagonists was found to correlate with their gene expression. The highest increase in gene expression was elicited by strong agonists, followed by weak agonists producing lower increases in gene expression, whereas all antagonists (and non-aryl hydrocarbon receptor binders) were found to have no effect on gene expression. However, this relationship was found to be quantitative for the chemicals populating the areas with extreme gene expression values only, leaving a wide fuzzy area where the quantitative relationship was unclear. The total concordance of the derived aryl hydrocarbon receptor binding categorical structure–activity relationship model was

  14. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    PubMed

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. PMID:26377607

  15. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    PubMed

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste.

  16. Alterations in alpha-adrenergic and muscarinic cholinergic receptor binding in rat brain following nonionizing radiation

    SciTech Connect

    Gandhi, V.C.; Ross, D.H.

    1987-01-01

    Microwave radiation produces hyperthermia. The mammalian thermoregulatory system defends against changes in temperature by mobilizing diverse control mechanisms. Neurotransmitters play a major role in eliciting thermoregulatory responses. The involvement of adrenergic and muscarinic cholinergic receptors was investigated in radiation-induced hyperthermia. Rats were subjected to radiation at 700 MHz frequency and 15 mW/cm/sup 2/ power density and the body temperature was raised by 2.5 degrees C. Of six brain regions investigated only the hypothalamus showed significant changes in receptor states, confirming its pivotal role in thermoregulation. Adrenergic receptors, studied by (/sup 3/H)clonidine binding, showed a 36% decrease in binding following radiation after a 2.5 degrees C increase in body temperature, suggesting a mechanism to facilitate norepinephrine release. Norepinephrine may be speculated to maintain thermal homeostasis by activating heat dissipation. Muscarinic cholinergic receptors, studied by (3H)quinuclidinyl benzilate binding, showed a 65% increase in binding at the onset of radiation. This may be attributed to the release of acetylcholine in the hypothalamus in response to heat cumulation. The continued elevated binding during the period of cooling after radiation was shut off may suggest the existence of an extra-hypothalamic heat-loss pathway.

  17. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

    PubMed Central

    Broghammer, Angelique; Krusell, Lene; Blaise, Mickaël; Sauer, Jørgen; Sullivan, John T.; Maolanon, Nicolai; Vinther, Maria; Lorentzen, Andrea; Madsen, Esben B.; Jensen, Knud J.; Roepstorff, Peter; Thirup, Søren; Ronson, Clive W.; Thygesen, Mikkel B.; Stougaard, Jens

    2012-01-01

    Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man3XylFucGlcNAc4, were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor–ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The Kd values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes. PMID:22859506

  18. Binding of retinoic acid receptor heterodimers to DNA. A role for histones NH2 termini.

    PubMed

    Lefebvre, P; Mouchon, A; Lefebvre, B; Formstecher, P

    1998-05-15

    The retinoic acid signaling pathway is controlled essentially through two types of nuclear receptors, RARs and RXRs. Ligand dependent activation or repression of retinoid-regulated genes is dependent on the binding of retinoic acid receptor (RAR)/9-cis-retinoic acid receptor (RXR) heterodimers to retinoic acid response element (RARE). Although unliganded RXR/RAR heterodimers bind constitutively to DNA in vitro, a clear in vivo ligand-dependent occupancy of the RARE present in the RARbeta2 gene promoter has been reported (Dey, A., Minucci, S., and Ozato, K. (1994) Mol. Cell. Biol. 14, 8191-8201). Nucleosomes are viewed as general repressors of the transcriptional machinery, in part by preventing the access of transcription factors to DNA. The ability of hRXRalpha/hRARalpha heterodimers to bind to a nucleosomal template in vitro has therefore been examined. The assembly of a fragment from the RARbeta2 gene promoter, which contains a canonical DR5 RARE, into a nucleosome core prevented hRXRalpha/hRARalpha binding to this DNA, in conditions where a strong interaction is observed with a linear DNA template. However, histone tails removal by limited proteolysis and histone hyperacetylation yielded nucleosomal RAREs able to bind to hRXRalpha/hRARalpha heterodimers. These data establish therefore the role of histones NH2 termini as a major impediment to retinoid receptors access to DNA, and identify histone hyperacetylation as a potential physiological regulator of retinoid-induced transcription.

  19. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor

    PubMed Central

    Maillet, Emeline L.; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Osman, Roman; Max, Marianna

    2015-01-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2’s VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. PMID:26377607

  20. Principal pathway coupling agonist binding to channel gating in nicotinic receptors

    NASA Astrophysics Data System (ADS)

    Lee, Won Yong; Sine, Steven M.

    2005-11-01

    Synaptic receptors respond to neurotransmitters by opening an intrinsic ion channel in the final step in synaptic transmission. How binding of the neurotransmitter is conveyed over the long distance to the channel remains a central question in neurobiology. Here we delineate a principal pathway that links neurotransmitter binding to channel gating by using a structural model of the Torpedo acetylcholine receptor at 4-Å resolution, recordings of currents through single receptor channels and determinations of energetic coupling between pairs of residues. We show that a pair of invariant arginine and glutamate residues in each receptor α-subunit electrostatically links peripheral and inner β-sheets from the binding domain and positions them to engage with the channel. The key glutamate and flanking valine residues energetically couple to conserved proline and serine residues emerging from the top of the channel-forming α-helix, suggesting that this is the point at which the binding domain triggers opening of the channel. The series of interresidue couplings identified here constitutes a primary allosteric pathway that links neurotransmitter binding to channel gating.

  1. In vivo receptor binding of opioid drugs at the mu site

    SciTech Connect

    Rosenbaum, J.S.; Holford, N.H.; Sadee, W.

    1985-06-01

    The in vivo receptor binding of a series of opioid drugs was investigated in intact rats after s.c. administration of (/sup 3/H)etorphine tracer, which selectively binds to mu sites in vivo. Receptor binding was determined by a membrane filtration assay immediately after sacrifice of the animals and brain homogenization. Coadministration of unlabeled opioid drugs together with tracer led to a dose-dependent decrease of in vivo tracer binding. Estimates of the doses required to occupy 50% of the mu sites in vivo established the following potency rank order: diprenorphine, naloxone, buprenorphine, etorphine, levallorphan, cyclazocine, sufentanil, nalorphine, ethylketocyclazocine, ketocyclazocine, pentazocine, morphine. In vivo-in vitro differences among the relative receptor binding potencies were only partially accounted for by differences in their access to the brain and the regulatory effects of Na+ and GTP, which are expected to reduce agonist affinities in vivo. The relationship among mu receptor occupancy in vivo and pharmacological effects of the opioid drugs is described.

  2. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains

    PubMed Central

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-01-01

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states. PMID:27160511

  3. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains.

    PubMed

    Nango, Eriko; Akiyama, Shuji; Maki-Yonekura, Saori; Ashikawa, Yuji; Kusakabe, Yuko; Krayukhina, Elena; Maruno, Takahiro; Uchiyama, Susumu; Nuemket, Nipawan; Yonekura, Koji; Shimizu, Madoka; Atsumi, Nanako; Yasui, Norihisa; Hikima, Takaaki; Yamamoto, Masaki; Kobayashi, Yuji; Yamashita, Atsuko

    2016-01-01

    Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer. Electron microscopy has showed a characteristic dimeric structure. Förster resonance energy transfer and X-ray solution scattering have revealed the transition of the dimerization manner of the ligand binding domains, from a widely spread to compactly organized state upon taste substance binding, which may correspond to distinct receptor functional states. PMID:27160511

  4. Evolution of the hemagglutinin expressed by human influenza A(H1N1)pdm09 and A(H3N2) viruses circulating between 2008-2009 and 2013-2014 in Germany.

    PubMed

    Wedde, Marianne; Biere, Barbara; Wolff, Thorsten; Schweiger, Brunhilde

    2015-10-01

    This report describes the evolution of the influenza A(H1N1)pdm09 and A(H3N2) viruses circulating in Germany between 2008-2009 and 2013-2014. The phylogenetic analysis of the hemagglutinin (HA) genes of both subtypes revealed similar evolution of the HA variants that were also seen worldwide with minor exceptions. The analysis showed seven distinct HA clades for A(H1N1)pdm09 and six HA clades for A(H3N2) viruses. Herald strains of both subtypes appeared sporadically since 2008-2009. Regarding A(H1N1)pdm09, herald strains of HA clade 3 and 4 were detected late in the 2009-2010 season. With respect to A(H3N2), we found herald strains of HA clade 3, 4 and 7 between 2009 and 2012. Those herald strains were predominantly seen for minor and not for major HA clades. Generally, amino acid substitutions were most frequently found in the globular domain, including substitutions near the antigenic sites or the receptor binding site. Differences between both influenza A subtypes were seen with respect to the position of the indicated substitutions in the HA. For A(H1N1)pdm09 viruses, we found more substitutions in the stem region than in the antigenic sites. In contrast, in A(H3N2) viruses most changes were identified in the major antigenic sites and five changes of potential glycosylation sites were identified in the head of the HA monomer. Interestingly, we found in seasons with less influenza activity a relatively high increase of substitutions in the head of the HA in both subtypes. This might be explained by the fact that mutations under negative selection are subsequently compensated by secondary mutations to restore important functions e.g. receptor binding properties. A better knowledge of basic evolution strategies of influenza viruses will contribute to the refinement of predictive mathematical models for identifying novel antigenic drift variants.

  5. Transferrin Binding to Peripheral Blood Lymphocytes Activated by Phytohemagglutinin Involves a Specific Receptor

    PubMed Central

    Galbraith, Robert M.; Werner, Phillip; Arnaud, Philippe; Galbraith, Gillian M. P.

    1980-01-01

    Immunohistological studies have indicated that membrane sites binding transferrin are present upon activated human peripheral blood lymphocytes. In this study, we have investigated transferrin uptake in human lymphocytes exposed to phytohemagglutinin (PHA), by quantitative radiobinding and immunofluorescence in parallel. In stimulated lymphocytes, binding was maximal after a 30-min incubation, being greatest at 37°C, and greater at 22°C than at 4°C. Although some shedding and endocytosis of transferrin occurred at 22° and 37°C, these factors, and resulting synthesis of new sites, did not affect measurement of binding which was found to be saturable, reversible, and specific for transferrin (Ka 0.5-2.5 × 108 M−1). Binding was greater after a 48-h exposure to PHA than after 24 h, and was maximal at 66 h. Sequential Scatchard analysis revealed no significant elevation in affinity of interaction. However, although the total number of receptors increased, the proportion of cells in which binding of ligand was detected immunohistologically increased in parallel, and after appropriate correction, the cellular density of receptors remained relatively constant throughout (60,000-80,000 sites/cell). Increments in binding during the culture period were thus due predominantly to expansion of a population of cells bearing receptors. Similar differences in binding were apparent upon comparison of cells cultured in different doses of PHA, and in unstimulated cells binding was negligible. Transferrin receptors appear, therefore, to be readily detectable only upon lymphocytes that have been activated. Images PMID:6253523

  6. Binding properties of alpha-1 adrenergic receptors in rat cerebral cortex: similarity to smooth muscle

    SciTech Connect

    Minneman, K.P.

    1983-12-01

    The characteristics of alpha-1 adrenergic receptors in rat cerebral cortex were examined using the radioiodinated alpha-1 adrenergic receptor antagonist ((/sup 125/I)BE). (/sup 125/I)BE labeled a single class of high-affinity binding sites in a particulate fraction of rat cerebral cortex with mass action kinetics and a KD of 57 pM. The binding of (/sup 125/I)BE was inhibited by various alpha adrenergic receptor antagonists, partial agonists and full agonists. The potency of these compounds in competing for the (/sup 125/I)BE binding sites suggested that (/sup 125/I)BE was labeling alpha-1 adrenergic receptors in rat cerebral cortex. In the absence of a physiological concentration of NaCl in the assay medium there was a small (20%) decrease in the density of (/sup 125/I)BE binding sites with no effect on the KD value. The absence of NaCl also caused a 4-fold increase in the potency of norepinephrine in competing for (/sup 125/I)BE binding sites. All drugs competed for (/sup 125/I) BE binding sites with Hill coefficients greater than 0.86, except for oxymetazoline which had a Hill coefficient of 0.77. Scatchard analysis of specific (/sup 125/I)BE binding in the presence of various competing drugs showed that the inhibition by both agonists and antagonists was purely competitive, but the inhibition by oxymetazoline was complex. Treatment of the particulate fraction of rat cerebral cortex with 0.2 to 200 nM phenoxybenzamine for 10 min caused a dose-dependent decrease in the density of (/sup 125/I) BE binding sites which could be mostly blocked by the presence of norepinephrine during the phenoxybenzamine exposure.

  7. Developing a qPCR method to quantify AhR-PCP-DNA complex for detection of environmental trace-level PCP.

    PubMed

    Zhao, Xiaoxiang; Pang, Xiaoqian; Chaisuwan, Nuanapa

    2011-07-01

    Pentachlorophenol (PCP), a widely-used aseptic or biocide, is known as an environmental toxicant involved in endocrine disruption even at a trace level. In order to reliably and efficiently quantify environmental trace-quantity PCP, this study developed a novel PCP detection method using the aryl hydrocarbon receptor (AhR) and fluorescence quantitative PCR (qPCR). DNA probe with AhR binding sites was synthesized by PCR before added into AhR-PCP complex. After AhR-PCP-DNA complex was digested with exonuclease, copy number of DNA probe was determined using fluorescence qPCR. To calculate PCP concentration in samples, a standard curve (PCP concentration versus Ct value) was constructed and the detection range was 10(-13) to 10(-9) M. PCP detection limit was 0.0089 ppt for the AhR-PCP-DNA complex assay and 8.8780 ppm for high performance liquid chromatography, demonstrating that the method developed in this study is more sensitive. These results suggest that AhR-PCP-DNA complex method may be successfully applicable in detection and quantification of environmental trace-level PCP. PMID:21503612

  8. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals

    PubMed Central

    Kaplan, Bryan S.; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A.; Russell, Charles J.; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E.; Krauss, Scott

    2016-01-01

    ABSTRACT Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes

  9. Interaction of nicotinic receptor affinity reagents with central nervous system. cap alpha. -bungarotoxin-binding entities

    SciTech Connect

    Lukas, R.J.; Bennett, E.L.

    1980-01-01

    Membrane-bound ..cap alpha..-bungarotoxin-binding entities derived from rat brain are found to interact specifically with the affinity reagents maleimidobenzyltrimethylammonium (MBTA) and bromoacetylcholine (BAC), originally designed to label nicotinic acetylcholine receptors from electroplax and skeletal muscle. Following treatment of membranes with dithiothreitol, all specific toxin binding sites are irreversibly blocked by reaction with MBTA or BAC. Affinity reagent labeling of dithiothreitol-reduced membranes is prevented (toxin binding sites are not blocked) by prior alkylaction with N-ethylmaleimide, by prior oxidation with dithiobis(2-nitrobenzoic acid), or by incubation with neurotoxin. Reversibly associating cholinergic agonists and antagonists retard the rate of affinity reagent interaction with toxin receptors. The apparent rates of affinity reagent alkylation of toxin receptors, and the influences of other sulfhydryl/disulfide reagents on affinity labeling are comparable to those observed for reaction with nicotinic acetylcholine receptors in the periphery. The results provide further evidence that central nervous system ..cap alpha..-bungarotoxin receptors share a remarkable number of biochemical properties with nicotinic receptors from the periphery.

  10. Bio-inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor-Embedded Hydrogel Matrices.

    PubMed

    Luan, Xinglong; Zhang, Yihe; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei; Huskens, Jurriaan; An, Qi

    2016-08-01

    The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial-temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio-inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor-embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4-aminoazobenzene, quickly and reversibly binds to matrices-bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding-diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio-relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell-culturing materials. PMID:27547643

  11. Rational design of an estrogen receptor mutant with altered DNA-binding specificity

    PubMed Central

    Nguyen, Denis; Bail, Martine; Pesant, Genevieve; Dupont, Virginie N.; Rouault, Étienne; Deschênes, Julie; Rocha, Walter; Melançon, Geneviève; Steinberg, Sergey V.; Mader, Sylvie

    2007-01-01

    Although artificial C2-H2 zinc fingers can be designed to recognize specific DNA sequences, it remains unclear to which extent nuclear receptor C4 zinc fingers can be tailored to bind novel DNA elements. Steroid receptors bind as dimers to palindromic response elements differing in the two central base pairs of repeated motifs. Predictions based on one amino acid—one base-pair relationships may not apply to estrogen receptors (ERs), which recognize the two central base pairs of estrogen response elements (EREs) via two charged amino acids, each contacting two bases on opposite DNA strands. Mutagenesis of these residues, E203 and K210 in ERα, indicated that both contribute to ERE binding. Removal of the electric charge and steric constraints associated with K210 was required for full loss of parental DNA-binding specificity and recognition of novel sequences by E203 mutants. Although some of the new binding profiles did not match predictions, the double mutation E203R-K210A generated as predicted a mutant ER that was transcriptionally active on palindromes of PuGCTCA motifs, but not on consensus EREs. This study demonstrates the feasibility of designing C4 zinc finger mutants with novel DNA-binding specificity, but also uncovers limitations of this approach. PMID:17478511

  12. Time course of the estradiol-dependent induction of oxytocin receptor binding in the ventromedial hypothalamic nucleus of the rat

    SciTech Connect

    Johnson, A.E.; Ball, G.F.; Coirini, H.; Harbaugh, C.R.; McEwen, B.S.; Insel, T.R. )

    1989-09-01

    Oxytocin (OT) transmission is involved in the steroid-dependent display of sexual receptivity in rats. One of the biochemical processes stimulated by the ovarian steroid 17 beta-estradiol (E2) that is relevant to reproduction is the induction of OT receptor binding in the ventromedial hypothalamic nucleus (VMN). The purpose of these experiments was to determine if E2-induced changes in OT receptor binding in the VMN occur within a time frame relevant to cyclic changes in ovarian steroid secretion. OT receptor binding was measured in the VMN of ovariectomized rats implanted for 0-96 h with E2-containing Silastic capsules. The rate of decay of OT receptor binding was measured in another group of animals 6-48 h after capsule removal. Receptors were labeled with the specific OT receptor antagonist ({sup 125}I)d(CH2)5(Tyr(Me)2,Thr4,Tyr-NH2(9))OVT, and binding was measured with quantitative autoradiographic methods. In addition, plasma E2 levels and uterine weights were assessed in animals from each treatment condition. Significant increases in E2-dependent OT receptor binding and uterine weight occurred within 24 h of steroid treatment. After E2 withdrawal, OT receptor binding and uterine weight decreased significantly within 24 h. These results are consistent with the hypothesis that steroid modulation of OT receptor binding is necessary for the induction of sexual receptivity.

  13. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    SciTech Connect

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-09-09

    Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  14. Muscarinic receptors of the vascular bed: radioligand binding studies on bovine splenic veins.

    PubMed

    Brunner, F; Kukovetz, W R

    1986-01-01

    Despite an obvious lack of parasympathetic innervation to the spleen, pharmacological evidence suggests the presence of cholinergic receptors in isolated bovine splenic veins. We therefore studied muscarinic cholinergic binding sites in a bovine splenic vein preparation by direct radioligand binding techniques using [3H]quinuclidinyl benzilate ([3H]QNB) as radioactive probe. Saturation experiments indicated one homogeneous class of high-affinity binding sites, with a KD of 0.11 nM and a binding site density Bmax of 55 fmol/mg protein. The rate constants at 37 degrees C for formation and dissociation of the [3H]QNB receptor complex were 2.7 X 10(9) M-1 h-1 and 0.38 h-1, respectively, yielding a KD of 0.14 nM. The binding sites showed a high stereospecificity, which was evident from competition experiments with dexetimide (KI = 1.3 nM) and levetimide (KI = 4.6 microM). In competition experiments with muscarinic and nicotinic antagonists and some antidepressants, only one binding site was found, whereas with muscarinic agonists, two binding sites were detected. In the presence of 0.1 mM guanyl-imido-diphosphate, only one binding site could be identified with the muscarinic agonist carbamylcholine. The affinity of [3H]QNB, on the other hand, was slightly decreased, and Bmax values were unchanged. It is concluded that specific, saturable, high-affinity muscarinic binding sites in the bovine splenic vein have been identified and characterized that exhibit properties similar to cholinergic receptors of brain and peripheral tissues and probably mediate acetylcholine-induced relaxation of splenic veins. PMID:2427809

  15. Cloning, ligand-binding, and temporal expression of ecdysteroid receptors in the diamondback moth, Plutella xylostella

    PubMed Central

    2012-01-01

    Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a devastating pest of cruciferous crops worldwide, and has developed resistance to a wide range of insecticides, including diacylhydrazine-based ecdysone agonists, a highly selective group of molt-accelerating biopesticides targeting the ecdysone receptors. Result In this study, we cloned and characterized the ecdysone receptors from P. xylostella, including the two isoforms of EcR and a USP. Sequence comparison and phylogenetic analysis showed striking conservations among insect ecdysone receptors, especially between P. xylostella and other lepidopterans. The binding affinity of ecdysteroids to in vitro-translated receptor proteins indicated that PxEcRB isoform bound specifically to ponasterone A, and the binding affinity was enhanced by co-incubation with PxUSP (Kd =3.0±1.7 nM). In contrast, PxEcRA did not bind to ponasterone A, even in the presence of PxUSP. The expression of PxEcRB were consistently higher than that of PxEcRA across each and every developmental stage, while the pattern of PxUSP expression is more or less ubiquitous. Conclusions Target site insensitivity, in which the altered binding of insecticides (ecdysone agonists) to their targets (ecdysone receptors) leads to an adaptive response (resistance), is one of the underlying mechanisms of diacylhydrazine resistance. Given the distinct differences at expression level and the ligand-binding capacity, we hypothesis that PxEcRB is the ecdysone receptor that controls the remodeling events during metamorphosis. More importantly, PxEcRB is the potential target site which is modified in the ecdysone agonist-resistant P. xylostella. PMID:23078528

  16. Characterization of the receptor binding determinants of granulocyte colony stimulating factor.

    PubMed Central

    Young, D. C.; Zhan, H.; Cheng, Q. L.; Hou, J.; Matthews, D. J.

    1997-01-01

    We performed a series of experiments using alanine-scanning mutagenesis to locate side chains within human granulocyte colony-stimulating factor (G-CSF) that are involved in human G-CSF receptor binding. We constructed a panel of 28 alanine mutants that examined all surface exposed residues on helices A and D, as well as all charged residues on the surface of G-CSF. The G-CSF mutants were expressed in a transiently transfected mammalian cell line and quantitated by a sensitive biosensor method. We measured the activity of mutant proteins using an in vitro proliferation assay and an ELISA binding competition assay. These studies show that there is a region of five charged residues on helices A and C employed by G-CSF in binding its receptor, with the most important residue in this binding patch being Glu 19. Both wild-type G-CSF and the E19A mutant were expressed in E. coli. The re-folded proteins were found to have proliferative activities similar to the analogous proteins from mammalian cells: furthermore, biophysical analysis indicated that the E19A mutation does not cause gross structural perturbations in G-CSF. Although G-CSF is likely to signal through receptor homo-dimerization, we found no compelling evidence for a second receptor binding region. We also found no evidence of self-antagonism at high G-CSF concentrations, suggesting that, in contrast to human growth hormone (hGH) and erythropoietin (EPO), G-CSF probably does not signal via a pure 2:1 receptor ligand complex. Thus, G-CSF, while having a similar tertiary structure to hGH and EPO, uses different areas of the four helix bundle for high-affinity interaction with its receptor. PMID:9194183

  17. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    PubMed Central

    Ettrup, Anders; da Cunha-Bang, Sophie; McMahon, Brenda; Lehel, Szabolcs; Dyssegaard, Agnete; Skibsted, Anine W; Jørgensen, Louise M; Hansen, Martin; Baandrup, Anders O; Bache, Søren; Svarer, Claus; Kristensen, Jesper L; Gillings, Nic; Madsen, Jacob; Knudsen, Gitte M

    2014-01-01

    [11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain. PMID:24780897

  18. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis

    PubMed Central

    Villa, Matteo; Crotta, Stefania; Dingwell, Kevin S.; Hirst, Elizabeth M. A.; Gialitakis, Manolis; Ahlfors, Helena; Smith, James C.; Stockinger, Brigitta; Wack, Andreas

    2016-01-01

    Epithelia function as barriers against environmental insults and express the transcription factor aryl hydrocarbon receptor (AhR). However, AhR function in these tissues is unknown. Here we show that AhR regulates multiciliogenesis in both murine airway epithelia and in Xenopus laevis epidermis. In air-exposed airway epithelia, induction of factors required for multiciliogenesis, including cyclin O (Ccno) and Multicilin (Mcidas), is AhR dependent, and air exposure induces AhR binding to the Ccno promoter. Submersion and hypoxic conditions impede AhR-dependent Ccno induction. This is mediated by the persistence of Notch signalling, as Notch blockade renders multiciliogenesis and Ccno induction by AhR independent from air exposure. In contrast to Ccno induction, air exposure does not induce the canonical AhR target cytochrome P450 1a1 (Cyp1a1). Inversely, exposure to AhR ligands induces Cyp1a1 but not Ccno and impeded ciliogenesis. These data indicate that AhR involvement in detoxification of environmental pollutants may impede its physiological role, resulting in respiratory pathology. PMID:27554288

  19. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis.

    PubMed

    Villa, Matteo; Crotta, Stefania; Dingwell, Kevin S; Hirst, Elizabeth M A; Gialitakis, Manolis; Ahlfors, Helena; Smith, James C; Stockinger, Brigitta; Wack, Andreas

    2016-01-01

    Epithelia function as barriers against environmental insults and express the transcription factor aryl hydrocarbon receptor (AhR). However, AhR function in these tissues is unknown. Here we show that AhR regulates multiciliogenesis in both murine airway epithelia and in Xenopus laevis epidermis. In air-exposed airway epithelia, induction of factors required for multiciliogenesis, including cyclin O (Ccno) and Multicilin (Mcidas), is AhR dependent, and air exposure induces AhR binding to the Ccno promoter. Submersion and hypoxic conditions impede AhR-dependent Ccno induction. This is mediated by the persistence of Notch signalling, as Notch blockade renders multiciliogenesis and Ccno induction by AhR independent from air exposure. In contrast to Ccno induction, air exposure does not induce the canonical AhR target cytochrome P450 1a1 (Cyp1a1). Inversely, exposure to AhR ligands induces Cyp1a1 but not Ccno and impeded ciliogenesis. These data indicate that AhR involvement in detoxification of environmental pollutants may impede its physiological role, resulting in respiratory pathology. PMID:27554288

  20. Quantitative Characterization of Glycan-Receptor Binding of H9N2 Influenza A Virus Hemagglutinin

    PubMed Central

    Srinivasan, Karunya; Raman, Rahul; Jayaraman, Akila; Viswanathan, Karthik; Sasisekharan, Ram

    2013-01-01

    Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA) and neuraminidase (NA) genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1) subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties. PMID:23626667

  1. Novel Yeast-based Strategy Unveils Antagonist Binding Regions on the Nuclear Xenobiotic Receptor PXR*

    PubMed Central

    Li, Hao; Redinbo, Matthew R.; Venkatesh, Madhukumar; Ekins, Sean; Chaudhry, Anik; Bloch, Nicolin; Negassa, Abdissa; Mukherjee, Paromita; Kalpana, Ganjam; Mani, Sridhar

    2013-01-01

    The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications. PMID:23525103

  2. Binding of acetylcholine and tetramethylammonium to flexible cyclophane receptors: improving on binding ability by optimizing host's geometry.

    PubMed

    Sarri, Paolo; Venturi, Francesca; Cuda, Francesco; Roelens, Stefano

    2004-05-28

    The structure of a cyclophanic tetraester (1), previously employed for investigations on the cation-pi interaction, has been optimized to better accommodate acetylcholine (ACh) and tetramethylammonium (TMA) guests. Following indications from molecular modeling calculations, a flexible cyclophane receptor of significantly improved binding properties has been obtained by removing the four carbonyl groups of the parent host. 2,11,20,29-Tetraoxa[3.3.3.3]paracyclophane (2) was prepared by an improved procedure, which was conveniently devised to avoid the formation of contiguous cyclooligomers that caused serious separation issues. Association of 2 with TMA picrate was measured in CDCl(3) at T = 296 K by (1)H NMR titrations and compared to binding data obtained for a set of reference hosts, including the parent tetraester 1, the corresponding cyclophanic tetraamine, the open-chain counterpart of 2, and its cyclooligomers from pentamer to octamer. Binding enhancements ranging from 15-fold (with respect to the tetraester and the tetraamine) to over 80-fold (with respect to the open-chain tetraether) were achieved by geometry optimization of the host. Binding of 2 to ACh and TMA was investigated for a variety of counterions. A constant binding free energy increment of nearly 8 kJ mol(-1) with respect to 1 was observed, independent from the anion and irrespective of the different structure of the cationic guests. Results showed that the electrostatic inhibiting contribution of the counterion to the cation's binding is a characteristic constant of each anion. The value of -Delta G degrees = 44.9 kJ mol(-1) extrapolated for TMA in the absence of a counterion indicates that 28-34 kJ mol(-1) of binding free energy are lost in ion pairing.

  3. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site

    PubMed Central

    Naranda, Tatjana; Wong, Kenneth; Kaufman, R. Ilene; Goldstein, Avram; Olsson, Lennart

    1999-01-01

    Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin. PMID:10377456

  4. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors

    PubMed Central

    Geary, Cody; Baudrey, Stéphanie; Jaeger, Luc

    2008-01-01

    Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG … AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied ‘11nt’ GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC … GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA–RNA interactions are proposed. PMID:18158305

  5. Seven transmembrane receptors as nature's prototype allosteric protein: de-emphasizing the geography of binding.

    PubMed

    Kenakin, Terry P

    2008-09-01

    The article in this issue by Redka et al. (p. 834) illustrates some interesting interactions between classified orthosteric (bind to the same recognition site as endogenous agonist) and allosteric (bind to a different site) ligands. Of particular interest are the methods used to deal with an obfuscating factor in these kinds of studies, namely the propensity of seven transmembrane receptors to form dimers and thus demonstrate allosteric effects through binding at the orthosteric site. The judicious use of kinetics to detect and quantify allosteric action also is demonstrated. The various unique properties of allosteric modulators are discussed in the context of the increasing prevalence of allosteric ligands as investigational drugs.

  6. Gestational cocaine exposure increases opiate receptor binding in weanling offspring.

    PubMed

    Clow, D W; Hammer, R P; Kirstein, C L; Spear, L P

    1991-04-24

    The use of cocaine during pregnancy produces a variety of adverse effects in offspring. Gestational cocaine exposure is known to affect developing dopamine systems, but other neurochemical systems may also be at risk. Regional density of opiate receptors labeled with [3H]naloxone was examined in the brains of 21-day-old male rats exposed to cocaine (0, 10, 20, or 40 mg/kg/day s.c.) between gestation days 8 and 20. Gestational cocaine exposure significantly increased labeling in a dose-dependent fashion in dopaminergic terminal (e.g. the nucleus accumbens, medial prefrontal cortex, olfactory tubercle, and caudatoputamen), limbic (e.g. basolateral amygdaloid nucleus, lateral habenula, hippocampus, dentate gyrus, entorhinal and cingulate cortices) and neocortical (e.g. somatosensory and motor cortices) regions, but had little effect in diencephalic or brainstem regions. The results suggest a functional linkage whereby drug-induced alteration of dopamine systems can regulate developing opioid systems in the brain. Moreover, gestational cocaine exposure produced long-lasting changes of opiate receptor labeling in certain brain regions. The implications of these results are uncertain. However, such effects on endogenous opioid systems could contribute to a developmental delay, cognitive or motor dysfunction.

  7. The Drosophila Acetylcholine Receptor Subunit Dα5 Is Part of an α-Bungarotoxin Binding Acetylcholine Receptor*

    PubMed Central

    Wu, Peipei; Ma, Dongdong; Pierzchala, Marek; Wu, Jun; Yang, Lee-Chuan; Mai, Xiaoping; Chang, Xiaoying; Schmidt-Glenewinkel, Thomas

    2011-01-01

    The central nervous system of Drosophila melanogaster contains an α-bungarotoxin-binding protein with the properties expected of a nicotinic acetylcholine receptor. This protein was purified 5800-fold from membranes prepared from Drosophila heads. The protein was solubilized with 1% Triton X-100 and 0.5 m sodium chloride and then purified using an α-cobratoxin column followed by a lentil lectin affinity column. The purified protein had a specific activity of 3.9 μmol of 125I-α-bungarotoxin binding sites/g of protein. The subunit composition of the purified receptor was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. This subunit profile was identical with that revealed by in situ labeling of the membrane-bound protein using the photolyzable methyl-4-azidobenzoimidate derivative of 125I-α-bungarotoxin. The purified receptor reveals two different protein bands with molecular masses of 42 and 57 kDa. From sedimentation analysis of the purified protein complex in H2O and D2O and gel filtration, a mass of 270 kDa was calculated. The receptor has a s20,w of 9.4 and a Stoke's radius of 7.4 nm. The frictional coefficient was calculated to be 1.7 indicating a highly asymmetric protein complex compatible with a transmembrane protein forming an ion channel. The sequence of a peptide obtained after tryptic digestion of the 42-kDa protein allowed the specific identification of the Drosophila Dα5 subunit by sequence comparison. A peptide-specific antibody raised against the Dα5 subunit provides further evidence that this subunit is a component of an α-bungarotoxin binding nicotinic acetylcholine receptor from the central nervous system of Drosophila. PMID:15781463

  8. Stereochemistry of quinoxaline antagonist binding to a glutamate receptor investigated by Fourier transform infrared spectroscopy.

    PubMed

    Madden, D R; Thiran, S; Zimmermann, H; Romm, J; Jayaraman, V

    2001-10-12

    The stereochemistry of the interactions between quinoxaline antagonists and the ligand-binding domain of the glutamate receptor 4 (GluR4) have been investigated by probing their vibrational modes using Fourier transform infrared spectroscopy. In solution, the electron-withdrawing nitro groups of both compounds establish a resonance equilibrium that appears to stabilize the keto form of one of the cyclic amide carbonyl bonds. Changes in the 6,7-dinitro-2,3-dihydroxyquinoxaline vibrational spectra on binding to the glutamate receptor, interpreted within the framework of a published crystal structure, illuminate the stereochemistry of the interaction and suggest that the binding site imposes a more polarized electronic bonding configuration on this antagonist. Similar spectral changes are observed for 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline, confirming that its interactions with the binding site are highly similar to those of 6,7-dinitro-2,3-dihydroxyquinoxaline and leading to a model of the 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline-S1S2 complex, for which no crystal structure is available. Conformational changes within the GluR ligand binding domain were also monitored. Compared with the previously reported spectral changes seen on binding of the agonist glutamate, only a relatively small change is detected on antagonist binding. This correlation between the functional effects of different classes of ligand and the magnitude of the spectroscopic changes they induce suggests that the spectral data reflect physiologically relevant conformational processes.

  9. Estrogen and progesterone modulate [35S]GTPgammaS binding to nociceptin receptors.

    PubMed

    Quesada, Arnulfo; Micevych, Paul

    2008-01-01

    Sex steroids modulate reproduction by altering the response of steroid-activated opioid circuits in the hypothalamus and limbic system, by inducing release of endogenous opioids and activation of their cognate receptors. Many studies have concentrated on steroid regulation of exogenous opioid peptides, but steroids also have important actions on opioid receptors inducing receptor trafficking. Opioid receptors are G protein-coupled receptors and their activation catalyzes the exchange of GTP for GDP initiating intracellular signaling cascades. Kinetics of G protein activation were studied using [(35)S]GTPgammaS binding. Catalytic amplification, the number of G proteins activated per occupied receptor, was used as a measure of receptor/transducer amplification. The present study examined whether estrogen and progesterone treatment altered the kinetics of nociceptin opioid receptor (ORL1) in plasma membranes from the medial preoptic area and mediobasal hypothalamus. These hypothalamic regions are important in the gonadal steroid hormone regulation of sexual receptivity. In the mediobasal hypothalamus, estrogen increased ORL1 (B(max)) receptor number 2-fold and maximal GTPgammaS binding (E(max)) 3.9-fold. Subsequent progesterone treatment further increased ORL1 E(max )6.9-fold above baseline, despite a 2-fold decrease in the catalytic amplification factor. In the medial preoptic area, estrogen alone did not increase E(max), but both estrogen and progesterone were able to increase ORL1 B(max) 2.2-fold and E(max) 3-fold, despite having a 3-fold decrease in the catalytic amplification factor. These effects are interesting because they indicate actions of steroids that increase the number of ORL1 but decrease the catalytic amplification suggesting that the steroid effects on opioid receptors are complex and may involve modulation by other signals. PMID:18212517

  10. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  11. Modulation of agonist binding to human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a peptidomimetic analog.

    PubMed

    Verma, Vaneeta; Mann, Amandeep; Costain, Willard; Pontoriero, Giuseppe; Castellano, Jessica M; Skoblenick, Kevin; Gupta, Suresh K; Pristupa, Zdenek; Niznik, Hyman B; Johnson, Rodney L; Nair, Venugopalan D; Mishra, Ram K

    2005-12-01

    The present study was undertaken to investigate the role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) and its conformationally constrained analog 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA) in modulating agonist binding to human dopamine (DA) receptor subtypes using human neuroblastoma SH-SY5Y cells stably transfected with respective cDNAs. Both PLG and PAOPA enhanced agonist [3H]N-propylnorapomorphine (NPA) and [3H]quinpirole binding in a dose-dependent manner to the DA D2L,D2S, and D4 receptors. However, agonist binding to the D1 and D3 receptors and antagonist binding to the D2L receptors by PLG were not significantly affected. Scatchard analysis of [3H]NPA binding to membranes in the presence of PLG revealed a significant increase in affinity of the agonist binding sites for the D2L, D2S, and D4 receptors. Analysis of agonist/antagonist competition curves revealed that PLG and PAOPA increased the population and affinity of the high-affinity form of the D2L receptor and attenuated guanosine 5'-(beta,gamma-imido)-triphosphate-induced inhibition of high-affinity agonist binding sites for the DA D2L receptor. Furthermore, direct NPA binding with D2L cell membranes pretreated with suramin, a compound that can uncouple receptor/G protein complexes, and incubated with and without DA showed that both PLG and PAOPA had only increased agonist binding in membranes pretreated with both suramin and DA, suggesting that PLG requires the D2L receptor/G protein complex to increase agonist binding. These results suggest that PLG possibly modulates DA D2S, D2L, and D4 receptors in an allosteric manner and that the coupling of D2 receptors to the G protein is essential for this modulation to occur. PMID:16126839

  12. The binding of (3H)AF-DX 384 to rat ileal smooth muscle muscarinic receptors

    SciTech Connect

    Entzeroth, M.; Mayer, N. )

    1991-01-01

    The tritiated cardioselective muscarinic antagonist AF-DX 384 (5,11-dihydro-11-(2-(-(8-dipropylamino)methyl)-1-piperidinyl-ethyl-amino-carbonyl)-6H-pyrido (2,3-b) (1,4)benzodiazepin-6-one) was used to label muscarinic receptors in the rat ileum. Saturation binding to membrane suspensions revealed a high affinity binding site with a Kd of 9.2 nM. The maximal number of binding sites labeled in this tissue (Bmax) is 237 fmol/mg protein. The association and dissociation kinetics were well represented by single exponential reactions, and the dissociation constant obtained from the ratio of rate constants was in agreement with that derived from saturation experiments. Specific binding was inhibited by muscarinic antagonists with a rank order of potencies of atropine (pKi: 8.80) greater than 4-DAMP (pKi: 8.23) = AF-DX 384 (pKi: 8.20) greater than AF-DX 116 (pKi: 7.09) = hexahydro-sila-difenidol (pKi: 6.97) greater than pirenzepine (pKi: 6.49) and is consistent with the interaction of (3H)AF-DX 384 with muscarinic receptors of the M2 subtype. It can be concluded that (3H)AF-DX 384 can be used to selectively label M2 muscarinic receptors in heterogeneous receptor populations.

  13. IQGAP1 binds to estrogen receptor-α and modulates its function.

    PubMed

    Erdemir, Huseyin H; Li, Zhigang; Sacks, David B

    2014-03-28

    The estrogen receptor (ER) is a steroid hormone receptor that acts as a transcription factor, modulating genes that regulate a vast range of cellular functions. IQGAP1 interacts with several signaling proteins, cytoskeletal components, and transmembrane receptors, thereby serving as a scaffold to integrate signaling pathways. Both ERα and IQGAP1 contribute to breast cancer. In this study, we report that IQGAP1 binds ERα and ERβ. In vitro analysis with pure proteins revealed a direct interaction between IQGAP1 and ERα. Investigation with multiple short fragments of each protein showed that ERα binds to the IQ domain of IQGAP1, whereas the hinge region of ERα is responsible for binding IQGAP1. In addition, IQGAP1 and ERα co-immunoprecipitated from cells, and the association was modulated by estradiol. The interaction has functional effects. Knockdown of endogenous IQGAP1 attenuated the ability of estradiol to induce transcription of the estrogen-responsive genes pS2, progesterone receptor, and cyclin D1. These data reveal that IQGAP1 binds to ERα and modulates its transcriptional function, suggesting that IQGAP1 might be a target for therapy in patients with breast carcinoma.

  14. COMPARATIVE DOCKING STUDIES OF THE BINDING OF POLYCYCLIC AROMATIC HYDROCARBONS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    The interactions of several PAHs, and some of their possible metabolites, with the ligand binding domain of the estrogen receptor have been examined using molecular docking and quantum mechanical methods. The geometries of the PAHs were optimized at the Hartree-Fock level and the...

  15. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  16. Receptor Binding Sites and Antigenic Epitopes on the Fiber Knob of Human Adenovirus Serotype 3

    PubMed Central

    Liebermann, Herbert; Mentel, Renate; Bauer, Ulrike; Pring-Åkerblom, Patricia; Dölling, Rudolf; Modrow, Susanne; Seidel, Werner

    1998-01-01

    The adenovirus fiber knob causes the first step in the interaction of adenovirus with cell membrane receptors. To obtain information on the receptor binding site(s), the interaction of labeled cell membrane proteins to synthetic peptides covering the adenovirus type 3 (Ad3) fiber knob was studied. Peptide P6 (amino acids [aa] 187 to 200), to a lesser extent P14 (aa 281 to 294), and probably P11 (aa 244 to 256) interacted specifically with cell membrane proteins, indicating that these peptides present cell receptor binding sites. Peptides P6, P11, and P14 span the D, G, and I β-strands of the R-sheet, respectively. The other reactive peptides, P2 (aa 142 to 156), P3 (aa 153 to 167), and P16 (aa 300 to 319), probably do not present real receptor binding sites. The binding to these six peptides was inhibited by Ad3 virion and was independent of divalent cations. We have also screened the antigenic epitopes on the knob with recombinant Ad3 fiber, recombinant Ad3 fiber knob, and Ad3 virion-specific antisera by enzyme-linked immunosorbent assay. The main antigenic epitopes were presented by P3, P6, P12 (aa 254 to 269), P14, and especially the C-terminal P16. Peptides P14 and P16 of the Ad3 fiber knob were able to inhibit Ad3 infection of cells. PMID:9765458

  17. Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase

    PubMed Central

    Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E

    2012-01-01

    Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804

  18. Estimation of Ligand-Receptor Binding Affinity from Fluctuation of Their Interface

    NASA Astrophysics Data System (ADS)

    Iwamoto, Koji; Ode, Hirotaka; Ohta, Masami; Misu, Takashi; Hata, Masayuki; Neya, Saburo; Hoshino, Tyuji

    2005-10-01

    It is necessary for the understanding of protein interactions or in silico drug designs to accurately estimate ligand-receptor affinity. The energy calculation based on the electrostatic force, van der Waals force, and solvation effect is a direct method of computing the magnitude of the interaction between ligand and receptor. By this conventional method, however, it is difficult to estimate a slight difference in binding affinity with sufficient accuracy. We propose a novel concept for the evaluation of binding affinity between a ligand and its receptor by functionalizing the fluctuation at the ligand-receptor interface. This method enables an adequate estimation with a high accuracy compared with the conventional energetic approach. Human immunodeficiency virus type 1 (HIV-1) protease and its inhibitor are used to explain how binding affinity is extracted from the fluctuation in interfacial energy, and a combination of an antigen and its antibody is examined to demonstrate the compatibility between the estimation from the interfacial fluctuation and the experimentally measured binding energy.

  19. Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors

    EPA Science Inventory

    This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were...

  20. The effect of hyperthyroidism on opiate receptor binding and pain sensitivity

    SciTech Connect

    Edmondson, E.A. ); Bonnet, K.A.; Friedhoff, A.J. )

    1990-01-01

    This study was conducted to determine the effect of thyroid hormone on opiate receptor ligand-binding and pain sensitivity. Specific opiate receptor-binding was performed on brain homogenates of Swiss-Webster mice. There was a significant increase in {sup 3}H-naloxone-binding in thyroxine-fed subjects (hyperthyroid). Scatchard analysis revealed that the number of opiate receptors was increased in hyperthyroid mice (Bmax = 0.238 nM for hyperthyroid samples vs. 0.174 nM for controls). Binding affinity was unaffected (Kd = 1.54 nM for hyperthyroid and 1.58 nM for control samples). When mice were subjected to hotplate stimulation, the hyperthyroid mice were noted to be more sensitive as judged by pain aversion response latencies which were half that of control animals. After morphine administration, the hyperthyroid animals demonstrated a shorter duration of analgesia. These findings demonstrate that thyroxine increases opiate receptor number and native pain sensitivity but decreases the duration of analgesia from morphine.

  1. NATURE OF BINDING INTERACTION OF SELECTED CHEMICALS WITH RAT ESTROGEN RECEPTORS

    EPA Science Inventory

    The US EPA is currently validating a rat uterine estrogen receptor (ER) binding assay as part of the Tier 1 Screening Battery for the Endocrine Disruptor Program. An eventual goal is to use interactive data to create computerized structure-activity models. However, more informati...

  2. Improvement of a sensitive enzyme-linked immunosorbent assay for screening estrogen receptor binding activity.

    PubMed

    Koda, Tomoko; Soya, Yoshihiro; Negishi, Harumi; Shiraishi, Fujio; Morita, Masatoshi

    2002-12-01

    A competitive enzyme-linked immunosorbent assay (ELISA) with estrogen receptor (alpha) and a fluorescence depolarization method with Full-Range Beacon were examined as estrogen receptor binding assays to prescreen endocrine-disrupting chemicals (EDCs). In this study, because it is difficult to measure the receptor binding ability of sparingly water-soluble chemicals using these methods, the competitive enzyme immunoassay was further modified for improved sensitivity by changing the operational parameters, such as receptor concentration, ligand concentration, and the reaction temperature. The method was applied to 10 test chemicals, including alkylphenols and bisphenol A (BPA). The diethylstilbestrol (DES) relative binding affinity (RBA) of ELISA kit was set equal to 1 (RBA = IC50/IC50 of DES). The RBAs of BPA, 4-nonylphenol (p-NP), and 4-t-octylphenol (p-t-OP) are 5386, 8619. and 8121 before using the improved competitive enzyme immunoassay and 883, 699, and 2832 using improved it respectively. Mixtures of BPA, p-NP, and p-t-OP gave results that the estrogen binding affinities of these chemicals are additive or slightly more than additive.

  3. Identification and Characterization of a G Protein-binding Cluster in α7 Nicotinic Acetylcholine Receptors*

    PubMed Central

    King, Justin R.; Nordman, Jacob C.; Bridges, Samuel P.; Lin, Ming-Kuan; Kabbani, Nadine

    2015-01-01

    α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345–348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345–348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling. PMID:26088141

  4. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    PubMed Central

    Jenkins, Jeremy L; Dean, Donald H

    2001-01-01

    Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800

  5. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells.

    PubMed

    Presman, Diego M; Ganguly, Sourav; Schiltz, R Louis; Johnson, Thomas A; Karpova, Tatiana S; Hager, Gordon L

    2016-07-19

    Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178

  6. Evidence for a single steroid-binding protein in the rabbit progesterone receptor.

    PubMed

    Lamb, D J; Kima, P E; Bullock, D W

    1986-10-01

    The rabbit uterine progesterone receptor copurifies as two molecular weight (Mr) forms of about 105,000 and 78,000. To investigate whether these are different proteins, we have used protease digestion, reversible denaturation, and photoaffinity labeling in studies on the steroid-binding domain of the receptor. Digestion of the Mr 105,000 and 78,000 forms, photoaffinity labeled with [3H]R5020, with Staphylococcus aureus V8 protease revealed identical peptide fragments of Mr 43,000, 39,000, and 27,000-30,000. When receptor in cytosol was denatured, separated by electrophoresis, and then reconstituted, [3H]progesterone bound specifically to a single form at about Mr 105,000. After partial purification, the reversible denaturation procedure revealed both the larger and the smaller progesterone-binding species similar to the photoaffinity-labeled species in this preparation. Receptor in uterine cytosol prepared under mild conditions appeared as a predominant large molecular weight form on photoaffinity labeling with [17 alpha-methyl-3H]R5020, [6,7-3H]R5020, or [3H]RU27987. Further purification of this cytosol showed the generation of a smaller labeled species. These results from three different approaches reinforce the view that the rabbit progesterone receptor contains a single steroid-binding protein.

  7. CCL18 Exhibits a Regulatory Role through Inhibition of Receptor and Glycosaminoglycan Binding

    PubMed Central

    Krohn, Sonja C.; Bonvin, Pauline; Proudfoot, Amanda E. I.

    2013-01-01

    CCL18 has been reported to be present constitutively at high levels in the circulation, and is further elevated during inflammatory diseases. Since it is a rather poor chemoattractant, we wondered if it may have a regulatory role. CCL18 has been reported to inhibit cellular recruitment mediated by CCR3, and we have shown that whilst it is a competitive functional antagonist as assessed by Schild plot analysis, it only binds to a subset of CCR3 receptor populations. We have extended this inhibitory activity to other receptors and have shown that CCL18 is able to inhibit CCR1, CCR2, CCR4 and CCR5 mediated chemotaxis, but has no effect on CCR7 and CCR9, nor the CXC receptors that we have tested. Whilst CCL18 is able to bind to CCR3, it does not bind to the other receptors that it inhibits. We therefore tested the hypothesis that it may displace glycosaminoglycan (GAG) chemokines bound either in cis- on the leukocyte, or in trans-presentation on the endothelial surface, thereby inhibiting the recruitment of leukocytes into the site of inflammation. We show that CCL18 selectivity displaces heparin bound chemokines, and that chemokines from all four chemokine sub-classes displace cell bound CCL18. We propose that CCL18 has regulatory properties inhibiting chemokine function when GAG-mediated presentation plays a role in receptor activation. PMID:23951310

  8. Evolutionarily conserved Galphabetagamma binding surfaces support a model of the G protein-receptor complex.

    PubMed Central

    Lichtarge, O; Bourne, H R; Cohen, F E

    1996-01-01

    The pivotal role of G proteins in sensory, hormonal, inflammatory, and proliferative responses has provoked intense interest in understanding how they interact with their receptors and effectors. Nonetheless, the locations of the receptors and effector binding sites remain poorly characterized, although nearly complete structures of the alphabetagamma heterotrimeric complex are available. Here we apply evolutionary trace (ET) analysis [Lichtarge, O., Bourne, H. R. & Cohen, F. E. (1996) J. Mol. Biol. 257, 342-358] to propose plausible locations for these sites. On each subunit, ET identifies evolutionarily selected surfaces composed of residues that do not vary within functional subgroups and that form spatial clusters. Four clusters correctly identify subunit interfaces, and additional clusters on Galpha point to likely receptor or effector binding sites. Our results implicate the conformationally variable region of Galpha in an effector binding role. Furthermore the range of predicted interactions between the receptor and Galphabetagamma, is sufficiently limited that we can build a low resolution and testable model of the receptor-G protein complex. Images Fig. 1 Fig. 2 PMID:8755504

  9. Characterization and screening of IgG binding to the neonatal Fc receptor

    PubMed Central

    Neuber, Tobias; Frese, Katrin; Jaehrling, Jan; Jäger, Sebastian; Daubert, Daniela; Felderer, Karin; Linnemann, Mechthild; Höhne, Anne; Kaden, Stefan; Kölln, Johanna; Tiller, Thomas; Brocks, Bodo; Ostendorp, Ralf; Pabst, Stefan

    2014-01-01

    The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding. PMID:24802048

  10. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results.

  11. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    PubMed

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. PMID:26537635

  12. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology.

    PubMed

    Esser, Charlotte; Rannug, Agneta

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.

  13. Ligand binding pocket of the human somatostatin receptor 5: mutational analysis of the extracellular domains.

    PubMed

    Greenwood, M T; Hukovic, N; Kumar, U; Panetta, R; Hjorth, S A; Srikant, C B; Patel, Y C

    1997-11-01

    The ligand binding domain of G protein-coupled receptors for peptide ligands consists of a pocket formed by extracellular and transmembrane domain (TM) residues. In the case of somatostatin (SRIF), however, previous studies have suggested that the binding cavity of the octapeptide analog SMS201-995 (SMS) is lined by residues in TMs III-VII. The additional involvement of the extracellular domains for binding SMS or the natural SRIF ligands (SRIF-14, SRIF-28) has not been clarified. Using a cassette construct cDNA for the human somatostatin 5 receptor (sst5R), we systematically examined the role of exofacial structures in ligand binding by creating a series of mutants in which the extracellular portions have been altered by conservative segment exchange (CSE) mutagenesis for the extracellular loops (ECLs) and by deletion (for the NH2-terminal segment) or truncation analysis (ECL3). CHO-K1 cells were stably transfected with wild type or mutant human sst5R constructs, and agonist binding was assessed using membrane binding assays with 125I-LTT SRIF-28 ligand. Deletion of the NH2 terminus or CSE mutagenesis of ECL1 and ECL3 produced minor 2-8-fold decreases in affinity for SRIF-14, SRIF-28, and SMS ligands. Truncation of ECL3 to mimic the size of this loop in sst1R and sst4R (the two subtypes that do not bind SMS) did not interfere with the binding of SMS, SRIF-14, or SRIF-28. In contrast, both ECL2 mutants failed to bind 125I-LTT SRIF-28. Immunocytochemical analysis of nonpermeabilized cells with a human sst5R antibody revealed that the mutant receptors were targeted to the plasma membrane. Labeled SMS (125I-Tyr3 SMS) also failed to bind to the mutant ECL2 receptors. These results suggest a potential contribution of ECL2 (in addition to the previously identified residues in TMs III-VII) to the SRIF ligand binding pocket.

  14. Defining the functional binding sites of interleukin 12 receptor β1 and interleukin 23 receptor to Janus kinases

    PubMed Central

    Floss, Doreen M.; Klöcker, Tobias; Schröder, Jutta; Lamertz, Larissa; Mrotzek, Simone; Strobl, Birgit; Hermanns, Heike; Scheller, Jürgen

    2016-01-01

    The interleukin (IL)-12–type cytokines IL-12 and IL-23 are involved in T-helper (Th) 1 and Th17 immunity, respectively. They share the IL-12 receptor β1 (IL-12Rβ1) as one component of their receptor signaling complexes, with IL-12Rβ2 as second receptor for IL-12 and IL-23R for IL-23 signal transduction. Stimulation with IL-12 and IL-23 results in activation of receptor-associated Janus kinases (Jak) and phosphorylation of STAT proteins in target cells. The Janus kinase tyrosine kinase (Tyk) 2 associates with IL-12Rβ1, whereas Jak2 binds to IL-23R and also to IL-12Rβ2. Receptor association of Jak2 is mediated by Box1 and Box2 motifs located within the intracellular domain of the receptor chains. Here we define the Box1 and Box2 motifs in IL-12Rβ1 and an unusual Jak2-binding site in IL-23R by the use of deletion and site-directed mutagenesis. Our data show that nonfunctional box motifs abolish IL-12– and IL-23–induced STAT3 phosphorylation and cytokine-dependent proliferation of Ba/F3 cells. Coimmunoprecipitation of Tyk2 by IL-12Rβ1 and Jak2 by IL‑23R supported these findings. In addition, our data demonstrate that association of Jak2 with IL-23R is mandatory for IL-12 and/or IL-23 signaling, whereas Tyk2 seems to be dispensable. PMID:27193299

  15. The PDZ-binding motif of the avian NS1 protein affects transmission of the 2009 influenza A(H1N1) virus.

    PubMed

    Kim, Jin Il; Hwang, Min-Woong; Lee, Ilseob; Park, Sehee; Lee, Sangmoo; Bae, Joon-Yong; Heo, Jun; Kim, Donghwan; Jang, Seok-Il; Park, Mee Sook; Kwon, Hyung-Joo; Song, Jin-Won; Park, Man-Seong

    2014-06-20

    By nature of their segmented RNA genome, influenza A viruses (IAVs) have the potential to generate variants through a reassortment process. The influenza nonstructural (NS) gene is critical for a virus to counteract the antiviral responses of the host. Therefore, a newly acquired NS segment potentially determines the replication efficiency of the reassortant virus in a range of different hosts. In addition, the C-terminal PDZ-binding motif (PBM) has been suggested as a pathogenic determinant of IAVs. To gauge the pandemic potential from human and avian IAV reassortment, we assessed the replication properties of NS-reassorted viruses in cultured cells and in the lungs of mice and determined their transmissibility in guinea pigs. Compared with the recombinant A/Korea/01/2009 virus (rK09; 2009 pandemic H1N1 strain), the rK09/VN:NS virus, in which the NS gene was adopted from the A/Vietnam/1203/2004 virus (a human isolate of the highly pathogenic avian influenza H5N1 virus strains), exhibited attenuated virulence and reduced transmissibility. However, the rK09/VN:NS-PBM virus, harboring the PBM in the C-terminus of the NS1 protein, recovered the attenuated virulence of the rK09/VN:NS virus. In a guinea pig model, the rK09/VN:NS-PBM virus showed even greater transmission efficiency than the rK/09 virus. These results suggest that the PBM in the NS1 protein may determine viral persistence in the human and avian IAV interface.

  16. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    PubMed Central

    Winnig, Marcel; Bufe, Bernd; Kratochwil, Nicole A; Slack, Jay P; Meyerhof, Wolfgang

    2007-01-01

    Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor activation by neohesperidin

  17. Impact of IgG2 high molecular weight species on neonatal Fc receptor binding assays.

    PubMed

    Zhang, Yuling; Mathur, Abhishek; Maher, Gwen; Arroll, Thomas; Bailey, Robert

    2015-11-15

    A cell-based assay and a solution neonatal Fc receptor (FcRn) binding assay were implemented for the characterization of an IgG2 antibody after observation that different product lots exhibited unexpected differences in FcRn binding in the cell-based format with membrane-bound FcRn. The experiments described here suggest that the apparent differences observed in the FcRn binding across different product lots in the cell-based format can be attributed to the different levels of the higher order high molecular weight species (HMWs) in them. A strong correlation between FcRn binding in the cell-based format and the percentage (%) higher order HMWs suggests that small amounts (∼0.1%) of the latter could cause the enhanced apparent FcRn binding (% relative binding ranging from 50 to 100%) in the format. However, when the binding was assessed with recombinant FcRn in soluble form, avidity effects were minimal and the assay format exhibited less sensitivity toward the differences in higher order HMWs levels across product lots. In conclusion, a solution-based assay may be a more appropriate assay to assess FcRn binding of the dominant species of an Fc-fusion protein or monoclonal antibody if minor differences in product variants such as higher order HMWs are shown to affect the binding significantly.

  18. Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.

    PubMed

    Dickson, Callum J; Hornak, Viktor; Velez-Vega, Camilo; McKay, Daniel J J; Reilly, John; Sandham, David A; Shaw, Duncan; Fairhurst, Robin A; Charlton, Steven J; Sykes, David A; Pearlstein, Robert A; Duca, Jose S

    2016-06-23

    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions. PMID:27239696

  19. Intact brain cells: a novel model system for studying opioid receptor binding

    SciTech Connect

    Rogers, N.F.; El-Fakahany, E.E.

    1985-07-29

    The use of a novel tissue preparation to study opioid receptor binding in viable, intact cells derived from whole brains of adult rats is presented. Mechanically dissociated and sieved cells, which were not homogenized at any stage of the experimental protocol, and iso-osmotic physiological buffer were used in these experiments. This system was adapted in order to avoid mechanical and chemical disruption of cell membranes, cytoskeletal ultrastructure or receptor topography by homogenization or by the use of nonphysiological buffers, and to mimic in vivo binding conditions as much as possible. Using (/sup 3/H)naloxone as the radioligand, the studies showed saturable and stereospecific high-affinity binding of this opioid antagonist in intact cells, which in turn showed consistently high viability. (/sup 3/H)Naloxone binding was also linear over a wide range of tissue concentrations. This technique provides a very promising model for future studies of the binding of opioids and of many other classes of drugs to brain tissue receptors in a more physiologically relevant system than those commonly used to date.

  20. Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation

    PubMed Central

    Bertucci, Paola Y.; Nacht, A. Silvina; Alló, Mariano; Rocha-Viegas, Luciana; Ballaré, Cecilia; Soronellas, Daniel; Castellano, Giancarlo; Zaurin, Roser; Kornblihtt, Alberto R.; Beato, Miguel; Vicent, Guillermo P.; Pecci, Adali

    2013-01-01

    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3′-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes. PMID:23640331

  1. In vivo benzodiazepine receptor binding and imaging using (/sup 3/H)-flunitrazepam

    SciTech Connect

    Ciliax, B.J.

    1987-01-01

    The use of (/sup 3/H)-flunitrazepam as a ligand to image and measure alterations in benzodiazepine receptors in vivo in rat was investigated. Animals were injected with (/sup 3/H)-flunitrazepam intravenously, arterial samples of (/sup 3/H)-flunitrazepam were obtained and later the animals were sacrificed to assay brain binding. (/sup 3/H)-Flunitrazepam entered brain rapidly and bound to benzodiazepine receptors. A series of rats were lesioned unilaterally with kainic acid in the caudate-putamen several months prior to the infusion of (/sup 3/H)-flunitrazepam. In vivo autoradiography in lesioned rats showed that benzodiazepine binding in the lesioned striatum was significantly decreased compared to the control side and that benzodiazepine binding in globus pallidus and substantia nigra on the side of the lesion was significantly increased as compared to the intact side. The observed changes in benzodiazepine binding were similar to those observed previously in lesioned rats using in vitro techniques. Thus, benzodiazepine receptor regulation could be imaged quantitatively using in vivo binding techniques.

  2. Differential changes in atrial natriuretic peptide and vasopressin receptor bindings in kidney of spontaneously hypertensive rat

    SciTech Connect

    Ogura, T.; Mitsui, T.; Yamamoto, I.; Katayama, E.; Ota, Z.; Ogawa, N.

    1987-01-19

    To elucidate the role of atrial natriuretic peptide (ANP) and vasopressin (VP) in a hypertensive state, ANP and VP receptor bindings in spontaneously hypertensive rat (SHR) kidney were analyzed using the radiolabeled receptor assay (RRA) technique. Systolic blood pressure of SHR aged 12 weeks was statistically higher than that of age-matched Wistar Kyoto (WKY) rats. Maximum binding capacity (Bmax) of (/sup 125/I)-ANP binding to the SHR kidney membrane preparations was statistically lower than that of WKY rats, but dissociation constant (Kd) was not significantly different. On the other hand, Bmax of (/sup 3/H)-VP binding to the SHR kidney membrane preparations was statistically higher than that of WKY rats, but Kd were similar. Since the physiological action of ANP is natriuresis and VP is the most important antidiuretic hormone in mammalia, these opposite changes of ANP and VP receptor bindings in SHR kidney suggested that these peptides may play an important role in the pathophysiology of the hypertensive state, although it has not been confirmed as yet.

  3. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1

    PubMed Central

    Sethi, Ashish; Bruell, Shoni; Patil, Nitin; Hossain, Mohammed Akhter; Scott, Daniel J.; Petrie, Emma J.; Bathgate, Ross A. D.; Gooley, Paul R.

    2016-01-01

    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. PMID:27088579

  4. Two disparate ligand binding sites in the human P2Y1 receptor

    PubMed Central

    Zhang, Dandan; Gao, Zhan-Guo; Zhang, Kaihua; Kiselev, Evgeny; Crane, Steven; Wang, Jiang; Paoletta, Silvia; Yi, Cuiying; Ma, Limin; Zhang, Wenru; Han, Gye Won; Liu, Hong; Cherezov, Vadim; Katritch, Vsevolod; Jiang, Hualiang; Stevens, Raymond C.; Jacobson, Kenneth A.; Zhao, Qiang; Wu, Beili

    2015-01-01

    In response to adenosine 5′-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7Å resolution, and with a non-nucleotide antagonist BPTU at 2.2Å resolution. The structures reveal two distinct ligand binding sites, providing atomic details of P2Y1R’s unique ligand binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which, however, is different in shape and location from the nucleotide binding site in previously determined P2Y12R structure. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects. PMID:25822790

  5. The Added Value of Assessing Ligand-Receptor Binding Kinetics in Drug Discovery.

    PubMed

    Guo, Dong; Heitman, Laura H; IJzerman, Adriaan P

    2016-09-01

    In the past decade drug research community has started to appreciate the indispensable role of ligand-receptor binding kinetics (BK) in drug discovery. Next to the classical equilibrium-based drug evaluation process with affinity and potency values as outcomes, kinetic investigation of the ligand-receptor interaction can aid compound triage in the hit-to-lead campaign and provide additional information to understand the molecular mechanism of drug action. Translational models incorporating BK are emerging as well, which represent powerful tools for the prediction of in vivo effects. In this viewpoint we will summarize some recent findings and discuss and emphasize the added value of ligand-receptor binding kinetics in drug research. PMID:27660682

  6. Label-free impedimetric biosensor for thrombin using the thrombin-binding aptamer as receptor

    NASA Astrophysics Data System (ADS)

    Frense, D.; Kang, S.; Schieke, K.; Reich, P.; Barthel, A.; Pliquett, U.; Nacke, T.; Brian, C.; Beckmann, D.

    2013-04-01

    This study presents the further establishment of impedimetric biosensors with aptamers as receptors. Aptamers are short single-stranded oligonucleotides which bind analytes with a specific region of their 3D structure. Electrical impedance spectroscopy is a sensitive method for analyzing changes on the electrode surface, e.g. caused by receptor-ligand-interactions. Fast and inexpensive prototyping of electrodes on the basis of commercially available compact discs having a 24 carat gold reflective layer was investigated. Electrode structures (CDtrodes [1]) in the range from few millimetres down to 100 microns were realized. The well-studied thrombin-binding aptamer (TBA) was used as receptor for characterizing these micro- and macro-electrodes. The impedance signal showed a linear correlation for concentrations of thrombin between 1.0 nM to 100 nM. This range corresponds well with most of the references and may be useful for the point-of-care testing (POCT).

  7. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  8. Muscarinic M2 receptors in bovine tracheal smooth muscle: discrepancies between binding and function.

    PubMed

    Roffel, A F; Elzinga, C R; Van Amsterdam, R G; De Zeeuw, R A; Zaagsma, J

    1988-08-01

    Previous work showing that AF-DX 116, a cardioselective muscarinic antagonist in functional experiments, does not discriminate between muscarinic receptors in bovine cardiac and tracheal membranes has been extended. In addition to AF-DX 116 we used the muscarinic antagonists, atropine, pirenzepine, 4-DAMP methobromide, gallamine, hexahydrosiladifenidol and methoctramine, in radioligand binding experiments on bovine cardiac left ventricular and tracheal smooth muscle membranes. The functional antagonism of the methacholine-induced contraction of bovine tracheal smooth muscle strips was also evaluated. An excellent correlation was found for all compounds between the binding affinities for muscarinic receptors in cardiac and tracheal smooth muscle membranes; moreover, the affinities found in cardiac membranes correspond with the pA2 values reported for atrial preparations of rat and guinea pig. However, significant and occasionally marked discrepancies were found between binding and functional affinities of these muscarinic antagonists on bovine tracheal smooth muscle. PMID:3215279

  9. Quantitative Description of Glycan-Receptor Binding of Influenza A Virus H7 Hemagglutinin

    PubMed Central

    Srinivasan, Karunya; Raman, Rahul; Jayaraman, Akila; Viswanathan, Karthik; Sasisekharan, Ram

    2013-01-01

    In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host. PMID:23437033

  10. Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus Infectivity

    PubMed Central

    Acharya, Dhiraj; Paul, Amber M.; Anderson, John F.; Huang, Faqing; Bai, Fengwei

    2015-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal) or C6/36 cells (mosquito) through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKVmos) has slower replication than mammalian cell-derived CHIKV (CHIKVvero), when tested in both human and murine cell lines. Consistent with this, CHIKVmos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKVmos produces a lower level of viremia and less severe footpad swelling when compared with CHIKVvero. Interestingly, CHIKVmos has impaired ability to bind to glycosaminoglycan (GAG) receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKVmos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKVvero after a single passage in mammalian cells. Furthermore, CHIKVvero and CHIKVmos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells. PMID:26484530

  11. Sea urchin egg receptor for sperm: the oligosaccharide chains stabilize sperm binding.

    PubMed

    Dhume, S T; Stears, R L; Lennarz, W J

    1996-01-01

    Sulfated O-linked oligosaccharides from the sea urchin egg receptor have been shown to bind to acrosome-reacted sperm and to inhibit fertilization in a competitive bioassay. However, the inhibitory activity of these isolated chains was much lower than that of a recombinant protein representing a portion of the extracellular domain of the receptor. Because the isolated oligosaccharides lacked the potential polyvalency that they might have when linked to the polypeptide backbone, in the current study we asked if their inhibitory activity could be increased by chemically coupling them to a protein to form a neoglycoprotein. Using a recombinant fragment of the receptor we could not detect an oligosaccharide dependent increase in inhibitory activity with this neoglycoprotein, probably because of the much higher inhibitory activity of the polypeptide backbone. Therefore, we examined the activity of the oligosaccharides coupled to a protein lacking the ability to inhibit fertilization, namely, bovine serum albumin. A marked increase in the inhibitory activity of the oligosaccharides was observed with this neoglycoprotein. Finally, because inhibition by the oligosaccharides and the polypeptide was measured in an end point assay, namely, inhibition of fertilization, we sought a more direct, kinetically sensitive way to measure their properties. Accordingly, an assay was devised (R.L. Stears and W.J. Lennarz, unpublished observations) involving measurement of sperm binding to beads that was dependent on the presence of the receptor or its components. This assay revealed that sperm binding to beads via the recombinant protein peaked at 10 sec and then declined. In contrast, binding mediated by neoglycosylated recombinant protein reached a plateau. Thus, binding of sperm to the oligosaccharides resulted in a more stable interaction than that observed in binding to the polypeptide backbone.

  12. Decreased striatal dopamine receptor binding in primary focal dystonia: a D2 or D3 defect?

    PubMed Central

    Karimi, Morvarid; Moerlein, Stephen M.; Videen, Tom O.; Luedtke, Robert R.; Taylor, Michelle; Mach, Robert H.; Perlmutter, Joel S.

    2010-01-01

    Dystonia is an involuntary movement disorder characterized by repetitive patterned or sustained muscle contractions causing twisting or abnormal postures. Several lines of evidence suggest that abnormalities of dopaminergic pathways contribute to the pathophysiology of dystonia. In particular dysfunction of D2-like receptors that mediate function of the indirect pathway in the basal ganglia may play a key role. We have demonstrated with positron emission tomography (PET) that patients with primary focal cranial or hand dystonia have reduced putamenal specific binding of [18F]spiperone a non-selective D2-like radioligand with nearly equal affinity for serotonergic 5-HT(2A) sites. We then repeated the study with [18F]N-methyl-benperidol (NMB), a more selective D2-like receptor radioligand with minimal affinity for 5-HT(2A). Surprisingly, there was no decrease in NMB binding in the putamen of subjects with dystonia. Our findings excluded reductions of putamenal uptake greater than 20% with 95% confidence intervals. Following analysis of the in vitro selectivity of NMB and spiperone demonstrated that NMB was highly selective for D2 receptors relative to D3 receptors (200-fold difference in affinity), whereas spiperone has similar affinity for all three of the D2-like receptor subtypes. These findings coupled with other literature suggest that a defect in D3, rather than D2, receptor expression may be associated with primary focal dystonia. PMID:20960437

  13. GABA{sub A} receptor open-state conformation determines non-competitive antagonist binding

    SciTech Connect

    Chen Ligong; Xue Ling; Giacomini, Kathleen M.; Casida, John E.

    2011-02-01

    The {gamma}-aminobutyric acid (GABA) type A receptor (GABA{sub A}R) is one of the most important targets for insecticide action. The human recombinant {beta}3 homomer is the best available model for this binding site and 4-n-[{sup 3}H]propyl-4'-ethynylbicycloorthobenzoate ([{sup 3}H]EBOB) is the preferred non-competitive antagonist (NCA) radioligand. The uniquely high sensitivity of the {beta}3 homomer relative to the much-less-active but structurally very-similar {beta}1 homomer provides an ideal comparison to elucidate structural and functional features important for NCA binding. The {beta}1 and {beta}3 subunits were compared using chimeragenesis and mutagenesis and various combinations with the {alpha}1 subunit and modulators. Chimera {beta}3/{beta}1 with the {beta}3 subunit extracellular domain and the {beta}1 subunit transmembrane helices retained the high [{sup 3}H]EBOB binding level of the {beta}3 homomer while chimera {beta}1/{beta}3 with the {beta}1 subunit extracellular domain and the {beta}3 subunit transmembrane helices had low binding activity similar to the {beta}1 homomer. GABA at 3 {mu}M stimulated heteromers {alpha}1{beta}1 and {alpha}1{beta}3 binding levels more than 2-fold by increasing the open probability of the channel. Addition of the {alpha}1 subunit rescued the inactive {beta}1/{beta}3 chimera close to wildtype {alpha}1{beta}1 activity. EBOB binding was significantly altered by mutations {beta}1S15'N and {beta}3N15'S compared with wildtype {beta}1 and {beta}3, respectively. However, the binding activity of {alpha}1{beta}1S15'N was insensitive to GABA and {alpha}1{beta}3N15'S was stimulated much less than wildtype {alpha}1{beta}3 by GABA. The inhibitory effect of etomidate on NCA binding was reduced more than 5-fold by the mutation {beta}3N15'S. Therefore, the NCA binding site is tightly regulated by the open-state conformation that largely determines GABA{sub A} receptor sensitivity. - Graphical Abstract: Display Omitted Research Highlights

  14. In silico binding characteristics between human histamine H1 receptor and antagonists.

    PubMed

    Wang, Xiaojian; Yang, Qian; Li, Minyong; Yin, Dali; You, Qidong

    2010-09-01

    It is widely acknowledged that the H(1) receptor antagonists have important therapeutic significance in the treatment of various allergic disorders, but little was known about the binding mode between the receptor and antagonists since the crystal structure of G-protein coupling receptors (GPCRs) were hard to obtain. In this paper, a theoretical three-dimensional model of human histamine H(1) receptor (HHR1) was developed on the basis of recently reported high resolution structures of human A(2A) adenosine receptor, human beta(2)-adrenoceptor and turkey beta(1)-adrenoceptor. Furthermore, three representative H(1) receptor antagonists were chosen for docking studies. Subsequently, a qualitative pharmacophore model was developed by Hiphop algorithm based on the docking conformations of these three antagonists. In this paper, active environment, certain key residues, and the corresponding pharmacophore features of H(1) receptor were identified by such combinations of receptor-based and ligand-based approaches, which would give sufficient guidance for the rational design of novel antihistamine agents. PMID:20179978

  15. In silico binding characteristics between human histamine H1 receptor and antagonists.

    PubMed

    Wang, Xiaojian; Yang, Qian; Li, Minyong; Yin, Dali; You, Qidong

    2010-09-01

    It is widely acknowledged that the H(1) receptor antagonists have important therapeutic significance in the treatment of various allergic disorders, but little was known about the binding mode between the receptor and antagonists since the crystal structure of G-protein coupling receptors (GPCRs) were hard to obtain. In this paper, a theoretical three-dimensional model of human histamine H(1) receptor (HHR1) was developed on the basis of recently reported high resolution structures of human A(2A) adenosine receptor, human beta(2)-adrenoceptor and turkey beta(1)-adrenoceptor. Furthermore, three representative H(1) receptor antagonists were chosen for docking studies. Subsequently, a qualitative pharmacophore model was developed by Hiphop algorithm based on the docking conformations of these three antagonists. In this paper, active environment, certain key residues, and the corresponding pharmacophore features of H(1) receptor were identified by such combinations of receptor-based and ligand-based approaches, which would give sufficient guidance for the rational design of novel antihistamine agents.

  16. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs. PMID

  17. Two renal. cap alpha. /sub 2/-adrenergic receptor sites revealed by of-aminoclonidine binding

    SciTech Connect

    Sripanidkulchai, B.; Dawson, R.; Oparil, S.; Wyss, J.M.

    1987-02-01

    (/sup 3/H)p-aminoclonidine (/sup 3/H)PAC, a specific ..cap alpha../sub 2/-adrenergic agonist, was used to characterize ..cap alpha../sub 2/-adrenoceptor binding in rat renal membranes. Rosenthal plots demonstrated two binding sites with K/sub dS/ of approx. 1.7 and 14.2 nM and B/sub max/S (maximum binding) of 47.3 and 218.8 fmol/mg protein for the high- and low-affinity sites, respectively. These characteristics were confirmed by estimate of K/sub d/ parameters based on association and dissociation experiments. Pseudo-Hill coefficients generated from drug inhibition experiments were all less than unity, suggesting differential binding at two ..cap alpha../sub 2/-adrenoceptor binding sites. Specific ..cap alpha../sub 2/-adrenergic agonists exhibited greater binding affinity to both sites than did nonspecific drugs, and all drugs displayed greater affinity for the high- than the low-affinity binding site. Both guanyl nucleotides and sodium chloride inhibited (/sup 3/H)PAC binding more at the high-affinity than at the low-affinity site. Renal denervation resulted in significant upregulation of receptor density only at the high-affinity sites with no change in receptor affinity at either site, suggesting that a majority of the ..cap alpha../sub 2/-adrenoceptors in the kidney are postsynaptic. Thus all lines of evidence in this study indicate that two ..cap alpha../sub 2/-adrenoceptor binding sites exist in the rat kidney.

  18. Increased potency and binding of mazindol to putative brain anorectic receptors in obesity-prone rats.

    PubMed

    Levin, B E; Brown, K L; Vincent, G

    1994-12-30

    A class of sodium-sensitive, low affinity binding sites in the brain recognizes [3H]mazindol (MAZ). Competition for [3H]MAZ binding at these sites correlates with the anorectic potency of various phenethylamine drugs suggesting that these might be anorectic binding sites. Here [3H]MAZ binding, in the absence of sodium, was assessed by quantitative receptor autoradiography in rat brain. Binding was saturable, widespread and heterogenous with Kd = 3-229 microM and Bmax = 0.64-21.9 nmol/mg protein in various brain areas. By saturation studies, highest binding was in the somatosensory cortex, central amygdalar nucleus and bed nucleus of the stria terminalis. Hypothalamic subnuclei had intermediate and the piriform cortex had low binding. Rats were identified as prone to develop (DIO-prone) or resist (DR-prone) diet-induced obesity by their low vs. high 24 h urine norepinephrine excretion, respectively. While similar in body weight and basal 30 min intake of 4% sucrose, DIO-prone rats had 28% greater inhibition of sucrose intake by 3 mg/kg MAZ, i.p. (86 +/- 5%) than DR-prone rats (67 +/- 6%; P = 0.05). DIO-prone rats also had 23-55% higher levels of 10 nM [3H]MAZ binding in various hypothalamic and amygdalar nuclei, the somatosensory, piriform and gustatory cortices and thalamus. Given their greater sensitivity the highest dose of MAZ used and their higher binding of MAZ to putative brain anorectic receptors, DIO-prone rats might have a deficiency of an endogenous satiety factor which could predispose them to develop obesity when challenged with high energy, high sucrose diets.

  19. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on.

    PubMed

    Abdelwhab, E M; Hassan, M K; Abdel-Moneim, A S; Naguib, M M; Mostafa, A; Hussein, I T M; Arafa, A; Erfan, A M; Kilany, W H; Agour, M G; El-Kanawati, Z; Hussein, H A; Selim, A A; Kholousy, S; El-Naggar, H; El-Zoghby, E F; Samy, A; Iqbal, M; Eid, A; Ibraheem, E M; Pleschka, S; Veits, J; Nasef, S A; Beer, M; Mettenleiter, T C; Grund, C; Ali, M M; Harder, T C; Hafez, H M

    2016-06-01

    It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years. PMID:26917362

  20. GABAC receptor binding of quantum-dot conjugates of variable ligand valency.

    PubMed

    Gussin, Hélène A; Tomlinson, Ian D; Muni, Niraj J; Little, Deborah M; Qian, Haohua; Rosenthal, Sandra J; Pepperberg, David R

    2010-08-18

    Highly fluorescent CdSe quantum dots (qdots) can serve as a platform for tethering multiple copies of a receptor-targeted ligand, affording study of how the level of multivalency affects receptor binding. We previously showed that qdots conjugated with long PEG chains terminated by muscimol, a known GABA(C) agonist, exhibit specific binding to the surface membrane of GABA(C) receptor-expressing Xenopus oocytes. The present report addresses the effect of varying the number, i.e., valency, of muscimol- (M-) terminated PEG chains attached to the qdot on binding of the resulting conjugate to GABA(C) receptors. M-PEG-qdots of differing muscimol valency were prepared by conjugating AMP-CdSe/ZnS qdots with muscimol-terminated and methylamine-terminated PEG chains in proportions designed to yield varying percentages of muscimol-terminated chains among the total approximately 150-200 chains bound to the qdot. The investigated valencies represented 0%, approximately 25%, approximately 50%, and 100% loading with muscimol (preparations termed M-PEG-qdot0, M-PEG-qdot25, M-PEG-qdot50, and M-PEG-qdot100, respectively. Binding of a given conjugate to surface membranes of GABA(C) receptor-expressing oocytes was analyzed by quantitative fluorescence microscopy following defined incubation with approximately 30 nM of the conjugate. With 5-20 min incubation, the fluorescence signal resulting from incubation with M-PEG-qdot25 exceeded, by approximately 6-fold, the fluorescence level obtained with M-PEG-qdot preparations that lacked muscimol-terminated chains (M-PEG-qdot0). M-PEG-qdot50 yielded a net signal roughly similar to that of M-PEG-qdot25, and that produced by M-PEG-qdot100 exceeded, by approximately 30-50%, those for M-PEG-qdot25 and M-PEG-qdot50. The time course of changes in oocyte surface membrane fluorescence resulting from the introduction of and removal of M-PEG-qdots in the medium bathing the oocyte indicated only a modest dependence of both binding and wash-out kinetics

  1. The muscarinic receptor of chick embryo cells: correlation between ligand binding and calcium mobilization

    PubMed Central

    1985-01-01

    In this report we characterize muscarinic cholinergic receptor on embryonic cells. We established dose-response curves by fluorometric measurement of Ca2+ mobilization in cell suspensions of whole chick embryos stage 23/24. Ca2+ mobilization was quantitated by standardization of chlorotetracycline (CTC) fluorescence changes after stimulation with muscarinic agonists. We determined ED50 values for the agonists acetylcholine and carbachol as 3.4 X 10(-6) and 2.7 X 10(-5) M, respectively. Pilocarpine and oxotremorine were found to act as reversible competitive antagonists with inhibition constants (Kl) of 5.0 X 10(-6) and 1.4 X 10(-6) M, respectively. Bethanechol, which induced only 23% of the maximal effect obtained by acetylcholine, was a partial agonist with an ED50 of 4.8 X 10(-4) M. Its antagonistic component is expressed by an inhibition constant of 1.9 X 10(-4) M. In parallel, binding studies were performed in a competition assay with [3H]-quinuclidinylbenzilate. For the agonists acetylcholine and carbachol, binding parameters were best fitted by a "two binding-sites model." Comparison with dose-response curves indicated that Ca2+ mobilization was triggered via the high-affinity binding site. The inhibition constants of antagonists derived from the shift of dose- response curves corresponded to the fitted KD values of the binding studies when a "one binding-site model" was applied. Combination of dose-response and binding data showed close proportionality between receptor occupancy and calcium mobilization. No spare receptors were present. PMID:2858487

  2. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portion of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.

  3. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome. PMID:26038499

  4. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus

    PubMed Central

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-01-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome. PMID:26038499

  5. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  6. Cry1Aa binding to the cadherin receptor does not require conserved amino acid sequences in the domain II loops

    PubMed Central

    Fujii, Yuki; Tanaka, Shiho; Otsuki, Manami; Hoshino, Yasushi; Morimoto, Chinatsu; Kotani, Takuya; Harashima, Yuko; Endo, Haruka; Yoshizawa, Yasutaka; Sato, Ryoichi

    2012-01-01

    Characterizing the binding mechanism of Bt (Bacillus thuringiensis) Cry toxin to the cadherin receptor is indispensable to understanding the specific insecticidal activity of this toxin. To this end, we constructed 30 loop mutants by randomly inserting four serial amino acids covering all four receptor binding loops (loops α8, 1, 2 and 3) and analysed their binding affinities for Bombyx mori cadherin receptors via Biacore. High binding affinities were confirmed for all 30 mutants containing loop sequences that differed from those of wild-type. Insecticidal activities were confirmed in at least one mutant from loops 1, 2 and 3, suggesting that there is no critical amino acid sequence for the binding of the four loops to BtR175. When two mutations at different loops were integrated into one molecule, no reduction in binding affinity was observed compared with wild-type sequences. Based on these results, we discussed the binding mechanism of Cry toxin to cadherin protein. PMID:23145814

  7. Somatostatin analogs. Dissociation of brain receptor binding affinities and pituitary actions in the rat.

    PubMed

    Srikant, C B; Patel, Y C

    1981-01-01

    We have recently demonstrated the presence of specific receptors for somatostatin (SRIF) in rat brain synaptosomal membranes which appear to mediate its action. Using this system as a radioreceptor assay, we have examined the ability of a wide range of SRIF analogs to interact with these receptors. Although structural modifications in the Trp8 moiety of SRIF resulted in significant enhancement of affinity for binding to the brain SRIF receptors, the different relative specificities of des AA1,2,4,5,12,13 D-Trp8 SRIF (oligo D-Trp8 SRIF), D-Trp8 SRIF and D-5-Br-Trp8 SRIF in the pituitary and the central nervous system (CNS) suggest that basic differences exist between SRIF receptors present in the brain and the pituitary.

  8. Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine

    PubMed Central

    Nys, Mieke; Wijckmans, Eveline; Farinha, Ana; Yoluk, Özge; Andersson, Magnus; Brams, Marijke; Spurny, Radovan; Peigneur, Steve; Tytgat, Jan; Lindahl, Erik; Ulens, Chris

    2016-01-01

    Pentameric ligand-gated ion channels or Cys-loop receptors are responsible for fast inhibitory or excitatory synaptic transmission. The antipsychotic compound chlorpromazine is a widely used tool to probe the ion channel pore of the nicotinic acetylcholine receptor, which is a prototypical Cys-loop receptor. In this study, we determine the molecular determinants of chlorpromazine binding in the Erwinia ligand-gated ion channel (ELIC). We report the X-ray crystal structures of ELIC in complex with chlorpromazine or its brominated derivative bromopromazine. Unexpectedly, we do not find a chlorpromazine molecule in the channel pore of ELIC, but behind the β8–β9 loop in the extracellular ligand-binding domain. The β8–β9 loop is localized downstream from the neurotransmitter binding site and plays an important role in coupling of ligand binding to channel opening. In combination with electrophysiological recordings from ELIC cysteine mutants and a thiol-reactive derivative of chlorpromazine, we demonstrate that chlorpromazine binding at the β8–β9 loop is responsible for receptor inhibition. We further use molecular-dynamics simulations to support the X-ray data and mutagenesis experiments. Together, these data unveil an allosteric binding site in the extracellular ligand-binding domain of ELIC. Our results extend on previous observations and further substantiate our understanding of a multisite model for allosteric modulation of Cys-loop receptors. PMID:27791038

  9. Induction of AhR-Mediated Gene Transcription by Coffee

    PubMed Central

    Ishikawa, Toshio; Takahashi, Satoshi; Morita, Koji; Okinaga, Hiroko; Teramoto, Tamio

    2014-01-01

    Background Aryl hydrocarbon receptor (AhR) is classically known to be activated by xenobiotics such as dioxins and polycyclic aromatic hydrocarbons (PAHs). Although it has been reported that PAHs are contained in roasted coffee beans, in general coffee beverages are not considered to be AhR activators. We tested whether exposure to coffee would activate AhR in cultured cells. Methods HepG2 cells stably expressing an AhR-responsive reporter gene were treated with coffee samples. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was quantitated by RT-PCR and Western blotting in HepG2, Caco-2, and MCF-7 cells, after treatment with coffee. In order to obtain sensitive and reproducible results, all the experiments were performed with the cells placed in either phosphate-buffered saline (PBS) or pure serum, instead of routinely-used culture medium, whose intrinsic AhR-stimulating activity turned out to be so strong as to interfere with the analyses. Results All the coffee samples tested robustly stimulated AhR-mediated transcription in the reporter gene assays. Of note, to what extent coffee and other AhR agonists activated AhR was different, depending on whether the experiments were done in PBS or serum. CYP1A1 mRNA was induced by coffee, in HepG2, Caco-2, and MCF-7 cells placed in either PBS or serum. CYP1A1 protein expression, which was not detected in these cells incubated in PBS, was also increased by coffee in cells placed in serum. Conclusions By using culture medium-free experimental settings, we have shown that coffee is a strong AhR activator. Our observation may help elucidate as-yet-unrecognized effects of coffee on human health. PMID:25007155

  10. Relative positioning of diazepam in the benzodiazepine-binding-pocket of GABA receptors.

    PubMed

    Tan, Kelly R; Baur, Roland; Charon, Sébastien; Goeldner, Maurice; Sigel, Erwin

    2009-12-01

    GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of alpha(1)S205C and alpha(1)T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (-NCS). We also provide new data that identify alpha(1)H101C and alpha(1)N102C as exclusive sites of the reaction of a diazepam derivative where the -Cl atom is replaced by a -NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of alpha(1)beta(2)gamma(2) receptors.

  11. In Vivo Quantification of Tumor Receptor Binding Potential with Dual-Reporter Molecular Imaging

    PubMed Central

    Tichauer, Kenneth M.; Samkoe, Kimberley S.; Sexton, Kristian J.; Hextrum, Shannon K.; Yang, Harold H.; Klubben, W. Spencer; Gunn, Jason R.; Hasan, Tayyaba; Pogue, Brian W.

    2012-01-01

    Purpose Receptor availability represents a key component of current cancer management. However, no approaches have been adopted to do this clinically, and the current standard of care is invasive tissue biopsy. A dual-reporter methodology capable of quantifying available receptor binding potential of tumors in vivo within a clinically relevant time scale is presented. Procedures To test the methodology, a fluorescence imaging-based adaptation was validated against ex vivo and in vitro measures of epidermal growth factor receptor (EGFR) binding potential in four tumor lines in mice, each line expected to express a different level of EGFR. Results A strong correlation was observed between in vivo and ex vivo measures of binding potential for all tumor lines (r=0.99, p<0.01, slope=1.80±0.48, and intercept=−0.58±0.84) and between in vivo and in vitro for the three lines expressing the least amount of EGFR (r=0.99, p<0.01, slope=0.64±0.32, and intercept=0.47±0.51). Conclusions By providing a fast and robust measure of receptor density in tumors, the presented methodology has powerful implications for improving choices in cancer intervention, evaluation, and monitoring, and can be scaled to the clinic with an imaging modality like SPECT. PMID:22203241

  12. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors.

    PubMed

    Rovira, Xavier; Malhaire, Fanny; Scholler, Pauline; Rodrigo, Jordi; Gonzalez-Bulnes, Patricia; Llebaria, Amadeu; Pin, Jean-Philippe; Giraldo, Jesús; Goudet, Cyril

    2015-01-01

    Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes. PMID:25342125

  13. Liver Retinol Transporter and Receptor for Serum Retinol-binding Protein (RBP4)*

    PubMed Central

    Alapatt, Philomena; Guo, Fangjian; Komanetsky, Susan M.; Wang, Shuping; Cai, Jinjin; Sargsyan, Ashot; Rodríguez Díaz, Eduardo; Bacon, Brandon T.; Aryal, Pratik; Graham, Timothy E.

    2013-01-01

    Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues. PMID:23105095

  14. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists

    NASA Astrophysics Data System (ADS)

    Kalani, M. Yashar S.; Vaidehi, Nagarajan; Hall, Spencer E.; Trabanino, Rene J.; Freddolino, Peter L.; Kalani, Maziyar A.; Floriano, Wely B.; Tak Kam, Victor Wai; Goddard, William A., III

    2004-03-01

    Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.

  15. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor.

    PubMed

    Kim, Sungwon; Cox, Chasity M; Jenkins, Mark C; Fetterer, Ray H; Miska, Katarzyna B; Dalloul, Rami A

    2014-12-01

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in enhancing innate immune responses during inflammation. In this study, we report that chicken CD74 (ChCD74), a type II transmembrane protein, functions as a macrophage surface receptor that binds to MIF molecules. First, to examine the binding of MIF to chicken monocytes/macrophages, fresh isolated chicken peripheral blood mononuclear cells (PBMCs) were stimulated with rChIFN-γ and then incubated with recombinant chicken MIF (rChMIF). Immunofluorescence staining with anti-ChMIF followed by flow cytometry revealed the binding of MIF to stimulated PBMCs. To verify that ChCD74 acts as a surface receptor for MIF molecules, full-length ChCD74p41 was cloned, expressed and its recombinant protein (rChCD74p41) transiently over-expressed with green fluorescent protein in chicken fibroblast DF-1 cells. Fluorescence analysis revealed a higher population of cells double positive for CD74p41 and rChMIF, indicating the binding of rChMIF to DF-1 cells via rChCD74p41. Using a similar approach, it was found that Eimeria MIF (EMIF), which is secreted by Eimeria sp. during infection, bound to chicken macrophages via ChCD74p41 as a surface receptor. Together, this study provides conclusive evidence that both host and parasite MIF molecules bind to chicken macrophages via the surface receptor ChCD74.

  16. Catch-and-Hold Activation of Muscle Acetylcholine Receptors Having Transmitter Binding Site Mutations

    PubMed Central

    Purohit, Prasad; Bruhova, Iva; Gupta, Shaweta; Auerbach, Anthony

    2014-01-01

    Agonists turn on receptors because their target sites have a higher affinity in the active versus resting conformation of the protein. We used single-channel electrophysiology to measure the lower-affinity (LA) and higher-affinity (HA) equilibrium dissociation constants for acetylcholine in adult-type muscle mouse nicotinic receptors (AChRs) having mutations of agonist binding site amino acids. For a series of agonists and for all mutations of αY93, αG147, αW149, αY190, αY198, εW55, and δW57, the change in LA binding energy was approximately half that in HA binding energy. The results were analyzed as a linear free energy relationship between LA and HA agonist binding, the slope of which (κ) gives the fraction of the overall binding chemical potential where the LA complex is established. The linear correlation between LA and HA binding energies suggests that the overall binding process is by an integrated mechanism (catch-and-hold). For the agonist and the above mutations, κ ∼ 0.5, but side-chain substitutions of two residues had a slope that was significantly higher (0.90; αG153) or lower (0.25; εP121). The results suggest that backbone rearrangements in loop B, loop C, and the non-α surface participate in both LA binding and the LA ↔ HA affinity switch. It appears that all of the intermediate steps in AChR activation comprise a single, energetically coupled process. PMID:24988344

  17. Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement

    PubMed Central

    Gruszczyk, Jakub; Lim, Nicholas T. Y.; Arnott, Alicia; He, Wen-Qiang; Nguitragool, Wang; Roobsoong, Wanlapa; Mok, Yee-Foong; Murphy, James M.; Smith, Katherine R.; Lee, Stuart; Bahlo, Melanie; Mueller, Ivo; Barry, Alyssa E.

    2016-01-01

    Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP