Science.gov

Sample records for ah1n1 influenza viruses

  1. Influenza A(H1N1)pdm09 virus in pigs, Réunion Island.

    PubMed

    Cardinale, Eric; Pascalis, Hervé; Temmam, Sarah; Hervé, Séverine; Saulnier, Aure; Turpin, Magali; Barbier, Nicolas; Hoarau, Johny; Quéguiner, Stéphane; Gorin, Stéphane; Foray, Coralie; Roger, Matthieu; Porphyre, Vincent; André, Paul; Thomas, Thierry; de Lamballerie, Xavier; Dellagi, Koussay; Simon, Gaëlle

    2012-10-01

    During 2009, pandemic influenza A(H1N1)pdm09 virus affected humans on Réunion Island. Since then, the virus has sustained circulation among local swine herds, raising concerns about the potential for genetic evolution of the virus and possible retransmission back to humans of variants with increased virulence. Continuous surveillance of A(H1N1)pdm09 infection in pigs is recommended.

  2. Influenza A(H1N1)pdm09 Virus Infection in Giant Pandas, China

    PubMed Central

    Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Wang, Chengdong

    2014-01-01

    We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas. PMID:24565026

  3. Influenza A(H1N1)pdm09 virus infection in giant pandas, China.

    PubMed

    Li, Desheng; Zhu, Ling; Cui, Hengmin; Ling, Shanshan; Fan, Shengtao; Yu, Zhijun; Zhou, Yuancheng; Wang, Tiecheng; Qian, Jun; Xia, Xianzhu; Xu, Zhiwen; Gao, Yuwei; Wang, Chengdong

    2014-03-01

    We confirmed infection with influenza A(H1N1)pdm09 in giant pandas in China during 2009 by using virus isolation and serologic analysis methods. This finding extends the host range of influenza viruses and indicates a need for increased surveillance for and control of influenza viruses among giant pandas.

  4. Adaptation of influenza A(H1N1)pdm09 virus in experimental mouse models.

    PubMed

    Prokopyeva, E A; Sobolev, I A; Prokopyev, M V; Shestopalov, A M

    2016-04-01

    In the present study, three mouse-adapted variants of influenza A(H1N1)pdm09 virus were obtained by lung-to-lung passages of BALB/c, C57BL/6z and CD1 mice. The significantly increased virulence and pathogenicity of all of the mouse-adapted variants induced 100% mortality in the adapted mice. Genetic analysis indicated that the increased virulence of all of the mouse-adapted variants reflected the incremental acquisition of several mutations in PB2, PB1, HA, NP, NA, and NS2 proteins. Identical amino acid substitutions were also detected in all of the mouse-adapted variants of A(H1N1)pdm09 virus, including PB2 (K251R), PB1 (V652A), NP (I353V), NA (I106V, N248D) and NS1 (G159E). Apparently, influenza A(H1N1)pdm09 virus easily adapted to the host after serial passages in the lungs, inducing 100% lethality in the last experimental group. However, cross-challenge revealed that not all adapted variants are pathogenic for different laboratory mice. Such important results should be considered when using the influenza mice model.

  5. Oseltamivir-Resistant Influenza A(H1N1)pdm09 Viruses, United States, 2013–14

    PubMed Central

    Okomo-Adhiambo, Margaret; Fry, Alicia M.; Su, Su; Nguyen, Ha T.; Elal, Anwar Abd; Negron, Elizabeth; Hand, Julie; Garten, Rebecca J.; Barnes, John; Xiyan, Xu; Villanueva, Julie M.

    2015-01-01

    We report characteristics of oseltamivir-resistant influenza A(H1N1)pdm09 viruses and patients infected with these viruses in the United States. During 2013–14, fifty-nine (1.2%) of 4,968 analyzed US influenza A(H1N1)pdm09 viruses had the H275Y oseltamivir resistance–conferring neuraminidase substitution. Our results emphasize the need for local surveillance for neuraminidase inhibitor susceptibility among circulating influenza viruses. PMID:25532050

  6. An update on swine-origin influenza virus A/H1N1: a review.

    PubMed

    Schnitzler, Sebastian U; Schnitzler, Paul

    2009-12-01

    Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. The recent flu pandemic caused by a swine-origin influenza virus A/H1N1 (S-OIV) presents an opportunity to examine virulence factors, the spread of the infection and to prepare for major influenza outbreaks in the future. The virus contains a novel constellation of gene segments, the nearest known precursors being viruses found in swine and it probably arose through reassortment of two viruses of swine origin. Specific markers for virulence can be evaluated in the viral genome, PB1-F2 is a molecular marker of pathogenicity but is not present in the new S-OIV. While attention was focused on a threat of an avian influenza H5N1 pandemic emerging from Asia, a novel influenza virus of swine origin emerged in North America, and is now spreading worldwide. However, S-OIV demonstrates that even serotypes already encountered in past human pandemics may constitute new pandemic threats. There are concerns that this virus may mutate or reassort with existing influenza viruses giving rise to more transmissible or more pathogenic viruses. The 1918 Spanish flu pandemic virus was relatively mild in its first wave and acquired more virulence when it returned in the winter. Thus preparedness on a global scale against a potential more virulent strain is highly recommended. Most isolates of the new S-OIVs are susceptible to neuraminidase inhibitors, and currently a vaccine against the pandemic strain is being manufactured and will be available this fall. This review summarizes the current information on the new pandemic swine-origin influenza virus A/H1N1.

  7. Efficacy of Inactivated Swine Influenza Virus Vaccines Against the 2009 A/H1N1 Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene constellation of the 2009 pandemic A/H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species. Although its hemagglutinin gene is related to North Ameri...

  8. Pandemic influenza A(H1N1) 2009 virus in pregnancy.

    PubMed

    Liu, She-Lan; Wang, Jing; Yang, Xu-Hui; Chen, Jin; Huang, Ren-Jie; Ruan, Bing; He, Hong-Xuan; Wang, Cheng-Min; Zhang, Hong-Mei; Sun, Zhou; Xie, Li; Zhuang, Hui

    2013-01-01

    Two hundred fourteen abstracts and 87 full texts regarding pregnant women infected with pandemic influenza A(H1N1) 2009 virus were systematically reviewed by using a PubMed search and assessing pandemic, clinical, laboratory test, vaccine, and control experiences. Both policy and health education were excluded. This review counted the total number of pregnant cases from different countries and analyzed their epidemic features, including trimester distribution, morbidity, hospitalization, intensive care unit admissions, maternal mortality, underlying diseases, complications, high-risk factors for death, pregnancy outcome, and clinical symptoms compared with the previous pandemic seasonal influenza A/H1N1 as compared with the general population. Early identification and treatment were the most important factors in different countries and areas examined. The vaccine and antiviral drugs that have been the most efficient means to control the novel virus appear to be safe but require more extensive study. In the future, the focus should be placed on understanding vertical transmission and the severe mechanisms.

  9. Oseltamivir-resistant seasonal A(H1N1) and A(H1N1)pdm09 influenza viruses from the 2007/2008 to 2012/2013 season in Nara Prefecture, Japan.

    PubMed

    Yoneda, Masaki; Okayama, Akiko; Kitahori, Yoshiteru

    2014-01-01

    We examined the incidence of oseltamivir-resistant seasonal A(H1N1) and A(H1N1)pdm09 influenza viruses from the 2007/2008 to 2012/2013 season in Nara Prefecture, Japan. To detect the oseltamivir resistance marker in neuraminidase (NA), 365 influenza viruses (60 seasonal A(H1N1) and 305 A(H1N1)pdm09) were sequenced. The H275Y mutation in the NA gene, which confers resistance to oseltamivir, was identified in 93.8% (30/32) of seasonal A(H1N1) viruses that were circulating during the 2008/2009 season. Moreover, the detection rate of oseltamivir-resistant A(H1N1)pdm09 viruses was 4.1% (3/74) and 2.8% (5/180) in the 2009/2010 and 2010/2011 season, respectively. Four cases of oseltamivir-resistant A(H1N1)pdm09 virus infection occurred in the same hematology ward during the 2010/2011 season. Our data show a low frequency of oseltamivir-resistant A(H1N1)pdm09 virus in Nara Prefecture but suggested the possibility of human-to-human transmission of this virus.

  10. Influenza A/H1N1 2009 Pandemic and Respiratory Virus Infections, Beijing, 2009–2010

    PubMed Central

    Wang, Wei; Vernet, Guy; Paranhos-Baccalà, Gláucia; Jin, Qi; Wang, Jianwei

    2012-01-01

    To determine the role of the pandemic influenza A/H1N1 2009 (A/H1N1 2009pdm) in acute respiratory tract infections (ARTIs) and its impact on the epidemic of seasonal influenza viruses and other common respiratory viruses, nasal and throat swabs taken from 7,776 patients with suspected viral ARTIs from 2006 through 2010 in Beijing, China were screened by real-time PCR for influenza virus typing and subtyping and by multiplex or single PCR tests for other common respiratory viruses. We observed a distinctive dual peak pattern of influenza epidemic during the A/H1N1 2009pdm in Beijing, China, which was formed by the A/H1N1 2009pdm, and a subsequent influenza B epidemic in year 2009/2010. Our analysis also shows a small peak formed by a seasonal H3N2 epidemic prior to the A/H1N1 2009pdm peak. Parallel detection of multiple respiratory viruses shows that the epidemic of common respiratory viruses, except human rhinovirus, was delayed during the pandemic of the A/H1N1 2009pdm. The H1N1 2009pdm mainly caused upper respiratory tract infections in the sampled patients; patients infected with H1N1 2009pdm had a higher percentage of cough than those infected with seasonal influenza or other respiratory viruses. Our findings indicate that A/H1N1 2009pdm and other respiratory viruses except human rhinovirus could interfere with each other during their transmission between human beings. Understanding the mechanisms and effects of such interference is needed for effective control of future influenza epidemics. PMID:23029253

  11. Population modeling of influenza A/H1N1 virus kinetics and symptom dynamics.

    PubMed

    Canini, Laetitia; Carrat, Fabrice

    2011-03-01

    Influenza virus kinetics (VK) is used as a surrogate of infectiousness, while the natural history of influenza is described by symptom dynamics (SD). We used an original virus kinetics/symptom dynamics (VKSD) model to characterize human influenza virus infection and illness, based on a population approach. We combined structural equations and a statistical model to describe intra- and interindividual variability. The structural equations described influenza based on the target epithelial cells, the virus, the innate host response, and systemic symptoms. The model was fitted to individual VK and SD data obtained from 44 volunteers experimentally challenged with influenza A/H1N1 virus. Infection and illness parameters were calculated from best-fitted model estimates. We predicted that the cytokine level and NK cell activity would peak at days 2.2 and 4.2 after inoculation, respectively. Infectiousness, measured as the area under the VK curve above a viral titer threshold, lasted between 7.0 and 1.3 days and was 15 times lower in participants without systemic symptoms than in those with systemic symptoms (P < 0.001). The latent period, defined as the time between inoculation and infectiousness, varied from 0.7 to 1.9 days. The incubation period, defined as the time from inoculation to first symptoms, varied from 1.0 to 2.4 days. Our approach extends previous work by including the innate response and providing realistic estimates of infection and illness parameters, taking into account the strong interindividual variability. This approach could help to optimize studies of influenza VK and SD and to predict the effect of antivirals on infectiousness and symptoms.

  12. Detection of novel influenza A(H1N1) virus by real-time RT-PCR.

    PubMed

    Whiley, David M; Bialasiewicz, Seweryn; Bletchly, Cheryl; Faux, Cassandra E; Harrower, Bruce; Gould, Allan R; Lambert, Stephen B; Nimmo, Graeme R; Nissen, Michael D; Sloots, Theo P

    2009-07-01

    Accurate and rapid diagnosis of novel influenza A(H1N1) infection is critical for minimising further spread through timely implementation of antiviral treatment and other public health based measures. In this study we developed two TaqMan-based reverse transcription PCR (RT-PCR) methods for the detection of novel influenza A(H1N1) virus targeting the haemagglutinin and neuraminidase genes. The assays were validated using 152 clinical respiratory samples, including 61 Influenza A positive samples, collected in Queenland, Australia during the years 2008 to 2009 and a further 12 seasonal H1N1 and H3N2 influenza A isolates collected from years 2000 to 2002. A wildtype swine H1N1 isolate was also tested. RNA from an influenza A(H1N1) virus isolate (Auckland, 2009) was used as a positive control. Overall, the results showed that the RT-PCR methods were suitable for sensitive and specific detection of novel influenza A(H1N1) RNA in human samples.

  13. Genetic Characterization of Circulating 2015 A(H1N1)pdm09 Influenza Viruses from Eastern India

    PubMed Central

    Mukherjee, Anupam; Nayak, Mukti Kant; Dutta, Shanta; Panda, Samiran; Satpathi, Biswa Ranjan; Chawla-Sarkar, Mamta

    2016-01-01

    In 2015, the swine derived A(H1N1)pdm09 pandemic strain outbreak became widespread throughout the different states of India. The reported cases and deaths in 2015 surpassed the previous years with more than 39000 laboratory confirmed cases and a death toll of more than 2500 people. There are relatively limited complete genetic sequences available for this virus from Asian countries. In this study, we describe the full genome analysis of influenza 2015 A(H1N1)pdm09 viruses isolated from West Bengal between January through December 2015. The phylogenetic analysis of the haemagglutinin sequence revealed clustering with globally circulating strains of genogroup 6B. This was further confirmed by the constructed concatenated tree using all eight complete gene segments of Kolkata A(H1N1)pdm09 isolates with the other strains from different timeline and lineages. A study from Massachusetts Institute of Technology (MIT) in 2015 reported novel mutations T200A and D225N in haemagglutinin gene of a 2014 Indian strain (A/India/6427/2014). However, in all the pandemic strains of 2014–2015 reported from India, so far including A(H1N1)pdm09 strains from Kolkata, D225N mutation was not observed, though the T200A mutation was found to be conserved. Neuraminidase gene of the analyzed strains did not show any oseltamivir resistant mutation H275Y suggesting continuation of Tamiflu® as drug of choice. The amino acid sequences of the all gene segments from 2015 A(H1N1)pdm09 isolates identified several new mutations compared to the 2009 A(H1N1)pdm09 strains, which may have contributed towards enhanced virulence, compared to 2009 A(H1N1)pdm09 strains. PMID:27997573

  14. Detection of Extensive Cross-Neutralization between Pandemic and Seasonal A/H1N1 Influenza Viruses Using a Pseudotype Neutralization Assay

    PubMed Central

    Labrosse, Béatrice; Tourdjman, Mathieu; Porcher, Raphaël; LeGoff, Jérôme; de Lamballerie, Xavier; Simon, François; Molina, Jean-Michel; Clavel, François

    2010-01-01

    Background Cross-immunity between seasonal and pandemic A/H1N1 influenza viruses remains uncertain. In particular, the extent that previous infection or vaccination by seasonal A/H1N1 viruses can elicit protective immunity against pandemic A/H1N1 is unclear. Methodology/Principal Findings Neutralizing titers against seasonal A/H1N1 (A/Brisbane/59/2007) and against pandemic A/H1N1 (A/California/04/2009) were measured using an HIV-1-based pseudovirus neutralization assay. Using this highly sensitive assay, we found that a large fraction of subjects who had never been exposed to pandemic A/H1N1 express high levels of pandemic A/H1N1 neutralizing titers. A significant correlation was seen between neutralization of pandemic A/H1N1 and neutralization of a standard seasonal A/H1N1 strain. Significantly higher pandemic A/H1N1 neutralizing titers were measured in subjects who had received vaccination against seasonal influenza in 2008–2009. Higher pandemic neutralizing titers were also measured in subjects over 60 years of age. Conclusions/Significance Our findings reveal that the extent of protective cross-immunity between seasonal and pandemic A/H1N1 influenza viruses may be more important than previously estimated. This cross-immunity could provide a possible explanation of the relatively mild profile of the recent influenza pandemic. PMID:20543954

  15. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases.

    PubMed

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; Melo, Maria Elisabeth Lisboa de; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; Silva, Luciene Alexandre Bié da; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-09-01

    We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses' epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  16. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases

    PubMed Central

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; de Melo, Maria Elisabeth Lisboa; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; da Silva, Luciene Alexandre Bié; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-01-01

    Abstract We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses’ epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará. PMID:27598244

  17. Virulence determinants of pandemic A(H1N1)2009 influenza virus in a mouse model.

    PubMed

    Uraki, Ryuta; Kiso, Maki; Shinya, Kyoko; Goto, Hideo; Takano, Ryo; Iwatsuki-Horimoto, Kiyoko; Takahashi, Kazuo; Daniels, Rod S; Hungnes, Olav; Watanabe, Tokiko; Kawaoka, Yoshihiro

    2013-02-01

    A novel swine-origin H1N1 influenza virus [A(H1N1)pdm09 virus] caused the 2009 influenza pandemic. Most patients exhibited mild symptoms similar to seasonal influenza, but some experienced severe clinical signs and, in the worst cases, died. Such differences in symptoms are generally associated with preexisting medical conditions, but recent reports indicate the possible involvement of viral factors in clinical severity. To better understand the mechanism of pathogenicity of the A(H1N1)pdm09 virus, here, we compared five viruses that are genetically similar but were isolated from patients with either severe or mild symptoms. In a mouse model, A/Norway/3487/2009 (Norway3487) virus exhibited greater pathogenicity than did A/Osaka/164/2009 (Osaka164) virus. By exploiting reassortant viruses between these two viruses, we found that viruses possessing the hemagglutinin (HA) gene of Norway3487 in the genetic background of Osaka164 were more pathogenic in mice than other reassortant viruses, indicating a role for HA in the high virulence of Norway3487 virus. Intriguingly, a virus possessing HA, NA, and NS derived from Norway3487 exhibited greater pathogenicity in mice in concert with PB2 and PB1 derived from Osaka164 than did the parental Norway3487 virus. These findings demonstrate that reassortment between A(H1N1)pdm09 viruses can lead to increased pathogenicity and highlight the need for continued surveillance of A(H1N1)pdm09 viruses.

  18. Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses.

    PubMed

    Zaraket, Hassan; Saito, Reiko; Suzuki, Yasushi; Baranovich, Tatiana; Dapat, Clyde; Caperig-Dapat, Isolde; Suzuki, Hiroshi

    2010-04-01

    The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the

  19. Structural characterization of a protective epitope spanning A(H1N1)pdm09 influenza virus neuraminidase monomers

    PubMed Central

    Wan, Hongquan; Yang, Hua; Shore, David A.; Garten, Rebecca J.; Couzens, Laura; Gao, Jin; Jiang, Lianlian; Carney, Paul J.; Villanueva, Julie; Stevens, James; Eichelberger, Maryna C.

    2015-01-01

    A(H1N1)pdm09 influenza A viruses predominated in the 2013–2014 USA influenza season, and although most of these viruses remain sensitive to Food and Drug Administration-approved neuraminidase (NA) inhibitors, alternative therapies are needed. Here we show that monoclonal antibody CD6, selected for binding to the NA of the prototypic A(H1N1)pdm09 virus, A/California/07/2009, protects mice against lethal virus challenge. The crystal structure of NA in complex with CD6 Fab reveals a unique epitope, where the heavy-chain complementarity determining regions (HCDRs) 1 and 2 bind one NA monomer, the light-chain CDR2 binds the neighbouring monomer, whereas HCDR3 interacts with both monomers. This 30-amino-acid epitope spans the lateral face of an NA dimer and is conserved among circulating A(H1N1)pdm09 viruses. These results suggest that the large, lateral CD6 epitope may be an effective target of antibodies selected for development as therapeutic agents against circulating H1N1 influenza viruses. PMID:25668439

  20. Agglutination of human O erythrocytes by influenza A(H1N1) viruses freshly isolated from patients.

    PubMed

    Murakami, T; Haruki, K; Seto, Y; Kimura, T; Minoshiro, S; Shibe, K

    1991-04-01

    The hemagglutinin titers of 10 influenza A (H1N1) viruses were examined using the erythrocytes of several species. Human O erythrocytes showed the highest agglutination titer to the viruses, whereas chicken erythrocytes showed a low titer. These findings were noted for at least 10 passages by serial dilutions of the viruses in Madin-Darby canine kidney (MDCK) cells. All influenza A(H1N1) viruses, plaque-cloned directly from throat-washing specimens of patients, also agglutinated human O but not chicken erythrocytes. The results of a hemadsorption test indicated that chicken erythrocytes possess less affinity to MDCK cells infected with the A/Osaka City/2/88(H1N1) stain than to those infected with the A/Yamagata/120/86(H1N1) strain which is used as an inactivated influenza vaccine in Japan. However, there were no significant differences between the A/Osaka City/2/88 and the A/Yamagata/120/86 strains in the hemagglutination inhibition test. Since human O erythrocytes have high agglutination activity to influenza A(H1N1) and also to A(H3N2) and B viruses in MDCK cells, these erythrocytes may be useful for the serological diagnosis of influenza.

  1. Antigenic drift of the pandemic 2009 A(H1N1) influenza virus in A ferret model.

    PubMed

    Guarnaccia, Teagan; Carolan, Louise A; Maurer-Stroh, Sebastian; Lee, Raphael T C; Job, Emma; Reading, Patrick C; Petrie, Stephen; McCaw, James M; McVernon, Jodie; Hurt, Aeron C; Kelso, Anne; Mosse, Jennifer; Barr, Ian G; Laurie, Karen L

    2013-01-01

    Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between naïve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance.

  2. Productive infection of human skeletal muscle cells by pandemic and seasonal influenza A(H1N1) viruses.

    PubMed

    Desdouits, Marion; Munier, Sandie; Prevost, Marie-Christine; Jeannin, Patricia; Butler-Browne, Gillian; Ozden, Simona; Gessain, Antoine; Van Der Werf, Sylvie; Naffakh, Nadia; Ceccaldi, Pierre-Emmanuel

    2013-01-01

    Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1) in 2009. The pathogenesis of these influenza-associated myopathies (IAM) remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1) isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes) were highly susceptible to infection by both influenza A(H1N1) isolates, whereas undifferentiated cells (i. e. myoblasts) were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP) expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients.

  3. Short communication: antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk.

    PubMed

    Lee, N-K; Lee, J-H; Lim, S-M; Lee, K A; Kim, Y B; Chang, P-S; Paik, H-D

    2014-09-01

    Subcritical water extract (SWE) of Brassica juncea was studied for antiviral effects against influenza virus A/H1N1 and for the possibility of application as a nonfat milk supplement for use as an "antiviral food." At maximum nontoxic concentrations, SWE had higher antiviral activity against influenza virus A/H1N1 than n-hexane, ethanol, or hot water (80°C) extracts. Addition of 0.5mg/mL of B. juncea SWE to culture medium led to 50.35% cell viability (% antiviral activity) for Madin-Darby canine kidney cells infected with influenza virus A/H1N1. Nonfat milk supplemented with 0.28mg/mL of B. juncea SWE showed 39.62% antiviral activity against influenza virus A/H1N1. Thus, the use of B. juncea SWE as a food supplement might aid in protection from influenza viral infection.

  4. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009.

    PubMed

    Kanehira, Katsushi; Takemae, Nobuhiro; Uchida, Yuko; Hikono, Hirokazu; Saito, Takehiko

    2014-06-01

    In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.

  5. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses.

    PubMed

    Butler, Jeff; Hooper, Kathryn A; Petrie, Stephen; Lee, Raphael; Maurer-Stroh, Sebastian; Reh, Lucia; Guarnaccia, Teagan; Baas, Chantal; Xue, Lumin; Vitesnik, Sophie; Leang, Sook-Kwan; McVernon, Jodie; Kelso, Anne; Barr, Ian G; McCaw, James M; Bloom, Jesse D; Hurt, Aeron C

    2014-04-01

    Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.

  6. [Influenza A/H1N1 virus--old and new].

    PubMed

    Bodas, Moran; Davidovich, Nadav; Balicer, Ran D

    2009-08-01

    Swine influenza is a disease known since 1918. Four decades Later, scientists were already isolating the disease-causing agent and learning more about its ability to infect humans. Generally, swine influenza viruses, similarly to avian influenza viruses, do not easily infect humans; however, the viruses' ability to undergo substantial genetic re-assortment enhances the emergence of novel influenza viruses, better capable of infecting and transmitting between humans. Pigs also form good "mixing vessels" for human and avian origin influenza viruses, enabling the emergence of highly virulent influenza strains. Human infection with swine influenza has been recorded in the past, both as sporadic infections and as outbreaks. The best known human swine influenza outbreak took place in Fort Dix (USA) in 1976, concluding in the immunization of almost 45 million U.S. citizens, in a highly controversial immunization program. The current H1N1 (S-OIV) Influenza outbreak was declared by the WHO as an influenza pandemic, setting to rest the lately popular question "when will the next pandemic occur?" and laying the foundations for the evaluation of preparedness plans. There is great importance in data collection and subsequent updating of current procedures and doctrines.

  7. Enhanced Pneumonia With Pandemic 2009 A/H1N1 Swine Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. Swine influenza A viruses (SIV) in the major swine producing regions of North America consist of multiple subtypes of endemic H1N1, H1N2, and H3N2 derived from swine, avian and human influenza viruses with a triple reassortant internal gene (TRIG) constellation (1). Genetic drift and r...

  8. Prevalence of Influenza A(H1N1)pdm09 Virus Resistant to Oseltamivir in Shiraz, Iran, During 2012 - 2013

    PubMed Central

    Khodadad, Nastaran; Moattari, Afagh; Shamsi Shahr Abadi, Mahmoud; Kadivar, Mohammad Rahim; Sarvari, Jamal; Tavakoli, Forough; Pirbonyeh, Neda; Emami, Amir

    2015-01-01

    Background: Oseltamivir has been used as a drug of choice for the prophylaxis and treatment of human influenza A(H1N1)pdm09 infection across the world. However, the most frequently identified oseltamivir resistant virus, influenza A(H1N1)pdm09, exhibit the H275Y substitution in NA gene. Objectives: This study aimed to determine the prevalence and phylogenetic relationships of oseltamivir resistance in influenza A(H1N1)pdm09 viruses isolated in Shiraz, Iran. Patients and Methods: Throat swab samples were collected from 200 patients with influenza-like disease from December 2012 until February 2013. A total of 77 influenza A(H1N1)pdm09 positive strains were identified by real-time polymerase chain reaction (PCR). Oseltamivir resistance was detected using quantal assay and nested-PCR method. The NA gene sequencing was conducted to detect oseltamivir-resistant mutants and establish the phylogeny of the prevalent influenza variants. Results: Our results revealed that A(H1N1)pdm09 viruses present in these samples were susceptible to oseltamivir, and contained 5 site specific mutations (V13G, V106I, V241I, N248D, and N369K) in NA gene. These mutations correlated with increasing expression and enzymatic activity of NA protein in the influenza A(H1N1)pdm09 viruses, which were closely related to a main influenza A(H1N1)pdm09 cluster isolated around the world. Conclusions: A(H1N1)pdm09 viruses, identified in this study in Shiraz, Iran, contained 5 site specific mutations and were susceptible to oseltamivir. PMID:26464773

  9. Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015

    PubMed Central

    Zhu, Wenfei; Zhang, Hong; Xiang, Xingyu; Zhong, Lili; Yang, Lei; Guo, Junfeng; Xie, Yiran; Li, Fangcai; Deng, Zhihong; Feng, Hong; Huang, Yiwei; Hu, Shixiong; Xu, Xin; Zou, Xiaohui; Li, Xiaodan; Bai, Tian; Chen, Yongkun; Li, Zi

    2016-01-01

    In 2015, a novel influenza A(H1N1) virus was isolated from a boy in China who had severe pneumonia. The virus was a genetic reassortant of Eurasian avian-like influenza A(H1N1) (EA-H1N1) virus. The hemagglutinin, neuraminidase, and matrix genes of the reassortant virus were highly similar to genes in EA-H1N1 swine influenza viruses, the polybasic 1 and 2, polymerase acidic, and nucleoprotein genes originated from influenza A(H1N1)pdm09 virus, and the nonstructural protein gene derived from classical swine influenza A(H1N1) (CS H1N1) virus. In a mouse model, the reassortant virus, termed influenza A/Hunan/42443/2015(H1N1) virus, showed higher infectivity and virulence than another human EA-H1N1 isolate, influenza A/Jiangsu/1/2011(H1N1) virus. In the respiratory tract of mice, virus replication by influenza A/Hunan/42443/2015(H1N1) virus was substantially higher than that by influenza A/Jiangsu/1/2011(H1N1) virus. Human-to-human transmission of influenza A/Hunan/42443/2015(H1N1) virus has not been detected; however, given the circulation of novel EA-H1N1 viruses in pigs, enhanced surveillance should be instituted among swine and humans. PMID:27767007

  10. Outcomes of Influenza A(H1N1)pdm09 Virus Infection: Results from Two International Cohort Studies

    PubMed Central

    Lynfield, Ruth; Davey, Richard; Dwyer, Dominic E.; Losso, Marcelo H.; Wentworth, Deborah; Cozzi-Lepri, Alessandro; Herman-Lamin, Kathy; Cholewinska, Grazyna; David, Daniel; Kuetter, Stefan; Ternesgen, Zelalem; Uyeki, Timothy M.; Lane, H. Clifford; Lundgren, Jens; Neaton, James D.

    2014-01-01

    Background Data from prospectively planned cohort studies on risk of major clinical outcomes and prognostic factors for patients with influenza A(H1N1)pdm09 virus are limited. In 2009, in order to assess outcomes and evaluate risk factors for progression of illness, two cohort studies were initiated: FLU 002 in outpatients and FLU 003 in hospitalized patients. Methods and Findings Between October 2009 and December 2012, adults with influenza-like illness (ILI) were enrolled; outpatients were followed for 14 days and inpatients for 60 days. Disease progression was defined as hospitalization and/or death for outpatients, and hospitalization for >28 days, transfer to intensive care unit (ICU) if enrolled from general ward, and/or death for inpatients. Infection was confirmed by RT-PCR. 590 FLU 002 and 392 FLU 003 patients with influenza A (H1N1)pdm09 were enrolled from 81 sites in 17 countries at 2 days (IQR 1–3) and 6 days (IQR 4–10) following ILI onset, respectively. Disease progression was experienced by 29 (1 death) outpatients (5.1%; 95% CI: 3.4–7.2%) and 80 inpatients [death (32), hospitalization >28 days (43) or ICU transfer (20)] (21.6%; 95% CI: 17.5–26.2%). Disease progression (death) for hospitalized patients was 53.1% (26.6%) and 12.8% (3.8%), respectively, for those enrolled in the ICU and general ward. In pooled analyses for both studies, predictors of disease progression were age, longer duration of symptoms at enrollment and immunosuppression. Patients hospitalized during the pandemic period had a poorer prognosis than in subsequent seasons. Conclusions Patients with influenza A(H1N1)pdm09, particularly when requiring hospital admission, are at high risk for disease progression, especially if they are older, immunodeficient, or admitted late in infection. These data reinforce the need for international trials of novel treatment strategies for influenza infection and serve as a reminder of the need to monitor the severity of seasonal and pandemic

  11. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1) Virus Impairs the Human T Cell Response

    PubMed Central

    Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; Mora-Velandia, Luz María; Pastelin-Palacios, Rodolfo; Villasís-Keever, Miguel Ángel; Alpuche-Aranda, Celia; Sánchez-Torres, Luvia Enid; Isibasi, Armando; Bonifaz, Laura; López-Macías, Constantino

    2013-01-01

    PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1)pdm09), and its effects on the T cell response have not been widely explored. We found that A(H1N1)pdm09 virus induced PD-L1 expression on human dendritic cells (DCs) and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1)pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1)pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1)pdm09 virus. PMID:24187568

  12. PD-L1 expression induced by the 2009 pandemic influenza A(H1N1) virus impairs the human T cell response.

    PubMed

    Valero-Pacheco, Nuriban; Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; Mora-Velandia, Luz María; Pastelin-Palacios, Rodolfo; Villasís-Keever, Miguel Ángel; Alpuche-Aranda, Celia; Sánchez-Torres, Luvia Enid; Isibasi, Armando; Bonifaz, Laura; López-Macías, Constantino

    2013-01-01

    PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1)pdm09), and its effects on the T cell response have not been widely explored. We found that A(H1N1)pdm09 virus induced PD-L1 expression on human dendritic cells (DCs) and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1)pdm09 by promoting CD8⁺ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8⁺ T cells correlated inversely with T cell proportions in patients infected with A(H1N1)pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1)pdm09 virus.

  13. Cytokine and chemokine responses in pediatric patients with severe pneumonia associated with pandemic A/H1N1/2009 influenza virus.

    PubMed

    Matsumoto, Yuji; Kawamura, Yoshiki; Nakai, Hidetaka; Sugata, Ken; Yoshikawa, Akiko; Ihira, Masaru; Ohashi, Masahiro; Kato, Tomochika; Yoshikawa, Tetsushi

    2012-09-01

    Severe pneumonia and leukocytosis are characteristic, frequently observed, clinical findings in pediatric patients with pandemic A/H1N1/2009 influenza virus infection. The aim of this study was to elucidate the role of cytokines and chemokines in complicating pneumonia and leukocytosis in patients with pandemic A/H1N1/2009 influenza virus infection. Forty-seven patients with pandemic A/H1N1/2009 influenza virus infection were enrolled in this study. Expression of interleukin (IL)-10 (P = 0.027) and IL-5 (P = 0.014) was significantly greater in patients with pneumonia than in those without pneumonia. Additionally, serum concentrations of interferon-γ (P = 0.009), tumor necrosis factor-α (P = 0.01), IL-4 (P = 0.024), and IL-2 (P = 0.012) were significantly lower in pneumonia patients with neutrophilic leukocytosis than in those without neutrophilic leukocytosis. Of the five serum chemokine concentrations assessed, only IL-8 was significantly lower in pneumonia patients with neutrophilic leukocytosis than in those without leukocytosis (P = 0.001). These cytokines and chemokines may play important roles in the pathogenesis of childhood pneumonia associated with A/H1N1/2009 influenza virus infection.

  14. Development of oseltamivir and zanamivir resistance in influenza A(H1N1)pdm09 virus, Denmark, 2014

    PubMed Central

    Trebbien, Ramona; Pedersen, Svend Stenvang; Vorborg, Kristine; Franck, Kristina Træholt; Fischer, Thea Kølsen

    2017-01-01

    Antiviral treatment of immunocompromised patients with prolonged influenza virus infection can lead to multidrug resistance. This study reveals the selection of antiviral resistance mutations in influenza A(H1N1)pdm09 virus in an immunocompromised patient during a 6-month period. The patient was treated with two courses of oseltamivir (5 days and 2 months, respectively), with the first course starting at symptom onset, and subsequently zanamivir (2 months and 10 days, respectively). Respiratory samples were investigated by Sanger and next generation sequencing (NGS) and, for NGS data, low-frequency-variant-detection analysis was performed. Neuraminidase-inhibition tests were conducted for samples isolated in Madin-Darby canine kidney cells. In a sample collected 15 days after the end of the first treatment with oseltamivir (Day 20 post-symptom onset), oseltamivir resistance was detected (mutation H275Y with 60.3% frequency by NGS). Day 149 when the patient had almost completed the second zanamivir treatment, mixes of the following resistance mutations were detected; H275Y(65.1%), I223R(9.2%), and E119G(89.6%), accompanied by additional mutations, showing a more complex viral population in the long-term treated patient. Two samples obtained on Day 151 from bronchoalveolar lavage (BAL) and nasopharyngeal swab, respectively, showed different mutation profiles, with a higher frequency of antiviral resistance mutations in BAL. The results emphasise the importance of timely antiviral resistance testing both for treatment of individual patients as well as for preventive measures to control the development and transmission of antiviral resistant viruses. PMID:28128091

  15. Reduced replication capacity of influenza A(H1N1)pdm09 virus during the 2010-2011 winter season in Tottori, Japan.

    PubMed

    Tsuneki, Akeno; Itagaki, Asao; Tsuchie, Hideaki; Tokuhara, Misato; Okada, Takayoshi; Narai, Sakae; Kasagi, Masaaki; Tanaka, Kiyoshi; Kageyama, Seiji

    2013-11-01

    A novel swine-origin influenza A(H1N1)pdm09 virus has been circulating in humans since March-April, 2009. The 2009-2010 epidemic involved predominantly a single subtype of A(H1N1)pdm09 (at 96%, 46/48) in the sentinel sites of this study. However, A(H1N1)pdm09 started to circulate together with other type/subtype (49%, 33/68) at the first peak in the next epidemic season in 2010-2011: A(H1N1)pdm09/A(H3N2) (9%, 6/68), A(H1N1)pdm09/B (35%, 24/68), and A(H1N1)pdm09/A(H3N2)/B (4%, 3/68). Single infection of A(H1N1)pdm09 became a rare event (8%, 5/65) at the second peak of the same season in 2010-2011 compared with that at the first peak (50%, 34/68). Concurrently with this decline, single infections of others, A(H3N2) or B, became evident (6%, 4/65; 14%, 9/65, respectively). Triple infections were more common (29%, 19/65) at the second peak than at the first peak (4%). The A(H1N1)pdm09 detected in 2010-2011 produced less virus upon 72 hr of incubation in vitro after the inoculations at 10(4) and 3,300 copies/ml (2.3 × 10(9) and 2.3 × 10(9) copies/ml on average) than that in 2009-2010 (3.7 × 10(9) and 1.3 × 10(10) copies/ml on average; P<0.05 by ANOVA test), respectively. As described above, the replication capacity of A(H1N1)pdm09 seems to have deteriorated in the 2010-2011 season presumably due to substantial herd immunity and allowed the existence of other type/subtype. These results suggest that assessment of replication capacity is indispensable for analysis of influenza epidemics.

  16. A review of the dynamics and severity of the pandemic A(H1N1) influenza virus on Réunion island, 2009.

    PubMed

    D'Ortenzio, E; Renault, P; Jaffar-Bandjee, M C; Gaüzère, B A; Lagrange-Xélot, M; Fouillet, A; Poubeau, P; Winer, A; Bourde, A; Staikowsky, F; Morbidelli, P; Rachou, E; Thouillot, F; Michault, A; Filleul, L

    2010-04-01

    On Reunion Island, in response to the threat of emergence of the pandemic influenza A(H1N1)2009 virus, we implemented enhanced influenza surveillance from May 2009 onwards in order to detect the introduction of pandemic H1N1 influenza and to monitor its spread and impact on public health. The first 2009 pandemic influenza A(H1N1) virus was identified in Réunion on July 5, 2009, in a traveller returning from Australia; seasonal influenza B virus activity had already been detected. By the end of July, a sustained community pandemic virus transmission had been established. Pandemic H1N1 influenza activity peaked during week 35 (24-30 August 2009), 4 weeks after the beginning of the epidemic. The epidemic ended on week 38 and had lasted 9 weeks. During these 9 weeks, an estimated 66 915 persons who consulted a physician could have been infected by the influenza A(H1N1)2009 virus, giving a cumulative attack rate for consultants of 8.26%. Taking into account the people who did not consult, the total number of infected persons reached 104 067, giving a cumulative attack rate for symptomatics of 12.85%. The crude fatality rate (CFR) for influenza A(H1N1)2009 and the CFR for acute respiratory infection was 0.7/10 000 cases. Our data show that influenza pandemic did not have a health impact on overall mortality on Réunion Island. These findings demonstrate the value of an integrated epidemiological, virological and hospital surveillance programme to monitor the scope of an epidemic, identify circulating strains and provide some guidance to public health control measures.

  17. Biological characteristics of influenza A(H1N1)pdm09 virus circulating in West Siberia during pandemic and post-pandemic periods.

    PubMed

    Prokop'eva, E A; Kurskaya, O G; Saifutdinova, S G; Glushchenko, A V; Shestopalova, L V; Shestopalov, A M; Shkurupii, V A

    2014-03-01

    We studied biological characteristics of influenza A(H1N1)pdm09 virus circulating in Siberia during the 2009 pandemic and the post-pandemic period of 2011. BALB/c mice were chosen as the experimental model. Virus titers in the lungs were evaluated on days 1, 3, 6 and blood serum titers on day 15 after infection with different strains. Blood sera of convalescents after influenza of 2010-2011 epidemic season were analyzed. Influenza A(H1N1)pdm09 virus strains isolated during the post-pandemic period of 2011 were characterized by low epidemic activity and virulence in comparison with the strains isolated during 2009 pandemic period, which indicates completion of the pandemic cycle.

  18. Whole genome characterization of human influenza A(H1N1)pdm09 viruses isolated from Kenya during the 2009 pandemic.

    PubMed

    Gachara, George; Symekher, Samuel; Otieno, Michael; Magana, Japheth; Opot, Benjamin; Bulimo, Wallace

    2016-06-01

    An influenza pandemic caused by a novel influenza virus A(H1N1)pdm09 spread worldwide in 2009 and is estimated to have caused between 151,700 and 575,400 deaths globally. While whole genome data on new virus enables a deeper insight in the pathogenesis, epidemiology, and drug sensitivities of the circulating viruses, there are relatively limited complete genetic sequences available for this virus from African countries. We describe herein the full genome analysis of influenza A(H1N1)pdm09 viruses isolated in Kenya between June 2009 and August 2010. A total of 40 influenza A(H1N1)pdm09 viruses isolated during the pandemic were selected. The segments from each isolate were amplified and directly sequenced. The resulting sequences of individual gene segments were concatenated and used for subsequent analysis. These were used to infer phylogenetic relationships and also to reconstruct the time of most recent ancestor, time of introduction into the country, rates of substitution and to estimate a time-resolved phylogeny. The Kenyan complete genome sequences clustered with globally distributed clade 2 and clade 7 sequences but local clade 2 viruses did not circulate beyond the introductory foci while clade 7 viruses disseminated country wide. The time of the most recent common ancestor was estimated between April and June 2009, and distinct clusters circulated during the pandemic. The complete genome had an estimated rate of nucleotide substitution of 4.9×10(-3) substitutions/site/year and greater diversity in surface expressed proteins was observed. We show that two clades of influenza A(H1N1)pdm09 virus were introduced into Kenya from the UK and the pandemic was sustained as a result of importations. Several closely related but distinct clusters co-circulated locally during the peak pandemic phase but only one cluster dominated in the late phase of the pandemic suggesting that it possessed greater adaptability.

  19. Evaluation of a new immunochromatographic assay for rapid identification of influenza A, B, and A(H1N1)2009 viruses.

    PubMed

    Mitamura, Keiko; Kawakami, Chiharu; Shimizu, Hideaki; Abe, Takashi; Konomi, Yasushi; Yasumi, Yuki; Yamazaki, Masahiko; Ichikawa, Masataka; Sugaya, Norio

    2013-08-01

    We evaluated Clearline Influenza A/B/(H1N1)2009, a new multi-line immunochromatographic assay for rapid detection of antigens of influenza A (Flu A), B (Flu B), and A(H1N1)2009 viruses. Clearline detected Flu A, Flu B, and A(H1N1)2009 viruses with a detection limit of 4.6 × 10(3) to 7.5 × 10(4) pfu/assay. The sensitivity and specificity of detection of influenza virus by Clearline, using RT-PCR as reference standard, were determined for A(H1N1)2009, Flu A, and Flu B, in nasopharyngeal aspirate, nasopharyngeal swab, and self-blown nasal discharge specimens. Sensitivity for nasopharyngeal aspirate specimens was: A(H1N1)2009 = 97.3 %, Flu A = 94.5 %, and Flu B = 96.8 %, and specificity was Flu A = 99.1 % and Flu B = 100 %. Sensitivity for nasopharyngeal swab specimens was: A(H1N1)2009 = 91.9 %, Flu A = 92.8 %, and Flu B = 100 %, and specificity was Flu A = 98.2 % and Flu B = 100 %. Sensitivity for self-blown nasal discharge specimens was: A(H1N1)2009 = 75.7 %, Flu A = 86.5 %, and Flu B = 76.2 %, and specificity was Flu A = 98.4 % and Flu B = 100 %. Sensitivity and specificity of Clearline were sufficient for nasopharyngeal aspirate and swab specimens. For self-blown nasal discharge specimens, sensitivity was lower than for nasopharyngeal aspirates and nasopharyngeal swabs. The sensitivity of Clearline for A(H1N1)2009 was good even 6 h after the onset of symptoms. These findings suggest that Clearline may be useful for early clinical diagnosis of influenza.

  20. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    PubMed

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  1. Characterization of Drug-Resistant Influenza Virus A(H1N1) and A(H3N2) Variants Selected In Vitro with Laninamivir

    PubMed Central

    Samson, Mélanie; Abed, Yacine; Desrochers, François-Marc; Hamilton, Stephanie; Luttick, Angela; Tucker, Simon P.; Pryor, Melinda J.

    2014-01-01

    Neuraminidase inhibitors (NAIs) play a major role for managing influenza virus infections. The widespread oseltamivir resistance among 2007-2008 seasonal A(H1N1) viruses and community outbreaks of oseltamivir-resistant A(H1N1)pdm09 strains highlights the need for additional anti-influenza virus agents. Laninamivir is a novel long-lasting NAI that has demonstrated in vitro activity against influenza A and B viruses, and its prodrug (laninamivir octanoate) is in phase II clinical trials in the United States and other countries. Currently, little information is available on the mechanisms of resistance to laninamivir. In this study, we first performed neuraminidase (NA) inhibition assays to determine the activity of laninamivir against a set of influenza A viruses containing NA mutations conferring resistance to one or many other NAIs. We also generated drug-resistant A(H1N1) and A(H3N2) viruses under in vitro laninamivir pressure. Laninamivir demonstrated a profile of susceptibility that was similar to that of zanamivir. More specifically, it retained activity against oseltamivir-resistant H275Y and N295S A(H1N1) variants and the E119V A(H3N2) variant. In vitro, laninamivir pressure selected the E119A NA substitution in the A/Solomon Islands/3/2006 A(H1N1) background, whereas E119K and G147E NA changes along with a K133E hemagglutinin (HA) substitution were selected in the A/Quebec/144147/2009 A(H1N1)pdm09 strain. In the A/Brisbane/10/2007 A(H3N2) background, a large NA deletion accompanied by S138A/P194L HA substitutions was selected. This H3N2 variant had altered receptor-binding properties and was highly resistant to laninamivir in plaque reduction assays. Overall, we confirmed the similarity between zanamivir and laninamivir susceptibility profiles and demonstrated that both NA and HA changes can contribute to laninamivir resistance in vitro. PMID:24957832

  2. Systematic review of influenza A(H1N1)pdm09 virus shedding: duration is affected by severity, but not age.

    PubMed

    Fielding, James E; Kelly, Heath A; Mercer, Geoffry N; Glass, Kathryn

    2014-03-01

    Duration of viral shedding following infection is an important determinant of disease transmission, informing both control policies and disease modelling. We undertook a systematic literature review of the duration of influenza A(H1N1)pdm09 virus shedding to examine the effects of age, severity of illness and receipt of antiviral treatment. Studies were identified by searching the PubMed database using the keywords 'H1N1', 'pandemic', 'pandemics', 'shed' and 'shedding'. Any study of humans with an outcome measure of viral shedding was eligible for inclusion in the review. Comparisons by age, degree of severity and antiviral treatment were made with forest plots. The search returned 214 articles of which 22 were eligible for the review. Significant statistical heterogeneity between studies precluded meta-analysis. The mean duration of viral shedding generally increased with severity of clinical presentation, but we found no evidence of longer shedding duration of influenza A(H1N1)pdm09 among children compared with adults. Shorter viral shedding duration was observed when oseltamivir treatment was administered within 48 hours of illness onset. Considerable differences in the design and analysis of viral shedding studies limit their comparison and highlight the need for a standardised approach. These insights have implications not only for pandemic planning, but also for informing responses and study of seasonal influenza now that the A(H1N1)pdm09 virus has become established as the seasonal H1N1 influenza virus.

  3. Assessing Antigenic Drift of Seasonal Influenza A(H3N2) and A(H1N1)pdm09 Viruses

    PubMed Central

    Tewawong, Nipaporn; Prachayangprecha, Slinporn; Vichiwattana, Preeyaporn; Korkong, Sumeth; Klinfueng, Sirapa; Vongpunsawad, Sompong; Thongmee, Thanunrat; Theamboonlers, Apiradee; Poovorawan, Yong

    2015-01-01

    Under selective pressure from the host immune system, antigenic epitopes of influenza virus hemagglutinin (HA) have continually evolved to escape antibody recognition, termed antigenic drift. We analyzed the genomes of influenza A(H3N2) and A(H1N1)pdm09 virus strains circulating in Thailand between 2010 and 2014 and assessed how well the yearly vaccine strains recommended for the southern hemisphere matched them. We amplified and sequenced the HA gene of 120 A(H3N2) and 81 A(H1N1)pdm09 influenza virus samples obtained from respiratory specimens and calculated the perfect-match vaccine efficacy using the pepitope model, which quantitated the antigenic drift in the dominant epitope of HA. Phylogenetic analysis of the A(H3N2) HA1 genes classified most strains into genetic clades 1, 3A, 3B, and 3C. The A(H3N2) strains from the 2013 and 2014 seasons showed very low to moderate vaccine efficacy and demonstrated antigenic drift from epitopes C and A to epitope B. Meanwhile, most A(H1N1)pdm09 strains from the 2012–2014 seasons belonged to genetic clades 6A, 6B, and 6C and displayed the dominant epitope mutations at epitopes B and E. Finally, the vaccine efficacy for A(H1N1)pdm09 (79.6–93.4%) was generally higher than that of A(H3N2). These findings further confirmed the accelerating antigenic drift of the circulating influenza A(H3N2) in recent years. PMID:26440103

  4. [Detection of conservative and variable epitopes of the pandemic influenza virus A(H1N1)pdm09 hemagglutinin using monoclonal antibodies].

    PubMed

    Masalova, O V; Chichev, E V; Fediakina, I T; Mukasheva, E A; Klimova, R R; Shchelkanov, M Iu; Burtseva, E I; Ivanova, V T; Kushch, A A; L'vov, D K

    2014-01-01

    The goal of this work was to analyze the antigenic structure of the hemagglutinin (HA) of the pandemic influenza virus A(H1N1)pdm09 using monoclonal antibodies (MAbs) and to develop a sandwich ELISA for identification of pandemic strains. Competitive ELISA demonstrated that 6 MAbs against HA of the pandemic influenza A/ IIV-Moscow/01/2009 (H1N1)pdm09 virus identified six epitopes. Binding of MAbs with 22 strains circulating in Russian Federation during 2009-2012 was analyzed in the hemagglutination-inhibition test (HI). The MAbs differed considerably in their ability to decrease the HI activity of these strains. MAb 5F7 identified all examined strains; MAbs 3A3 and 10G2 reacted with the majority of them. A highly sensitive sandwich ELISA was constructed based on these three MAbs that can differentiate the pandemic influenza strains from the seasonal influenza virus. The constancy of the HA epitope that reacts with MAb 5F7 provides its use for identification of the pandemic influenza strains in HI test. MAbs 3D9, 6A3 and 1E7 are directed against the variable HA epitopes, being sensitive to several amino acid changes in Sa, Sb, and Ca2 antigenic sites and in receptor binding site. These MAbs can be used to detect differences in HA structure and to study the antigenic drift of the pandemic influenza virus A(H1N1)pdm09.

  5. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A(H1N1) viruses.

    PubMed

    Sleeman, Katrina; Mishin, Vasiliy P; Deyde, Varough M; Furuta, Yousuke; Klimov, Alexander I; Gubareva, Larisa V

    2010-06-01

    Favipiravir (T-705) has previously been shown to have a potent antiviral effect against influenza virus and some other RNA viruses in both cell culture and in animal models. Currently, favipiravir is undergoing clinical evaluation for the treatment of influenza A and B virus infections. In this study, favipiravir was evaluated in vitro for its ability to inhibit the replication of a representative panel of seasonal influenza viruses, the 2009 A(H1N1) strains, and animal viruses with pandemic (pdm) potential (swine triple reassortants, H2N2, H4N2, avian H7N2, and avian H5N1), including viruses which are resistant to the currently licensed anti-influenza drugs. All viruses were tested in a plaque reduction assay with MDCK cells, and a subset was also tested in both yield reduction and focus inhibition (FI) assays. For the majority of viruses tested, favipiravir significantly inhibited plaque formation at 3.2 muM (0.5 microg/ml) (50% effective concentrations [EC(50)s] of 0.19 to 22.48 muM and 0.03 to 3.53 microg/ml), and for all viruses, with the exception of a single dually resistant 2009 A(H1N1) virus, complete inhibition of plaque formation was seen at 3.2 muM (0.5 microg/ml). Due to the 2009 pandemic and increased drug resistance in circulating seasonal influenza viruses, there is an urgent need for new drugs which target influenza. This study demonstrates that favipiravir inhibits in vitro replication of a wide range of influenza viruses, including those resistant to currently available drugs.

  6. Serologic evidence of influenza A(H1N1)pdm09 virus in northern sea otters

    USGS Publications Warehouse

    Li, Zhu-Nan; Ip, Hon S.; Frost, Jessica F.; White, C. LeAnn; Murray, Michael J.; Carney, Paul J.; Sun, Xiang-Jie; Stevens, James; Levine, Min Z.; Katz, Jacqueline M.

    2014-01-01

    Sporadic epizootics of pneumonia among marine mammals have been associated with multiple animal-origin influenza A virus subtypes (1–6); seals are the only known nonhuman host for influenza B viruses (7). Recently, we reported serologic evidence of influenza A virus infection in free-ranging northern sea otters (Enhydra lutris kenyoni) captured off the coast of Washington, USA, in August 2011 (8). To investigate further which influenza A virus subtype infected these otters, we tested serum samples from these otters by ELISA for antibody-binding activity against 12 recombinant hemagglutinins (rHAs) from 7 influenza A hemagglutinin (HA) subtypes and 2 lineages of influenza B virus (Technical Appendix Table 1). Estimated ages for the otters were 2–19 years (Technical Appendix Table 2); we also tested archived serum samples from sea otters of similar ages collected from a study conducted during 2001–2002 along the Washington coast (9).

  7. Protection by face masks against influenza A(H1N1)pdm09 virus on trans-Pacific passenger aircraft, 2009.

    PubMed

    Zhang, Lijie; Peng, Zhibin; Ou, Jianming; Zeng, Guang; Fontaine, Robert E; Liu, Mingbin; Cui, Fuqiang; Hong, Rongtao; Zhou, Hang; Huai, Yang; Chuang, Shuk-Kwan; Leung, Yiu-Hong; Feng, Yunxia; Luo, Yuan; Shen, Tao; Zhu, Bao-Ping; Widdowson, Marc-Alain; Yu, Hongjie

    2013-01-01

    In response to several influenza A(H1N1)pdm09 infections that developed in passengers after they traveled on the same 2 flights from New York, New York, USA, to Hong Kong, China, to Fuzhou, China, we assessed transmission of influenza A(H1N1)pdm09 virus on these flights. We defined a case of infection as onset of fever and respiratory symptoms and detection of virus by PCR in a passenger or crew member of either flight. Illness developed only in passengers who traveled on the New York to Hong Kong flight. We compared exposures of 9 case-passengers with those of 32 asymptomatic control-passengers. None of the 9 case-passengers, compared with 47% (15/32) of control-passengers, wore a face mask for the entire flight (odds ratio 0, 95% CI 0-0.71). The source case-passenger was not identified. Wearing a face mask was a protective factor against influenza infection. We recommend a more comprehensive intervention study to accurately estimate this effect.

  8. Protection by Face Masks against Influenza A(H1N1)pdm09 Virus on Trans-Pacific Passenger Aircraft, 2009

    PubMed Central

    Zhang, Lijie; Peng, Zhibin; Ou, Jianming; Zeng, Guang; Fontaine, Robert E.; Liu, Mingbin; Cui, Fuqiang; Hong, Rongtao; Zhou, Hang; Huai, Yang; Chuang, Shuk-Kwan; Leung, Yiu-Hong; Feng, Yunxia; Luo, Yuan; Shen, Tao; Zhu, Bao-Ping; Widdowson, Marc-Alain

    2013-01-01

    In response to several influenza A(H1N1)pdm09 infections that developed in passengers after they traveled on the same 2 flights from New York, New York, USA, to Hong Kong, China, to Fuzhou, China, we assessed transmission of influenza A(H1N1)pdm09 virus on these flights. We defined a case of infection as onset of fever and respiratory symptoms and detection of virus by PCR in a passenger or crew member of either flight. Illness developed only in passengers who traveled on the New York to Hong Kong flight. We compared exposures of 9 case-passengers with those of 32 asymptomatic control-passengers. None of the 9 case-passengers, compared with 47% (15/32) of control-passengers, wore a face mask for the entire flight (odds ratio 0, 95% CI 0–0.71). The source case-passenger was not identified. Wearing a face mask was a protective factor against influenza infection. We recommend a more comprehensive intervention study to accurately estimate this effect. PMID:23968983

  9. Performance of rapid-test kits for the detection of the pandemic influenza A/H1N1 virus.

    PubMed

    Tsao, Kuo-Chien; Kuo, Yung-Bin; Huang, Chung-Guei; Chau, Shao-Wen; Chan, Err-Cheng

    2011-05-01

    The early detection of pandemic influenza strains is a key factor for clinicians in treatment decisions and infection control practices. The aims of this study were to determine the analytical sensitivity and clinical performance of the commercially available influenza rapid tests in Taiwan. Four rapid tests for influenza virus (BinaxNow test, QuickVue test, TRU test, and Formosa Rapid test) were evaluated for their detection limit against four influenza viruses (the 2009 pandemic influenza A virus H1N1, seasonal influenza virus H1N1, H3N2, and influenza B virus) circulating in Taiwan. The viral load of these isolates were quantified by rtRT-PCR and then diluted 2-fold serially for the comparison. The lowest detectable viral load of the pandemic influenza A virus H1N1 by the Formosa Rapid test, QuickVue test, TRU test, and Binax Now test was 5.3×10(4), 1.0×10(5), 1.0×10(5), and 4.2×10(5)copies/μL, respectively. Of these four tests, the two most sensitive tests (the QuickVue test and the Formosa Rapid test) were chosen to evaluate 62 nasopharyngeal specimens from patients who were suspected of infection with pandemic influenza A virus H1N1. The positive rate for the Formosa Rapid test and the QuickVue test were 53.2% (33/62) and 45.2% (28/62) (McNemar's test, P=0.125), respectively. In conclusion, the Formosa Rapid test was the most sensitive test in the present study for the detection of influenza antigens and its clinical performance was similar to that of the QuickVue test (Kappa=0.776). This suggests that the Formosa Rapid test could be used to aid clinical decision making in primary health care settings during outbreaks of influenza.

  10. The environmental deposition of influenza virus from patients infected with influenza A(H1N1)pdm09: Implications for infection prevention and control.

    PubMed

    Killingley, Benjamin; Greatorex, Jane; Digard, Paul; Wise, Helen; Garcia, Fayna; Varsani, Harsha; Cauchemez, Simon; Enstone, Joanne E; Hayward, Andrew; Curran, Martin D; Read, Robert C; Lim, Wei S; Nicholson, Karl G; Nguyen-Van-Tam, Jonathan S

    2016-01-01

    In a multi-center, prospective, observational study over two influenza seasons, we sought to quantify and correlate the amount of virus recovered from the nares of infected subjects with that recovered from their immediate environment in community and hospital settings. We recorded the symptoms of adults and children with A(H1N1)pdm09 infection, took nasal swabs, and sampled touched surfaces and room air. Forty-two infected subjects were followed up. The mean duration of virus shedding was 6.2 days by PCR (Polymerase Chain Reaction) and 4.2 days by culture. Surface swabs were collected from 39 settings; 16 (41%) subject locations were contaminated with virus. Overall, 33 of the 671 (4.9%) surface swabs were PCR positive for influenza, of which two (0.3%) yielded viable virus. On illness Day 3, subjects yielding positive surface samples had significantly higher nasal viral loads (geometric mean ratio 25.7; 95% CI 1.75, 376.0, p=0.021) and a positive correlation (r=0.47, p=0.006) was observed between subject nasal viral loads and viral loads recovered from the surfaces around them. Room air was sampled in the vicinity of 12 subjects, and PCR positive samples were obtained for five (42%) samples. Influenza virus shed by infected subjects did not detectably contaminate the vast majority of surfaces sampled. We question the relative importance of the indirect contact transmission of influenza via surfaces, though our data support the existence of super-spreaders via this route. The air sampling results add to the accumulating evidence that supports the potential for droplet nuclei (aerosol) transmission of influenza.

  11. Influenza A(H1N1)pdm09 Virus Suppresses RIG-I Initiated Innate Antiviral Responses in the Human Lung

    PubMed Central

    Booth, J. Leland; Metcalf, Jordan P.

    2012-01-01

    Influenza infection is a major cause of morbidity and mortality. Retinoic acid-inducible gene I (RIG-I) is believed to play an important role in the recognition of, and response to, influenza virus and other RNA viruses. Our study focuses on the hypothesis that pandemic H1N1/09 influenza virus alters the influenza-induced proinflammatory response and suppresses host antiviral activity. We first compared the innate response to a clinical isolate of influenza A(H1N1)pdm09 virus, OK/09, a clinical isolate of seasonal H3N2 virus, OK/06, and to a laboratory adapted seasonal H1N1 virus, PR8, using a unique human lung organ culture model. Exposure of human lung tissue to either pandemic or seasonal influenza virus resulted in infection and replication in alveolar epithelial cells. Pandemic virus induces a diminished RIG-I mRNA and antiviral cytokine response than seasonal virus in human lung. The suppression of antiviral response and RIG-I mRNA expression was confirmed at the protein level by ELISA and western blot. We performed a time course of RIG-I and interferon-β (IFN-β) mRNA induction by the two viruses. RIG-I and IFN-β induction by OK/09 was of lower amplitude and shorter duration than that caused by PR8. In contrast, the pandemic virus OK/09 caused similar induction of proinflammatory cytokines, IL-8 and IL-6, at both the transcriptional and translational level as PR8 in human lung. Differential antiviral responses did not appear to be due to a difference in cellular infectivity as immunohistochemistry showed that both viruses infected alveolar macrophages and epithelial cells. These findings show that influenza A(H1N1)pdm09 virus suppresses anti-viral immune responses in infected human lung through inhibition of viral-mediated induction of the pattern recognition receptor, RIG-I, though proinflammatory cytokine induction was unaltered. This immunosuppression of the host antiviral response by pandemic virus may have contributed to the more serious lung

  12. Accumulation of Human-Adapting Mutations during Circulation of A(H1N1)pdm09 Influenza Virus in Humans in the United Kingdom

    PubMed Central

    Elderfield, Ruth A.; Watson, Simon J.; Godlee, Alexandra; Adamson, Walt E.; Thompson, Catherine I.; Dunning, Jake; Fernandez-Alonso, Mirian; Blumenkrantz, Deena; Hussell, Tracy; Zambon, Maria; Openshaw, Peter; Kellam, Paul

    2014-01-01

    ABSTRACT The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes

  13. Punctuated Evolution of Influenza Virus Neuraminidase (A/H1N1) under Opposing Migration and Vaccination Pressures

    PubMed Central

    Phillips, J. C.

    2014-01-01

    Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). The structure and properties of HA, which is responsible for binding the virus to the cell that is being infected, change significantly when the virus is transmitted from avian or swine species to humans. Here we focus first on the simpler problem of the much smaller human individual evolutionary amino acid mutational changes in NA, which cleaves sialic acid groups and is required for influenza virus replication. Our thermodynamic panorama shows that very small amino acid changes can be monitored very accurately across many historic (1945–2011) Uniprot and NCBI strains using hydropathicity scales to quantify the roughness of water film packages. Quantitative sequential analysis is most effective with the fractal differential hydropathicity scale based on protein self-organized criticality (SOC). Our analysis shows that large-scale vaccination programs have been responsible for a very large convergent reduction in common influenza severity in the last century. Hydropathic analysis is capable of interpreting and even predicting trends of functional changes in mutation prolific viruses directly from amino acid sequences alone. An engineered strain of NA1 is described which could well be significantly less virulent than current circulating strains. PMID:25143953

  14. Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 A(H1N1) influenza virus infection in ferrets.

    PubMed

    Bosch, Berend Jan; Bodewes, Rogier; de Vries, Robert P; Kreijtz, Joost H C M; Bartelink, Willem; van Amerongen, Geert; Rimmelzwaan, Guus F; de Haan, Cornelis A M; Osterhaus, Albert D M E; Rottier, Peter J M

    2010-10-01

    The emergence and subsequent swift and global spread of the swine-origin influenza virus A(H1N1) in 2009 once again emphasizes the strong need for effective vaccines that can be developed rapidly and applied safely. With this aim, we produced soluble, multimeric forms of the 2009 A(H1N1) HA (sHA(3)) and NA (sNA(4)) surface glycoproteins using a virus-free mammalian expression system and evaluated their efficacy as vaccines in ferrets. Immunization twice with 3.75-microg doses of these antigens elicited strong antibody responses, which were adjuvant dependent. Interestingly, coadministration of both antigens strongly enhanced the HA-specific but not the NA-specific responses. Distinct patterns of protection were observed upon challenge inoculation with the homologous H1N1 virus. Whereas vaccination with sHA(3) dramatically reduced virus replication (e.g., by lowering pulmonary titers by about 5 log(10) units), immunization with sNA(4) markedly decreased the clinical effects of infection, such as body weight loss and lung pathology. Clearly, optimal protection was achieved by the combination of the two antigens. Our observations demonstrate the great vaccine potential of multimeric HA and NA ectodomains, as these can be easily, rapidly, flexibly, and safely produced in high quantities. In particular, our study underscores the underrated importance of NA in influenza vaccination, which we found to profoundly and specifically contribute to protection by HA. Its inclusion in a vaccine is likely to reduce the HA dose required and to broaden the protective immunity.

  15. Identification of Low- and High-Impact Hemagglutinin Amino Acid Substitutions That Drive Antigenic Drift of Influenza A(H1N1) Viruses

    PubMed Central

    Harvey, William T.; Benton, Donald J.; Gregory, Victoria; Hall, James P. J.; Daniels, Rodney S.; Bedford, Trevor; Haydon, Daniel T.; Hay, Alan J.; McCauley, John W.; Reeve, Richard

    2016-01-01

    Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI) assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA) glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1) virus isolates (1997–2009) and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens. PMID:27057693

  16. Proteinquakes in the Evolution of Influenza Virus Hemagglutinin (A/H1N1) under Opposing Migration and Vaccination Pressures

    PubMed Central

    Phillips, J. C.

    2015-01-01

    Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Here we show that, while HA evolution is much more complex than NA evolution, it still shows abrupt punctuation changes linked to punctuation changes of NA. HA exhibits proteinquakes, which resemble earthquakes and are related to hydropathic shifting of sialic acid binding regions. HA proteinquakes based on shifting sialic acid interactions are required for optimal balance between the receptor-binding and receptor-destroying activities of HA and NA for efficient virus replication. Our comprehensive results present a historical (1945–2011) panorama of HA evolution over thousands of strains and are consistent with many studies of HA and NA interactions based on a few mutations of a few strains. PMID:25654090

  17. Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this report was to characterize the enhanced clinical disease and lung lesions observed in pigs vaccinated with inactivated H1N2 swine delta-cluster influenza A virus and challenged with pandemic 2009 A/H1N1 human influenza virus. Eighty-four, six-week-old, crossbred pigs were rand...

  18. Likely Correlation between Sources of Information and Acceptability of A/H1N1 Swine-Origin Influenza Virus Vaccine in Marseille, France

    PubMed Central

    Ninove, Laetitia; Sartor, Catherine; Badiaga, Sékéné; Botelho, Elizabeth; Brouqui, Philippe; Zandotti, Christine; De Lamballerie, Xavier; La Scola, Bernard; Drancourt, Michel; Gould, Ernest A.; Charrel, Rémi N.; Raoult, Didier

    2010-01-01

    Background In France, there was a reluctance to accept vaccination against the A/H1N1 pandemic influenza virus despite government recommendation and investment in the vaccine programme. Methods and Findings We examined the willingness of different populations to accept A/H1N1vaccination (i) in a French hospital among 3315 employees immunized either by in-house medical personnel or mobile teams of MDs and (ii) in a shelter housing 250 homeless persons. Google was used to assess the volume of enquiries concerning incidence of influenza. We analyzed the information on vaccination provided by Google, the website of the major French newspapers, and PubMed. Two trust Surveys were used to assess public opinion on the trustworthiness of people in different professions. Paramedics were significantly more reluctant to accept immunisation than qualified medical staff. Acceptance was significantly increased when recommended directly by MDs. Anecdotal cases of directly observed severe infections were followed by enhanced acceptance of paramedical staff. Scientific literature was significantly more in favour of vaccination than Google and French newspaper websites. In the case of the newspaper websites, information correlated with their recognised political reputations, although they would presumably claim independence from political bias. The Trust Surveys showed that politicians were highly distrusted in contrast with doctors and pharmacists who were considered much more trustworthy. Conclusions The low uptake of the vaccine could reflect failure to convey high quality medical information and advice relating to the benefits of being vaccinated. We believe that the media and internet contributed to this problem by raising concerns within the general population and that failure to involve GPs in the control programme may have been a mistake. GPs are highly regarded by the public and can provide face-to-face professional advice and information. The top-down strategy of vaccine

  19. Predominance of influenza A(H1N1)pdm09 virus genetic subclade 6B.1 and influenza B/Victoria lineage viruses at the start of the 2015/16 influenza season in Europe.

    PubMed

    Broberg, Eeva; Melidou, Angeliki; Prosenc, Katarina; Bragstad, Karoline; Hungnes, Olav

    2016-01-01

    Influenza A(H1N1)pdm09 viruses predominated in the European influenza 2015/16 season. Most analysed viruses clustered in a new genetic subclade 6B.1, antigenically similar to the northern hemisphere vaccine component A/California/7/2009. The predominant influenza B lineage was Victoria compared with Yamagata in the previous season. It remains to be evaluated at the end of the season if these changes affected the effectiveness of the vaccine for the 2015/16 season.

  20. Inflammatory profiles in severe pneumonia associated with the pandemic influenza A/H1N1 virus isolated in Mexico City.

    PubMed

    Zúñiga, Joaquín; Torres, Martha; Romo, Javier; Torres, Diana; Jiménez, Luis; Ramírez, Gustavo; Cruz, Alfredo; Espinosa, Enrique; Herrera, Teresa; Buendía, Ivette; Ramírez-Venegas, Alejandra; González, Yolanda; Bobadilla, Karen; Hernández, Fernando; García, Jorge; Quiñones-Falconi, Francisco; Sada, Eduardo; Manjarrez, María E; Cabello, Carlos; Kawa, Simón; Zlotnik, Albert; Pardo, Annie; Selman, Moisés

    2011-11-01

    The immune mechanisms underlying the pathogenesis of severe pneumonia associated with the A/H1N1 virus are not well known. The objective of this study was to determine whether severe A/H1N1-associated pneumonia can be explained by the emergence of particular T-cell subsets and the cytokines/chemokines they produced, as well as distinct responses to infection. T-cell subset distribution and cytokine/chemokine levels in peripheral blood and bronchoalveolar lavage (BAL) were determined in patients with severe A/H1N1 infection, asymptomatic household contacts, and healthy controls. Cytokine and chemokine production was also evaluated after in vitro infection with seasonal H1N1 and pandemic A/H1N1 strains. We found an increase in the frequency of peripheral Th2 and Tc2 cells in A/H1N1 patients. A trend toward increased Tc1 cells was observed in household contacts. Elevated serum levels of IL-6, CXCL8, and CCL2 were found in patients and a similar cytokine/chemokine profile was observed in BAL, in which CCL5 was also increased. Infection assays revealed that both strains induce the production of several cytokines/chemokines at 24 and 72 h, however, IL-6, CCL3, and CXCL8 were strongly up-regulated in 72-h cultures in presence of the A/H1N1 virus. Several inflammatory mediators are up-regulated in peripheral and lung samples from A/H1N1-infected patients who developed severe pneumonia. In addition, the A/H1N1 strain induces higher levels of pro-inflammatory cytokines and chemokines than the seasonal H1N1 strain. These findings suggest that it is possible to identify biomarkers of severe pneumonia and also suggest the therapeutic use of immunomodulatory drugs in patients with severe pneumonia associated with A/H1N1 infection.

  1. Prevalence of Seropositivity to Pandemic Influenza A/H1N1 Virus in the United States following the 2009 Pandemic

    PubMed Central

    Reed, Carrie; Katz, Jacqueline M.; Hancock, Kathy; Balish, Amanda; Fry, Alicia M.

    2012-01-01

    Background 2009 pandemic influenza A/H1N1 (A(H1N1)pdm09) was first detected in the United States in April 2009 and resulted in a global pandemic. We conducted a serologic survey to estimate the cumulative incidence of A(H1N1)pdm09 through the end of 2009 when pandemic activity had waned in the United States. Methods We conducted a pair of cross sectional serologic surveys before and after the spring/fall waves of the pandemic for evidence of seropositivity (titer ≥40) using the hemagglutination inhibition (HI) assay. We tested a baseline sample of 1,142 serum specimens from the 2007–2008 National Health and Nutrition Examination Survey (NHANES), and 2,759 serum specimens submitted for routine screening to clinical diagnostic laboratories from ten representative sites. Results The age-adjusted prevalence of seropositivity to A(H1N1)pdm09 by year-end 2009 was 36.9% (95%CI: 31.7–42.2%). After adjusting for baseline cross-reactive antibody, pandemic vaccination coverage and the sensitivity/specificity of the HI assay, we estimate that 20.2% (95%CI: 10.1–28.3%) of the population was infected with A(H1N1)pdm09 by December 2009, including 53.3% (95%CI: 39.0–67.1%) of children aged 5–17 years. Conclusions By December 2009, approximately one-fifth of the US population, or 61.9 million persons, may have been infected with A(H1N1)pdm09, including around half of school-aged children. PMID:23118949

  2. Influenza vaccine effectiveness estimates in Croatia in 2010-2011: a season with predominant circulation of A(H1N1)pdm09 influenza virus.

    PubMed

    Kurečić Filipović, S; Gjenero-Margan, I; Kissling, E; Kaić, B; Cvitković, A

    2015-09-01

    This is a retrospective study using the test-negative case-control method to estimate seasonal 2010-2011 influenza vaccine effectiveness (VE) in Croatia. Of patients consulting a physician for influenza-like illness (ILI) and for whom a swab was taken, we compared RT-PCR influenza-positive and RT-PCR influenza-negative patients. We used a structured questionnaire and physicians' records to obtain information on vaccination status and potential confounders. We conducted a complete case analysis using logistic regression to measure adjusted VE overall, against A(H1N1)pdm09 and in age groups. Out of 785 interviewed patients, 495 eligible patients were included in the study, after applying exclusion criteria [217 cases, of which 92·6% were A(H1N1)pdm09 positive, 278 controls]. Crude VE was 31·9% [95% confidence interval (CI) -40·9 to 67·1] and adjusted VE was 20·7% (95% CI -71·4 to 63·3), with higher VE in youngest and oldest age groups. Results from this first VE study in Croatia suggest a low to moderate VE for the 2010-2011 season. Studies year on year are needed with a greater sample size to provide more precise estimates, and also by age group and risk groups for vaccination.

  3. [Outbreak of influenza pandemic virus A(H1N1) 2009 infections in the Emergency Department, Saint-Pierre, Réunion Island, July-September 2009].

    PubMed

    Staikowsky, F; Vanhecke, C; D'Andréa, C; Souab, A; Rakotoson, R; Michault, A

    2011-05-01

    A new H1N1 virus originating from swine recently emerged as the first influenza pandemic of the 21st century. On July 3, 2009, this new influenza A(H1N1) virus (S-OIV) of swine origins was identified in Réunion Island, a French overseas department located in the southern hemisphere. The present study describes the characteristics of the epidemic from July 3 to September 30, 2009. Among the 479 patients included in our study (236 males, 37.3 ± 19.0 years), 255 (53.2%) were reported to have comorbidities or risk factors (RF) for complications. Complications occurred in 160 patients (33.4%). The most common complications were bronchial hyperreactivity (52.7%), pneumonia (32.1%), and decompensation caused by comorbidity (17.9%). 111 patients (23.2%) required hospitalization. Patients aged 65 and over, accounted for 11.9% of all patients, 32.4% of hospitalized patients and 22.5% of complicated S-OIV infections. Regardless of age, comorbidity and/or RF were reported in 80.0% of complicated S-OIV infections and 91.0% of hospitalized patients. Recommendations for surveillance, prevention and policy for persons with RF, particularly respiratory disease, are justified. However, the absence of risk factors did not prevent the occurrence of complications, present in 14.3% of the cases.

  4. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates.

    PubMed

    Belanov, Sergei S; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E

    2015-11-27

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009-2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009-2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates.

  5. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates

    PubMed Central

    Belanov, Sergei S.; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E.

    2015-01-01

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009–2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009–2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. PMID:26615216

  6. Influenza A/H1N1 Severe Pneumonia: Novel Morphocytological Findings in Bronchoalveolar Lavage

    PubMed Central

    Faverio, Paola; Messinesi, Grazia; Brenna, Ambrogio; Pesci, Alberto

    2014-01-01

    We present the results of bronchoalveolar lavage (BAL) performed in three patients with severe influenza A/H1N1 pneumonia complicated by acute respiratory distress syndrome (ARDS). Light microscopy analysis of BAL cytocentrifugates showed the presence of characteristic large, mononuclear, plasmoblastic/plasmocytoid-like cells never described before. Via transmission electron microscopy, these cells were classified as atypical type II pneumocytes and some of them showed cytoplasmic vesicles and inclusions. We concluded that plasmoblastic/plasmocytoid-like type II pneumocytes might represent a morphologic marker of A/H1N1 influenza virus infection as well as reparative cellular activation after diffuse alveolar damage. PMID:25383078

  7. Influenza A/H1N1 Severe Pneumonia: Novel Morphocytological Findings in Bronchoalveolar Lavage.

    PubMed

    Faverio, Paola; Aliberti, Stefano; Ezekiel, Clinton; Messinesi, Grazia; Brenna, Ambrogio; Pesci, Alberto

    2014-01-01

    We present the results of bronchoalveolar lavage (BAL) performed in three patients with severe influenza A/H1N1 pneumonia complicated by acute respiratory distress syndrome (ARDS). Light microscopy analysis of BAL cytocentrifugates showed the presence of characteristic large, mononuclear, plasmoblastic/plasmocytoid-like cells never described before. Via transmission electron microscopy, these cells were classified as atypical type II pneumocytes and some of them showed cytoplasmic vesicles and inclusions. We concluded that plasmoblastic/plasmocytoid-like type II pneumocytes might represent a morphologic marker of A/H1N1 influenza virus infection as well as reparative cellular activation after diffuse alveolar damage.

  8. Oseltamivir-zanamivir combination therapy is not superior to zanamivir monotherapy in mice infected with influenza A(H3N2) and A(H1N1)pdm09 viruses.

    PubMed

    Pizzorno, Andrés; Abed, Yacine; Rhéaume, Chantal; Boivin, Guy

    2014-05-01

    The efficacy of oseltamivir-zanamivir combination therapy compared to that of monotherapy was evaluated in mice infected with influenza A(H3N2) or A(H1N1)pdm09 viruses. For A(H3N2) virus, zanamivir monotherapy and oseltamivir-zanamivir combination showed significant reduction of mean weight loss compared to oseltamivir. Zanamivir monotherapy also conferred decreased mortality, weight loss and lung viral titers (LVT) compared to oseltamivir for A(H1N1)pdm09 wild-type virus. Intermediate benefits were observed for the oseltamivir-zanamivir combination. For the oseltamivir-resistant A(H1N1)pdm09 H275Y virus, the efficacy of oseltamivir-zanamivir was comparable to that of zanamivir and significantly higher than that of oseltamivir in terms of survival, weight loss and LVT.

  9. Screening of Random Peptide Library of Hemagglutinin from Pandemic 2009 A(H1N1) Influenza Virus Reveals Unexpected Antigenically Important Regions

    PubMed Central

    Xu, Wanghui; Han, Lu; Lin, Zhanglin

    2011-01-01

    The antigenic structure of the membrane protein hemagglutinin (HA) from the 2009 A(H1N1) influenza virus was dissected with a high-throughput screening method using complex antisera. The approach involves generating yeast cell libraries displaying a pool of random peptides of controllable lengths on the cell surface, followed by one round of fluorescence-activated cell sorting (FACS) against antisera from mouse, goat and human, respectively. The amino acid residue frequency appearing in the antigenic peptides at both the primary sequence and structural level was determined and used to identify “hot spots” or antigenically important regions. Unexpectedly, different antigenic structures were seen for different antisera. Moreover, five antigenic regions were identified, of which all but one are located in the conserved HA stem region that is responsible for membrane fusion. Our findings are corroborated by several recent studies on cross-neutralizing H1 subtype antibodies that recognize the HA stem region. The antigenic peptides identified may provide clues for creating peptide vaccines with better accessibility to memory B cells and better induction of cross-neutralizing antibodies than the whole HA protein. The scheme used in this study enables a direct mapping of the antigenic regions of viral proteins recognized by antisera, and may be useful for dissecting the antigenic structures of other viral proteins. PMID:21437206

  10. Synergy between the classical and alternative pathways of complement is essential for conferring effective protection against the pandemic influenza A(H1N1) 2009 virus infection

    PubMed Central

    Rattan, Ajitanuj; Pawar, Shailesh D.; Nawadkar, Renuka; Kulkarni, Neeraja

    2017-01-01

    The pandemic influenza A(H1N1) 2009 virus caused significant morbidity and mortality worldwide thus necessitating the need to understand the host factors that influence its control. Previously, the complement system has been shown to provide protection during the seasonal influenza virus infection, however, the role of individual complement pathways is not yet clear. Here, we have dissected the role of intact complement as well as of its individual activation pathways during the pandemic influenza virus infection using mouse strains deficient in various complement components. We show that the virus infection in C3-/- mice results in increased viral load and 100% mortality, which can be reversed by adoptive transfer of naïve wild-type (WT) splenocytes, purified splenic B cells, or passive transfer of immune sera from WT, but not C3-/- mice. Blocking of C3a and/or C5a receptor signaling in WT mice using receptor antagonists and use of C3aR-/- and C5aR-/- mice showed significant mortality after blocking/ablation of C3aR, with little or no effect after blocking/ablation of C5aR. Intriguingly, deficiency of C4 and FB in mice resulted in only partial mortality (24%-32%) suggesting a necessary cross-talk between the classical/lectin and alternative pathways for providing effective protection. In vitro virus neutralization experiments performed to probe the cross-talk between the various pathways indicated that activation of the classical and alternative pathways in concert, owing to coating of viral surface by antibodies, is needed for its efficient neutralization. Examination of the virus-specific complement-binding antibodies in virus positive subjects showed that their levels vary among individuals. Together these results indicate that cooperation between the classical and alternative pathways not only result in efficient direct neutralization of the pandemic influenza virus, but also lead to the optimum generation of C3a, which when sensed by the immune cells along

  11. Rare positive laboratory tests for the presence of influenza virus A/H1N1--2009 in May, June, July, 2011, in the districts of Kosice I-IV and surroundings of Kosice in the Slovak Republic.

    PubMed

    Seligová, Jana; Belyová, Anna; Culmanová, Andrea; Oleár, Vladimír; Cisláková, Lýdia

    2011-12-01

    Influenza illnesses and positive laboratory tests for the presence of influenza virus in recent years in the districts of Kosice I-IV and surroundings have only occurred during the winter season. In May to July 2010 only one positive laboratory test for the presence of influenza virus A/H1N1-2009 was reported. In 2011, during the same period, a total of 29 positive laboratory tests recorded the presence of influenza virus A/ H1N1-2009 in individuals with typical clinical symptoms of influenza. Of 29 clinical cases, 27 were diagnosed as influenza and 2 as SARI; 4 cases involved children.

  12. Influenza A Viruses of Swine (IAV-S) in Vietnam from 2010 to 2015: Multiple Introductions of A(H1N1)pdm09 Viruses into the Pig Population and Diversifying Genetic Constellations of Enzootic IAV-S.

    PubMed

    Takemae, Nobuhiro; Harada, Michiyo; Nguyen, Phuong Thanh; Nguyen, Tung; Nguyen, Tien Ngoc; To, Thanh Long; Nguyen, Tho Dang; Pham, Vu Phong; Le, Vu Tri; Do, Hoa Thi; Vo, Hung Van; Le, Quang Vinh Tin; Tran, Tan Minh; Nguyen, Thanh Duy; Thai, Phuong Duy; Nguyen, Dang Hoang; Le, Anh Quynh Thi; Nguyen, Diep Thi; Uchida, Yuko; Saito, Takehiko

    2017-01-01

    Active surveillance of influenza A viruses of swine (IAV-S) involving 262 farms and 10 slaughterhouses in seven provinces in northern and southern Vietnam from 2010 to 2015 yielded 388 isolates from 32 farms; these viruses were classified into H1N1, H1N2, and H3N2 subtypes. Whole-genome sequencing followed by phylogenetic analysis revealed that the isolates represented 15 genotypes, according to the genetic constellation of the eight segments. All of the H1N1 viruses were entirely A(H1N1)pdm09 viruses, whereas all of the H1N2 and H3N2 viruses were reassortants among 5 distinct ancestral viruses: H1 and H3 triple-reassortant (TR) IAV-S that originated from North American pre-2009 human seasonal H1, human seasonal H3N2, and A(H1N1)pdm09 viruses. Notably, 93% of the reassortant IAV-S retained M genes that were derived from A(H1N1)pdm09, suggesting some advantage in terms of their host adaptation. Bayesian Markov chain Monte Carlo analysis revealed that multiple introductions of A(H1N1)pdm09 and TR IAV-S into the Vietnamese pig population have driven the genetic diversity of currently circulating Vietnamese IAV-S. In addition, our results indicate that a reassortant IAV-S with human-like H3 and N2 genes and an A(H1N1)pdm09 origin M gene likely caused a human case in Ho Chi Minh City in 2010. Our current findings indicate that human-to-pig transmission as well as cocirculation of different IAV-S have contributed to diversifying the gene constellations of IAV-S in Vietnam.

  13. Recrudescent Wave of A/H1N1pdm09 Influenza Viruses in Winter 2012-2013 in Kashmir, India

    PubMed Central

    Koul, Parvaiz; Khan, Umar; Bhat, Khursheed; Saha, Siddhartha; Broor, Shobha; Lal, Renu; Chadha, Mandeep

    2013-01-01

    Some parts of world, including India observed a recrudescent wave of influenza A/H1N1pdm09 in 2012. We undertook a study to examine the circulating influenza strains, their clinical association and antigenic characteristics to understand the recrudescent wave of A/H1N1pdm09 from November 26, 2012 to Feb 28, 2013 in Kashmir, India. Of the 751 patients (545 outpatient and 206 hospitalized) presenting with acute respiratory infection at a tertiary care hospital in Srinagar; 184 (24.5%) tested positive for influenza. Further type and subtype analysis revealed that 106 (58%) were influenza A (H1N1pdm09 =105, H3N2=1) and 78 (42%) were influenza B. The influenza positive cases had a higher frequency of chills, nasal discharge, sore throat, body aches and headache, compared to influenza negative cases. Of the 206 patients hospitalized for pneumonia/acute respiratory distress syndrome or an exacerbation of an underlying lung disease, 34 (16.5%) tested positive for influenza (22 for H1N1pdm09, 11 for influenza B). All influenza-positive patients received oseltamivir and while most patients responded well to antiviral therapy and supportive care, 6 patients (4 with H1N1pdm09 and 2 with influenza B) patients died of progressive respiratory failure and multi-organ dysfunction. Following a period of minimal circulation, H1N1pdm09 re-emerged in Kashmir in 2012-2013, causing serious illness and fatalities. As such the healthcare administrators and policy planners need to be wary and monitor the situation closely. PMID:24818063

  14. Detection of pandemic strain of influenza virus (A/H1N1/pdm09) in pigs, West Africa: implications and considerations for prevention of future influenza pandemics at the source

    PubMed Central

    Adeola, Oluwagbenga A.; Olugasa, Babasola O.; Emikpe, Benjamin O.

    2015-01-01

    Background Human and animal influenza are inextricably linked. In particular, the pig is uniquely important as a mixing vessel for genetic reassortment of influenza viruses, leading to emergence of novel strains which may cause human pandemics. Significant reduction in transmission of influenza viruses from humans, and other animals, to swine may therefore be crucial for preventing future influenza pandemics. This study investigated the presence of the 2009 pandemic influenza A/H1N1 virus, A(H1N1)pdm09, in Nigerian and Ghanaian pigs, and also determined levels of acceptance of preventive measures which could significantly reduce the transmission of this virus from humans to pigs. Methods Nasal swab specimens from 125 pigs in Ibadan, Nigeria, and Kumasi, Ghana, were tested for the presence of influenza A/California/04/2009 (H1N1) by quantitative antigen-detection ELISA. A semi-structured questionnaire was also administered to pig handlers in the two study areas and responses were analyzed to evaluate their compliance with seven measures for preventing human-to-swine transmission of influenza viruses. Results The virus was detected among pigs in the two cities, with prevalence of 8% in Ibadan and 10% in Kumasi. Levels of compliance of pig handlers with relevant preventive measures were also found to be mostly below 25 and 40% in Ibadan and Kumasi, respectively. Conclusion Detection of influenza A(H1N1)pdm09 among pigs tested suggests the possibility of human-to-swine transmission, which may proceed even more rapidly, considering the very poor acceptance of basic preventive measures observed in this study. This is also the first report on detection of influenza A(H1N1)pdm09 in Ghanaian pigs. We recommend improvement on personal hygiene among pig handlers, enforcement of sick leave particularly during the first few days of influenza-like illnesses, and training of pig handlers on recognition of influenza-like signs in humans and pigs. These could be crucial for

  15. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs.

    PubMed

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin; Larsen, Lars Erik

    2017-02-28

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detected in several Danish pig herds during the last 2-3 years and may possess a challenge for human as well as animal health.

  16. Seroprevalence of antibodies to influenza A/H1N1/2009 among transmission risk groups after the second wave in Mexico, by a virus-free ELISA method

    PubMed Central

    Elizondo-Montemayor, Leticia; Alvarez, Mario M.; Hernández-Torre, Martín; Ugalde-Casas, Patricia A.; Lam-Franco, Lorena; Bustamante-Careaga, Humberto; Castilleja-Leal, Fernando; Contreras-Castillo, Julio; Moreno-Sánchez, Héctor; Tamargo-Barrera, Daniela; López-Pacheco, Felipe; Freiden, Pamela J.; Schultz-Cherry, Stacey

    2014-01-01

    Summary Objective No serological studies have been performed in Mexico to assess the seroprevalence of influenza A/H1N1/2009 in groups of people according to the potential risk of transmission. The aim of this study was to determine the seroprevalence of antibodies against influenza A/H1N1/2009 in subjects in Mexico grouped by risk of transmission. Methods Two thousand two hundred and twenty-two subjects were categorized into one of five occupation groups according to the potential risk of transmission: (1) students, (2) teachers, (3) healthcare workers, (4) institutional home residents aged >60 years, and (5) general population. Seroprevalence by potential transmission group and by age grouped into decades was determined by a virus-free ELISA method based on the recombinant receptor-binding domain of the hemagglutinin of influenza A/H1N1/2009 virus as antigen (85% sensitivity; 95% specificity). The Wilson score, Chi-square test, and logistic regression models were used for the statistical analyses. Results Seroprevalence for students was 47.3%, for teachers was 33.9%, for older adults was 36.5%, and for the general population was 33.0%, however it was only 24.6% for healthcare workers (p = 0.011). Of the students, 56.6% of those at middle school, 56.4% of those at high school, 52.7% of those at elementary school, and 31.1% of college students showed positive antibodies (p < 0.001). Seroprevalence was 44.6% for college teachers, 31.6% for middle school teachers, and 29.8% for elementary school teachers, but was only 20.3% for high school teachers (p = 0.002). Conclusions The student group was the group most affected by influenza A/H1N1/2009, while the healthcare worker group showed the lowest prevalence. Students represent a key target for preventive measures. PMID:21855383

  17. [Comparison of the influenza epidemics in Russia caused by the pandemic virus A(H1N1)pdm09 within the period from 2009 to 2013].

    PubMed

    Karpova, L S; Sominina, A A; Burtseva, E I; Pelikh, M Yu; Feodoritova, E L; Popovtseva, N M; Stolyarov, T P; Kiselev, O I

    2015-01-01

    Comparative analysis of the three past epidemics with the participation of the pandemic influenza A(H1N1)pdm09 was conducted according to the results of the epidemiological trials of two WHO National influenza centers for the morbidity, hospitalization, and mortality of the influenza in 59 cities of Russia for the period from 2009 to 2013. The first wave of the pandemic of 2009 was the most severe. Compared with this wave, during the next epidemics of 2011 and 2013, the involvement of urban population in the epidemic was reduced, as well as the morbidity in the people 15-64 years old and schoolchildren 7-14 years old. The duration of the epidemic among the adult population, the mortality rate of the total population, and the mortality rates in all age groups were also decreased. Vice versa, the incidence in the children of preschool age and the elderly people and the duration of the epidemic among children (especially preschool children) were increased. The share of patients 65 years and older, children 0-2 years old, and patients with pathology of the cardiovascular systems among the deceased patients increased to 33.6%.

  18. [Epidemic of influenza A(H1N1) 2009 in Reunion Island: epidemiological data].

    PubMed

    Renault, P; Thouillot, F; Do, C; Baroux, N; Cadivel, A; Balleydier, E; Brottet, E; Kermarec, F; D'Ortenzio, E; Filleul, L

    2011-05-01

    In Reunion Island, a French subtropical island located in the southern hemisphere, the monitoring of the epidemiological dynamics of the epidemic linked to the emergence of pandemic virus A(H1N1) 2009 was achieved through the regular influenza surveillance system which has been reinforced on that occasion. It was mainly based on a network of sentinel physicians, combined with virologic monitoring, and on surveillance of severe cases and deaths. The data were analyzed and retroinformation was distributed according to a weekly frequency. The first imported case was confirmed on July 5, 2009 in a traveler arriving from Australia, whereas the first autochthonous cases were reported on July 23. The epidemic peak was reached in five weeks and the duration of the whole epidemic episode was 9 weeks. Pandemic virus has quickly supplanted seasonal viruses that had begun to circulate. The estimated attack rate for symptomatic cases of infection with virus influenza A(H1N1) 2009 was 12.85%. The hospitalization rate was 32 per 10,000 estimated cases, and 24 people had a serious form requiring care in ICU. Among death certificates received at the regional office for health and social affairs, 14 mentioned the influenza, including 7 in whom the pandemic virus has been laboratory confirmed. These deaths occurred in patients significantly younger than usually observed in Reunion Island during the seasonal influenza epidemics. Overall, the epidemic intensity and severity have been similar to those of seasonal influenza in Reunion Island.

  19. An Influenza A/H1N1/2009 Hemagglutinin Vaccine Produced in Escherichia coli

    PubMed Central

    Aguilar-Yáñez, José M.; Portillo-Lara, Roberto; Mendoza-Ochoa, Gonzalo I.; García-Echauri, Sergio A.; López-Pacheco, Felipe; Bulnes-Abundis, David; Salgado-Gallegos, Johari; Lara-Mayorga, Itzel M.; Webb-Vargas, Yenny; León-Angel, Felipe O.; Rivero-Aranda, Ramón E.; Oropeza-Almazán, Yuriana; Ruiz-Palacios, Guillermo M.; Zertuche-Guerra, Manuel I.; DuBois, Rebecca M.; White, Stephen W.; Schultz-Cherry, Stacey; Russell, Charles J.; Alvarez, Mario M.

    2010-01-01

    Background The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA) protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy. Methodology/Principal Findings We expressed the globular HA receptor binding domain, referred to here as HA63–286-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA63–286-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model. Conclusions/Significance Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy. PMID:20661476

  20. Influenza A(H1N1)pdm09 virus exhibiting enhanced cross-resistance to oseltamivir and peramivir due to a dual H275Y/G147R substitution, Japan, March 2016.

    PubMed

    Takashita, Emi; Fujisaki, Seiichiro; Shirakura, Masayuki; Nakamura, Kazuya; Kishida, Noriko; Kuwahara, Tomoko; Shimazu, Yukie; Shimomura, Takeshi; Watanabe, Shinji; Odagiri, Takato

    2016-06-16

    An influenza A(H1N1)pdm09 virus carrying a G147R substitution in combination with an H275Y substitution in the neuraminidase protein, which confers cross-resistance to oseltamivir and peramivir, was detected from an immunocompromised inpatient in Japan, March 2016. This dual H275Y/G147R mutant virus exhibited enhanced cross-resistance to both drugs compared with the single H275Y mutant virus and reduced susceptibility to zanamivir, although it showed normal inhibition by laninamivir.

  1. Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR.

    PubMed

    Yang, Ji-Rong; Kuo, Chuan-Yi; Huang, Hsiang-Yi; Wu, Fu-Ting; Huang, Yi-Lung; Cheng, Chieh-Yu; Su, Yu-Ting; Chang, Feng-Yee; Wu, Ho-Sheng; Liu, Ming-Tsan

    2014-01-01

    New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.

  2. Involvement of an Arginine Triplet in M1 Matrix Protein Interaction with Membranes and in M1 Recruitment into Virus-Like Particles of the Influenza A(H1N1)pdm09 Virus

    PubMed Central

    Moncorgé, Olivier; Panthu, Baptiste; Prchal, Jan; Décimo, Didier; Ohlmann, Théophile; Lina, Bruno; Favard, Cyril; Decroly, Etienne; Ottmann, Michèle; Roingeard, Philippe; Muriaux, Delphine

    2016-01-01

    The influenza A(H1N1)pdm09 virus caused the first influenza pandemic of the 21st century. In this study, we wanted to decipher the role of conserved basic residues of the viral M1 matrix protein in virus assembly and release. M1 plays many roles in the influenza virus replication cycle. Specifically, it participates in viral particle assembly, can associate with the viral ribonucleoprotein complexes and can bind to the cell plasma membrane and/or the cytoplasmic tail of viral transmembrane proteins. M1 contains an N-terminal domain of 164 amino acids with two basic domains: the nuclear localization signal on helix 6 and an arginine triplet (R76/77/78) on helix 5. To investigate the role of these two M1 basic domains in influenza A(H1N1)pdm09 virus molecular assembly, we analyzed M1 attachment to membranes, virus-like particle (VLP) production and virus infectivity. In vitro, M1 binding to large unilamellar vesicles (LUVs), which contain negatively charged lipids, decreased significantly when the M1 R76/77/78 motif was mutated. In cells, M1 alone was mainly observed in the nucleus (47%) and in the cytosol (42%). Conversely, when co-expressed with the viral proteins NS1/NEP and M2, M1 was relocated to the cell membranes (55%), as shown by subcellular fractionation experiments. This minimal system allowed the production of M1 containing-VLPs. However, M1 with mutations in the arginine triplet accumulated in intracellular clusters and its incorporation in VLPs was strongly diminished. M2 over-expression was essential for M1 membrane localization and VLP production, whereas the viral trans-membrane proteins HA and NA seemed dispensable. These results suggest that the M1 arginine triplet participates in M1 interaction with membranes. This R76/77/78 motif is essential for M1 incorporation in virus particles and the importance of this motif was confirmed by reverse genetic demonstrating that its mutation is lethal for the virus. These results highlight the molecular

  3. Modelling influenza A(H1N1) 2009 epidemics using a random network in a distributed computing environment.

    PubMed

    González-Parra, Gilberto; Villanueva, Rafael-J; Ruiz-Baragaño, Javier; Moraño, Jose-A

    2015-03-01

    In this paper we propose the use of a random network model for simulating and understanding the epidemics of influenza A(H1N1). The proposed model is used to simulate the transmission process of influenza A(H1N1) in a community region of Venezuela using distributed computing in order to accomplish many realizations of the underlying random process. These large scale epidemic simulations have recently become an important application of high-performance computing. The network model proposed performs better than the traditional epidemic model based on ordinary differential equations since it adjusts better to the irregularity of the real world data. In addition, the network model allows the consideration of many possibilities regarding the spread of influenza at the population level. The results presented here show how well the SEIR model fits the data for the AH1N1 time series despite the irregularity of the data and returns parameter values that are in good agreement with the medical data regarding AH1N1 influenza virus. This versatile network model approach may be applied to the simulation of the transmission dynamics of several epidemics in human networks. In addition, the simulation can provide useful information for the understanding, prediction and control of the transmission of influenza A(H1N1) epidemics.

  4. Evolution of the hemagglutinin expressed by human influenza A(H1N1)pdm09 and A(H3N2) viruses circulating between 2008-2009 and 2013-2014 in Germany.

    PubMed

    Wedde, Marianne; Biere, Barbara; Wolff, Thorsten; Schweiger, Brunhilde

    2015-10-01

    This report describes the evolution of the influenza A(H1N1)pdm09 and A(H3N2) viruses circulating in Germany between 2008-2009 and 2013-2014. The phylogenetic analysis of the hemagglutinin (HA) genes of both subtypes revealed similar evolution of the HA variants that were also seen worldwide with minor exceptions. The analysis showed seven distinct HA clades for A(H1N1)pdm09 and six HA clades for A(H3N2) viruses. Herald strains of both subtypes appeared sporadically since 2008-2009. Regarding A(H1N1)pdm09, herald strains of HA clade 3 and 4 were detected late in the 2009-2010 season. With respect to A(H3N2), we found herald strains of HA clade 3, 4 and 7 between 2009 and 2012. Those herald strains were predominantly seen for minor and not for major HA clades. Generally, amino acid substitutions were most frequently found in the globular domain, including substitutions near the antigenic sites or the receptor binding site. Differences between both influenza A subtypes were seen with respect to the position of the indicated substitutions in the HA. For A(H1N1)pdm09 viruses, we found more substitutions in the stem region than in the antigenic sites. In contrast, in A(H3N2) viruses most changes were identified in the major antigenic sites and five changes of potential glycosylation sites were identified in the head of the HA monomer. Interestingly, we found in seasons with less influenza activity a relatively high increase of substitutions in the head of the HA in both subtypes. This might be explained by the fact that mutations under negative selection are subsequently compensated by secondary mutations to restore important functions e.g. receptor binding properties. A better knowledge of basic evolution strategies of influenza viruses will contribute to the refinement of predictive mathematical models for identifying novel antigenic drift variants.

  5. A polyvalent influenza A DNA vaccine induces heterologous immunity and protects pigs against pandemic A(H1N1)pdm09 virus infection.

    PubMed

    Bragstad, Karoline; Vinner, Lasse; Hansen, Mette Sif; Nielsen, Jens; Fomsgaard, Anders

    2013-04-26

    The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components. We found that pigs challenged with a virus homologous to the HA and NA DNA vaccine components were well protected from infection. In addition, heterologous challenge virus was cleared rapidly compared to the unvaccinated control pigs. Immunisation by electroporation induced HI antibodies >40 HAU/ml seven days after second vaccination. Heterologous virus challenge as long as ten weeks after last immunisation was able to trigger a vaccine antibody HI response 26 times higher than in the control pigs. The H3N2 DNA vaccine HA and NA genes also triggered an effective vaccine response with protective antibody titres towards heterologous H3N2 virus. The described influenza DNA vaccine is able to induce broadly protective immune responses even in a larger animal, like the pig, against both heterologous and homologous virus challenges despite relatively low HI titres after vaccination. The ability of this DNA vaccine to limit virus shedding may have an impact on virus spread among pigs which could possibly extend to humans as well, thereby diminishing the

  6. Contact Tracing for Influenza A(H1N1)pdm09 Virus–infected Passenger on International Flight

    PubMed Central

    Shankar, Ananda G.; Janmohamed, Kulsum; Smith, Gillian E.; Hogan, Angela H.; De Souza, Valerie; Wallensten, Anders; Oliver, Isabel; Blatchford, Oliver; Cleary, Paul; Ibbotson, Sue

    2014-01-01

    In April 2009, influenza A(H1N1)pdm09 virus infection was confirmed in a person who had been symptomatic while traveling on a commercial flight from Mexico to the United Kingdom. Retrospective public health investigation and contact tracing led to the identification of 8 additional confirmed cases among passengers and community contacts of passengers. PMID:24377724

  7. Computational model for analyzing the evolutionary patterns of the neuraminidase gene of influenza A/H1N1.

    PubMed

    Ahn, Insung; Son, Hyeon Seok

    2012-02-01

    In this study, we performed computer simulations to evaluate the changes of selection potentials of codons in influenza A/H1N1 from 1999 to 2009. We artificially generated the sequences by using the transition matrices of positively selected codons over time, and their similarities against the database of influenzavirus A genus were determined by BLAST search. This is the first approach to predict the evolutionary direction of influenza A virus (H1N1) by simulating the codon substitutions over time. We observed that the BLAST results showed the high similarities with pandemic influenza A/H1N1 in 2009, suggesting that the classical human-origin influenza A/H1N1 isolated before 2009 might contain some selection potentials of swine-origin viruses. Computer simulations using the time series codon substitution patterns resulted dramatic changes of BLAST results in influenza A/H1N1, providing a possibility of developing a method for predicting the viral evolution in silico.

  8. Live attenuated influenza A virus vaccine protects against heterologous challenge with A(H1N1)pdm09 without inducing vaccine associated enhanced respiratory disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A virus (IAV) vaccines that provide broad cross-protection against antigenic variants are necessary to prevent infection and shedding of the wide array of IAV cocirculating in swine. Whole inactivated virus (WIV) vaccines provide only partial protection against IAV with substantial antigen...

  9. Characterization of an influenza A virus in Mexican swine that is related to the A/H1N1/2009 pandemic clade.

    PubMed

    Escalera-Zamudio, Marina; Cobián-Güemes, Georgina; de los Dolores Soto-del Río, María; Isa, Pavel; Sánchez-Betancourt, Iván; Parissi-Crivelli, Aurora; Martínez-Cázares, María Teresa; Romero, Pedro; Velázquez-Salinas, Lauro; Huerta-Lozano, Belem; Nelson, Martha; Montero, Hilda; Vinuesa, Pablo; López, Susana; Arias, Carlos F

    2012-11-10

    In the spring of 2009, swine-origin influenza H1N1pdm09 viruses caused the first influenza pandemic of this century. We characterized the influenza viruses that circulated early during the outbreak in Mexico, including one newly sequenced swine H1N1pdm09 virus and three newly sequenced human H1N1pdm09 viruses that circulated in the outbreak of respiratory disease in La Gloria, Veracruz. Phylogenetic analysis revealed that the swine isolate (A/swine/Mexico/4/2009) collected in April 2009 is positioned in a branch that is basal to the rest of the H1N1pdm09 clade in two (NP and PA) of the eight single-gene trees. In addition, the concatenated HA-NA and the complete whole-genome trees also showed a basal position for A/swine/Mexico/4/2009. Furthermore, this swine virus was found to share molecular traits with non-H1N1pdm09 H1N1 viral lineages. These results suggest that this isolate could potentially be the first one detected from a sister lineage closely related to the H1N1pdm09 viruses.

  10. Influenza A(H1N1)pdm09 and postpandemic influenza in Lithuania

    PubMed Central

    Ambrozaitis, Arvydas; Radzišauskienė, Daiva; Kuprevičienė, Nerija; Gravenstein, Stefan; Jančorienė, Ligita

    2016-01-01

    Abstract The objective of this study is to describe the clinical and epidemiological characteristics of patients hospitalized in Lithuania who are infected with influenza A(H1N1)pdm09 and to compare pandemic A(H1N1) pdm09 infection with postpandemic. In total, 146 subjects hospitalized with influenza A(H1N1) pdm09 were identified from 2009–2011. There were 53 during the initial pandemic wave in the summer of 2009, 69 during the peak pandemic period, and 24 during the “postpandemic” period that we included in this study. There were 22 subjects who died after laboratory confirmation of influenza A(H1N1)pdm09. No deaths were documented during the first wave. Subjects presenting during the peak of pandemic influenza had a greater incidence of fever (100% vs 77.4%; p<0.001), dry cough (95.7% vs 82.7%; p=0.01), and vomiting (26.1% vs 1.9%, p<0.001) as compared with patients infected during the first wave. The rate of bacterial pneumonia was 18.8% (13/69) during the peak pandemic period and 12.5% (3/24, p=0.754) during the postpandemic period. None of the postpandemic influenza subjects’ intensive care unit stays were due to pneumonia. The hospitalized early 2009 H1N1 pandemic cases and postpandemic cases were milder compared with those at the peak of pandemic activity. PMID:28352819

  11. Evolution of oseltamivir resistance mutations in Influenza A(H1N1) and A(H3N2) viruses during selection in experimentally infected mice.

    PubMed

    Pizzorno, Andrés; Abed, Yacine; Plante, Pier-Luc; Carbonneau, Julie; Baz, Mariana; Hamelin, Marie-Ève; Corbeil, Jacques; Boivin, Guy

    2014-11-01

    The evolution of oseltamivir resistance mutations during selection through serial passages in animals is still poorly described. Herein, we assessed the evolution of neuraminidase (NA) and hemagglutinin (HA) genes of influenza A/WSN/33 (H1N1) and A/Victoria/3/75 (H3N2) viruses recovered from the lungs of experimentally infected BALB/c mice receiving suboptimal doses (0.05 and 1 mg/kg of body weight/day) of oseltamivir over two generations. The traditional phenotypic and genotypic methods as well as deep-sequencing analysis were used to characterize the potential selection of mutations and population dynamics of oseltamivir-resistant variants. No oseltamivir-resistant NA or HA changes were detected in the recovered A/WSN/33 viruses. However, we observed a positive selection of the I222T NA substitution in the recovered A/Victoria/3/75 viruses, with a frequency increasing over time and with an oseltamivir concentration from 4% in the initial pretherapy inoculum up to 28% after two lung passages. Although the presence of mixed I222T viral populations in mouse lungs only led to a minimal increase in oseltamivir 50% enzyme-inhibitory concentrations (IC50s) (by a mean of 5.7-fold) compared to that of the baseline virus, the expressed recombinant A/Victoria/3/75 I222T NA protein displayed a 16-fold increase in the oseltamivir IC50 level compared to that of the recombinant wild type (WT). In conclusion, the combination of serial in vivo passages under neuraminidase inhibitor (NAI) pressure and temporal deep-sequencing analysis enabled, for the first time, the identification and selection of the oseltamivir-resistant I222T NA mutation in an influenza H3N2 virus. Additional in vivo selection experiments with other antivirals and drug combinations might provide important information on the evolution of antiviral resistance in influenza viruses.

  12. Lessons Learned from Influenza A(H1N1)pdm09 Pandemic Response in Thailand

    PubMed Central

    Sawanpanyalert, Pathom; Hanchoworakul, Wanna; Sawanpanyalert, Narumol; Maloney, Susan A.; Brown, Richard Clive; Birmingham, Maureen Elizabeth; Chusuttiwat, Supamit

    2012-01-01

    In 2009, Thailand experienced rapid spread of the pandemic influenza A(H1N1)pdm09 virus. The national response came under intense public scrutiny as the number of confirmed cases and associated deaths increased. Thus, during July–December 2009, the Ministry of Public Health and the World Health Organization jointly reviewed the response efforts. The review found that the actions taken were largely appropriate and proportionate to need. However, areas needing improvement were surveillance, laboratory capacity, hospital infection control and surge capacity, coordination and monitoring of guidelines for clinical management and nonpharmaceutical interventions, risk communications, and addressing vulnerabilities of non-Thai displaced and migrant populations. The experience in Thailand may be applicable to other countries and settings, and the lessons learned may help strengthen responses to other pandemics or comparable prolonged public health emergencies. PMID:22709628

  13. Association between Hemagglutinin Stem-Reactive Antibodies and Influenza A/H1N1 Virus Infection during the 2009 Pandemic

    PubMed Central

    Hoa, Le Nguyen Minh; Mai, Le Quynh; Bryant, Juliet E.; Thai, Pham Quang; Hang, Nguyen Le Khanh; Yen, Nguyen Thi Thu; Duong, Tran Nhu; Thoang, Dang Dinh; Horby, Peter; Werheim, Heiman F. L.

    2016-01-01

    ABSTRACT The discovery of influenza virus broadly neutralizing (BrN) antibodies prompted efforts to develop universal vaccines. Influenza virus stem-reactive (SR) broadly neutralizing antibodies have been detected by screening antibody phage display libraries. However, studies of SR BrN antibodies in human serum, and their association with natural infection, are limited. To address this, pre- and postpandemic sera from a prospective community cohort study in Vietnam were assessed for antibodies that inhibit SR BrN monoclonal antibody (MAb) (C179) binding to H1N1 pandemic 2009 virus (H1N1pdm09). Of 270 households, 33 with at least one confirmed H1N1pdm09 illness or at least two seroconverters were included. The included households comprised 71 infected and 41 noninfected participants. Sera were tested as 2-fold dilutions between 1:5 and 1:40. Fifty percent C179 inhibition (IC50) titers did not exceed 10, although both IC50 titers and percent C179 inhibition by sera diluted 1:5 or 1:10 correlated with hemagglutination inhibition (HI) and microneutralization (MN) titers (all P < 0.001). Thirteen (12%) participants had detectable prepandemic IC50 titers, but only one reached a titer of 10. This proportion increased to 44% after the pandemic, when 39 participants had a titer of 10, and 67% of infected compared to 44% of noninfected had detectable IC50 titers (P < 0.001). The low levels of SR antibodies in prepandemic sera were not associated with subsequent H1N1pdm09 infection (P = 0.241), and the higher levels induced by H1N1pdm09 infection returned to prepandemic levels within 2 years. The findings indicate that natural infection induces only low titers of SR antibodies that are not sustained. IMPORTANCE Universal influenza vaccines could have substantial health and economic benefits. The focus of universal vaccine research has been to induce antibodies that prevent infection by diverse influenza virus strains. These so-called broadly neutralizing antibodies are

  14. Rapid research response to the 2009 A(H1N1)pdm09 influenza pandemic (Revised)

    PubMed Central

    2013-01-01

    Background When novel influenza viruses cause human infections, it is critical to characterize the illnesses, viruses, and immune responses to infection in order to develop diagnostics, treatments, and vaccines. The objective of the study was to collect samples from patients with suspected or confirmed A(H1N1)pdm09 infections that could be made available to the scientific community. Respiratory secretions, sera and peripheral blood mononuclear cells (PBMCs) were collected sequentially (when possible) from patients presenting with suspected or previously confirmed A(H1N1)pdm09 infections. Clinical manifestations and illness outcomes were assessed. Respiratory secretions were tested for the presence of A(H1N1)pdm09 virus by means of isolation in tissue culture and real time RT-PCR. Sera were tested for the presence and level of HAI and neutralizing antibodies against the A(H1N1)pdm09 virus. Findings and conclusions Thirty patients with confirmed A(H1N1)pdm09 infection were enrolled at Baylor College of Medicine (BCM). Clinical manifestations of illness were consistent with typical influenza. Twenty-eight of 30 had virological confirmation of illness; all recovered fully. Most patients had serum antibody responses or high levels of antibody in convalescent samples. Virus-positive samples were sent to J. Craig Venter Institute for sequencing and sequences were deposited in GenBank. Large volumes of sera collected from 2 convalescent adults were used to standardize antibody assays; aliquots of these sera are available from the repository. Aliquots of serum, PBMCs and stool collected from BCM subjects and subjects enrolled at other study sites are available for use by the scientific community, upon request. PMID:23641940

  15. Influenza A/H1N1_09: Australia and New Zealand's winter of discontent.

    PubMed

    Kotsimbos, Tom; Waterer, Grant; Jenkins, Christine; Kelly, Paul M; Cheng, Allen; Hancox, Robert J; Holmes, Mark; Wood-Baker, Richard; Bowler, Simon; Irving, Louis; Thompson, Philip

    2010-02-15

    Influenza A/H1N1_09 emerged in Mexico at the end of the Northern Hemisphere winter. Within weeks, the focus shifted to the Southern Hemisphere as the introduction of the novel virus coincided with the beginning of the influenza season. Intensive public health and health services planning had occurred in Australia and New Zealand as preparation for an influenza pandemic before 2009. However, this first pandemic wave was quite different to what had been expected. Key elements of the pandemic and response are outlined from the perspective of clinicians working at the frontline of patient care. In particular, they examine why past influenza pandemics and recent history are poor predictors of the current pandemic, the discordance between potential for transmission and disease severity, the broad clinical spectrum of H1N1_09 infection, clinical and health service management issues, and the relationship between health care and government policy. Finally, they address the need for the respiratory community to show leadership in times of crisis. Lessons learned in Australia and New Zealand during 2009 have important messages for similarly resourced countries in the Northern Hemisphere in the coming months as they face their own influenza season.

  16. The influenza A(H1N1) epidemic in Mexico. Lessons learned.

    PubMed

    Córdova-Villalobos, José A; Sarti, Elsa; Arzoz-Padrés, Jacqueline; Manuell-Lee, Gabriel; Méndez, Josefina Romero; Kuri-Morales, Pablo

    2009-09-28

    Several influenza pandemics have taken place throughout history and it was assumed that the pandemic would emerge from a new human virus resulting from the adaptation of an avian virus strain. Mexico, since 2003 had developed a National Preparedness and Response Plan for an Influenza Pandemic focused in risk communication, health promotion, healthcare, epidemiological surveillance, strategic stockpile, research and development. This plan was challenged on April 2009, when a new influenza A(H1N1) strain of swine origen was detected in Mexico. The situation faced, the decisions and actions taken, allowed to control the first epidemic wave in the country. This document describes the critical moments faced and explicitly point out the lessons learned focused on the decided support by the government, the National Pandemic Influenza Plan, the coordination among all the government levels, the presence and solidarity of international organizations with timely and daily information, diagnosis and the positive effect on the population following the preventive hygienic measures recommended by the health authorities. The international community will be able to use the Mexican experience in the interest of global health.

  17. Influenza A(H1N1)pdm09 during air travel.

    PubMed

    Neatherlin, John; Cramer, Elaine H; Dubray, Christine; Marienau, Karen J; Russell, Michelle; Sun, Hong; Whaley, Melissa; Hancock, Kathy; Duong, Krista K; Kirking, Hannah L; Schembri, Christopher; Katz, Jacqueline M; Cohen, Nicole J; Fishbein, Daniel B

    2013-01-01

    The global spread of the influenza A(H1N1)pdm09 virus (pH1N1) associated with travelers from North America during the onset of the 2009 pandemic demonstrates the central role of international air travel in virus migration. To characterize risk factors for pH1N1 transmission during air travel, we investigated travelers and airline employees from four North American flights carrying ill travelers with confirmed pH1N1 infection. Of 392 passengers and crew identified, information was available for 290 (74%) passengers were interviewed. Overall attack rates for acute respiratory infection and influenza-like illness 1-7 days after travel were 5.2% and 2.4% respectively. Of 43 individuals that provided sera, 4 (9.3%) tested positive for pH1N1 antibodies, including 3 with serologic evidence of asymptomatic infection. Investigation of novel influenza aboard aircraft may be instructive. However, beyond the initial outbreak phase, it may compete with community-based mitigation activities, and interpretation of findings will be difficult in the context of established community transmission.

  18. Nosocomial Co-Transmission of Avian Influenza A(H7N9) and A(H1N1)pdm09 Viruses between 2 Patients with Hematologic Disorders

    PubMed Central

    Chen, Huazhong; Liu, Shelan; Liu, Jun; Chai, Chengliang; Mao, Haiyan; Yu, Zhao; Tang, Yuming; Zhu, Geqin; Chen, Haixiao X.; Zhu, Chengchu; Shao, Hui; Tan, Shuguang; Wang, Qianli; Bi, Yuhai; Zou, Zhen; Liu, Guang; Jin, Tao; Jiang, Chengyu; Gao, George F.; Peiris, Malik

    2016-01-01

    A nosocomial cluster induced by co-infections with avian influenza A(H7N9) and A(H1N1)pdm09 (pH1N1) viruses occurred in 2 patients at a hospital in Zhejiang Province, China, in January 2014. The index case-patient was a 57-year-old man with chronic lymphocytic leukemia who had been occupationally exposed to poultry. He had co-infection with H7N9 and pH1N1 viruses. A 71-year-old man with polycythemia vera who was in the same ward as the index case-patient for 6 days acquired infection with H7N9 and pH1N1 viruses. The incubation period for the second case-patient was estimated to be <4 days. Both case-patients died of multiple organ failure. Virus genetic sequences from the 2 case-patients were identical. Of 103 close contacts, none had acute respiratory symptoms; all were negative for H7N9 virus. Serum samples from both case-patients demonstrated strong proinflammatory cytokine secretion but incompetent protective immune responses. These findings strongly suggest limited nosocomial co-transmission of H7N9 and pH1N1 viruses from 1 immunocompromised patient to another. PMID:26982379

  19. Nosocomial Co-Transmission of Avian Influenza A(H7N9) and A(H1N1)pdm09 Viruses between 2 Patients with Hematologic Disorders.

    PubMed

    Chen, Huazhong; Liu, Shelan; Liu, Jun; Chai, Chengliang; Mao, Haiyan; Yu, Zhao; Tang, Yuming; Zhu, Geqin; Chen, Haixiao X; Zhu, Chengchu; Shao, Hui; Tan, Shuguang; Wang, Qianli; Bi, Yuhai; Zou, Zhen; Liu, Guang; Jin, Tao; Jiang, Chengyu; Gao, George F; Peiris, Malik; Yu, Hongjie; Chen, Enfu

    2016-04-01

    A nosocomial cluster induced by co-infections with avian influenza A(H7N9) and A(H1N1)pdm09 (pH1N1) viruses occurred in 2 patients at a hospital in Zhejiang Province, China, in January 2014. The index case-patient was a 57-year-old man with chronic lymphocytic leukemia who had been occupationally exposed to poultry. He had co-infection with H7N9 and pH1N1 viruses. A 71-year-old man with polycythemia vera who was in the same ward as the index case-patient for 6 days acquired infection with H7N9 and pH1N1 viruses. The incubation period for the second case-patient was estimated to be <4 days. Both case-patients died of multiple organ failure. Virus genetic sequences from the 2 case-patients were identical. Of 103 close contacts, none had acute respiratory symptoms; all were negative for H7N9 virus. Serum samples from both case-patients demonstrated strong proinflammatory cytokine secretion but incompetent protective immune responses. These findings strongly suggest limited nosocomial co-transmission of H7N9 and pH1N1 viruses from 1 immunocompromised patient to another.

  20. Molecular character of influenza A/H1N1 2009: Implications for spread and control.

    PubMed

    Aras, Siddhesh; Aiyar, Ashok; Amedee, Angela M; Gallaher, William R

    2009-12-01

    The world is experiencing a pandemic of influenza that emerged in March 2009, due to a novel strain designated influenza A/H1N1 2009. This strain is closest in molecular sequence to swine influenza viruses, but differs from all previously known influenza by a minimum of 6.1%, and from prior "seasonal" H1N1 by 27.2%, giving it great potential for widespread human infection. While spread into India was delayed for two months by an aggressive interdiction program, since 1 August 2009 most cases in India have been indigenous. H1N1 2009 has differentially struck younger patients who are naïve susceptibles to its antigenic subtype, while sparing those >60 who have crossreactive antibody from prior experience with influenza decades ago and the 1977 "swine flu" vaccine distributed in the United States. It also appears to more severely affect pregnant women. It emanated from a single source in central Mexico, but its precise geographical and circumstantial origins, from either Eurasia or the Americas, remain uncertain. While currently a mild pandemic by the standard of past pandemics, the seriousness of H1N1 2009 especially among children should not be underestimated. There is potential for the virus, which continues to adapt to humans, to change over time into a more severe etiologic agent by any of several foreseeable mutations. Mass acceptance of the novel H1N1 2009 vaccine worldwide will be essential to its control. Having spread globally in a few months, affecting millions of people, it is likely to remain circulating in the human population for a decade or more.

  1. Genetic Analysis of Influenza A/H1N1 of Swine Origin Virus (SOIV) Circulating in Central and South America

    PubMed Central

    Sovero, Merly; Garcia, Josefina; Laguna-Torres, V. Alberto; Gomez, Jorge; Aleman, Washington; Chicaiza, Wilson; Barrantes, Melvin; Sanchez, Felix; Jimenez, Mirna; Comach, Guillermo; de Rivera, Ivette Lorenzana; Barboza, Alma; Aguayo, Nicolas; Kochel, Tadeusz

    2010-01-01

    Since the first detection of swine origin virus (SOIV) on March 28, 2009, the virus has spread worldwide and oseltamivir-resistant strains have already been identified in the past months. Here, we show the phylogenetic analysis of 63 SOIV isolates from eight countries in Central and South America, and their sensitivity to oseltamivir. PMID:20810843

  2. [Cases of children with influenza AH1N1/2009 in the district of Lodz in two epidemic waves].

    PubMed

    Majda-Stanisławska, Ewa; Sobieraj, Iwona

    2011-01-01

    High influenza morbidity due to new antigenic strain AH1N1 was announced in Mexico in spring 2009. Influenza pandemic caused by the virus AH1N1/2009 spread around the world. Two pandemic waves were noted in most European countries: the first one was due to summer months migration, the second wave started in the beginning of common influenza season. We present features of both waves in children from the district of Lodz. We describe mild clinical course in 14 children who came from holiday in Spain with influenza and who were hospitalized and treated with osltamimivir due to unpredictable course of new influenza. We also present 22 influenza cases of the autumn pandemic wave, when children with severe complications of influenza and children from high risk groups were hospitalized and treated with antivirals. Experience that we have gained during 2009 influenza pandemic indicates that International Influenza Control System is very efficient, however more flexibility is required in application of treatment and prophylaxis procedures with new influenza strains. Applied methods of control should mostly depend on the virulence of pandemic strain.

  3. Interim estimates of 2015/16 vaccine effectiveness against influenza A(H1N1)pdm09, Canada, February 2016.

    PubMed

    Chambers, Catharine; Skowronski, Danuta M; Sabaiduc, Suzana; Winter, Anne Luise; Dickinson, James A; De Serres, Gaston; Gubbay, Jonathan B; Drews, Steven J; Martineau, Christine; Eshaghi, Alireza; Krajden, Mel; Bastien, Nathalie; Li, Yan

    2016-01-01

    Using a test-negative design, the Canadian Sentinel Practitioner Surveillance Network (SPSN) assessed interim 2015/16 vaccine effectiveness (VE) against influenza A(H1N1)pdm09 viruses. Adjusted VE showed significant protection of 64% (95% confidence interval (CI): 44-77%) overall and 56% (95%CI: 26-73%) for adults between 20 and 64 years-old against medically attended, laboratory-confirmed A(H1N1)pdm09 illness. Among the 67 A(H1N1)pdm09-positive specimens that were successfully sequenced, 62 (> 90%) belonged to the emerging genetic 6B.1 subclade, defined by S162N (potential gain of glycosylation) and I216T mutations in the haemagglutinin protein. Findings from the Canadian SPSN indicate that the 2015/16 northern hemisphere vaccine provided significant protection against A(H1N1)pdm09 illness despite genetic evolution in circulating viruses.

  4. A DESCRIPTIVE STUDY OF PANDEMIC INFLUENZA A(H1N1)PDM09 IN BRAZIL, 2009 - 2010.

    PubMed

    Rossetto, Erika Valeska; Luna, Expedito José de Albuquerque

    2016-11-03

    Influenza A viruses undergo frequent antigenic mutations and may thus cause seasonal epidemics and pandemics. The aim of this study was to recover the epidemiological history of the pandemic influenza A(H1N1)pdm09 in Brazil. A descriptive study was conducted in 2009-2010. The Brazilian Information System for reportable diseases (SINAN) was the data source. A total of 105,054 suspected cases of influenza A(H1N1)pdm09 were reported to SINAN. Of these, 53,797 (51.2%) were classified as the new influenza virus subtype. Among the confirmed cases, 56.7% were female, the mean age was 26.31 (SD ± 18.1) years. Fever was the most common sign among the confirmed cases (99.7%) and the presence of comorbidities was reported in 32.5% of cases. In 2009 there were confirmed cases in all 26 Brazilian States and the Federal District. The incidence (per 100,000 inhabitants) of severe influenza in the population was 28.0 in 2009 and 0.5 in 2010. The states of Paraná (301.3), Santa Catarina (36.0) and Rio Grande do Sul (27.4) presented the highest incidence; 46.4% of the confirmed cases were hospitalized and 47,643 were cured (93.8%). The case-fatality rate was 3.9% in 2009. The pandemic virus A(H1N1)pdm09 hit Brazil between April/2009 and December/2010 with an important difference in the geographic pattern distribution of the cases from the northeast to the south of the country. Children and young adults were the most affected. The limitations of the study were data quality and inconsistencies in the final classification of cases in SINAN. This study highlights the urgent need for improvements in the surveillance of emerging diseases in Brazil.

  5. A DESCRIPTIVE STUDY OF PANDEMIC INFLUENZA A(H1N1)PDM09 IN BRAZIL, 2009 - 2010

    PubMed Central

    ROSSETTO, Erika Valeska; LUNA, Expedito José de Albuquerque

    2016-01-01

    SUMMARY Influenza A viruses undergo frequent antigenic mutations and may thus cause seasonal epidemics and pandemics. The aim of this study was to recover the epidemiological history of the pandemic influenza A(H1N1)pdm09 in Brazil. A descriptive study was conducted in 2009-2010. The Brazilian Information System for reportable diseases (SINAN) was the data source. A total of 105,054 suspected cases of influenza A(H1N1)pdm09 were reported to SINAN. Of these, 53,797 (51.2%) were classified as the new influenza virus subtype. Among the confirmed cases, 56.7% were female, the mean age was 26.31 (SD ± 18.1) years. Fever was the most common sign among the confirmed cases (99.7%) and the presence of comorbidities was reported in 32.5% of cases. In 2009 there were confirmed cases in all 26 Brazilian States and the Federal District. The incidence (per 100,000 inhabitants) of severe influenza in the population was 28.0 in 2009 and 0.5 in 2010. The states of Paraná (301.3), Santa Catarina (36.0) and Rio Grande do Sul (27.4) presented the highest incidence; 46.4% of the confirmed cases were hospitalized and 47,643 were cured (93.8%). The case-fatality rate was 3.9% in 2009. The pandemic virus A(H1N1)pdm09 hit Brazil between April/2009 and December/2010 with an important difference in the geographic pattern distribution of the cases from the northeast to the south of the country. Children and young adults were the most affected. The limitations of the study were data quality and inconsistencies in the final classification of cases in SINAN. This study highlights the urgent need for improvements in the surveillance of emerging diseases in Brazil. PMID:27828619

  6. A case of central diabetes insipidus following probable type A/H1N1 influenza infection.

    PubMed

    Kobayashi, Takaaki; Miwa, Takashi; Odawara, Masato

    2011-01-01

    The major causes of central diabetes insipidus (CDI) are neoplastic or infiltrative lesions of the hypothalamus or pituitary gland, severe head injuries, or pituitary or hypothalamic surgery. Lymphocytic infundibuloneurophysitis (LINH) is associated with autoimmune inflammatory disease of the pituitary gland, but the exact etiology is unknown. CDI caused by viral infections has been rarely reported. Here, we describe the case of a 22-year-old man who was in good health until 2 months prior to admission, presented with acute development of polyuria and polydipsia, and showed increased urinary volume up to 9000 mL/day. The patient showed elevated serum osmolality and low urine osmolality, with a low level of antidiuretic hormone. Endocrinological findings revealed CDI, but his arterial pituitary function appeared normal. Magnetic resonance imaging revealed significant enlargement of the pituitary stalk. We suspected CDI due to LINH based on non-transsphenoidal biopsy findings. He was diagnosed as type A influenza,and given oral therapeutic agents. However, acute onset of polyuria and polydipsia occurred 10 days after the influenza diagnosis. The available epidemiological information regarding the outbreak of influenza around that time strongly suggested that the patient was infected with the A/H1N1 influenza virus, although this virus had not been detected on polymerase chain reaction testing. In the present case, the autoimmune mechanism of LINH may have been associated with novel influenza A/H1N1 virus infection.

  7. Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus.

    PubMed

    Gauger, P C; Vincent, A L; Loving, C L; Henningson, J N; Lager, K M; Janke, B H; Kehrli, M E; Roth, J A

    2012-11-01

    The objective of this report was to characterize the enhanced clinical disease and lung lesions observed in pigs vaccinated with inactivated H1N2 swine δ-cluster influenza A virus and challenged with pandemic 2009 A/H1N1 human influenza virus. Eighty-four, 6-week-old, cross-bred pigs were randomly allocated into 3 groups of 28 pigs to represent vaccinated/challenged (V/C), non-vaccinated/challenged (NV/C), and non-vaccinated/non-challenged (NV/NC) control groups. Pigs were intratracheally inoculated with pH1N1 and euthanized at 1, 2, 5, and 21 days post inoculation (dpi). Macroscopically, V/C pigs demonstrated greater percentages of pneumonia compared to NV/C pigs. Histologically, V/C pigs demonstrated severe bronchointerstitial pneumonia with necrotizing bronchiolitis accompanied by interlobular and alveolar edema and hemorrhage at 1 and 2 dpi. The magnitude of peribronchiolar lymphocytic cuffing was greater in V/C pigs by 5 dpi. Microscopic lung lesion scores were significantly higher in the V/C pigs at 2 and 5 dpi compared to NV/C and NV/NC pigs. Elevated TNF-α, IL-1β, IL-6, and IL-8 were detected in bronchoalveolar lavage fluid at all time points in V/C pigs compared to NV/C pigs. These data suggest H1 inactivated vaccines followed by heterologous challenge resulted in potentiated clinical signs and enhanced pulmonary lesions and correlated with an elevated proinflammatory cytokine response in the lung. The lung alterations and host immune response are consistent with the vaccine-associated enhanced respiratory disease (VAERD) clinical outcome observed reproducibly in this swine model.

  8. [Pandemic influenza A(H1N1): the experience of the Spanish Laboratories of Influenza Network (ReLEG)].

    PubMed

    Cuevas González-Nicolás, María Teresa; Ledesma Moreno, Juan; Pozo Sánchez, Francisco; Casas Flecha, Inmaculada; Pérez-Breña, Pilar

    2010-01-01

    There are three types of influenza viruses: A, B, C. These viruses evolves constantly due to two main characteristics: the first one is the lack of the correction ability of the viral polymerase which causes the accumulation of single nucleotide mutations in the viral genes introduced by an error-prone viral RNA polymerase, (antigenic shift). The second one is the nature of their genome, formed by eight segments, which allows the interchange of genes between two different viral strains (antigenic drift). This viral plasticity, has allowed to the influenza A viruses to infect new host species and to cause infections with a pandemic characteristics. The Spanish influenza surveillance system, SVGE (its Spanish acronym), arises as a response to the possibility of facing a pandemic situation, especially after the transmission of avian influenza viruses to humans. This surveillance system is formed by sixteen physician and paediatrics network, nineteen epidemiological services coordinated by the National Epidemiological Centre (CNE) and eighteen laboratories , the Spanish Laboratories of Influenza network (ReLEG), coordinated by the National Centre of Microbiology. The aim of this article is to show the action of the ReLEG, in the pandemic caused by the influenza virus A(H1N1) during the season 2009-2010. The main objective of this network is the surveillance of the circulating viruses by means of their detection and their subsequent antigenic and genetic characterization, including the detection of resistance mutations against the main drugs, such as Oseltamivir.

  9. Recombinant equine herpesvirus 1 (EHV-1) vaccine protects pigs against challenge with influenza A(H1N1)pmd09.

    PubMed

    Said, Abdelrahman; Lange, Elke; Beer, Martin; Damiani, Armando; Osterrieder, Nikolaus

    2013-05-01

    Swine influenza virus (SIV) is not only an important respiratory pathogen in pigs but also a threat to human health. The pandemic influenza A(H1N1)pdm09 virus likely originated in swine through reassortment between a North American triple reassortant and Eurasian avian-like SIV. The North American triple reassortant virus harbors genes from avian, human and swine influenza viruses. An effective vaccine may protect the pork industry from economic losses and curb the development of new virus variants that may threaten public health. In the present study, we evaluated the efficacy of a recombinant equine herpesvirus type 1 (EHV-1) vaccine (rH_H1) expressing the hemagglutinin H1 of A(H1N1)pdm09 in the natural host. Our data shows that the engineered rH_H1 vaccine induces influenza virus-specific antibody responses in pigs and is able to protect at least partially against challenge infection: no clinical signs of disease were detected and virus replication was reduced as evidenced by decreased nasal virus shedding and faster virus clearance. Taken together, our results indicate that recombinant EHV-1 encoding H1 of A(H1N1)pdm09 may be a promising alternative for protection of pigs against infection with A(H1N1)pdm09 or other influenza viruses.

  10. Effectiveness of the monovalent influenza A(H1N1)2009 vaccine in Navarre, Spain, 2009-2010: cohort and case-control study.

    PubMed

    Castilla, Jesús; Morán, Julio; Martínez-Artola, Víctor; Fernández-Alonso, Mirian; Guevara, Marcela; Cenoz, Manuel García; Reina, Gabriel; Alvarez, Nerea; Arriazu, Maite; Elía, Fernando; Salcedo, Esther; Barricarte, Aurelio

    2011-08-11

    We defined a population-based cohort (596,755 subjects) in Navarre, Spain, using electronic records from physicians, to evaluate the effectiveness of the monovalent A(H1N1)2009 vaccine in preventing influenza in the 2009-2010 pandemic season. During the 9-week period of vaccine availability and circulation of the A(H1N1)2009 virus, 4608 cases of medically attended influenza-like illness (MA-ILI) were registered (46 per 1000 person-years). After adjustment for sociodemographic covariables, outpatient visits and major chronic conditions, vaccination was associated with a 32% (95% CI: 8-50%) reduction in the overall incidence of MA-ILI. In a test negative case-control analysis nested in the cohort, swabs from 633 patients were included, and 123 were confirmed for A(H1N1)2009 influenza. No confirmed case had received A(H1N1)2009 vaccine versus 9.6% of controls (p<0.001). The vaccine effectiveness in preventing laboratory-confirmed influenza was 89% (95% CI: 36-100%) after adjusting for age, health care setting, major chronic conditions and period. Pandemic vaccine was effective in preventing MA-ILI and confirmed cases of influenza A(H1N1)2009 in the 2009-2010 season.

  11. Public sources of information and information needs for pandemic influenza A(H1N1).

    PubMed

    Wong, Li Ping; Sam, I-Ching

    2010-12-01

    Providing health information during disease outbreaks is a fundamental component of outbreak control strategies. This study aimed to explore sources of influenza A(H1N1)-related information, specific information needs and preferences of the lay public during the peak of the outbreak. A cross-sectional, population-based, computer-assisted telephone interview of 1,050 respondents was conducted in Malaysia between July 11 and September 12, 2009. Newspaper, television and family were three main sources of information about A(H1N1). There were substantial ethnic differences; the Malays were significantly more likely to identify television as main source, while newspapers and family were identified as the main sources by the Chinese and Indians, respectively. Overall, the two main information needs identified were prevention and treatment. The Malays expressed lesser need for overall information than other ethnic groups. The three most preferred sources of information were television, newspapers and healthcare providers. There were significant positive correlations between amount of information received with knowledge (r = 0.149), perceived susceptibility to infection (r = 0.177), and other behavioral responses. Health information dissemination should be dedicated to meeting the information needs of diverse sociodemographic and ethnic groups. The findings highlight the importance of providing information that increases awareness and behavioral changes in disease prevention yet reduce fear.

  12. Socioeconomic Factors Influencing Hospitalized Patients with Pneumonia Due to Influenza A(H1N1)pdm09 in Mexico

    PubMed Central

    Manabe, Toshie; Higuera Iglesias, Anjarath Lorena; Vazquez Manriquez, Maria Eugenia; Martinez Valadez, Eduarda Leticia; Ramos, Leticia Alfaro; Izumi, Shinyu; Takasaki, Jin; Kudo, Koichiro

    2012-01-01

    Background In addition to clinical aspects and pathogen characteristics, people's health-related behavior and socioeconomic conditions can affect the occurrence and severity of diseases including influenza A(H1N1)pdm09. Methodology and Principal Findings A face-to-face interview survey was conducted in a hospital in Mexico City at the time of follow-up consultation for hospitalized patients with pneumonia due to influenza virus infection. In all, 302 subjects were enrolled and divided into two groups based on the period of hospitalization. Among them, 211 tested positive for influenza A(H1N1)pdm09 virus by real-time reverse-transcriptase-polymerase-chain-reaction during the pandemic period (Group-pdm) and 91 tested positive for influenza A virus in the post-pandemic period (Group-post). All subjects were treated with oseltamivir. Data on the demographic characteristics, socioeconomic status, living environment, and information relating to A(H1N1)pdm09, and related clinical data were compared between subjects in Group-pdm and those in Group-post. The ability of household income to pay for utilities, food, and health care services as well as housing quality in terms of construction materials and number of rooms revealed a significant difference: Group-post had lower socioeconomic status than Group-pdm. Group-post had lower availability of information regarding H1N1 influenza than Group-pdm. These results indicate that subjects in Group-post had difficulty receiving necessary information relating to influenza and were more likely to be impoverished than those in Group-pdm. Possible factors influencing time to seeking health care were number of household rooms, having received information on the necessity of quick access to health care, and house construction materials. Conclusions Health-care-seeking behavior, poverty level, and the distribution of information affect the occurrence and severity of pneumonia due to H1N1 virus from a socioeconomic point of view. These

  13. Household Transmission of Influenza A(H1N1)pdm09 in the Pandemic and Post-Pandemic Seasons

    PubMed Central

    Casado, Itziar; Martínez-Baz, Iván; Burgui, Rosana; Irisarri, Fátima; Arriazu, Maite; Elía, Fernando; Navascués, Ana; Ezpeleta, Carmen; Aldaz, Pablo; Castilla, Jesús

    2014-01-01

    Background The transmission of influenza viruses occurs person to person and is facilitated by contacts within enclosed environments such as households. The aim of this study was to evaluate secondary attack rates and factors associated with household transmission of laboratory-confirmed influenza A(H1N1)pdm09 in the pandemic and post-pandemic seasons. Methods During the 2009–2010 and 2010–2011 influenza seasons, 76 sentinel physicians in Navarra, Spain, took nasopharyngeal and pharyngeal swabs from patients diagnosed with influenza-like illness. A trained nurse telephoned households of those patients who were laboratory-confirmed for influenza A(H1N1)pdm09 to ask about the symptoms, risk factors and vaccination status of each household member. Results In the 405 households with a patient laboratory-confirmed for influenza A(H1N1)pdm09, 977 susceptible contacts were identified; 16% of them (95% CI 14–19%) presented influenza-like illness and were considered as secondary cases. The secondary attack rate was 14% in 2009–2010 and 19% in the 2010–2011 season (p = 0.049), an increase that mainly affected persons with major chronic conditions. In the multivariate logistic regression analysis, the risk of being a secondary case was higher in the 2010–2011 season than in the 2009–2010 season (adjusted odds ratio: 1.72; 95% CI 1.17–2.54), and in children under 5 years, with a decreasing risk in older contacts. Influenza vaccination was associated with lesser incidence of influenza-like illness near to statistical significance (adjusted odds ratio: 0.29; 95% CI 0.08–1.03). Conclusion The secondary attack rate in households was higher in the second season than in the first pandemic season. Children had a greater risk of infection. Preventive measures should be maintained in the second pandemic season, especially in high-risk persons. PMID:25254376

  14. Cluster of new influenza A(H1N1) cases in travellers returning from Scotland to Greece - community transmission within the European Union?

    PubMed

    Panagiotopoulos, T; Bonovas, S; Danis, K; Iliopoulos, D; Dedoukou, X; Pavli, A; Smeti, P; Mentis, A; Kossivakis, A; Melidou, A; Diza, E; Chatzidimitriou, D; Koratzanis, E; Michailides, S; Passalidou, E; Kollaras, P; Nikolaides, P; Tsiodras, S

    2009-05-28

    On 26 and 27 May, the Hellenic Centre for Disease Control and Prevention in Greece reported two confirmed cases of new influenza A(H1N1) virus infection in travellers returning from Scotland. The two cases had no apparent traceable links to an infectious source. Herein we report details of the two cases and potential public health implications.

  15. Transmission by super-spreading event of pandemic A/H1N1 2009 influenza during road and train travel.

    PubMed

    Pestre, Vincent; Morel, Bruno; Encrenaz, Nathalie; Brunon, Amandine; Lucht, Frédéric; Pozzetto, Bruno; Berthelot, Philippe

    2012-03-01

    The investigation of clustered cases of pandemic A/H1N1 2009 influenza virus infection (21 children, 3 adults) during a summer camp, led to the identification of transportation as the circumstance of transmission. Results suggest that super-spreading of flu can occur in a confined space without sufficient air renewal.

  16. Timeliness of contact tracing among flight passengers for influenza A/H1N1 2009

    PubMed Central

    2011-01-01

    Background During the initial containment phase of influenza A/H1N1 2009, close contacts of cases were traced to provide antiviral prophylaxis within 48 h after exposure and to alert them on signs of disease for early diagnosis and treatment. Passengers seated on the same row, two rows in front or behind a patient infectious for influenza, during a flight of ≥ 4 h were considered close contacts. This study evaluates the timeliness of flight-contact tracing (CT) as performed following national and international CT requests addressed to the Center of Infectious Disease Control (CIb/RIVM), and implemented by the Municipal Health Services of Schiphol Airport. Methods Elapsed days between date of flight arrival and the date passenger lists became available (contact details identified - CI) was used as proxy for timeliness of CT. In a retrospective study, dates of flight arrival, onset of illness, laboratory diagnosis, CT request and identification of contacts details through passenger lists, following CT requests to the RIVM for flights landed at Schiphol Airport were collected and analyzed. Results 24 requests for CT were identified. Three of these were declined as over 4 days had elapsed since flight arrival. In 17 out of 21 requests, contact details were obtained within 7 days after arrival (81%). The average delay between arrival and CI was 3,9 days (range 2-7), mainly caused by delay in diagnosis of the index patient after arrival (2,6 days). In four flights (19%), contacts were not identified or only after > 7 days. CI involving Dutch airlines was faster than non-Dutch airlines (P < 0,05). Passenger locator cards did not improve timeliness of CI. In only three flights contact details were identified within 2 days after arrival. Conclusion CT for influenza A/H1N1 2009 among flight passengers was not successful for timely provision of prophylaxis. CT had little additional value for alerting passengers for disease symptoms, as this information already was provided

  17. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease

    PubMed Central

    Kim, Jin Hyang; Reber, Adrian J.; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A.; Jacob, Joshy; Sambhara, Suryaprakash

    2016-01-01

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses. PMID:27849030

  18. New Influenza A/H1N1 (“Swine Flu”): information needs of airport passengers and staff

    PubMed Central

    Dickmann, P.; Rubin, G. J.; Gaber, W.; Wessely, S.; Wicker, S.; Serve, H.; Gottschalk, R.

    2010-01-01

    Please cite this paper as: Dickmann et al. (2010) New Influenza A/H1N1 (“Swine Flu”): information needs of airport passengers and staff. . Influenza and Other Respiratory Viruses 5(1), 39–46. Background  Airports are the entrances of infectious diseases. Particularly at the beginning of an outbreak, information and communication play an important role to enable the early detection of signs or symptoms and to encourage passengers to adopt appropriate preventive behaviour to limit the spread of the disease. Objectives  To determine the adequacy of the information provided to airport passengers and staff in meeting their information needs in relation to their concerns. Methods  At the start of the influenza A/H1N1 epidemic (29–30 April 2009), qualitative semi‐structured interviews (N = 101) were conducted at Frankfurt International Airport with passengers who were either returning from or going to Mexico and with airport staff who had close contact with these passengers. Interviews focused on knowledge about swine flu, information needs and fear or concern about the outbreak. Results  The results showed that a desire for more information was associated with higher concern – the least concerned participants did not want any additional information, while the most concerned participants reported a range of information needs. Airport staff in contact with passengers travelling from the epicentre of the outbreak showed the highest levels of fear or concern, coupled with a desire to be adequately briefed by their employer. Conclusions  Our results suggest that information strategies should address not only the exposed or potentially exposed but also groups that feel at risk. Identifying what information these different passenger and staff groups wish to receive will be an important task in any future infectious disease outbreak. PMID:21138539

  19. The impact of the 2009 influenza A(H1N1) pandemic on attitudes of healthcare workers toward seasonal influenza vaccination 2010/11.

    PubMed

    Brandt, C; Rabenau, H F; Bornmann, S; Gottschalk, R; Wicker, S

    2011-04-28

    The emergence of the influenza A(H1N1)2009 virus provided a major challenge to health services around the world. However, vaccination rates for the public and for healthcare workers (HCWs) have remained low. We performed a study to review the reasons put forward by HCWs to refuse immunisation with the pandemic vaccine in 2009/10 and characterise attitudes in the influenza season 2010/11 due to the emergence of influenza A(H1N1)2009. A survey among HCWs and medical students in the clinical phase of their studies was conducted, using an anonymous questionnaire, at a German university hospital during an influenza vaccination campaign. 1,366 of 3,900 HCWs (35.0%) were vaccinated in the 2010/11 influenza season. Of the vaccinated HCWs, 1,323 (96.9%) completed the questionnaire in addition to 322 vaccinated medical students. Of the 1,645 vaccinees who completed the questionnaire, 712 had not been vaccinated against the influenza A(H1N1)2009 virus in the 2009/10 season. The main reason put forward was the objection to the AS03 adjuvants (239/712, 33.6%). Of the HCWs and students surveyed, 270 of 1,645 (16.4%) stated that the pandemic had influenced their attitude towards vaccination in general. Many German HCWs remained unconvinced of the safety of the pandemic (adjuvanted) influenza vaccine. For this reason, effective risk communication should focus on educating the public and HCWs about influenza vaccine safety and the benefits of vaccination.

  20. The 2009 Influenza A(H1N1) "Swine Flu" Outbreak: An Overview

    DTIC Science & Technology

    2009-05-05

    Table 1. WHO Influenza Pandemic Phases (Current alert level is highlighted) Phase Description Phase 1 No animal influenza virus circulating among... animals has been reported to cause infection in humans. Phase 2 An animal influenza virus circulating in domesticated or wild animals is known to have...community-level outbreaks. Phase 4 Human-to-human transmission of an animal or human- animal influenza reassortant a virus able to sustain community

  1. The hemagglutinin of the influenza A(H1N1)pdm09 is mutating towards stability

    PubMed Central

    Castelán-Vega, Juan A; Magaña-Hernández, Anastasia; Jiménez-Alberto, Alicia; Ribas-Aparicio, Rosa María

    2014-01-01

    The last influenza A pandemic provided an excellent opportunity to study the adaptation of the influenza A(H1N1)pdm09 virus to the human host. Particularly, due to the availability of sequences taken from isolates since the beginning of the pandemic until date, we could monitor amino acid changes that occurred in the hemagglutinin (HA) as the virus spread worldwide and became the dominant H1N1 strain. HA is crucial to viral infection because it binds to sialidated cell-receptors and mediates fusion of cell and viral membranes; because antibodies that bind to HA may block virus entry to the cell, this protein is subjected to high selective pressure. Multiple alignment analysis of sequences of the HA from isolates taken since 2009 to date allowed us to find amino acid changes that were positively selected as the pandemic progressed. We found nine changes that became prevalent: HA1 subunits D104N, K166Q, S188T, S206T, A259T, and K285E; and HA2 subunits E47K, S124N, and E172K. Most of these changes were located in areas involved in inter- and intrachain interactions, while only two (K166Q and S188T) were located in known antigenic sites. We conclude that selective pressure on HA was aimed to improve its functionality and hence virus fitness, rather than at avoidance of immune recognition. PMID:25328411

  2. A Large Proportion of the Mexican Population Remained Susceptible to A(H1N1)pdm09 Infection One Year after the Emergence of 2009 Influenza Pandemic

    PubMed Central

    Veguilla, Vic; López-Gatell, Hugo; López-Martínez, Irma; Aparicio-Antonio, Rodrigo; Barrera-Badillo, Gisela; Rojo-Medina, Julieta; Gross, Felicia Liaini; Jefferson, Stacie N.; Katz, Jacqueline M.; Hernández-Ávila, Mauricio; Alpuche-Aranda, Celia M.

    2016-01-01

    Background The 2009 H1N1 influenza pandemic initially affected Mexico from April 2009 to July 2010. By August 2010, a fourth of the population had received the monovalent vaccine against the pandemic virus (A(H1N1)pdm09). To assess the proportion of the Mexican population who remained potentially susceptible to infection throughout the summer of 2010, we estimated the population seroprevalence to A(H1N1)pdm09 in a serosurvey of blood donors. Methods We evaluated baseline cross-reactivity to the pandemic strain and set the threshold for seropositivity using pre-pandemic (2005–2008) stored serum samples and sera from confirmed A(H1N1)pdm09 infected individuals. Between June and September 2010, a convenience sample serosurvey of adult blood donors, children, and adolescents was conducted in six states of Mexico. Sera were tested by the microneutralization (MN) and hemagglutination inhibition (HI) assays, and regarded seropositive if antibody titers were equal or exceeded 1:40 for MN and 1:20 for HI. Age-standardized seroprevalence were calculated using the 2010 National Census population. Results Sera from 1,484 individuals were analyzed; 1,363 (92%) were blood donors, and 121 (8%) children or adolescents aged ≤19 years. Mean age (standard deviation) was 31.4 (11.5) years, and 276 (19%) were women. A total of 516 (35%) participants declared history of influenza vaccination after April 2009. The age-standardized seroprevalence to A(H1N1)pdm09 was 48% by the MN and 41% by the HI assays, respectively. The youngest quintile, aged 1 to 22 years, had the highest the seroprevalence; 61% (95% confidence interval [CI]: 56, 66%) for MN, and 56% (95% CI: 51, 62%) for HI. Conclusions Despite high transmission of A(H1N1)pdm09 observed immediately after its emergence and extensive vaccination, over a half of the Mexican population remained potentially susceptible to A(H1N1)pdm09 infection. Subsequent influenza seasons with high transmission of A(H1N1)pdm09, as 2011–2012 and

  3. Transmission of pandemic A/H1N1 2009 influenza on passenger aircraft: retrospective cohort study

    PubMed Central

    Thornley, Craig N; Mills, Clair; Roberts, Sally; Perera, Shanika; Peters, Julia; Kelso, Anne; Barr, Ian; Wilson, Nick

    2010-01-01

    Objectives To assess the risk of transmission of pandemic A/H1N1 2009 influenza (pandemic A/H1N1) from an infected high school group to other passengers on an airline flight and the effectiveness of screening and follow-up of exposed passengers. Design Retrospective cohort investigation using a questionnaire administered to passengers and laboratory investigation of those with symptoms. Setting Auckland, New Zealand, with national and international follow-up of passengers. Participants Passengers seated in the rear section of a Boeing 747-400 long haul flight that arrived on 25 April 2009, including a group of 24 students and teachers and 97 (out of 102) other passengers in the same section of the plane who agreed to be interviewed. Main outcome measures Laboratory confirmed pandemic A/H1N1 infection in susceptible passengers within 3.2 days of arrival; sensitivity and specificity of influenza symptoms for confirmed infection; and completeness and timeliness of contact tracing. Results Nine members of the school group were laboratory confirmed cases of pandemic A/H1N1 infection and had symptoms during the flight. Two other passengers developed confirmed pandemic A/H1N1 infection, 12 and 48 hours after the flight. They reported no other potential sources of infection. Their seating was within two rows of infected passengers, implying a risk of infection of about 3.5% for the 57 passengers in those rows. All but one of the confirmed pandemic A/H1N1 infected travellers reported cough, but more complex definitions of influenza cases had relatively low sensitivity. Rigorous follow-up by public health workers located 93% of passengers, but only 52% were contacted within 72 hours of arrival. Conclusions A low but measurable risk of transmission of pandemic A/H1N1 exists during modern commercial air travel. This risk is concentrated close to infected passengers with symptoms. Follow-up and screening of exposed passengers is slow and difficult once they have left the

  4. Evaluation of the spread of pandemic influenza A/H1N1 2009 among Japanese university students.

    PubMed

    Uchida, Mitsuo; Kaneko, Minoru; Tsukahara, Teruomi; Washizuka, Shinsuke; Kawa, Shigeyuki

    2014-09-01

    The pandemic influenza A/H1N1 2009 virus is commonly known to affect younger individuals. Several epidemiological studies have clarified the epidemic features of university students in Japan. In this study, we reviewed these studies in Japan in comparison with reports from other countries. The average cumulative incidence rate among university students was 9.6 %, with the major symptoms being cough, sore throat, and rhinorrhea. These epidemiological features were similar between Japan and other countries. Attitudes and behaviors toward pandemic influenza control measures were different before and improved during and after the epidemic. These features were also similar to those in other countries. On the other hand, the epidemic spread through club activities or social events, and transmission was attenuated after temporary closure of such groups in Japan. This transmission pattern was inconsistent among countries, which may have been due to differences in lifestyle and cultural habits. Based on these results, infection control measures of pandemic influenza for university organizations in Japan should be considered.

  5. Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile.

    PubMed

    Bürger, Raimund; Chowell, Gerardo; Mulet, Pep; Villada, Luis M

    2016-02-01

    A spatial-temporal transmission model of 2009 A/H1N1 pandemic influenza across Chile, a country that spans a large latitudinal range, is developed to characterize the spatial variation in peak timing of that pandemic as a function of local transmission rates, spatial connectivity assumptions for Chilean regions, and the putative location of introduction of the novel virus into the country. Specifically, a metapopulation SEIR (susceptible-exposed-infected-removed) compartmental model that tracks the transmission dynamics of influenza in 15 Chilean regions is calibrated. The model incorporates population mobility among neighboring regions and indirect mobility to and from other regions via the metropolitan central region ('hub region'). The stability of the disease-free equilibrium of this model is analyzed and compared with the corresponding stability in each region, concluding that stability may occur even with some regions having basic reproduction numbers above 1. The transmission model is used along with epidemiological data to explore potential factors that could have driven the spatial-temporal progression of the pandemic. Simulations and sensitivity analyses indicate that this relatively simple model is sufficient to characterize the south-north gradient in peak timing observed during the pandemic, and suggest that south Chile observed the initial spread of the pandemic virus, which is in line with a retrospective epidemiological study. The 'hub region' in our model significantly enhanced population mixing in a short time scale.

  6. Randomized Controlled Ferret Study to Assess the Direct Impact of 2008–09 Trivalent Inactivated Influenza Vaccine on A(H1N1)pdm09 Disease Risk

    PubMed Central

    Skowronski, Danuta M.; Hamelin, Marie-Eve; De Serres, Gaston; Janjua, Naveed Z.; Li, Guiyun; Sabaiduc, Suzana; Bouhy, Xavier; Couture, Christian; Leung, Anders; Kobasa, Darwyn; Embury-Hyatt, Carissa; de Bruin, Erwin; Balshaw, Robert; Lavigne, Sophie; Petric, Martin; Koopmans, Marion; Boivin, Guy

    2014-01-01

    During spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008–09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect vaccine effects. In a randomized placebo-controlled ferret study, we tested whether prior receipt of 2008–09 TIV may have directly influenced A(H1N1)pdm09 illness. Thirty-two ferrets (16/group) received 0.5 mL intra-muscular injections of the Canadian-manufactured, commercially-available, non-adjuvanted, split 2008–09 Fluviral or PBS placebo on days 0 and 28. On day 49 all animals were challenged (Ch0) with A(H1N1)pdm09. Four ferrets per group were randomly selected for sacrifice at day 5 post-challenge (Ch+5) and the rest followed until Ch+14. Sera were tested for antibody to vaccine antigens and A(H1N1)pdm09 by hemagglutination inhibition (HI), microneutralization (MN), nucleoprotein-based ELISA and HA1-based microarray assays. Clinical characteristics and nasal virus titers were recorded pre-challenge then post-challenge until sacrifice when lung virus titers, cytokines and inflammatory scores were determined. Baseline characteristics were similar between the two groups of influenza-naïve animals. Antibody rise to vaccine antigens was evident by ELISA and HA1-based microarray but not by HI or MN assays; virus challenge raised antibody to A(H1N1)pdm09 by all assays in both groups. Beginning at Ch+2, vaccinated animals experienced greater loss of appetite and weight than placebo animals, reaching the greatest between-group difference in weight loss relative to baseline at Ch+5 (7.4% vs. 5.2%; p = 0.01). At Ch+5 vaccinated animals had higher lung virus titers (log-mean 4.96 vs. 4.23pfu/mL, respectively; p = 0.01), lung inflammatory scores (5.8 vs. 2.1, respectively; p = 0.051) and cytokine levels (p>0.05). At Ch+14, both groups had recovered. Findings in

  7. Detection of Oseltamivir-Resistant Pandemic Influenza A(H1N1)pdm2009 in Brazil: Can Community Transmission Be Ruled Out?

    PubMed Central

    Souza, Thiago Moreno L.; Resende, Paola C.; Fintelman-Rodrigues, Natalia; Gregianini, Tatiana Schaffer; Ikuta, Nilo; Fernandes, Sandra Bianchini; Cury, Ana Luisa Furtado; Rosa, Maria do Carmo Debur; Siqueira, Marilda M.

    2013-01-01

    Although surveillance efforts that monitor the emergence of drug-resistant strains of influenza are critical, systematic analysis is overlooked in most developing countries. We report on the occurrence of strains of pandemic influenza A(H1N1)pdm09 with resistance and decreased susceptibility to oseltamivir (OST) in Brazil in 2009, 2011 and 2012. We found 7 mutant viruses, 2 with the mutation S247N and other 5 with the mutation H275Y. Most of these viruses were from samples concentrated in the southern region of Brazil. Some of these resistant viruses were detected prior to the initiation of OST treatment, suggesting that community transmission of mutant viruses may exist. Moreover, we show that one of these OST-resistant (H275Y) strains of A(H1N1)pdm09 was discovered in the tri-border region between Brazil, Argentina and Paraguay, highlighting that this strain could also be found in other Latin American countries. Our findings reinforce the importance of enhanced antiviral resistance surveillance in Brazil and in other Latin American countries to confirm or rule out the community transmission of OST-resistant strains of A(H1N1)pdm09. PMID:24244615

  8. Risk of Guillain–Barré syndrome following pandemic influenza A(H1N1) 2009 vaccination in Germany†

    PubMed Central

    Prestel, Jürgen; Volkers, Peter; Mentzer, Dirk; Lehmann, Helmar C; Hartung, Hans-Peter; Keller-Stanislawski, Brigitte

    2014-01-01

    Purpose A prospective, epidemiologic study was conducted to assess whether the 2009 pandemic influenza A(H1N1) vaccination in Germany almost exclusively using an AS03-adjuvanted vaccine (Pandemrix) impacts the risk of Guillain–Barré syndrome (GBS) and its variant Fisher syndrome (FS). Methods Potential cases of GBS/FS were reported by 351 participating hospitals throughout Germany. The self-controlled case series methodology was applied to all GBS/FS cases fulfilling the Brighton Collaboration (BC) case definition (levels 1–3 of diagnostic certainty) with symptom onset between 1 November 2009 and 30 September 2010 reported until end of December 2010. Results Out of 676 GBS/FS reports, in 30 cases, GBS/FS (BC levels 1–3) occurred within 150 days following influenza A(H1N1) vaccination. The relative incidence of GBS/FS within the primary risk period (days 5–42 post-vaccination) compared with the control period (days 43–150 post-vaccination) was 4.65 (95%CI [2.17, 9.98]). Similar results were found when stratifying for infections within 3 weeks prior to onset of GBS/FS and when excluding cases with additional seasonal influenza vaccination. The overall result of temporally adjusted analyses supported the primary finding of an increased relative incidence of GBS/FS following influenza A(H1N1) vaccination. Conclusions The results indicate an increased risk of GBS/FS in temporal association with pandemic influenza A(H1N1) vaccination in Germany. © 2014 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons, Ltd. PMID:24817531

  9. Enhanced Pneumonia and Proinflammatory Cytokine Response in Pigs Challenged with Pandemic 2009 A/H1N1 Influenza Virus Following Vaccination with an Inactivated delta-Cluster H1N2 Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endemic strains of swine influenza A virus (IAV) in North America consist of the subtypes H1N1, H1N2, and H3N2. These circulating strains contain the triple reassortant internal gene (TRIG) cassette resulting from incorporation of genes from swine, avian, and human IAV’s. Genetic drift and reassortm...

  10. Expression of recombinant HA1 protein for specific detection of influenza A/H1N1/2009 antibodies in human serum.

    PubMed

    Luo, Lizhong; Nishi, Krista; Macleod, Erin; Sabara, Marta I; Coleman, Brenda L; Gubbay, Jonathan B; Li, Yan

    2013-01-01

    The hemagglutinin genes (HA1 subunit) from human and animal 2009 pandemic H1N1 virus isolates were expressed with a baculovirus vector. Recombinant HA1 (rHA1) protein-based ELISA was evaluated for detection of specific influenza A(H1N1)pdm09 antibodies in serum samples from vaccinated humans. It was found that rHA1 ELISA consistently differentiated between antibodies recognizing the seasonal influenza H1N1 and pdm09 viruses, with a concordance of 94% as compared to the hemagglutination inhibition test. This study suggests the utility of rHA1 ELISA in serosurveillance.

  11. The response of medical virology laboratories to the influenza A(H1N1)pdm09 outbreak in Paris Île-de-France region.

    PubMed

    Seringe, E; Agut, H

    2013-10-01

    The outbreak of influenza A(H1N1)pdm09 was a challenge for the laboratories of Paris Île-de-France region in charge of virological diagnosis. In order to evaluate the quality of their response to this challenge, a retrospective survey based on a self-administered standardized questionnaire was undertaken among the 18 hospital laboratories involved in A(H1N1)pdm09 virus detection over a period of 10 months from April 2009 to January 2010. All concerned laboratories responded to the survey. Due to imposed initial biosafety constraints and indications, virological diagnosis was performed in only two laboratories at the start of the studied period. Step by step, it was further settled in the other laboratories starting from June to November 2009. From the beginning, A(H1N1)pdm09-specific RT-PCR was considered the reference method while the use of rapid influenza detection tests remained temporary and concerned a minority of these laboratories. Among the overall 21,656 specimens received, a positive diagnosis of influenza A(H1N1)pdm09 was obtained in 5,390 cases (25%), the positivity range being significantly higher among women as compared to men (P<0.0001) and subjects below 45 years of age as compared to those over 65 years (P<0.0001). Two peaks in positivity frequency were observed at weeks 24 (30%, 8-12 June 2009) and 44 (50%, 26-30 October 2009) respectively, the latter one occurring 2 weeks earlier than the peak of epidemic at the national level. In contrast, a low positivity rate was detected at weeks 38-40 in relationship with other respiratory virus infections which were clinically misinterpreted as a peak of influenza epidemic. These data demonstrate the ability of medical virology laboratories of Paris Île-de-France region to provide in real time a valuable diagnosis of A(H1N1)pdm09 virus infection and a relevant view of outbreak evolution, suggesting they will be a crucial component in the management of future influenza epidemics.

  12. Highly Predictive Model for a Protective Immune Response to the A(H1N1)pdm2009 Influenza Strain after Seasonal Vaccination.

    PubMed

    Jürchott, Karsten; Schulz, Axel Ronald; Bozzetti, Cecilia; Pohlmann, Dominika; Stervbo, Ulrik; Warth, Sarah; Mälzer, Julia Nora; Waldner, Julian; Schweiger, Brunhilde; Olek, Sven; Grützkau, Andreas; Babel, Nina; Thiel, Andreas; Neumann, Avidan Uriel

    2016-01-01

    Understanding the immune response after vaccination against new influenza strains is highly important in case of an imminent influenza pandemic and for optimization of seasonal vaccination strategies in high risk population groups, especially the elderly. Models predicting the best sero-conversion response among the three strains in the seasonal vaccine were recently suggested. However, these models use a large number of variables and/or information post- vaccination. Here in an exploratory pilot study, we analyzed the baseline immune status in young (<31 years, N = 17) versus elderly (≥50 years, N = 20) donors sero-negative to the newly emerged A(H1N1)pdm09 influenza virus strain and correlated it with the serological response to that specific strain after seasonal influenza vaccination. Extensive multi-chromatic FACS analysis (36 lymphocyte sub-populations measured) was used to quantitatively assess the cellular immune status before vaccination. We identified CD4+ T cells, and amongst them particularly naive CD4+ T cells, as the best correlates for a successful A(H1N1)pdm09 immune response. Moreover, the number of influenza strains a donor was sero-negative to at baseline (NSSN) in addition to age, as expected, were important predictive factors. Age, NSSN and CD4+ T cell count at baseline together predicted sero-protection (HAI≥40) to A(H1N1)pdm09 with a high accuracy of 89% (p-value = 0.00002). An additional validation study (N = 43 vaccinees sero-negative to A(H1N1)pdm09) has confirmed the predictive value of age, NSSN and baseline CD4+ counts (accuracy = 85%, p-value = 0.0000004). Furthermore, the inclusion of donors at ages 31-50 had shown that the age predictive function is not linear with age but rather a sigmoid with a midpoint at about 50 years. Using these results we suggest a clinically relevant prediction model that gives the probability for non-protection to A(H1N1)pdm09 influenza strain after seasonal multi-valent vaccination as a continuous

  13. Influenza vaccination in the Americas: Progress and challenges after the 2009 A(H1N1) influenza pandemic

    PubMed Central

    Ropero-Álvarez, Alba María; El Omeiri, Nathalie; Kurtis, Hannah Jane; Danovaro-Holliday, M. Carolina; Ruiz-Matus, Cuauhtémoc

    2016-01-01

    ABSTRACT Background: There has been considerable uptake of seasonal influenza vaccines in the Americas compared to other regions. We describe the current influenza vaccination target groups, recent progress in vaccine uptake and in generating evidence on influenza seasonality and vaccine effectiveness for immunization programs. We also discuss persistent challenges, 5 years after the A(H1N1) 2009 influenza pandemic. Methods: We compiled and summarized data annually reported by countries to the Pan American Health Organization/World Health Organization (PAHO/WHO) through the WHO/UNICEF joint report form on immunization, information obtained through PAHO's Revolving Fund for Vaccine Procurement and communications with managers of national Expanded Programs on Immunization (EPI). Results: Since 2008, 25 countries/territories in the Americas have introduced new target groups for vaccination or expanded the age ranges of existing target groups. As of 2014, 40 (89%) out of 45 countries/territories have policies established for seasonal influenza vaccination. Currently, 29 (64%) countries/territories target pregnant women for vaccination, the highest priority group according to WHO´s Stategic Advisory Group of Experts and PAHO/WHO's Technical Advisory Group on Vaccine-preventable Diseases, compared to only 7 (16%) in 2008. Among 23 countries reporting coverage data, on average, 75% of adults ≥60 years, 45% of children aged 6–23 months, 32% of children aged 5–2 years, 59% of pregnant women, 78% of healthcare workers, and 90% of individuals with chronic conditions were vaccinated during the 2013–14 Northern Hemisphere or 2014 Southern Hemisphere influenza vaccination activities. Difficulties however persist in the estimation of vaccination coverage, especially for pregnant women and persons with chronic conditions. Since 2007, 6 tropical countries have changed their vaccine formulation from the Northern to the Southern Hemisphere formulation and the timing of

  14. Atraumatic osteonecrosis of the humeral head after influenza A-(H1N1) v-2009 vaccination.

    PubMed

    Kuether, G; Dietrich, B; Smith, T; Peter, C; Gruessner, S

    2011-09-16

    In the recent pandemic influenza A-(H1N1) v-2009 vaccination campaign, adjuvanted vaccines have been used because of their antigen-sparing effect. According to available reports, the rate of severe vaccination reactions has not increased, as compared with previous seasonal influenza vaccinations. Here we describe an adult female patient who was vaccinated with an AS03 adjuvanted split-virus vaccine injected into the left arm. She experienced a prolonged and painful local reaction for 4 weeks. During this time, persistent incapacitating pain shifted into the left shoulder. Magnetic resonance imaging (MRI) at the injection site detected atraumatic humeral head osteonecrosis in conjunction with bursitis of the rotator cuff region. Clinical and laboratory examination revealed no other underlying disease. Using analgetic medication and physical therapy, resting pain completely remitted within the following 14 weeks. Pain on exertion declined within the following 6 months. Atraumatic osteonecrosis, a relatively rare disorder which initially presents non-specific clinical symptoms, has never been associated with parenteral influenza vaccination. Although the available data cannot establish a causal relationship, our patient's clinical course - with a continuous transition from increased local post-vaccination reactions to symptoms of a severe shoulder lesion with osteonecrosis - raises the question of a pathogenetic link. Considering the vascular pathogenesis of osteonecrosis, we hypothesize that our patient's enhanced local immunologic reaction may have led to regional vasculitis as the cause of bone destruction. As mild forms of osteonecrosis may have escaped previous clinical attention, it is the purpose of our report to increase awareness of this exceptional event as a possible side effect of parenteral adjuvanted vaccination.

  15. Influence of prior pandemic A(H1N1)2009 virus infection on invasion of MDCK cells by community-associated methicillin-resistant Staphylococcus aureus.

    PubMed

    Takayama, Yoko; Yano, Hisakazu; Nojima, Yasuhiro; Nakano, Ryuichi; Okamoto, Ryoichi; Hirakata, Yoichi; Sunakawa, Keisuke; Akahoshi, Tohru; Kaku, Mitsuo

    2014-01-01

    Secondary bacterial pneumonia due to community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has become a highly publicized cause of death associated with influenza. In this study, we performed the gentamicin-killing assay using Madin-Darby canine kidney (MDCK) cells and MRSA strains to investigate whether prior infection from pandemic A(H1N1)2009 virus (A[H1N1]pdm09) lead to increased invasion of MDCK cells by MRSA. We found that the invasion rate of two MRSA strains (ATCC BAA-1680 [USA 300] and ATCC BAA-1699 [USA 100]) into intact MDCK cell monolayers was 0.29 ± 0.15% and 0.007 ± 0.002%, respectively (p < 0.01, n ≥ 3). In addition, the relative invasion rate of both ATCC BAA-1680 and ATCC BAA-1699 was significantly increased by prior A(H1N1)pdm09 infection of MDCK monolayers from 1 ± 0.28 to 1.38 ± 0.02 and from 1 ± 0.24 to 1.73 ± 0.29, respectively (p < 0.01). These results indicate that ATCC BAA-1680 displays much stronger invasiveness of MDCK cells than ATCC BAA-1699, although invasion of both strains was increased by prior A(H1N1)pdm09 infection. In conclusion, this study provided the first evidence that prior A(H1N1)pdm09 infection facilitates the invasion of MDCK cells by MRSA, presumably due to cellular injury caused by the virus.

  16. Immune Responses in Pigs Vaccinated with Adjuvanted and Non-Adjuvanted A(H1N1)pdm/09 Influenza Vaccines Used in Human Immunization Programmes

    PubMed Central

    Lefevre, Eric A.; Carr, B. Veronica; Inman, Charlotte F.; Prentice, Helen; Brown, Ian H.; Brookes, Sharon M.; Garcon, Fanny; Hill, Michelle L.; Iqbal, Munir; Elderfield, Ruth A.; Barclay, Wendy S.; Gubbins, Simon; Bailey, Mick; Charleston, Bryan

    2012-01-01

    Following the emergence and global spread of a novel H1N1 influenza virus in 2009, two A(H1N1)pdm/09 influenza vaccines produced from the A/California/07/09 H1N1 strain were selected and used for the national immunisation programme in the United Kingdom: an adjuvanted split virion vaccine and a non-adjuvanted whole virion vaccine. In this study, we assessed the immune responses generated in inbred large white pigs (Babraham line) following vaccination with these vaccines and after challenge with A(H1N1)pdm/09 virus three months post-vaccination. Both vaccines elicited strong antibody responses, which included high levels of influenza-specific IgG1 and haemagglutination inhibition titres to H1 virus. Immunisation with the adjuvanted split vaccine induced significantly higher interferon gamma production, increased frequency of interferon gamma-producing cells and proliferation of CD4−CD8+ (cytotoxic) and CD4+CD8+ (helper) T cells, after in vitro re-stimulation. Despite significant differences in the magnitude and breadth of immune responses in the two vaccinated and mock treated groups, similar quantities of viral RNA were detected from the nasal cavity in all pigs after live virus challenge. The present study provides support for the use of the pig as a valid experimental model for influenza infections in humans, including the assessment of protective efficacy of therapeutic interventions. PMID:22427834

  17. Influenza A(H1N1)pdm09 resistance and cross-decreased susceptibility to oseltamivir and zanamivir antiviral drugs.

    PubMed

    Correia, Vanessa; Santos, Luis A; Gíria, Marta; Almeida-Santos, Maria M; Rebelo-de-Andrade, Helena

    2015-01-01

    Neuraminidase inhibitors (NAIs) oseltamivir and zanamivir are currently the only effective antiviral drugs available worldwide for the management of influenza. The potential development of resistance is continually threatening their use, rationalizing and highlighting the need for a close and sustained evaluation of virus susceptibility. This study aimed to analyze and characterize the phenotypic and genotypic NAIs susceptibility profiles of A(H1N1)pdm09 viruses circulating in Portugal from 2009 to 2010/2011. A total of 144 cases of A(H1N1)pdm09 virus infection from community and hospitalized patients were studied, including three suspected cases of clinical resistance to oseltamivir. Oseltamivir resistance was confirmed for two of the suspected cases. Neuraminidase (NA) H275Y resistant marker was found in viruses from both cases but for one it was only present in 26.2% of virus population, raising questions about the minimal percentage of resistant virus that should be considered relevant. Cross-decreased susceptibility to oseltamivir and zanamivir (2-4 IC50 fold-change) was detected on viruses from two potentially linked community patients from 2009. Both viruses harbored the NA I223V mutation. NA Y155H mutation was found in 18 statistical non-outlier viruses from 2009, having no impact on virus susceptibility. The mutations at NA N369K and V241I may have contributed to the significantly higher baseline IC50 value obtained to oseltamivir for 2010/2011 viruses, compared to viruses from the pandemic period. These results may contribute to a better understanding of the relationship between phenotype and genotype, which is currently challenging, and to the global assessment of A(H1N1)pdm09 virus susceptibility profile and baseline level to NAIs.

  18. Segregation of Virulent Influenza A(H1N1) Variants in the Lower Respiratory Tract of Critically Ill Patients during the 2010–2011 Seasonal Epidemic

    PubMed Central

    Piralla, Antonio; Pariani, Elena; Rovida, Francesca; Campanini, Giulia; Muzzi, Alba; Emmi, Vincenzo; Iotti, Giorgio A.; Pesenti, Antonio; Conaldi, Pier Giulio; Zanetti, Alessandro; Baldanti, Fausto

    2011-01-01

    Background Since its appearance in 2009, the pandemic influenza A(H1N1) virus circulated worldwide causing several severe infections. Methods Respiratory samples from patients with 2009 influenza A(H1N1) and acute respiratory distress attending 24 intensive care units (ICUs) as well as from patients with lower respiratory tract infections not requiring ICU admission and community upper respiratory tract infections in the Lombardy region (10 million inhabitants) of Italy during the 2010–2011 winter-spring season, were analyzed. Results In patients with severe ILI, the viral load was higher in bronchoalveolar lavage (BAL) with respect to nasal swab (NS), (p<0.001) suggesting a higher virus replication in the lower respiratory tract. Four distinct virus clusters (referred to as cluster A to D) circulated simultaneously. Most (72.7%, n = 48) of the 66 patients infected with viruses belonging to cluster A had a severe (n = 26) or moderate ILI (n = 22). Amino acid mutations (V26I, I116M, A186T, D187Y, D222G/N, M257I, S263F, I286L/M, and N473D) were observed only in patients with severe ILI. D222G/N variants were detected exclusively in BAL samples. Conclusions Multiple virus clusters co-circulated during the 2010–2011 winter-spring season. Severe or moderate ILI were associated with specific 2009 influenza A(H1N1) variants, which replicated preferentially in the lower respiratory tract. PMID:22194826

  19. Effect on Cellular and Humoral Immune Responses of the AS03 Adjuvant System in an A/H1N1/2009 Influenza Virus Vaccine Administered to Adults during Two Randomized Controlled Trials ▿ †

    PubMed Central

    Roman, François; Clément, Frédéric; Dewé, Walthère; Walravens, Karl; Maes, Cathy; Willekens, Julie; De Boever, Fien; Hanon, Emmanuel; Leroux-Roels, Geert

    2011-01-01

    The influence of AS03A, a tocopherol oil-in-water emulsion-based adjuvant system, on humoral and cell-mediated responses to A/California/7/2009 H1N1 pandemic vaccine was investigated. In two observer-blind studies, a total of 261 healthy adults aged 18 to 60 years were randomized to receive either AS03A-adjuvanted H1N1 vaccine containing 3.75 μg hemagglutinin (HA) or nonadjuvanted H1N1 vaccine containing 15 or 3.75 μg HA on days 0 and 21. Hemagglutination inhibition (HI) antibody and T-cell responses were analyzed up to day 42. A first dose of AS03A-adjuvanted vaccine (3.75 μg HA) or nonadjuvanted vaccine (15 μg HA) induced HI responses of similar magnitudes that exceeded licensure criteria (e.g., 94 to 100% with titers of ≥40). A lower response following 3.75 μg HA without adjuvant was observed (73% with titers of ≥40). Following a second dose, geometric mean HI titers at day 42 were higher for AS03A-adjuvanted vaccine (636 and 637) relative to nonadjuvanted vaccine (341 for 15 μg HA and 150 for 3.75 μg HA). Over the 42-day period, the increase in frequency of A/H1N1/2009-specific CD4+ T cells was significantly higher in the adjuvanted group than in the nonadjuvanted group. There was no evidence of correlation between baseline CD4+ T-cell frequencies and day 21 HI antibody titers, while there was some correlation (R = 0.35) between day 21 CD4+ T-cell frequencies and day 42 HI titers. AS03A adjuvant enhanced the humoral and CD4+ T-cell-mediated responses to A/H1N1/2009 vaccine. Baseline A/H1N1/2009-specific CD4+ T-cell frequencies did not predict post-dose 1 antibody responses, but there was some correlation between post-dose 1 CD4+ T-cell frequencies and post-dose 2 antibody responses. PMID:21450978

  20. Influenza Risk Management: Lessons Learned from an A(H1N1) pdm09 Outbreak Investigation in an Operational Military Setting

    PubMed Central

    Farrell, Margaret; Sebeny, Peter; Klena, John D.; DeMattos, Cecilia; Pimentel, Guillermo; Turner, Mark; Joseph, Antony; Espiritu, Jennifer; Zumwalt, John; Dueger, Erica

    2013-01-01

    Background At the onset of an influenza pandemic, when the severity of a novel strain is still undetermined and there is a threat of introduction into a new environment, e.g., via the deployment of military troops, sensitive screening criteria and conservative isolation practices are generally recommended. Objectives In response to elevated rates of influenza-like illness among U.S. military base camps in Kuwait, U.S. Naval Medical Research Unit No. 3 partnered with local U.S. Army medical units to conduct an A(H1N1) pdm09 outbreak investigation. Patients/Methods Initial clinical data and nasal specimens were collected via the existent passive surveillance system and active surveillance was conducted using a modified version of the World Health Organization/U.S. Centers for Disease Control and Prevention influenza-like illness case definition [fever (T > 100.5˚F/38˚C) in addition to cough and/or sore throat in the previous 72 hours] as the screening criteria. Samples were tested via real-time reverse-transcription PCR and sequenced for comparison to global A(H1N1) pdm09 viruses from the same time period. Results The screening criteria used in Kuwait proved insensitive, capturing only 16% of A(H1N1) pdm09-positive individuals. While still not ideal, using cough as the sole screening criteria would have increased sensitivity to 73%. Conclusions The results of and lessons learned from this outbreak investigation suggest that pandemic influenza risk management should be a dynamic process (as information becomes available regarding true attack rates and associated mortality, screening and isolation criteria should be re-evaluated and revised as appropriate), and that military operational environments present unique challenges to influenza surveillance. PMID:23874699

  1. [Effects of school closure during influenza A/H1N1 pandemic in 2009 in Japan].

    PubMed

    Uchida, Mitsuo; Kaneko, Minoru; Yamamoto, Hiroshi; Honda, Takayuki; Kawa, Shigeyuki

    2013-01-01

    Schools were closed worldwide during the 2009 influenza A/H1N1 pandemic to prevent the viral spread; however, to date, there has been insufficient evidence to conclude that the closures were beneficial. Therefore, in the present review, we evaluated the effects of school closure during the 2009 influenza A/H1N1 pandemic in Japan. A search of PubMed and Japanese journals identified 24 articles that evaluated the effects of school closure using the following methods: descriptive epidemiology, changes in absenteeism rate, a simulation model, and reproductive number. Almost all of the retrieved studies showed that school closure effectively reduced the number of new infections and thus subsequently suppressed the epidemic. On the other hand, two major sets of confounding variables were identified. First, the effect of school closure was confounded by the methods used to measure, viral infectivity, subject characteristics, increased immunization rates, nonpharmaceutical interventions, antiviral administration, student contact patterns during school closure, and individual household environments. Secondly, school closure implementation was affected by differences between proactive and reactive closures, differences between seasonal and pandemic influenza, decision factors regarding school closure, socioeconomic cost, and ethics of imposing restrictions on individuals. Therefore, a comprehensive, longitudinal study is necessary to clarify the effects of school closure during viral pandemics.

  2. Event-based biosurveillance of respiratory disease in Mexico, 2007-2009: connection to the 2009 influenza A(H1N1) pandemic?

    PubMed

    Nelson, N P; Brownstein, J S; Hartley, D M

    2010-07-29

    The emergence of the 2009 pandemic influenza A(H1N1) virus in North America and its subsequent global spread highlights the public health need for early warning of infectious disease outbreaks. Event-based biosurveillance, based on local- and regional-level Internet media reports, is one approach to early warning as well as to situational awareness. This study analyses media reports in Mexico collected by the Argus biosurveillance system between 1 October 2007 and 31 May 2009. Results from Mexico are compared with the United States and Canadian media reports obtained from the HealthMap system. A significant increase in reporting frequency of respiratory disease in Mexico during the 2008-9 influenza season relative to that of 2007-8 was observed (p<0.0001). The timing of events, based on media reports, suggests that respiratory disease was prevalent in parts of Mexico, and was reported as unusual, much earlier than the microbiological identification of the pandemic virus. Such observations suggest that abnormal respiratory disease frequency and severity was occurring in Mexico throughout the winter of 2008-2009, though its connection to the emergence of the 2009 pandemic influenza A(H1N1) virus remains unclear.

  3. Overview of the winter wave of 2009 pandemic influenza A(H1N1)v in Vojvodina, Serbia

    PubMed Central

    Petrović, Vladimir; Šeguljev, Zorica; Ćosić, Gorana; Ristić, Mioljub; Nedeljković, Jasminka; Dragnić, Nataša; Ukropina, Snežana

    2011-01-01

    Aim To analyze the epidemiological data for pandemic influenza A(H1N1)v in the Autonomous Province of Vojvodina, Serbia, during the season of 2009/2010 and to assess whether including severe acute respiratory illness (SARI) hospitalization data to the surveillance system gives a more complete picture of the impact of influenza during the pandemic. Methods From September 2009 to September 2010, the Institute of Public Health of Vojvodina conducted sentinel surveillance of influenza-like illnesses and acute respiratory infections in all hospitalized patients with SARI and virological surveillance of population of Vojvodina according to the European Centers for Disease Control technical document. Results The pandemic influenza outbreak in the province started in October 2009 (week 44) in students who had returned from a school-organized trip to Prague, Bratislava, and Vienna. The highest incidence rate was 1090 per 100 000 inhabitants, found in the week 50. The most affected age group were children 5-14 years old. A total of 1591 patients with severe illness were admitted to regional hospitals, with a case fatality rate of 2%, representing a hospitalization rate of 78.3 per 100 000 inhabitants and a mortality rate of 1.6 per 100 000. Most frequently hospitalized were 15-19 years old patients, male patients, and patients with pneumonia (P < 0.001). The highest case fatality rate was found among patients with acute respiratory distress syndrome (P < 0.001). Nasal/throat swabs were obtained for polymerase chain reaction test from 315 hospitalized patients and 20 non-hospitalized patients, and 145 (46%) and 15 (75%) specimens, respectively, tested positive on A(H1N1)v. Conclusion Sentinel influenza-like illness and SARI surveillance, both followed with virological surveillance, seem to be the optimal method to monitor the full scope of the influenza pandemic (from mild to severe influenza) in Vojvodina. PMID:21495196

  4. Psychological response of family members of patients hospitalised for influenza A/H1N1 in Oaxaca, Mexico

    PubMed Central

    2010-01-01

    Background The A/H1N1 pandemic originated in Mexico in April 2009, amid high uncertainty, social and economic disruption, and media reports of panic. The aim of this research project was to evaluate the psychological response of family primary caregivers of patients hospitalised in the Intensive Care Unit (ICU) with suspected influenza A/H1N1 to establish whether there was empirical evidence of high adverse psychological response, and to identify risk factors for such a response. If such evidence was found, a secondary aim was to develop a specific early intervention of psychological support for these individuals, to reduce distress and possibly lessen the likelihood of post-traumatic stress disorder (PTSD) in the longer term. Methods Psychological assessment questionnaires were administered to the family primary caregivers of patients hospitalised in the ICU in the General Hospital of Zone 1 of the Mexican Institute for Social Security (IMSS), Oaxaca, Mexico with suspected influenza A/H1N1, during the month of November 2009. The main outcome measures were ratings of reported perceived stress (PSS-10), depression (CES-D), and death anxiety (DAQ). Data were subjected to simple and multiple linear regression analysis to identify risk factors for adverse psychological response. Results Elevated levels of perceived stress and depression, compared to population normative data, and moderate levels of death anxiety were noted. Levels of depression were similar to those found in comparable studies of family members of ICU patients admitted for other conditions. Multiple regression analysis indicated that increasing age and non-spousal family relationship were significantly associated with depression and perceived stress. Female gender, increasing age, and higher levels of education were significantly associated with high death anxiety. Comparisons with data collected in previous studies in the same hospital ICU with groups affected by a range of other medical conditions

  5. Performance of the Directigen EZ Flu A+B rapid influenza diagnostic test to detect pandemic influenza A/H1N1 2009.

    PubMed

    Boyanton, Bobby L; Almradi, Amro; Mehta, Tejal; Robinson-Dunn, Barbara

    2014-04-01

    The Directigen EZ Flu A+B rapid influenza diagnostic test, as compared to real-time reverse transcriptase polymerase chain reaction, demonstrated suboptimal performance to detect pandemic influenza A/H1N1 2009. Age- and viral load-stratified test sensitivity ranged from 33.3 to 84.6% and 0 to 100%, respectively.

  6. HIV-1 and Its gp120 Inhibits the Influenza A(H1N1)pdm09 Life Cycle in an IFITM3-Dependent Fashion

    PubMed Central

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q.; Abrantes, Juliana L.; Costa, Eduardo; Temerozo, Jairo R.; Siqueira, Marilda M.; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L.

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010. PMID:24978204

  7. Partial protection of seasonal trivalent inactivated vaccine against novel pandemic influenza A/H1N1 2009: case-control study in Mexico City

    PubMed Central

    Garcia-Garcia, Lourdes; Valdespino-Gómez, Jose Luis; Lazcano-Ponce, Eduardo; Jimenez-Corona, Aida; Higuera-Iglesias, Anjarath; Cruz-Hervert, Pablo; Cano-Arellano, Bulmaro; Garcia-Anaya, Antonio; Ferreira-Guerrero, Elizabeth; Baez-Saldaña, Renata; Ferreyra-Reyes, Leticia; Ponce-de-León-Rosales, Samuel; Alpuche-Aranda, Celia; Rodriguez-López, Mario Henry; Perez-Padilla, Rogelio; Hernandez-Avila, Mauricio

    2009-01-01

    Objective To evaluate the association of 2008-9 seasonal trivalent inactivated vaccine with cases of influenza A/H1N1 during the epidemic in Mexico. Design Frequency matched case-control study. Setting Specialty hospital in Mexico City, March to May 2009. Participants 60 patients with laboratory confirmed influenza A/H1N1 and 180 controls with other diseases (not influenza-like illness or pneumonia) living in Mexico City or the State of Mexico and matched for age and socioeconomic status. Main outcome measures Odds ratio and effectiveness of trivalent inactivated vaccine against influenza A/H1N1. Results Cases were more likely than controls to be admitted to hospital, undergo invasive mechanical ventilation, and die. Controls were more likely than cases to have chronic conditions that conferred a higher risk of influenza related complications. In the multivariate model, influenza A/H1N1 was independently associated with trivalent inactivated vaccine (odds ratio 0.27, 95% confidence interval 0.11 to 0.66) and underlying conditions (0.15, 0.08 to 0.30). Vaccine effectiveness was 73% (95% confidence interval 34% to 89%). None of the eight vaccinated cases died. Conclusions Preliminary evidence suggests some protection from the 2008-9 trivalent inactivated vaccine against pandemic influenza A/H1N1 2009, particularly severe forms of the disease, diagnosed in a specialty hospital during the influenza epidemic in Mexico City. PMID:19808768

  8. Permissive changes in the neuraminidase play a dominant role in improving the viral fitness of oseltamivir-resistant seasonal influenza A(H1N1) strains.

    PubMed

    Abed, Yacine; Pizzorno, Andrés; Bouhy, Xavier; Boivin, Guy

    2015-02-01

    Permissive neuraminidase (NA) substitutions such as R222Q, V234M and D344N have facilitated the emergence and worldwide spread of oseltamivir-resistant influenza A/Brisbane/59/2007 (H1N1)-H275Y viruses. However, the potential contribution of genetic changes in other viral segments on viral fitness remains poorly investigated. A series of recombinant A(H1N1)pdm09 and A/WSN/33 7:1 reassortants containing the wild-type (WT) A/Brisbane/59/2007 NA gene or its single (H275Y) and double (H275Y/Q222R, H275Y/M234V and H275Y/N344D) variants were generated and their replicative properties were assessed in vitro. The Q222R reversion substitution significantly reduced viral titers when evaluated in both A(H1N1)pdm09 and A/WSN/33 backgrounds. The permissive role of the R222Q was further confirmed using A/WSN/33 7:1 reassortants containing the NA gene of the oseltamivir-susceptible or oseltamivir-resistant influenza A/Mississippi/03/2001 strains. Therefore, NA permissive substitutions play a dominant role for improving viral replication of oseltamivir-resistant A (H1N1)-H275Y viruses in vitro.

  9. Seroprotection of HIV-infected subjects after influenza A(H1N1) vaccination is directly associated with baseline frequency of naive T cells.

    PubMed

    Ramirez, Lorenzo A; Daniel, Alexander; Frank, Ian; Tebas, Pablo; Boyer, Jean D

    2014-08-15

    Human immunodeficiency virus type 1 (HIV-1)-infected individuals, despite receipt of antiretroviral therapy (ART), often have impaired vaccine responses. We examined the role that immune activation and cellular phenotypes play in influenza A(H1N1) vaccine responsiveness in HIV-infected subjects receiving ART. Subjects received the H1N1 vaccine (15-µg dose; Novartis), and antibody titers at baseline and after immunization were evaluated. Subjects were classified as responders if, by week 3, seroprotection guidelines were met. Responders had higher percentages of baseline naive T cells and lower percentages of terminally differentiated T cells, compared with nonresponders. Additionally, the naive CD4(+) T-cell percentage and age were negatively correlated. Preservation of naive T-cell populations by starting therapy early could impact vaccine responses against influenza virus and other pathogens, especially as this population ages.

  10. Seroprotection of HIV-Infected Subjects After Influenza A(H1N1) Vaccination Is Directly Associated With Baseline Frequency of Naive T Cells

    PubMed Central

    Ramirez, Lorenzo A.; Daniel, Alexander; Frank, Ian; Tebas, Pablo; Boyer, Jean D.

    2014-01-01

    Human immunodeficiency virus type 1 (HIV-1)–infected individuals, despite receipt of antiretroviral therapy (ART), often have impaired vaccine responses. We examined the role that immune activation and cellular phenotypes play in influenza A(H1N1) vaccine responsiveness in HIV-infected subjects receiving ART. Subjects received the H1N1 vaccine (15-µg dose; Novartis), and antibody titers at baseline and after immunization were evaluated. Subjects were classified as responders if, by week 3, seroprotection guidelines were met. Responders had higher percentages of baseline naive T cells and lower percentages of terminally differentiated T cells, compared with nonresponders. Additionally, the naive CD4+ T-cell percentage and age were negatively correlated. Preservation of naive T-cell populations by starting therapy early could impact vaccine responses against influenza virus and other pathogens, especially as this population ages. PMID:24610877

  11. Influenza A/H1N1 2009 pneumonia in kidney transplant recipients: characteristics and outcomes following high-dose oseltamivir exposure.

    PubMed

    Watcharananan, S P; Suwatanapongched, T; Wacharawanichkul, P; Chantratitaya, W; Mavichak, V; Mossad, S B

    2010-04-01

    We report 2 cases of severe pneumonia due to the novel pandemic influenza A/H1N1 2009 in kidney transplant recipients. Our patients initially experienced influenza-like illness that rapidly progressed to severe pneumonia within 48 h. The patients became hypoxic and required non-invasive ventilation. The novel influenza A/H1N1 2009 was identified from their nasal swabs. These cases were treated successfully with a relatively high dose of oseltamivir, adjusted for their renal function. Clinical improvement was documented only after a week of antiviral therapy. Despite early antiviral treatment, we showed that morbidity following novel pandemic influenza A/H1N1 2009 infection is high among kidney transplant recipients.

  12. Comparison of the Roche RealTime ready Influenza A/H1N1 Detection Set with CDC A/H1N1pdm09 RT-PCR on samples from three hospitals in Ho Chi Minh City, Vietnam

    PubMed Central

    Tham, Nguyen thi; Hang, Vu thi Ty; Khanh, Trong Huu; Viet, Do Chau; Hien, Tran Tinh; Farrar, Jeremy; van Vinh Chau, Nguyen; van Doorn, H. Rogier

    2012-01-01

    Background Real-time PCR can be considered the gold standard for detection of influenza viruses due to its high sensitivity and specificity. Roche has developed the RealTime ready Influenza A/H1N1 Detection Set, consisting of a generic influenza virus A PCR targeting the M2 gene (M2 PCR) and a specific PCR targeting the HA of A/H1N1-pdm09 (HA PCR, 2009 H1N1), with the intention to make a reliable, rapid, and simple test to detect and quantify 2009 H1N1 in clinical samples. Methods We evaluated this kit against the USCDC/WHO real-time PCR for influenza virus using 419 nose and throat swabs from 210 patients collected in 3 large hospitals in Ho Chi Minh city, Vietnam. Results In the per patient analysis, when compared to CDC PCR, the sensitivity and specificity of the M2 PCR were 85.8 and 97.6%, respectively; the sensitivity and specificity of HA PCR were 88.2 and 100%, respectively. In the per sample analysis, the sensitivity and specificity in nose swabs were higher than in throat swabs for both M2 and HA PCRs. The viral loads as determined with the M2 and HA PCRs correlated well with the Ct values of the CDC PCR. Conclusion Compared with the CDC PCR, the kit has a reasonable sensitivity and very good specificity for the detection and quantification of Influenza A virus and A/H1N1-pdm09. However, given the current status of 2009 H1N1, a kit that can detect all circulating seasonal influenza viruses would be preferable. PMID:22785431

  13. Pandemic influenza A(H1N1)2009 in Morocco: experience of the Mohammed V Military Teaching Hospital, Rabat, 12 June to 24 December 2009.

    PubMed

    Lahlou Amine, I; Bajjou, T; El Rhaffouli, H; Laraqui, A; Hilali, F; Menouar, K; Ennibi, K; Boudlal, M; Bouaiti, E A; Sbai, K; Rbai, M; Hachim, M; Zouhair, S

    2011-06-09

    On 12 June 2009, Morocco was the first country in North Africa to report a laboratory-confirmed case of influenza A(H1N1)2009 virus infection. This study describes the epidemiological and clinical characteristics of 240 laboratory-confirmed cases among 594 outpatients with influenza-like illness at the Mohammed V Military Teaching Hospital, Rabat, from 12 June to 24 December 2009. Real-time reverse transcription-PCR was used to confirm the infection. The epidemic peaked in weeks 47 to 49 (16 November to 6 December 2009). The mean age of cases was 23 years (standard deviation: 14 years). Cough was the most common symptom in 200 cases (83%), followed by fever (≥38 °C) in 195 (81%). Diarrhoea or vomiting was reported in 12 (5%) patients. None of the cases developed any complications and no deaths occurred during the study period.

  14. No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity

    PubMed Central

    Garcia-Etxebarria, Koldo; Bracho, María Alma; Galán, Juan Carlos; Pumarola, Tomàs; Castilla, Jesús; Ortiz de Lejarazu, Raúl; Rodríguez-Dominguez, Mario; Quintela, Inés; Bonet, Núria; Garcia-Garcerà, Marc; Domínguez, Angela; González-Candelas, Fernando; Calafell, Francesc

    2015-01-01

    While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10−8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course. PMID:26379185

  15. Origin and fate of A/H1N1 influenza in Scotland during 2009

    PubMed Central

    Lycett, Samantha; McLeish, Nigel J.; Robertson, Christopher; Carman, William; Baillie, Gregory; McMenamin, James; Rambaut, Andrew; Simmonds, Peter; Woolhouse, Mark

    2012-01-01

    The spread of influenza has usually been described by a ‘density’ model, where the largest centres of population drive the epidemic within a country. An alternative model emphasizing the role of air travel has recently been developed. We have examined the relative importance of the two in the context of the 2009 H1N1 influenza epidemic in Scotland. We obtained genome sequences of 70 strains representative of the geographical and temporal distribution of H1N1 influenza during the summer and winter phases of the pandemic in 2009. We analysed these strains, together with another 128 from the rest of the UK and 292 globally distributed strains, using maximum-likelihood phylogenetic and Bayesian phylogeographical methods. This revealed strikingly different epidemic patterns within Scotland in the early and late parts of 2009. The summer epidemic in Scotland was characterized by multiple independent introductions from both international and other UK sources, followed by major local expansion of a single clade that probably originated in Birmingham. The winter phase, in contrast, was more diverse genetically, with several clades of similar size in different locations, some of which had no particularly close phylogenetic affinity to strains sampled from either Scotland or England. Overall there was evidence to support both models, with significant links demonstrated between North American sequences and those from England, and between England and East Asia, indicating that major air-travel routes played an important role in the pattern of spread of the pandemic, both within the UK and globally. PMID:22337637

  16. [Clinical course of influenza A(H1N1)v in children treated in Warsaw in season 2009/2010].

    PubMed

    Talarek, Ewa; Dembiński, Łukasz; Radzikowski, Andrzej; Smalisz-Skrzypczyk, Katarzyna; Jackowska, Teresa; Marczyńska, Magdalena

    2010-01-01

    In the autumn 2009 in Poland there was an outbreak of influenza A(H1N1)v, approximately 1/3 of confirmed cases in children younger than 14 years. The aim of the study was an epidemiologic and clinical characteristics of pediatric patients with influenza A(H1N1)v and evaluation of antiviral treatment safety. The medical records of 100 children with confirmed influenza A(H1N1)v were reviewed. 48% of children had risk factors for severe clinical course, including 23 younger than 2 years. The most common symptoms were fever (89%) and cough (68%). In 20% children pneumonia was diagnosed, other complications were uncommon. 4 patients required mechanical ventilation and 3 died, all with severe underlying conditions. In 62% of patients oseltamivir was used and it was well tolerated.

  17. The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile

    PubMed Central

    2012-01-01

    of Chile, significantly associated with geographical differences in minimum temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes. PMID:23148597

  18. Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants.

    PubMed

    Ahmed, S Sohail; Schur, Peter H; MacDonald, Noni E; Steinman, Lawrence

    2014-05-01

    The vaccine safety surveillance system effectively detected a very rare adverse event, narcolepsy, in subjects receiving AS03-adjuvanted A(H1N1) pandemic vaccine made using the European inactivation/purification protocol. The reports of increased cases of narcolepsy in non-vaccinated subjects infected with wild A(H1N1) pandemic influenza virus suggest a role for the viral antigen(s) in disease development. However, additional investigations are needed to better understand what factor(s) in wild influenza infection trigger(s) narcolepsy in susceptible hosts. An estimated 31 million doses of European AS03-adjuvanted A(H1N1) pandemic vaccine were used in more than 47 countries. The Canadian AS03-adjuvanted A(H1N1) pandemic vaccine was used with high coverage in Canada where an estimated 12 million doses were administered. As no similar narcolepsy association has been reported to date with the AS03-adjuvanted A(H1N1) pandemic vaccine made using the Canadian inactivation/purification protocol, this suggests that the AS03 adjuvant alone may not be responsible for the narcolepsy association. To date, no narcolepsy association has been reported with the MF59®-adjuvanted A(H1N1) pandemic vaccine. This review article provides a brief background on narcolepsy, outlines the different types of vaccine preparations including the ones for influenza, reviews the accumulated evidence for the safety of adjuvants, and explores the association between autoimmune diseases and natural infections. It concludes by assimilating the historical observations and recent clinical studies to formulate a feasible hypothesis on why vaccine-associated narcolepsy may not be solely linked to the AS03 adjuvant but more likely be linked to how the specific influenza antigen component of the European AS03-adjuvanted pandemic vaccine was prepared. Careful and long-term epidemiological studies of subjects who developed narcolepsy in association with AS03-adjuvanted A(H1N1) pandemic vaccine prepared with

  19. High Vaccination Coverage among Children during Influenza A(H1N1)pdm09 as a Potential Factor of Herd Immunity

    PubMed Central

    Matsuoka, Toshihiko; Sato, Tomoki; Akita, Tomoyuki; Yanagida, Jiturou; Ohge, Hiroki; Kuwabara, Masao; Tanaka, Junko

    2016-01-01

    The objective of this study was to identify factors related to the expansion of infection and prevention of influenza A(H1N1)pdm09. A retrospective non-randomized cohort study (from June 2009 to May 2010) on influenza A(H1N1)pdm09 was conducted in a sample of residents from Hiroshima Prefecture, Japan. The cumulative incidence of the influenza A(H1N1)pdm09 and the pandemic vaccine effectiveness (VE) were estimated. The response rate was 53.5% (178,669/333,892). Overall, the odds ratio of non-vaccinated group to vaccinated group for cumulative incidence of influenza A(H1N1)pdm09 was 2.18 (95% confidence interval (CI): 2.13–2.23) and the VE was 43.9% (CI: 42.8–44.9). The expansion of infection, indicating the power of transmission from infected person to susceptible person, was high in the 7–15 years age groups in each area. In conclusion, results from this survey suggested that schoolchildren-based vaccination rate participates in determining the level of herd immunity to influenza and children might be the drivers of influenza transmission. For future pandemic preparedness, vaccination of schoolchildren may help to prevent disease transmission during influenza outbreak. PMID:27763532

  20. High Vaccination Coverage among Children during Influenza A(H1N1)pdm09 as a Potential Factor of Herd Immunity.

    PubMed

    Matsuoka, Toshihiko; Sato, Tomoki; Akita, Tomoyuki; Yanagida, Jiturou; Ohge, Hiroki; Kuwabara, Masao; Tanaka, Junko

    2016-10-17

    The objective of this study was to identify factors related to the expansion of infection and prevention of influenza A(H1N1)pdm09. A retrospective non-randomized cohort study (from June 2009 to May 2010) on influenza A(H1N1)pdm09 was conducted in a sample of residents from Hiroshima Prefecture, Japan. The cumulative incidence of the influenza A(H1N1)pdm09 and the pandemic vaccine effectiveness (VE) were estimated. The response rate was 53.5% (178,669/333,892). Overall, the odds ratio of non-vaccinated group to vaccinated group for cumulative incidence of influenza A(H1N1)pdm09 was 2.18 (95% confidence interval (CI): 2.13-2.23) and the VE was 43.9% (CI: 42.8-44.9). The expansion of infection, indicating the power of transmission from infected person to susceptible person, was high in the 7-15 years age groups in each area. In conclusion, results from this survey suggested that schoolchildren-based vaccination rate participates in determining the level of herd immunity to influenza and children might be the drivers of influenza transmission. For future pandemic preparedness, vaccination of schoolchildren may help to prevent disease transmission during influenza outbreak.

  1. Molecular modeling studies demonstrate key mutations that could affect the ligand recognition by influenza AH1N1 neuraminidase.

    PubMed

    Ramírez-Salinas, Gema L; García-Machorro, J; Quiliano, Miguel; Zimic, Mirko; Briz, Verónica; Rojas-Hernández, Saul; Correa-Basurto, J

    2015-11-01

    The goal of this study was to identify neuraminidase (NA) residue mutants from human influenza AH1N1 using sequences from 1918 to 2012. Multiple alignment studies of complete NA sequences (5732) were performed. Subsequently, the crystallographic structure of the 1918 influenza (PDB ID: 3BEQ-A) was used as a wild-type structure and three-dimensional (3-D) template for homology modeling of the mutated selected NA sequences. The 3-D mutated NAs were refined using molecular dynamics (MD) simulations (50 ns). The refined 3-D models were used to perform docking studies using oseltamivir. Multiple sequence alignment studies showed seven representative mutations (A232V, K262R, V263I, T264V, S367L, S369N, and S369K). MD simulations applied to 3-D NAs showed that each NA had different active-site shapes according to structural surface visualization and docking results. Moreover, Cartesian principal component analyses (cPCA) show structural differences among these NA structures caused by mutations. These theoretical results suggest that the selected mutations that are located outside of the active site of NA could affect oseltamivir recognition and could be associated with resistance to oseltamivir.

  2. Seroepidemiologic effects of influenza A(H1N1)pdm09 in Australia, New Zealand, and Singapore.

    PubMed

    Trauer, James M; Bandaranayake, Don; Booy, Robert; Chen, Mark I; Cretikos, Michelle; Dowse, Gary K; Dwyer, Dominic E; Greenberg, Michael E; Huang, Q Sue; Khandaker, Gulam; Kok, Jen; Laurie, Karen L; Lee, Vernon J; McVernon, Jodie; Walter, Scott; Markey, Peter G

    2013-01-01

    To estimate population attack rates of influenza A(H1N1)pdm2009 in the Southern Hemisphere during June-August 2009, we conducted several serologic studies. We pooled individual-level data from studies using hemagglutination inhibition assays performed in Australia, New Zealand, and Singapore. We determined seropositive proportions (titer ≥40) for each study region by age-group and sex in pre- and postpandemic phases, as defined by jurisdictional notification data. After exclusions, the pooled database consisted of, 4,414 prepandemic assays and 7,715 postpandemic assays. In the prepandemic phase, older age groups showed greater seropositive proportions, with age-standardized, community-based proportions ranging from 3.5% in Singapore to 11.9% in New Zealand. In the postpandemic phase, seropositive proportions ranged from 17.5% in Singapore to 30.8% in New Zealand, with highest proportions seen in school-aged children. Pregnancy and residential care were associated with lower postpandemic seropositivity, whereas Aboriginal and Torres Strait Islander Australians and Pacific Peoples of New Zealand had greater postpandemic seropositivity.

  3. Clinical aspects of influenza A(H1N1)pdm09 cases reported during the pandemic in Brazil, 2009-2010

    PubMed Central

    Rossetto, Érika Valeska; Luna, Expedito José de Albuquerque

    2015-01-01

    ABSTRACT Objective: To describe the clinical aspects of cases of influenza A(H1N1)pdm09 in Brazil. Methods: A descriptive study of cases reported in Sistema de Informação de Agravos de Notificação (SINAN), 2009-2010. Results: As the final classification, we obtained 53,797 (56.79%) reported cases confirmed as a new influenza virus subtype, and 40,926 (43.21%) cases discarded. Fever was the most common sign, recorded in 99.74% of the confirmed and 98.92% of the discarded cases. Among the confirmed cases, the presence of comorbidities was reported in 32.53%, and in 38.29% of the discarded cases. The case fatality rate was 4.04%; 3,267 pregnant women were confirmed positive for influenza A new viral subtype and 2,730 of them were cured. The case fatality rate of pregnant women was 6.88%. Conclusion: The findings suggested concern of the health system with pregnant women, and patients with comorbidities and quality of care may have favored a lower mortality. We recommend that, when caring for patients with severe respiratory symptoms, with comorbidities, or pregnant women, health professionals should consider the need for hospital care, as these factors make up a worse prognosis of infection by the pandemic influenza virus. PMID:26154537

  4. Serologic response after vaccination against influenza (A/H1N1)pdm09 in children with renal disease receiving oral immunosuppressive drugs.

    PubMed

    Tanaka, Seiji; Saikusa, Tomoko; Katafuchi, Yuno; Ushijima, Kosuke; Ohtsu, Yasushi; Tsumura, Naoki; Ito, Yuhei

    2015-09-11

    A limited number of reports are available regarding the effect of the influenza vaccine in pediatric patients receiving steroid and immunosuppressant therapy. The influenza A(H1N1)pdm09 vaccine was administered to 15 children with renal disease who were receiving steroid and immunosuppressant therapy (treatment group) and 23 children with who were not receiving these drugs (non-treatment group). Titer transition of the hemagglutination inhibition antibody was compared between the 2 groups immediately before vaccination and 4 weeks and 6 months after vaccination. Multivariate analysis showed a significant correlation between geometric mean titer, SCR, and SPR with age, while no correlation was observed between treatment with immunosuppressant therapy and efficacy. No serious adverse reactions occurred after vaccination. This strain is not present in existing influenza vaccines, and A(H1N1)pdm09HA vaccination was administered alone in 2009. The children in this study had not previously been exposed to this strain. Therefore, we evaluated the effect of the A(H1N1)pdm09HA vaccine without the effects of vaccination or past infection with A(H1N1)pdm09HA or A(H3N2) vaccination in the previous year.

  5. WHO recommendations for the viruses used in the 2013-2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013.

    PubMed

    Barr, Ian G; Russell, Colin; Besselaar, Terry G; Cox, Nancy J; Daniels, Rod S; Donis, Ruben; Engelhardt, Othmar G; Grohmann, Gary; Itamura, Shigeyuki; Kelso, Anne; McCauley, John; Odagiri, Takato; Schultz-Cherry, Stacey; Shu, Yuelong; Smith, Derek; Tashiro, Masato; Wang, Dayan; Webby, Richard; Xu, Xiyan; Ye, Zhiping; Zhang, Wenqing

    2014-08-20

    In February the World Health Organisation (WHO) recommends influenza viruses to be included in influenza vaccines for the forthcoming winter in the Northern Hemisphere. These recommendations are based on data collected by National Influenza Centres (NICs) through the WHO Global Influenza Surveillance and Response System (GISRS) and a more detailed analysis of representative and potential antigenically variant influenza viruses from the WHO Collaborating Centres for Influenza (WHO CCs) and Essential Regulatory Laboratories (ERLs). This article provides a detailed summary of the antigenic and genetic properties of viruses and additional background data used by WHO experts during development of the recommendations of the 2013-2014 Northern Hemisphere influenza vaccine composition.

  6. Using High-Throughput Sequencing to Leverage Surveillance of Genetic Diversity and Oseltamivir Resistance: A Pilot Study during the 2009 Influenza A(H1N1) Pandemic

    PubMed Central

    Téllez-Sosa, Juan; Rodríguez, Mario Henry; Gómez-Barreto, Rosa E.; Valdovinos-Torres, Humberto; Hidalgo, Ana Cecilia; Cruz-Hervert, Pablo; Luna, René Santos; Carrillo-Valenzo, Erik; Ramos, Celso; García-García, Lourdes; Martínez-Barnetche, Jesús

    2013-01-01

    Background Influenza viruses display a high mutation rate and complex evolutionary patterns. Next-generation sequencing (NGS) has been widely used for qualitative and semi-quantitative assessment of genetic diversity in complex biological samples. The “deep sequencing” approach, enabled by the enormous throughput of current NGS platforms, allows the identification of rare genetic viral variants in targeted genetic regions, but is usually limited to a small number of samples. Methodology and Principal Findings We designed a proof-of-principle study to test whether redistributing sequencing throughput from a high depth-small sample number towards a low depth-large sample number approach is feasible and contributes to influenza epidemiological surveillance. Using 454-Roche sequencing, we sequenced at a rather low depth, a 307 bp amplicon of the neuraminidase gene of the Influenza A(H1N1) pandemic (A(H1N1)pdm) virus from cDNA amplicons pooled in 48 barcoded libraries obtained from nasal swab samples of infected patients (n  =  299) taken from May to November, 2009 pandemic period in Mexico. This approach revealed that during the transition from the first (May-July) to second wave (September-November) of the pandemic, the initial genetic variants were replaced by the N248D mutation in the NA gene, and enabled the establishment of temporal and geographic associations with genetic diversity and the identification of mutations associated with oseltamivir resistance. Conclusions NGS sequencing of a short amplicon from the NA gene at low sequencing depth allowed genetic screening of a large number of samples, providing insights to viral genetic diversity dynamics and the identification of genetic variants associated with oseltamivir resistance. Further research is needed to explain the observed replacement of the genetic variants seen during the second wave. As sequencing throughput rises and library multiplexing and automation improves, we foresee that the approach

  7. Absenteeism in schools during the 2009 influenza A(H1N1) pandemic: a useful tool for early detection of influenza activity in the community?

    PubMed

    Kara, E O; Elliot, A J; Bagnall, H; Foord, D G F; Pnaiser, R; Osman, H; Smith, G E; Olowokure, B

    2012-07-01

    Certain influenza outbreaks, including the 2009 influenza A(H1N1) pandemic, can predominantly affect school-age children. Therefore the use of school absenteeism data has been considered as a potential tool for providing early warning of increasing influenza activity in the community. This study retrospectively evaluates the usefulness of these data by comparing them with existing syndromic surveillance systems and laboratory data. Weekly mean percentages of absenteeism in 373 state schools (children aged 4-18 years) in Birmingham, UK, from September 2006 to September 2009, were compared with established syndromic surveillance systems including a telephone health helpline, a general practitioner sentinel network and laboratory data for influenza. Correlation coefficients were used to examine the relationship between each syndromic system. In June 2009, school absenteeism generally peaked concomitantly with the existing influenza surveillance systems in England. Weekly school absenteeism surveillance would not have detected pandemic influenza A(H1N1) earlier but daily absenteeism data and the development of baselines could improve the timeliness of the system.

  8. Dependence of the results of ecological-epidemic investigation of influenza A(H1N1) on immunity

    NASA Astrophysics Data System (ADS)

    Fathudinova, Mohinav; Alimova, Barno; Rahimova, Halima

    2016-07-01

    This report presents the results of ecology-epidemical and immunological researches influ-enza virus A (H1 N1) and acute respiratory infection in Dushanbe from 2011 till 2015. The received results epidemiological and immunological analysis showed us, that last years has been changed not only characteristics of influenza epidemic, but it can not be notice the low-er of intensively of the collective immunity to actual versions influenza viruses A and B

  9. Sero-Prevalence and Incidence of A/H1N1 2009 Influenza Infection in Scotland in Winter 2009–2010

    PubMed Central

    McLeish, Nigel J.; Simmonds, Peter; Robertson, Chris; Handel, Ian; McGilchrist, Mark; Singh, Brajendra K.; Kerr, Shona; Chase-Topping, Margo E.; Sinka, Katy; Bronsvoort, Mark; Porteous, David J.; Carman, William; McMenamin, James; Leigh-Brown, Andrew; Woolhouse, Mark E. J.

    2011-01-01

    Background Sero-prevalence is a valuable indicator of prevalence and incidence of A/H1N1 2009 infection. However, raw sero-prevalence data must be corrected for background levels of cross-reactivity (i.e. imperfect test specificity) and the effects of immunisation programmes. Methods and Findings We obtained serum samples from a representative sample of 1563 adults resident in Scotland between late October 2009 and April 2010. Based on a microneutralisation assay, we estimate that 44% (95% confidence intervals (CIs): 40–47%) of the adult population of Scotland were sero-positive for A/H1N1 2009 influenza by 1 March 2010. Correcting for background cross-reactivity and for recorded vaccination rates by time and age group, we estimated that 34% (27–42%) were naturally infected with A/H1N1 2009 by 1 March 2010. The central estimate increases to >40% if we allow for imperfect test sensitivity. Over half of these infections are estimated to have occurred during the study period and the incidence of infection in late October 2009 was estimated at 4.3 new infections per 1000 people per day (1.2 to 7.2), falling close to zero by April 2010. The central estimate increases to over 5.0 per 1000 if we allow for imperfect test specificity. The rate of infection was higher for younger adults than older adults. Raw sero-prevalences were significantly higher in more deprived areas (likelihood ratio trend statistic = 4.92,1 df, P = 0.03) but there was no evidence of any difference in vaccination rates. Conclusions We estimate that almost half the adult population of Scotland were sero-positive for A/H1N1 2009 influenza by early 2010 and that the majority of these individuals (except in the oldest age classes) sero-converted as a result of natural infection with A/H1N1 2009. Public health planning should consider the possibility of higher rates of infection with A/H1N1 2009 influenza in more deprived areas. PMID:21687661

  10. A/H1N1 pandemic influenza vaccination: A retrospective evaluation of adverse maternal, fetal and neonatal outcomes in a cohort of pregnant women in Italy.

    PubMed

    Fabiani, Massimo; Bella, Antonino; Rota, Maria C; Clagnan, Elena; Gallo, Tolinda; D'Amato, Maurizio; Pezzotti, Patrizio; Ferrara, Lorenza; Demicheli, Vittorio; Martinelli, Domenico; Prato, Rosa; Rizzo, Caterina

    2015-05-05

    Although concerns about safety of influenza vaccination during pregnancy have been raised in the past, vaccination of pregnant women was recommended in many countries during the 2009 A/H1N1 pandemic influenza. A retrospective cohort study was conducted to evaluate the risk of adverse maternal, fetal and neonatal outcomes among pregnant women vaccinated with a MF59-adjuvanted A/H1N1 pandemic influenza vaccine. The study was carried out in four Italian regions (Piemonte, Friuli-Venezia-Giulia, Lazio, and Puglia) among 102,077 pregnant women potentially exposed during the second or third trimester of gestation to the vaccination campaign implemented in 2009/2010. Based on data retrieved from the regional administrative databases, the statistical analysis was performed using the Cox proportional-hazards model, adjusting for the propensity score to account for the potential confounding effect due to the socio-demographic characteristics and the clinical and reproductive history of women. A total of 100,332 pregnant women were eligible for the analysis. Of these, 2003 (2.0%) received the A/H1N1 pandemic influenza vaccination during the second or third trimester of gestation. We did not observe any statistically significant association between the A/H1N1 pandemic influenza vaccination and different maternal outcomes (hospital admissions for influenza, pneumonia, hypertension, eclampsia, diabetes, thyroid disease, and anaemia), fetal outcomes (fetal death after the 22nd gestational week) and neonatal outcomes (pre-term birth, low birth weight, low 5-min Apgar score, and congenital malformations). Pre-existing health-risk conditions (hospital admissions and drug prescriptions for specific diseases before the onset of pregnancy) were observed more frequently among vaccinated women, thus suggesting that concomitant chronic conditions increased vaccination uptake. The results of this study add some evidence on the safety of A/H1N1 pandemic influenza vaccination during

  11. The Impact of Immunosenescence on Humoral Immune Response Variation after Influenza A/H1N1 Vaccination in Older Subjects

    PubMed Central

    Haralambieva, Iana H.; Painter, Scott D.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Lambert, Nathaniel D.; Goergen, Krista M.; Oberg, Ann L.; Poland, Gregory A.

    2015-01-01

    Background Although influenza causes significant morbidity and mortality in the elderly, the factors underlying the reduced vaccine immunogenicity and efficacy in this age group are not completely understood. Age and immunosenescence factors, and their impact on humoral immunity after influenza vaccination, are of growing interest for the development of better vaccines for the elderly. Methods We assessed associations between age and immunosenescence markers (T cell receptor rearrangement excision circles – TREC content, peripheral white blood cell telomerase – TERT expression and CD28 expression on T cells) and influenza A/H1N1 vaccine-induced measures of humoral immunity in 106 older subjects at baseline and three timepoints post-vaccination. Results TERT activity (TERT mRNA expression) was significantly positively correlated with the observed increase in the influenza-specific memory B cell ELISPOT response at Day 28 compared to baseline (p-value=0.025). TREC levels were positively correlated with the baseline and early (Day 3) influenza A/H1N1-specific memory B cell ELISPOT response (p-value=0.042 and p-value=0.035, respectively). The expression and/or expression change of CD28 on CD4+ and/or CD8+ T cells at baseline and Day 3 was positively correlated with the influenza A/H1N1-specific memory B cell ELISPOT response at baseline, Day 28 and Day 75 post-vaccination. In a multivariable analysis, the peak antibody response (HAI and/or VNA at Day 28) was negatively associated with age, the percentage of CD8+CD28low T cells, IgD+CD27- naïve B cells, and percentage overall CD20- B cells and plasmablasts, measured at Day 3 post-vaccination. The early change in influenza-specific memory B cell ELISPOT response was positively correlated with the observed increase in influenza A/H1N1-specific HAI antibodies at Day 28 and Day 75 relative to baseline (p-value=0.007 and p-value=0.005, respectively). Conclusion Our data suggest that influenza-specific humoral immunity

  12. A spatial-temporal transmission model and early intervention policies of 2009 A/H1N1 influenza in South Korea.

    PubMed

    Lee, Jonggul; Jung, Eunok

    2015-09-07

    We developed a spatial-temporal model of the 2009 A/H1N1 influenza pandemic in the Seoul metropolitan area (SMA), which is located in the north-west of South Korea and is the second-most complex metropolitan area worldwide. This multi-patch influenza model consists of a SEIAR influenza transmission model and flow model between two districts. This model is based on the daily confirmed cases of A/H1N1 influenza collected by the Korea Center for Disease Control and Prevention from April 27 to September 15, 2009 and the daily commuting data from 33 districts of SMA reported in the 2010 Population and Housing Census (PHC). We analyzed the spread patterns of 2009 influenza in the SMA by the reproductive numbers and geographic information systems. During the early period of novel influenza pandemics, when pharmaceutical interventions are lacking, non-pharmaceutical public health interventions will be the most critical strategies for impeding the spread of influenza and delaying an epidemic. Using the spatial-temporal model developed herein, we also investigated the impact of non-pharmaceutical public health interventions, isolation and/or commuting restrictions, on the incidence reduction in various scenarios. Our model provides scientific evidence for predicting the spread of disease and preparedness for a future pandemic.

  13. Immunogenicity and safety of cell-derived MF59®-adjuvanted A/H1N1 influenza vaccine for children

    PubMed Central

    Knuf, Markus; Leroux-Roels, Geert; Rümke, Hans; Rivera, Luis; Pedotti, Paola; Arora, Ashwani Kumar; Lattanzi, Maria; Kieninger, Dorothee; Cioppa, Giovanni Della

    2015-01-01

    Mass immunization of children has the potential to decrease infection rates and prevent the transmission of influenza. We evaluated the immunogenicity, safety, and tolerability of different formulations of cell-derived MF59-adjuvanted and nonadjuvanted A/H1N1 influenza vaccine in children and adolescents. This was a randomized, single-blind, multicenter study with a total of 666 healthy subjects aged 6 months–17 y in one of 3 vaccination groups, each receiving formulations containing different amounts of influenza A/H1N1 antigen with or without MF59. A booster trivalent seasonal MF59 vaccine was administered one year after primary vaccinations. Antibody titers were assessed by hemagglutination inhibition (HI) and microneutralization assays obtained on days 1, 22, 43, 366, and 387 (3 weeks post booster). Safety was monitored throughout the study. One vaccination with 3.75 μg of A/H1N1 antigen formulated with 50% MF59 (3.75_halfMF59) or 7.5 μg of A/H1N1 antigen formulated with 100% MF59 (7.5_fullMF59) induced an HI titer ≥1:40 in >70% of children in the 1–<3, 3–8, and 9–17 y cohorts; however, 2 vaccinations with nonadjuvanted 15 μg A/H1N1 antigen were needed to achieve this response in the 1–<3 and 3–8 y cohorts. Among children aged 6–11 months, 1 dose of 7.5_fullMF59 resulted in an HI titer ≥1:40 in >70% while 2 doses of 3.75_halfMF59 were required to achieve this result. All vaccines were well tolerated. Our findings support the immunogenicity and safety of the 3.75_halfMF59 (2 doses for children <12 months) and 7.5_fullMF59 vaccine formulations for use in children and adolescents aged 6 months to 17 y The use of the 3.75_halfMF59 could have the benefit of antigen and adjuvant sparing, increasing the available vaccine doses allowing vaccination of more people. PMID:25621884

  14. Molecular Evidence of Transmission of Influenza A/H1N1 2009 on a University Campus

    PubMed Central

    Virk, Ramandeep Kaur; Gunalan, Vithiagaran; Lee, Hong Kai; Inoue, Masafumi; Chua, Catherine; Tan, Boon-Huan; Tambyah, Paul Anantharajah

    2017-01-01

    Background In the recent years, the data on the molecular epidemiology of influenza viruses have expanded enormously because of the availability of cutting-edge sequencing technologies. However, much of the information is from the temperate regions with few studies from tropical regions such as South-east Asia. Despite the fact that influenza has been known to transmit rapidly within semi-closed communities, such as military camps and educational institutions, data are limited from these communities. Objectives To determine the phylogeography of influenza viruses on a university campus, we examined the spatial distribution of influenza virus on the National University of Singapore (NUS) campus. Methods Consenting students from the NUS who sought medical attention at the UHC provided two nasopharyngeal swabs and demographic data. PCR was used for detection of influenza viruses. 34 full-genomes of pH1N1/09 viruses were successfully sequenced by Sanger method and concatenated using Geneious R7. Phylogenetic analysis was conducted using these 34 sequences and 1518 global sequences. Phylogeographic analysis was done using BaTS software and Association index and Fitch parsimony scores were determined. Results Integrating whole genome sequencing data with epidemiological data, we found strong evidence of influenza transmission on campus as isolates from students residing on-campus were highly similar to each other (AI, P value = 0.009; PS, P value = 0.04). There was also evidence of multiple introductions from the community. Conclusions Such data are useful in formulating pandemic preparedness plans which can use these communities as sentinel sites for detection and monitoring of emerging respiratory viral infections. PMID:28060851

  15. Perception of the A/H1N1 influenza pandemic and acceptance of influenza vaccination by Université Claude Bernard Lyon 1 staff: A descriptive study.

    PubMed

    Amour, Sélilah; Djhehiche, Khaled; Zamora, Adeline; Bergeret, Alain; Vanhems, Philippe

    2015-01-01

    We assessed the perception and attitudes of university staff, including medical school and other science specialties, toward the 2009 A/H1N1 influenza pandemic and influenza vaccination program. A cross-sectional online survey was conducted among 4,529 university personnel on October 19-20, 2009. Seven hundred (15%) employees participated in the study. Only 18% were willing to be vaccinated, men more than women (29% versus 9%, P < 0.001), and professors/researchers more than administrative/technical staff (30% vs. 6%, P < 0.001). Intention to be vaccinated was insufficient. Additional efforts are needed to improve information dissemination among university staff. Medical university personnel should receive more information to increase vaccine coverage and protect them as well as patients.

  16. Perception of the A/H1N1 influenza pandemic and acceptance of influenza vaccination by Université Claude Bernard Lyon 1 staff: A descriptive study

    PubMed Central

    Amour, Sélilah; Djhehiche, Khaled; Zamora, Adeline; Bergeret, Alain; Vanhems, Philippe

    2015-01-01

    We assessed the perception and attitudes of university staff, including medical school and other science specialties, toward the 2009 A/H1N1 influenza pandemic and influenza vaccination program. A cross-sectional online survey was conducted among 4,529 university personnel on October 19–20, 2009. Seven hundred (15%) employees participated in the study. Only 18% were willing to be vaccinated, men more than women (29% versus 9%, P < 0.001), and professors/researchers more than administrative/technical staff (30% vs. 6%, P < 0.001). Intention to be vaccinated was insufficient. Additional efforts are needed to improve information dissemination among university staff. Medical university personnel should receive more information to increase vaccine coverage and protect them as well as patients. PMID:25715115

  17. Moderate influenza vaccine effectiveness against hospitalisation with A(H3N2) and A(H1N1) influenza in 2013–14: Results from the InNHOVE network

    PubMed Central

    Rondy, M.; Castilla, J.; Launay, O.; Costanzo, S.; Ezpeleta, C.; Galtier, F.; de Gaetano Donati, K.; Moren, A.

    2016-01-01

    ABSTRACT We conducted a multicentre test negative case control study to estimate the 2013–14 influenza vaccine effectiveness (IVE) against hospitalised laboratory confirmed influenza in 12 hospitals in France, Italy and Spain. We included all ≥18 years hospitalised patients targeted by local influenza vaccination campaign reporting an influenza-like illness within 7 days before admission. We defined as cases patients RT-PCR positive for influenza and as controls those negative for all influenza virus. We used a logistic regression to calculate IVE adjusted for country, month of onset, chronic diseases and age. We included 104 A(H1N1)pdm09, 157 A(H3N2) cases and 585 controls. The adjusted IVE was 42.8% (95%CI: 6.3;65;0) against A(H1N1)pdm09. It was respectively 61.4% (95%CI: −1.9;85.4), 39.4% (95%CI: −32.2;72.2) and 19.7% (95%CI:-148.1;74.0) among patients aged 18–64, 65–79 and ≥80 years. The adjusted IVE against A(H3N2) was 38.1% (95%CI: 8.3;58.2) overall. It was respectively 7.8% (95%CI: −145.3;65.4), 25.6% (95%CI: −36.0;59.2) and 55.2% (95%CI: 15.4;76.3) among patients aged 18–64, 65–79 and ≥80 years. These results suggest a moderate and age varying effectiveness of the 2013–14 influenza vaccine to prevent hospitalised laboratory-confirmed influenza. While vaccination remains the most effective prevention measure, developing more immunogenic influenza vaccines is needed to prevent severe outcomes among target groups. PMID:27065000

  18. Estimating the Disease Burden of 2009 Pandemic Influenza A(H1N1) from Surveillance and Household Surveys in Greece

    PubMed Central

    Sypsa, Vana; Bonovas, Stefanos; Tsiodras, Sotirios; Baka, Agoritsa; Efstathiou, Panos; Malliori, Meni; Panagiotopoulos, Takis; Nikolakopoulos, Ilias; Hatzakis, Angelos

    2011-01-01

    Background The aim of this study was to assess the disease burden of the 2009 pandemic influenza A(H1N1) in Greece. Methodology/Principal Findings Data on influenza-like illness (ILI), collected through cross-sectional nationwide telephone surveys of 1,000 households in Greece repeated for 25 consecutive weeks, were combined with data from H1N1 virologic surveillance to estimate the incidence and the clinical attack rate (CAR) of influenza A(H1N1). Alternative definitions of ILI (cough or sore throat and fever>38°C [ILI-38] or fever 37.1–38°C [ILI-37]) were used to estimate the number of symptomatic infections. The infection attack rate (IAR) was approximated using estimates from published studies on the frequency of fever in infected individuals. Data on H1N1 morbidity and mortality were used to estimate ICU admission and case fatality (CFR) rates. The epidemic peaked on week 48/2009 with approximately 750–1,500 new cases/100,000 population per week, depending on ILI-38 or ILI-37 case definition, respectively. By week 6/2010, 7.1%–15.6% of the population in Greece was estimated to be symptomatically infected with H1N1. Children 5–19 years represented the most affected population group (CAR:27%–54%), whereas individuals older than 64 years were the least affected (CAR:0.6%–2.2%). The IAR (95% CI) of influenza A(H1N1) was estimated to be 19.7% (13.3%, 26.1%). Per 1,000 symptomatic cases, based on ILI-38 case definition, 416 attended health services, 108 visited hospital emergency departments and 15 were admitted to hospitals. ICU admission rate and CFR were 37 and 17.5 per 100,000 symptomatic cases or 13.4 and 6.3 per 100,000 infections, respectively. Conclusions/Significance Influenza A(H1N1) infected one fifth and caused symptomatic infection in up to 15% of the Greek population. Although individuals older than 65 years were the least affected age group in terms of attack rate, they had 55 and 185 times higher risk of ICU admission and CFR

  19. A subregional analysis of epidemiologic and genetic characteristics of influenza A(H1N1)pdm09 in Africa: Senegal, Cape Verde, Mauritania, and Guinea, 2009-2010.

    PubMed

    Dia, Ndongo; Ndiaye, Mbayame Niang; Monteiro, Maria de Lourdes; Koivogui, Lamine; Bara, Mohamed Ould; Diop, Ousmane M

    2013-05-01

    During the pandemic 2009 episode, we conducted laboratory-based surveillance in four countries from West Africa: Senegal, Mauritania, Cape Verde, and Guinea. Specimens were obtained from 3,155 patients: 2,264 patients from Senegal, 498 patients from Cape Verde, 227 patients from Mauritania, and 166 patients from Guinea; 911 (28.9%) patients were positive for influenza, 826 (90.7%) patients were positive for influenza A, and 85 (9.3%) patients were positive for influenza B. Among the influenza A positives, 503 (60.9%) positives were H1N1pdm09, 314 (38.0%) positives were H3N2, and 9 (1.1%) positives were seasonal H1N1. The highest detection rate for seasonal influenza viruses (17.1%) occurred in the 5-14 years age group. However, for A(H1N1)pdm09, the detection rate was highest in the 15-24 years age group (35.8%). Based on the present study data, the timeline of detection of A(H1N1)pdm09 viruses in these four countries should be Cape Verde, Guinea, Mauritania, and finally, Senegal. Genetic and antigenic analyses were performed in some isolates.

  20. Sensitivity of the Quidel Sofia Fluorescent Immunoassay Compared With 2 Nucleic Acid Assays and Viral Culture to Detect Pandemic Influenza A(H1N1)pdm09.

    PubMed

    Arbefeville, Sophie S; Fickle, Ann R; Ferrieri, Patricia

    2015-01-01

    To confirm a diagnosis of influenza at the point of care, healthcare professionals may rely on rapid influenza diagnostic tests (RIDTs). RIDTs have low to moderate sensitivity compared with viral culture or real-time reverse-transcription polymerase chain reaction (rRT-PCR). With the resurgence of the influenza A (Flu A; subtype H1N1) pandemic 2009 (pdm09) strain in the years 2013 and 2014, we evaluated the accuracy of the United State Food and Drug Administration (FDA)-approved Sofia Influenza A+B Fluorescent Immunoassay to detect epidemic Flu A(H1N1)pdm09 in specimens from the upper-respiratory tract. During a 3-month period, we collected 40 specimens that tested positive via PCR and/or culture for Flu A of the H1N1 pdm09 subtype. Of the 40 specimens, 27 tested positive (67.5%) via Sofia assay for Flu A. Of the 13 specimens with a negative result via Sofia testing, 4 had coinfection, as detected by the GenMark Diagnostics eSensor Respiratory Viral Panel. This sensitivity of the RIDT Sofia assay to detect Flu A(H1N1) pdm09 was comparable to previously reported sensitivities ranging from 10% to 75% for older RIDTs.

  1. Use of Cumulative Incidence of Novel Influenza A/H1N1 in Foreign Travelers to Estimate Lower Bounds on Cumulative Incidence in Mexico

    PubMed Central

    Lipsitch, Marc; Lajous, Martin; O'Hagan, Justin J.; Cohen, Ted; Miller, Joel C.; Goldstein, Edward; Danon, Leon; Wallinga, Jacco; Riley, Steven; Dowell, Scott F.; Reed, Carrie; McCarron, Meg

    2009-01-01

    Background An accurate estimate of the total number of cases and severity of illness of an emerging infectious disease is required both to define the burden of the epidemic and to determine the severity of disease. When a novel pathogen first appears, affected individuals with severe symptoms are more likely to be diagnosed. Accordingly, the total number of cases will be underestimated and disease severity overestimated. This problem is manifest in the current epidemic of novel influenza A/H1N1. Methods and Results We used a simple approach to leverage measures of incident influenza A/H1N1 among a relatively small and well observed group of US, UK, Spanish and Canadian travelers who had visited Mexico to estimate the incidence among a much larger and less well surveyed population of Mexican residents. We estimate that a minimum of 113,000 to 375,000 cases of novel influenza A/H1N1 have occurred in Mexicans during the month of April, 2009. Such an estimate serves as a lower bound because it does not account for underreporting of cases in travelers or for nonrandom mixing between Mexican residents and visitors, which together could increase the estimates by more than an order of magnitude. Conclusions We find that the number of cases in Mexican residents may exceed the number of confirmed cases by two to three orders of magnitude. While the extent of disease spread is greater than previously appreciated, our estimate suggests that severe disease is uncommon since the total number of cases is likely to be much larger than those of confirmed cases. PMID:19742302

  2. GENE SIGNATURES ASSOCIATED WITH ADAPTIVE HUMORAL IMMUNITY FOLLOWING SEASONAL INFLUENZA A/H1N1 VACCINATION

    PubMed Central

    Ovsyannikova, Inna G.; Salk, Hannah M.; Kennedy, Richard B.; Haralambieva, Iana H.; Zimmermann, Michael T.; Grill, Diane E.; Oberg, Ann L.; Poland, Gregory A.

    2016-01-01

    This study aimed to identify gene expression markers shared between both influenza hemagglutination-inhibition (HAI) and virus-neutralization antibody (VNA) responses. We enrolled 158 older subjects who received the 2010–2011 trivalent inactivated influenza vaccine (TIV). Influenza-specific HAI and VNA titers, and mRNA-sequencing were performed using blood samples obtained at Days 0, 3 and 28 post-vaccination. For antibody response at Day 28 vs Day 0, several genesets were identified as significant in predictive models for HAI (n=7) and VNA (n=35) responses. Five genesets (comprising the genes MAZ, TTF, GSTM, RABGGTA, SMS, CA, IFNG, and DOPEY) were in common for both HAI and VNA. For response at Day 28 vs Day 3, many genesets were identified in predictive models for HAI (n=13) and VNA (n=41). Ten genesets (comprising biologically related genes, such as MAN1B1, POLL, CEBPG, FOXP3, IL12A, TLR3, TLR7, and others) were shared between HAI and VNA. These identified genesets demonstrated a high degree of network interactions and likelihood for functional relationships. Influenza-specific HAI and VNA responses demonstrated a remarkable degree of similarity. Although unique geneset signatures were identified for each humoral outcome, several genesets were determined to be in common with both HAI and VNA response to influenza vaccine. PMID:27534615

  3. Experiences of General Practitioners and Practice Assistants during the Influenza A(H1N1) Pandemic in the Netherlands: A Cross-Sectional Survey

    PubMed Central

    van Dijk, Christel E.; Hooiveld, Mariette; Jentink, Anne; Isken, Leslie D.; Timen, Aura; Yzermans, C. Joris

    2015-01-01

    Objectives Since few pandemics have occurred since the Spanish influenza pandemic, we should learn from every (mild) pandemic that occurs. The objective of this study was to report on general practitioners’ and practice assistants’ acceptance of the chosen national policy, and experiences in the Netherlands during the influenza A(H1N1)pdm09 pandemic. Methods Data on experience and acceptance of the chosen national policy were obtained by structured questionnaires for general practitioners (n = 372) and practice assistants (n = 503) in April 2010. Results The primary policy chosen for general practice was not always accepted and complied with by general practitioners, although the communication (of changes) and collaboration with involved organisations were rated as positive. In particular, the advised personal protective measures were difficult to implement in daily work and thus not executed by 44% of general practitioners. Half of the general practitioners were not satisfied with the patient information provided by the government. The influenza A(H1N1) pandemic highly impacted on general practitioners’ and practice assistants’ workloads, which was not always deemed to be adequately compensated. Discussion Involvement of general practitioners in future infectious disease outbreaks is essential. This study addresses issues in the pandemic policy which might be critical in a more severe pandemic. PMID:26313147

  4. Molecular epidemiology and phylogenetic analysis of HA gene of influenza A(H1N1)pdm09 strain during 2010-2014 in Dalian, North China.

    PubMed

    Han, Yan; Sun, Nan; Lv, Qiu-Yue; Liu, Dan-Hong; Liu, Da-Peng

    2016-10-01

    The objective of the present study was to evaluate the epidemiology of influenza A(H1N1)pdm09 and its hemagglutinin (HA) molecular and phylogenetic analysis during 2010-2014 in Dalian, North China. A total of 3717 influenza-like illness (ILI) cases were tested by real-time PCR and 493 were found to be positive. Out of these 493 cases, 121 were subtype influenza A(H1N1)pdm09, of which 14 cases were reported in 2010-2011, 29 in 2012-2013, and 78 in 2013-2014. HA coding regions of 45 isolates were compared to that of the vaccine strain A/California/7/09(H1N1), and a number of variations were detected. P83S, S185T, S203T, R223Q, and I321V mutations were observed in all of the Dalian isolates. Furthermore, a high proportion >71 % of the strains possessed the variation D97N and K283E. Phylogenetic analysis confirmed the close match of the majority of circulating strains with the vaccine strains. However, it also reveals a trend of strains to accumulate amino acid variations and form new phylogenetic groups.

  5. [Epidemic of influenza A(H1N1) 2009 in the French overseas territories of the Americas: epidemiological surveillance set up and main results, April 2009-January 2010].

    PubMed

    Larrieu, S; Rosine, J; Ledrans, M; Flamand, C; Chappert, J-L; Cassadou, S; Carvalho, L; Blateau, A; Barrau, M; Ardillon, V; Quénel, P

    2011-05-01

    Guadeloupe, French Guiana, Martinique, St. Martin and St. Barthelemy were the French territories most exposed to the new influenza A(H1N1)v, and adequate epidemiological surveillance tools were promptly developed in order to detect its emergence. The first stage, "containment phase", consisted in detection and management of individual cases. Then, when an autochthonous A(H1N1)v circulation was confirmed, its evolution has been monitored within the whole population, mainly through data collected from sentinel doctors' networks and virological surveillance. This allowed to detect very early the occurrence of epidemics, and to follow their evolution until they were over. Like all the other Caribbean countries, the five French overseas territories were hit by an outbreak of influenza A(H1N1)v. Although they had globally similar characteristics, each epidemic had its specificity in terms of scale and severity. They started between August and September 2009 in four of the five territories, while the last one, St. Barthelemy, was not affected until the end of the year. Attack rate estimates varied from 28 to 70 per 1000 inhabitants according to the territory, and hospitalisation rate varied from 4.3 to 10.3 per 1000 cases. Severity rate didn't reach 1 per 1000 cases in any of the territories. Compared to metropolitan France, the surveillance system presented several strengths, including the pre-existence of both an active sentinel network and an expert committee on emerging diseases in each territory. On the other hand, specific difficulties appeared, notably linked with logistical aspects of virological surveillance and the co-circulation of dengue virus in Guadeloupe and St. Barthelemy. Despite these difficulties, the different tools allowed early detection of the epidemics and follow-up of their evolution. All of them lead to very concordant results, suggesting that they are completely appropriate to monitor a potential new epidemic wave.

  6. Pandemic vaccination strategies and influenza severe outcomes during the influenza A(H1N1)pdm09 pandemic and the post-pandemic influenza season: the Nordic experience.

    PubMed

    Gil Cuesta, Julita; Aavitsland, Preben; Englund, Hélène; Gudlaugsson, Ólafur; Hauge, Siri Helene; Lyytikäinen, Outi; Sigmundsdóttir, Guðrún; Tegnell, Anders; Virtanen, Mikko; Krause, Tyra Grove

    2016-04-21

    During the 2009/10 influenza A(H1N1)pdm09 pandemic, the five Nordic countries adopted different approaches to pandemic vaccination. We compared pandemic vaccination strategies and severe influenza outcomes, in seasons 2009/10 and 2010/11 in these countries with similar influenza surveillance systems. We calculated the cumulative pandemic vaccination coverage in 2009/10 and cumulative incidence rates of laboratory confirmed A(H1N1)pdm09 infections, intensive care unit (ICU) admissions and deaths in 2009/10 and 2010/11. We estimated incidence risk ratios (IRR) in a Poisson regression model to compare those indicators between Denmark and the other countries. The vaccination coverage was lower in Denmark (6.1%) compared with Finland (48.2%), Iceland (44.1%), Norway (41.3%) and Sweden (60.0%). In 2009/10 Denmark had a similar cumulative incidence of A(H1N1)pdm09 ICU admissions and deaths compared with the other countries. In 2010/11 Denmark had a significantly higher cumulative incidence of A(H1N1)pdm09 ICU admissions (IRR: 2.4; 95% confidence interval (CI): 1.9-3.0) and deaths (IRR: 8.3; 95% CI: 5.1-13.5). Compared with Denmark, the other countries had higher pandemic vaccination coverage and experienced less A(H1N1)pdm09-related severe outcomes in 2010/11. Pandemic vaccination may have had an impact on severe influenza outcomes in the post-pandemic season. Surveillance of severe outcomes may be used to compare the impact of influenza between seasons and support different vaccination strategies.

  7. Why were Turks unwilling to accept the A/H1N1 influenza-pandemic vaccination? People's beliefs and perceptions about the swine flu outbreak and vaccine in the later stage of the epidemic.

    PubMed

    Gaygısız, Ümmügülsüm; Gaygısız, Esma; Özkan, Türker; Lajunen, Timo

    2010-12-16

    This study investigated the acceptability of the A/H1N1 influenza vaccination and related factors among 1137 adults in the later stage of the A/H1N1 outbreak in Turkey. Having already been vaccinated or intending to get vaccinated were related to trust in the vaccine effectiveness, perceived risk of the side effects, and benefits of getting vaccinated. Perceived long term consequences of the A/H1N1 infection, perceptions of the A/H1N1 information in media, and barriers for getting vaccinated were related to intention whereas anticipated epidemic situation in Turkey, being chronically ill, and being not married were related to having already been vaccinated.

  8. The Comparative Clinical Course of Pregnant and Non-Pregnant Women Hospitalised with Influenza A(H1N1)pdm09 Infection

    PubMed Central

    Brett, Stephen J.; Enstone, Joanne E.; Read, Robert C.; Openshaw, Peter J. M.; Semple, Malcolm G.; Lim, Wei Shen; Taylor, Bruce L.; McMenamin, James; Nicholson, Karl G.; Bannister, Barbara; Nguyen-Van-Tam, Jonathan S.

    2012-01-01

    Introduction The Influenza Clinical Information Network (FLU-CIN) was established to gather detailed clinical and epidemiological information about patients with laboratory confirmed A(H1N1)pdm09 infection in UK hospitals. This report focuses on the clinical course and outcomes of infection in pregnancy. Methods A standardised data extraction form was used to obtain detailed clinical information from hospital case notes and electronic records, for patients with PCR-confirmed A(H1N1)pdm09 infection admitted to 13 sentinel hospitals in five clinical 'hubs' and a further 62 non-sentinel hospitals, between 11th May 2009 and 31st January 2010.Outcomes were compared for pregnant and non-pregnant women aged 15–44 years, using univariate and multivariable techniques. Results Of the 395 women aged 15–44 years, 82 (21%) were pregnant; 73 (89%) in the second or third trimester. Pregnant women were significantly less likely to exhibit severe respiratory distress at initial assessment (OR = 0.49 (95% CI: 0.30–0.82)), require supplemental oxygen on admission (OR = 0.40 (95% CI: 0.20–0.80)), or have underlying co-morbidities (p-trend <0.001). However, they were equally likely to be admitted to high dependency (Level 2) or intensive care (Level 3) and/or to die, after adjustment for potential confounders (adj. OR = 0.93 (95% CI: 0.46–1.92). Of 11 pregnant women needing Level 2/3 care, 10 required mechanical ventilation and three died. Conclusions Since the expected prevalence of pregnancy in the source population was 6%, our data suggest that pregnancy greatly increased the likelihood of hospital admission with A(H1N1)pdm09. Pregnant women were less likely than non-pregnant women to have respiratory distress on admission, but severe outcomes were equally likely in both groups. PMID:22870239

  9. The Lao Experience in Deploying Influenza A(H1N1)pdm09 Vaccine: Lessons Made Relevant in Preparing for Present Day Pandemic Threats.

    PubMed

    Xeuatvongsa, Anonh; Mirza, Sara; Winter, Christian; Feldon, Keith; Vongphrachanh, Phengta; Phonekeo, Darouny; Denny, Justin; Khanthamaly, Viengphone; Kounnavong, Bounheuang; Lylianou, Doualy; Phousavath, Sisouphane; Norasingh, Sisouveth; Boutta, Nao; Olsen, Sonja; Bresee, Joseph; Moen, Ann; Corwin, Andrew

    2015-01-01

    The Lao PDR, as did most countries of the Mekong Region, embarked on a pandemic vaccine initiative to counter the threat posed by influenza A(H1N1)pdm09. Overall, estimated vaccine coverage of the Lao population was 14%, with uptake in targeted health care workers and pregnant women 99% and 41%, respectively. Adverse Events Following Immunization accounted for only 6% of survey driven, reported vaccination experiences, with no severe consequences or deaths. Public acceptability of the vaccine campaign was high (98%). Challenges to vaccine deployment included: 1) no previous experience in fielding a seasonal influenza vaccine, 2) safety and efficacy concerns, and 3) late arrival of vaccine 10 months into the pandemic. The Lao success in surmounting these hurdles was in large measure attributed to the oversight assigned the National Immunization Program, and national sensitivities in responding to the avian influenza A(H5N1) crisis in the years leading up to the pandemic. The Lao "lessons learned" from pandemic vaccine deployment are made even more relevant four years on, given the many avian influenza strains circulating in the region, all with pandemic potential.

  10. Investigating the effect of high spring incidence of pandemic influenza A(H1N1) on early autumn incidence.

    PubMed

    Burkom, H; Kniss, K; Meltzer, M; Brammer, L; Elbert, Y; Finelli, L; Swerdlow, D

    2012-12-01

    A pandemic H1N1 infection wave in the USA occurred during spring 2009. Some hypothesized that for regions affected by the spring wave, an autumn outbreak would be less likely or delayed compared to unaffected regions because of herd immunity. We investigated this hypothesis using the Outpatient Influenza-like Illness (ILI) Network, a collaboration among the Centers for Disease Control and Prevention, health departments, and care providers. We evaluated the likelihood of high early autumn incidence given high spring incidence in core-based statistical areas (CBSAs). Using a surrogate incidence measure based on influenza-related illness ratios, we calculated the odds of high early autumn incidence given high spring incidence. CBSAs with high spring ILI ratios proved more likely than unaffected CBSAs to have high early autumn ratios, suggesting that elevated spring illness did not protect against early autumn increases. These novel methods are applicable to planning and studies involving other infectious diseases.

  11. Different transmission patterns in the early stages of the influenza A(H1N1)v pandemic: a comparative analysis of 12 European countries.

    PubMed

    Flasche, Stefan; Hens, Niel; Boëlle, Pierre-Yves; Mossong, Joël; van Ballegooijen, W Marijn; Nunes, Baltazar; Rizzo, Caterina; Popovici, Florin; Santa-Olalla, Patricia; Hrubá, Frantiska; Parmakova, Kremena; Baguelin, Marc; van Hoek, Albert Jan; Desenclos, Jean-Claude; Bernillon, Pascale; Cámara, Amparro Larrauri; Wallinga, Jacco; Asikainen, Tommi; White, Peter J; Edmunds, W John

    2011-06-01

    Following the emergence of a novel strain of influenza A(H1N1) in Mexico and the United States in April 2009, its epidemiology in Europe during the summer was limited to sporadic and localised outbreaks. Only the United Kingdom experienced widespread transmission declining with school holidays in late July. Using statistical modelling where applicable we explored the following causes that could explain this surprising difference in transmission dynamics: extinction by chance, differences in the susceptibility profile, age distribution of the imported cases, differences in contact patterns, mitigation strategies, school holidays and weather patterns. No single factor was able to explain the differences sufficiently. Hence an additive mixed model was used to model the country-specific weekly estimates of the effective reproductive number using the extinction probability, school holidays and weather patterns as explanatory variables. The average extinction probability, its trend and the trend in absolute humidity were found to be significantly negatively correlated with the effective reproduction number - although they could only explain about 3% of the variability in the model. By comparing the initial epidemiology of influenza A (H1N1) across different European countries, our analysis was able to uncover a possible role for the timing of importations (extinction probability), mixing patterns and the absolute humidity as underlying factors. However, much uncertainty remains. With better information on the role of these epidemiological factors, the control of influenza could be improved.

  12. Risk perception and information-seeking behaviour during the 2009/10 influenza A(H1N1)pdm09 pandemic in Germany.

    PubMed

    Walter, D; Bohmer, Mm; Reiter, S; Krause, G; Wichmann, O

    2012-03-29

    During the influenza A(H1N1)pdm09 pandemic in 2009/10, a total of 13 consecutive surveys were carried out of the general population in Germany to monitor knowledge, attitude and behaviour concerning the disease and vaccination against pandemic influenza in real time. In total, 13,010 persons aged 14 years or older were interviewed by computer-assisted telephone techniques between November 2009 and April 2010. During the peak of the pandemic, only 18% of participants stated that they perceived the risk of pandemic influenza as high; this proportion fell to 10% in January 2010. There was a significant difference in information-seeking behaviour among population subgroups concerning the disease and vaccine uptake. However, in all subgroups, conventional media sources such as television, radio and newspapers were more frequently used than the Internet. While the majority of participants (78%) felt sufficiently informed to make a decision for or against vaccination, overall vaccination coverage remained low. Among those who decided against vaccination, fear of adverse events and perception that the available vaccines were not sufficiently evaluated were the most frequently stated reasons. Such mistrust in the vaccines and the perceived low risk of the disease were the main barriers that contributed to the low vaccination coverage in Germany during the pandemic.

  13. Risk Factors for Death from Influenza A(H1N1)pdm09, State of São Paulo, Brazil, 2009

    PubMed Central

    Ribeiro, Ana Freitas; Pellini, Alessandra Cristina Guedes; Kitagawa, Beatriz Yuko; Marques, Daniel; Madalosso, Geraldine; de Cassia Nogueira Figueira, Gerrita; Fred, João; Albernaz, Ricardo Kerti Mangabeira; Carvalhanas, Telma Regina Marques Pinto; Zanetta, Dirce Maria Trevisan

    2015-01-01

    This case-control study aimed to assess the risk factors for death from influenza A(H1N1)pdm09 in patients with laboratory confirmation, who had severe acute respiratory illness-SARI and were hospitalized between June 28th and August 29th 2009, in the metropolitan regions of São Paulo and Campinas, Brazil. Medical charts of all the 193 patients who died (cases) and the 386 randomly selected patients who recovered (controls) were investigated in 177 hospitals. Household interviews were conducted with those who had survived and the closest relative of those who had died. 73.6% of cases and 38.1% of controls were at risk of developing influenza-related complications. The 18-to-59-year age group (OR = 2.31, 95%CI: 1.31–4.10 (reference up to 18 years of age)), presence of risk conditions for severity of influenza (OR = 1.99, 95%CI: 1.11–3.57, if one or OR = 6.05, 95%CI: 2.76–13.28, if more than one), obesity (OR = 2.73, 95%CI: 1.28–5.83), immunosuppression (OR = 3.43, 95%CI: 1.28–9.19), and search for previous care associated with the hospitalization (OR = 3.35, 95%CI: 1.75–6.40) were risk factors for death. Antiviral treatment performed within 72 hours of the onset of symptoms (OR = 0.17, 95%CI: 0.08–0.37, if within 48hours, and OR = 0.30, 95%CI: 0.11–0.81, if between 48 and 72 hours) was protective against death. The identification of high-risk patients and early treatment are important factors for reducing morbi-mortality from influenza. PMID:25774804

  14. Risk of Narcolepsy after AS03 Adjuvanted Pandemic A/H1N1 2009 Influenza Vaccine in Adults: A Case-Coverage Study in England

    PubMed Central

    Stowe, Julia; Andrews, Nicholas; Kosky, Christopher; Dennis, Gary; Eriksson, Sofia; Hall, Andrew; Leschziner, Guy; Reading, Paul; Shneerson, John M.; Donegan, Katherine; Miller, Elizabeth

    2016-01-01

    Study Objectives: An increased risk of narcolepsy has been observed in children following ASO3-adjuvanted pandemic A/H1N1 2009 (Pandemrix) vaccine. We investigated whether this risk extends to adults in England. Methods: Six adult sleep centers in England were visited between November 2012 and February 2014 and vaccination/clinical histories obtained from general practitioners. Suspected narcolepsy cases aged older than 17 y were selected. The risk of narcolepsy following Pandemrix was calculated using cases diagnosed by the time of the center visits and those with a diagnosis by November 30, 2011 after which there was increased awareness of the risk in children. The odds of vaccination in cases and in matched population data were compared using a case-coverage design. Results: Of 1,446 possible cases identified, most had onset before 2009 or were clearly not narcolepsy. Of the 60 remaining cases, 20 were excluded after expert review, leaving 40 cases with narcolepsy; 5 had received Pandemrix between 3 and 18 mo before onset. All the vaccinated cases had cataplexy, two received a diagnosis by November 2011 and two were aged 40 y or older. The odds ratio for vaccination in cases compared to the population was 4.24 (95% confidence interval 1.45–12.38) using all cases and 9.06 (1.90–43.17) using cases with a diagnosis by November 2011, giving an attributable risk of 0.59 cases per 100,000 doses. Conclusions: We found a significantly increased risk of narcolepsy in adults following Pandemrix vaccination in England. The risk was lower than that seen in children using a similar study design. Citation: Stowe J, Andrews N, Kosky C, Dennis G, Eriksson S, Hall A, Leschziner G, Reading P, Shneerson JM, Donegan K, Miller E. Risk of narcolepsy after AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine in adults: a case-coverage study in England. SLEEP 2016;39(5):1051–1057. PMID:26856903

  15. Model-based reconstruction of an epidemic using multiple datasets: understanding influenza A/H1N1 pandemic dynamics in Israel

    PubMed Central

    Yaari, R.; Katriel, G.; Stone, L.; Mendelson, E.; Mandelboim, M.; Huppert, A.

    2016-01-01

    Intensified surveillance during the 2009 A/H1N1 influenza pandemic in Israel resulted in large virological and serological datasets, presenting a unique opportunity for investigating the pandemic dynamics. We employ a conditional likelihood approach for fitting a disease transmission model to virological and serological data, conditional on clinical data. The model is used to reconstruct the temporal pattern of the pandemic in Israel in five age-groups and evaluate the factors that shaped it. We estimate the reproductive number at the beginning of the pandemic to be R = 1.4. We find that the combined effect of varying absolute humidity conditions and school vacations (SVs) is responsible for the infection pattern, characterized by three epidemic waves. Overall attack rate is estimated at 32% (28–35%) with a large variation among the age-groups: the highest attack rates within school children and the lowest within the elderly. This pattern of infection is explained by a combination of the age-group contact structure and increasing immunity with age. We assess that SVs increased the overall attack rates by prolonging the pandemic into the winter. Vaccinating school children would have been the optimal strategy for minimizing infection rates in all age-groups. PMID:27030041

  16. Model-based reconstruction of an epidemic using multiple datasets: understanding influenza A/H1N1 pandemic dynamics in Israel.

    PubMed

    Yaari, R; Katriel, G; Stone, L; Mendelson, E; Mandelboim, M; Huppert, A

    2016-03-01

    Intensified surveillance during the 2009 A/H1N1 influenza pandemic in Israel resulted in large virological and serological datasets, presenting a unique opportunity for investigating the pandemic dynamics. We employ a conditional likelihood approach for fitting a disease transmission model to virological and serological data, conditional on clinical data. The model is used to reconstruct the temporal pattern of the pandemic in Israel in five age-groups and evaluate the factors that shaped it. We estimate the reproductive number at the beginning of the pandemic to beR= 1.4. We find that the combined effect of varying absolute humidity conditions and school vacations (SVs) is responsible for the infection pattern, characterized by three epidemic waves. Overall attack rate is estimated at 32% (28-35%) with a large variation among the age-groups: the highest attack rates within school children and the lowest within the elderly. This pattern of infection is explained by a combination of the age-group contact structure and increasing immunity with age. We assess that SVs increased the overall attack rates by prolonging the pandemic into the winter. Vaccinating school children would have been the optimal strategy for minimizing infection rates in all age-groups.

  17. Utility of the first few100 approach during the 2009 influenza A(H1N1) pandemic in the Netherlands

    PubMed Central

    2012-01-01

    Background To guide policy and control measures, decent scientific data are needed for a comprehensive assessment of epidemiological, clinical and virological characteristics of the First Few hundred (FF100) cases. We discuss the feasibility of the FF100 approach during the 2009 pandemic and the added value compared with alternative data sources available. Methods The pandemic preparedness plan enabled us to perform a case–control study, assessing patient characteristics and risk factors for experiencing symptomatic influenza A(H1N1)2009 infection and providing insight into transmission. We assessed to what extent timely and novel data were generated compared to other available data sources. Results In May-December 2009, a total of 68 cases and 48 controls were included in the study. Underlying non-respiratory diseases were significantly more common among cases compared to controls, while a protective effect was found for frequent hand washing. Seroconversion was found for 7/30 controls (23%), and persisting high titers for 4/30 controls (13%). The labour-intensive study design resulted in slow and restricted recruitment. Conclusions The findings of our case–control study gave new insights in transmission risks and possible interventions for improved control. Nevertheless, the FF100 approach lacked timeliness and power due to limited recruitment. For future pandemics we suggest pooling data from several countries, to enable collecting sufficient data in a relatively short period. PMID:22995284

  18. Improving the Evidence Base for Decision Making During a Pandemic: The Example of 2009 Influenza A/H1N1

    PubMed Central

    Finelli, Lyn; Heffernan, Richard T.; Leung, Gabriel M.; Redd, Stephen C.

    2011-01-01

    This article synthesizes and extends discussions held during an international meeting on “Surveillance for Decision Making: The Example of 2009 Pandemic Influenza A/H1N1,” held at the Center for Communicable Disease Dynamics (CCDD), Harvard School of Public Health, on June 14 and 15, 2010. The meeting involved local, national, and global health authorities and academics representing 7 countries on 4 continents. We define the needs for surveillance in terms of the key decisions that must be made in response to a pandemic: how large a response to mount and which control measures to implement, for whom, and when. In doing so, we specify the quantitative evidence required to make informed decisions. We then describe the sources of surveillance and other population-based data that can presently—or in the future—form the basis for such evidence, and the interpretive tools needed to process raw surveillance data. We describe other inputs to decision making besides epidemiologic and surveillance data, and we conclude with key lessons of the 2009 pandemic for designing and planning surveillance in the future. PMID:21612363

  19. Personal Decision-Making Criteria Related to Seasonal and Pandemic A(H1N1) Influenza-Vaccination Acceptance among French Healthcare Workers

    PubMed Central

    Bouadma, Lila; Barbier, François; Biard, Lucie; Esposito-Farèse, Marina; Le Corre, Bertrand; Macrez, Annick; Salomon, Laurence; Bonnal, Christine; Zanker, Caroline; Najem, Christophe; Mourvillier, Bruno; Lucet, Jean Christophe; Régnier, Bernard; Wolff, Michel; Tubach, Florence

    2012-01-01

    Background Influenza-vaccination rates among healthcare workers (HCW) remain low worldwide, even during the 2009 A(H1N1) pandemic. In France, this vaccination is free but administered on a voluntary basis. We investigated the factors influencing HCW influenza vaccination. Methods In June–July 2010, HCW from wards of five French hospitals completed a cross-sectional survey. A multifaceted campaign aimed at improving vaccination coverage in this hospital group was conducted before and during the 2009 pandemic. Using an anonymous self-administered questionnaire, we assessed the relationships between seasonal (SIV) and pandemic (PIV) influenza vaccinations, and sociodemographic and professional characteristics, previous and current vaccination statuses, and 33 statements investigating 10 sociocognitive domains. The sociocognitive domains describing HCWs' SIV and PIV profiles were analyzed using the classification-and-regression–tree method. Results Of the HCWs responding to our survey, 1480 were paramedical and 401 were medical with 2009 vaccination rates of 30% and 58% for SIV and 21% and 71% for PIV, respectively (p<0.0001 for both SIV and PIV vaccinations). Older age, prior SIV, working in emergency departments or intensive care units, being a medical HCW and the hospital they worked in were associated with both vaccinations; while work shift was associated only with PIV. Sociocognitive domains associated with both vaccinations were self-perception of benefits and health motivation for all HCW. For medical HCW, being a role model was an additional domain associated with SIV and PIV. Conclusions Both vaccination rates remained low. Vaccination mainly depended on self-determined factors and for medical HCW, being a role model. PMID:22848342

  20. Research Updates: Experimental Evaluation of 2009 Pandemic A/H1N1 in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: In March 2009, a novel pandemic A/H1N1 emerged in the human population in North America (2). The gene constellation of the emerging virus was demonstrated to be a combination of genes from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before be...

  1. Predictors of clinical outcome in a national hospitalised cohort across both waves of the influenza A/H1N1 pandemic 2009–2010 in the UK

    PubMed Central

    Myles, Puja R; Semple, Malcolm G; Lim, Wei Shen; Openshaw, Peter J M; Gadd, Elaine M; Read, Robert C; Taylor, Bruce L; Brett, Stephen J; McMenamin, James; Enstone, Joanne E; Armstrong, Colin; Bannister, Barbara; Nicholson, Karl G

    2012-01-01

    Background Although generally mild, the 2009–2010 influenza A/H1N1 pandemic caused two major surges in hospital admissions in the UK. The characteristics of patients admitted during successive waves are described. Methods Data were systematically obtained on 1520 patients admitted to 75 UK hospitals between May 2009 and January 2010. Multivariable analyses identified factors predictive of severe outcome. Results Patients aged 5–54 years were over-represented compared with winter seasonal admissions for acute respiratory infection, as were non-white ethnic groups (first wave only). In the second wave patients were less likely to be school age than in the first wave, but their condition was more likely to be severe on presentation to hospital and they were more likely to have delayed admission. Overall, 45% had comorbid conditions, 16.5% required high dependency (level 2) or critical (level 3) care and 5.3% died. As in 1918–1919, the likelihood of severe outcome by age followed a W-shaped distribution. Pre-admission antiviral drug use decreased from 13.3% to 10% between the first and second waves (p=0.048), while antibiotic prescribing increased from 13.6% to 21.6% (p<0.001). Independent predictors of severe outcome were age 55–64 years, chronic lung disease (non-asthma, non-chronic obstructive pulmonary disease), neurological disease, recorded obesity, delayed admission (≥5 days after illness onset), pneumonia, C-reactive protein ≥100 mg/litre, and the need for supplemental oxygen or intravenous fluid replacement on admission. Conclusions There were demographic, ethnic and clinical differences between patients admitted with pandemic H1N1 infection and those hospitalised during seasonal influenza activity. Despite national policies favouring use of antiviral drugs, few patients received these before admission and many were given antibiotics. PMID:22407890

  2. Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates.

    PubMed

    Scherließ, Regina; Ajmera, Ankur; Dennis, Mike; Carroll, Miles W; Altrichter, Jens; Silman, Nigel J; Scholz, Martin; Kemter, Kristina; Marriott, Anthony C

    2014-04-17

    Currently, the need for cooled storage and the impossibility of terminal sterilisation are major drawbacks in vaccine manufacturing and distribution. To overcome current restrictions a preclinical safety and efficacy study was conducted to evaluate new influenza A vaccine formulations regarding thermal resistance, resistance against irradiation-mediated damage and storage stability. We evaluated the efficacy of novel antigen stabilizing and protecting solutions (SPS) to protect influenza A(H1N1)pdm09 split virus antigen under experimental conditions in vitro and in vivo. Original or SPS re-buffered vaccine (Pandemrix) was spray-dried and terminally sterilised by irradiation with 25 kGy (e-beam). Antigen integrity was monitored by SDS-PAGE, dynamic light scattering, size exclusion chromatography and functional haemagglutination assays. In vitro screening experiments revealed a number of highly stable compositions containing glycyrrhizinic acid (GA) and/or chitosan. The most stable composition was selected for storage tests and in vivo assessment of seroconversion in non-human primates (Macaca fascicularis) using a prime-boost strategy. Redispersed formulations with original adjuvant were administered intramuscularly. Storage data revealed high stability of protected vaccines at 4°C and 25°C, 60% relative humidity, for at least three months. Animals receiving original Pandemrix exhibited expected levels of seroconversion after 21 days (prime) and 48 days (boost) as assessed by haemagglutination inhibition and microneutralisation assays. Animals vaccinated with spray-dried and irradiated Pandemrix failed to exhibit seroconversion after 21 days whereas spray-dried and irradiated, SPS-protected vaccines elicited similar seroconversion levels to those vaccinated with original Pandemrix. Boost immunisation with SPS-protected vaccine resulted in a strong increase in seroconversion but had only minor effects in animals treated with non SPS-protected vaccine. In conclusion

  3. Pre- and postpandemic estimates of 2009 pandemic influenza A(H1N1) seroprotection to inform surveillance-based incidence, by age, during the 2013-2014 epidemic in Canada.

    PubMed

    Skowronski, Danuta M; Chambers, Catharine; Sabaiduc, Suzana; Janjua, Naveed Z; Li, Guiyun; Petric, Martin; Krajden, Mel; Purych, Dale; Li, Yan; De Serres, Gaston

    2015-01-01

    To understand the epidemic resurgence of influenza due to the 2009 pandemic influenza A(H1N1) strain (A[H1N1]pdm09) during the 2013-2014 influenza season, we compared age-related cross-sectional estimates of seroprotection before the pandemic (during 2009) and after the pandemic (during 2010 and 2013) to subsequent surveillance-based, laboratory-confirmed incidence of influenza due to A(H1N1)pdm09 in British Columbia, Canada. Prepandemic seroprotection was negligible except for very old adults (defined as adults aged ≥ 80 years), among whom 80% had seroprotection. Conversely, postpandemic seroprotection followed a U-shaped distribution, with detection in approximately 35%-45% of working-aged adults but in ≥ 70% of very old adults and young children, excluding children aged <5 years in 2013, among whom seroprotection again decreased to <20%. The incidence was 5-fold higher during 2013-2014, compared with 2010-2011, and was highest among children aged <5 years and working-aged adults, reflecting a mirror image of the age-based seroprotection data.

  4. Algebraic analysis of social networks for bio-surveillance: the cases of SARS-Beijing-2003 and AH1N1 influenza-México-2009.

    PubMed

    Hincapié, Doracelly; Ospina, Juan

    2011-01-01

    Algebraic analysis of social networks exhibited by SARS-Beijing-2003 and AH1N1 flu-México-2009 was realized. The main tools were the Tutte polynomials and Maple package Graph-Theory. The topological structures like graphs and networks were represented by invariant polynomials. The evolution of a given social network was represented like an evolution of the algebraic complexity of the corresponding Tutte polynomial. The reduction of a given social network was described like an involution of the algebraic complexity of the associated Tutte polynomial. The outbreaks of SARS and AH1N1 Flu were considered like represented by a reduction of previously existing contact networks via the control measures executed by health authorities. From Tutte polynomials were derived numerical indicators about efficiency of control measures.

  5. Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) associated to hereditary neuropathy with liability to pressure palsies (HNPP) and revealed after influenza AH1N1 vaccination.

    PubMed

    Remiche, Gauthier; Abramowicz, Marc; Mavroudakis, Nicolas

    2013-12-01

    Neurological complications of AH1N1 vaccination such as Guillain-Barré syndrome were described in the previous years. Several reports suggest that hereditary neuropathies may be a predisposing factor for immune-mediated neuropathies. We report the case of a 54-year-old female who developed chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) 5 weeks after AH1N1 vaccination. She had no previous neurological history, but neurophysiological features led us to suspect an underlying hereditary neuropathy. PMP22 gene analysis showed a typical deletion, confirming the diagnosis of hereditary neuropathy with liability to pressure palsies (HNPP). We observed a significant clinical and neurophysiological improvement of the neuropathy after intravenous immunoglobulin treatment. This is, to our knowledge, the first reported case of CIDP potentially triggered by AH1N1 vaccination. This and previous observations suggest that genetic-determined neuropathies could predispose to the occurrence of immune-mediated neuropathies. One must recall the possibility of a superimposed hereditary neuropathy like HNPP in patients with a clinical presentation of CIDP, especially when positive family history or unexpected neurophysiological features are present.

  6. Revealing the True Incidence of Pandemic A(H1N1)pdm09 Influenza in Finland during the First Two Seasons - An Analysis Based on a Dynamic Transmission Model.

    PubMed

    Shubin, Mikhail; Lebedev, Artem; Lyytikäinen, Outi; Auranen, Kari

    2016-03-01

    The threat of the new pandemic influenza A(H1N1)pdm09 imposed a heavy burden on the public health system in Finland in 2009-2010. An extensive vaccination campaign was set up in the middle of the first pandemic season. However, the true number of infected individuals remains uncertain as the surveillance missed a large portion of mild infections. We constructed a transmission model to simulate the spread of influenza in the Finnish population. We used the model to analyse the two first years (2009-2011) of A(H1N1)pdm09 in Finland. Using data from the national surveillance of influenza and data on close person-to-person (social) contacts in the population, we estimated that 6% (90% credible interval 5.1 - 6.7%) of the population was infected with A(H1N1)pdm09 in the first pandemic season (2009/2010) and an additional 3% (2.5 - 3.5%) in the second season (2010/2011). Vaccination had a substantial impact in mitigating the second season. The dynamic approach allowed us to discover how the proportion of detected cases changed over the course of the epidemic. The role of time-varying reproduction number, capturing the effects of weather and changes in behaviour, was important in shaping the epidemic.

  7. The I427T neuraminidase (NA) substitution, located outside the NA active site of an influenza A(H1N1)pdm09 variant with reduced susceptibility to NA inhibitors, alters NA properties and impairs viral fitness.

    PubMed

    Tu, Véronique; Abed, Yacine; Barbeau, Xavier; Carbonneau, Julie; Fage, Clément; Lagüe, Patrick; Boivin, Guy

    2017-01-01

    Emergence of pan neuraminidase inhibitor (NAI)-resistant variants constitutes a serious clinical concern. An influenza A(H1N1)pdm09 variant containing the I427T/Q313R neuraminidase (NA) substitutions was previously identified in a surveillance study. Although these changes are not part of the NA active site, the variant showed reduced susceptibility to many NAIs. In this study, we investigated the mechanism of resistance for the I427T/Q313R substitution and its impact on the NA enzyme and viral fitness. Recombinant wild-type (WT), I427T/Q313R and I427T A(H1N1)pdm09 viruses were generated by reverse genetics and tested for their drug susceptibilities, enzymatic properties and replication kinetics in vitro as well as their virulence in mice. Molecular dynamics (MD) simulations were performed for NA structural analysis. The I427T substitution, which was responsible for the resistance phenotype observed in the double (I427T/Q313R) mutant, induced 17-, 56-, 7-, and 14-fold increases in IC50 values against oseltamivir, zanamivir, peramivir and laninamivir, respectively. The I427T substitution alone or combined to Q313R significantly reduced NA affinity. The I427T/Q313R and to a lesser extent I427T recombinant viruses displayed reduced viral titers vs WT in vitro. In experimentally-infected mice, the mortality rates were 62.5%, 0% and 14.3% for the WT, I417T/Q313R and I427T viruses, respectively. There were about 2.5- and 2-Log reductions in mean lung viral titers on day 5 post-infection for the I427T/Q313R and I427T mutants, respectively, compared to WT. Results from simulations revealed that the I427T change indirectly altered the stability of the catalytic R368 residue of the NA enzyme causing its reduced binding to the substrate/inhibitor. This study demonstrates that the I427T/Q313R mutant, not only alters NAI susceptibility but also compromises NA properties and viral fitness, which could explain its infrequent detection in clinic.

  8. Concurrent and cross-season protection of inactivated influenza vaccine against A(H1N1)pdm09 illness among young children: 2012-2013 case-control evaluation of influenza vaccine effectiveness.

    PubMed

    Fu, Chuanxi; Xu, Jianxiong; Lin, Jinyan; Wang, Ming; Li, Kuibiao; Ge, Jing; Thompson, Mark G

    2015-06-09

    In 2012-2013, we examined 1729 laboratory-confirmed A(H1N1)pdm09 influenza cases matched 1:1 with healthy controls and estimated influenza vaccine effectiveness (VE) for trivalent inactivated influenza vaccine (IIV3) to be 67% (95% confidence interval=58-74%) for ages 8 months to 6 years old. Among children aged 8-35 months old, VE for fully vaccinated children (73%, 60-81%) was significantly higher than VE for partially vaccinated children (55%, 33-70%). Significant cross-season protection from prior IIV3 was noted, including VE of 31% (8-48%) from IIV3 received in 2010-2011 against influenza illness in 2012--2013 without subsequent boosting doses.

  9. Potentially-toxic and essential elements profile of AH1N1 patients in Mexico City

    PubMed Central

    Moya, Mireya; Bautista, Edgar G.; Velázquez-González, Antonio; Vázquez-Gutiérrez, Felipe; Tzintzun, Guadalupe; García-Arreola, María Elena; Castillejos, Manuel; Hernández, Andrés

    2013-01-01

    During spring of 2009, a new influenza virus AH1N1 spread in the world causing acute respiratory illness and death, resulting in the first influenza pandemic since 1968. Blood levels of potentially-toxic and essential elements of 40 pneumonia and confirmed AH1N1 were evaluated against two different groups of controls, both not infected with the pandemic strain. Significant concentrations of potentially-toxic elements (lead, mercury, cadmium, chromium, arsenic) along with deficiency of selenium or increased Zn/Cu ratios characterized AH1N1 cases under study when evaluated versus controlled cases. Deficiency of selenium is progressively observed from controls I (influenza like illness) through controls II (pneumonia) and finally pneumonia -AH1N1 infected patients. Cases with blood Se levels greater than the recommended for an optimal cut-off to activate glutathione peroxidase (12.5 μg/dL) recovered from illness and survived. Evaluation of this essential element in critical pneumonia patients at the National Institutes is under evaluation as a clinical trial. PMID:23422930

  10. Vaccine effectiveness in preventing laboratory-confirmed influenza in primary care patients in a season of co-circulation of influenza A(H1N1)pdm09, B and drifted A(H3N2), I-MOVE Multicentre Case-Control Study, Europe 2014/15.

    PubMed

    Valenciano, Marta; Kissling, Esther; Reuss, Annicka; Rizzo, Caterina; Gherasim, Alin; Horváth, Judit Krisztina; Domegan, Lisa; Pitigoi, Daniela; Machado, Ausenda; Paradowska-Stankiewicz, Iwona Anna; Bella, Antonino; Larrauri, Amparo; Ferenczi, Annamária; Lazar, Mihaela; Pechirra, Pedro; Korczyńska, Monika Roberta; Pozo, Francisco; Moren, Alain

    2016-01-01

    Influenza A(H3N2), A(H1N1)pdm09 and B viruses co-circulated in Europe in 2014/15. We undertook a multicentre case-control study in eight European countries to measure 2014/15 influenza vaccine effectiveness (VE) against medically-attended influenza-like illness (ILI) laboratory-confirmed as influenza. General practitioners swabbed all or a systematic sample of ILI patients. We compared the odds of vaccination of ILI influenza positive patients to negative patients. We calculated adjusted VE by influenza type/subtype, and age group. Among 6,579 ILI patients included, 1,828 were A(H3N2), 539 A(H1N1)pdm09 and 1,038 B. VE against A(H3N2) was 14.4% (95% confidence interval (CI): -6.3 to 31.0) overall, 20.7% (95%CI: -22.3 to 48.5), 10.9% (95%CI -30.8 to 39.3) and 15.8% (95% CI: -20.2 to 41.0) among those aged 0-14, 15-59 and  ≥60  years, respectively. VE against A(H1N1)pdm09 was 54.2% (95%CI: 31.2 to 69.6) overall, 73.1% (95%CI: 39.6 to 88.1), 59.7% (95%CI: 10.9 to 81.8), and 22.4% (95%CI: -44.4 to 58.4) among those aged 0-14, 15-59 and  ≥60 years respectively. VE against B was 48.0% (95%CI: 28.9 to 61.9) overall, 62.1% (95%CI: 14.9 to 83.1), 41.4% (95%CI: 6.2 to 63.4) and 50.4% (95%CI: 14.6 to 71.2) among those aged 0-14, 15-59 and ≥60 years respectively. VE against A(H1N1)pdm09 and B was moderate. The low VE against A(H3N2) is consistent with the reported mismatch between circulating and vaccine strains.

  11. Geographical spread of influenza incidence in Spain during the 2009 A(H1N1) pandemic wave and the two succeeding influenza seasons.

    PubMed

    Gomez-Barroso, D; Martinez-Beneito, M A; Flores, V; Amorós, R; Delgado, C; Botella, P; Zurriaga, O; Larrauri, A

    2014-12-01

    The aim of this study was to monitor the spatio-temporal spread of influenza incidence in Spain during the 2009 pandemic and the following two influenza seasons 2010-2011 and 2011-2012 using a Bayesian Poisson mixed regression model; and implement this model of geographical analysis in the Spanish Influenza Surveillance System to obtain maps of influenza incidence for every week. In the pandemic wave the maps showed influenza activity spreading from west to east. The 2010-2011 influenza epidemic wave plotted a north-west/south-east pattern of spread. During the 2011-2012 season the spread of influenza was geographically heterogeneous. The most important source of variability in the model is the temporal term. The model of spatio-temporal spread of influenza incidence is a supplementary tool of influenza surveillance in Spain.

  12. The 2009 Influenza A(H1N1) ’Swine Flu’ Outbreak: U.S. Responses to Global Human Cases

    DTIC Science & Technology

    2009-05-26

    treatable with two antiviral drugs, oseltamivir ( brand name Tamiflu®) and zanamivir ( brand name Relenza®), though there is no available vaccine. WHO...www.who.int/ csr /disease/swineflu/en/ index.html and CRS Report R40554, The 2009 H1N1 “Swine Flu” Outbreak: An Overview, by Sarah A. Lister and C...the virus 5 See WHO, Swine influenza - update 3, April 27, 2009, http://www.who.int/ csr /don

  13. Decreased Serologic Response in Vaccinated Military Recruits during 2011 Correspond to Genetic Drift in Concurrent Circulating Pandemic A/H1N1 Viruses

    DTIC Science & Technology

    2012-04-13

    with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human...disease outbreaks [1,2,3,4]. Military members are particularly susceptible to epidemics from seasonal or novel influenza viruses, such as in 1918 when...Centers for Disease Control and Prevention [CDC] FluView. 2010–2011 influenza season week 10; http://www.cdc.gov/flu/weekly/weeklyarchives2010-2011

  14. I223R Mutation in Influenza A(H1N1)pdm09 Neuraminidase Confers Reduced Susceptibility to Oseltamivir and Zanamivir and Enhanced Resistance with H275Y

    PubMed Central

    Abou-Jaoudé, Georges; Scemla, Anne; Ribaud, Patricia; Mercier-Delarue, Séverine; Caro, Valérie; Enouf, Vincent; Simon, François; Molina, Jean-Michel; van der Werf, Sylvie

    2012-01-01

    Background Resistance of pandemic A(H1N1)2009 (H1N1pdm09) virus to neuraminidase inhibitors (NAIs) has remained limited. A new mutation I223R in the neuraminidase (NA) of H1N1pdm09 virus has been reported along with H275Y in immunocompromised patients. The aim of this study was to determine the impact of I223R on oseltamivir and zanamivir susceptibility. Methods The NA enzymatic characteristics and susceptibility to NAIs of viruses harbouring the mutations I223R and H275Y alone or in combination were analyzed on viruses produced by reverse genetics and on clinical isolates collected from an immunocompromised patient with sustained influenza H1N1pdm09 virus shedding and treated by oseltamivir (days 0–15) and zanamivir (days 15–25 and 70–80). Results Compared with the wild type, the NA of recombinant viruses and clinical isolates with H275Y or I223R mutations had about two-fold reduced affinity for the substrate. The H275Y and I223R isolates showed decreased susceptibility to oseltamivir (246-fold) and oseltamivir and zanamivir (8.9- and 4.9-fold), respectively. Reverse genetics assays confirmed these results and further showed that the double mutation H275Y and I223R conferred enhanced levels of resistance to oseltamivir and zanamivir (6195- and 15.2-fold). In the patient, six days after initiation of oseltamivir therapy, the mutation H275Y conferring oseltamivir resistance and the I223R mutation were detected in the NA. Mutations were detected concomitantly from day 6–69 but molecular cloning did not show any variant harbouring both mutations. Despite cessation of NAI treatment, the mutation I223R persisted along with additional mutations in the NA and the hemagglutinin. Conclusions Reduced susceptibility to both oseltamivir and zanamivir was conferred by the I223R mutation which potentiated resistance to both NAIs when associated with the H275Y mutation in the NA. Concomitant emergence of the I223R and H275Y mutations under oseltamivir treatment underlines

  15. Using surveillance data to estimate pandemic vaccine effectiveness against laboratory confirmed influenza A(H1N1)2009 infection: two case-control studies, Spain, season 2009-2010

    PubMed Central

    2011-01-01

    Background Physicians of the Spanish Influenza Sentinel Surveillance System report and systematically swab patients attended to their practices for influenza-like illness (ILI). Within the surveillance system, some Spanish regions also participated in an observational study aiming at estimating influenza vaccine effectiveness (cycEVA study). During the season 2009-2010, we estimated pandemic influenza vaccine effectiveness using both the influenza surveillance data and the cycEVA study. Methods We conducted two case-control studies using the test-negative design, between weeks 48/2009 and 8/2010 of the pandemic season. The surveillance-based study included all swabbed patients in the sentinel surveillance system. The cycEVA study included swabbed patients from seven Spanish regions. Cases were laboratory-confirmed pandemic influenza A(H1N1)2009. Controls were ILI patients testing negative for any type of influenza. Variables collected in both studies included demographic data, vaccination status, laboratory results, chronic conditions, and pregnancy. Additionally, cycEVA questionnaire collected data on previous influenza vaccination, smoking, functional status, hospitalisations, visits to the general practitioners, and obesity. We used logistic regression to calculate adjusted odds ratios (OR), computing pandemic influenza vaccine effectiveness as (1-OR)*100. Results We included 331 cases and 995 controls in the surveillance-based study and 85 cases and 351 controls in the cycEVA study. We detected nine (2.7%) and two (2.4%) vaccine failures in the surveillance-based and cycEVA studies, respectively. Adjusting for variables collected in surveillance database and swabbing month, pandemic influenza vaccine effectiveness was 62% (95% confidence interval (CI): -5; 87). The cycEVA vaccine effectiveness was 64% (95%CI: -225; 96) when adjusting for common variables with the surveillance system and 75% (95%CI: -293; 98) adjusting for all variables collected. Conclusion

  16. The Ability of a Non-Egg Adapted (Cell-Like) A(H1N1)pdm09 Virus to Egg-Adapt at HA Loci Other than 222 and 223 and Its Effect on the Yield of Viral Protein

    PubMed Central

    Harvey, Ruth; Engelhardt, Othmar G.; Robertson, James S.

    2016-01-01

    Previous studies on influenza A(H1N1)pdm09 candidate vaccine viruses (CVVs) that had adapted to growth in embryonated chicken eggs by the acquisition of amino acid substitutions at HA positions 222 or 223 showed that improved protein yield could be conferred by additional amino acid substitutions in the haemagglutinin (HA) that arose naturally during passaging of the virus in eggs. In this study we investigated, by means of reverse genetics, the ability of a non-egg adapted (cell-like) A(H1N1)pdm09 virus to egg-adapt at HA loci other than 222/223, introducing amino acid substitutions previously identified as egg adaptations in pre-H1N1pdm09 H1N1 viruses and assessing their effect on protein yield and antigenicity. We also investigated the effect on the protein yield of these substitutions in viruses that had A(H1N1)pdm09 internal genes rather than the traditional PR8 internal genes of a CVV. The data show that a cell-like A/Christchurch/16/2010 can be egg-adapted via amino acid substitutions in at least three alternative HA loci (187, 190 and 216), in viruses with either PR8 or A/California/7/2009 internal genes, but that the effects on protein yield vary depending on the amino acid substitution and the internal genes of the virus. Since CVVs need to produce high protein yields to be suitable for vaccine manufacture, the findings of this study will assist in the future characterisation of both wild type viruses and lab-derived CVVs for vaccine use. PMID:27861557

  17. A case-control study of risk factors for death from 2009 pandemic influenza A(H1N1): is American Indian racial status an independent risk factor?

    PubMed

    Hennessy, T W; Bruden, D; Castrodale, L; Komatsu, K; Erhart, L M; Thompson, D; Bradley, K; O'Leary, D R; McLaughlin, J; Landen, M

    2016-01-01

    Historically, American Indian/Alaska Native (AI/AN) populations have suffered excess morbidity and mortality from influenza. We investigated the risk factors for death from 2009 pandemic influenza A(H1N1) in persons residing in five states with substantial AI/AN populations. We conducted a case-control investigation using pandemic influenza fatalities from 2009 in Alaska, Arizona, New Mexico, Oklahoma and Wyoming. Controls were outpatients with influenza. We reviewed medical records and interviewed case proxies and controls. We used multiple imputation to predict missing data and multivariable conditional logistic regression to determine risk factors. We included 145 fatal cases and 236 controls; 22% of cases were AI/AN. Risk factors (P 45 years vs. <18 years], pre-existing medical conditions (mOR 7·1), smoking (mOR 3·0), delayed receipt of antivirals (mOR 6·5), and barriers to healthcare access (mOR 5·3). AI/AN race was not significantly associated with death. The increased influenza mortality in AI/AN individuals was due to factors other than racial status. Prevention of influenza deaths should focus on modifiable factors (smoking, early antiviral use, access to care) and identifying high-risk persons for immunization and prompt medical attention.

  18. A Meta-analysis of Point-of-care Laboratory Tests in the Diagnosis of Novel 2009 Swine-lineage Pandemic Influenza A(H1N1)

    PubMed Central

    Babin, Steven M.; Hsieh, Yu-Hsiang; Rothman, Richard E.; Gaydos, Charlotte A.

    2010-01-01

    This paper reviews fourteen published studies describing performance characteristics, including sensitivity and specificity, of commercially-available rapid, point-of-care (POC) influenza tests in patients affected by an outbreak of a novel swine-related influenza A (H1N1) that was declared a pandemic in 2009. Although these POC tests weren’t intended to be specific for this pandemic influenza strain, the non-specialized skills required and the timeliness of results make these POC tests potentially valuable for clinical and public health use. Pooled sensitivity and specificity for the POC tests studied were 68% and 81%, respectively, but published values were not homogeneous with sensitivities and specificities ranging from 10–88% and 51–100%, respectively. Pooled positive and negative likelihood ratios were 5.94 and 0.42, respectively. These results support current recommendations for use of rapid POC tests when H1N1 is suspected, recognizing that positive results are more reliable than negative results in determining infection, especially when disease prevalence is high. PMID:21396538

  19. Influenza Risk Management: Lessons Learned from an A(H1N1) pdm09 Outbreak Investigation in an Operational Military Setting

    DTIC Science & Technology

    2013-07-10

    Organization/U.S. Centers for Disease Control and Prevention influenza-like illness case definition [fever (T > 100.5˚F/38˚C) in addition to cough and/or sore...H1N1) pdm09-positive individuals. While still not ideal, using cough as the sole screening criteria would have increased sensitivity to 73...CDC) ILI case definition [fever (T > 100.5˚F/ 38˚C) in addition to cough and/or sore throat in the previous 72 hours]. History/unknown history of

  20. Risk of Guillain-Barré syndrome after exposure to pandemic influenza A(H1N1)pdm09 vaccination or infection: a Norwegian population-based cohort study.

    PubMed

    Ghaderi, Sara; Gunnes, Nina; Bakken, Inger Johanne; Magnus, Per; Trogstad, Lill; Håberg, Siri Eldevik

    2016-01-01

    Vaccinations and infections are possible triggers of Guillain-Barré syndrome (GBS). However, studies on GBS after vaccinations during the influenza A(H1N1)pmd09 pandemic in 2009, show inconsistent results. Only few studies have addressed the role of influenza infection. We used information from national health data-bases with information on the total Norwegian population (N = 4,832,211). Cox regression analyses with time-varying covariates and self-controlled case series was applied. The risk of being hospitalized with GBS during the pandemic period, within 42 days after an influenza diagnosis or pandemic vaccination was estimated. There were 490 GBS cases during 2009-2012 of which 410 cases occurred after October 1, 2009 of which 46 new cases occurred during the peak period of the influenza pandemic. An influenza diagnosis was registered for 2.47% of the population and the vaccination coverage was 39.25%. The incidence rate ratio of GBS during the pandemic peak relative to other periods was 1.46 [95% confidence interval (CI) 1.08-1.98]. The adjusted hazard ratio (HR) of GBS within 42 days after a diagnosis of pandemic influenza was 4.89 (95% CI 1.17-20.36). After pandemic vaccination the adjusted HR was 1.11 (95% CI 0.51-2.43). Our results indicated that there was a significantly increased risk of GBS during the pandemic season and after pandemic influenza infection. However, vaccination did not increase the risk of GBS. The small number of GBS cases in this study warrants caution in the interpretation of the findings.

  1. Compliance to oseltamivir among two populations in Oxfordshire, United Kingdom affected by influenza A(H1N1)pdm09, November 2009--a waste water epidemiology study.

    PubMed

    Singer, Andrew C; Järhult, Josef D; Grabic, Roman; Khan, Ghazanfar A; Fedorova, Ganna; Fick, Jerker; Lindberg, Richard H; Bowes, Michael J; Olsen, Björn; Söderström, Hanna

    2013-01-01

    Antiviral provision remains the focus of many pandemic preparedness plans, however, there is considerable uncertainty regarding antiviral compliance rates. Here we employ a waste water epidemiology approach to estimate oseltamivir (Tamiflu®) compliance. Oseltamivir carboxylate (oseltamivir's active metabolite) was recovered from two waste water treatment plant (WWTP) catchments within the United Kingdom at the peak of the autumnal wave of the 2009 Influenza A (H1N1)pdm09 pandemic. Predictions of oseltamivir consumption from detected levels were compared with two sources of national government statistics to derive compliance rates. Scenario and sensitivity analysis indicated between 3-4 and 120-154 people were using oseltamivir during the study period in the two WWTP catchments and a compliance rate between 45-60%. With approximately half the collected antivirals going unused, there is a clear need to alter public health messages to improve compliance. We argue that a near real-time understanding of drug compliance at the scale of the waste water treatment plant (hundreds to millions of people) can potentially help public health messages become more timely, targeted, and demographically sensitive, while potentially leading to less mis- and un-used antiviral, less wastage and ultimately a more robust and efficacious pandemic preparedness plan.

  2. Public perceptions of the transmission of pandemic influenza A/H1N1 2009 from pigs and pork products in Australia.

    PubMed

    Dhand, Navneet K; Hernandez-Jover, Marta; Taylor, Melanie; Holyoake, Patricia

    2011-02-01

    A cross-sectional study was conducted at the height of the pandemic influenza H1N1/09 outbreak in Australia in 2009. The objectives of the study were to evaluate public perceptions about transmission and prevention of the disease, to understand their concerns and preparedness to cope with the disease, and to investigate drivers influencing their behaviour. A questionnaire was designed and administered to 510 customers visiting 15 butcher shops in the Greater Sydney region between 26th June and 2nd August 2009. Data were analysed to estimate the proportion of people with certain perceptions and to evaluate the influence of these perceptions on two binary outcome variables: (1) whether or not people believed that avoiding pork would protect them from contracting H1N1/09, and (2) whether or not they actually made some changes to pork consumption after the outbreak. A majority of the respondents had perceptions based on fact about transmission and prevention of H1N1/09. As many as 96.8% of the respondents believed that washing their hands frequently was likely to protect them from contracting H1N1/09. Similarly, most believed that they could contract H1N1/09 by travelling on public transport with a sick person present (94.1%), by shaking hands with a sick person (89.2%), or by attending a community gathering (73.7%). Women were more likely than men to have factual perceptions about protective behaviours. Misconceptions regarding transmission of the disease were evident, with 21.7% believing that avoiding eating pork could protect them against H1N1/09, 11.1% believing that they could contract H1N1/09 by drinking tap water, 22.8% by handling uncooked pork meat and 15.6% by eating cooked pork. Approximately one third of respondents believed that working in a pig farm or an abattoir increased their likelihood of contracting H1N1/09 (36.9% and 32.3%, respectively). Younger people (<35 years old) were more likely to have these misconceptions than older people. Reduction in

  3. Ethnicity, deprivation and mortality due to 2009 pandemic influenza A(H1N1) in England during the 2009/2010 pandemic and the first post-pandemic season.

    PubMed

    Zhao, H; Harris, R J; Ellis, J; Pebody, R G

    2015-12-01

    The relationship between risk of death following influenza A(H1N1)pdm09 infection and ethnicity and deprivation during the 2009/2010 pandemic period and the first post-pandemic season of 2010/2011 in England was examined. Poisson regression models were used to estimate the mortality risk, adjusted for age, gender, and place of residence. Those of non-White ethnicity experienced an increased mortality risk compared to White populations during the 2009/2010 pandemic [10·5/1000 vs. 6·0/1000 general population; adjusted risk ratio (RR) 1·84, 95% confidence interval (CI) 1·39-2·54] with the highest risk in those of Pakistani ethnicity. However, no significant difference between ethnicities was observed during the following 2010/2011 season. Persons living in areas with the highest level of deprivation had a significantly higher risk of death (RR 2·08, 95% CI 1·49-2·91) compared to the lowest level for both periods. These results highlight the importance of rapid identification of groups at higher risk of severe disease in the early stages of future pandemics to enable the implementation of optimal prevention and control measures for vulnerable populations.

  4. Effectiveness and safety of the A-H1N1 vaccine in children: a hospital-based case–control study

    PubMed Central

    2011-01-01

    Objective To verify whether vaccination against the A-H1N1 virus in the paediatric population was effective in preventing the occurrence of influenza-like illness (ILI) or was associated with adverse events of special interest. Design, setting and patients A case–control analysis was performed as part of surveillance of children hospitalised through the emergency departments of eight paediatric hospitals/wards for ILI, neurological disorders, non-infectious muco-cutaneous diseases and vasculitis, thrombocytopaenia and gastroduodenal lesions. Results Among 736 children enrolled from November 2009 to August 2010, only 25 had been vaccinated with the pandemic vaccine. Out of 268 children admitted for a diagnosis compatible with the adverse events of special interest, six had received the A-H1N1 vaccine, although none of the adverse events occurred within the predefined risk windows. Only 35 children out of 244 admitted with a diagnosis of ILI underwent laboratory testing: 11 were positive and 24 negative for the A-H1N1 virus. None of the A-H1N1 positive children had received the pandemic vaccine. The OR of ILI associated with any influenza vaccination was 0.9 (95% CI 0.1 to 5.5). Conclusions The study provides additional information on the benefit–risk profile of the pandemic vaccine. No sign of risk associated with the influenza A-H1N1 vaccine used in Italy was found, although several limitations were observed: in Italy, pandemic vaccination coverage was low, the epidemic was almost over by mid December 2009 and the A-H1N1 laboratory test was performed only during the epidemic phase (in <10% of children). This study supports the importance of the existing network of hospitals for the evaluation of signals relevant to new vaccines and drugs. PMID:22021877

  5. "Trivalent influenza vaccination of healthy adults 3 years after the onset of swine-origin H1N1 pandemic: restricted immunogenicity of the new A/H1N1v constituent?".

    PubMed

    Allwinn, R; Bickel, M; Lassmann, C; Wicker, S; Friedrichs, I

    2013-04-01

    Influenza vaccination is advised annually to reduce the burden of influenza disease. For sufficient vaccine campaigns also a continuous adoption of influenza vaccines are necessary, due to particularly high genetic variability of influenza A virus. Therefore, we evaluate the effectiveness of the trivalent influenza vaccine 2010/2011, against influenza A (H1N1, H3N2) and influenza B. Immune response was investigated in paired sera from 92 healthcare workers with the hemagglutination inhibition assay (HI). Protective antibody levels (HI titer ≥40) were found after vaccination for influenza A/California/07/2009(H1N1): 84.71 % [GMT: 115.34]; for influenza A/Perth/16/2009(H3N2): 94.94 % [GMT: 268.47] and for influenza B/Brisbane/60/2008: 96.20 % [GMT: 176.83]; matching with the currently circulating virus strains. However, the highest seroprevalence rate was found against influenza B; pre- and post-vaccination titers as well, which may be due to comparatively high virus preservation. Remarkable, lowest seropositivity was seen against H1N1. Despite the significant titer rise, sufficient H1N1 herd immunity was still not achieved. It can be assumed that a high influenza A herd immunity may be a requirement for a successful booster vaccination.

  6. Safety and persistence of the humoral and cellular immune responses induced by 2 doses of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine administered to infants, children and adolescents: Two open, uncontrolled studies.

    PubMed

    Garcia-Sicilia, José; Arístegui, Javier; Omeñaca, Félix; Carmona, Alfonso; Tejedor, Juan C; Merino, José M; García-Corbeira, Pilar; Walravens, Karl; Bambure, Vinod; Moris, Philippe; Caplanusi, Adrian; Gillard, Paul; Dieussaert, Ilse

    2015-01-01

    In children, 2 AS03-adjuvanted A(H1N1)pdm09 vaccine doses given 21 days apart were previously shown to induce a high humoral immune response and to have an acceptable safety profile up to 42 days following the first vaccination. Here, we analyzed the persistence data from 2 open-label studies, which assessed the safety, and humoral and cell-mediated immune responses induced by 2 doses of this vaccine. The first study was a phase II, randomized trial conducted in 104 children aged 6-35 months vaccinated with the A(H1N1)pdm09 vaccine containing 1.9 µg haemagglutinin antigen (HA) and AS03B (5.93 mg tocopherol) and the second study, a phase III, non-randomized trial conducted in 210 children and adolescents aged 3-17 years vaccinated with the A(H1N1)pdm09 vaccine containing 3.75 µg HA and AS03A (11.86 mg tocopherol). Approximately one year after the first dose, all children with available data were seropositive for haemagglutinin inhibition and neutralising antibody titres, but a decline in geometric mean antibody titres was noted. The vaccine induced a cell-mediated immune response in terms of antigen-specific CD4(+) T-cells, which persisted up to one year post-vaccination. The vaccine did not raise any safety concern, though these trials were not designed to detect rare events. In conclusion, 2 doses of the AS03-adjuvanted A(H1N1)pdm09 vaccine at 2 different dosages had a clinically acceptable safety profile, and induced high and persistent humoral and cell-mediated immune responses in children aged 6-35 months and 3-17 years. These studies have been registered at www.clinicaltrials.gov NCT00971321 and NCT00964158.

  7. Safety and persistence of the humoral and cellular immune responses induced by 2 doses of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine administered to infants, children and adolescents: Two open, uncontrolled studies

    PubMed Central

    Garcia-Sicilia, José; Arístegui, Javier; Omeñaca, Félix; Carmona, Alfonso; Tejedor, Juan C; Merino, José M; García-Corbeira, Pilar; Walravens, Karl; Bambure, Vinod; Moris, Philippe; Caplanusi, Adrian; Gillard, Paul; Dieussaert, Ilse

    2015-01-01

    In children, 2 AS03-adjuvanted A(H1N1)pdm09 vaccine doses given 21 days apart were previously shown to induce a high humoral immune response and to have an acceptable safety profile up to 42 days following the first vaccination. Here, we analyzed the persistence data from 2 open-label studies, which assessed the safety, and humoral and cell-mediated immune responses induced by 2 doses of this vaccine. The first study was a phase II, randomized trial conducted in 104 children aged 6–35 months vaccinated with the A(H1N1)pdm09 vaccine containing 1.9 µg haemagglutinin antigen (HA) and AS03B (5.93 mg tocopherol) and the second study, a phase III, non-randomized trial conducted in 210 children and adolescents aged 3–17 years vaccinated with the A(H1N1)pdm09 vaccine containing 3.75 µg HA and AS03A (11.86 mg tocopherol). Approximately one year after the first dose, all children with available data were seropositive for haemagglutinin inhibition and neutralising antibody titres, but a decline in geometric mean antibody titres was noted. The vaccine induced a cell-mediated immune response in terms of antigen-specific CD4+ T-cells, which persisted up to one year post-vaccination. The vaccine did not raise any safety concern, though these trials were not designed to detect rare events. In conclusion, 2 doses of the AS03-adjuvanted A(H1N1)pdm09 vaccine at 2 different dosages had a clinically acceptable safety profile, and induced high and persistent humoral and cell-mediated immune responses in children aged 6–35 months and 3–17 years. These studies have been registered at www.clinicaltrials.gov NCT00971321 and NCT00964158. PMID:26176592

  8. Distinct Patterns of B-Cell Activation and Priming by Natural Influenza Virus Infection Versus Inactivated Influenza Vaccination

    PubMed Central

    He, Xiao-Song; Holmes, Tyson H.; Sanyal, Mrinmoy; Albrecht, Randy A.; García-Sastre, Adolfo; Dekker, Cornelia L.; Davis, Mark M.; Greenberg, Harry B.

    2015-01-01

    Background. The human B-cell response to natural influenza virus infection has not been extensively investigated at the polyclonal level. Methods. The overall B-cell response of patients acutely infected with the 2009 pandemic influenza A(H1N1)pdm09 virus (A[H1N1]pdm09) was analyzed by determining the reactivity of plasmablast-derived polyclonal antibodies (PPAbs) to influenza proteins. Recipients of inactivated influenza vaccine containing the same A(H1N1)pdm09 strain were studied for comparison. Results. During acute infection, robust plasmablast responses to the infecting virus were detected, characterized by a greater PPAb reactivity to the conserved influenza virus nuclear protein and to heterovariant and heterosubtypic hemagglutinins, in comparison to responses to the inactivated A(H1N1)pdm09 vaccine. In A(H1N1)pdm09 vaccinees, the presence of baseline serum neutralizing antibodies against A(H1N1)pdm09, suggesting previous exposure to natural A(H1N1)pdm09 infection, did not affect the plasmablast response to vaccination, whereas repeated immunization with inactivated A(H1N1)pdm09 vaccine resulted in significantly reduced vaccine-specific and cross-reactive PPAb responses. Conclusions. Natural A(H1N1)pdm09 infection and inactivated A(H1N1)pdm09 vaccination result in very distinct patterns of B-cell activation and priming. These differences are likely to be associated with differences in protective immunity, especially cross-protection against heterovariant and heterosubtypic influenza virus strains. PMID:25336731

  9. Reassortment ability of the 2009 pandemic H1N1 influenza virus with circulating human and avian influenza viruses: public health risk implications.

    PubMed

    Stincarelli, Maria; Arvia, Rosaria; De Marco, Maria Alessandra; Clausi, Valeria; Corcioli, Fabiana; Cotti, Claudia; Delogu, Mauro; Donatelli, Isabella; Azzi, Alberta; Giannecchini, Simone

    2013-08-01

    Exploring the reassortment ability of the 2009 pandemic H1N1 (A/H1N1pdm09) influenza virus with other circulating human or avian influenza viruses is the main concern related to the generation of more virulent or new variants having implications for public health. After different coinfection experiments in human A549 cells, by using the A/H1N1pdm09 virus plus one of human seasonal influenza viruses of H1N1 and H3N2 subtype or one of H11, H10, H9, H7 and H1 avian influenza viruses, several reassortant viruses were obtained. Among these, the HA of H1N1 was the main segment of human seasonal influenza virus reassorted in the A/H1N1pdm09 virus backbone. Conversely, HA and each of the three polymerase segments, alone or in combination, of the avian influenza viruses mainly reassorted in the A/H1N1pdm09 virus backbone. Of note, A/H1N1pdm09 viruses that reassorted with HA of H1N1 seasonal human or H11N6 avian viruses or carried different combination of avian origin polymerase segments, exerted a higher replication effectiveness than that of the parental viruses. These results confirm that reassortment of the A/H1N1pdm09 with circulating low pathogenic avian influenza viruses should not be misjudged in the prediction of the next pandemic.

  10. Narcolepsy and A(H1N1)pdm09 vaccination

    PubMed Central

    van der Most, Robbert; Van Mechelen, Marcelle; Destexhe, Eric; Wettendorff, Martine; Hanon, Emmanuel

    2014-01-01

    Epidemiological data from several European countries suggested an increased risk of the chronic sleep disorder narcolepsy following vaccination with Pandemrix™, an AS03-adjuvanted, pandemic A(H1N1)pdm09 influenza vaccine. Further research to investigate potential associations between Pandemrix™ vaccination, A(H1N1)pdm09 influenza infection and narcolepsy is required. Narcolepsy is most commonly caused by a reduction or absence of hypocretin produced by hypocretin-secreting neurons in the hypothalamus, and is tightly associated with HLA-II DQB1*06:02. Consequently, research focusing on CD4+ T-cell responses, building on the hypothesis that for disease development, T cells specific for antigen(s) from hypocretin neurons must be activated or reactivated, is considered essential. Therefore, the following key areas of research can be identified, (1) characterization of hypothetical narcolepsy-specific auto-immune CD4+ T cells, (2) mapping epitopes of such T cells, and (3) evaluating potential mechanisms that would enable such cells to gain access to the hypothalamus. Addressing these questions could further our understanding of the potential links between narcolepsy and A(H1N1)pdm09 vaccination and/or infection. Of particular interest is that any evidence of a mimicry-based mechanism could also explain the association between narcolepsy and A(H1N1)pdm09 influenza infection. PMID:24342916

  11. Phylogenetic Exploration of Nosocomial Transmission Chains of 2009 Influenza A/H1N1 among Children Admitted at Red Cross War Memorial Children's Hospital, Cape Town, South Africa in 2011.

    PubMed

    Valley-Omar, Ziyaad; Nindo, Fredrick; Mudau, Maanda; Hsiao, Marvin; Martin, Darren Patrick

    2015-01-01

    Traditional modes of investigating influenza nosocomial transmission have entailed a combination of confirmatory molecular diagnostic testing and epidemiological investigation. Common hospital-acquired infections like influenza require a discerning ability to distinguish between viral isolates to accurately identify patient transmission chains. We assessed whether influenza hemagglutinin sequence phylogenies can be used to enrich epidemiological data when investigating the extent of nosocomial transmission over a four-month period within a paediatric Hospital in Cape Town South Africa. Possible transmission chains/channels were initially determined through basic patient admission data combined with Maximum likelihood and time-scaled Bayesian phylogenetic analyses. These analyses suggested that most instances of potential hospital-acquired infections resulted from multiple introductions of Influenza A into the hospital, which included instances where virus hemagglutinin sequences were identical between different patients. Furthermore, a general inability to establish epidemiological transmission linkage of patients/viral isolates implied that identified isolates could have originated from asymptomatic hospital patients, visitors or hospital staff. In contrast, a traditional epidemiological investigation that used no viral phylogenetic analyses, based on patient co-admission into specific wards during a particular time-frame, suggested that multiple hospital acquired infection instances may have stemmed from a limited number of identifiable index viral isolates/patients. This traditional epidemiological analysis by itself could incorrectly suggest linkage between unrelated cases, underestimate the number of unique infections and may overlook the possible diffuse nature of hospital transmission, which was suggested by sequencing data to be caused by multiple unique introductions of influenza A isolates into individual hospital wards. We have demonstrated a functional

  12. Phylogenetic Exploration of Nosocomial Transmission Chains of 2009 Influenza A/H1N1 among Children Admitted at Red Cross War Memorial Children’s Hospital, Cape Town, South Africa in 2011

    PubMed Central

    Hsiao, Marvin; Martin, Darren Patrick

    2015-01-01

    Traditional modes of investigating influenza nosocomial transmission have entailed a combination of confirmatory molecular diagnostic testing and epidemiological investigation. Common hospital-acquired infections like influenza require a discerning ability to distinguish between viral isolates to accurately identify patient transmission chains. We assessed whether influenza hemagglutinin sequence phylogenies can be used to enrich epidemiological data when investigating the extent of nosocomial transmission over a four-month period within a paediatric Hospital in Cape Town South Africa. Possible transmission chains/channels were initially determined through basic patient admission data combined with Maximum likelihood and time-scaled Bayesian phylogenetic analyses. These analyses suggested that most instances of potential hospital-acquired infections resulted from multiple introductions of Influenza A into the hospital, which included instances where virus hemagglutinin sequences were identical between different patients. Furthermore, a general inability to establish epidemiological transmission linkage of patients/viral isolates implied that identified isolates could have originated from asymptomatic hospital patients, visitors or hospital staff. In contrast, a traditional epidemiological investigation that used no viral phylogenetic analyses, based on patient co-admission into specific wards during a particular time-frame, suggested that multiple hospital acquired infection instances may have stemmed from a limited number of identifiable index viral isolates/patients. This traditional epidemiological analysis by itself could incorrectly suggest linkage between unrelated cases, underestimate the number of unique infections and may overlook the possible diffuse nature of hospital transmission, which was suggested by sequencing data to be caused by multiple unique introductions of influenza A isolates into individual hospital wards. We have demonstrated a functional

  13. [Recommendations of the Infectious Diseases Work Group (GTEI) of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC) and the Infections in Critically Ill Patients Study Group (GEIPC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) for the diagnosis and treatment of influenza A/H1N1 in seriously ill adults admitted to the Intensive Care Unit].

    PubMed

    Rodríguez, A; Alvarez-Rocha, L; Sirvent, J M; Zaragoza, R; Nieto, M; Arenzana, A; Luque, P; Socías, L; Martín, M; Navarro, D; Camarena, J; Lorente, L; Trefler, S; Vidaur, L; Solé-Violán, J; Barcenilla, F; Pobo, A; Vallés, J; Ferri, C; Martín-Loeches, I; Díaz, E; López, D; López-Pueyo, M J; Gordo, F; del Nogal, F; Marqués, A; Tormo, S; Fuset, M P; Pérez, F; Bonastre, J; Suberviola, B; Navas, E; León, C

    2012-03-01

    The diagnosis of influenza A/H1N1 is mainly clinical, particularly during peak or seasonal flu outbreaks. A diagnostic test should be performed in all patients with fever and flu symptoms that require hospitalization. The respiratory sample (nasal or pharyngeal exudate or deeper sample in intubated patients) should be obtained as soon as possible, with the immediate start of empirical antiviral treatment. Molecular methods based on nucleic acid amplification techniques (RT-PCR) are the gold standard for the diagnosis of influenza A/H1N1. Immunochromatographic methods have low sensitivity; a negative result therefore does not rule out active infection. Classical culture is slow and has low sensitivity. Direct immunofluorescence offers a sensitivity of 90%, but requires a sample of high quality. Indirect methods for detecting antibodies are only of epidemiological interest. Patients with A/H1N1 flu may have relative leukopenia and elevated serum levels of LDH, CPK and CRP, but none of these variables are independently associated to the prognosis. However, plasma LDH> 1500 IU/L, and the presence of thrombocytopenia <150 x 10(9)/L, could define a patient population at risk of suffering serious complications. Antiviral administration (oseltamivir) should start early (<48 h from the onset of symptoms), with a dose of 75 mg every 12h, and with a duration of at least 7 days or until clinical improvement is observed. Early antiviral administration is associated to improved survival in critically ill patients. New antiviral drugs, especially those formulated for intravenous administration, may be the best choice in future epidemics. Patients with a high suspicion of influenza A/H1N1 infection must continue with antiviral treatment, regardless of the negative results of initial tests, unless an alternative diagnosis can be established or clinical criteria suggest a low probability of influenza. In patients with influenza A/H1N1 pneumonia, empirical antibiotic therapy should

  14. Global migration of influenza A viruses in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of the 2009 A/H1N1 pandemic virus underscores the importance of understanding how influenza A viruses evolve in swine on a global scale. To reveal the frequency, patterns and drivers of the spread of swine influenza virus globally, we conducted the largest phylogenetic analysis of swin...

  15. High prevalence of amantadine-resistant influenza A virus isolated in Gyeonggi Province, South Korea, during 2005-2010.

    PubMed

    Cho, Han-Gil; Choi, Jang-Hoon; Kim, Woon-Ho; Hong, Hae-Kun; Yoon, Mi-Hye; Jho, Eek-Hoon; Kang, Chun; Lim, Young-Hee

    2013-01-01

    Amantadine resistance among influenza A viruses was investigated in South Korea in 2005-2010. Of 308 influenza A viruses examined, 229 had the S31N substitution in the M2 protein. The frequency of amantadine resistance was 30 %, 100 %, and 76 % in influenza A/H1N1, pandemic A/H1N1 2009(A/H1N1pdm), and A/H3N2 subtypes, respectively. The amantadine-resistant influenza A/H1N1pdm and A/H3N2 viruses were circulating continuously from 2008 to 2009 and from 2005 to 2006, respectively. Amantadine resistance among influenza A viruses increased dramatically during the 5-year study period, and this has diminished the usefulness of this class of drugs.

  16. A dose-ranging study of MF59®-adjuvanted and non-adjuvanted A/H1N1 pandemic influenza vaccine in young to middle-aged and older adult populations to assess safety, immunogenicity, and antibody persistence one year after vaccination

    PubMed Central

    Reisinger, Keith S; Holmes, Sandra J; Pedotti, Paola; Arora, Ashwani Kumar; Lattanzi, Maria

    2014-01-01

    Background During development of an A/H1N1 pandemic influenza vaccine, this study was performed to identify the antigen and adjuvant content which would provide optimal antibody response and persistence in adults and the elderly. Dose-sparing strategies, such as inclusion of adjuvants, are critical in ensuring the widest possible population coverage in the event of an influenza pandemic, despite a limited global capacity for vaccine manufacture. Methods Healthy subjects aged 18−64 years (n = 1240) and ≥65 years (n = 1352) were vaccinated with 1 of 8 investigational vaccine formulations varying in antigen quantity (3.75 µg to 30 µg of hemagglutinin) and MF59® adjuvant (none, half dose, or full dose). All subjects received 2 vaccine doses administered 3 weeks apart. Antibody response was assessed by hemagglutination inhibition assay 1 and 3 weeks after administration of first and second doses. Antibody persistence was assessed after 6 and 12 mo. Vaccine safety was monitored over 12 mo. Results All 8 investigational A/H1N1 vaccine formulations were well tolerated, and rapidly induced high antibody titers which met all of the Center for Biologics Evaluation and Research (CBER) and Committee for Medicinal Products for Human Use (CHMP) licensure criteria 3 weeks after one dose. The highest antibody titers were observed in participants vaccinated with higher quantities of antigen and adjuvant. Conclusion A single vaccine dose containing 3.75 µg of A/California/7/2009 (H1N1) antigen with MF59 adjuvant was identified as optimal for young to middle-aged (18−64 years) and older (≥65 years) adult populations. PMID:25424947

  17. Detection of Novel Reassortant Influenza A (H3N2) and H1N1 2009 Pandemic Viruses in Swine in Hanoi, Vietnam.

    PubMed

    Baudon, E; Poon, L L; Dao, T D; Pham, N T; Cowling, B J; Peyre, M; Nguyen, K V; Peiris, M

    2015-09-01

    From May to September 2013, monthly samples were collected from swine in a Vietnamese slaughterhouse for influenza virus isolation and serological testing. A(H1N1)pdm09 viruses and a novel H3N2 originating from reassortment between A(H1N1)pdm09 and novel viruses of the North American triple reassortant lineage were isolated. Serological results showed low seroprevalence for the novel H3N2 virus and higher seroprevalence for A(H1N1)pdm09 viruses. In addition, serology suggested that other swine influenza viruses are also circulating in Vietnamese swine.

  18. [Severe cases of A(H1N1)v2009 infection in Réunion Island in 2009 and 2010].

    PubMed

    Gaüzère, B-A; Bussienne, F; Bouchet, B; Jabot, J; Roussiaux, A; Drouet, D; Djourhi, S; Leauté, B; Belcour, D; Bossard, G; Champion, S; Jaffar-Bandjee, M-C; Belmonte, O; Vilain, P; Brottet, E; Hoang, L; Vandroux, D

    2011-05-01

    In the Southern hemisphere, Réunion Island acts as a sentinel for infections preferentially occurring during the austral winter that are likely to reach the Northern hemisphere a few months later. We relate the main features concerning patients that were admitted during years 2009 and 2010 in our intensive care unit with an A(H1N1)v2009 infection, mainly for acute respiratory distress. Demographic, clinical, and biological data as well as given medications and outcome were prospectively collected among all PCR-confirmed influenza-infected patients. In 2009 and 2010, 25 patients met the criteria. Patients' median age was 40.4 (±17.4) years. Most of them (22/25) had comorbidities such as: chronic diseases, overweight, obesity, pregnancy, and Down syndrome. Maximum bed-occupation rate was 10 days per million inhabitants. Main diagnosis for ICU admission was virus-related pneumonia. Twenty-two out of 25 patients needed mechanical ventilation, some required rescue therapies such as extracorporeal membranous oxygenation (ECMO) or hi-frequency oscillation ventilation (HFOV), both only available in few French hospitals. Within the study period, 12 patients died (48%) mainly of multi-organ failure. Through 2009 and 2010 autumn and winter periods, for several weeks, the A(H1N1)v2009 virus infection resulted in a significant increase of workload in Réunion Island ICUs. In 2010, the failure of the mass immunization campaign, particularly among the at-risk groups, led to severe cases of A(H1N1)v2009 infections, particularly among patients with comorbidities. Our data may contribute toward better management of influenza virus pandemics in the future.

  19. A/H1N1 antibodies and TRIB2 autoantibodies in narcolepsy patients diagnosed in conjunction with the Pandemrix vaccination campaign in Sweden 2009-2010.

    PubMed

    Lind, Alexander; Ramelius, Anita; Olsson, Tomas; Arnheim-Dahlström, Lisen; Lamb, Favelle; Khademi, Mohsen; Ambati, Aditya; Maeurer, Markus; Nilsson, Anna-Lena; Bomfim, Izaura Lima; Fink, Katharina; Lernmark, Åke

    2014-05-01

    Narcolepsy is a lifelong sleep disorder related to hypocretin deficiency resulting from a specific loss of hypocretin-producing neurons in the lateral hypothalamic area. The disease is thought to be autoimmune due to a strong association with HLA-DQB1*06:02. In 2009 the World Health Organization (WHO) declared the H1N1 2009 flu pandemic (A/H1N1PDM09). In response to this, the Swedish vaccination campaign began in October of the same year, using the influenza vaccine Pandemrix(®). A few months later an excess of narcolepsy cases was observed. It is still unclear to what extent the vaccination campaign affected humoral autoimmunity associated with narcolepsy. We studied 47 patients with narcolepsy (6-69 years of age) and 80 healthy controls (3-61 years of age) selected after the Pandemrix vaccination campaign. The first aim was to determine antibodies against A/H1N1 and autoantibodies to Tribbles homolog 2 (TRIB2), a narcolepsy autoantigen candidate as well as to GAD65 and IA-2 as disease specificity controls. The second aim was to test if levels and frequencies of these antibodies and autoantibodies were associated with HLA-DQB1*06:02. In vitro transcribed and translated [(35)S]-methionine and -cysteine-labeled influenza A virus (A/California/04/2009/(H1N1)) segment 4 hemagglutinin was used to detect antibodies in a radiobinding assay. Autoantibodies to TRIB2, GAD65 and IA-2 were similarly detected in standard radiobinding assays. The narcolepsy patients had higher median levels of A/H1N1 antibodies than the controls (p = 0.006). A/H1N1 antibody levels were higher among the <13 years old (n = 12) compared to patients who were older than 30 years (n = 12, p = 0.014). Being HLA-DQB1*06:02 positive was associated with higher A/H1N1 antibody levels in both patients and controls (p = 0.026). Serum autoantibody levels to TRIB2 were low overall and high binders did not differ between patients and controls. We observed an association between levels of A/H1N1

  20. 'Rhyme or reason?' Saying no to mass vaccination: subjective re-interpretation in the context of the A(H1N1) influenza pandemic in Sweden 2009-2010.

    PubMed

    Lundgren, Britta

    2015-12-01

    During the swine flu pandemic of 2009-2010, all Swedish citizens were recommended to be vaccinated with the influenza vaccine Pandemrix. However, a very serious and unexpected side effect emerged during the summer of 2010: more than 200 children and young adults were diagnosed with narcolepsy after vaccination. Besides the tragic outcome for these children and their families, this adverse side effect suggests future difficulties in obtaining trust in vaccination in cases of emerging pandemics, and thus there is a growing need to find ways to understand the complexities of vaccination decision processes. This article explores written responses to a questionnaire from a Swedish folk life archive as an unconventional source for analysing vaccine decisions. The aim is to investigate how laypersons responded to and re-interpreted the message about the recommended vaccination in their answers. The answers show the confusion and complex circumstances and influences in everyday life that people reflect on when making such important decisions. The issue of confusion is traced back to the initial communications about the vaccination intervention in which both autonomy and solidarity were expected from the population. Common narratives and stories about the media or 'big pharma capitalism' are entangled with private memories, accidental coincidences and serendipitous associations. It is obvious that vaccination interventions that require compliance from large groups of people need to take into account the kind of personal experience narratives that are produced by the complex interplay of the factors described by the informants.

  1. ‘Rhyme or reason?’ Saying no to mass vaccination: subjective re-interpretation in the context of the A(H1N1) influenza pandemic in Sweden 2009–2010

    PubMed Central

    Lundgren, Britta

    2015-01-01

    During the swine flu pandemic of 2009–2010, all Swedish citizens were recommended to be vaccinated with the influenza vaccine Pandemrix. However, a very serious and unexpected side effect emerged during the summer of 2010: more than 200 children and young adults were diagnosed with narcolepsy after vaccination. Besides the tragic outcome for these children and their families, this adverse side effect suggests future difficulties in obtaining trust in vaccination in cases of emerging pandemics, and thus there is a growing need to find ways to understand the complexities of vaccination decision processes. This article explores written responses to a questionnaire from a Swedish folk life archive as an unconventional source for analysing vaccine decisions. The aim is to investigate how laypersons responded to and re-interpreted the message about the recommended vaccination in their answers. The answers show the confusion and complex circumstances and influences in everyday life that people reflect on when making such important decisions. The issue of confusion is traced back to the initial communications about the vaccination intervention in which both autonomy and solidarity were expected from the population. Common narratives and stories about the media or ‘big pharma capitalism’ are entangled with private memories, accidental coincidences and serendipitous associations. It is obvious that vaccination interventions that require compliance from large groups of people need to take into account the kind of personal experience narratives that are produced by the complex interplay of the factors described by the informants. PMID:26077985

  2. Narcolepsy and A(H1N1)pdm09 vaccination: shaping the research on the observed signal.

    PubMed

    van der Most, Robbert; Van Mechelen, Marcelle; Destexhe, Eric; Wettendorff, Martine; Hanon, Emmanuel

    2014-01-01

    Epidemiological data from several European countries suggested an increased risk of the chronic sleep disorder narcolepsy following vaccination with Pandemrix(™), an AS03-adjuvanted, pandemic A(H1N1)pdm09 influenza vaccine. Further research to investigate potential associations between Pandemrix™ vaccination, A(H1N1)pdm09 influenza infection and narcolepsy is required. Narcolepsy is most commonly caused by a reduction or absence of hypocretin produced by hypocretin-secreting neurons in the hypothalamus, and is tightly associated with HLA-II DQB1*06:02. Consequently, research focusing on CD4(+) T-cell responses, building on the hypothesis that for disease development, T cells specific for antigen(s) from hypocretin neurons must be activated or reactivated, is considered essential. Therefore, the following key areas of research can be identified, (1) characterization of hypothetical narcolepsy-specific auto-immune CD4(+) T cells, (2) mapping epitopes of such T cells, and (3) evaluating potential mechanisms that would enable such cells to gain access to the hypothalamus. Addressing these questions could further our understanding of the potential links between narcolepsy and A(H1N1)pdm09 vaccination and/or infection. Of particular interest is that any evidence of a mimicry-based mechanism could also explain the association between narcolepsy and A(H1N1)pdm09 influenza infection.

  3. Safety and Immunogenicity of a Monovalent 2009 Influenza A/H1N1v Vaccine Adjuvanted With AS03A or Unadjuvanted in HIV-Infected Adults: A Randomized, Controlled Trial

    PubMed Central

    Desaint, Corinne; Durier, Christine; Loulergue, Pierre; Duval, Xavier; Jacomet, Christine; Pialoux, Gilles; Ghosn, Jade; Raffi, François; Rey, David; Ajana, Faiza; Colin de Verdière, Nathalie; Reynes, Jacques; Foubert, Valérie; Roman, François; Devaster, Jeanne-Marie; Delfraissy, Jean-François; Aboulker, Jean-Pierre

    2011-01-01

    Background. Human immunodeficiency virus (HIV)–infected patients have decreased immune response to vaccines. Few data are available about pandemic flu vaccination in this population. Methods. We conducted a multicenter, patient-blinded, randomized trial in a cohort of HIV-infected adults. Patients received 2 injections 21 days apart of a AS03A-adjuvanted H1N1v vaccine containing 3.75 μg hemagglutinin (HA) or a nonadjuvanted H1N1v vaccine containing 15 μg HA to assess hemagglutination inhibition (HI) response and safety. Results. A total of 309 patients were randomized, and 306 were vaccinated. After the first vaccine dose, HI titers ≥1:40 were observed in 93.4% of the patients in the adjuvanted group (A group) (n = 155) and in 75.5% in the nonadjuvanted group (B group) (n = 151) (P < .001); seroconversion rates were 88.8% and 71.2%, and factor increases in geometric mean titers (GMT) of 21.9 and 15.1, respectively. After 2 injections, 98.6% of patients of the A group and 92.1% of the B group demonstrated HI titers ≥1:40 (P = .018); seroconversion rates were 96.5% and 87.1%, respectively, and factor increases in GMT were 45.5 and 21.2, respectively. The majority of adverse events were mild to moderate in severity; no impact on CD4+ cell count or viral load has been detected. Conclusions. In HIV-1–infected adults, the AS03A-adjuvanted H1N1v vaccine yielded a higher immune response than did the nonadjuvanted one, with no impact on HIV infection. PMID:21628666

  4. Heterovariant Cross-Reactive B-Cell Responses Induced by the 2009 Pandemic Influenza Virus A Subtype H1N1 Vaccine

    PubMed Central

    He, Xiao-Song; Sasaki, Sanae; Baer, Jane; Khurana, Surender; Golding, Hana; Treanor, John J.; Topham, David J.; Sangster, Mark Y.; Jin, Hong; Dekker, Cornelia L.; Subbarao, Kanta; Greenberg, Harry B.

    2013-01-01

    Background. The generation of heterovariant immunity is a highly desirable feature of influenza vaccines. The goal of this study was to compare the heterovariant B-cell response induced by the monovalent inactivated 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) vaccine with that induced by the 2009 seasonal trivalent influenza vaccine (sTIV) containing a seasonal influenza A virus subtype H1N1 (A[H1N1]) component in young and elderly adults. Methods. Plasmablast-derived polyclonal antibodies (PPAb) from young and elderly recipients of A(H1N1)pdm09 vaccine or sTIV were tested for binding activity to various influenza antigens. Results. In A(H1N1)pdm09 recipients, the PPAb titers against homotypic A(H1N1)pdm09 vaccine were similar to those against the heterovariant seasonal A(H1N1) vaccine and were similar between young and elderly subjects. The PPAb avidity was higher among elderly individuals, compared with young individuals. In contrast, the young sTIV recipients had 10-fold lower heterovariant PPAb titers against the A(H1N1)pdm09 vaccine than against the homotypic seasonal A(H1N1) vaccine. In binding assays with recombinant head and stalk domains of hemagglutinin, PPAb from the A(H1N1)pdm09 recipients but not PPAb from the sTIV recipients bound to the conserved stalk domain. Conclusion. The A(H1N1)pdm09 vaccine induced production of PPAb with heterovariant reactivity, including antibodies targeting the conserved hemagglutinin stalk domain. PMID:23107783

  5. [Features of interepidemic influenza A and B viruses].

    PubMed

    Litvinova, O M; Grinbaum, E B; Bannikov, A I; Konovalenko, I B; Konovalova, N I; Luzianina, T Ia; Kiselev, O I

    1995-01-01

    The comparison of interepidemic influenza viruses with the pathogens of resultant influenza epidemics has revealed that they belong to the same type (subtype) of influenza virus. A definite correlation has been found between the antigenic specificity of haemagglutinin of epidemic and interepidemic strains. The antigenic structure of the interepidemic viruses and the pathogens of further epidemics of influenza B viruses have been found to be completely identical. The interepidemic A(H1N1) isolates have been shown to be antigenic analogues of the causative agents of influenza A(H1N1) during the previous epidemics. Despite the time and place of their isolation, as well as the etiology of the previous and subsequent epidemics, the interepidemic influenza A(H3N2) viruses have been ascertained to be similar to the reference A/Bangkok/1/79.

  6. Human Infections with Novel Reassortant Influenza A(H3N2)v Viruses, United States, 2011

    PubMed Central

    Lindstrom, Stephen; Garten, Rebecca; Balish, Amanda; Shu, Bo; Emery, Shannon; Berman, LaShondra; Barnes, Nathelia; Sleeman, Katrina; Gubareva, Larisa; Villanueva, Julie

    2012-01-01

    During July–December 2011, a variant virus, influenza A(H3N2)v, caused 12 human cases of influenza. The virus contained genes originating from swine, avian, and human viruses, including the M gene from influenza A(H1N1)pdm09 virus. Influenza A(H3N2)v viruses were antigenically distinct from seasonal influenza viruses and similar to proposed vaccine virus A/Minnesota/11/2010. PMID:22516540

  7. Pandemic H1N1 influenza virus infection in a Canadian cat

    PubMed Central

    Knight, Cameron G.; Davies, Jennifer L.; Joseph, Tomy; Ondrich, Sarah; Rosa, Brielle V.

    2016-01-01

    A cat was presented for necropsy after being found dead at home. Histologic findings suggested viral pneumonia. Polymerase chain reaction and viral typing revealed influenza A(H1N1)pdm09. This is the first report of influenza in a Canadian cat and highlights the importance of considering influenza virus in the differential diagnosis for feline respiratory distress. PMID:27152036

  8. Interaction of nanodiamonds materials with influenza viruses

    NASA Astrophysics Data System (ADS)

    Ivanova, V. T.; Ivanova, M. V.; Spitsyn, B. V.; Garina, K. O.; Trushakova, S. V.; Manykin, A. A.; Korzhenevsky, A. P.; Burseva, E. I.

    2012-02-01

    The perspectives of the application of modern materials contained nanodiamonds (ND) are considered in this study. The interaction between detonation paniculate ND, soot and influenza A and B viruses, fragments of cDNA were analyzed at the normal conditions. It was shown that these sorbents can interact with the following viruses: reference epidemic strains of influenza A(H1N1), A(H1N1)v, A(H3N2) and B viruses circulated in the word in 2000-2010. The allantoises, concentrated viruses, cDNA can be absorbed by ND sorbents and getting removed from water solutions within 20 min. ND sorbents can be used for the preparation of antivirus filters for water solution and for future diagnostic systems in virology.

  9. National surveillance for swine influenza virus in the United States, 2009-present

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Objectives. In April 2009, a National surveillance plan for swine influenza virus in swine was implemented in the United States. Initial focus of the surveillance was to detect the presence and distribution of viruses (especially the 2009 H1N1 pandemic influenza, A(H1N1)pdm09) that ar...

  10. Dual Infection of Novel Influenza Viruses A/H1N1 and A/H3N2 in a Cluster of Cambodian Patients

    DTIC Science & Technology

    2011-01-01

    Vomiting N N Y Y N Rhinorrhea N N N N Y Medication Amoxicillin and paracetamol Amoxicillin and paracetamol Amoxicillin and paracetamol Amoxicillin and... paracetamol N Epidemiology Recent travel Within country N N N N Animal exposure N N N N N Disposition Recovered Recovered Recovered Recovered

  11. Oral administration of a Spirulina extract enriched for Braun-type lipoproteins protects mice against influenza A(H1N1) virus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies indicate that Immulina, a commercial extract of Arthrospira (Spirulina) platensis, is a potent activator of innate immune cells and that Braun-type lipoproteins (a principal toll-like receptor (TLR) 2 ligand) are the main active components within this product. In the present study, ...

  12. Co-infection with Influenza Viruses and Influenza-Like Virus During the 2015/2016 Epidemic Season.

    PubMed

    Szymański, Karol; Cieślak, K; Kowalczyk, D; Brydak, L B

    2017-02-09

    Concerning viral infection of the respiratory system, a single virus can cause a variety of clinical symptoms and the same set of symptoms can be caused by different viruses. Moreover, infection is often caused by a combination of viruses acting at the same time. The present study demonstrates, using multiplex RT-PCR and real-time qRT-PCR, that in the 2015/2016 influenza season, co-infections were confirmed in patients aged 1 month to 90 years. We found 73 co-infections involving influenza viruses, 17 involving influenza viruses and influenza-like viruses, and six involving influenza-like viruses. The first type of co-infections above mentioned was the most common, amounting to 51 cases, with type A and B viruses occurring simultaneously. There also were four cases of co-infections with influenza virus A/H1N1/pdm09 and A/H1N1/ subtypes and two cases with A/H1N1/pdm09 and A/H3N2/ subtypes. The 2015/2016 epidemic season was characterized by a higher number of confirmed co-infections compared with the previous seasons. Infections by more than one respiratory virus were most often found in children and in individuals aged over 65.

  13. Social class based on occupation is associated with hospitalization for A(H1N1)pdm09 infection. Comparison between hospitalized and ambulatory cases.

    PubMed

    Pujol, J; Godoy, P; Soldevila, N; Castilla, J; González-Candelas, F; Mayoral, J M; Astray, J; Garcia, S; Martin, V; Tamames, S; Delgado, M; Domínguez, A

    2016-03-01

    This study aimed to analyse the existence of an association between social class (categorized by type of occupation) and the occurrence of A(H1N1)pmd09 infection and hospitalization for two seasons (2009-2010 and 2010-2011). This multicentre study compared ambulatory A(H1N1)pmd09 confirmed cases with ambulatory controls to measure risk of infection, and with hospitalized A(H1N1)pmd09 confirmed cases to asses hospitalization risk. Study variables were: age, marital status, tobacco and alcohol use, pregnancy, chronic obstructive pulmonary disease, chronic respiratory failure, cardiovascular disease, diabetes, chronic liver disease, body mass index >40, systemic corticosteroid treatment and influenza vaccination status. Occupation was registered literally and coded into manual and non-manual worker occupational social class groups. A conditional logistic regression analysis was performed. There were 720 hospitalized cases, 996 ambulatory cases and 1062 ambulatory controls included in the study. No relationship between occupational social class and A(H1N1)pmd09 infection was found [adjusted odds ratio (aOR) 0·97, 95% confidence interval (CI) 0·74-1·27], but an association (aOR 1·53, 95% CI 1·01-2·31) between occupational class and hospitalization for A(H1N1)pmd09 was observed. Influenza vaccination was a protective factor for A(H1N1)pmd09 infection (aOR 0·41, 95% CI 0·23-0·73) but not for hospitalization. We conclude that manual workers have the highest risk of hospitalization when infected by influenza than other occupations but they do not have a different probability of being infected by influenza.

  14. The epidemiology and spread of drug resistant human influenza viruses.

    PubMed

    Hurt, Aeron C

    2014-10-01

    Significant changes in the circulation of antiviral-resistant influenza viruses have occurred over the last decade. The emergence and continued circulation of adamantane-resistant A(H3N2) and A(H1N1)pdm09 viruses mean that the adamantanes are no longer recommended for use. Resistance to the newer class of drugs, the neuraminidase inhibitors, is typically associated with poorer viral replication and transmission. But 'permissive' mutations, that compensated for impairment of viral function in A(H1N1) viruses during 2007/2008, enabled them to acquire the H275Y NA resistance mutation without fitness loss, resulting in their rapid global spread. Permissive mutations now appear to be present in A(H1N1)pdm09 viruses thereby increasing the risk that oseltamivir-resistant A(H1N1)pdm09 viruses may also spread globally, a concerning scenario given that oseltamivir is the most widely used influenza antiviral.

  15. Global circulation patterns of seasonal influenza viruses vary with antigenic drift

    NASA Astrophysics Data System (ADS)

    Bedford, Trevor; Riley, Steven; Barr, Ian G.; Broor, Shobha; Chadha, Mandeep; Cox, Nancy J.; Daniels, Rodney S.; Gunasekaran, C. Palani; Hurt, Aeron C.; Kelso, Anne; Klimov, Alexander; Lewis, Nicola S.; Li, Xiyan; McCauley, John W.; Odagiri, Takato; Potdar, Varsha; Rambaut, Andrew; Shu, Yuelong; Skepner, Eugene; Smith, Derek J.; Suchard, Marc A.; Tashiro, Masato; Wang, Dayan; Xu, Xiyan; Lemey, Philippe; Russell, Colin A.

    2015-07-01

    Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.

  16. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses.

    PubMed

    Hillaire, Marine L B; Vogelzang-van Trierum, Stella E; Kreijtz, Joost H C M; de Mutsert, Gerrie; Fouchier, Ron A M; Osterhaus, Albert D M E; Rimmelzwaan, Guus F

    2013-03-01

    Virus-specific CD8(+) T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity of human CD8(+) T-lymphocytes, induced by infection with seasonal A (H1N1) or A (H3N2) influenza virus, with 2009 pandemic influenza A (H1N1) virus [A(H1N1)pdm09] and swine-origin triple-reassortant A (H3N2) [A(H3N2)v] viruses that are currently causing an increasing number of human cases in the USA. It was demonstrated that CD8(+) T-cells induced after seasonal IAV infections exerted lytic activity and produced gamma interferon upon in vitro restimulation with A(H1N1)pdm09 and A(H3N2)v influenza A viruses. Furthermore, CD8(+) T-cells directed to A(H1N1)pdm09 virus displayed a high degree of cross-reactivity with A(H3N2)v viruses. It was concluded that cross-reacting T-cells had the potential to afford protective immunity against A(H1N1)pdm09 viruses during the pandemic and offer some degree of protection against infection with A(H3N2)v viruses.

  17. Relation of activation-induced deaminase (AID) expression with antibody response to A(H1N1)pdm09 vaccination in HIV-1 infected patients.

    PubMed

    Cagigi, Alberto; Pensieroso, Simone; Ruffin, Nicolas; Sammicheli, Stefano; Thorstensson, Rigmor; Pan-Hammarström, Qiang; Hejdeman, Bo; Nilsson, Anna; Chiodi, Francesca

    2013-04-26

    The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure.

  18. Seasonal Influenza A H1N1pdm09 Virus and Severe Outcomes: A Reason for Broader Vaccination in Non-Elderly, At-Risk People

    PubMed Central

    Omeñaca, Manuel; Panadero, Carolina; Royo, Laura; Vengoechea, Jose J.; Fandos, Sergio; de Pablo, Francisco; Bello, Salvador

    2016-01-01

    Background Recent pandemics of influenza A H1N1pdm09 virus have caused severe illness, especially in young people. Very few studies on influenza A H1N1pdm09 in post-pandemic periods exist, and there is no information on the severity of both seasonal influenza A(H1N1) and A(H3N2) from the same season, adjusting for potential confounders, including vaccine. Methods and Results We performed a retrospective observational study of adults hospitalized during the 2014 season with influenza A(H1N1) or A(H3N2). All patients underwent the same diagnostic and therapeutic protocol in a single hospital, including early Oseltamivir therapy. We included 234 patients: 146 (62.4%) influenza A(H1N1) and 88 (37.6%) A(H3N2). A(H1N1) patients were younger (p<0.01), developed more pneumonia (p<0.01), respiratory complications (p = 0.015), ARDS (p = 0.047), and septic shock (p = 0.049), were more frequently admitted to the ICU (p = 0.022), required IMV (p = 0.049), and were less frequently vaccinated (p = 0.008). After adjusting for age, comorbidities, time from onset of illness, and vaccine status, influenza A(H1N1) (OR, 2.525), coinfection (OR, 2.821), and no vaccination (OR, 3.086) were independent risk factors for severe disease. Conclusions Hospitalized patients with influenza A(H1N1) were more than twice as likely to have severe influenza. They were younger and most had not received the vaccine. Our findings suggest that seasonal influenza A(H1N1) maintains some features of pandemic viruses, and recommend wider use of vaccination in younger adult high-risk patients. PMID:27832114

  19. E119D Neuraminidase Mutation Conferring Pan-Resistance to Neuraminidase Inhibitors in an A(H1N1)pdm09 Isolate From a Stem-Cell Transplant Recipient

    PubMed Central

    L'Huillier, Arnaud G.; Abed, Yacine; Petty, Tom J.; Cordey, Samuel; Thomas, Yves; Bouhy, Xavier; Schibler, Manuel; Simon, Audrey; Chalandon, Yves; van Delden, Christian; Zdobnov, Evgeny; Boquete-Suter, Patricia; Boivin, Guy; Kaiser, Laurent

    2015-01-01

    Background. An influenza A(H1N1)pdm09 infection was diagnosed in a hematopoietic stem cell transplant recipient during conditioning regimen. He was treated with oral oseltamivir, later combined with intravenous zanamivir. The H275Y neuraminidase (NA) mutation was first detected, and an E119D NA mutation was identified during zanamivir therapy. Methods. Recombinant wild-type (WT) E119D and E119D/H275Y A(H1N1)pdm09 NA variants were generated by reverse genetics. Susceptibility to NA inhibitors (NAIs) was evaluated with a fluorometric assay using the 2′-(4-methylumbelliferyl)-α-d-N-acetylneuraminic acid (MUNANA) substrate. Susceptibility to favipiravir (T-705) was assessed using plaque reduction assays. The NA affinity and velocity values were determined with NA enzymatic studies. Results. We identified an influenza A(H1N1)pdm09 E119D mutant that exhibited a marked increase in the 50% inhibitory concentrations against all tested NAIs (827-, 25-, 286-, and 702-fold for zanamivir, oseltamivir, peramivir, and laninamivir, respectively). The double E119D/H275Y mutation further increased oseltamivir and peramivir 50% inhibitory concentrations by 790- and >5000-fold, respectively, compared with the WT. The mutant viruses remained susceptible to favipiravir. The NA affinity and velocity values of the E119D variant decreased by 8.1-fold and 4.5-fold, respectively, compared with the WT. Conclusions. The actual emergence of a single NA mutation conferring pan-NAI resistance in the clinical setting reinforces the pressing need to develop new anti-influenza strategies. PMID:25985905

  20. Influenza A Viruses of Human Origin in Swine, Brazil.

    PubMed

    Nelson, Martha I; Schaefer, Rejane; Gava, Danielle; Cantão, Maurício Egídio; Ciacci-Zanella, Janice Reis

    2015-08-01

    The evolutionary origins of the influenza A(H1N1)pdm09 virus that caused the first outbreak of the 2009 pandemic in Mexico remain unclear, highlighting the lack of swine surveillance in Latin American countries. Although Brazil has one of the largest swine populations in the world, influenza was not thought to be endemic in Brazil's swine until the major outbreaks of influenza A(H1N1)pdm09 in 2009. Through phylogenetic analysis of whole-genome sequences of influenza viruses of the H1N1, H1N2, and H3N2 subtypes collected in swine in Brazil during 2009-2012, we identified multiple previously uncharacterized influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated undetected in swine for more than a decade. Viral diversity has further increased in Brazil through reassortment between co-circulating viruses, including A(H1N1)pdm09. The circulation of multiple divergent hemagglutinin lineages challenges the design of effective cross-protective vaccines and highlights the need for additional surveillance.

  1. The challenges of global case reporting during pandemic A(H1N1) 2009

    PubMed Central

    Williams, Stephanie; Merianos, Angela; Mounts, Anthony

    2014-01-01

    Abstract During the 2009 A(H1N1) influenza pandemic, the World Health Organization (WHO) asked all Member States to provide case-based data on at least the first 100 laboratory-confirmed influenza cases to generate an early understanding of the pandemic and provide appropriate guidance to affected countries. In reviewing the pandemic surveillance strategy, we evaluated the utility of case-based data collection and the challenges in interpreting these data at the global level. To do this, we assessed compliance with the surveillance recommendation and data completeness of submitted case records and described the epidemiological characteristics of up to the first 110 reported cases from each country, aggregated into regions. From April 2009 to August 2011, WHO received over 18 000 case records from 84 countries. Data reached WHO at different time intervals, in different formats and without information on collection methods. Just over half of the 18 000 records gave the date of symptom onset, which made it difficult to assess whether the cases were among the earliest to be confirmed. Descriptive epidemiological analyses were limited to summarizing age, sex and hospitalization ratios. Centralized analysis of case-based data had little value in describing key features of the pandemic. Results were difficult to interpret and would have been misleading if viewed in isolation. A better approach would be to identify critical questions, standardize data elements and methods of investigation, and create efficient channels for communication between countries and the international public health community. Regular exchange of routine surveillance data will help to consolidate these essential channels of communication. PMID:24391301

  2. The challenges of global case reporting during pandemic A(H1N1) 2009.

    PubMed

    Williams, Stephanie; Fitzner, Julia; Merianos, Angela; Mounts, Anthony

    2014-01-01

    During the 2009 A(H1N1) influenza pandemic, the World Health Organization (WHO) asked all Member States to provide case-based data on at least the first 100 laboratory-confirmed influenza cases to generate an early understanding of the pandemic and provide appropriate guidance to affected countries. In reviewing the pandemic surveillance strategy, we evaluated the utility of case-based data collection and the challenges in interpreting these data at the global level. To do this, we assessed compliance with the surveillance recommendation and data completeness of submitted case records and described the epidemiological characteristics of up to the first 110 reported cases from each country, aggregated into regions. From April 2009 to August 2011, WHO received over 18 000 case records from 84 countries. Data reached WHO at different time intervals, in different formats and without information on collection methods. Just over half of the 18 000 records gave the date of symptom onset, which made it difficult to assess whether the cases were among the earliest to be confirmed. Descriptive epidemiological analyses were limited to summarizing age, sex and hospitalization ratios. Centralized analysis of case-based data had little value in describing key features of the pandemic. Results were difficult to interpret and would have been misleading if viewed in isolation. A better approach would be to identify critical questions, standardize data elements and methods of investigation, and create efficient channels for communication between countries and the international public health community. Regular exchange of routine surveillance data will help to consolidate these essential channels of communication.

  3. Experimental Inoculation of Pigs with Pandemic H1N1 2009 Virus and HI Cross-Reactivity with Contemporary Swine Influenza Virus Antisera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In March-April 2009, a novel A/H1N1 emerged in the human population in North America. The gene constellation of the virus was demonstrated to be a combination from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before been identified in swine or other species...

  4. Neutralizing activities against seasonal influenza viruses in human intravenous immunoglobulin

    PubMed Central

    Onodera, Hiroyuki; Urayama, Takeru; Hirota, Kazue; Maeda, Kazuhiro; Kubota-Koketsu, Ritsuko; Takahashi, Kazuo; Hagiwara, Katsuro; Okuno, Yoshinobu; Ikuta, Kazuyoshi; Yunoki, Mikihiro

    2017-01-01

    Influenza viruses A/H1N1, A/H3N2, and B are known seasonal viruses that undergo annual mutation. Intravenous immunoglobulin (IVIG) contains anti-seasonal influenza virus globulins. Although the virus-neutralizing (VN) titer is an indicator of protective antibodies, changes in this titer over extended time periods have yet to be examined. In this study, variations in hemagglutination inhibition (HI) and VN titers against seasonal influenza viruses in IVIG lots over extended time periods were examined. In addition, the importance of monitoring the reactivity of IVIG against seasonal influenza viruses with varying antigenicity was evaluated. A/H1N1, A/H3N2, and B influenza virus strains and IVIG lots manufactured from 1999 to 2014 were examined. The HI titer was measured by standard methods. The VN titer was measured using a micro-focus method. IVIG exhibited significant HI and VN titers against all investigated strains. Our results suggest that the donor population maintains both specific and cross-reactive antibodies against seasonal influenza viruses, except in cases of pandemic viruses, despite major antigen changes. The titers against seasonal influenza vaccine strains, including past strains, were stable over short time periods but increased slowly over time. PMID:28331286

  5. Analysis of Coinfections with A/H1N1 Strain Variants among Pigs in Poland by Multitemperature Single-Strand Conformational Polymorphism

    PubMed Central

    Lepek, Krzysztof; Pajak, Beata; Rabalski, Lukasz; Urbaniak, Kinga; Kucharczyk, Krzysztof; Markowska-Daniel, Iwona; Szewczyk, Boguslaw

    2015-01-01

    Monitoring and control of infections are key parts of surveillance systems and epidemiological risk prevention. In the case of influenza A viruses (IAVs), which show high variability, a wide range of hosts, and a potential of reassortment between different strains, it is essential to study not only people, but also animals living in the immediate surroundings. If understated, the animals might become a source of newly formed infectious strains with a pandemic potential. Special attention should be focused on pigs, because of the receptors specific for virus strains originating from different species, localized in their respiratory tract. Pigs are prone to mixed infections and may constitute a reservoir of potentially dangerous IAV strains resulting from genetic reassortment. It has been reported that a quadruple reassortant, A(H1N1)pdm09, can be easily transmitted from humans to pigs and serve as a donor of genetic segments for new strains capable of infecting humans. Therefore, it is highly desirable to develop a simple, cost-effective, and rapid method for evaluation of IAV genetic variability. We describe a method based on multitemperature single-strand conformational polymorphism (MSSCP), using a fragment of the hemagglutinin (HA) gene, for detection of coinfections and differentiation of genetic variants of the virus, difficult to identify by conventional diagnostic. PMID:25961024

  6. Diagnosis of 2009 Pandemic Influenza A (pH1N1) and Seasonal Influenza Using Rapid Influenza Antigen Tests, San Antonio, Texas, April-June 2009

    DTIC Science & Technology

    2009-01-01

    CDC Atlanta US. CDC protocol of realtime RTPCR for influenza A(H1N1) revision 1. 30 April 2009. Available at: http://www.who.int/ csr / resources...2009; 325:483–7. 24. Munster VJ, de Wit E, van den Brand JM, et al. Pathogenesis and Transmission of Swine-Origin 2009 A(H1N1) Influenza Virus in Fer

  7. Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus

    PubMed Central

    Kiso, Maki; Takano, Ryo; Sakabe, Saori; Katsura, Hiroaki; Shinya, Kyoko; Uraki, Ryuta; Watanabe, Shinji; Saito, Hiroshi; Toba, Masamichi; Kohda, Noriyuki; Kawaoka, Yoshihiro

    2013-01-01

    Influenza A(H1N1)pdm virus caused the first human pandemic of the 21st century. Although various probiotic Lactobacillus species have been shown to have anti-microbial effects against pneumonia-inducing pathogens, the prophylactic efficacy and mechanisms behind their protection remain largely unknown. Here, we evaluated the prophylactic efficacy of heat-killed Lactobacillus pentosus b240 against lethal influenza A(H1N1)pdm virus infection in a mouse model. To further define the protective responses induced by b240, we performed virologic, histopathologic, and transcriptomic analyses on the mouse lungs. Although we did not observe an appreciable effect of b240 on virus growth, cytokine production, or histopathology, gene expressional analysis revealed that oral administration of b240 differentially regulates antiviral gene expression in mouse lungs. Our results unveil the possible mechanisms behind the protection mediated by b240 against influenza virus infection and provide new insights into probiotic therapy. PMID:23535544

  8. Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus.

    PubMed

    Kiso, Maki; Takano, Ryo; Sakabe, Saori; Katsura, Hiroaki; Shinya, Kyoko; Uraki, Ryuta; Watanabe, Shinji; Saito, Hiroshi; Toba, Masamichi; Kohda, Noriyuki; Kawaoka, Yoshihiro

    2013-01-01

    Influenza A(H1N1)pdm virus caused the first human pandemic of the 21st century. Although various probiotic Lactobacillus species have been shown to have anti-microbial effects against pneumonia-inducing pathogens, the prophylactic efficacy and mechanisms behind their protection remain largely unknown. Here, we evaluated the prophylactic efficacy of heat-killed Lactobacillus pentosus b240 against lethal influenza A(H1N1)pdm virus infection in a mouse model. To further define the protective responses induced by b240, we performed virologic, histopathologic, and transcriptomic analyses on the mouse lungs. Although we did not observe an appreciable effect of b240 on virus growth, cytokine production, or histopathology, gene expressional analysis revealed that oral administration of b240 differentially regulates antiviral gene expression in mouse lungs. Our results unveil the possible mechanisms behind the protection mediated by b240 against influenza virus infection and provide new insights into probiotic therapy.

  9. Molecular characterization and phylogenetic analysis of human influenza A viruses isolated in Iran during the 2014-2015 season.

    PubMed

    Moasser, Elham; Behzadian, Farida; Moattari, Afagh; Fotouhi, Fatemeh; Rahimi, Amir; Zaraket, Hassan; Hosseini, Seyed Younes

    2017-03-22

    Influenza A viruses are an important cause of severe infectious diseases in humans and are characterized by their fast evolution rate. Global monitoring of these viruses is critical to detect newly emerging variants during annual epidemics. Here, we sought to genetically characterize influenza A/H1N1pdm09 and A/H3N2 viruses collected in Iran during the 2014-2015 influenza season. A total of 200 nasopharyngeal swabs were collected from patients with influenza-like illnesses. Swabs were screened for influenza A and B using real-time PCR. Furthermore, positive specimens with high virus load underwent virus isolation and genetic characterization of their hemagglutinin (HA) and M genes. Of the 200 specimens, 80 were influenza A-positive, including 44 A/H1N1pdm09 and 36 A/H3N2, while 18 were influenza B-positive. Phylogenetic analysis of the HA genes of the A/H1N1pdm09 viruses revealed the circulation of clade 6C, characterized by amino acid substitutions D97N, V234I and K283E. Analysis of the A/H3N2 viruses showed a genetic drift from the vaccine strain A/Texas/50/2012 with 5 mutations (T128A, R142G, N145S, P198S and S219F) belonging to the antigenic sites A, B, and D of the HA protein. The A/H3N2 viruses belonged to phylogenetic clades 3C.2 and 3C.3. The M gene trees of the Iranian A/H1N1pdm09 and A/H3N2 mirrored the clustering patterns of their corresponding HA trees. Our results reveal co-circulation of several influenza A virus strains in Iran during the 2014-2015 influenza season.

  10. Vaccine-associated enhanced respiratory disease does not interfere with the adaptive immune response following challenge with pandemic A/H1N1 2009.

    PubMed

    Gauger, Phillip C; Loving, Crystal L; Lager, Kelly M; Janke, Bruce H; Kehrli, Marcus E; Roth, James A; Vincent, Amy L

    2013-10-01

    The implications of sequential prime and challenge with mismatched influenza A viruses is a concern in mammals, including humans. We evaluated the ability of pigs affected with vaccine-associated enhanced respiratory disease (VAERD) to generate a humoral immune response against the heterologous challenge virus inciting the VAERD. Vaccinated and challenged (V/C) pigs were administered an inactivated swine δ-cluster H1N2 (MN08) vaccine with an HA similar to pre-2009 seasonal human viruses and challenged with heterologous A(H1N1) pandemic 2009 (H1N1pdm09). Vaccination induced MN08-specific hemagglutination inhibition (HI) antibody but not cross-reacting H1N1pdm09 HI antibody. However, vaccinated pigs demonstrated significantly higher post-challenge anti-H1N1pdm09 serum neutralizing (SN) antibodies at 14 and 21 days post inoculation (dpi) compared to nonvaccinated, challenged pigs (NV/C), indicating a priming effect of the vaccine. Serum and lung whole virus anti-H1N1pdm09 IgG ELISA antibodies in the vaccinated group were significantly higher than the challenge only pigs at all-time points evaluated. Lung IgA ELISA antibodies to both antigens were detected at 2, 5, and 21 dpi in vaccine-primed pigs, contrasted against mucosal ELISA antibody responses detected only at 21 dpi in the naïve-challenged group. Collectively, vaccine-primed pigs demonstrated a robust humoral immune response and elevated local adaptive cytokine levels, indicating VAERD does not adversely affect the induction of an immune response to challenge with heterologous virus despite the severe clinical disease and underlying lung pathology. Thus, original antigenic sin does not appear to be a component of VAERD.

  11. Pandemic (H1N1) 2009 Influenza Virus Infection in A Survivor Who Has Recovered from Severe H7N9 Virus Infection, China

    PubMed Central

    Chen, Shan-Hui; Wu, Meng-Na; Qian, Yan-Hua; Ma, Guang-Yuan; Wang, Guo-Lin; Yang, Yang; Zhao, Teng; Lu, Bing; Ma, Mai-Juan; Cao, Wu-Chun

    2016-01-01

    We firstly report a patient who presented with severe complications after infection with influenza A(H1N1) pdm2009, more than 1 year after recovery from severe H7N9 virus infections. The population of patients who recovered from severe H7N9 infections might be at a higher risk to suffer severe complications after seasonal influenza infections, and they should be included in the high-risk populations recommended to receive seasonal influenza vaccination. PMID:27757100

  12. Experimental Challenge with Two Isolates of 2009 A/H1N1 in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. The gene constellation of the 2009 pandemic H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species (1). Although the hemagglutinin gene is relate...

  13. Prevalence of gastrointestinal symptoms in patients with influenza, clinical significance, and pathophysiology of human influenza viruses in faecal samples: what do we know?

    PubMed

    Minodier, Laetitia; Charrel, Remi N; Ceccaldi, Pierre-Emmanuel; van der Werf, Sylvie; Blanchon, Thierry; Hanslik, Thomas; Falchi, Alessandra

    2015-12-12

    This review provides for the first time an assessment of the current understanding about the occurrence and the clinical significance of gastrointestinal (GI) symptoms in influenza patients, and their correlation with the presence of human influenza viruses in stools of patients with confirmed influenza virus infection. Studies exploring how human influenza viruses spread to the patient's GI tract after a primary respiratory infection have been summarized. We conducted a systematic search of published peer-reviewed literature up to June 2015 with regard to the above-mentioned aspects, focusing on human influenza viruses (A(H1N1), A(H1N1)pdm09, A(H3N2), and B). Forty-four studies were included in this systematic review and meta-analysis. The pooled prevalence of any digestive symptoms ranged from 30.9% (95% CI, 9.8 to 57.5; I(2) = 97.5%) for A(H1N1)pdm09 to 2.8% (95% CI, 0.6 to 6.5; I(2) = 75.4%) for A(H1N1). The pooled prevalence of influenza viruses in stool was 20.6% (95% CI, 8.9 to 35.5; I(2) = 96.8%), but their correlation with GI symptoms has rarely been explored. The presence of viral RNA in stools because of haematogenous dissemination to organs via infected lymphocytes is likely, but the potential to cause direct intestinal infection and faecal-oral transmission warrants further investigation. This review highlights the gaps in our knowledge, and the high degree of uncertainty about the prevalence and significance of GI symptoms in patients with influenza and their correlation with viral RNA positivity in stool because of the high level of heterogeneity among studies.

  14. Emerging, novel, and known influenza virus infections in humans.

    PubMed

    Tang, Julian W; Shetty, Nandini; Lam, Tommy T Y; Hon, K L Ellis

    2010-09-01

    Influenza viruses continue to cause yearly epidemics and occasional pandemics in humans. In recent years, the threat of a possible influenza pandemic arising from the avian influenza A(H5N1) virus has prompted the development of comprehensive pandemic preparedness programs in many countries. The recent emergence of the pandemic influenza A(H1N1) 2009 virus from the Americas in early 2009, although surprising in its geographic and zoonotic origins, has tested these preparedness programs and revealed areas in which further work is necessary. Nevertheless, the plethora of epidemiologic, diagnostic, mathematical and phylogenetic modeling, and investigative methodologies developed since the severe acute respiratory syndrome outbreak of 2003 and the subsequent sporadic human cases of avian influenza have been applied effectively and rapidly to the emergence of this novel pandemic virus. This article summarizes some of the findings from such investigations, including recommendations for the management of patients infected with this newly emerged pathogen.

  15. [Polymorphism of current human influenza A and B virus population].

    PubMed

    Grinbaum, E B; Litvinova, O M; Bannikov, A I; Konovalenko, I B; Chernookaia, N Iu; Iukhnova, L G; Kiselev, O I

    1994-01-01

    During the past years, the etiological situation has been significantly complicated. It is characterized by simultaneous circulation of A(H1N1), A(H3N2) and influenza B viruses and by the isolation of reassortant strains and viruses, which are atypical in relation to the process of their natural variability. The antigenic properties of epidemic strains and unusual isolates were investigated. The marked heterogeneity of the A(H3N2) influenza viruses was demonstrated. It was determined by the circulation of several antigenic variants during the epidemic. Two separate antigenic lineage of the influenza B viruses--b/Victoria/2/87 and B/Yamagata/16/88--cocirculated in our country in 1991. Since 1986, all the influenza A(H1N1) viruses have been considered to be varieties of the reference strain A/Taiwan/1/86. A direct correlation was found between some atypical viruses and the vaccine strains previously used.

  16. Pandemic and Avian Influenza A Viruses in Humans: Epidemiology, Virology, Clinical Characteristics, and Treatment Strategy.

    PubMed

    Li, Hui; Cao, Bin

    2017-03-01

    The intermittent outbreak of pandemic influenza and emergence of novel avian influenza A virus is worldwide threat. Although most patients present with mild symptoms, some deteriorate to severe pneumonia and even death. Great progress in the understanding of the mechanism of disease pathogenesis and a series of vaccines has been promoted worldwide; however, incidence, morbidity, and mortality remains high. To step up vigilance and improve pandemic preparedness, this article elucidates the virology, epidemiology, pathogenesis, clinical characteristics, and treatment of human infections by influenza A viruses, with an emphasis on the influenza A(H1N1)pdm09, H5N1, and H7N9 subtypes.

  17. Serological report of pandemic and seasonal human influenza virus infection in dogs in southern China.

    PubMed

    Yin, Xin; Zhao, Fu-Rong; Zhou, Dong-Hui; Wei, Ping; Chang, Hui-Yun

    2014-11-01

    From January to July 2012, we looked for evidence of subclinical A (H1N1) pdm09 and seasonal human influenza viruses infections in healthy dogs in China. Sera from a total of 1920 dogs were collected from Guangdong, Guangxi, Fujian and Jiangxi provinces. We also examined archived sera from 66 dogs and cats that were collected during 2008 from these provinces. Using hemagglutination inhibition (HI) and microneutralization (MN) assays, we found that only the dogs sampled in 2012 had elevated antibodies (≥ 1:32) against A(H1N1)pdm09 virus and seasonal human influenza viruses: Of the 1920 dog sera, 20.5 % (n = 393) had elevated antibodies against influenza A(H1N1) pdm09 by the HI assay, 1.1 % (n = 22), and 4.7 % (n = 91) of the 1920 dogs sera had elevated antibodies against human seasonal H1N1 influenza virus and human seasonal H3N2 influenza virus by the HI assay. Compared with dogs that were raised on farms, dogs that were raised as pets were more likely to have elevated antibodies against A(H1N1)pdm09 and seasonal human influenza viruses. Seropositivity was highest among pet dogs, which likely had more diverse and frequent exposures to humans than farm dogs. These findings will help us better understand which influenza A viruses are present in dogs and will contribute to the prevention and control of influenza A virus. Moreover, further in-depth study is necessary for us to understand what roles dogs play in the ecology of influenza A.

  18. Pandemic influenza A (H1N1) virus infection and avian influenza A (H5N1) virus infection: a comparative analysis.

    PubMed

    Korteweg, Christine; Gu, Jiang

    2010-08-01

    The 2009 H1N1 and H5N1 influenza viruses are newly (re-) emerged influenza A viruses (2009 A(H1N1) and A(H5N1), respectively) that have recently posed tremendous health threats in many regions worldwide. With the 2009 outbreak of H1N1 influenza A, the world witnessed the first influenza pandemic of the 21st century. The disease has rapidly spread across the entire globe, and has resulted in hundreds of thousands of cases with confirmed infection. Although characterized by high transmissibility, the virulence and fatality of the 2009 A(H1N1) influenza virus have thus far remained relatively low. The reverse holds true for A(H5N1) influenza; at a fatality rate that exceeds 60%, it is known to cause severe damage to the human respiratory system, but is not presently capable of efficient transmission from human to human. Apart from the clear differences between the two types of influenza, there are some significant similarities that warrant attention. In particular, the more severe and fatal 2009 A(H1N1) influenza cases have shown symptoms similar to those reported in cases of A(H5N1) influenza. Histopathological findings for these cases, to the extent available, also appear to have similarities for both diseases in terms of damage and severity. Here we review important recent publications in this area, and we discuss some of the key commonalities and contrasts between the two influenza A types in terms of their biology, origins, clinical features, pathology and pathogenesis, and receptors and transmissibility.

  19. Determination of Predominance of Influenza Virus Strains in the Americas.

    PubMed

    Azziz-Baumgartner, Eduardo; Garten, Rebecca J; Palekar, Rakhee; Cerpa, Mauricio; Mirza, Sara; Ropero, Alba Maria; Palomeque, Francisco S; Moen, Ann; Bresee, Joseph; Shaw, Michael; Widdowson, Marc-Alain

    2015-07-01

    During 2001-2014, predominant influenza A(H1N1) and A(H3N2) strains in South America predominated in all or most subsequent influenza seasons in Central and North America. Predominant A(H1N1) and A(H3N2) strains in North America predominated in most subsequent seasons in Central and South America. Sharing data between these subregions may improve influenza season preparedness.

  20. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus infection in ferrets.

    PubMed

    Pearce, Melissa B; Belser, Jessica A; Gustin, Kortney M; Pappas, Claudia; Houser, Katherine V; Sun, Xiangjie; Maines, Taronna R; Pantin-Jackwood, Mary J; Katz, Jacqueline M; Tumpey, Terrence M

    2012-07-01

    The influenza virus H1N1 pandemic of 1918 was one of the worst medical catastrophes in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus [A(H1N1)pdm09], the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV), share cross-reactive antigenic determinants. In this study, we demonstrate that immunization with the 2010-2011 seasonal TIV induces neutralizing antibodies that cross-react with the reconstructed 1918 pandemic virus in ferrets. TIV-immunized ferrets subsequently challenged with the 1918 virus displayed significant reductions in fever, weight loss, and virus shedding compared to these parameters in nonimmune control ferrets. Seasonal TIV was also effective in protecting against the lung infection and severe lung pathology associated with 1918 virus infection. Our data demonstrate that prior immunization with contemporary TIV provides cross-protection against the 1918 virus in ferrets. These findings suggest that exposure to A(H1N1)pdm09 through immunization may provide protection against the reconstructed 1918 virus which, as a select agent, is considered to pose both biosafety and biosecurity threats.

  1. Influenza viruses received and tested by the Melbourne WHO Collaborating Centre for Reference and Research on Influenza annual report, 2014.

    PubMed

    Sullivan, Sheena G; Chow, Michelle K; Barr, Ian G; Kelso, Anne

    2015-12-31

    The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne is part of the World Health Organization's (WHO) Global Influenza Surveillance and Response System. In 2014 the Centre received a total of 5,374 influenza samples from laboratories primarily in the Asia-Pacific region. Viruses were characterised by their antigenic, genetic and antiviral drug resistance properties. Of the viruses successfully analysed 52% were A(H1N1)pdm09 viruses. The majority of these were antigenically and genetically similar to the WHO recommended reference strain for the 2014 Southern Hemisphere influenza vaccine. Results for A(H3N2) and B/Yamagata viruses suggested that circulating viruses of this subtype and lineage, respectively, had undergone antigenic and/or genetic changes, consistent with the decision by WHO to change recommended strains for the 2015 Southern Hemisphere vaccine. A small number of A(H1N1)pdm09 and B/Victoria viruses had highly reduced inhibition to the neuraminidase inhibitors oseltamivir and zanamivir. The Centre also undertook primary isolation of vaccine candidate viruses directly into eggs. A total of 38 viruses were successfully isolated in eggs, of which 1 (B/Phuket/3073/2013) was included in the 2015 Southern Hemisphere influenza vaccine.

  2. Detection of nonhemagglutinating influenza a(h3) viruses by enzyme-linked immunosorbent assay in quantitative influenza virus culture.

    PubMed

    van Baalen, C A; Els, C; Sprong, L; van Beek, R; van der Vries, E; Osterhaus, A D M E; Rimmelzwaan, G F

    2014-05-01

    To assess the efficacy of novel antiviral drugs against influenza virus in clinical trials, it is necessary to quantify infectious virus titers in respiratory tract samples from patients. Typically, this is achieved by inoculating virus-susceptible cells with serial dilutions of clinical specimens and detecting the production of progeny virus by hemagglutination, since influenza viruses generally have the capacity to bind and agglutinate erythrocytes of various species through their hemagglutinin (HA). This readout method is no longer adequate, since an increasing number of currently circulating influenza A virus H3 subtype (A[H3]) viruses display a reduced capacity to agglutinate erythrocytes. Here, we report the magnitude of this problem by analyzing the frequency of HA-deficient A(H3) viruses detected in The Netherlands from 1999 to 2012. Furthermore, we report the development and validation of an alternative method for monitoring the production of progeny influenza virus in quantitative virus cultures, which is independent of the capacity to agglutinate erythrocytes. This method is based on the detection of viral nucleoprotein (NP) in virus culture plates by enzyme-linked immunosorbent assay (ELISA), and it produced results similar to those of the hemagglutination assay using strains with good HA activity, including A/Brisbane/059/07 (H1N1), A/Victoria/210/09 (H3N2), other seasonal A(H1N1), A(H1N1)pdm09, and the majority of A(H3) virus strains isolated in 2009. In contrast, many A(H3) viruses that have circulated since 2010 failed to display HA activity, and infectious virus titers were determined only by detecting NP. The virus culture ELISA described here will enable efficacy testing of new antiviral compounds in clinical trials during seasons in which nonhemagglutinating influenza A viruses circulate.

  3. The immunogenetics of narcolepsy associated with A(H1N1)pdm09 vaccination (Pandemrix) supports a potent gene-environment interaction.

    PubMed

    Bomfim, I L; Lamb, F; Fink, K; Szakács, A; Silveira, A; Franzén, L; Azhary, V; Maeurer, M; Feltelius, N; Darin, N; Hallböök, T; Arnheim-Dahlström, L; Kockum, I; Olsson, T

    2017-03-23

    The influenza A(H1N1)pdm09 vaccination campaign from 2009 to 2010 was associated with a sudden increase in the incidence of narcolepsy in several countries. Narcolepsy with cataplexy is strongly associated with the human leukocyte antigen (HLA) class II DQB1*06:02 allele, and protective associations with the DQB1*06:03 allele have been reported. Several non-HLA gene loci are also associated, such as common variants of the T-cell receptor-α (TRA), the purinergic receptor P2RY11, cathepsin H (CTSH) and TNFSF4/OX40L/CD252. In this retrospective multicenter study, we investigated if these predisposing gene loci were also involved in vaccination-associated narcolepsy. We compared HLA- along with single-nucleotide polymorphism genotypes for non-HLA regions between 42 Pandemrix-vaccinated narcolepsy cases and 1990 population-based controls. The class II gene loci associations supported previous findings. Nominal association (P-value<0.05) with TRA as well as suggestive (P-value<0.1) associations with P2RY11 and CTSH were found. These associations suggest a very strong gene-environment interaction, in which the influenza A(H1N1)pdm09 strain or Pandemrix vaccine can act as potent environmental triggers.Genes and Immunity advance online publication, 23 March 2017; doi:10.1038/gene.2017.1.

  4. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    PubMed

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.

  5. Genetic and Antigenic Typing of Seasonal Influenza Virus Breakthrough Cases from a 2008-2009 Vaccine Efficacy Trial

    PubMed Central

    Durviaux, Serge; Treanor, John; Beran, Jiri; Duval, Xavier; Esen, Meral; Feldman, Gregory; Frey, Sharon E.; Launay, Odile; Leroux-Roels, Geert; McElhaney, Janet E.; Nowakowski, Andrzej; Ruiz-Palacios, Guillermo M.; van Essen, Gerrit A.; Oostvogels, Lidia; Devaster, Jeanne-Marie

    2014-01-01

    Estimations of the effectiveness of vaccines against seasonal influenza virus are guided by comparisons of the antigenicities between influenza virus isolates from clinical breakthrough cases with strains included in a vaccine. This study examined whether the prediction of antigenicity using a sequence analysis of the hemagglutinin (HA) gene-encoded HA1 domain is a simpler alternative to using the conventional hemagglutination inhibition (HI) assay, which requires influenza virus culturing. Specimens were taken from breakthrough cases that occurred in a trivalent influenza virus vaccine efficacy trial involving >43,000 participants during the 2008-2009 season. A total of 498 influenza viruses were successfully subtyped as A(H3N2) (380 viruses), A(H1N1) (29 viruses), B(Yamagata) (23 viruses), and B(Victoria) (66 viruses) from 603 PCR- or culture-confirmed specimens. Unlike the B strains, most A(H3N2) (377 viruses) and all A(H1N1) viruses were classified as homologous to the respective vaccine strains based on their HA1 domain nucleic acid sequence. HI titers relative to the respective vaccine strains and PCR subtyping were determined for 48% (182/380) of A(H3N2) and 86% (25/29) of A(H1N1) viruses. Eighty-four percent of the A(H3N2) and A(H1N1) viruses classified as homologous by sequence were matched to the respective vaccine strains by HI testing. However, these homologous A(H3N2) and A(H1N1) viruses displayed a wide range of relative HI titers. Therefore, although PCR is a sensitive diagnostic method for confirming influenza virus cases, HA1 sequence analysis appeared to be of limited value in accurately predicting antigenicity; hence, it may be inappropriate to classify clinical specimens as homologous or heterologous to the vaccine strain for estimating vaccine efficacy in a prospective clinical trial. PMID:24371255

  6. Estimating vaccine effectiveness in preventing laboratory-confirmed influenza in outpatient settings in South Africa, 2015.

    PubMed

    McAnerney, Johanna M; Walaza, Sibongile; Tempia, Stefano; Blumberg, Lucille; Treurnicht, Florette K; Madhi, Shabir A; Valley-Omar, Ziyaad; Cohen, Cheryl

    2017-03-01

    Trivalent seasonal influenza vaccine effectiveness during the 2015 season in South Africa was assessed using a test-negative case control study design. Influenza A(H1N1)pdm09 was the dominant circulating strain. Overall influenza vaccine coverage was 3.2% (29/899). The vaccine effectiveness estimate, against any influenza virus infection, adjusted for age, underlying conditions and timing within season was 46.2% (95% CI: -23.5 to 76.5), and 53.6% (95% CI: -62.6 to 80.3) against influenza A(H1N1)pdm09.

  7. Antigenic and genetic variation in the hemagglutinins of H1N1 and H3N2 human influenza a viruses in the Shanghai area from 2005 to 2008.

    PubMed

    Ren, Xiao-wei; Ju, Li-wen; Yang, Ji-xing; Lv, Xi-hong; Jiang, Lu-fang; Zhao, Nai-qing; Jiang, Qing-wu

    2011-07-01

    Continued rapid evolution of the influenza A virus is responsible for annual epidemics and occasional pandemics in the Shanghai area. In the present study, the representative strains of A/H1N1 and A/H3N2 influenza viruses isolated in the Shanghai area from 2005 to 2008 were antigenically and genetically characterized. The antigenic cartography method was carried out to visualize the hemagglutination-inhibition data. Antigenic differences were detected between circulating A/H1N1 strains isolated from 2005 to 2006 and the epidemic A/H1N1 strains isolated in 2008, which were found to be associated with the amino acid substitution K140E in HA1. The present vaccine strain A/Brisbane/59/2007 is considered to be capable of providing sufficient immunity against most of the circulating A/H1N1 viruses isolated in 2008 from the Shanghai population. The study showed that there were significant antigenic differences between the epidemic A/H3N2 strains isolated in 2007 and 2008, suggesting that antigenic drift had occurred in the A/H3N2 strains isolated in 2008. The P194L mutation was thought to be responsible for the antigenic evolution of influenza A/H3N2 viruses isolated from Shanghai in 2008. Evidence of antigenic drift suggests that the influenza A/H3N2 vaccine component needs to be updated.

  8. The 2009 Influenza A(H1N1) ’Swine Flu’ Outbreak: An Overview

    DTIC Science & Technology

    2009-05-20

    Tamiflu and Relenza, respiratory protection devices, and other medical supplies, from the Strategic National Stockpile (SNS), to help states respond to... medical visits, and other measures. One CDC official commented that reported cases of H1N1 flu probably represent only a fraction of actual cases...with good hygienic practices recommended by the WHO, FAO, Codex Alimentarius Commission and the OIE, will not be a source of infection. To date there

  9. The 2009 Influenza A(H1N1) Outbreak: Selected Legal Issues

    DTIC Science & Technology

    2009-05-06

    state and local governments in the distribution of medicine, food, and consumables .19 The total amount of assistance available is limited in an...to balance these various interests in a modern culture that is sensitive to issues of individual rights has become critical.114 Constitutional...under individual medical investigation. See Institute for Bioethics , Health Policy and Law, Quarantine and Isolation: Lessons Learned from SARS at 58

  10. The 2009 Influenza A(H1N1) Outbreak: Selected Legal Issues

    DTIC Science & Technology

    2009-05-21

    uninsured personal needs; and assist state and local governments in the distribution of medicine, food, and consumables .19 The total amount of...of how to balance these various interests in a modern culture that is sensitive to issues of individual rights has become critical.111...Institute for Bioethics , Health Policy and Law, Quarantine and Isolation: Lessons Learned from SARS at 58-59 (November 2003). 196 See Family Leave

  11. Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses.

    PubMed

    Dunham, Eleca J; Dugan, Vivien G; Kaser, Emilee K; Perkins, Sarah E; Brown, Ian H; Holmes, Edward C; Taubenberger, Jeffery K

    2009-06-01

    In 1979, a lineage of avian-like H1N1 influenza A viruses emerged in European swine populations independently from the classical swine H1N1 virus lineage that had circulated in pigs since the Spanish influenza pandemic of 1918. To determine whether these two distinct lineages of swine-adapted A/H1N1 viruses evolved from avian-like A/H1N1 ancestors in similar ways, as might be expected given their common host species and origin, we compared patterns of nucleotide and amino acid change in whole genome sequences of both groups. An analysis of nucleotide compositional bias across all eight genomic segments for the two swine lineages showed a clear lineage-specific bias, although a segment-specific effect was also apparent. As such, there appears to be only a relatively weak host-specific selection pressure. Strikingly, despite each lineage evolving in the same species of host for decades, amino acid analysis revealed little evidence of either parallel or convergent changes. These findings suggest that although adaptation due to evolutionary lineages can be distinguished, there are functional and structural constraints on all gene segments and that the evolutionary trajectory of each lineage of swine A/H1N1 virus has a strong historical contingency. Thus, in the context of emergence of an influenza A virus strain via a host switch event, it is difficult to predict what specific polygenic changes are needed for mammalian adaptation.

  12. A/H1N1 Vaccine Intentions in College Students: An Application of the Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Agarwal, Vinita

    2014-01-01

    Objective: To test the applicability of the Theory of Planned Behavior (TPB) in college students who have not previously received the A/H1N1 vaccine. Participants: Undergraduate communication students at a metropolitan southern university. Methods: In January-March 2010, students from voluntarily participating communication classes completed a…

  13. On Temporal Patterns and Circulation of Influenza Virus Strains in Taiwan, 2008-2014: Implications of 2009 pH1N1 Pandemic

    PubMed Central

    Hsieh, Ying-Hen; Huang, Hsiang-Min; Lan, Yu-Ching

    2016-01-01

    Background It has been observed that, historically, strains of pandemic influenza led to succeeding seasonal waves, albeit with decidedly different patterns. Recent studies suggest that the 2009 A(H1N1)pdm09 pandemic has had an impact on the circulation patterns of seasonal influenza strains in the post-pandemic years. In this work we aim to investigate this issue and also to compare the relative transmissibility of these waves of differing strains using Taiwan influenza surveillance data before, during and after the pandemic. Methods We make use of the Taiwan Center for Disease Control and Prevention influenza surveillance data on laboratory-confirmed subtyping of samples and a mathematical model to determine the waves of circulating (and co-circulating) H1, H3 and B virus strains in Taiwan during 2008–2014; or namely, short before, during and after the 2009 pandemic. We further pinpoint the turning points and relative transmissibility of each wave, in order to ascertain whether any temporal pattern exists. Results/Findings For two consecutive years following the 2009 pandemic, A(H1N1)pdm09 circulated in Taiwan (as in most of Northern Hemisphere), sometimes co-circulating with AH3. From the evolution point of view, A(H1N1)pdm09 and AH3 were able to sustain their circulation patterns to the end of 2010. In fact, A(H1N1)pdm09 virus circulated in six separate waves in Taiwan between summer of 2009 and spring of 2014. Since 2009, a wave of A(H1N1)pmd09 occurred every fall/winter influenza season during our study period except 2011–2012 season, when mainly influenza strain B circulated. In comparing transmissibility, while the estimated per capita weekly growth rates for cumulative case numbers (and the reproduction number) seem to be lower for most of the influenza B waves (0.06~0.26; range of 95% CIs: 0.05~0.32) when compared to those of influenza A, the wave of influenza B from week 8 to week 38 of 2010 immediately following the fall/winter wave of 2009 A(H1N1

  14. Multiplex RT-PCR and indirect immunofluorescence assays for detection and subtyping of human influenza virus in Tunisia.

    PubMed

    Ben M'hadheb, Manel; Harrabi, Myriam; Souii, Amira; Jrad-Battikh, Nadia; Gharbi, Jawhar

    2015-03-01

    Influenza viruses are negative stranded segmented RNA viruses belonging to Orthomyxoviridae family. They are classified into three types A, B, and C. Type A influenza viruses are classified into subtypes according to the antigenic characters of the surface glycoproteins: hemagglutinin (H) and neuraminidase (N). The aim of the present study is to develop a fast and reliable multiplex RT-PCR technique for detecting simultaneously the subtypes A/H1N1 and A/H3N2 of influenza virus. Our study included 398 patients (mean age 30.33 ± 19.92 years) with flu or flu-like syndromes, consulting physicians affiliated with collaborating teams. A multiplex RT-PCR detecting A/H1N1 and A/H3N2 influenza viruses and an examination by indirect immunofluorescence (IFI) were performed. In the optimized conditions, we diagnosed by IFI a viral infection in 90 patients (22.6 %): 85 cases of influenza type A, four cases of influenza type B, and only one case of coinfection with types A and B. An evaluation of the technique was performed on 19 clinical specimens positive in IFI, and we detected eight cases of A/H3N2, five cases of A/H1N1, one case of influenza virus type A which is not an H1N1 nor H3N2, and five negative cases. Multiplex RT-PCR is a sensitive technique allowing an effective and fast diagnosis of respiratory infections caused by influenza viruses in which the optimization often collides with problems of sensibility.

  15. The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites

    NASA Astrophysics Data System (ADS)

    Ivanova, V. T.; Katrukha, G. S.; Timofeeva, A. V.; Ilyna, M. V.; Kurochkina, Y. E.; Baratova, L. A.; Sapurina, I. Yu; Ivanov, V. F.

    2011-04-01

    The decontamination of the solutions from micropatogens and drug delivery are the important problems of modern life. It was shown that carbon nanotubes, polyaniline and their composites can interact with antibiotics-polypeptides and some viruses (pandemic strain of influenza viruses A(H1N1)v circulated in Russia in 2009-2010. During a short time drug and viruses can be absorbed by polyaniline and removed from aqueous solutions at the normal conditions. Polyaniline composites can be useful for the preparation of drug delivery and virus control filters and also in biotechnology for the improvement the methods of antibiotics purification.

  16. Seroincidence of Influenza Among HIV-infected and HIV-uninfected Men During the 2009 H1N1 Influenza Pandemic, Bangkok, Thailand.

    PubMed

    Garg, Shikha; Olsen, Sonja J; Fernandez, Stefan; Muangchana, Charung; Rungrojcharoenkit, Kamonthip; Prapasiri, Prabda; Katz, Jacqueline M; Curlin, Marcel E; Gibbons, Robert V; Holtz, Timothy H; Chitwarakorn, Anupong; Dawood, Fatimah S

    2014-12-01

    Among 368 Thai men who have sex with men with paired serum samples collected before and during the 2009 H1N1 influenza pandemic, we determined influenza A (H1N1)pdm09 seroconversion rates (≥4-fold rise in antibody titers by hemagglutination inhibition or microneutralization assays). Overall, 66 of 232 (28%) participants seroconverted after the first year of A(H1N1)pdm09 activity, and 83 of 234 (35%) participants seroconverted after the second year. Influenza A(H1N1)pdm09 seroconversion did not differ between human immunodeficiency virus (HIV)-infected (55 of 2157 [35%]) and HIV-uninfected (71 of 2211 [34%]) participants (P = .78). Influenza A(H1N1)pdm09 seroconversion occurred in approximately one third of our Thai study population and was similar among HIV-infected and HIV-uninfected participants.

  17. Persistence and avidity maturation of antibodies to A(H1N1)pdm09 in healthcare workers following repeated annual vaccinations.

    PubMed

    Eidem, Synnøve; Tete, Sarah M; Jul-Larsen, Åsne; Hoschler, Katja; Montomoli, Emanuele; Brokstad, Karl A; Cox, Rebecca J

    2015-08-07

    Healthcare workers are at increased risk of influenza infection through direct patient care, particularly during the early stages of a pandemic. Although influenza vaccination is widely recommended in Healthcare workers, data on long-term immunogenicity of vaccination in healthcare workers are lacking. The present study was designed to assess the persistence of the humoral response after pandemic vaccination as well as the impact of repeated annual vaccination in healthcare workers (n=24). Pandemic influenza vaccination resulted in a significant increase in haemagglutination inhibition (HI) antibody titers with 93-100% of subjects achieving protective titers 21-days post each of the three annual vaccinations. Seroprotective antibodies measured by HI, microneutralization and single radial hemolysis assays were present in 77-94% of healthcare workers 6 months post-vaccination. Repeated vaccination resulted in an increased duration of seroprotective antibodies with seroprotective titers increasing from 35-62% 12 months after 2009 pandemic vaccination to 50-75% 12 months after 2010 vaccination. Furthermore, repeated annual vaccination augmented the avidity of influenza-specific IgG antibodies. In conclusion, we have shown that A(H1N1)pdm09 vaccination induces high seroprotective titers that persist for at least 6 months. We demonstrate that repeated vaccination is beneficial to healthcare workers and results in further avidity maturation of vaccine-induced antibodies.

  18. Droplet digital PCR to investigate quasi-species at codons 119 and 275 of the A(H1N1)pdm09 neuraminidase during zanamivir and oseltamivir therapies.

    PubMed

    Abed, Yacine; Carbonneau, Julie; L'Huillier, Arnaud G; Kaiser, Laurent; Boivin, Guy

    2017-04-01

    The H275Y and E119D neuraminidase (NA) mutations constitute important molecular markers of resistance to NA inhibitors in A(H1N1) pdm09 viruses. We used reverse transcriptase-droplet digital PCR amplification (RT-ddPCR) to analyze quasi-species at codons 275 and 119 of the NA in A(H1N1) pdm09 viruses recovered from an immuncompromised patient who received oseltamivir and zanamivir therapies. RT-ddPCR assays detected and quantified H275Y and E119D mutations with an efficiency that was comparable to that of high throughput sequencing (HiSeq 2500 Illumina, San Diego, CA) technology. With its sensitivity and reproducibility, RT-ddPCR could be a reliable method for accurate detection and quantification of major NAI-resistance mutations in clinical settings. J. Med. Virol. 89:737-741, 2017. © 2016 Wiley Periodicals, Inc.

  19. Antiviral activity of acidic polysaccharides from Coccomyxa gloeobotrydiformi, a green alga, against an in vitro human influenza A virus infection.

    PubMed

    Komatsu, Takayuki; Kido, Nobuo; Sugiyama, Tsuyoshi; Yokochi, Takashi

    2013-02-01

    The extracts prepared from green algae are reported to possess a variety of biological activities including antioxidant, antitumor and antiviral activities. The acidic polysaccharide fraction from a green alga Coccomyxa gloeobotrydiformi (CmAPS) was isolated and the antiviral action on an in vitro infection of influenza A virus was examined. CmAPS inhibited the growth and yield of all influenza A virus strains tested, such as A/H1N1, A/H2N2, A/H3N2 and A/H1N1 pandemic strains. The 50% inhibitory concentration of CmAPS on the infection of human influenza A virus strains ranged from 26 to 70 µg/mL and the antiviral activity of CmAPS against influenza A/USSR90/77 (H1N1) was the strongest. The antiviral activity of CmAPS was not due to the cytotoxicity against host cells. The antiviral activity of CmAPS required its presence in the inoculation of virus onto MDCK cells. Pretreatment and post-treatment with CmAPS was ineffective for the antiviral activity. CmAPS inhibited influenza A virus-induced erythrocyte hemagglutination and hemolysis. Taken together, CmAPS was suggested to exhibit the anti-influenza virus activity through preventing the interaction of virus and host cells. The detailed antiviral activity of CmAPS is discussed.

  20. INSIGHT FLU005: An Anti–Influenza Virus Hyperimmune Intravenous Immunoglobulin Pilot Study

    PubMed Central

    2016-01-01

    Hemagglutination inhibition (HAI) antibody responses to anti–influenza virus hyperimmune intravenous immunoglobulin (hIVIG) were characterized. Thirty-one patients with influenza during the 2013–2014 season were randomly assigned to receive 0.25 g/kg of hIVIG (n = 16) or placebo (n = 15). For hIVIG recipients, the ratio of geometric mean titers (1 hour after infusion/before infusion) was 4.00 (95% confidence interval [CI], 2.61–6.13) for 2009 pandemic influenza A(H1N1) and 1.76 (95% CI, 1.33–2.32) for influenza A(H3N2) and influenza B. Among patients with 2009 pandemic influenza A(H1N1), ratios for hIVIG (n = 9) versus placebo (n = 8) were higher 1 hour after infusion (3.9 [95% CI, 2.3–6.7]) and sustained through day 3 (2.0 [95% CI, 1.0–4.0]). hIVIG administration significantly increases HAI titer levels among patients with influenza, supporting the need to perform a clinical outcomes study. Clinical trials registration: NCT02008578. PMID:26374911

  1. [Genetic Diversity and Evolution of the M Gene of Human Influenza A Viruses from 2009 to 2013 in Hangzhou, China].

    PubMed

    Shao, Tiejuan; Li, Jun; Pu, Xiaoying; Yu, Xinfen; Kou, Yu; Zhou, Yinyan; Qian, Xin

    2015-03-01

    We investigated the genetic diversity and evolution of the M gene of human influenza A viruses in Hangzhou (Zhejiang province, China) from 2009 to 2013, including subtypes of A(H1N1) pdm09 strains and seasonal A(H3N2) strains. Subtypes of analyzed viruses were identified by cell culture and real-time reverse transcription-polymerase chain reaction, followed by cloning, sequencing and phylogenetic analyses of the M gene. Assessment of 5675 throat swabs revealed a positive rate for the influenza virus of 20.46%, and 827 cases were diagnosed as. infections due to influenza A viruses. Seventy-six influenza-A strains were selected randomly from nine stages during six phases of a virus epidemic. Sequences of the M gene showed high homology among six epidemics with identities of amino-acid sequences of 98.98-100%. All strains contained the adamantine-resistant mutation S31N in its M2 protein. Two of the A(H1N1)pdm09 strains had double mutants of V27A/S31N or V271/S31N. One of the seasonal A(H3N2) viruses had another form of double-mutant R45H/S31N. Evolutionary rate of the M gene was much lower than that of the HA gene and NA gene. Compared with A(H3N2) strains, higher positive pressure on the M1 and M2 proteins of A(H1N1) pdm09 viruses was observed. Separate analyses of M1 and M2 proteins revealed very different selection pressures. Knowledge of the genetic diversity and evolution of the M gene of human influenza-A viruses will be valuable for the control and prevention of diseases.

  2. New Small Molecule Entry Inhibitors Targeting Hemagglutinin-Mediated Influenza A Virus Fusion

    PubMed Central

    Antanasijevic, Aleksandar; Wang, Minxiu; Li, Bing; Mills, Debra M.; Ames, Jessica A.; Nash, Peter J.; Williams, John D.; Peet, Norton P.; Moir, Donald T.; Prichard, Mark N.; Keith, Kathy A.; Barnard, Dale L.; Caffrey, Michael; Rong, Lijun; Bowlin, Terry L.

    2014-01-01

    Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC50] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM2 % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process. PMID:24198411

  3. Multiplex Assay for Simultaneously Typing and Subtyping Influenza Viruses by Use of an Electronic Microarray ▿

    PubMed Central

    Huang, Ying; Tang, Huong; Duffy, Stuart; Hong, Yuwen; Norman, Sylvia; Ghosh, Madhu; He, Jie; Bose, Michael; Henrickson, Kelly J.; Fan, Jiang; Kraft, Andrea J.; Weisburg, William G.; Mather, Elizabeth L.

    2009-01-01

    We report on the use of an electronic microarray to simultaneously type influenza A and B viruses and to distinguish influenza A virus subtypes H1N1 and H3N2 from the potentially pandemic avian virus subtype H5N1. The assay targets seven genes: the H1, H3, H5, N1, and N2 genes of influenza A virus; the matrix protein M1 gene of influenza A virus; and the nonstructural protein (NS) gene of influenza B virus. By combining a two-step reverse transcription-multiplex PCR with typing and subtyping on the electronic microarray, the assay achieved an analytical sensitivity of 102 to 103 copies of transcripts per reaction for each of the genes. The assay correctly typed and subtyped 15 different influenza virus isolates, including two influenza B virus, five A/H1N1, six A/H3N2, and two A/H5N1 isolates. In addition, the assay correctly identified 8 out of 10 diluted, archived avian influenza virus specimens with complete typing and subtyping information and 2 specimens with partial subtyping information. In a study of 146 human clinical specimens that had previously been shown to be positive for influenza virus or another respiratory virus, the assay showed a clinical sensitivity of 96% and a clinical specificity of 100%. The assay is a rapid, accurate, user-friendly method for simultaneously typing and subtyping influenza viruses. PMID:19073867

  4. Immunomodulaton and attenuation of lethal influenza A virus infection by oral administration with KIOM-C.

    PubMed

    Kim, Eun-Ha; Pascua, Philippe Noriel Q; Song, Min-Suk; Baek, Yun Hee; Kwon, Hyeok-Il; Park, Su-Jin; Lim, Gyo-Jin; Kim, Se Mi; Decano, Arun; Lee, Kwang Jin; Cho, Won-Kyung; Ma, Jin Yeul; Choi, Young Ki

    2013-06-01

    Herbal medicine is used to treat many conditions such as asthma, eczema, premenstrual syndrome, rheumatoid arthritis, migraine, headaches, menopausal symptoms, chronic fatigue, irritable bowel syndrome, cancer, and viral infections such as influenza. In this study, we investigated the antiviral effect of KIOM-C for the treatment of influenza A virus infection. Our results show that oral administration of KIOM-C conferred a survival benefit to mice infected with the 2009 pandemic H1N1 [A(H1N1)pdm09] virus, and resulted in a 10- to 100-fold attenuation of viral replication in ferrets in a dose-dependent manner. Additionally, oral administration of KIOM-C increased the production of antiviral cytokines, including IFN-γ and TNF-α, and decreased levels of pro-inflammatory cytokines (IL-6) and chemokines (KC, MCP-1) in the Bronchoalveolar lavage fluid (BALF) of A(H1N1)pdm-infected mice. These results indicate that KIOM-C can promote clearance of influenza virus in the respiratory tracts of mice and ferrets by modulating cytokine production in hosts. Taken together, our results suggest that KIOM-C is a potential therapeutic compound mixture for the treatment of influenza virus infection in humans.

  5. Department of Defense Influenza and Other Respiratory Disease Surveillance during the 2009 Pandemic

    DTIC Science & Technology

    2011-01-01

    2009 novel A/H1N1 virus [16]. Moreover, while these tests can distinguish between influenza A and B viruses , they are rarely able to subtype specific...and viruses isolated from these activities were used as seed strains for the 2009 pandemic influenza vaccine. Partners also provided diagnostic...several other countries, and viruses isolated from these activities were used as seed strains for the 2009 pandemic influenza vaccine. Partners also

  6. A new laboratory-based surveillance system (Respiratory DataMart System) for influenza and other respiratory viruses in England: results and experience from 2009 to 2012.

    PubMed

    Zhao, H; Green, H; Lackenby, A; Donati, M; Ellis, J; Thompson, C; Bermingham, A; Field, J; Sebastianpillai, P; Zambon, M; Watson, Jm; Pebody, R

    2014-01-23

    During the 2009 influenza A(H1N1) pandemic, a new laboratory-based virological sentinel surveillance system, the Respiratory DataMart System (RDMS), was established in a network of 14 Health Protection Agency (now Public Health England (PHE)) and National Health Service (NHS) laboratories in England. Laboratory results (both positive and negative) were systematically collected from all routinely tested clinical respiratory samples for a range of respiratory viruses including influenza, respiratory syncytial virus (RSV), rhinovirus, parainfluenza virus, adenovirus and human metapneumovirus (hMPV). The RDMS also monitored the occurrence of antiviral resistance of influenza viruses. Data from the RDMS for the 2009–2012 period showed that the 2009 pandemic influenza virus caused three waves of activity with different intensities during the pandemic and post pandemic periods. Peaks in influenza A(H1N1)pdm09 positivity (defined as number of positive samples per total number of samples tested) were seen in summer and autumn in 2009, with slightly higher peak positivity observed in the first post-pandemic season in 2010/2011. The influenza A(H1N1)pdm09 virus strain almost completely disappeared in the second postpandemic season in 2011/2012. The RDMS findings are consistent with other existing community-based virological and clinical surveillance systems. With a large sample size, this new system provides a robust supplementary mechanism, through the collection of routinely available laboratory data at minimum extra cost, to monitor influenza as well as other respiratory virus activity. A near real-time, daily reporting mechanism in the RDMS was established during the London 2012 Olympic and Paralympic Games. Furthermore, this system can be quickly adapted and used to monitor future influenza pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.

  7. The Activity of Influenza and Influenza-like Viruses in Individuals Aged over 14 in the 2015/2016 Influenza Season in Poland.

    PubMed

    Kowalczyk, D; Cieślak, K; Szymański, K; Brydak, L B

    2017-02-15

    Infections in every epidemic season induced by respiratory viruses, especially by the influenza virus, are the cause of many illnesses and complications which often end in death. The aim of this study was to determine the activity of influenza and influenza-like viruses in individuals aged over of 14 in Poland during the 2015/2016 epidemic season. A total of 5070 specimens taken from patients were analyzed. The presence of the influenza virus was confirmed in 40.2% of cases, among which the subtype A/H1N1/pdm09 (62.6% positive samples) predominated. The analysis of confirmed influenza and influenza-like viruses in individuals divided into four age-groups demonstrate that the highest morbidity was reported for the age ranges: 45-64 (13.1%) and 26-44 (12.6%) years. An increase in the number of influenza type B cases (23.7% positive samples), which was the main cause of morbidity in the age group 15-25 years, was noticeable. Given the epidemiological and virological data, the 2015/2016 season in Poland was characterized by increased activity of the influenza virus compared to the previous season. In the 2015/2016 season, there were more than 3.8 million cases and suspected cases of influenza and influenza-like illness, more than 15,000 hospitalizations, and up to 140 deaths.

  8. Introduction of 2009 Pandemic Influenza A Virus Subtype H1N1 Into South Africa: Clinical Presentation, Epidemiology, and Transmissibility of the First 100 Cases

    PubMed Central

    Archer, Brett N.; Timothy, Geraldine A.; Cohen, Cheryl; Tempia, Stefano; Huma, Mmampedi; Blumberg, Lucille; Naidoo, Dhamari; Cengimbo, Ayanda; Schoub, Barry D.

    2012-01-01

    Background. We documented the introduction of 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) into South Africa and describe its clinical presentation, epidemiology, and transmissibility. Methods. We conducted a prospective descriptive study of the first 100 laboratory-confirmed cases of A(H1N1)pdm09 infections identified through active case finding and surveillance. Infected patients and the attending clinicians were interviewed, and close contacts were followed up to investigate household transmission. Findings. The first case was confirmed on 14 June 2009, and by 15 July 2009, 100 cases were diagnosed. Forty-two percent of patients reported international travel within 7 days prior to onset of illness. Patients ranged in age from 4 to 70 years (median age, 21.5 years). Seventeen percent of household contacts developed influenza-like illness, and 10% of household contacts had laboratory-confirmed A(H1N1)pdm09 infection. We found a mean serial interval (± SD) of 2.3 ± 1.3 days (range, 1–5 days) between successive laboratory-confirmed cases in the transmission chain. Conclusions. A(H1N1)pdm09 established itself rapidly in South Africa. Transmissibility of the virus was comparable to observations from outside of Africa and to seasonal influenza virus strains. PMID:23169962

  9. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    PubMed

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  10. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2012-2013.

    PubMed

    Meijer, Adam; Rebelo-de-Andrade, Helena; Correia, Vanessa; Besselaar, Terry; Drager-Dayal, Renu; Fry, Alicia; Gregory, Vicky; Gubareva, Larisa; Kageyama, Tsutomu; Lackenby, Angie; Lo, Janice; Odagiri, Takato; Pereyaslov, Dmitriy; Siqueira, Marilda M; Takashita, Emi; Tashiro, Masato; Wang, Dayan; Wong, Sun; Zhang, Wenqing; Daniels, Rod S; Hurt, Aeron C

    2014-10-01

    Emergence of influenza viruses with reduced susceptibility to neuraminidase inhibitors (NAIs) is sporadic, often follows exposure to NAIs, but occasionally occurs in the absence of NAI pressure. The emergence and global spread in 2007/2008 of A(H1N1) influenza viruses showing clinical resistance to oseltamivir due to neuraminidase (NA) H275Y substitution, in the absence of drug pressure, warrants continued vigilance and monitoring for similar viruses. Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) tested 11,387 viruses collected by WHO-recognized National Influenza Centres (NIC) between May 2012 and May 2013 to determine 50% inhibitory concentration (IC50) data for oseltamivir, zanamivir, peramivir and laninamivir. The data were evaluated using normalized IC50 fold-changes rather than raw IC50 data. Nearly 90% of the 11,387 viruses were from three WHO regions: Western Pacific, the Americas and Europe. Only 0.2% (n=27) showed highly reduced inhibition (HRI) against at least one of the four NAIs, usually oseltamivir, while 0.3% (n=39) showed reduced inhibition (RI). NA sequence data, available from the WHO CCs and from sequence databases (n=3661), were screened for amino acid substitutions associated with reduced NAI susceptibility. Those showing HRI were A(H1N1)pdm09 with NA H275Y (n=18), A(H3N2) with NA E119V (n=3) or NA R292K (n=1) and B/Victoria-lineage with NA H273Y (n=2); amino acid position numbering is A subtype and B type specific. Overall, approximately 99% of circulating viruses tested during the 2012-2013 period were sensitive to all four NAIs. Consequently, these drugs remain an appropriate choice for the treatment and prophylaxis of influenza virus infections.

  11. Swine Influenza Virus and Association with the Porcine Respiratory Disease Complex in Pig Farms in Southern Brazil.

    PubMed

    Schmidt, C; Cibulski, S P; Andrade, C P; Teixeira, T F; Varela, A P M; Scheffer, C M; Franco, A C; de Almeida, L L; Roehe, P M

    2016-05-01

    Despite the putative endemic status of swine influenza A virus (swIAV) infections, data on the occurrence of swine influenza outbreaks are scarce in Brazil. The aim of this study was to detect and subtype swIAVs from six outbreaks of porcine respiratory disease complex (PRDC) in southern Brazil. Nasal swabs were collected from 66 piglets with signs of respiratory disease in six herds. Lung tissue samples were collected from six necropsied animals. Virus detection was performed by PCR screening and confirmed by virus isolation and hemagglutination (HA). Influenza A subtyping was performed by a real-time reverse transcriptase PCR (rRT-PCR) to detect the A(H1N1)pdm09; other swIAV subtypes were determined by multiplex RT-PCR. In lung tissues, the major bacterial and viral pathogens associated with PRDC (Pasteurella multocida, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and PCV2) were investigated. In some affected pigs, clinico-pathological evaluations were conducted. Influenza A was detected by screening PCR in 46 of 66 swab samples and from five of six lungs. Virus was recovered from pigs of all six herds. Subtype A(H1N1)pdm09 was detected in four of six herds and H1N2 in the other two herds. In lung tissues, further agents involved in PRDC were detected in all cases; Pasteurella multocida was identified in five of six samples and Mycoplasma hyopneumoniae in three of six. Actinobacillus pleuropneumoniae (1/6), Haemophilus parasuis (1/6) and PCV2 (1/6) were also detected. These findings indicate that subtypes A(H1N1)pdm09 and H1N2 were present in pigs in southern Brazil and were associated with PRDC outbreaks.

  12. Determinants of Refusal of A/H1N1 Pandemic Vaccination in a High Risk Population: A Qualitative Approach

    PubMed Central

    d'Alessandro, Eugenie; Hubert, Dominique; Launay, Odile; Bassinet, Laurence; Lortholary, Olivier; Jaffre, Yannick; Sermet-Gaudelus, Isabelle

    2012-01-01

    Background Our study analyses the main determinants of refusal or acceptance of the 2009 A/H1N1 vaccine in patients with cystic fibrosis, a high-risk population for severe flu infection, usually very compliant for seasonal flu vaccine. Methodology/Principal Findings We conducted a qualitative study based on semi-structured interviews in 3 cystic fibrosis referral centres in Paris, France. The study included 42 patients with cystic fibrosis: 24 who refused the vaccine and 18 who were vaccinated. The two groups differed quite substantially in their perceptions of vaccine- and disease-related risks. Those who refused the vaccine were motivated mainly by the fears it aroused and did not explicitly consider the 2009 A/H1N1 flu a potentially severe disease. People who were vaccinated explained their choice, first and foremost, as intended to prevent the flu's potential consequences on respiratory cystic fibrosis disease. Moreover, they considered vaccination to be an indirect collective prevention tool. Patients who refused the vaccine mentioned multiple, contradictory information sources and did not appear to consider the recommendation of their local health care provider as predominant. On the contrary, those who were vaccinated stated that they had based their decision solely on the clear and unequivocal advice of their health care provider. Conclusions/Significance These results of our survey led us to formulate three main recommendations for improving adhesion to new pandemic vaccines. (1) it appears necessary to reinforce patient education about the disease and its specific risks, but also general population information about community immunity. (2) it is essential to disseminate a clear and effective message about the safety of novel vaccines. (3) this message should be conveyed by local health care providers, who should be involved in implementing immunization. PMID:22506011

  13. An Evaluation of Community Assessment Tools (CATs) in Predicting Use of Clinical Interventions and Severe Outcomes during the A(H1N1)pdm09 Pandemic

    PubMed Central

    Nicholson, Karl G.; Lim, Wei Shen; Read, Robert C.; Taylor, Bruce L.; Brett, Stephen J.; Openshaw, Peter J. M.; Enstone, Joanne E.; McMenamin, James; Bannister, Barbara; Nguyen-Van-Tam, Jonathan S.

    2013-01-01

    During severe influenza pandemics healthcare demand can exceed clinical capacity to provide normal standards of care. Community Assessment Tools (CATs) could provide a framework for triage decisions for hospital referral and admission. CATs have been developed based on evidence that supports the recognition of severe influenza and pneumonia in the community (including resource limited settings) for adults, children and infants, and serious feverish illness in children. CATs use six objective criteria and one subjective criterion, any one or more of which should prompt urgent referral and admission to hospital. A retrospective evaluation of the ability of CATs to predict use of hospital-based interventions and patient outcomes in a pandemic was made using the first recorded routine clinical assessment on or shortly after admission from 1520 unselected patients (800 female, 480 children <16 years) admitted with PCR confirmed A(H1N1)pdm09 infection (the FLU-CIN cohort). Outcome measures included: any use of supplemental oxygen; mechanical ventilation; intravenous antibiotics; length of stay; intensive or high dependency care; death; and “severe outcome” (combined: use of intensive or high dependency care or death during admission). Unadjusted and multivariable analyses were conducted for children (age <16 years) and adults. Each CATs criterion independently identified both use of clinical interventions that would in normal circumstances only be provided in hospital and patient outcome measures. “Peripheral oxygen saturation ≤92% breathing air, or being on oxygen” performed well in predicting use of resources and outcomes for both adults and children; supporting routine measurement of peripheral oxygen saturation when assessing severity of disease. In multivariable analyses the single subjective criterion in CATs “other cause for clinical concern” independently predicted death in children and in adults predicted length of stay, mechanical ventilation and

  14. Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production.

    PubMed

    Song, Min-Suk; Baek, Yun Hee; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Park, Su-Jin; Kim, Eun-Ha; Lim, Gyo-Jin; Choi, Young-Ki

    2013-06-01

    The constant threat of newly emerging influenza viruses with pandemic potential requires the need for prompt vaccine production. Here, we utilized the Vero cell polymerase I (PolI) promoter, rather than the commonly used human PolI promoter, in an established reverse-genetics system to rescue viable influenza viruses in Vero cells, an approved cell line for human vaccine production. The Vero PolI promoter was more efficient in Vero cells and demonstrated enhanced transcription levels and virus rescue rates commensurate with that of the human RNA PolI promoter in 293T cells. These results appeared to be associated with more efficient generation of A(H1N1)pdm09- and H5N1-derived vaccine seed viruses in Vero cells, whilst the rescue rates in 293T cells were comparable. Our study provides an alternative means for improving vaccine preparation by using a novel reverse-genetics system for generating influenza A viruses.

  15. Swine Influenza/Variant Influenza Viruses

    MedlinePlus

    ... Past Newsletters Information on Swine Influenza/Variant Influenza Virus Language: English Español Recommend on Facebook Tweet ... disease of pigs caused by type A influenza viruses that regularly cause outbreaks of influenza in pigs. ...

  16. [Influenza virus].

    PubMed

    Juozapaitis, Mindaugas; Antoniukas, Linas

    2007-01-01

    Every year, especially during the cold season, many people catch an acute respiratory disease, namely flu. It is easy to catch this disease; therefore, it spreads very rapidly and often becomes an epidemic or a global pandemic. Airway inflammation and other body ailments, which form in a very short period, torment the patient several weeks. After that, the symptoms of the disease usually disappear as quickly as they emerged. The great epidemics of flu have rather unique characteristics; therefore, it is possible to identify descriptions of such epidemics in historic sources. Already in the 4th century bc, Hippocrates himself wrote about one of them. It is known now that flu epidemics emerge rather frequently, but there are no regular intervals between those events. The epidemics can differ in their consequences, but usually they cause an increased mortality of elderly people. The great flu epidemics of the last century took millions of human lives. In 1918-19, during "The Spanish" pandemic of flu, there were around 40-50 millions of deaths all over the world; "Pandemic of Asia" in 1957 took up to one million lives, etc. Influenza virus can cause various disorders of the respiratory system: from mild inflammations of upper airways to acute pneumonia that finally results in the patient's death. Scientist Richard E. Shope, who investigated swine flu in 1920, had a suspicion that the cause of this disease might be a virus. Already in 1933, scientists from the National Institute for Medical Research in London - Wilson Smith, Sir Christopher Andrewes, and Sir Patrick Laidlaw - for the first time isolated the virus, which caused human flu. Then scientific community started the exhaustive research of influenza virus, and the great interest in this virus and its unique features is still active even today.

  17. Association Between Antibody Titers and Protection Against Influenza Virus Infection Within Households

    PubMed Central

    Tsang, Tim K.; Cauchemez, Simon; Perera, Ranawaka A. P. M.; Freeman, Guy; Fang, Vicky J.; Ip, Dennis K. M.; Leung, Gabriel M.; Malik Peiris, Joseph Sriyal; Cowling, Benjamin J.

    2014-01-01

    Background. Previous studies have established that antibody titer measured by the hemagglutination-inhibiting (HAI) assay is correlated with protection against influenza virus infection, with an HAI titer of 1:40 generally associated with 50% protection. Methods. We recruited index cases with confirmed influenza virus infection from outpatient clinics, and followed up their household contacts for 7–10 days to identify secondary infections. Serum samples collected from a subset of household contacts were tested by HAI and microneutralization (MN) assays against prevalent influenza viruses. We analyzed the data using an individual hazard-based transmission model that adjusted for age and vaccination history. Results. Compared to a reference group with antibody titers <1:10, we found that HAI titers of 1:40 against influenza A(H1N1) and A(H3N2) were associated with 31% (95% confidence interval [CI], 13%–46%) and 31% (CI, 1%–53%) protection against polymerase chain reaction (PCR)–confirmed A(H1N1) and A(H3N2) virus infection, respectively, while an MN titer of 1:40 against A(H3N2) was associated with 49% (95% CI, 7%–81%) protection against PCR-confirmed A(H3N2) virus infection. Conclusions. An HAI titer of 1:40 was associated with substantially less than 50% protection against PCR-confirmed influenza virus infection within households, perhaps because of exposures of greater duration or intensity in that confined setting. PMID:24676208

  18. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    PubMed Central

    Watson, Simon J.; Langat, Pinky; Reid, Scott M.; Lam, Tommy Tsan-Yuk; Cotten, Matthew; Kelly, Michael; Van Reeth, Kristien; Qiu, Yu; Simon, Gaëlle; Bonin, Emilie; Foni, Emanuela; Chiapponi, Chiara; Larsen, Lars; Hjulsager, Charlotte; Markowska-Daniel, Iwona; Urbaniak, Kinga; Dürrwald, Ralf; Schlegel, Michael; Huovilainen, Anita; Davidson, Irit; Dán, Ádám; Loeffen, Willie; Edwards, Stephanie; Bublot, Michel; Vila, Thais; Maldonado, Jaime; Valls, Laura; Brown, Ian H.; Pybus, Oliver G.

    2015-01-01

    ABSTRACT The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data have not yet been described for Europe. We report the first large-scale genomic characterization of 290 swine influenza viruses collected from 14 European countries between 2009 and 2013. A total of 23 distinct genotypes were identified, with the 7 most common comprising 82% of the incidence. Contrasting epidemiological dynamics were observed for two of these genotypes, H1huN2 and H3N2, with the former showing multiple long-lived geographically isolated lineages, while the latter had short-lived geographically diffuse lineages. At least 32 human-swine transmission events have resulted in A(H1N1)pdm09 becoming established at a mean frequency of 8% across European countries. Notably, swine in the United Kingdom have largely had a replacement of the endemic Eurasian avian virus-like (“avian-like”) genotypes with A(H1N1)pdm09-derived genotypes. The high number of reassortant genotypes observed in European swine, combined with the identification of a genotype similar to the A(H3N2)v genotype in North America, underlines the importance of continued swine surveillance in Europe for the purposes of maintaining public health. This report further reveals that the emergences and drivers of virus evolution in swine differ at the global level. IMPORTANCE The influenza A(H1N1)pdm09 virus contains a reassortant genome with segments derived from separate virus lineages that evolved in different regions of the world. In particular, its neuraminidase and matrix segments were derived from the Eurasian avian virus-like (“avian-like”) lineage that emerged in European swine in the 1970s. However, while large-scale genomic characterization of swine has been reported for southern

  19. Mortality attributable to pandemic influenza A (H1N1) 2009 in San Luis Potosí, Mexico

    PubMed Central

    Comas‐García, Andreu; García‐Sepúlveda, Christian A.; Méndez‐de Lira, José J.; Aranda‐Romo, Saray; Hernández‐Salinas, Alba E.; Noyola, Daniel E.

    2010-01-01

    Please cite this paper as: Comas‐García et al. (2011) Mortality attributable to pandemic influenza A (H1N1) 2009 in San Luis Potosí, Mexico. Influenza and Other Respiratory Viruses 5(2), 76–82. Background  Acute respiratory infections are a leading cause of morbidity and mortality worldwide. Starting in 2009, pandemic influenza A(H1N1) 2009 virus has become one of the leading respiratory pathogens worldwide. However, the overall impact of this virus as a cause of mortality has not been clearly defined. Objectives  To determine the impact of pandemic influenza A(H1N1) 2009 on mortality in a Mexican population. Methods  We assessed the impact of pandemic influenza virus on mortality during the first and second outbreaks in San Luis Potosí, Mexico, and compared it to mortality associated with seasonal influenza and respiratory syncytial virus (RSV) during the previous winter seasons. Results  We estimated that, on average, 8·1% of all deaths that occurred during the 2003–2009 seasons were attributable to influenza and RSV. During the first pandemic influenza A(H1N1) 2009 outbreak, there was an increase in mortality in persons 5–59 years of age, but not during the second outbreak (Fall of 2009). Overall, pandemic influenza A (H1N1) 2009 outbreaks had similar effects on mortality to those associated with seasonal influenza virus epidemics. Conclusions  The impact of influenza A(H1N1) 2009 virus on mortality during the first year of the pandemic was similar to that observed for seasonal influenza. The establishment of real‐time surveillance systems capable of integrating virological, morbidity, and mortality data may result in the timely identification of outbreaks so as to allow for the institution of appropriate control measures to reduce the impact of emerging pathogens on the population. PMID:21306570

  20. Beliefs and knowledge about vaccination against AH1N1pdm09 infection and uptake factors among Chinese parents.

    PubMed

    Wu, Cynthia Sau Ting; Kwong, Enid Wai Yung; Wong, Ho Ting; Lo, Suet Hang; Wong, Anthony Siu Wo

    2014-02-14

    Vaccination against AH1N1pdm09 infection (human swine infection, HSI) is an effective measure of preventing pandemic infection, especially for high-risk groups like children between the ages of 6 months and 6 years. This study used a cross-sectional correlation design and aimed to identify predicting factors of parental acceptance of the HSI vaccine (HSIV) and uptake of the vaccination by their preschool-aged children in Hong Kong. A total of 250 parents were recruited from four randomly selected kindergartens. A self-administered questionnaire based on the health belief framework was used for data collection. The results showed that a number of factors significantly affected the tendency toward new vaccination uptake; these factors included parental age, HSI vaccination history of the children in their family, preferable price of the vaccine, perceived severity, perceived benefits, perceived barriers, and motivating factors for taking new vaccines. Using these factors, a logistic regression model with a high Nagelkerke R2 of 0.63 was generated to explain vaccination acceptance. A strong correlation between parental acceptance of new vaccinations and the motivating factors of vaccination uptake was found, which indicates the importance of involving parents in policy implementation for any new vaccination schemes. Overall, in order to fight against pandemics and enhance vaccination acceptance, it is essential for the government to understand the above factors determining parental acceptance of new vaccinations for their preschool-aged children.

  1. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    PubMed Central

    Oh, Ding Yuan; Hurt, Aeron C.

    2014-01-01

    Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013), the adamantanes and the neuraminidase inhibitors (NAIs). During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1) viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future. PMID:24800107

  2. [Influenza pandemic (H1N1) 2009].

    PubMed

    Oshitani, Hitoshi

    2009-12-01

    In the past, influenza pandemics have been occurring every 20 to 30 years. Highly pathogenic avian influenza A(H5N1) has been causing unprecedented global outbreaks since 2003 and many human cases with a high case fatality rate have also been reported. But the virus that caused a pandemic in 2009 was A(H1N1) that was originated from swine influenza. The same subtype, A(H1N1) has been circulating in human population since 1977. This pandemic (H1N1) 2009 is also not as virulent as A(H5N1) in humans. Many aspects of pandemic (H1N1) 2009 are different from what we had been expecting. We should reconsider the concepts and the strategies for influenza pandemic by reviewing current pandemic (H1N1).

  3. Swine influenza A (H1N1) virus (SIV) infection requiring extracorporeal life support in an immunocompetent adult patient with indirect exposure to pigs, Italy, October 2016.

    PubMed

    Rovida, Francesca; Piralla, Antonio; Marzani, Federico Capra; Moreno, Ana; Campanini, Giulia; Mojoli, Francesco; Pozzi, Marco; Girello, Alessia; Chiapponi, Chiara; Vezzoli, Fausto; Prati, Paola; Percivalle, Elena; Pavan, Anna; Gramegna, Maria; Iotti, Giorgio Antonio; Baldanti, Fausto

    2017-02-01

    We describe a case of severe swine influenza A(H1N1) virus infection in an immunocompetent middle-aged man in October 2016 in Italy who had only indirect exposure to pigs. The patient developed a severe acute distress respiratory syndrome which was successfully supported by extracorporeal membrane oxygenation and treated with antiviral therapy. The sole risk factor for influenza was a body mass index > 30 kg/m(2). After a month of hospitalisation, the patient was discharged in good health.

  4. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2013-2014.

    PubMed

    Takashita, Emi; Meijer, Adam; Lackenby, Angie; Gubareva, Larisa; Rebelo-de-Andrade, Helena; Besselaar, Terry; Fry, Alicia; Gregory, Vicky; Leang, Sook-Kwan; Huang, Weijuan; Lo, Janice; Pereyaslov, Dmitriy; Siqueira, Marilda M; Wang, Dayan; Mak, Gannon C; Zhang, Wenqing; Daniels, Rod S; Hurt, Aeron C; Tashiro, Masato

    2015-05-01

    Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) tested 10,641 viruses collected by WHO-recognized National Influenza Centres between May 2013 and May 2014 to determine 50% inhibitory concentration (IC50) data for neuraminidase inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. In addition, neuraminidase (NA) sequence data, available from the WHO CCs and from sequence databases (n=3206), were screened for amino acid substitutions associated with reduced NAI susceptibility. Ninety-five per cent of the viruses tested by the WHO CCs were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 2% (n=172) showed highly reduced inhibition (HRI) against at least one of the four NAIs, commonly oseltamivir, while 0.3% (n=32) showed reduced inhibition (RI). Those showing HRI were A(H1N1)pdm09 with NA H275Y (n=169), A(H3N2) with NA E119V (n=1), B/Victoria-lineage with NA E117G (n=1) and B/Yamagata-lineage with NA H273Y (n=1); amino acid position numbering is A subtype and B type specific. Although approximately 98% of circulating viruses tested during the 2013-2014 period were sensitive to all four NAIs, a large community cluster of A(H1N1)pdm09 viruses with the NA H275Y substitution from patients with no previous exposure to antivirals was detected in Hokkaido, Japan. Significant numbers of A(H1N1)pdm09 NA H275Y viruses were also detected in China and the United States: phylogenetic analyses showed that the Chinese viruses were similar to those from Japan, while the United States viruses clustered separately from those of the Hokkaido outbreak, indicative of multiple resistance-emergence events. Consequently, global surveillance of influenza antiviral susceptibility should be continued from a public health perspective.

  5. Equine influenza virus.

    PubMed

    Landolt, Gabriele A

    2014-12-01

    For decades the horse has been viewed as an isolated or "dead-end" host for influenza A viruses, with equine influenza virus being considered as relatively stable genetically. Although equine influenza viruses are genetically more stable than those of human lineage, they are by no means in evolutionary stasis. Moreover, recent transmission of equine-lineage influenza viruses to dogs also challenges the horse's status as a dead-end host. This article reviews recent developments in the epidemiology and evolution of equine influenza virus. In addition, the clinical presentation of equine influenza infection, diagnostic techniques, and vaccine recommendations are briefly summarized.

  6. Virological surveillance of influenza and other respiratory viruses during six consecutive seasons from 2006 to 2012 in Catalonia, Spain.

    PubMed

    Antón, A; Marcos, M A; Torner, N; Isanta, R; Camps, M; Martínez, A; Domínguez, A; Jané, M; Jiménez de Anta, M T; Pumarola, T

    2016-06-01

    Most attention is given to seasonal influenza and respiratory syncytial virus outbreaks, but the cumulative burden caused by other respiratory viruses (RV) is not widely considered. The aim of the present study is to describe the circulation of RV in the general population during six consecutive seasons from 2006 to 2012 in Catalonia, Spain. Cell culture, immunofluorescence and PCR-based assays were used for the RV laboratory-confirmation and influenza subtyping. Phylogenetic and molecular characterizations of viral haemagglutinin, partial neuraminidase and matrix 2 proteins were performed from a representative sampling of influenza viruses. A total of 6315 nasopharyngeal samples were collected, of which 64% were laboratory-confirmed, mainly as influenza A viruses and rhinoviruses. Results show the significant burden of viral aetiological agents in acute respiratory infection, particularly in the youngest cases. The study of influenza strains reveals their continuous evolution through either progressive mutations or by segment reassortments. Moreover, the predominant influenza B lineage was different from that included in the recommended vaccine in half of the studied seasons, supporting the formulation and use of a quadrivalent influenza vaccine. Regarding neuraminidase inhibitors resistance, with the exception of the 2007/08 H275Y seasonal A(H1N1) strains, no other circulating influenza strains carrying known resistance genetic markers were found. Moreover, all circulating A(H1N1)pdm09 and A(H3N2) strains finally became genetically resistant to adamantanes. A wide knowledge of the seasonality patterns of the RV in the general population is well-appreciated, but it is a challenge due to the unpredictable circulation of RV, highlighting the value of local and global RV surveillance.

  7. Influenza Vaccine Effectiveness in the Netherlands from 2003/2004 through 2013/2014: The Importance of Circulating Influenza Virus Types and Subtypes

    PubMed Central

    Dijkstra, Frederika; van Doorn, Eva; Bijlsma, Maarten J.; Donker, Gé A.; de Lange, Marit M. A.; Cadenau, Laura M.; Hak, Eelko; Meijer, Adam

    2017-01-01

    Influenza vaccine effectiveness (IVE) varies over different influenza seasons and virus (sub)types/lineages. To assess the association between IVE and circulating influenza virus (sub)types/lineages, we estimated the overall and (sub)type specific IVE in the Netherlands. We conducted a test-negative case control study among subjects with influenza-like illness or acute respiratory tract infection consulting the Sentinel Practices over 11 influenza seasons (2003/2004 through 2013/2014) in the Netherlands. The adjusted IVE was estimated using generalized linear mixed modelling and multiple logistic regression. In seven seasons vaccine strains did not match the circulating viruses. Overall adjusted IVE was 40% (95% CI 18 to 56%) and 20% (95% CI -5 to 38%) when vaccine (partially)matched and mismatched the circulating viruses, respectively. When A(H3N2) was the predominant virus, IVE was 38% (95% CI 14 to 55%). IVE against infection with former seasonal A(H1N1) virus was 83% (95% CI 52 to 94%), and with B virus 67% (95% CI 55 to 76%). In conclusion IVE estimates were particularly low when vaccine mismatched the circulating viruses and A(H3N2) was the predominant influenza virus subtype. Tremendous effort is required to improve vaccine production procedure and to explore the factors that influence the IVE against A(H3N2) virus. PMID:28068386

  8. Adverse events with the influenza A(H1N1) vaccine Pandemrix® at healthcare professionals in Portugal.

    PubMed

    Marques, Joana Isabel; Ribeiro Vaz, Inês; Santos, Cristina; Polónia, Jorge

    2013-01-01

    Introdução: Os profissionais de saúde foram um grupo prioritário para vacinação contra a pandemia da Gripe A (H1N1), Pandemrix®. Assim, monitorizar os eventos adversos relacionados com esta vacina neste grupo específico poderá originar informação valiosa relacionada com o perfil de segurança da vacina. O nosso objetivo foi identificar os eventos adversos após imunização com a vacina Pandemrix® em profissionais de saúde. Material e Métodos: Foi desenhado um questionário de monitorização dos eventos adversos ocorridos com a vacina Pandemrix®. O questionário foi distribuído aos profissionais de saúde a trabalhar em três centros hospitalares da região norte do País, vacinados no período de 26 de Outubro de 2009 a 31 de janeiro de 2009. Resultados: Dos 2358 profissionais de saúde que aceitaram participar no estudo, 864 (37%) devolveram o questionário preenchido. Destes, 73% experienciaram pelo menos um evento adverso após imunização, mas só 8% experienciaram um evento inesperado. Os eventos adversos mais frequentemente reportados foram os esperados e muito comuns: reações locais no local de administração (57%), mialgia (31%), fadiga (incluindo astenia) (24%) e dor de cabeça (19%). Não foram reportados casos de eventos de maior gravidade para a saúde, tais como morte ou risco de vida. O género feminino e a existência de doença de base foram fatores de risco independentes para o desenvolvimento de pelo menos um evento adverso após imunização com a Pandemrix®. Conclusões: O nosso trabalho sugere um perfil de segurança aceitável da vacina pandémica Pandermix® em profissionais de saúde. Tanto a frequência como a severidade dos eventos adversos não se verificaram superiores ao esperado.

  9. Influenza vaccine effectiveness in preventing inpatient and outpatient cases in a season dominated by vaccine-matched influenza B virus

    PubMed Central

    Martínez-Baz, Iván; Navascués, Ana; Pozo, Francisco; Chamorro, Judith; Albeniz, Esther; Casado, Itziar; Reina, Gabriel; Cenoz, Manuel García; Ezpeleta, Carmen; Castilla, Jesús

    2015-01-01

    Studies that have evaluated the influenza vaccine effectiveness (VE) to prevent laboratory-confirmed influenza B cases are uncommon, and few have analyzed the effect in preventing hospitalized cases. We have evaluated the influenza VE in preventing outpatient and hospitalized cases with laboratory-confirmed influenza in the 2012–2013 season, which was dominated by a vaccine-matched influenza B virus. In the population covered by the Navarra Health Service, all hospitalized patients with influenza-like illness (ILI) and all ILI patients attended by a sentinel network of general practitioners were swabbed for influenza testing, and all were included in a test-negative case-control analysis. VE was calculated as (1-odds ratio)×100. Among 744 patients tested, 382 (51%) were positive for influenza virus: 70% for influenza B, 24% for A(H1N1)pdm09, and 5% for A(H3N2). The overall estimate of VE in preventing laboratory-confirmed influenza was 63% (95% confidence interval (CI): 34 to 79), 55% (1 to 80) in outpatients and 74% (33 to 90) in hospitalized patients. The VE was 70% (41 to 85) against influenza B and 43% (−45 to 78) against influenza A. The VE against virus B was 87% (52 to 96) in hospitalized patients and 56% in outpatients (−5 to 81). Adjusted comparison of vaccination status between inpatient and outpatient cases with influenza B did not show statistically significant differences (odds ratio: 1.13; p = 0.878). These results suggest a high protective effect of the vaccine in the 2012–2013 season, with no differences found for the effect between outpatient and hospitalized cases. PMID:25996366

  10. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  11. Detection of avian influenza A/H7N9/2013 virus by real-time reverse transcription-polymerase chain reaction.

    PubMed

    Kang, Xiaoping; Wu, Weili; Zhang, Chuntao; Liu, Licheng; Feng, Huahua; Xu, Lizhi; Zheng, Xin; Yang, Honglei; Jiang, Yongqiang; Xu, Bianli; Xu, Jin; Yang, Yinhui; Chen, Weijun

    2014-09-01

    The first case of avian influenza A/H7N9 infection was reported in Shanghai in mid-February, 2013; by May 1, 2013, it had infected 127 people and caused 26 deaths in 10 provinces in China. Therefore, it is important to obtain reliable epidemiological data on the spread of this new infectious agent, a need that may be best met by the development of novel molecular methods. Here, a new method was described for the detection of avian influenza A/H7N9 using real-time reverse transcription-polymerase chain reaction (rRT-PCR). Using serial dilutions of avian influenza A H7N9 cultures, the detection limit of the assay was determined to be approximately 3.2×10(-4) HAUs (hemagglutination units) for the H7 gene and 6.4×10(-4) HAUs for N9 gene. In tests of serial dilutions of in vitro-transcribed avian influenza A H7 and N9 gene RNA, positive results were obtained for target RNA containing at least three copies of the H7 gene and six copies of the N9 gene. Thirteen throat swabs from H7N9 patients were tested; all tested positive in the assay. Specificity was evaluated by testing 18 other subtypes of influenza viruses; all tested negative. A total of 180 throat swabs from patients infected with influenza virus, including 60 from patients infected with seasonal influenza A/H1N1 virus, 60 from patients infected with pandemic influenza A/H1N1/2009 virus, 30 from patients infected with seasonal influenza A/H3N2 virus and 30 from patients infected with influenza B virus, were also tested; all tested negative.

  12. [Interspecies transmission, adaptation to humans and pathogenicity of animal influenza viruses].

    PubMed

    Munier, S; Moisy, D; Marc, D; Naffakh, N

    2010-04-01

    The emergence in 2009 of a novel A(H1N1)v influenza virus of swine origin and the regular occurrence since 2003 of human cases of infection with A(H5N1) avian influenza viruses underline the zoonotic and pandemic potential of type A influenza viruses. Influenza viruses from the wild aquatic birds reservoir usually do not replicate efficiently in humans. Domestic poultry and swine can act as intermediate hosts for the acquisition of determinants that increase the potential of transmission and adaptation to humans, through the accumulation of mutations or by genetic reassortment. The rapid evolution of influenza viruses following interspecies transmission probably results from the selection of genetic variations that favor optimal interactions between viral proteins and cellular factors, leading to an increased multiplication potential and a better escape to the host antiviral response. Whereas influenza viruses usually cause asymptomatic infections in wild aquatic birds, they may be highly pathogenic in other species. Molecular determinants of host-specificity and pathogenesis have been identified in most viral genes, notably in genes that encode viral surface glycoproteins, proteins involved in the viral genome replication, and proteins that counteract the host immune response. However, our knowledge of these numerous and interdependant determinants remains incomplete, and the molecular mechanisms involved are still to be understood.

  13. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile

    PubMed Central

    Bravo-Vasquez, Nicolás; Karlsson, Erik A.; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A.

    2017-01-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America. PMID:28098524

  14. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    PubMed

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  15. Cellular response to influenza virus infection: a potential role for autophagy in CXCL10 and interferon-alpha induction.

    PubMed

    Law, Anna Hing-Yee; Lee, Davy Chun-Wai; Yuen, Kwok-Yung; Peiris, Malik; Lau, Allan Sik-Yin

    2010-07-01

    Historically, influenza pandemics have arisen from avian influenza viruses. Avian influenza viruses H5N1 and H9N2 are potential pandemic candidates. Infection of humans with the highly pathogenic avian influenza H5N1 virus is associated with a mortality in excess of 60%, which has been attributed to dysregulation of the cytokine system. Human macrophages and epithelial cells infected with some genotypes of H5N1 and H9N2 viruses express markedly elevated cytokine and chemokine levels when compared with seasonal influenza A subtype H1N1 virus. The mechanisms underlying this cytokine and chemokine hyperinduction are not fully elucidated. In the present study, we demonstrate that autophagy, a tightly regulated homeostatic process for self-digestion of unwanted cellular subcomponents, plays a role in cytokine induction. Autophagy is induced to a greater extent by H9N2/G1, in association with cytokine hyperinduction, compared with H1N1 and the novel pandemic swine-origin influenza A/H1N1 viruses. Using 3-methyladenine to inhibit autophagy and small interfering RNA to silence the autophagy gene, Atg5, we further show that autophagic responses play a role in influenza virus-induced CXCL10 and interferon-alpha expression in primary human blood macrophages. Our results provide new insights into the pathogenic mechanisms of avian influenza viruses.

  16. Preliminary Success in the Characterization and Management of a Sudden Breakout of a Novel H7N9 Influenza A Virus

    PubMed Central

    Wu, Yan-Ling; Shen, Li-Wen; Ding, Yan-Ping; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    Influenza has always been one of the major threats to human health. The Spanish influenza in 1918, the pandemic influenza A/H1N1 in 2009, and the avian influenza A/H5N1 have brought about great disasters or losses to mankind. More recently, a novel avian influenza A/H7N9 broke out in China and until December 2, 2013, it had caused 139 cases of infection, including 45 deaths. Its risk and pandemic potential attract worldwide attention. In this article, we summarize epidemiology, virology characteristics, clinical symptoms, diagnosis methods, clinical treatment and preventive measures about the avian influenza A/H7N9 virus infection to provide a reference for a possible next wave of flu outbreak. PMID:24520209

  17. Preliminary success in the characterization and management of a sudden breakout of a novel H7N9 influenza A virus.

    PubMed

    Wu, Yan-Ling; Shen, Li-Wen; Ding, Yan-Ping; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    Influenza has always been one of the major threats to human health. The Spanish influenza in 1918, the pandemic influenza A/H1N1 in 2009, and the avian influenza A/H5N1 have brought about great disasters or losses to mankind. More recently, a novel avian influenza A/H7N9 broke out in China and until December 2, 2013, it had caused 139 cases of infection, including 45 deaths. Its risk and pandemic potential attract worldwide attention. In this article, we summarize epidemiology, virology characteristics, clinical symptoms, diagnosis methods, clinical treatment and preventive measures about the avian influenza A/H7N9 virus infection to provide a reference for a possible next wave of flu outbreak.

  18. "Prepandemic" immunization for novel influenza viruses, "swine flu" vaccine, Guillain-Barré syndrome, and the detection of rare severe adverse events.

    PubMed

    Evans, David; Cauchemez, Simon; Hayden, Frederick G

    2009-08-01

    The availability of immunogenic, licensed H5N1 vaccines and the anticipated development of vaccines against "swine" influenza A(H1N1) have stimulated debate about the possible use of these vaccines for protection of those exposed to potential pandemic influenza viruses and for immunization or "priming" of populations in the so-called "prepandemic" (interpandemic) era. However, the safety of such vaccines is a critical issue in policy development for wide-scale application of vaccines in the interpandemic period. For example, wide-scale interpandemic use of H5N1 vaccines could lead to millions of persons receiving vaccines of uncertain efficacy potentially associated with rare severe adverse events and against a virus that may not cause a pandemic. Here, we first review aspects of the 1976 National Influenza Immunization Programme against "swine flu" and its well-documented association with Guillain-Barré syndrome as a case study illustration of a suspected vaccine-associated severe adverse event in a mass interpandemic immunization setting. This case study is especially timely, given the recent spread of a novel influenza A(H1N1) virus in humans in Mexico and beyond. Following this, we examine available safety data from clinical trials of H5N1 vaccines and briefly discuss how vaccine safety could be monitored in a postmarketing surveillance setting.

  19. Avian influenza virus.

    PubMed

    Lee, Chang-Won; Saif, Yehia M

    2009-07-01

    Avian influenza viruses do not typically replicate efficiently in humans, indicating direct transmission of avian influenza virus to humans is unlikely. However, since 1997, several cases of human infections with different subtypes (H5N1, H7N7, and H9N2) of avian influenza viruses have been identified and raised the pandemic potential of avian influenza virus in humans. Although circumstantial evidence of human to human transmission exists, the novel avian-origin influenza viruses isolated from humans lack the ability to transmit efficiently from person-to-person. However, the on-going human infection with avian-origin H5N1 viruses increases the likelihood of the generation of human-adapted avian influenza virus with pandemic potential. Thus, a better understanding of the biological and genetic basis of host restriction of influenza viruses is a critical factor in determining whether the introduction of a novel influenza virus into the human population will result in a pandemic. In this article, we review current knowledge of type A influenza virus in which all avian influenza viruses are categorized.

  20. Serological and molecular prevalence of swine influenza virus on farms in northwestern Mexico.

    PubMed

    López-Robles, Guadalupe; Montalvo-Corral, Maricela; Burgara-Estrella, Alexel; Hernández, Jesús

    2014-08-06

    The aim of this study was to provide an overview of the epidemiological status of swine influenza viruses in pigs from northwestern Mexico in 2008-2009. A serological and molecular survey was conducted in 150 pigs from 15 commercial farms in Sonora, Mexico (northwestern region of Mexico). The serological data showed that 55% of the sera were positive for the H1N1 subtype, 59% for the H3N2 subtype, and 38% for both subtypes. Overall, 16.6% (25/150) of the samples were positive for type A influenza by qRT-PCR. The phylogenetic analysis of the H1 viruses circulating in northwestern Mexico were grouped into cluster α, from five other clusters previously described. The influenza virus H1 circulating in northwestern Mexico showed 97-100% identity at the nucleotide level among them, 89% identity with other North American strains, 88% with strains from central Mexico, and 85% with the pandemic A/H1N1p2009 virus. Meanwhile, a closer relationship with some influenza viruses from North America (97% nucleotide identity) was found for H3 subtype. In conclusion, our results demonstrated a high circulation of strains similar to those observed in the North American linage among commercial farms in northwestern Mexico, involving of a different lineage virus different to the influenza pandemic of 2009.

  1. Epidemiology and Surveillance of Influenza Viruses in Uganda between 2008 and 2014

    PubMed Central

    Wabwire-Mangen, Fred; Mimbe, Derrick E.; Erima, Bernard; Mworozi, Edison A.; Millard, Monica; Kibuuka, Hannah; Bwogi, Josephine; Kiconco, Jocelyn; Tugume, Titus; Mulei, Sophia; Ikomera, Christine; Tsui, Sharon; Malinzi, Stephen; Kasasa, Simon; Coldren, Rodney; Byarugaba, Denis K.

    2016-01-01

    Introduction Influenza surveillance was conducted in Uganda from October 2008 to December 2014 to identify and understand the epidemiology of circulating influenza strains in out-patient clinic attendees with influenza-like illness and inform control strategies. Methodology Surveillance was conducted at five hospital-based sentinel sites. Nasopharyngeal and/or oropharyngeal samples, epidemiological and clinical data were collected from enrolled patients. Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to identify and subtype influenza strains. Data were double-entered into an Epi Info 3.5.3 database and exported to STATA 13.0 software for analysis. Results Of the 6,628 patient samples tested, influenza virus infection was detected in 10.4% (n = 687/6,628) of the specimens. Several trends were observed: influenza circulates throughout the year with two peaks; the major one from September to November and a minor one from March to June. The predominant strains of influenza varied over the years: Seasonal Influenza A(H3) virus was predominant from 2008 to 2009 and from 2012 to 2014; Influenza A(H1N1)pdm01 was dominant in 2010; and Influenza B virus was dominant in 2011. The peaks generally coincided with times of higher humidity, lower temperature, and higher rainfall. Conclusion Influenza circulated throughout the year in Uganda with two major peaks of outbreaks with similar strains circulating elsewhere in the region. Data on the circulating strains of influenza and its patterns of occurrence provided critical insights to informing the design and timing of influenza vaccines for influenza prevention in tropical regions of sub-Saharan Africa. PMID:27755572

  2. Simultaneous investigation of influenza and enteric viruses in the stools of adult patients consulting in general practice for acute diarrhea

    PubMed Central

    2012-01-01

    Background Gastrointestinal symptoms are not an uncommon manifestation of an influenza virus infection. In the present study, we aimed to investigate the presence of influenza viruses in the stools of adult patients consulting their general practitioner for uncomplicated acute diarrhea (AD) and the proportion of concurrent infections by enteric and influenza viruses. Method A case-control study was conducted from December 2010 to April 2011. Stool specimens were collected and tested for influenza viruses A (seasonal A/H3N2 and pandemic A/H1N1) and B, and for four enteric viruses (astrovirus, group A rotavirus, human enteric adenovirus, norovirus of genogroups I – NoVGI - and genogroup II - NoVGII). Results General practitioners enrolled 138 cases and 93 controls. Of the 138 stool specimens collected, 92 (66.7%) were positive for at least one of the four enteric viruses analysed and 10 (7.2%) tested positive for one influenza virus. None of these 10 influenza positive patients reported respiratory symptoms. In five influenza-positive patients (3.6%), we also detected one enteric virus, with 4 of them being positive for influenza B (2 had co-detection with NoVGI, 1 with NoVGII, and 1 with astrovirus). None of the 93 controls tested positive for one of the enteric and/or other influenza viruses we investigated. Conclusions In this study we showed that the simultaneous detection of influenza and enteric viruses is not a rare event. We have also reported, for the first time in general practice, the presence of seasonal and pandemic influenza viruses in the stools of adult patients consulting for uncomplicated AD. A simultaneous investigation of enteric and influenza viruses in patients complaining of gastrointestinal symptoms could be useful for future studies to better identify the agents responsible for AD. PMID:22709374

  3. Filamentous Influenza Viruses

    PubMed Central

    Badham, Matthew D.; Rossman, Jeremy S.

    2016-01-01

    Influenza A virus is a pathogen of global medical importance causing significant health and socio-economic costs every year. Influenza virus is an unusual pathogen in that it is pleomorphic, capable of forming virions ranging in shape from spherical to filamentous. Despite decades of research on the influenza virus, much remains unknown about the formation of filamentous influenza viruses and their role in the viral replication cycle. Here, we discuss what is known about influenza virus assembly and budding, focusing on the viral and host factors that are involved in the determination of viral morphology. Whilst the biological function of the filamentous morphology remains unknown, recent results suggest a role in facilitating viral spread in vivo. We discuss these results and speculate on the consequences of viral morphology during influenza virus infection of the human respiratory tract. PMID:28042529

  4. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  5. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014-2015.

    PubMed

    Hurt, Aeron C; Besselaar, Terry G; Daniels, Rod S; Ermetal, Burcu; Fry, Alicia; Gubareva, Larisa; Huang, Weijuan; Lackenby, Angie; Lee, Raphael T C; Lo, Janice; Maurer-Stroh, Sebastian; Nguyen, Ha T; Pereyaslov, Dmitriy; Rebelo-de-Andrade, Helena; Siqueira, Marilda M; Takashita, Emi; Tashiro, Masato; Tilmanis, Danielle; Wang, Dayan; Zhang, Wenqing; Meijer, Adam

    2016-08-01

    The World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza (WHO CCs) tested 13,312 viruses collected by WHO recognized National Influenza Centres between May 2014 and May 2015 to determine 50% inhibitory concentration (IC50) data for neuraminidase inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. Ninety-four per cent of the viruses tested by the WHO CCs were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 0.5% (n = 68) of viruses showed either highly reduced inhibition (HRI) or reduced inhibition (RI) (n = 56) against at least one of the four NAIs. Of the twelve viruses with HRI, six were A(H1N1)pdm09 viruses, three were A(H3N2) viruses and three were B/Yamagata-lineage viruses. The overall frequency of viruses with RI or HRI by the NAIs was lower than that observed in 2013-14 (1.9%), but similar to the 2012-13 period (0.6%). Based on the current analysis, the NAIs remain an appropriate choice for the treatment and prophylaxis of influenza virus infections.

  6. Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders.

    PubMed

    Lehners, Nicola; Tabatabai, Julia; Prifert, Christiane; Wedde, Marianne; Puthenparambil, Joe; Weissbrich, Benedikt; Biere, Barbara; Schweiger, Brunhilde; Egerer, Gerlinde; Schnitzler, Paul

    2016-01-01

    Respiratory viruses are a cause of upper respiratory tract infections (URTI), but can be associated with severe lower respiratory tract infections (LRTI) in immunocompromised patients. The objective of this study was to investigate the genetic variability of influenza virus, parainfluenza virus and respiratory syncytial virus (RSV) and the duration of viral shedding in hematological patients. Nasopharyngeal swabs from hematological patients were screened for influenza, parainfluenza and RSV on admission as well as on development of respiratory symptoms. Consecutive swabs were collected until viral clearance. Out of 672 tested patients, a total of 111 patients (17%) were infected with one of the investigated viral agents: 40 with influenza, 13 with parainfluenza and 64 with RSV; six patients had influenza/RSV or parainfluenza/RSV co-infections. The majority of infected patients (n = 75/111) underwent stem cell transplantation (42 autologous, 48 allogeneic, 15 autologous and allogeneic). LRTI was observed in 48 patients, of whom 15 patients developed severe LRTI, and 13 patients with respiratory tract infection died. Phylogenetic analysis revealed a variety of influenza A(H1N1)pdm09, A(H3N2), influenza B, parainfluenza 3 and RSV A, B viruses. RSV A was detected in 54 patients, RSV B in ten patients. The newly emerging RSV A genotype ON1 predominated in the study cohort and was found in 48 (75%) of 64 RSV-infected patients. Furthermore, two distinct clusters were detected for RSV A genotype ON1, identical RSV G gene sequences in these patients are consistent with nosocomial transmission. Long-term viral shedding for more than 30 days was significantly associated with prior allogeneic transplantation (p = 0.01) and was most pronounced in patients with RSV infection (n = 16) with a median duration of viral shedding for 80 days (range 35-334 days). Long-term shedding of respiratory viruses might be a catalyzer of nosocomial transmission and must be considered for

  7. Virus-like particle (VLP)-based vaccines for pandemic influenza

    PubMed Central

    López-Macías, Constantino

    2012-01-01

    The influenza pandemic of 2009 demonstrated the inability of the established global capacity for egg-based vaccine production technology to provide sufficient vaccine for the population in a timely fashion. Several alternative technologies for developing influenza vaccines have been proposed, among which non-replicating virus-like particles (VLPs) represent an attractive option because of their safety and immunogenic characteristics. VLP vaccines against pandemic influenza have been developed in tobacco plant cells and in Sf9 insect cells infected with baculovirus that expresses protein genes from pandemic influenza strains. These technologies allow rapid and large-scale production of vaccines (3–12 weeks). The 2009 influenza outbreak provided an opportunity for clinical testing of a pandemic influenza VLP vaccine in the midst of the outbreak at its epicenter in Mexico. An influenza A(H1N1)2009 VLP pandemic vaccine (produced in insect cells) was tested in a phase II clinical trial involving 4,563 healthy adults. Results showed that the vaccine is safe and immunogenic despite high preexisting anti-A(H1N1)2009 antibody titers present in the population. The safety and immunogenicity profile presented by this pandemic VLP vaccine during the outbreak in Mexico suggests that VLP technology is a suitable alternative to current influenza vaccine technologies for producing pandemic and seasonal vaccines. PMID:22330956

  8. Characteristics of patients with influenza-like illness, severe acture respiratory illness, and laboratory-confirmed influenza at a major children's hospital in Angola, 2009-2011.

    PubMed

    Cardoso, Yolanda; Oliveira, Erika; Vasconcelos, Jocelyne; Cohen, Adam L; Francisco, Moises

    2012-12-15

    There are no published data on influenza trends in Angola, where pneumonia is a leading cause of death among young children. This study aims to describe the seasonal trends, types, and subtypes of influenza virus recovered from patients with respiratory illness who were admitted to the major children's hospital in Angola from May 2009 through April 2011. Nasal and oral swabs were collected from patients seen in the outpatient clinic with influenza-like illness (ILI) or hospitalized with severe acute respiratory illness (SARI) and tested for influenza virus by polymerase chain reaction assays. Of 691 samples collected, 334 (48%) were from case patients with ILI, and 357 (52%) were from case patients with SARI. Most (86%) of these children were <5 years of age. Thirty-nine samples (47% SARI, 53% outpatient) tested positive for influenza virus, including 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09; n = 9), influenza A virus subtype H3, likely H3N2 (n = 12), and influenza B virus (n = 18). The proportion of specimens positive for influenza virus was 5% for ILI cases and 6% for SARI cases. After the peak of A(H1N1)pdm09 infection from May through September of 2009, additional peaks of ILI and SARI were seen, especially during February-April 2010. Influenza virus causes a small but preventable number of pneumonia cases among children in Angola.

  9. Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence.

    PubMed

    Patterson Ross, Zoe; Komadina, Naomi; Deng, Yi-Mo; Spirason, Natalie; Kelly, Heath A; Sullivan, Sheena G; Barr, Ian G; Holmes, Edward C

    2015-06-01

    The factors that determine the characteristic seasonality of influenza remain enigmatic. Current models predict that occurrences of influenza outside the normal surveillance season within a temperate region largely reflect the importation of viruses from the alternate hemisphere or from equatorial regions in Asia. To help reveal the drivers of seasonality we investigated the origins and evolution of influenza viruses sampled during inter-seasonal periods in Australia. To this end we conducted an expansive phylogenetic analysis of 9912, 3804, and 3941 hemagglutinnin (HA) sequences from influenza A/H1N1pdm, A/H3N2, and B, respectively, collected globally during the period 2009-2014. Of the 1475 viruses sampled from Australia, 396 (26.8% of Australian, or 2.2% of global set) were sampled outside the monitored temperate influenza surveillance season (1 May - 31 October). Notably, rather than simply reflecting short-lived importations of virus from global localities with higher influenza prevalence, we documented a variety of more complex inter-seasonal transmission patterns including "stragglers" from the preceding season and "heralds" of the forthcoming season, and which included viruses sampled from clearly temperate regions within Australia. We also provide evidence for the persistence of influenza B virus between epidemic seasons, in which transmission of a viral lineage begins in one season and continues throughout the inter-seasonal period into the following season. Strikingly, a disproportionately high number of inter-seasonal influenza transmission events occurred in tropical and subtropical regions of Australia, providing further evidence that climate plays an important role in shaping patterns of influenza seasonality.

  10. Low-dimensional clustering reveals new influenza strains before they become dominant

    NASA Astrophysics Data System (ADS)

    He, Jiankui; Deem, Michael

    2010-03-01

    Influenza A virus has been circulating in the human population and has caused three pandemics in the last century (1918 H1N1, 1957 H2N2, 1968 H3N2). The newly appeared 2009 A(H1N1) has been classified by the World Health Organization (WHO) as the fourth pandemic virus strain. We here consider an approach for early detection of new dominant strains. We first construct a network model and apply it to the evolution of the 2009 A(H1N1) virus. By clustering the sequence data, we found two main clusters. We then define a metric to detect the emergence of dominant strains. We show on historical H3N2 data that this method is able to find a cluster around an incipient dominant strain before it becomes dominant. For example, for H3N2 as of 30 March 2009, we see the cluster for the new A/BritishColumbia/RV1222/2009 strain. Turning to H1N1 and the 2009 A(H1N1), we do not see evidence for antigenically novel 2009 A(H1N1) strains as of August 2009. This strain detection tool combines a projection operator with a density estimation.

  11. Detection of Influenza Virus with Specific Subtype by Using Localized Surface Plasmons Excited on a Flat Metal Surface

    NASA Astrophysics Data System (ADS)

    Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi

    2013-08-01

    We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.

  12. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  13. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity

    PubMed Central

    DeFeo, Christopher J.; Alvarado-Facundo, Esmeralda; Vassell, Russell

    2015-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well

  14. Strain-specific antiviral activity of iminosugars against human influenza A viruses

    PubMed Central

    Hussain, S.; Miller, J. L.; Harvey, D. J.; Gu, Y.; Rosenthal, P. B.; Zitzmann, N.; McCauley, J. W.

    2015-01-01

    Objectives Drugs that target host cell processes can be employed to complement drugs that specifically target viruses, and iminosugar compounds that inhibit host α-glucosidases have been reported to show antiviral activity against multiple viruses. Here the effect and mechanism of two iminosugar α-glucosidase inhibitors, N-butyl-deoxynojirimycin (NB-DNJ) and N-nonyl-deoxynojirimycin (NN-DNJ), on human influenza A viruses was examined. Methods The viruses examined were a recently circulating seasonal influenza A(H3N2) virus strain A/Brisbane/10/2007, an older H3N2 strain A/Udorn/307/72, and A/Lviv/N6/2009, a strain representative of the currently circulating pandemic influenza A(H1N1)pdm09 virus. Results The inhibitors had the strongest effect on Brisbane/10 and NN-DNJ was more potent than NB-DNJ. Both compounds showed antiviral activity in cell culture against three human influenza A viruses in a strain-specific manner. Consistent with its action as an α-glucosidase inhibitor, NN-DNJ treatment resulted in an altered glycan processing of influenza haemagglutinin (HA) and neuraminidase (NA), confirmed by MS. NN-DNJ treatment was found to reduce the cell surface expression of the H3 subtype HA. The level of sialidase activity of NA was reduced in infected cells, but the addition of exogenous sialidase to the cells did not complement the NN-DNJ-mediated inhibition of virus replication. Using reassortant viruses, the drug susceptibility profile was determined to correlate with the origin of the HA. Conclusions NN-DNJ inhibits influenza A virus replication in a strain-specific manner that is dependent on the HA. PMID:25223974

  15. Surveillance of human influenza A(H3N2) virus from 1999 to 2009 in southern Italy.

    PubMed

    DE Donno, A; Idolo, A; Quattrocchi, M; Zizza, A; Gabutti, G; Romano, A; Grima, P; Donatelli, I; Guido, M

    2014-05-01

    The aim of this study was to evaluate the presence of influenza virus co-infections in humans and changes in the genetic variability of A(H3N2) virus strains in southern Italy from 1999 to 2009. A partial sequence of the haemagglutinin (HA) gene by human influenza H3N2 strains identified in oropharyngeal swabs from patients with influenza-like illness was analysed by DNA sequencing and a phylogenetic analysis was performed. During the seasons 1999-2000, 2002-2003, 2004-2005 and 2008-2009, the influenza viruses circulating belonged to subtype H3N2. However, A(H1N1) subtype virus and B type were respectively prevalent during the 2000-2001, 2006-2007, 2007-2008 and 2001-2002, 2003-2004, 2005-2006 seasons. The HA sequences appeared to be closely related to the sequence of the influenza A vaccine strain. Only the 2002-2003 season was characterized by co-circulation of two viral lineages: A/New York/55/01(H3N2)-like virus of the previous season and A/Fujian/411/02(H3N2)-like virus, a new H3 variant. In this study, over the decade analysed, no significant change was seen in the sequences of the HA gene of H3 viruses isolated.

  16. Virus-like particle (VLP)-based vaccines for pandemic influenza: performance of a VLP vaccine during the 2009 influenza pandemic.

    PubMed

    López-Macías, Constantino

    2012-03-01

    The influenza pandemic of 2009 demonstrated the inability of the established global capacity for egg-based vaccine production technology to provide sufficient vaccine for the population in a timely fashion. Several alternative technologies for developing influenza vaccines have been proposed, among which non-replicating virus-like particles (VLPs) represent an attractive option because of their safety and immunogenic characteristics. VLP vaccines against pandemic influenza have been developed in tobacco plant cells and in Sf9 insect cells infected with baculovirus that expresses protein genes from pandemic influenza strains. These technologies allow rapid and large-scale production of vaccines (3-12 weeks). The 2009 influenza outbreak provided an opportunity for clinical testing of a pandemic influenza VLP vaccine in the midst of the outbreak at its epicenter in Mexico. An influenza A(H1N1)2009 VLP pandemic vaccine (produced in insect cells) was tested in a phase II clinical trial involving 4,563 healthy adults. Results showed that the vaccine is safe and immunogenic despite high preexisting anti-A(H1N1)2009 antibody titers present in the population. The safety and immunogenicity profile presented by this pandemic VLP vaccine during the outbreak in Mexico suggests that VLP technology is a suitable alternative to current influenza vaccine technologies for producing pandemic and seasonal vaccines.

  17. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  18. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.

  19. [The evolutionary characteristics of an influenza epidemic in a large urban center (B.) of Romania between 1988 and 1990].

    PubMed

    Busuioc, C; Ionescu, V; Murgoci, R; Stoicescu, A; Ticu, M; Velea, L; Cristescu, D

    1991-01-01

    The report presents the peculiar characteristics of influenza epidemics in a big urban centre (B.) of Romania, between 1988 and 1990, surveyed by clinical, epidemiological and laboratory methods. Among the peculiarities of the epidemics: the low rate of endemic morbidity, the seasonal and preseasonal peaks, the very high implication of infantile population in influenza A(H3N2), A(H1N1) and B virus circulation, as well as the high level of mass specific humoral protection against these viruses. Elements of epidemiologic prognosis are suggested for 1991. Opportunity of vaccine prophylaxis using WHO recommended virus strains of the three types: A(H3N2), A(H1N1) and B, for risk groups is discussed.

  20. Identification of small molecule inhibitors for influenza a virus using in silico and in vitro approaches

    PubMed Central

    Makau, Juliann Nzembi; Watanabe, Ken; Ishikawa, Takeshi; Mizuta, Satoshi; Hamada, Tsuyoshi; Kobayashi, Nobuyuki; Nishida, Noriyuki

    2017-01-01

    Influenza viruses have acquired resistance to approved neuraminidase-targeting drugs, increasing the need for new drug targets for the development of novel anti-influenza drugs. Nucleoprotein (NP) is an attractive target since it has an indispensable role in virus replication and its amino acid sequence is well conserved. In this study, we aimed to identify new inhibitors of the NP using a structure-based drug discovery algorithm, named Nagasaki University Docking Engine (NUDE), which has been established especially for the Destination for GPU Intensive Machine (DEGIMA) supercomputer. The hit compounds that showed high binding scores during in silico screening were subsequently evaluated for anti-influenza virus effects using a cell-based assay. A 4-hydroxyquinolinone compound, designated as NUD-1, was found to inhibit the replication of influenza virus in cultured cells. Analysis of binding between NUD-1 and NP using surface plasmon resonance assay and fragment molecular orbital calculations confirmed that NUD-1 binds to NP and could interfere with NP-NP interactions essential for virus replication. Time-of-addition experiments showed that the compound inhibited the mid-stage of infection, corresponding to assembly of the NP and other viral proteins. Moreover, NUD-1 was also effective against various types of influenza A viruses including a clinical isolate of A(H1N1)pdm09 influenza with a 50% inhibitory concentration range of 1.8–2.1 μM. Our data demonstrate that the combined use of NUDE system followed by the cell-based assay is useful to obtain lead compounds for the development of novel anti-influenza drugs. PMID:28273150

  1. Identification of small molecule inhibitors for influenza a virus using in silico and in vitro approaches.

    PubMed

    Makau, Juliann Nzembi; Watanabe, Ken; Ishikawa, Takeshi; Mizuta, Satoshi; Hamada, Tsuyoshi; Kobayashi, Nobuyuki; Nishida, Noriyuki

    2017-01-01

    Influenza viruses have acquired resistance to approved neuraminidase-targeting drugs, increasing the need for new drug targets for the development of novel anti-influenza drugs. Nucleoprotein (NP) is an attractive target since it has an indispensable role in virus replication and its amino acid sequence is well conserved. In this study, we aimed to identify new inhibitors of the NP using a structure-based drug discovery algorithm, named Nagasaki University Docking Engine (NUDE), which has been established especially for the Destination for GPU Intensive Machine (DEGIMA) supercomputer. The hit compounds that showed high binding scores during in silico screening were subsequently evaluated for anti-influenza virus effects using a cell-based assay. A 4-hydroxyquinolinone compound, designated as NUD-1, was found to inhibit the replication of influenza virus in cultured cells. Analysis of binding between NUD-1 and NP using surface plasmon resonance assay and fragment molecular orbital calculations confirmed that NUD-1 binds to NP and could interfere with NP-NP interactions essential for virus replication. Time-of-addition experiments showed that the compound inhibited the mid-stage of infection, corresponding to assembly of the NP and other viral proteins. Moreover, NUD-1 was also effective against various types of influenza A viruses including a clinical isolate of A(H1N1)pdm09 influenza with a 50% inhibitory concentration range of 1.8-2.1 μM. Our data demonstrate that the combined use of NUDE system followed by the cell-based assay is useful to obtain lead compounds for the development of novel anti-influenza drugs.

  2. Development and evaluation of a paramagnetic nanoparticle based immunochromatographic strip for specific detection of 2009 H1N1 influenza virus.

    PubMed

    Sun, Jianbin; Lei, Xiaoying; Wang, Weihua; Liu, Yonglan; Liang, Ping; Bao, Han; Wang, Qin; Guo, Yanhai; Yang, Jinghua; Yan, Zhen

    2013-03-01

    Influenza A/H1N1 virus spreads worldwide and has been a threat to human health and the poultry industry. Although H1N1 lateral-flow immunoassay strips are available for the detection of 2009/A/H1N1 antigens, the specificity and sensitivity of these strips are limited. Because of the monodispersity, the strong magnetic signal and the stable brown color of superparamagnetic nanoparticles, which were employed in this study as label instead of commonly used colloidal gold particles. Two different monoclonal anti-HA (hemagglutinin) and anti-HA-tag mAbs were paired for conjugating with paramagnetic beads and immobilizing on the surface of nitrocellulose (NC) membrane as capture antibody respectively. After optimizing the experimental condition, we generated a superparamagnetic bead-based immunochromatographic strip. The strip could detect HA antigen from H1N1 influenza A virus sample sensitively, its detection limit was 100 pg/mL. It had low cross reactivity with H3N2 influenza A virus and did not detect influenza B virus. It had no false positive detection in all of the tested control samples. With the help of magnetic assay reader (MAR), the magnetic intensity on test lines could be recorded and quantified proportionally with the amount of antigens captured. Those properties were indeed superior to the colloidal gold-based strips. More importantly, the strip was affordable and easy to use. Conceivably, superparamagnetic bead-based immunochromatographic strip should be a valuable point-of-care test for the rapid and specific detection of influenza A virus.

  3. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm

    PubMed Central

    2012-01-01

    Background Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. Methods We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Results Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Conclusions Our results show that large-scale models can be used to provide valuable real-time forecasts of

  4. Influenza virus isolation.

    PubMed

    Krauss, Scott; Walker, David; Webster, Robert G

    2012-01-01

    The isolation of influenza viruses is important for the diagnosis of respiratory diseases in lower animals and humans, for the detection of the infecting agent in surveillance programs, and is an essential element in the development and production of vaccine. Since influenza is caused by a zoonotic virus it is necessary to do surveillance in the reservoir species (aquatic waterfowls), intermediate hosts (quails, pigs), and in affected mammals including humans. Two of the hemagglutinin (HA) subtypes of influenza A viruses (H5 and H7) can evolve into highly pathogenic (HP) strains for gallinaceous poultry; some HP H5 and H7 strains cause lethal infection of humans. In waterfowls, low pathogenic avian influenza (LPAI) isolates are obtained primarily from the cloaca (or feces); in domestic poultry, the virus is more often recovered from the respiratory tract than from cloacal samples; in mammals, the virus is most often isolated from the respiratory tract, and in cases of high pathogenic avian influenza (HPAI) from the blood and internal organs of infected birds. Virus isolation procedures are performed by inoculation of clinical specimens into embryonated eggs (primarily chicken eggs) or onto a variety of primary or continuous tissue culture systems. Successful isolation of influenza virus depends on the quality of the sample and matching the appropriate culture method to the sample type.

  5. Rapid detection of respiratory tract viral infections and coinfections in patients with influenza-like illnesses by use of reverse transcription-PCR DNA microarray systems.

    PubMed

    Renois, Fanny; Talmud, Déborah; Huguenin, Antoine; Moutte, Lauryane; Strady, Christophe; Cousson, Joel; Lévêque, Nicolas; Andréoletti, Laurent

    2010-11-01

    We prospectively tested 95 nasal swabs or nasopharyngeal aspirates taken from 56 adults and 39 children visiting the Reims University Medical Centre (northern France) for influenza-like illnesses (ILI) during the early stage of the French influenza A/H1N1v pandemic (October 2009). Respiratory samples were tested using a combination of two commercially available reverse transcription-PCR (RT-PCR) DNA microarray systems allowing rapid detection of influenza A virus strains, including the new A/H1N1v strain as well as 20 other common or newly discovered respiratory viruses. Concomitantly, a generic and classical real-time RT-PCR assay was performed to detect all circulating influenza A virus strains in the same samples. Of the 95 respiratory samples tested, 30 (31%) were positive for the detection of influenza A/H1N1v virus infection by both RT-PCR DNA microarray and classical real-time RT-PCR detection assays. Among the infections, 25 (83%) were monoinfections, whereas 5 (17%) were multiple infections associating influenza A/H1N1v virus with coronavirus (CoV), human bocavirus (HBoV), respiratory syncytial virus (RSV), or human rhinoviruses (HRVs). Of the 95 respiratory samples tested, 35 (37%) were positive for respiratory viruses other than influenza A/H1N1v virus. Among these infections, we observed 30 monoinfections (HRVs [63%], parainfluenza viruses [PIVs] [20%]), influenza A/H3N2 virus [6%], coronavirus [4%], and HBoV [4%]) and 5 multiple infections, in which HRVs and PIVs were the most frequently detected viruses. No specific single or mixed viral infections appeared to be associated significantly with secondary hospitalization in infectious disease or intensive care departments during the study period (P > 0.5). The use of RT-PCR DNA microarray systems in clinical virology practice allows the rapid and accurate detection of conventional and newly discovered viral respiratory pathogens in patients suffering from ILI and therefore could be of major interest for

  6. No Evidence for Disease History as a Risk Factor for Narcolepsy after A(H1N1)pdm09 Vaccination

    PubMed Central

    Lamb, Favelle; Ploner, Alexander; Fink, Katharina; Maeurer, Markus; Bergman, Peter; Piehl, Fredrik; Weibel, Daniel; Sparén, Pär; Dahlström, Lisen Arnheim

    2016-01-01

    Objectives To investigate disease history before A(H1N1)pdm09 vaccination as a risk factor for narcolepsy. Methods Case-control study in Sweden. Cases included persons referred for a Multiple Sleep Latency Test between 2009 and 2010, identified through diagnostic sleep centres and confirmed through independent review of medical charts. Controls, selected from the total population register, were matched to cases on age, gender, MSLT-referral date and county of residence. Disease history (prescriptions and diagnoses) and vaccination history was collected through telephone interviews and population-based healthcare registers. Conditional logistic regression was used to investigate disease history before A(H1N1)pdm09 vaccination as a risk-factor for narcolepsy. Results In total, 72 narcolepsy cases and 251 controls were included (range 3–69 years mean19-years). Risk of narcolepsy was increased in individuals with a disease history of nervous system disorders (OR range = 3.6–8.8) and mental and behavioural disorders (OR = 3.8, 95% CI 1.6–8.8) before referral. In a second analysis of vaccinated individuals only, nearly all initial associations were no longer statistically significant and effect sizes were smaller (OR range = 1.3–2.6). A significant effect for antibiotics (OR = 0.4, 95% CI 0.2–0.8) and a marginally significant effect for nervous system disorders was observed. In a third case-only analysis, comparing cases referred before vaccination to those referred after; prescriptions for nervous system disorders (OR = 26.0 95% CI 4.0–170.2) and ADHD (OR = 35.3 95% CI 3.4–369.9) were statistically significant during the vaccination period, suggesting initial associations were due to confounding by indication. Conclusion The findings of this study do not support disease history before A(H1N1)pdm09 vaccination as a risk factor for narcolepsy. PMID:27120092

  7. Epidemiology of the 2009 influenza pandemic in Spain. The Spanish Influenza Surveillance System.

    PubMed

    Larrauri Cámara, Amparo; Jiménez-Jorge, Silvia; Mateo Ontañón, Salvador de; Pozo Sánchez, Francisco; Ledesma Moreno, Juan; Casas Flecha, Inmaculada

    2012-10-01

    In accordance with European Centre for Disease Prevention and Control recommendations, the Spanish Influenza Surveillance System (SISS) maintained its activity during the summer of 2009, and since July 2009 the pandemic virus activity was monitored by the SISS. In this paper, we describe the epidemiological and virological characteristics of the 2009 pandemic in the Spain through the SISS. Spain experienced a transmission of the new A(H1N1)pdm09 influenza virus during the summer of 2009, which gradually increased, resulting in the pandemic wave in early autumn of that year. The reproductive number R0, estimated during the growth phase of the pandemic wave (1.32; 95% confidence interval [95%CI], 1.29-1.36), showed a transmissibility comparable to preceding pandemics. There was an almost complete replacement of the previous seasonal A(H1N1) influenza virus by the pandemic virus A(H1N1)pdm09. The pandemic virus produced a greater burden of illness than seasonal influenza in children younger than 15 years old, while the incidence in those older than 64 years was lower compared with previous inter-pandemic seasons. Nevertheless, in Spain the 2009 pandemic was characterized as mild, considering the duration of the pandemic period and the influenza detection rate, both in the range of those observed in previous inter-pandemic seasons. Also, the case fatality ratio (CFR) was estimated at 0.58 deaths/1,000 confirmed ILI cases (95%CI, 0.52-0.64), in the range of the two previous pandemics of 1957 and 1968, with the highest CFR observed in the older than 64 years age group. In the 2009 pandemic there was a higher percentage of pandemic confirmed deaths in the younger ages, compared to seasonal influenza, since only 28% of the reported deaths occurred in persons aged 64 years and older.

  8. Influenza B vaccine lineage selection--an optimized trivalent vaccine.

    PubMed

    Mosterín Höpping, Ana; Fonville, Judith M; Russell, Colin A; James, Sarah; Smith, Derek J

    2016-03-18

    Epidemics of seasonal influenza viruses cause considerable morbidity and mortality each year. Various types and subtypes of influenza circulate in humans and evolve continuously such that individuals at risk of serious complications need to be vaccinated annually to keep protection up to date with circulating viruses. The influenza vaccine in most parts of the world is a trivalent vaccine, including an antigenically representative virus of recently circulating influenza A/H3N2, A/H1N1, and influenza B viruses. However, since the 1970s influenza B has split into two antigenically distinct lineages, only one of which is represented in the annual trivalent vaccine at any time. We describe a lineage selection strategy that optimizes protection against influenza B using the standard trivalent vaccine as a potentially cost effective alternative to quadrivalent vaccines.

  9. Influenza vaccine effectiveness in Spain 2013/14: subtype-specific early estimates using the cycEVA study.

    PubMed

    Jimenez-Jorge, S; Pozo, F; de Mateo, S; Delgado-Sanz, C; Casas, I; Garcia-Cenoz, M; Castilla, J; Sancho, R; Etxebarriarteun-Aranzabal, L; Quinones, C; Martinez, E; Vega, T; Garcia, A; Gimenez, J; Vanrell, J M; Castrillejo, D; Larrauri, A

    2014-03-06

    Adjusted early estimates of the 2013/14 influenza vaccine effectiveness (VE) in Spain for all age groups was 35% (95% CI: -9 to 62), 33% (95% CI: -33 to 67) and 28% (95% CI: -33 to 61) against any influenza virus type, A(H1N1)pdm09 and A(H3N2) viruses, respectively. For the population targeted for vaccination, the adjusted VE was 44% (95% CI: -11 to 72), 36% (95% CI: -64 to 75) and 42% (95% CI: -29 to 74), respectively. These preliminary results in Spain suggest a suboptimal protective effect of the vaccine against circulating influenza viruses.

  10. Characterization of the Localized Immune Response in the Respiratory Tract of Ferrets following Infection with Influenza A and B Viruses

    PubMed Central

    Carolan, Louise A.; Rockman, Steve; Borg, Kathryn; Guarnaccia, Teagan; Reading, Patrick; Mosse, Jennifer; Kelso, Anne; Barr, Ian

    2015-01-01

    ABSTRACT The burden of infection with seasonal influenza viruses is significant. Each year is typically characterized by the dominance of one (sub)type or lineage of influenza A or B virus, respectively. The incidence of disease varies annually, and while this may be attributed to a particular virus strain or subtype, the impacts of prior immunity, population differences, and variations in clinical assessment are also important. To improve our understanding of the impacts of seasonal influenza viruses, we directly compared clinical symptoms, virus shedding, and expression of cytokines, chemokines, and immune mediators in the upper respiratory tract (URT) of ferrets infected with contemporary A(H1N1)pdm09, A(H3N2), or influenza B virus. Gene expression in the lower respiratory tract (LRT) was also assessed. Clinical symptoms were minimal. Overall cytokine/chemokine profiles in the URT were consistent in pattern and magnitude between animals infected with influenza A and B viruses, and peak expression levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p40, alpha interferon (IFN-α), IFN-β, and tumor necrosis factor alpha (TNF-α) mRNAs correlated with peak levels of viral shedding. MCP1 and IFN-γ were expressed after the virus peak. Granzymes A and B and IL-10 reached peak expression as the virus was cleared and seroconversion was detected. Cytokine/chemokine gene expression in the LRT following A(H1N1)pdm09 virus infection reflected the observations seen for the URT but was delayed 2 or 3 days, as was virus replication. These data indicate that disease severities and localized immune responses following infection with seasonal influenza A and B viruses are similar, suggesting that other factors are likely to modulate the incidence and impact of seasonal influenza. IMPORTANCE Both influenza A and B viruses cocirculate in the human population, and annual influenza seasons are typically dominated by an influenza A virus subtype or an influenza B virus lineage

  11. Natural Products as Promising Therapeutics for Treatment of Influenza Disease.

    PubMed

    Sencanski, Milan; Radosevic, Draginja; Perovic, Vladimir; Gemovic, Branislava; Stanojevic, Maja; Veljkovic, Nevena; Glisic, Sanja

    2015-01-01

    The influenza virus represents a permanent global health threat because it circulates not only within but also between numerous host populations, thereby frequently causing unexpected outbreaks in animals and humans with a generally unpredictable course of disease and epidemiology. Conventional influenza therapy is directed against the viral neuraminidase protein, which promotes virus release from infected cells, and the viral ion channel M2, which facilitates viral uncoating. However, these drugs, albeit effective, have a major drawback: their targets are of a highly variable sequence. As a consequence, the virus can readily acquire resistance by mutating the drug targets. Indeed, most seasonal A/H1N1 viruses and the 2009 H1N1 virus are resistant to M2 inhibitors, and a significant proportion of the seasonal A/H1N1 viruses are resistant to the neuraminidase inhibitor oseltamivir. Development of new effective drugs for treatment of disease during the regular influenza seasons and the possible influenza pandemic represents an important goal. The results presented here point out natural products as a promising source of low toxic and widely accessible drug candidates for treatment of the influenza disease. Natural products combined with new therapeutic targets and drug repurposing techniques, which accelerate development of new drugs, serve as an important platform for development of new influenza therapeutics.

  12. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    PubMed

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct

  13. Guidance for clinical and public health laboratories testing for influenza virus antiviral drug susceptibility in Europe.

    PubMed

    Pozo, Francisco; Lina, Bruno; Andrade, Helena Rebelo de; Enouf, Vincent; Kossyvakis, Athanasios; Broberg, Eeva; Daniels, Rod; Lackenby, Angie; Meijer, Adam

    2013-05-01

    Two classes of antiviral drugs are licensed in Europe for treatment and prophylaxis of influenza; the M2 ion-channel blockers amantadine and rimantadine acting against type A influenza viruses only and the neuraminidase enzyme inhibitors zanamivir and oseltamivir acting against type A and type B influenza viruses. This guidance document was developed for but not limited to the European Union (EU) and other European Economic Area (EEA) countries on how and when to test for influenza virus antiviral drug susceptibility. It is aimed at clinical and influenza surveillance laboratories carrying out antiviral drug susceptibility testing on influenza viruses from patients suspected of harbouring viruses with reduced susceptibility or for the monitoring of the emergence of such among circulating viruses, respectively. Therefore, the guidance should not be read as a directive or an algorithm for treatment. Monitoring for emergence of influenza viruses with reduced drug susceptibility in hospitalized cases is crucial for decision making on possible changes to antiviral treatment. Therefore, it is important to test for antiviral susceptibility in certain patient groups, such as patients treated with influenza antiviral drugs. It is also important to determine the frequency of viruses with natural (not related to drug use) reduced susceptibility among community and hospitalized cases, as this knowledge is essential for making empirical antiviral treatment decisions. Furthermore, testing of specimens from community influenza patients is needed to determine the frequency of viruses with reduced susceptibility and good viral fitness that are readily transmissible, as they may become dominant among circulating viruses. Phenotypic neuraminidase enzyme inhibition assays are recommended to determine the level of inhibition of the neuraminidase enzyme by antiviral drugs as a measure of drug susceptibility of the virus. Genotypic assays are recommended to identify amino acid

  14. The 2009 H1N1 Pandemic Influenza in Korea

    PubMed Central

    2016-01-01

    In late March of 2009, an outbreak of influenza in Mexico, was eventually identified as H1N1 influenza A. In June 2009, the World Health Organization raised a pandemic alert to the highest level. More than 214 countries have reported confirmed cases of pandemic H1N1 influenza A. In Korea, the first case of pandemic influenza A/H1N1 infection was reported on May 2, 2009. Between May 2009 and August 2010, 750,000 cases of pandemic influenza A/H1N1 were confirmed by laboratory test. The H1N1-related death toll was estimated to reach 252 individuals. Almost one billion cases of influenza occurs globally every year, resulting in 300,000 to 500,000 deaths. Influenza vaccination induces virus-neutralizing antibodies, mainly against hemagglutinin, which provide protection from invading virus. New quadrivalent inactivated influenza vaccine generates similar immune responses against the three influenza strains contained in two types of trivalent vaccines and superior responses against the additional B strain. PMID:27066083

  15. Optimisation of a micro-neutralisation assay and its application in antigenic characterisation of influenza viruses

    PubMed Central

    Lin, Yipu; Gu, Yan; Wharton, Stephen A; Whittaker, Lynne; Gregory, Victoria; Li, Xiaoyan; Metin, Simon; Cattle, Nicholas; Daniels, Rodney S; Hay, Alan J; McCauley, John W

    2015-01-01

    Objectives The identification of antigenic variants and the selection of influenza viruses for vaccine production are based largely on antigenic characterisation of the haemagglutinin (HA) of circulating viruses using the haemagglutination inhibition (HI) assay. However, in addition to evolution related to escape from host immunity, variants emerging as a result of propagation in different cell substrates can complicate the interpretation of HI results. The objective was to develop further a micro-neutralisation (MN) assay to complement the HI assay in antigenic characterisation of influenza viruses to assess the emergence of new antigenic variants and reinforce the selection of vaccine viruses. Design and setting A 96-well-plate plaque reduction MN assay based on the measurement of infected cell population using a simple imaging technique. Sample Representative influenza A (H1N1) pdm09, A(H3N2) and B viruses isolated between 2004 and 2013 Main outcome measures and results Improvements to the plaque reduction MN assay included selection of the most suitable cell line according to virus type or subtype, and optimisation of experimental design and data quantitation. Comparisons of the results of MN and HI assays showed the importance of complementary data in determining the true antigenic relationships among recent human influenza A(H1N1)pdm09, A(H3N2) and type B viruses. Conclusions Our study demonstrates that the improved MN assay has certain advantages over the HI assay: it is not significantly influenced by the cell-selected amino acid substitutions in the neuraminidase (NA) of A(H3N2) viruses, and it is particularly useful for antigenic characterisation of viruses which either grow to low HA titre and/or undergo an abortive infection resulting in an inability to form plaques in cultured cells. PMID:26073976

  16. [Influenza surveillance in nine consecutive seasons, 2003-2012: results from National Influenza Reference Laboratory, Istanbul Faculty Of Medicine, Turkey].

    PubMed

    Akçay Ciblak, Meral; Kanturvardar Tütenyurd, Melis; Asar, Serkan; Tulunoğlu, Merve; Fındıkçı, Nurcihan; Badur, Selim

    2012-10-01

    Influenza is a public health problem that affects 5-20% of the world population annually causing high morbidity and mortality especially in risk groups. In addition to determining prevention and treatment strategies with vaccines and antivirals, surveillance data plays an important role in combat against influenza. Surveillance provides valuable data on characteristics of influenza activity, on types, sub-types, antigenic properties and antiviral resistance profile of circulating viruses in a given region. The first influenza surveillance was initiated as a pilot study in 2003 by now named National Influenza Reference Laboratory, Istanbul Faculty of Medicine. Surveillance was launched at national level by Ministry of Health in 2004 and two National Influenza Laboratories, one in Istanbul and the other in Ankara, have been conducting surveillance in Turkey. Surveillance data obtained for nine consecutive years, 2003-2012, by National Influenza Reference Laboratory in Istanbul Faculty of Medicine have been summarized in this report. During 2003-2012 influenza surveillance seasons, a total of 11.077 nasal swabs collected in viral transport medium were sent to the National Influenza Reference Laboratory, Istanbul for analysis. Immun-capture ELISA followed by MDCK cell culture was used for detection of influenza viruses before 2009 and real-time RT-PCR was used thereafter. Antigenic characterizations were done by hemagglutination inhibition assay with the reactives supplied by World Health Organization. Analysis of the results showed that influenza B viruses have entered the circulation in 2005-2006 seasons, and have contributed to the epidemics at increasing rates every year except in the 2009 pandemic season. Influenza B Victoria and Yamagata lineages were cocirculating for two seasons. For other seasons either lineage was in circulation. Antigenic characterization revealed that circulating B viruses matched the vaccine composition either partially or totally for only

  17. Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses.

    PubMed

    Gras, Stephanie; Kedzierski, Lukasz; Valkenburg, Sophie A; Laurie, Karen; Liu, Yu Chih; Denholm, Justin T; Richards, Michael J; Rimmelzwaan, Guus F; Kelso, Anne; Doherty, Peter C; Turner, Stephen J; Rossjohn, Jamie; Kedzierska, Katherine

    2010-07-13

    Preexisting T-cell immunity directed at conserved viral regions promotes enhanced recovery from influenza virus infections, with there being some evidence of cross-protection directed at variable peptides. Strikingly, many of the immunogenic peptides derived from the current pandemic A(H1N1)-2009 influenza virus are representative of the catastrophic 1918 "Spanish flu" rather than more recent "seasonal" strains. We present immunological and structural analyses of cross-reactive CD8(+) T-cell-mediated immunity directed at a variable (although highly cross-reactive) immunodominant NP(418-426) peptide that binds to a large B7 family (HLA-B*3501/03/0702) found throughout human populations. Memory CD8(+) T-cell specificity was probed for 12 different NP(418) mutants that emerged over the 9 decades between the 1918 and 2009 pandemics. Although there is evidence of substantial cross-reactivity among seasonal NP(418) mutants, current memory T-cell profiles show no preexisting immunity to the 2009-NP(418) variant or the 1918-NP(418) variant. Natural infection with the A(H1N1)-2009 virus, however, elicits CD8(+) T cells specific for the 2009-NP(418) and 1918-NP(418) epitopes. This analysis points to the potential importance of cross-reactive T-cell populations that cover the possible spectrum of T-cell variants and suggests that the identification of key residues/motifs that elicit cross-reactive T-cell sets could facilitate the evolution of immunization protocols that provide a measure of protection against unpredicted pandemic influenza viruses. Thus, it is worth exploring the potential of vaccines that incorporate peptide variants with a proven potential for broader immunogenicity, especially to those that are not recognized by the current memory T-cell pool generated by exposure to influenza variants that cause successive seasonal epidemics.

  18. Abnormal humoral immune response to influenza vaccination in pediatric type-1 human immunodeficiency virus infected patients receiving highly active antiretroviral therapy.

    PubMed

    Montoya, Carlos J; Toro, Maria F; Aguirre, Carlos; Bustamante, Alberto; Hernandez, Mariluz; Arango, Liliana P; Echeverry, Marta; Arango, Ana E; Prada, Maria C; Alarcon, Herminia del P; Rojas, Mauricio

    2007-06-01

    Given that highly active antiretroviral therapy (HAART) has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1)-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI) antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40) against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.

  19. Influenza in Children.

    PubMed

    Kumar, Virendra

    2017-02-01

    In children, influenza is one among the commonest causes of acute respiratory illness and loss of school days. Influenza A, B, and C are 3 types of viruses responsible for illness. Type A virus has many subtypes based on antigens but Type B and Type C viruses have no known subtypes. Currently, influenza A/H1N1, A/H3N2, and influenza type B viruses are circulating in humans. Transmission of influenza occurs through droplets from infected person or through direct contact with person or fomites. Clinically, influenza is characterized by acute onset fever, chills, running nose, cough, sore throat, headache and myalgia. Mostly, febrile illness lasts for 3-4 d with resolution of disease in 7-10 d. Confirmation of influenza can be done either by virus culture, RT-PCR or specific neutralizing antibodies in blood. Basic principles of management include prompt institution of infection control measures, early identification of children at higher risk, supportive care and antiviral drugs. Vaccine and chemoprophylaxis are two commonly used methods for prevention of influenza. Currently, inactivated influenza vaccine (IIV) and live attenuated influenza vaccine (LAIV) are available for use with good efficacy. Cough etiquette, use of face masks and hand hygiene are the most important measures to reduce the risk of infection transmission from person to person.

  20. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant region of hepatitis B core antigen: Broad protective efficacy of particles carrying four copies of M2e.

    PubMed

    Tsybalova, Liudmila M; Stepanova, Liudmila A; Kuprianov, Victor V; Blokhina, Elena A; Potapchuk, Marina V; Korotkov, Alexander V; Gorshkov, Andrey N; Kasyanenko, Marina A; Ravin, Nikolai V; Kiselev, Oleg I

    2015-06-26

    A long-term objective when designing influenza vaccines is to create one with broad cross-reactivity that will provide effective control over influenza, no matter which strain has caused the disease. Here we summarize the results from an investigation into the immunogenic and protective capacities inherent in variations of a recombinant protein, HBc/4M2e. This protein contains four copies of the ectodomain from the influenza virus protein M2 (M2e) fused within the immunodominant loop of the hepatitis B virus core antigen (HBc). Variations of this basic design include preparations containing M2e from the consensus human influenza virus; the M2e from the highly pathogenic avian A/H5N1 virus and a combination of two copies from human and two copies from avian influenza viruses. Intramuscular delivery in mice with preparations containing four identical copies of M2e induced high IgG titers in blood sera and bronchoalveolar lavages. It also provoked the formation of memory T-cells and antibodies were retained in the blood sera for a significant period of time post immunization. Furthermore, these preparations prevented the death of 75-100% of animals, which were challenged with lethal doses of virus. This resulted in a 1.2-3.5 log10 decrease in viral replication within the lungs. Moreover, HBc particles carrying only "human" or "avian" M2e displayed cross-reactivity in relation to human (A/H1N1, A/H2N2 and A/H3N2) or A/H5N1 and A(H1N1)pdm09 viruses, respectively; however, with the particles carrying both "human" and "avian" M2e this effect was much weaker, especially in relation to influenza virus A/H5N1. It is apparent from this work that to quickly produce vaccine for a pandemic it would be necessary to have several variations of a recombinant protein, containing four copies of M2e (each one against a group of likely influenza virus strains) with these relevant constructs housed within a comprehensive collection Escherichia coli-producers and maintained ready for use.

  1. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  2. Influenza viruses: transmission between species.

    PubMed

    Webster, R G; Hinshaw, V S; Bean, W J; Sriram, G

    1980-02-25

    The only direct evidence for transmission of influenza viruses between species comes from studies on swine influenza viruses. Antigenically and genetically identical Hsw1N1 influenza viruses were isolated from pigs and man on the same farm in Wisconsin, U.S.A. The isolation of H3N2 influenza viruses from a wide range of lower animals and birds suggests that influenza viruses of man can spread to the lower orders. Under some conditions the H3N2 viruses can persist for a number of years in some species. The isolation, from aquatic birds, of a large number of influenza A viruses that possess surface proteins antigenically similar to the viruses isolated from man, pigs and horses provides indirect evidence for inter-species transmission. There is now a considerable body of evidence which suggests that influenza viruses of lower animals and birds may play a role in the origin of some of the pandemic strains of influenza A viruses. There is no direct evidence that the influenza viruses in aquatic birds are transmitted to man, but they may serve as a genetic pool from which some genes may be introduced into humans by recombination. Preliminary evidence suggests that the molecular basis of host range and virulence may be related to the RNA segments coding for one of the polymerase proteins (P3) and for the nucleoprotein (NP).

  3. Neuraminidase inhibitor R-125489 - A promising drug for treating influenza virus: Steered molecular dynamics approach

    SciTech Connect

    Mai, Binh Khanh; Li, Mai Suan

    2011-07-08

    Highlights: {yields} We study binding affinity of R-125489 and its prodrug CS-8958 to neuraminidase of pathogenic influenza viruses by molecular dynamics simulations. {yields} It is shown that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. {yields} We predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus. {yields} The high correlation between theoretical and experimental data implies that SMD is a very promising tool for drug design. -- Abstract: Two neuraminidase inhibitors, oseltamivir and zanamivir, are important drug treatments for influenza. Oseltamivir-resistant mutants of the influenza virus A/H1N1 and A/H5N1 have emerged, necessitating the development of new long-acting antiviral agents. One such agent is a new neuraminidase inhibitor R-125489 and its prodrug CS-8958. An atomic level understanding of the nature of this antiviral agents binding is still missing. We address this gap in our knowledge by applying steered molecular dynamics (SMD) simulations to different subtypes of seasonal and highly pathogenic influenza viruses. We show that, in agreement with experiments, R-125489 binds to neuraminidase more tightly than CS-8958. Based on results obtained by SMD and the molecular mechanics-Poisson-Boltzmann surface area method, we predict that R-125489 can be used to treat not only wild-type but also tamiflu-resistant N294S, H274Y variants of A/H5N1 virus as its binding affinity does not vary much across these systems. The high correlation level between theoretically determined rupture forces and experimental data on binding energies for the large number of systems studied here implies that SMD is a promising tool for drug design.

  4. Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantadine-resistant influenza A viruses.

    PubMed

    Nguyen, Jack T; Smee, Donald F; Barnard, Dale L; Julander, Justin G; Gross, Matthew; de Jong, Menno D; Went, Gregory T

    2012-01-01

    The limited efficacy of existing antiviral therapies for influenza--coupled with widespread baseline antiviral resistance--highlights the urgent need for more effective therapy. We describe a triple combination antiviral drug (TCAD) regimen composed of amantadine, oseltamivir, and ribavirin that is highly efficacious at reducing mortality and weight loss in mouse models of influenza infection. TCAD therapy was superior to dual and single drug regimens in mice infected with drug-susceptible, low pathogenic A/H5N1 (A/Duck/MN/1525/81) and amantadine-resistant 2009 A/H1N1 influenza (A/California/04/09). Treatment with TCAD afforded >90% survival in mice infected with both viruses, whereas treatment with dual and single drug regimens resulted in 0% to 60% survival. Importantly, amantadine had no activity as monotherapy against the amantadine-resistant virus, but demonstrated dose-dependent protection in combination with oseltamivir and ribavirin, indicative that amantadine's activity had been restored in the context of TCAD therapy. Furthermore, TCAD therapy provided survival benefit when treatment was delayed until 72 hours post-infection, whereas oseltamivir monotherapy was not protective after 24 hours post-infection. These findings demonstrate in vivo efficacy of TCAD therapy and confirm previous reports of the synergy and broad spectrum activity of TCAD therapy against susceptible and resistant influenza strains in vitro.

  5. [Influenza surveillance in five consecutive seasons during post pandemic period: results from National Influenza Center, Turkey].

    PubMed

    Altaş, Ayşe Başak; Bayrakdar, Fatma; Korukluoğlu, Gülay

    2016-07-01

    Influenza surveillance provides data about the characteristics of influenza activity, types, sub-types and antigenic properties of the influenza viruses in circulation in a region. Surveillance also provides for the preparation against potential influenza pandemics with the identification of the genetic properties of viruses and the mutant strains that could pose a threat. In this study, data in the scope of national influenza surveillance carried out by National Influenza Center, Turkey for five consecutive influenza seasons between 2010-2015, following the A(H1N1)pdm09 virus pandemic, have been presented and evaluated. A total of 15.149 respiratory samples, including 8.894 sentinel and 6.255 non-sentinel specimens, during 2010-2015 influenza seasons, within the periods between September and May, were evaluated in our center. All samples were tested using real-time reverse transcriptase PCR (rRT-PCR) for the presence of influenza virus types and subtypes. Within the sentinel influenza surveillance, the samples that were detected negative for influenza viruses, have also been tested for the other respiratory viruses (respiratory syncytial virus, rhinoviruses, paramyxoviruses, coronaviruses) using the same technique. Further analysis, including virus isolation by cell culture inoculation and antigenic characterization by hemagglutination inhibiton test were performed for the samples found positive for influenza A and B viruses. Selected representative virus isolates have been sent to WHO reference laboratory for the sequence analysis. In the study, influenza virus positivity rates detected for all of the samples (sentinel+non-sentinel) were as follows; 34% (779/2316) in 2010-11 season; 25% (388/1554) in 2011-12; 20% (696/3541) in 2012-13; 23% (615/2678) in 2013-14; and 26% (1332/5060) in 2014-15. When all the samples were considered for influenza A and B viruses, the positivity rates for the seasons of 2010-11; 2011-12; 2012-13; 2013-14; 2014-15 were determined as

  6. [Anti-influenza virus agent].

    PubMed

    Nakamura, Shigeki; Kohno, Shigeru

    2012-04-01

    The necessity of newly anti-influenza agents is increasing rapidly after the prevalence of pandemic influenza A (H1N1) 2009. In addition to the existing anti-influenza drugs, novel neuraminidase inhibitors such as peramivir (a first intravenous anti-influenza agent) and laninamivir (long acting inhaled anti-influenza agent) can be available. Moreover favipiravir, which shows a novel anti-influenza mechanism acting as RNA polymerase inhibitor, has been developing. These drugs are expected to improve the prognosis of severe cases caused by not only seasonal influenza but pandemic influenza A (H1N1) 2009 virus and H5N1 avian influenza, and also treat oseltamivir-resistant influenza effectively.

  7. Emergence of influenza A (H1N1)pdm09 genogroup 6B and drug resistant virus, India, January to May 2015.

    PubMed

    Parida, Manmohan; Dash, Paban Kumar; Kumar, Jyoti S; Joshi, Gaurav; Tandel, Kundan; Sharma, Shashi; Srivastava, Ambuj; Agarwal, Ankita; Saha, Amrita; Saraswat, Shweta; Karothia, Divyanshi; Malviya, Vatsala

    2016-01-01

    To investigate the aetiology of the 2015 A(H1N1)pdm09 influenza outbreak in India, 1,083 nasopharyngeal swabs from suspect patients were screened for influenza A(H1N1)pdm09 in the state of Madhya Pradesh. Of 412 positive specimens, six were further characterised by phylogenetic analysis of haemagglutinin (HA) sequences revealing that they belonged to genogroup 6B. A new mutation (E164G) was observed in HA2 of two sequences. Neuraminidase genes in two of 12 isolates from fatal cases on prior oseltamivir treatment harboured the H275Y mutation.

  8. PATH Influenza Vaccine Project: accelerating the development of new influenza vaccines for low-resource countries.

    PubMed

    Neuzil, Kathleen M; Tsvetnitsky, Vadim; Nyari, Linda J; Bright, Rick A; Boslego, John W

    2012-08-01

    The 2009 influenza A/H1N1 pandemic demonstrated that a pandemic influenza virus has the potential to spread more rapidly in today's highly interconnected world than in the past. While pandemic morbidity and mortality are likely to be greatest in low-resource countries, manufacturing capacity and access to influenza vaccines predominantly exist in countries with greater resources and infrastructure. Even with recently expanded manufacturing capacity, the number of doses available within a 6-month timeframe would be inadequate to fully immunize the global population if the decision to implement a global vaccination program were made today. Improved, affordable vaccines are needed to limit the consequences of a global influenza outbreak and protect low-resource populations. PATH's Influenza Vaccine Project is supporting a range of activities in collaboration with private- and public-sector partners to advance the development of promising influenza vaccines that can be accessible and affordable for people in low-resource countries.

  9. Human Monoclonal Antibody 81.39a Effectively Neutralizes Emerging Influenza A Viruses of Group 1 and 2 Hemagglutinins

    PubMed Central

    Marjuki, Henju; Mishin, Vasiliy P.; Chai, Ning; Tan, Man-Wah; Newton, Elizabeth M.; Tegeris, John; Erlandson, Karl; Willis, Melissa; Jones, Joyce; Davis, Todd; Stevens, James

    2016-01-01

    ABSTRACT The pandemic threat posed by emerging zoonotic influenza A viruses necessitates development of antiviral agents effective against various antigenic subtypes. Human monoclonal antibody (hMAb) targeting the hemagglutinin (HA) stalk offers a promising approach to control influenza virus infections. Here, we investigated the ability of the hMAb 81.39a to inhibit in vitro replication of human and zoonotic viruses, representing 16 HA subtypes. The majority of viruses were effectively neutralized by 81.39a at a 50% effective concentration (EC50) of <0.01 to 4.9 μg/ml. Among group 2 HA viruses tested, a single A(H7N9) virus was not neutralized at 50 μg/ml; it contained HA2-Asp19Gly, an amino acid position previously associated with resistance to neutralization by the group 2 HA-neutralizing MAb CR8020. Notably, among group 1 HA viruses, H11-H13 and H16 subtypes were not neutralized at 50 μg/ml; they shared the substitution HA2-Asp19Asn/Ala. Conversely, H9 viruses harboring HA2-Asp19Ala were fully susceptible to neutralization. Therefore, amino acid variance at HA2-Asp19 has subtype-specific adverse effects on in vitro neutralization. Mice given a single injection (15 or 45 mg/kg of body weight) at 24 or 48 h after infection with recently emerged A(H5N2), A(H5N8), A(H6N1), or A(H7N9) viruses were protected from mortality and showed drastically reduced lung viral titers. Furthermore, 81.39a protected mice infected with A(H7N9) harboring HA2-Asp19Gly, although the antiviral effect was lessened. A(H1N1)pdm09-infected ferrets receiving a single dose (25 mg/kg) had reduced viral titers and showed less lung tissue injury, despite 24- to 72-h-delayed treatment. Taken together, this study provides experimental evidence for the therapeutic potential of 81.39a against diverse influenza A viruses. IMPORTANCE Zoonotic influenza viruses, such as A(H5N1) and A(H7N9) subtypes, have caused severe disease and deaths in humans, raising public health concerns. Development of novel

  10. Epidemiological and Virological Characteristics of Influenza in Chongqing, China, 2011-2015

    PubMed Central

    Qi, Li; Xiong, Yu; Xiao, Bangzhong; Tang, Wenge; Ling, Hua; Long, Jiang; Xiao, Dayong; Zhao, Han; Ye, Sheng; Chen, Shuang; Yu, Zhen; Li, Qin

    2016-01-01

    Background Chongqing is the largest municipality and located in Southwestern of China, with over 30 million registered inhabitants. There are few reports regarding the epidemiology of influenza in Chongqing. The objective of the paper is to explore the epidemiology of influenza in Chongqing, in order to provide scientific basis for prevention and control of influenza. Methodology /Principal Findings From 2011 to 2015, we collected information on influenza-like illness (ILI) patients fulfilling the case definition, and took nasalpharyngeal or throat swabs specimens from ILI cases per week at the 7 sentinel hospitals. Specimens were tested by reverse transcription-polymerase chain reaction(RT-PCR) for influenza. Descriptive epidemiology was applied to analyze the epidemiology and etiology of influenza. A total of 9,696,212 cases were enrolled, of which 111,589 were ILI. Of those 24,868 samples from ILI cases, 13.3% (3,314/24,868) tested positive for influenza virus (65.7% influenza A, 34.1% influenza B, and 0.2% influenza A and B co-infection). Among the influenza A viruses, 71.3% were seasonal influenza A(H3N2) and 28.7% were influenza A(H1N1)pdm09. No cases of seasonal A(H1N1) were detected. The isolation rate was highest in children aged 5–14 years old. Influenza activity consistently peaked during January-March in 2011–2015, and June-July in 2012, 2014 and 2015. Conclusions Influenza is an important public health problem among ILI patients in Chongqing, especially among school-aged children. It might be beneficial to prioritize influenza vaccination for school-aged children and implement the school-based intervention to prevent and mitigating influenza outbreaks in Chongqing, particularly during the seasonal peaks. PMID:27936139

  11. Influenza A(H3N2) outbreak at Transit Center at Manas, Kyrgyzstan, 2014.

    PubMed

    Parms, Tiffany A; Zorich, Shauna C; Kramer, Karen P

    2015-01-01

    In February 2014, the U.S. Air Force School of Aerospace Medicine Epidemiology Consult Service provided support in response to a moderate outbreak of influenza at the Transit Center at Manas (Kyrgyzstan). A total of 215 individuals presented with influenza-like illness symptoms from 3 December 2013 through 28 February 2014. There were 85 specimens positive for influenza (18 influenza A(H1N1)pdm09, 65 influenza A(H3N2), one influenza A/not subtyped, and one influenza B); six specimens were positive for other respiratory viruses (one human metapneumovirus, two parainfluenza, and three rhinovirus/enterovirus) and eight specimens were negative. Twenty-two of the specimens that were positive for influenza were sequenced and were not remarkably different from the strains seen during routine surveillance for the 2013-2014 season or from specimens collected at other deployed sites.

  12. Rapid spread of drug-resistant influenza A viruses in the Basque Country, northern Spain, 2000-1 to 2008-9.

    PubMed

    Vicente, D; Cilla, G; Montes, M; Mendiola, J; Pérez-Trallero, E

    2009-05-21

    A worldwide increase of adamantane-resistant influenza A(H3N2) and oseltamivir-resistant influenza A(H1N1) viruses has been observed in recent years. The aim of this study was to analyse the prevalence of antiviral drug-resistant influenza A in a region of northern Spain. Resistance to adamantanes was detected in 45.3% (68/150) of influenza AH3 viruses analysed for the period from 2000-1 to 2008-9. Adamantane-resistance was absent in our region during the 2000-1 to 2002-3 influenza seasons. However, after the first adamantane-resistant virus (characterised as A/Fujian/411/2002) was detected in the 2003-4 season, a rapid increase in the proportion of resistant strains was observed (4.9% [2/41], 80% [8/10] and 100% [53/53] in the 2004-5, 2006-7 and 2008-9 seasons, respectively). Four of the first five adamantane-resistant AH3 viruses detected were isolated from adult patients, but the subsequent spread was observed mainly among children. No resistance to adamantanes was detected among the 65 influenza AH1 viruses analysed throughout the study period. Among the 172 influenza A (76 AH1 and 96 AH3) viruses analysed, five strains (AH1 with mutation H274Y) showed oseltamivir resistance, and all were detected in the last season. Amantadine use was very scarce in our region, and oseltamivir was not used at all; therefore the increase of resistance was attributed to imported drug-resistant influenza viruses.

  13. Assessing the viral fitness of oseltamivir-resistant influenza viruses in ferrets, using a competitive-mixtures model.

    PubMed

    Hurt, Aeron C; Nor'e, Siti Sarah; McCaw, James M; Fryer, Helen R; Mosse, Jennifer; McLean, Angela R; Barr, Ian G

    2010-09-01

    To determine the relative fitness of oseltamivir-resistant strains compared to susceptible wild-type viruses, we combined mathematical modeling and statistical techniques with a novel in vivo "competitive-mixtures" experimental model. Ferrets were coinfected with either pure populations (100% susceptible wild-type or 100% oseltamivir-resistant mutant virus) or mixed populations of wild-type and oseltamivir-resistant influenza viruses (80%:20%, 50%:50%, and 20%:80%) at equivalent infectivity titers, and the changes in the relative proportions of those two viruses were monitored over the course of the infection during within-host and over host-to-host transmission events in a ferret contact model. Coinfection of ferrets with mixtures of an oseltamivir-resistant R292K mutant A(H3N2) virus and a R292 oseltamivir-susceptible wild-type virus demonstrated that the R292K mutant virus was rapidly outgrown by the R292 wild-type virus in artificially infected donor ferrets and did not transmit to any of the recipient ferrets. The competitive-mixtures model was also used to investigate the fitness of the seasonal A(H1N1) oseltamivir-resistant H274Y mutant and showed that within infected ferrets the H274Y mutant virus was marginally outgrown by the wild-type strain but demonstrated equivalent transmissibility between ferrets. This novel in vivo experimental method and accompanying mathematical analysis provide greater insight into the relative fitness, both within the host and between hosts, of two different influenza virus strains compared to more traditional methods that infect ferrets with only pure populations of viruses. Our statistical inferences are essential for the development of the next generation of mathematical models of the emergence and spread of oseltamivir-resistant influenza in human populations.

  14. Fatal Cases of Seasonal Influenza in Russia in 2015-2016.

    PubMed

    Ilyicheva, T; Durymanov, A; Susloparov, I; Kolosova, N; Goncharova, N; Svyatchenko, S; Petrova, O; Bondar, A; Mikheev, V; Ryzhikov, A

    2016-01-01

    The influenza epidemic in 2015-2016 in Russia is characterized by a sharp increase of influenza cases (beginning from the second week of 2016) with increased fatalities. Influenza was confirmed in 20 fatal cases registered among children (0-10 years), in 5 cases among pregnant women, and in 173 cases among elderly people (60 years and older). Two hundred and ninety nine people died from influenza were patients with some chronic problems. The overwhelming majority among the deceased (more than 98%) were not vaccinated against influenza. We isolated 109 influenza A(H1N1)pdm09 and one A(H3N2) virus strains from 501 autopsy material samples. The antigenic features of the strains were similar to the vaccine strains. A phylogenic analysis of hemagglutinin revealed that influenza A(H1N1)pdm09 virus strains belonged to 6B genetic group that had two main dominant subgroups during the 2015-2016 season. In Russia strains of the first group predominated. We registered an increased proportion of strains with D222G mutation in receptor-binding site. A herd immunity analysis carried out immediately prior to the epidemic showed that 34.4% blood sera samples collected in different regions of Russia were positive to A/California/07/09(H1N1)pdm09. We came to a conclusion that public awareness enhancement is necessary to reduce unreasonable refusals of vaccination.

  15. Fatal Cases of Seasonal Influenza in Russia in 2015–2016

    PubMed Central

    Durymanov, A.; Susloparov, I.; Kolosova, N.; Goncharova, N.; Svyatchenko, S.; Petrova, O.; Bondar, A.; Mikheev, V.; Ryzhikov, A.

    2016-01-01

    The influenza epidemic in 2015–2016 in Russia is characterized by a sharp increase of influenza cases (beginning from the second week of 2016) with increased fatalities. Influenza was confirmed in 20 fatal cases registered among children (0–10 years), in 5 cases among pregnant women, and in 173 cases among elderly people (60 years and older). Two hundred and ninety nine people died from influenza were patients with some chronic problems. The overwhelming majority among the deceased (more than 98%) were not vaccinated against influenza. We isolated 109 influenza A(H1N1)pdm09 and one A(H3N2) virus strains from 501 autopsy material samples. The antigenic features of the strains were similar to the vaccine strains. A phylogenic analysis of hemagglutinin revealed that influenza A(H1N1)pdm09 virus strains belonged to 6B genetic group that had two main dominant subgroups during the 2015–2016 season. In Russia strains of the first group predominated. We registered an increased proportion of strains with D222G mutation in receptor-binding site. A herd immunity analysis carried out immediately prior to the epidemic showed that 34.4% blood sera samples collected in different regions of Russia were positive to A/California/07/09(H1N1)pdm09. We came to a conclusion that public awareness enhancement is necessary to reduce unreasonable refusals of vaccination. PMID:27776172

  16. Pandemic influenza planning, United States, 1978-2008.

    PubMed

    Iskander, John; Strikas, Raymond A; Gensheimer, Kathleen F; Cox, Nancy J; Redd, Stephen C

    2013-06-01

    During the past century, 4 influenza pandemics occurred. After the emergence of a novel influenza virus of swine origin in 1976, national, state, and local US public health authorities began planning efforts to respond to future pandemics. Several events have since stimulated progress in public health emergency planning: the 1997 avian influenza A(H5N1) outbreak in Hong Kong, China; the 2001 anthrax attacks in the United States; the 2003 outbreak of severe acute respiratory syndrome; and the 2003 reemergence of influenza A(H5N1) virus infection in humans. We outline the evolution of US pandemic planning since the late 1970s, summarize planning accomplishments, and explain their ongoing importance. The public health community's response to the 2009 influenza A(H1N1)pdm09 pandemic demonstrated the value of planning and provided insights into improving future plans and response efforts. Preparedness planning will enhance the collective, multilevel response to future public health crises.

  17. Selecting Viruses for the Seasonal Influenza Vaccine

    MedlinePlus

    ... Past Newsletters Selecting Viruses for the Seasonal Influenza Vaccine Language: English Español Recommend on Facebook Tweet ... influence which viruses are selected for use in vaccine production? The influenza viruses in the seasonal flu ...

  18. Variant (Swine Origin) Influenza Viruses in Humans

    MedlinePlus

    ... What's this? Submit Button Past Newsletters Variant Influenza Viruses: Background and CDC Risk Assessment and Reporting Language: ... Background CDC Assessment Reporting Background On Variant Influenza Viruses Swine flu viruses do not normally infect humans. ...

  19. New aspects of influenza viruses.

    PubMed Central

    Shaw, M W; Arden, N H; Maassab, H F

    1992-01-01

    Influenza virus infections continue to cause substantial morbidity and mortality with a worldwide social and economic impact. The past five years have seen dramatic advances in our understanding of viral replication, evolution, and antigenic variation. Genetic analyses have clarified relationships between human and animal influenza virus strains, demonstrating the potential for the appearance of new pandemic reassortants as hemagglutinin and neuraminidase genes are exchanged in an intermediate host. Clinical trials of candidate live attenuated influenza virus vaccines have shown the cold-adapted reassortants to be a promising alternative to the currently available inactivated virus preparations. Modern molecular techniques have allowed serious consideration of new approaches to the development of antiviral agents and vaccines as the functions of the viral genes and proteins are further elucidated. The development of techniques whereby the genes of influenza viruses can be specifically altered to investigate those functions will undoubtedly accelerate the pace at which our knowledge expands. PMID:1310439

  20. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  1. Effects of previous episodes of influenza and vaccination in preventing laboratory-confirmed influenza in Navarre, Spain, 2013/14 season.

    PubMed

    Castilla, Jesús; Navascués, Ana; Fernández-Alonso, Mirian; Reina, Gabriel; Albéniz, Esther; Pozo, Francisco; Álvarez, Nerea; Martínez-Baz, Iván; Guevara, Marcela; García-Cenoz, Manuel; Irisarri, Fátima; Casado, Itziar; Ezpeleta, Carmen

    2016-06-02

    We estimated whether previous episodes of influenza and trivalent influenza vaccination prevented laboratory-confirmed influenza in Navarre, Spain, in season 2013/14. Patients with medically-attended influenza-like illness (MA-ILI) in hospitals (n = 645) and primary healthcare (n = 525) were included. We compared 589 influenza cases and 581 negative controls. MA-ILI related to a specific virus subtype in the previous five seasons was defined as a laboratory-confirmed influenza infection with the same virus subtype or MA-ILI during weeks when more than 25% of swabs were positive for this subtype. Persons with previous MA-ILI had 30% (95% confidence interval (CI): -7 to 54) lower risk of MA-ILI, and those with previous MA-ILI related to A(H1N1)pdm09 or A(H3N2) virus, had a, respectively, 63% (95% CI: 16-84) and 65% (95% CI: 13-86) lower risk of new laboratory-confirmed influenza by the same subtype. Overall adjusted vaccine effectiveness in preventing laboratory-confirmed influenza was 31% (95% CI: 5-50): 45% (95% CI: 12-65) for A(H1N1)pdm09 and 20% (95% CI: -16 to 44) for A(H3N2). While a previous influenza episode induced high protection only against the same virus subtype, influenza vaccination provided low to moderate protection against all circulating subtypes. Influenza vaccine remains the main preventive option for high-risk populations.

  2. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  3. Transmission of influenza A viruses.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-05-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.

  4. Deaths associated with respiratory syncytial and influenza viruses among persons ≥5 years of age in HIV-prevalent area, South Africa, 1998-2009(1).

    PubMed

    Tempia, Stefano; Walaza, Sibongile; Viboud, Cecile; Cohen, Adam L; Madhi, Shabir A; Venter, Marietjie; von Mollendorf, Claire; Moyes, Jocelyn; McAnerney, Johanna M; Cohen, Cheryl

    2015-04-01

    We estimated deaths attributable to influenza and respiratory syncytial virus (RSV) among persons >5 years of age in South Africa during 1998-2009 by applying regression models to monthly deaths and laboratory surveillance data. Rates were expressed per 100,000 person-years. The mean annual number of seasonal influenza-associated deaths was 9,093 (rate 21.6). Persons >65 years of age and HIV-positive persons accounted for 50% (n = 4,552) and 28% (n = 2,564) of overall seasonal influenza-associated deaths, respectively. In 2009, we estimated 4,113 (rate 9.2) influenza A(H1N1)pdm09-associated deaths. The mean of annual RSV-associated deaths during the study period was 511 (rate 1.2); no RSV-associated deaths were estimated in persons >45 years of age. Our findings support the recommendation for influenza vaccination of older persons and HIV-positive persons. Surveillance for RSV should be strengthened to clarify the public health implications and severity of illness associated with RSV infection in South Africa.

  5. Household Transmission of Influenza Virus.

    PubMed

    Tsang, Tim K; Lau, Lincoln L H; Cauchemez, Simon; Cowling, Benjamin J

    2016-02-01

    Human influenza viruses cause regular epidemics and occasional pandemics with a substantial public health burden. Household transmission studies have provided valuable information on the dynamics of influenza transmission. We reviewed published studies and found that once one household member is infected with influenza, the risk of infection in a household contact can be up to 38%, and the delay between onset in index and secondary cases is around 3 days. Younger age was associated with higher susceptibility. In the future, household transmission studies will provide information on transmission dynamics, including the correlation of virus shedding and symptoms with transmission, and the correlation of new measures of immunity with protection against infection.

  6. Clinical severity of human infection with avian influenza A(H7N9) virus

    PubMed Central

    Yu, Hongjie; Cowling, Benjamin J.; Feng, Luzhao; Lau, Eric H. Y.; Liao, Qiaohong; Tsang, Tim K.; Peng, Zhibin; Wu, Peng; Liu, Fengfeng; Fang, Vicky J.; Zhang, Honglong; Li, Ming; Zeng, Lingjia; Xu, Zhen; Li, Zhongjie; Luo, Huiming; Li, Qun; Feng, Zijian; Cao, Bin; Yang, Weizhong; Wu, Joseph T.; Wang, Yu; Leung, Gabriel M.

    2013-01-01

    Background Characterizing the severity profile of human infections with influenza viruses of animal origin is a part of pandemic risk assessment, and an important part of the assessment of disease epidemiology. Our objective was to assess the clinical severity of human infections with the avian influenza A(H7N9) virus that has recently emerged in China. Methods Among laboratory-confirmed cases of A(H7N9) who were hospitalised, we estimated the risk of fatality, mechanical ventilation, and admission to the intensive care unit based on censored data during the currently ongoing outbreak. We also used information on laboratory-confirmed cases detected through sentinel influenza-like illness (ILI) surveillance to estimate the number of symptomatic A(H7N9) virus infections to date and the symptomatic case fatality risk. Findings Among 123 hospitalised cases, 37 cases had died and 69 had recovered by May 28, 2013. Hospitalised cases had high risks of mortality (36%; 95% confidence interval (CI): 26%–45%), mechanical ventilation or mortality (69%; 95% CI: 60%–77%), and ICU admission or mechanical ventilation or mortality (83%; 95% CI: 76%–90%), and the risk of these severe outcomes increased with age. Depending on assumptions about the coverage of the sentinel ILI network and health-care seeking behavior for cases of ILI associated with A(H7N9) virus infection, we estimated that the symptomatic case fatality risk could be between 160 and 2,800 per 100,000 symptomatic cases. Interpretation We estimated that the severity of A(H7N9) is somewhat lower than A(H5N1) but higher than seasonal influenza viruses and influenza A(H1N1)pdm09 virus. The estimated risks of fatality among hospitalised cases and symptomatic cases are measures of severity that should not be affected by shifts over time in the probability of laboratory-confirmation of mild cases and should inform risk assessment. Funding Ministry of Science and Technology, China; Research Fund for the Control of

  7. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  8. Zanamivir-resistant influenza viruses with Q136K or Q136R neuraminidase residue mutations can arise during MDCK cell culture creating challenges for antiviral susceptibility monitoring.

    PubMed

    Little, Karen; Leang, Sook-Kwan; Butler, Jeff; Baas, Chantal; Harrower, Bruce; Mosse, Jenny; Barr, Ian G; Hurt, Aeron C

    2015-01-01

    Surveillance of circulating influenza strains for antiviral susceptibility is important to ensure patient treatment guidelines remain appropriate. Influenza A(H3N2) and A(H1N1)pdm09 virus isolates containing mutations at the Q136 residue of the neuraminidase (NA) that conferred reduced susceptibility to the NA inhibitor (NAI) zanamivir were detected during antiviral susceptibility monitoring. Interestingly, the mutations were not detectable in the viruses from respective clinical specimens, only in the cultured isolates. We showed that variant viruses containing the Q136K and Q136R NA mutations were preferentially selected in Madin-Darby canine kidney epithelial (MDCK) cells, but were less well supported in MDCK-SIAT1 cells and embryonated eggs. The effect of Q136K, Q136R, Q136H and Q136L substitutions in NA subtypes N1 and N2 on NAI susceptibility and in vitro viral fitness was assessed. This study highlights the challenges that cell culture derived mutations can pose to the NAI susceptibility analysis and interpretation and reaffirms the need to sequence viruses from respective clinical specimens to avoid misdiagnosis. However, we also demonstrate that NA mutations at residue Q136 can confer reduced zanamivir, peramivir or laninamivir susceptibility, and therefore close monitoring of viruses for mutations at this site from patients being treated with these antivirals is important.

  9. Mechanistic insights into influenza vaccine-associated narcolepsy

    PubMed Central

    Ahmed, S. Sohail; Steinman, Lawrence

    2016-01-01

    ABSTRACT We previously reported an increased frequency of antibodies to hypocretin (HCRT) receptor 2 in sera obtained from narcoleptic patients who received the European AS03-adjuvanted vaccine Pandemrix (GlaxoSmithKline Biologicals, s.a.) for the global influenza A H1N1 pandemic in 2009 [A(H1N1)pdm09]. These antibodies cross-reacted with a particular fragment of influenza nucleoprotein (NP) – one of the proteins naturally contained in the virus used to make seasonal influenza vaccine and pandemic influenza vaccines. The purpose of this commentary is to provide additional insights and interpretations of the findings and share additional data not presented in the original paper to help the reader appreciate the key messages of that publication. First, a brief background to narcolepsy and vaccine-induced narcolepsy will be provided. Then, additional insights and clarification will be provided on the following topics: 1) the critical difference identified in the adjuvanted A(H1N1)pdm09 vaccines, 2) the contributing factor likely for the discordant association of narcolepsy between the AS03-adjuvanted pandemic vaccines Pandemrix and Arepanrix (GlaxoSmithKline Biologicals, s.a.), 3) the significance of detecting HCRT receptor 2 (HCRTr2) antibodies in some Finnish control subjects, 4) the approach used for the detection of HCRTr2 antibodies in vaccine-associated narcolepsy, and 5) the plausibility of the proposed mechanism involving HCRTr2 modulation in vaccine-associated narcolepsy. PMID:27031682

  10. Swine Influenza Virus: Emerging Understandings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: In March-April 2009, a novel pandemic H1N1 emerged in the human population in North America [1]. The gene constellation of the emerging virus was demonstrated to be a combination of genes from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before...

  11. Serological behaviour of influenza viruses

    PubMed Central

    Fiset, P.; Depoux, R.

    1954-01-01

    By antibody absorption it was found that strains of influenza virus exhibiting P-Q differences were related according to certain patterns. In the course of this investigation it was also revealed that some viruses possessed masked antigens capable of stimulating antibody production but incapable of combining efficiently with antibody. PMID:14364182

  12. The influenza pandemic of 2009: lessons and implications.

    PubMed

    Shapshak, Paul; Chiappelli, Francesco; Somboonwit, Charurut; Sinnott, John

    2011-04-01

    Influenza is a moving target, which evolves in unexpected directions and is recurrent annually. The 2009 influenza A/H1N1 pandemic virus was unlike the 2009 seasonal virus strains and originated in pigs prior to infecting humans. Three strains of viruses gave rise to the pandemic virus by antigenic shift, reassortment, and recombination, which occurred in pigs as 'mixing vessels'. The three strains of viruses had originally been derived from birds, pigs, and humans. The influenza hemagglutinin (HA) and neuraminidase (NA) external proteins are used to categorize and group influenza viruses. The internal proteins (PB1, PB1-F2, PB2, PA, NP, M, and NS) are involved in the pathogenesis of influenza infection. A major difference between the 1918 and 2009 pandemic viruses is the lack of the pathogenic protein PB1-F2 in the 2009 pandemic strains, which was present in the more virulent 1918 pandemic strains. We provide an overview of influenza infection since 1847 and the advent of influenza vaccination since 1944. Vaccines and chemotherapy help reduce the spread of influenza, reduce morbidity and mortality, and are utilized by the global rapid-response organizations associated with the WHO. Immediate identification of impending epidemic and pandemic strains, as well as sustained vigilance and collaboration, demonstrate continued success in combating influenza.

  13. Avian influenza virus and Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  14. Characteristics of seasonal influenza A and B in Latin America: Influenza surveillance data from ten countries

    PubMed Central

    Caini, Saverio; Alonso, Wladimir J.; Balmaseda, Angel; Bruno, Alfredo; Bustos, Patricia; Castillo, Leticia; de Lozano, Celina; de Mora, Doménica; Fasce, Rodrigo A.; Ferreira de Almeida, Walquiria Aparecida; Kusznierz, Gabriela F.; Lara, Jenny; Matute, Maria Luisa; Moreno, Brechla; Pessanha Henriques, Claudio Maierovitch; Rudi, Juan Manuel; El-Guerche Séblain, Clotilde; Schellevis, François; Paget, John

    2017-01-01

    Introduction The increased availability of influenza surveillance data in recent years justifies an actual and more complete overview of influenza epidemiology in Latin America. We compared the influenza surveillance systems and assessed the epidemiology of influenza A and B, including the spatio-temporal patterns of influenza epidemics, in ten countries and sub-national regions in Latin America. Methods We aggregated the data by year and country and characteristics of eighty-two years were analysed. We calculated the median proportion of laboratory-confirmed influenza cases caused by each virus strain, and compared the timing and amplitude of the primary and secondary peaks between countries. Results 37,087 influenza cases were reported during 2004–2012. Influenza A and B accounted for a median of 79% and, respectively, 21% of cases in a year. The percentage of influenza A cases that were subtyped was 82.5%; for influenza B, 15.6% of cases were characterized. Influenza A and B were dominant in seventy-five (91%) and seven (9%) years, respectively. In half (51%) of the influenza A years, influenza A(H3N2) was dominant, followed by influenza A(H1N1)pdm2009 (41%) and pre-pandemic A(H1N1) (8%). The primary peak of influenza activity was in June-September in temperate climate countries, with little or no secondary peak. Tropical climate countries had smaller primary peaks taking place in different months and frequently detectable secondary peaks. Conclusions We found that good influenza surveillance data exists in Latin America, although improvements can still be made (e.g. a better characterization of influenza B specimens); that influenza B plays a considerable role in the seasonal influenza burden; and that there is substantial heterogeneity of spatio-temporal patterns of influenza epidemics. To improve the effectiveness of influenza control measures in Latin America, tropical climate countries may need to develop innovative prevention strategies specifically

  15. Surveillance of influenza in Iceland during the 2009 pandemic.

    PubMed

    Sigmundsdottir, G; Gudnason, T; Ólafsson, Ö; Baldvinsdottir, G E; Atladottir, A; Löve, A; Danon, L; Briem, H

    2010-12-09

    In a pandemic setting, surveillance is essential to monitor the spread of the disease and assess its impact. Appropriate mitigation and healthcare preparedness strategies depend on fast and accurate epidemic surveillance data. During the 2009 influenza A(H1N1) pandemic, rapid improvements in influenza surveillance were made in Iceland. Here, we describe the improvements made in influenza surveillance during the pandemic , which could also be of great value in outbreaks caused by other pathogens. Following the raised level of pandemic influenza alert in April 2009, influenza surveillance was intensified. A comprehensive automatic surveillance system for influenza-like illness was developed, surveillance of influenza-related deaths was established and laboratory surveillance for influenza was strengthened. School absenteeism reports were also collected and compared with results from the automatic surveillance system. The first case of 2009 pandemic influenza A(H1N1) was diagnosed in Iceland in May 2009, but sustained community transmission was not confirmed until mid-August. The pandemic virus circulated during the summer and early autumn before an abrupt increase in the number of cases was observed in October. There were large outbreaks in elementary schools for children aged 6–15 years throughout the country that peaked in late October. School absenteeism reports from all elementary schools in Iceland gave a similar epidemiological curve as that from data from the healthcare system. Estimates of the proportion of the population infected with the pandemic virus ranged from 10% to 22%. This study shows how the sudden need for improved surveillance in the pandemic led to rapid improvements in data collection in Iceland. This reporting system will be improved upon and expanded to include other notifiable diseases, to ensure accurate and timely collection of epidemiological data.

  16. Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages

    PubMed Central

    Ramírez-Martínez, Gustavo; Cruz-Lagunas, Alfredo; Jiménez-Alvarez, Luis; Espinosa, Enrique; Ortíz-Quintero, Blanca; Santos-Mendoza, Teresa; Herrera, María Teresa; Canché-Pool, Elsy; Mendoza, Criselda; Bañales, José L.; García-Moreno, Sara A.; Morán, Juan; Cabello, Carlos; Orozco, Lorena; Aguilar-Delfín, Irma; Hidalgo-Miranda, Alfredo; Romero, Sandra; Suratt, Benjamin T.; Selman, Moisés; Zúñiga, Joaquín

    2014-01-01

    Background Infection with pandemic (pdm) A/H1N1 virus induces high levels of pro-inflammatory mediators in blood and lungs of experimental animals and humans. Methods To compare the involvement of seasonal A/PR/8/34 and pdm A/H1N1 virus strains in the regulation of inflammatory responses, we analyzed the changes in the whole-genome expression induced by these strains in macrophages and A549 epithelial cells. We also focused on the functional implications (cytokine production) of the differential induction of suppressors of cytokine signaling (SOCS)-1, SOCS-3, retinoid-inducible gene (RIG)-I and interferon receptor 1 (IFNAR1) genes by these viral strains in early stages of the infection. Results We identified 130 genes differentially expressed by pdm A/H1N1 and A/PR/8/34 infections in macrophages. mRNA levels of SOCS-1 and RIG-I were up-regulated in macrophages infected with the A/PR/8/34 but not with pdm A/H1N1 virus. mRNA levels of SOCS-3 and IFNAR1 induced by A/PR/8/34 and pdm A/H1N1 strains in macrophages, as well as in A549 cells were similar. We found higher levels of IL-6, TNF-α, IL-10, CCL3, CCL5, CCL4 and CXCL8 (p<0.05) in supernatants from cultures of macrophages infected with the pdm A/H1N1 virus compared to those infected with the A/PR/8/34 strain, coincident with the lack of SOCS-1 and RIG-I expression. In contrast, levels of INF-α were higher in cultures of macrophages 48 h after infection with the A/PR/8/34 strain than with the pdm A/H1N1 virus. Conclusions These findings suggest that factors inherent to the pdm A/H1N1 viral strain may increase the production of inflammatory mediators by inhibiting SOCS-1 and modifying the expression of antiviral immunity-related genes, including RIG-I, in human macrophages. PMID:23434273

  17. Deaths Associated with Respiratory Syncytial and Influenza Viruses among Persons ≥5 Years of Age in HIV-Prevalent Area, South Africa, 1998–20091

    PubMed Central

    Walaza, Sibongile; Viboud, Cecile; Cohen, Adam L.; Madhi, Shabir A.; Venter, Marietjie; von Mollendorf, Claire; Moyes, Jocelyn; McAnerney, Johanna M.; Cohen, Cheryl

    2015-01-01

    We estimated deaths attributable to influenza and respiratory syncytial virus (RSV) among persons >5 years of age in South Africa during 1998–2009 by applying regression models to monthly deaths and laboratory surveillance data. Rates were expressed per 100,000 person-years. The mean annual number of seasonal influenza–associated deaths was 9,093 (rate 21.6). Persons >65 years of age and HIV-positive persons accounted for 50% (n = 4,552) and 28% (n = 2,564) of overall seasonal influenza-associated deaths, respectively. In 2009, we estimated 4,113 (rate 9.2) influenza A(H1N1)pdm09–associated deaths. The mean of annual RSV-associated deaths during the study period was 511 (rate 1.2); no RSV-associated deaths were estimated in persons >45 years of age. Our findings support the recommendation for influenza vaccination of older persons and HIV-positive persons. Surveillance for RSV should be strengthened to clarify the public health implications and severity of illness associated with RSV infection in South Africa. PMID:25811455

  18. Immunogenicity and sustainability of the immune response in Brazilian HIV-1-infected individuals vaccinated with inactivated triple influenza vaccine.

    PubMed

    Souza, Thiago Moreno L; Santini-Oliveira, Marilia; Martorelli, Andressa; Luz, Paula M; Vasconcellos, Mauricio T L; Giacoia-Gripp, Carmem B W; Morgado, Mariza; Nunes, Estevão P; Lemos, Alberto S; Ferreira, Ana C G; Moreira, Ronaldo I; Veloso, Valdiléa G; Siqueira, Marilda; Grinsztejn, Beatriz; Camacho, Luiz A B

    2016-03-01

    HIV-infected individuals have a higher risk of serious illnesses following infection by infection with influenza. Although anti-influenza vaccination is recommended, immunosuppression may limit their response to active immunization. We followed-up a cohort of HIV-infected individuals vaccinated against influenza to assess the immunogenicity and sustainability of the immune response to vaccination. Individuals were vaccinated 2011 with inactivated triple influenza vaccine (TIV), and they had received in 2010 the monovalent anti-A(H1N1)pdm09 vaccine. The sustainability of the immune response to A(H1N1)pdm09 at 12 months after monovalent vaccination fell, both in individuals given two single or two double doses. For these individuals, A(H1N1)pdm09 component from TIV acted as a booster, raising around 40% the number of seroprotected individuals. Almost 70% of the HIV-infected individuals were already seroprotected to A/H3N2 at baseline. Again, TIV boosted over 90% the seroprotection to A/H3N2. Anti-A/H3N2 titers dropped by 20% at 6 months after vaccination. Pre-vaccination seroprotection rate to influenza B (victoria lineage) was the lowest among those tested, seroconversion rates were higher after vaccination. Seroconversion/protection after TIV vaccination did not differ significantly across categories of clinical and demographic variables. Anti-influenza responses in Brazilian HIV-infected individuals reflected both the previous history of virus circulation in Brazil and vaccination.

  19. Sociodemographic Factors and Clinical Conditions Associated to Hospitalization in Influenza A (H1N1) 2009 Virus Infected Patients in Spain, 2009–2010

    PubMed Central

    González-Candelas, Fernando; Astray, Jenaro; Alonso, Jordi; Castro, Ady; Cantón, Rafael; Galán, Juan Carlos; Garin, Olatz; Sáez, Marc; Soldevila, Nuria; Baricot, Maretva; Castilla, Jesús; Godoy, Pere; Delgado-Rodríguez, Miguel; Martín, Vicente; Mayoral, José María; Pumarola, Tomás; Quintana, José María; Tamames, Sonia; Domínguez, Angela

    2012-01-01

    The emergence and pandemic spread of a new strain of influenza A (H1N1) virus in 2009 resulted in a serious alarm in clinical and public health services all over the world. One distinguishing feature of this new influenza pandemic was the different profile of hospitalized patients compared to those from traditional seasonal influenza infections. Our goal was to analyze sociodemographic and clinical factors associated to hospitalization following infection by influenza A(H1N1) virus. We report the results of a Spanish nationwide study with laboratory confirmed infection by the new pandemic virus in a case-control design based on hospitalized patients. The main risk factors for hospitalization of influenza A (H1N1) 2009 were determined to be obesity (BMI≥40, with an odds-ratio [OR] 14.27), hematological neoplasia (OR 10.71), chronic heart disease, COPD (OR 5.16) and neurological disease, among the clinical conditions, whereas low education level and some ethnic backgrounds (Gypsies and Amerinds) were the sociodemographic variables found associated to hospitalization. The presence of any clinical condition of moderate risk almost triples the risk of hospitalization (OR 2.88) and high risk conditions raise this value markedly (OR 6.43). The risk of hospitalization increased proportionally when for two (OR 2.08) or for three or more (OR 4.86) risk factors were simultaneously present in the same patient. These findings should be considered when a new influenza virus appears in the human population. PMID:22412995

  20. Pandemic Influenza Planning: Addressing the Needs of Children

    PubMed Central

    Barrios, Lisa; Cordell, Ralph; Delozier, David; Gorman, Susan; Koenig, Linda J.; Odom, Erica; Polder, Jacquelyn; Randolph, Jean; Shimabukuro, Tom; Singleton, Christa

    2009-01-01

    Children represent one quarter of the US population. Because of its enormous size and special needs, it is critically important to address this population group in pandemic influenza planning. Here we describe the ways in which children are vulnerable in a pandemic, provide an overview of existing plans, summarize the resources available, and, given our experience with influenza A(H1N1), outline the evolving lessons we have learned with respect to planning for a severe influenza pandemic. We focus on a number of issues affecting children—vaccinations, medication availability, hospital capacity, and mental health concerns—and emphasize strategies that will protect children from exposure to the influenza virus, including infection control practices and activities in schools and child care programs. PMID:19797738

  1. European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013.

    PubMed

    Simon, Gaëlle; Larsen, Lars E; Dürrwald, Ralf; Foni, Emanuela; Harder, Timm; Van Reeth, Kristien; Markowska-Daniel, Iwona; Reid, Scott M; Dan, Adam; Maldonado, Jaime; Huovilainen, Anita; Billinis, Charalambos; Davidson, Irit; Agüero, Montserrat; Vila, Thaïs; Hervé, Séverine; Breum, Solvej Østergaard; Chiapponi, Chiara; Urbaniak, Kinga; Kyriakis, Constantinos S; Brown, Ian H; Loeffen, Willie

    2014-01-01

    Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010-2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.

  2. Emerging influenza viruses and the prospect of a universal influenza virus vaccine.

    PubMed

    Krammer, Florian

    2015-05-01

    Influenza viruses cause annual seasonal epidemics and pandemics at irregular intervals. Several cases of human infections with avian and swine influenza viruses have been detected recently, warranting enhanced surveillance and the development of more effective countermeasures to address the pandemic potential of these viruses. The most effective countermeasure against influenza virus infection is the use of prophylactic vaccines. However, vaccines that are currently in use for seasonal influenza viruses have to be re-formulated and re-administered in a cumbersome process every year due to the antigenic drift of the virus. Furthermore, current seasonal vaccines are ineffective against novel pandemic strains. This paper reviews zoonotic influenza viruses with pandemic potential and technological advances towards better vaccines that induce broad and long lasting protection from influenza virus infection. Recent efforts have focused on the development of broadly protective/universal influenza virus vaccines that can provide immunity against drifted seasonal influenza virus strains but also against potential pandemic viruses.

  3. Risk of resistant avian influenza A virus in wild waterfowl as a result of environmental release of oseltamivir

    PubMed Central

    Gillman, Anna

    2016-01-01

    Oseltamivir is the best available anti-influenza drug and has therefore been stockpiled worldwide in large quantities as part of influenza pandemic preparedness planning. The active metabolite oseltamivir carboxylate (OC) is stable and is not removed by conventional sewage treatment. Active OC has been detected in river water at concentrations up to 0.86 µg/L. Although the natural reservoir hosts of influenza A virus (IAV) are wild waterfowl that reside in aquatic environments, the ecologic risks associated with environmental OC release and its potential to generate resistant viral variants among wild birds has largely been unknown. However, in recent years a number of in vivo mallard (Anas platyrhynchos) studies have been conducted regarding the potential of avian IAVs to become resistant to OC in natural reservoir birds if these are drug exposed. Development of resistance to OC was observed both in Group 1 (N1) and Group 2 (N2, N9) neuraminidase subtypes, when infected ducks were exposed to OC at concentrations between 0.95 and 12 µg/L in their water. All resistant variants maintained replication and transmission between ducks during drug exposure. In an A(H1N1)/H274Y virus, the OC resistance mutation persisted without selective drug pressure, demonstrating the potential of an IAV with a permissive genetic background to acquire and maintain OC resistance, potentially allowing circulation of the resistant variant among wild birds. The experimental studies have improved the appreciation of the risks associated with the environmental release of OC related to resistance development of avian IAVs among wild birds. Combined with knowledge of efficient methods for improved sewage treatment, the observations warrant implementation of novel efficient wastewater treatment methods, rational use of anti-influenza drugs, and improved surveillance of IAV resistance in wild birds. PMID:27733236

  4. Coherence of Influenza Surveillance Data across Different Sources and Age Groups, Beijing, China, 2008-2015

    PubMed Central

    Chu, Yanhui; Sun, Jingyi; Qin, Guoyou; Yang, Lin; Qin, Jingning; Xiao, Zheng; Ren, Jian; Qin, Di; Wang, Xiling; Zheng, Xueying

    2016-01-01

    Influenza is active during the winter and spring in the city of Beijing, which has a typical temperate climate with four clear distinct seasons. The clinical and laboratory surveillance data for influenza have been used to construct critical indicators for influenza activities in the community, and previous studies have reported varying degrees of association between laboratory-confirmed influenza specimens and outpatient consultation rates of influenza-like illness in subtropical cities. However, few studies have reported on this issue for cities in temperate regions, especially in developing countries. Furthermore, the mechanism behind age-specific seasonal epidemics remains unresolved, although it has been widely discussed. We utilized a wavelet analysis method to monitor the coherence of weekly percentage of laboratory-confirmed influenza specimens with the weekly outpatient consultation rates of influenza-like illness in Beijing, China. We first examined the seasonal pattern of laboratory-confirmed cases of influenza A (subtyped into seasonal A(H1N1) and A(H3N2) and pandemic virus A(H1N1) pdm09) and influenza B separately within the period from 2008–2015; then, we detected the coherence of clinical and laboratory surveillance data in this district, specially examining weekly time series of age-specific epidemics of influenza-like illnesses in the whole study period for three age categories (age 0–5, 5–15 and 25–60). We found that influenza A and B were both active in winter but were not always seasonally synchronous in Beijing. Synchronization between age ranges was found in most epidemic peaks from 2008–2015. Our findings suggested that peaks of influenza-like illness in individuals aged 0–5 and 5–15 years consistently appeared ahead of those of adults, implying the possibility that schoolchildren may lead epidemic fluctuations. PMID:28036373

  5. Molecular phylogeny and evolutionary dynamics of influenza A nonstructural (NS) gene.

    PubMed

    Xu, Jianpeng; Zhong, Haizhen A; Madrahimov, Alex; Helikar, Tomáš; Lu, Guoqing

    2014-03-01

    While the nonstructural gene (NS) of the influenza A virus plays a crucial role in viral virulence and replication, the complete understanding of its molecular phylogeny and evolutionary dynamics remains lacking. In this study, the phylogenetic analysis of 7581 NS sequences revealed ten distinct lineages within alleles A and B: three host-specific (human, classical swine and equine), two reassortment-originated (A(H1N1)pdm09 and triple reassortment swine), one transmission-originated (Eurasian swine), and two geographically isolated avian (Eurasian/Oceanian and North American) for allele A and two geographically isolated avian (Eurasian/Oceanian and North American) for allele B. The average nucleotide substitution rates of the lineages range from 1.24×10(-3) (equine) to 4.34×10(-3) (A(H1N1)pdm09) substitutions per site per year. The selection pressure analysis demonstrated that the dN/dS ratio of the NS gene in A(H1N1)pdm09 lineage was higher than its closely related triple reassortant swine, which could be attributed to the adaptation to the new host and/or intensive surveillance after the inter-species transmission from swine to human. The positive selection sites were found in all lineages except the equine lineage and mostly in the NS1 region. The positive selection sites 22, 26, 226, 227 and 230 of the human lineage are significant because these residues participate in either forming the dimerization of the two RNA binding domain (RBD) monomers or blocking the replication of host genes. Residues at position 171 provide hydrophobic interactions with hydrophobic residues at p85β and thus induce viral cell growth. The lineages and evolutionary dynamics of influenza A NS gene obtained in this study, along with the studies of other gene segments, are expected to improve the early detection of new viruses and thus have the potential to enhance influenza surveillance.

  6. Estimation of type- and subtype-specific influenza vaccine effectiveness in Victoria, Australia using a test negative case control method, 2007-2008

    PubMed Central

    2011-01-01

    Background Antigenic variation of influenza virus necessitates annual reformulation of seasonal influenza vaccines, which contain two type A strains (H1N1 and H3N2) and one type B strain. We used a test negative case control design to estimate influenza vaccine effectiveness (VE) against influenza by type and subtype over two consecutive seasons in Victoria, Australia. Methods Patients presenting with influenza-like illness to general practitioners (GPs) in a sentinel surveillance network during 2007 and 2008 were tested for influenza. Cases tested positive for influenza by polymerase chain reaction and controls tested negative for influenza. Vaccination status was recorded by sentinel GPs. Vaccine effectiveness was calculated as [(1 - adjusted odds ratio) × 100%]. Results There were 386 eligible study participants in 2007 of whom 50% were influenza positive and 19% were vaccinated. In 2008 there were 330 eligible study participants of whom 32% were influenza positive and 17% were vaccinated. Adjusted VE against A/H3N2 influenza in 2007 was 68% (95% CI, 32 to 85%) but VE against A/H1N1 (27%; 95% CI, -92 to 72%) and B (84%; 95% CI, -2 to 98%) were not statistically significant. In 2008, the adjusted VE estimate was positive against type B influenza (49%) but negative for A/H1N1 (-88%) and A/H3N2 (-66%); none was statistically significant. Conclusions Type- and subtype-specific assessment of influenza VE is needed to identify variations that cannot be differentiated from a measure of VE against all influenza. Type- and subtype-specific influenza VE estimates in Victoria in 2007 and 2008 were generally consistent with strain circulation data. PMID:21669006

  7. Reconstructing a spatially heterogeneous epidemic: Characterising the geographic spread of 2009 A/H1N1pdm infection in England

    NASA Astrophysics Data System (ADS)

    Birrell, Paul J.; Zhang, Xu-Sheng; Pebody, Richard G.; Gay, Nigel J.; de Angelis, Daniela

    2016-07-01

    Understanding how the geographic distribution of and movements within a population influence the spatial spread of infections is crucial for the design of interventions to curb transmission. Existing knowledge is typically based on results from simulation studies whereas analyses of real data remain sparse. The main difficulty in quantifying the spatial pattern of disease spread is the paucity of available data together with the challenge of incorporating optimally the limited information into models of disease transmission. To address this challenge the role of routine migration on the spatial pattern of infection during the epidemic of 2009 pandemic influenza in England is investigated here through two modelling approaches: parallel-region models, where epidemics in different regions are assumed to occur in isolation with shared characteristics; and meta-region models where inter-region transmission is expressed as a function of the commuter flux between regions. Results highlight that the significantly less computationally demanding parallel-region approach is sufficiently flexible to capture the underlying dynamics. This suggests that inter-region movement is either inaccurately characterized by the available commuting data or insignificant once its initial impact on transmission has subsided.

  8. Reconstructing a spatially heterogeneous epidemic: Characterising the geographic spread of 2009 A/H1N1pdm infection in England

    PubMed Central

    Birrell, Paul J.; Zhang, Xu-Sheng; Pebody, Richard G.; Gay, Nigel J.; De Angelis, Daniela

    2016-01-01

    Understanding how the geographic distribution of and movements within a population influence the spatial spread of infections is crucial for the design of interventions to curb transmission. Existing knowledge is typically based on results from simulation studies whereas analyses of real data remain sparse. The main difficulty in quantifying the spatial pattern of disease spread is the paucity of available data together with the challenge of incorporating optimally the limited information into models of disease transmission. To address this challenge the role of routine migration on the spatial pattern of infection during the epidemic of 2009 pandemic influenza in England is investigated here through two modelling approaches: parallel-region models, where epidemics in different regions are assumed to occur in isolation with shared characteristics; and meta-region models where inter-region transmission is expressed as a function of the commuter flux between regions. Results highlight that the significantly less computationally demanding parallel-region approach is sufficiently flexible to capture the underlying dynamics. This suggests that inter-region movement is either inaccurately characterized by the available commuting data or insignificant once its initial impact on transmission has subsided. PMID:27404957

  9. Avian influenza virus RNA extraction.

    PubMed

    Spackman, Erica; Lee, Scott A

    2014-01-01

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from experimentally infected birds. Samples can generally be divided into two types; enriched (e.g. virus stocks) and clinical. Clinical type samples, which may be tissues or swab material, are the most difficult to process due to the complex sample composition and possibly low virus titers. In this chapter two well established procedures for the isolation of AI virus RNA from common clinical specimen types and enriched virus stocks for further molecular applications will be presented.

  10. Development of high-yield influenza B virus vaccine viruses.

    PubMed

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  11. Influenza A virus recycling revisited.

    PubMed Central

    Dowdle, W. R.

    1999-01-01

    Current textbooks link influenza pandemics to influenza A virus subtypes H2 (1889-91), H3 (1990), H1 (1918-20), H2 (1957-58) and H3 (1968), a pattern suggesting subtype recycling in humans. Since H1 reappeared in 1977, whatever its origin, some workers feel that H2 is the next pandemic candidate. This report reviews the publications on which the concept of influenza A virus subtype recycling is based and concludes that the data are inconsistent with the purported sequence of events. The three influenza pandemics prior to 1957-58 were linked with subtypes through retrospective studies of sera from the elderly, or through seroarchaeology. The pandemic seroarchaeological model for subtype H1 has been validated by the recent recovery of swine virus RNA fragments from persons who died from influenza in 1918. Application of the model to pre-existing H3 antibody among the elderly links the H3 subtype to the pandemic of 1889-91, not that of 1900 as popularly quoted. Application of the model to pre-existing H2 antibody among the elderly fails to confirm that this subtype caused a pandemic in the late 1800's, a finding which is consistent with age-related excess mortality patterns during the pandemics of 1957 (H2) and 1968 (H3). H2 variants should be included in pandemic planning for a number of reasons, but not because of evidence of recycling. It is not known when the next pandemic will occur or which of the 15 (or more) haemagglutinin subtypes will be involved. Effective global surveillance remains the key to influenza preparedness. PMID:10593030

  12. Evolution and ecology of influenza A viruses.

    PubMed Central

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-01-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  13. Evolution and ecology of influenza A viruses.

    PubMed

    Webster, R G; Bean, W J; Gorman, O T; Chambers, T M; Kawaoka, Y

    1992-03-01

    In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii

  14. Regional Diversification of Influenza Activity in Poland During the 2015/16 Epidemic Season.

    PubMed

    Szymański, K; Kowalczyk, D; Cieślak, K; Brydak, L B

    2017-03-03

    The National Influenza Center (NIC) at the Department of Influenza Research of the National Institute for Public Health-National Institute of Hygiene (NIPH-NIH) participates in the Global Influenza Surveillance and Response System (GISRS) and continuously coordinates epidemiological and virological surveillance of influenza in Poland. The aim of this study was to determine the regional differences of influenza activity in Poland in the 2015/16 epidemic season. The influenza surveillance involved 16 administrative districts in which there are Voivodeship (province) Sanitary Epidemiological Stations set up to report influenza and influenza-like illness among the Polish population. Over 8000 specimens were tested in the season with regard to the respiratory viral infections in all regions investigated. The circulation of influenza viruses A and B was confirmed, with the subtype A/H1N1/pdm09 being predominant in the Pomerania, Podlaskie, Subcarpathian, Lubuskie, Silesian, and Warmian-Masuria provinces. The influenza-like virus occurred in individual cases, except for respiratory syncytial virus that also was detected in the Greater Poland and Warmia-Masuria provinces. The highest incidence of cases and suspected cases of influenza was recorded in Pomerania and the lowest one in Lubuskie provinces. The knowledge of regional differences in influenza activity is important for streamlining the distribution of preventive, therapeutic, and economic resources to combat the epidemic.

  15. Suboptimal Humoral Immune Response against Influenza A(H7N9) Virus Is Related to Its Internal Genes

    PubMed Central

    Lee, Andrew C. Y.; Zhu, Houshun; Zhang, Anna J. X.; Li, Can; Wang, Pui; Li, Chuangen; Chen, Honglin; Hung, Ivan F. N.; To, Kelvin K. W.

    2015-01-01

    Influenza A(H7N9) virus pneumonia is associated with a high case fatality rate in humans. Multiple viral factors have been postulated to account for the high virulence of the virus. It has been reported that patients with influenza A(H7N9) virus infection have relatively low titers of neutralizing antibodies compared to those with seasonal influenza virus infections. In this study, we compared serum hemagglutination inhibition (HI) and microneutralization (MN) antibody titers of mice challenged with wild-type A(H7N9) viruses [H7N9(Anhui) and H7N9(Zhejiang)], an A(H1N1)pdm09 virus [pH1N1(2009)], and a recombinant A(H7N9) virus with PR8/H1N1 internal genes (rg-PR8-H7-N9). All mice infected by H7N9(Anhui) and H7N9(Zhejiang) developed serum HI antibodies at 14 days postinfection (dpi) but no detectable MN antibodies, even at 28 dpi. A low level of neutralizing activity was detected in H7N9(Anhui)- and H7N9(Zhejiang)-infected mice using fluorescent focus MN assay, but convalescent-phase serum samples obtained from H7N9(Anhui)-infected mice did not reduce the mortality of naive mice after homologous virus challenge. Reinfection with homologous A(H7N9) virus induced higher HI and MN titers than first infection. In contrast, pH1N1(2009) virus infection induced robust HI and MN antibody responses, even during the first infection. Moreover, rg-PR8-H7-N9 induced significantly higher HI and MN antibody titers than H7N9(Zhejiang). In conclusion, the internal genes of A(H7N9) virus can affect the humoral immune response against homologous viral surface proteins, which may also contribute to the virulence of A(H7N9) virus. PMID:26446420

  16. Pandemic influenza preparedness and response in Israel: a unique model of civilian-defense collaboration.

    PubMed

    Kohn, Sivan; Barnett, Daniel J; Leventhal, Alex; Reznikovich, Shmuel; Oren, Meir; Laor, Danny; Grotto, Itamar; Balicer, Ran D

    2010-07-01

    In April 2009, the World Health Organization announced the emergence of a novel influenza A(H1N1-09) virus and in June 2009 declared the outbreak a pandemic. The value of military structures in responding to pandemic