Science.gov

Sample records for aharonov-bohm ab interferometer

  1. Inelastic effects in Aharonov-Bohm molecular interferometers.

    PubMed

    Hod, Oded; Baer, Roi; Rabani, Eran

    2006-12-31

    Inelastic effects arising from electron-phonon coupling in molecular Aharonov-Bohm (AB) interferometers are studied using the nonequilibrium Green's function method. Results for the magnetoconductance are compared for different values of the electron-phonon coupling strength. At low-bias voltages, the coupling to the phonons does not change the lifetime and leads mainly to scattering phase shifts of the conducting electrons. As a result of these dephasing processes, the magnetoconductance of the molecular AB interferometer becomes more sensitive to the threading magnetic flux as the electron-phonon coupling is increased, opposite to the behavior of an electric gate.

  2. Aharonov-Bohm superperiod in a Laughlin quasiparticle interferometer.

    PubMed

    Camino, F E; Zhou, Wei; Goldman, V J

    2005-12-09

    We report an Aharonov-Bohm superperiod of five magnetic flux quanta (5h/e) observed in a Laughlin quasiparticle interferometer, where an edge channel of the 1/3 fractional quantum Hall fluid encircles an island of the 2/5 fluid. This result does not violate the gauge invariance argument of the Byers-Yang theorem because the magnetic flux, in addition to affecting the Aharonov-Bohm phase of the encircling 1/3 quasiparticles, creates the 2/5 quasiparticles in the island. The superperiod is accordingly understood as imposed by the anyonic statistical interaction of Laughlin quasiparticles.

  3. Lorentz force effects for graphene Aharonov-Bohm interferometers

    NASA Astrophysics Data System (ADS)

    Mreńca-Kolasińska, A.; Szafran, B.

    2016-11-01

    We investigate magnetic deflection of currents that flow across the Aharonov-Bohm interferometers defined in graphene. We consider devices induced by closed n -p junctions in nanoribbons as well as etched quantum rings. The deflection effects on conductance are strictly correlated with the properties of the ring-localized quasibound states. The energy of these states, their lifetime, and the periodicity of the conductance oscillations are determined by orientation of the current circulating within the interferometer. The formation of high harmonics of conductance at high magnetic field and the role of intervalley scattering are discussed.

  4. Inelastic transport through Aharonov-Bohm interferometer in Kondo regime

    SciTech Connect

    Yoshii, Ryosuke; Eto, Mikio; Sakano, Rui; Affleck, Ian

    2013-12-04

    We formulate elastic and inelastic parts of linear conductance through an Aharonov-Bohm (AB) ring with an embedded quantum dot in the Kondo regime. The inelastic part G{sub inel} is proportional to T{sup 2} when the temperature T is much smaller than the Kondo temperature T{sub K}, whereas it is negligibly small compared with elastic part G{sub el} when T ≫ T{sub K}. G{sub inel} weakly depends on the magnetic flux penetrating the AB ring, which disturbs the precise detection of G{sub el}/(G{sub el}+G{sub inel}) by the visibility of AB oscillation.

  5. Observation of "partial coherence" in an Aharonov-Bohm interferometer with a quantum dot.

    PubMed

    Aikawa, Hisashi; Kobayashi, Kensuke; Sano, Akira; Katsumoto, Shingo; Iye, Yasuhiro

    2004-04-30

    We report experiments on the interference through spin states of electrons in a quantum dot (QD) embedded in an Aharonov-Bohm (AB) interferometer. We have picked up a spin-pair state, for which the environmental conditions are ideally similar. The AB amplitude is traced in a range of gate voltage that covers the pair. The behavior of the asymmetry in the amplitude around the two Coulomb peaks agrees with the theoretical prediction that the spin-flip process in a QD is related to the quantum dephasing of electrons. These results constitute evidence of "partial coherence" due to an entanglement of spins in the QD and in the interferometer.

  6. An Aharonov-Bohm interferometer for determining Bloch band topology.

    PubMed

    Duca, L; Li, T; Reitter, M; Bloch, I; Schleier-Smith, M; Schneider, U

    2015-01-16

    The geometric structure of a single-particle energy band in a solid is fundamental for a wide range of many-body phenomena and is uniquely characterized by the distribution of Berry curvature over the Brillouin zone. We realize an atomic interferometer to measure Berry flux in momentum space, in analogy to an Aharonov-Bohm interferometer that measures magnetic flux in real space. We demonstrate the interferometer for a graphene-type hexagonal optical lattice loaded with bosonic atoms. By detecting the singular π Berry flux localized at each Dirac point, we establish the high momentum resolution of this interferometric technique. Our work forms the basis for a general framework to fully characterize topological band structures.

  7. Mode Dependency of Quantum Decoherence Studied via an Aharonov-Bohm Interferometer.

    PubMed

    Lo, Tung-Sheng; Lin, Yiping; Wu, Phillip M; Ling, Dah-Chin; Chi, C C; Chen, Jeng-Chung

    2016-02-26

    We investigate the dependence of decoherence on the mode number M in a multiple-mode Aharonov-Bohm (AB) interferometer. The design of the AB interferometer allows us to precisely determine M by the additivity rule of ballistic conductors; meanwhile, the decoherence rate is simultaneously deduced by the variance of the AB oscillation amplitude. The AB amplitude decreases and fluctuates with depopulating M. Moreover, the normalized amplitude exhibits a maximum at a specific M (∼9). Data analysis reveals that the charge-fluctuation-induced dephasing, which depends on the geometry and the charge relaxation resistance of the system, could play an essential role in the decoherence process. Our results suggest that the phase coherence, in principle, can be optimized using a deliberated design and pave one of the ways toward the engineering of quantum coherence.

  8. Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer.

    PubMed

    Yang, Xf; Liu, Ys

    2010-05-22

    We investigate quantum interference effects in a double-Aharonov-Bohm (AB) interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green's function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points) may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.

  9. Quantum coherence of the molecular states and their corresponding currents in nanoscale Aharonov-Bohm interferometers

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Heng; Tu, Matisse Wei-Yuan; Zhang, Wei-Min

    2016-07-01

    By considering a nanoscale Aharonov-Bohm (AB) interferometer consisting of a laterally coupled double dot coupled to the source and drain electrodes, we investigate the AB phase dependence of the bonding and antibonding states and the transport currents via the bonding and antibonding state channels. The relations of the AB phase dependence between the quantum states and the associated transport current components are analyzed, which provides useful information for the reconstruction of quantum states through the measurement of the transport current in such systems. We also obtain the validity of the experimental analysis [given in T. Hatano et al., Phys. Rev. Lett. 106, 076801 (2011), 10.1103/PhysRevLett.106.076801] that bonding state currents in different energy configurations are almost the same. With the coherent properties in the quantum dot states as well as in the transport currents, we also provide a way to manipulate the bonding and antibonding states through the AB magnetic flux.

  10. Quantum interference and Kondo effects in an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Tokura, Y.; Tarucha, S.

    2010-01-01

    We theoretically investigate spin-dependent electron transport through an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot. In particular, we numerically calculate the Aharonov-Bohm and Aharonov-Casher oscillations of the linear conductance in the Kondo regime. We show that the AC oscillation in the Kondo regime deviates from the sinusoidal form.

  11. Beating of Aharonov-Bohm oscillations in a closed-loop interferometer

    SciTech Connect

    Jo, Sanghyun; Chang, Dong-In; Lee, Hu-Jong; Khym, Gyong Luck; Kang, Kicheon; Chung, Yunchul; Mahalu, Diana; Umansky, Vladimir

    2007-07-15

    One of the points at issue with closed-loop-type interferometers is beating in the Aharonov-Bohm (AB) oscillations. Recent observations suggest the possibility that the beating results from the Berry-phase pickup by the conducting electrons in materials with the strong spin-orbit interaction (SOI). In this study, we also observed beats in the AB oscillations in a gate-defined closed-loop interferometer fabricated on a GaAs/Al{sub 0.3}Ga{sub 0.7}As two-dimensional electron-gas heterostructure. Since this heterostructure has very small SOI, the picture of the Berry-phase pickup is ruled out. The observation of beats in this study, with the controllability of forming a single transverse subband mode in both arms of our gate-defined interferometer, also rules out the often-claimed multiple transverse subband effect. It is observed that nodes of the beats with an h/2e period exhibit a parabolic distribution for varying the side gate. These results are shown to be well interpreted, without resorting to the SOI effect, by the existence of two-dimensional multiple longitudinal modes in a single transverse subband. The Fourier spectrum of measured conductance, despite showing multiple h/e peaks with the magnetic-field dependence that are very similar to that from strong-SOI materials, can also be interpreted as the two-dimensional multiple-longitudinal-modes effect.

  12. High-temperature Aharonov-Bohm-Casher interferometer

    NASA Astrophysics Data System (ADS)

    Shmakov, P. M.; Dmitriev, A. P.; Kachorovskii, V. Yu.

    2012-02-01

    We study theoretically the combined effect of the spin-orbit and Zeeman interactions on the tunneling electron transport through a single-channel quantum ring threaded by magnetic flux. We focus on the high-temperature case (temperature is much higher than the level spacing in the ring) and demonstrate that spin-interference effects are not suppressed by thermal averaging. In the absence of the Zeeman coupling, the high-temperature tunneling conductance of the ring exhibits two types of oscillations: Aharonov-Bohm oscillations with magnetic flux and Aharonov-Casher oscillations with the strength of the spin-orbit interaction. For weak tunneling coupling, both oscillations have the form of sharp periodic antiresonances. In the vicinity of the antiresonances, the tunneling electrons acquire spin polarization, so that the ring serves as a spin polarizer. We also demonstrate that the Zeeman coupling leads to appearance of two additional peaks, both in the tunneling conductance and in the spin polarization.

  13. Atomic multiple-wave interferometer phase-shifted by the scalar Aharonov-Bohm effect

    SciTech Connect

    Aoki, Takatoshi; Yasuhara, Makoto; Morinaga, Atsuo

    2003-05-01

    A time-domain atomic multiple-wave interferometer using laser-cooled and trapped sodium atoms has been developed under pulsed magnetic fields. Each atomic phase was shifted due to the scalar Aharonov-Bohm effect by applying spatially homogeneous pulsed magnetic fields between numerous Raman excitation laser pulses. Interference fringes with a finesse of 11 were demonstrated for 11 successive Raman pulses and ten magnetic-field pulses.

  14. The role of Coulomb interaction in thermoelectric effects of an Aharonov-Bohm interferometer.

    PubMed

    Liu, Yu-Shen; Zhang, De-Bao; Yang, Xi-Feng; Feng, Jin-Fu

    2011-06-03

    We investigate the thermoelectric effects of an Aharonov-Bohm (AB) interferometer with a quantum dot (QD) embedded in each of its arms, where the intra-dot Coulomb interaction between electrons in each QD is taken into account. Using Green's function methods and the equation of motion (EOM) technique, we find that the Seebeck coefficient and Lorenz number can be strongly enhanced when the chemical potential sweeps the molecular states associated with the Fano line-shapes in the transmission spectra, due to quantum interference effects between the bonding and antibonding molecular states. It is found that enhancement of the thermoelectric effects occurs between the two groups of conductance peaks in the presence of strong intra-dot Coulomb interaction-the reason being that a transmission node is developed in the Coulomb blockade regime. In this case, the maximum value of the Lorenz number approaches 10π(2)k(B)(2)/(3e(2)). Its thermoelectric conversion efficiency in the absence of phonon thermal conductance, described by the figure of merit ZT, approaches 2 at room temperature. Therefore, it may be used as a high-efficiency solid-state thermoelectric conversion device under certain circumstances.

  15. Spin filtering in a Rashba-Dresselhaus-Aharonov-Bohm double-dot interferometer

    NASA Astrophysics Data System (ADS)

    Matityahu, Shlomi; Aharony, Amnon; Entin-Wohlman, Ora; Tarucha, Seigo

    2013-12-01

    We study the spin-dependent transport of spin-1/2 electrons through an interferometer made of two elongated quantum dots or quantum nanowires, which are subject to both an Aharonov-Bohm flux and (Rashba and Dresselhaus) spin-orbit interactions. Similar to the diamond interferometer proposed in our previous papers (Aharony et al 2011 Phys. Rev. B 84 035323; Matityahu et al 2013 Phys. Rev. B 87 205438), we show that the double-dot interferometer can serve as a perfect spin filter due to a spin interference effect. By appropriately tuning the external electric and magnetic fields which determine the Aharonov-Casher and Aharonov-Bohm phases, and with some relations between the various hopping amplitudes and site energies, the interferometer blocks electrons with a specific spin polarization, independent of their energy. The blocked polarization and the polarization of the outgoing electrons is controlled solely by the external electric and magnetic fields and do not depend on the energy of the electrons. Furthermore, the spin filtering conditions become simpler in the linear-response regime, in which the electrons have a fixed energy. Unlike the diamond interferometer, spin filtering in the double-dot interferometer does not require high symmetry between the hopping amplitudes and site energies of the two branches of the interferometer and thus may be more appealing from an experimental point of view.

  16. Dephasing of electrons in the Aharonov-Bohm interferometer with a single-molecular vibrational junction.

    PubMed

    Lai, Wenxi; Xing, Yunhui; Ma, Zhongshui

    2013-05-22

    Phase relaxation of electrons transferring through an electromechanical transistor is studied using the Aharonov-Bohm interferometer. Using the quantum master equation approach, the phase properties of an electron are numerically analyzed based on the interference fringes. The coherence of the electron is partially destroyed by its scattering on excited levels of the local nanomechanical oscillator. The transmission amplitudes with respect to two adjacent mechanical vibrational levels have a phase difference of π. The character of the π phase shift depends on the oscillator frequency only and is robust over a wide range of values of the applied voltage, tunneling length and damping rate of the mechanical oscillator.

  17. Persistent currents in interacting Aharonov-Bohm interferometers and their enhancement by acoustic radiation.

    PubMed

    Entin-Wohlman, O; Imry, Y; Aharony, A

    2003-07-25

    We consider an Aharonov-Bohm interferometer, connected to two electronic reservoirs, with a quantum dot embedded on one of its arms. We find a general expression for the persistent current at steady state, valid for the case where the electronic system is free of interactions except on the dot. The result is used to derive the modification in the persistent current brought about by coupling the quantum dot to a phonon source. The magnitude of the persistent current is found to be enhanced in an appropriate range of the intensity of the acoustic source.

  18. High-sensitivity rotation sensing with atom interferometers using Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Özcan, Meriac

    2006-02-01

    In recent years there has been significant activity in research and development of high sensitivity accelerometers and gyroscopes using atom interferometers. In these devices, a fringe shift in the interference of atom de Broglie waves indicates the rotation rate of the interferometer relative to an inertial frame of reference. In both optical and atomic conventional Sagnac interferometers, the resultant phase difference due to rotation is independent of the wave velocity. However, we show that if an atom interforemeter is enclosed in a Faraday cage which is at some potential, the phase difference of the counter-propagating waves is proportional to the inverse square of the particle velocity and it is proportional to the applied potential. This is due to Aharonov-Bohm effect and it can be used to increase the rotation sensitivity of atom interferometers.

  19. Spin-polarized transport through an Aharonov-Bohm interferometer embedded with a quantum dot molecule.

    PubMed

    Ying, Yibo; Jin, Guojun; Ma, Yu-Qiang

    2009-07-08

    We propose an Aharonov-Bohm interferometer with a quantum dot molecule embedded in one arm and study the spin-dependent transport due to the interplay of the Fano and Rashba effects. It is found that the Fano resonances of the molecular states exhibit opposite directions of asymmetric tails with one being from peak to dip and the other from dip to peak. The Rashba spin-orbit interaction induces a spin-dependent phase, making the two Fano dips overlap for one spin component of conductance and the two Fano peaks overlap for the other spin component. Both the direction and magnitude of the spin polarization of the conductance are easily controlled and manipulated through the Rashba parameter and interdot coupling strength. In addition, spin accumulations with opposite signs can be generated in the two quantum dots.

  20. Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer.

    PubMed

    Lovey, Daniel A; Gomez, Sergio S; Romero, Rodolfo H

    2011-10-26

    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model.

  1. Coherent coupling of two quantum dots embedded in an Aharonov-Bohm interferometer.

    PubMed

    Holleitner, A W; Decker, C R; Qin, H; Eberl, K; Blick, R H

    2001-12-17

    We define two laterally gated small quantum dots with less than 15 electrons in an Aharonov-Bohm geometry in which the coupling between the two dots can be changed. We measure Aharonov-Bohm oscillations for weakly coupled quantum dots. In an intermediate coupling regime we study molecular states of the double dot and extract the magnetic field dependence of the coherently coupled states.

  2. Aharonov-Bohm effect revisited

    NASA Astrophysics Data System (ADS)

    Eskin, Gregory

    2015-04-01

    Aharonov-Bohm effect is a quantum mechanical phenomenon that attracted the attention of many physicists and mathematicians since the publication of the seminal paper of Aharonov and Bohm [1] in 1959. We consider different types of Aharonov-Bohm effects such as the magnetic AB effect, electric AB effect, combined electromagnetic AB effect, AB effect for the Schrödinger equations with Yang-Mills potentials, and the gravitational analog of AB effect. We shall describe different approaches to prove the AB effect based on the inverse scattering problems, the inverse boundary value problems in the presence of obstacles, spectral asymptotics, and the direct proofs of the AB effect.

  3. Aharonov-Bohm interference and beating in single-walled carbon-nanotube interferometers.

    PubMed

    Cao, Jien; Wang, Qian; Rolandi, Marco; Dai, Hongjie

    2004-11-19

    Relatively low magnetic fields applied parallel to the axis of a chiral single-walled carbon nanotube are found causing large modulations to the p channel or valence band conductance of the nanotube in the Fabry-Perot interference regime. Beating in the Aharonov-Bohm type of interference between two field-induced nondegenerate subbands of spiraling electrons is responsible for the observed modulation with a pseudoperiod much smaller than that needed to reach the flux quantum Phi0 = h/e through the nanotube cross section. We show that single-walled nanotubes represent the smallest cylinders exhibiting the Aharonov-Bohm effect with rich interference and beating phenomena arising from well-defined molecular orbitals reflective of the nanotube chirality.

  4. Flux-free conductance modulation in a helical Aharonov--Bohm interferometer.

    PubMed

    Taira, Hisao; Shima, Hiroyuki

    2010-06-23

    A novel conductance oscillation in a twisted quantum ring composed of a helical atomic configuration is theoretically predicted. The internal torsion of the ring is found to cause a quantum phase shift in the wavefunction that describes the electron's motion along the ring. The resulting conductance oscillation is free from magnetic flux penetrating inside the ring, which is in complete contrast with the case for the ordinary Aharonov-Bohm effect observed in untwisted quantum rings.

  5. Kondo effect in transport through Aharonov-Bohm and Aharonov-Casher interferometers

    NASA Astrophysics Data System (ADS)

    Lobos, A. M.; Aligia, A. A.

    2009-10-01

    We derive the extension of the Hubbard model to include Rashba spin-orbit coupling that correctly describes Aharonov-Bohm and Aharonov-Casher phases in a ring under applied magnetic and electric fields. When the ring is connected to conducting leads, we develop a formalism that is able to describe both, Kondo and interference effects. We find that in the Kondo regime, the spin-orbit coupling reduces strongly the conductance from the unitary limit. This effect in combination with the magnetic flux, can be used to produce spin polarized carriers.

  6. Tunable pseudogap Kondo effect and quantum phase transitions in Aharonov-Bohm interferometers.

    PubMed

    Dias da Silva, Luis G G V; Sandler, Nancy; Simon, Pascal; Ingersent, Kevin; Ulloa, Sergio E

    2009-04-24

    We study two quantum dots embedded in the arms of an Aharonov-Bohm ring threaded by a magnetic flux. This system can be described by an effective one-impurity Anderson model with an energy- and flux-dependent density of states. For specific values of the flux, this density of states vanishes at the Fermi energy, yielding a controlled realization of the pseudogap Kondo effect. The conductance and transmission phase shifts reflect a nontrivial interplay between wave interference and interactions, providing clear signatures of quantum phase transitions between Kondo and non-Kondo ground states.

  7. Tunable Pseudogap Kondo Effect and Quantum Phase Transitions in Aharonov-Bohm Interferometers

    SciTech Connect

    Dias Da Silva, Luis G; Sandler, Nancy; Simon, Pascal; Ingersent, Kevin; Ulloa, Sergio E

    2009-01-01

    We study two quantum dots embedded in the arms of an Aharonov-Bohm ring threaded by a magnetic flux. This system can be described by an effective one-impurity Anderson model with an energy- and flux- dependent density of states. For specific values of the flux, this density of states vanishes at the Fermi energy, yielding a controlled realization of the pseudogap Kondo effect. The conductance and trans- mission phase shifts reflect a nontrivial interplay between wave interference and interactions, providing clear signatures of quantum phase transitions between Kondo and non-Kondo ground states.

  8. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov-Bohm interferometers.

    PubMed

    Hou, Dong; Wang, Shikuan; Wang, Rulin; Ye, LvZhou; Xu, RuiXue; Zheng, Xiao; Yan, YiJing

    2015-03-14

    Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate the coherent dynamics of Aharonov-Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed.

  9. Effective beam separation schemes for the measurement of the electric Aharonov-Bohm effect in an ion interferometer.

    PubMed

    Schütz, G; Rembold, A; Pooch, A; Prochel, H; Stibor, A

    2015-11-01

    We propose an experiment for the first proof of the type I electric Aharonov-Bohm effect in an ion interferometer for hydrogen. The performances of three different beam separation schemes are simulated and compared. The coherent ion beam is generated by a single atom tip (SAT) source and separated by either two biprisms with a quadrupole lens, two biprisms with an einzel-lens or three biprisms. The beam path separation is necessary to introduce two metal tubes that can be pulsed with different electric potentials. The high time resolution of a delay line detector allows to work with a continuous ion beam and circumvents the pulsed beam operation as originally suggested by Aharonov and Bohm. We demonstrate that the higher mass and therefore lower velocity of ions compared to electrons combined with the high expected SAT ion emission puts the direct proof of this quantum effect for the first time into reach of current technical possibilities. Thereby a high detection rate of coherent ions is crucial to avoid long integration times that allow the influence of dephasing noise from the environment. We can determine the period of the expected matter wave interference pattern and the signal on the detector by determining the superposition angle of the coherent partial beams. Our simulations were tested with an electron interferometer setup and agree with the experimental results. We determine the separation scheme with three biprisms to be most efficient and predict a total signal acquisition time of only 80s to measure a phase shift from 0 to 2π due to the electric Aharonov-Bohm effect.

  10. Aharonov-bohm paradox.

    NASA Technical Reports Server (NTRS)

    Trammel, G. T.

    1964-01-01

    Aharonov-bohm paradox involving charge particle interaction with stationary current distribution showing that vector potential term in canonical momenta expression represents electromagnetic field momentum

  11. Aharonov-Bohm radiation

    SciTech Connect

    Jones-Smith, Katherine; Mathur, Harsh; Vachaspati, Tanmay

    2010-02-15

    A solenoid oscillating in vacuum will pair produce charged particles due to the Aharonov-Bohm (AB) interaction. We calculate the radiation pattern and power emitted for charged scalar particles. We extend the solenoid analysis to cosmic strings and find enhanced radiation from cusps and kinks on loops. We argue by analogy with the electromagnetic AB interaction that cosmic strings should emit photons due to the gravitational AB interaction of fields in the conical spacetime of a cosmic string. We calculate the emission from a kink and find that it is of similar order as emission from a cusp, but kinks are vastly more numerous than cusps and may provide a more interesting observational signature.

  12. Effects of the Magnetic Flux and of the Electron Momentum on the Transmission Amplitude in the Aharonov-Bohm Interferometer

    NASA Astrophysics Data System (ADS)

    Amaresh Kumar, M. V.; Sahoo, Debendranath

    A characterization of the two-terminal open-ring Aharonov-Bohm interferometer is made by analyzing the phase space plots in the complex transmission amplitude plane. Two types of plots are considered: type 1 plot uses the magnetic flux as the variable parameter and type 2 plot which uses the electron momentum as the variable parameter. In type 1 plot, the trajectory closes upon itself only when the ratio R of the arm lengths (of the interferometer) is a rational fraction, and the shape and the type of the generated flower-like pattern is sensitive to the electron momentum. For momenta corresponding to discrete eigenstates of the perfect ring (i.e., the ring without the leads), the trajectory passes through the origin a certain fixed number of times before closing upon itself, whereas for arbitrary momenta it never passes through the origin. Although the transmission coefficient is periodic in the flux with the elementary flux quantum as the basic period, the phenomenon of electron transmission is shown not to be so when analyzed via the present technique. The periodicity is seen to spread over several flux units whenever R is a rational fraction whereas there is absolutely no periodicity present when R is an irrational number. In type 2 plot, closed trajectories passing through the origin a number of times are seen for R being a rational fraction. The case R = 1 (i.e., a symmetric ring) with zero flux is rather pathological — it presents a closed loop surrounding the origin. For irrational R values, the trajectories never close.

  13. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Nonlocal Andreev reflection and spin current in a three-terminal Aharonov-Bohm interferometer

    NASA Astrophysics Data System (ADS)

    Peng, Ju; Yu, Hua-Ling; Wang, Zhi-Guo

    2009-12-01

    This paper theoretically reports the nonlocal Andreev reflection and spin current in a normal metal-ferromagnetic metal-superconducting Aharonov-Bohm interferometer. It is found that the electronic current and spin current are sensitive to systematic parameters, such as the gate voltage of quantum dots and the external magnetic flux. The electronic current in the normal metal lead results from two competing processes: quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero spin-up electronic current (or spin-down electronic current) signals the existence of nonlocal Andreev reflection, and the presence of zero electronic current results in the appearance of pure spin current.

  14. On the Aharonov-Bohm effect with neutrons

    SciTech Connect

    Peshkin, M.

    1994-11-01

    The neutron interferometry phenomenon called scalar Aharonov-Bohm effect (SAB) follows from an ordinary local interaction, contrary to the usual Aharonov-Bohm effect with electrons (AB). I argue that SAB is not a topological effect by any useful definition. SAB in fact measures an apparently novel spin autocorrelation whose operator equations of motion contain the local torque in the magnetic field. The Aharonov-Casher effect shares these properties with SAB.

  15. Tests of the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam Preston

    , though our experiment has served to place an upper limit for any such explanation. The definitive experiment concerning the Aharonov-Bohm Effect has yet to be completed. Proposed by Zeilinger, it consists of showing the dispersionless nature of the effect. To accomplish this requires an electron interferometer capable of enclosing a larger area and operating at lower energies than any which currently exist. We are attempting to construct such an interferometer using a hybrid approach with a nanofabricated grating and electron bi-prism. We have shown that experimentally that this combination can produce a large beam separation and still retain sufficient coherence to function as an interferometer.

  16. Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction

    PubMed Central

    2012-01-01

    Using the nonequilibrium Green’s function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport. PMID:23228047

  17. Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction.

    PubMed

    Bai, Long; Zhang, Rong; Duan, Chen-Long

    2012-12-10

    : Using the nonequilibrium Green's function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport.

  18. Anomalous aharonov-bohm gap oscillations in carbon nanotubes.

    PubMed

    Sangalli, Davide; Marini, Andrea

    2011-10-12

    The gap oscillations caused by a magnetic flux penetrating a carbon nanotube represent one of the most spectacular observations of the Aharonov-Bohm effect at the nanoscale. Our understanding of this effect is, however, based on the assumption that the electrons are strictly confined on the tube surface, on trajectories that are not modified by curvature effects. Using an ab initio approach based on density functional theory, we show that this assumption fails at the nanoscale inducing important corrections to the physics of the Aharonov-Bohm effect. Curvature effects and electronic density that is spilled out of the nanotube surface are shown to break the periodicity of the gap oscillations. We predict the key phenomenological features of this anomalous Aharonov-Bohm effect in semiconductive and metallic tubes and the existence of a large metallic phase in the low flux regime of multiwalled nanotubes, also suggesting possible experiments to validate our results.

  19. The molecular Aharonov-Bohm effect redux

    NASA Astrophysics Data System (ADS)

    Zygelman, B.

    2017-01-01

    A solvable molecular collision model that predicts Aharonov-Bohm (AB) like scattering in the adiabatic approximation is introduced. For it, we propagate coupled channel wave packets without resorting to a Born-Oppenheimer (BO) approximation. In those, exact, solutions we find evidence of topological phase dislocation lines that are independent of the collision energy and provide definitive signatures of AB-like scattering. The results of these simulations contrast with the conclusions of a recent study that suggests survival of the molecular Aharonov-Bohm effect only in the adiabatic limit in which the nuclear reduced mass μ \\to ∞ . We discuss generalizations of this model and consider possible screening of the Mead-Truhlar vector potential by the presence of multiple conical intersections (CI). We demonstrate that the Wilson loop phase integral has the value -1 if it encloses an odd-number of CI's, and takes the value +1 for an even number. Within the scope of this model, we investigate the ultra-cold limit of scattering solutions in the presence of a conical intersection and comment on the relevance of Wigner threshold behavior for s-wave scattering.

  20. Scattering on two Aharonov-Bohm vortices

    NASA Astrophysics Data System (ADS)

    Bogomolny, E.

    2016-12-01

    The problem of two Aharonov-Bohm (AB) vortices for the Helmholtz equation is examined in detail. It is demonstrated that the method proposed by Myers (1963 J. Math. Phys. 6 1839) for slit diffraction can be generalised to obtain an explicit solution for AB vortices. Due to the singular nature of AB interaction the Green function and scattering amplitude for two AB vortices obey a series of partial differential equations. Coefficients entering these equations, fulfil ordinary non-linear differential equations whose solutions can be obtained by solving the Painlevé III equation. The asymptotics of necessary functions for very large and very small vortex separations are calculated explicitly. Taken together, this means that the problem of two AB vortices is exactly solvable.

  1. Scalar Aharonov-Bohm effect with longitudinally polarized neutrons

    SciTech Connect

    Allman, B. E.; Lee, W.-T.; Motrunich, O. I.; Werner, S. A.

    1999-12-01

    In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a ''dual'' scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper. (c) 1999 The American Physical Society.

  2. Aharonov-Bohm effects in entangled molecules.

    PubMed

    Kimball, J C; Frisch, H L

    2004-08-27

    Molecules which are magnetic and conducting, if suitably entangled (e.g., catenanes and knots) could exhibit Aharonov-Bohm effects which can be viewed as particular examples of a Berry phase. The corrections to the quantum energy levels reflect the entangled geometry of the molecules and, while small (they are proportional to the square of the fine structure constant), may be observable. We illustrate these corrections for a number of catenated and knotted structures. For couplings between the components of a catenane (link), the Aharonov-Bohm corrections are determined by integer-valued linking numbers. For knots, the Aharonov-Bohm correction is proportional to the geometric writhe of the knot.

  3. Macroscopic test of the Aharonov-Bohm effect.

    PubMed

    Caprez, Adam; Barwick, Brett; Batelaan, Herman

    2007-11-23

    The Aharonov-Bohm (AB) effect is a purely quantum mechanical effect. The original (classified as type-I) AB-phase shift exists in experimental conditions where the electromagnetic fields and forces are zero. It is the absence of forces that makes the AB effect entirely quantum mechanical. Although the AB-phase shift has been demonstrated unambiguously, the absence of forces in type-I AB effects has never been shown. Here, we report the observation of the absence of time delays associated with forces of the magnitude needed to explain the AB-phase shift for a macroscopic system.

  4. Macroscopic Test of the Aharonov-Bohm Effect

    SciTech Connect

    Caprez, Adam; Barwick, Brett; Batelaan, Herman

    2007-11-23

    The Aharonov-Bohm (AB) effect is a purely quantum mechanical effect. The original (classified as type-I) AB-phase shift exists in experimental conditions where the electromagnetic fields and forces are zero. It is the absence of forces that makes the AB effect entirely quantum mechanical. Although the AB-phase shift has been demonstrated unambiguously, the absence of forces in type-I AB effects has never been shown. Here, we report the observation of the absence of time delays associated with forces of the magnitude needed to explain the AB-phase shift for a macroscopic system.

  5. Aharonov-Bohm effect without closing a loop

    SciTech Connect

    Retzker, A.; Nussinov, S.; Reznik, B.; Aharonov, Y.; Botero, A.

    2006-03-15

    We discuss the consequences of the Aharonov-Bohm (AB) effect in setups involving several charged particles, wherein none of the charged particles encloses a closed loop around the magnetic flux. We show that in such setups, the AB phase is encoded either in the relative phase of a bipartite or multipartite entangled photons states, or alternatively, gives rise to an overall AB phase that can be measured relative to another reference system. These setups involve processes of annihilation or creation of electron-hole pairs. We discuss the relevance of such effects in 'vacuum birefringence' in QED, and comment on their connection to other known effects.

  6. Topology, Locality, and Aharonov-Bohm Effect with Neutrons

    SciTech Connect

    Peshkin, M.; Lipkin, H. J.

    1995-04-10

    Recent neutron interferometry experiments have been interpreted as demonstrating a new topological phenomenon similar in principle to the usual Aharonov-Bohm (AB) effect, but with the neutron's magnetic moment replacing the electron's charge. We show that he new phenomenon, called scalar AB (SAB) effect, follows from an ordinary local interaction, contrary to the usual AB effect, and we argue that the SAB effect is not a topological effect by any useful definition. We find that SAB actually measures an apparently novel spin autocorrelation whose operator equations of motion contain the local torque in the magnetic field. We note that the same remarks apply to the Aharonov-Casher effect.

  7. Locality and topology in the molecular Aharonov-Bohm effect.

    PubMed

    Sjöqvist, Erik

    2002-11-18

    It is shown that the molecular Aharonov-Bohm effect is neither nonlocal nor topological in the sense of the standard magnetic Aharonov-Bohm effect. It is further argued that there is a close relationship between the molecular Aharonov-Bohm effect and the Aharonov-Casher effect for an electrically neutral spin -1 / 2 particle encircling a line of charge.

  8. Ferromagnetism's affect on the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Tatara, Gen; Barbara, Bernard

    2001-11-01

    Aharonov-Bohm (AB) and Altshuler-Aronov-Spivak (AAS) oscillation in a ferromagnetic ring is studied theoretically. Ferromagnetism does not affect the AB effect in an essential way, except that the magnetic field becomes a sum of the external and internal field. AAS oscillation would be suppressed for a minority spin channel in most 3d metals because of a strong s-d scattering, as indicated by a large spin dependence of a lifetime. The majority spin channel, in contrast, is expected to survive, due to a small density of states in the d band.

  9. Thermoelectric effect in Aharonov-Bohm structures.

    PubMed

    Lu, Xin; Wang, Jian-Sheng; Morrel, William G; Ni, Xiaoxi; Wu, Chang-Qin; Li, Baowen

    2015-01-28

    The thermoelectric effects of a single Aharonov-Bohm (SAB) ring and coupled double Aharonov-Bohm (DAB) rings have been investigated on a theoretical basis, taking into account the contributions of both electrons and phonons to the transport process by using the nonequilibrium Green's function technique. The thermoelectric figure of merit of the coupled DAB rings cannot be predicted directly by combining the values of two SAB ring systems due to the contribution of electron-phonon interaction to coupling between the two sites connecting the rings. We find that thermoelectric efficiency can be optimized by modulating the phases of the magnetic flux threading the two rings.

  10. Aharonov-Bohm-type Effects in Triangular Antidot Lattice

    NASA Astrophysics Data System (ADS)

    Iye, Yaushiro; Ueki, Masaaki; Endo, Akira; Katsumoto, Shingo

    2004-12-01

    Three kinds of Aharonov-Bohm (AB)-type oscillation have been investigated in triangular antidot lattice fabricated from a GaAs/AlGaAs two-dimensional electron gas sample. The oscillation periods of Altshuler-Aronov-Spivak (AAS) effect and AB-type effect near zero magnetic field are determined by the unit cell area, whereas those of AB-type oscillations in the quantum Hall plateau transition regime are governed by the effective area of antidot. The evolution of the high-field AB-type oscillation as a function of gate voltage gives infomation on the profile of the self-consistent potential associated with compressible edge channels formed around antidot. The temperature dependences and decoherence mechanisms of the AAS and AB-type oscillations near zero magnetic field as well as the high-field AB-type oscillation are discussed.

  11. Magnetic edge states in Aharonov-Bohm graphene quantum rings

    SciTech Connect

    Farghadan, R. Heidari Semiromi, E.; Saffarzadeh, A.

    2013-12-07

    The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zero and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.

  12. The Aharonov-Bohm effect in neutral liquids

    NASA Astrophysics Data System (ADS)

    Sonin, E. B.

    2010-09-01

    The Aharonov-Bohm effect was discovered as a quantum-mechanical effect for charged particles, but it has its counterpart in classical wave mechanics. The Aharonov-Bohm interference arises at the scattering of a sound wave by a vortex in classical and quantum hydrodynamics. This interference leads to a transverse force between quasiparticles and vortices in superfluids and superconductors. The Aharonov-Bohm effect was also generalized to neutral particles with magnetic or electric dipole momenta. The Aharonov-Bohm effect for charge particles and its modification for magnetic momenta (the Aharonov-Casher effect) have already been experimentally observed, and the efforts to detect the Aharonov-Bohm effect for electrically polarized neutral particles are on the way. A possible system for this detection is a Bose-condensate of excitons in a double quantum well. Observation of the Aharonov-Bohm effect in this system would provide direct evidence of Bose-Einstein condensation.

  13. Spin accumulation assisted by the Aharonov-Bohm-Fano effect of quantum dot structures.

    PubMed

    Gong, Wei-Jiang; Han, Yu; Wei, Guo-Zhu; Du, An

    2012-09-17

    : We investigate the spin accumulations of Aharonov-Bohm interferometers with embedded quantum dots by considering spin bias in the leads. It is found that regardless of the interferometer configurations, the spin accumulations are closely determined by their quantum interference features. This is mainly manifested in the dependence of spin accumulations on the threaded magnetic flux and the nonresonant transmission process. Namely, the Aharonov-Bohm-Fano effect is a necessary condition to achieve the spin accumulation in the quantum dot of the resonant channel. Further analysis showed that in the double-dot interferometer, the spin accumulation can be detailedly manipulated. The spin accumulation properties of such structures offer a new scheme of spin manipulation. When the intradot Coulomb interactions are taken into account, we find that the electron interactions are advantageous to the spin accumulation in the resonant channel.

  14. Resonance and phase shift in an open Aharonov-Bohm ring with an embedded quantum dot.

    PubMed

    Hedin, Eric R; Joe, Yong S; Satanin, Arkady M

    2009-01-07

    The transmission and phase properties of electron transport through a quantum dot (QD) with variable coupling to a third-terminal probe are investigated analytically for the case of the QD connected directly to source and drain reservoirs and when the QD is embedded in one arm of an Aharonov-Bohm (AB) ring. Using the tight-binding model, explicit analytical expressions of the transmission through the QD for each case are given. Expressions for the conductance with coupling to the third terminal, which breaks unitarity and phase-locking, are also given. It is shown that in a three-terminal interferometer the zero of the Fano resonance in the transmission moves off the real energy axis for finite values of the coupling parameter. The zero orbits around the pole in the complex energy plane as a function of magnetic flux through the ring, and can be returned to the real energy axis unless the coupling parameter exceeds a critical value. With the QD embedded in one arm of the AB ring, the electron transmission and the transmission phase, and the phase of the AB oscillations, are described in relation to the degree of coupling to the third-terminal probe which opens the interferometer. By tuning the degree of coupling to the probe, it is shown that the phase of the AB oscillations can be made to match the intrinsic phase of the QD, facilitating experimental characterization of the phase response of the QD.

  15. Aharonov-Bohm effect in monolayer phosphorene nanorings

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wu, Zhenhua; Li, X. J.; Chang, Kai

    2017-03-01

    This work presents a theoretical demonstration of the Aharonov-Bohm (AB) effect in monolayer phosphorene nanorings (PNRs). Atomistic quantum transport simulations of PNRs are employed to investigate the impact of multiple modulation sources on the sample conductance. In the presence of a perpendicular magnetic field, we find that the conductance of both armchair and zigzag PNRs oscillate periodically in a low-energy window as a manifestation of the AB effect. Our numerical results reveal a giant magnetoresistance (MR) in zigzag PNRs (with a maximum magnitude approaching 2000%). It is attributed to the AB-effect-induced destructive interference phase over a wide energy range below the bottom of the second subband. We also demonstrate that PNR conductance is highly anisotropic, offering an additional way to modulate MR. The giant MR in PNRs is maintained at room temperature in the presence of the thermal broadening effect.

  16. Noncommutative analogue Aharonov-Bohm effect and superresonance

    NASA Astrophysics Data System (ADS)

    Anacleto, M. A.; Brito, F. A.; Passos, E.

    2013-06-01

    We consider the idea of modeling a rotating acoustic black hole by an idealized draining bathtub vortex which is a planar circulating flow phenomenon with a sink at the origin. We find the acoustic metric for this phenomenon from a noncommutative Abelian Higgs model. As such the acoustic metric not only describes a rotating acoustic black hole but also inherits the noncommutative characteristic of the spacetime. We address the issues of superresonance and analogue Aharonov-Bohm (AB) effect in this background. We mainly show that the scattering of planar waves by a draining bathtub vortex leads to a modified AB effect and due to spacetime noncommutativity, the phase shift persists even in the limit where the parameters associated with the circulation and draining vanish. Finally, we also find that the analogue AB effect and superresonance are competing phenomena at a noncommutative spacetime.

  17. Size effects in Aharonov-Bohm graphene rings

    NASA Astrophysics Data System (ADS)

    Yan, Cong-Hua; Wei, Lian-Fu

    2010-07-01

    Aharonov-Bohm (AB) effects in mesoscopic metal rings have been extensively studied. In this paper, we investigate these effects on the persistent currents (PCs) in a closed graphene ring with broken time-reversal symmetry. A hard boundary condition is introduced to describe the Dirac electrons moving along such a ring-shaped configuration, and then the induced persistent currents are numerically calculated. Differing from the properties of PCs revealed in the metal AB rings, we show that the present PCs neither show the regular saw-tooth-like features nor present the odd-even symmetry of the electron number. More interestingly, we show that the energy difference between the two valleys and the amplitude of the oscillating PCs increase with the decrease (increase) of the radius (width) of the graphene ring. Our results imply that the AB effect and size-dependent PCs in ring-shaped microstructures could be tested at room temperature.

  18. Patterns of the Aharonov-Bohm oscillations in graphene nanorings

    NASA Astrophysics Data System (ADS)

    Romanovsky, Igor; Yannouleas, Constantine; Landman, Uzi

    2012-04-01

    Using extensive tight-binding calculations, we investigate (including the spin) the Aharonov-Bohm (AB) effect in monolayer and bilayer trigonal and hexagonal graphene rings with zigzag boundary conditions. Unlike the previous literature, we demonstrate the universality of integer (hc/e) and half-integer (hc/2e) values for the period of the AB oscillations as a function of the magnetic flux, in consonance with the case of mesoscopic metal rings. Odd-even (in the number of Dirac electrons, N) sawtooth-type patterns relating to the halving of the period have also been found; they are more numerous for a monolayer hexagonal ring, compared to the cases of a trigonal and a bilayer hexagonal ring. Additional, more complicated patterns are also present, depending on the shape of the graphene ring. Overall, the AB patterns repeat themselves as a function of N, with periods proportional to the number of the sides of the rings.

  19. Size effects in Aharonov-Bohm graphene rings.

    PubMed

    Yan, Cong-Hua; Wei, Lian-Fu

    2010-07-28

    Aharonov-Bohm (AB) effects in mesoscopic metal rings have been extensively studied. In this paper, we investigate these effects on the persistent currents (PCs) in a closed graphene ring with broken time-reversal symmetry. A hard boundary condition is introduced to describe the Dirac electrons moving along such a ring-shaped configuration, and then the induced persistent currents are numerically calculated. Differing from the properties of PCs revealed in the metal AB rings, we show that the present PCs neither show the regular saw-tooth-like features nor present the odd-even symmetry of the electron number. More interestingly, we show that the energy difference between the two valleys and the amplitude of the oscillating PCs increase with the decrease (increase) of the radius (width) of the graphene ring. Our results imply that the AB effect and size-dependent PCs in ring-shaped microstructures could be tested at room temperature.

  20. Relativistic currents on ideal Aharonov-Bohm cylinders

    NASA Astrophysics Data System (ADS)

    Cotăescu, Ion I.; Băltăţeanu, Doru-Marcel S.; Cotăescu, Ion I.

    2016-06-01

    The relativistic theory of the Dirac fermions moving on cylinders in external Aharonov-Bohm (AB) field is built starting with a suitably restricted Dirac equation whose spin degrees of freedom are not affected. The exact solutions of this equation on finite or infinite AB cylinders allow one to derive the relativistic circular and longitudinal currents pointing out their principal features. It is shown that all the circular currents are related to the energy in the same manner on cylinders or rings either in the relativistic approach or in the nonrelativistic one. The specific relativistic effect is the saturation of the circular currents for high values of the total angular momentum. Based on this property some approximative closed formulas are deduced for the total persistent current at T = 0 on finite AB cylinders. Moreover, it is shown that all the persistent currents on finite cylinders or rings have similar nonrelativistic limits.

  1. Topology, locality, and Aharonov-Bohm effect with neutrons

    SciTech Connect

    Peshkin, M.; Lipkin, H.J. |

    1995-04-10

    Recent neutron interferometry experiments have been interpreted as demonstrating a new topological phenomenon similar in principle to the usual Aharonov-Bohm (AB) effect, but with the neutron`s magnetic moment replacing the electron`s charge. We show that the new phenomenon, called scalar AB (SAB) effect, follows from an ordinary local interaction, contrary to the usual AB effect, and we argue that the SAB effect is not a topological effect by any useful definition. We find that SAB actually measures an apparently novel spin autocorrelation whose operator equations of motion contain the local torque in the magnetic field. We note that the same remarks apply to the Aharonov-Casher effect.

  2. The electric Aharonov-Bohm effect

    SciTech Connect

    Weder, Ricardo

    2011-05-15

    The seminal paper of Aharonov and Bohm [Phys. Rev. 115, 485 (1959)] is at the origin of a very extensive literature in some of the more fundamental issues in physics. They claimed that electromagnetic fields can act at a distance on charged particles even if they are identically zero in the region of space where the particles propagate, that the fundamental electromagnetic quantities in quantum physics are not only the electromagnetic fields but also the circulations of the electromagnetic potentials; what gives them a real physical significance. They proposed two experiments to verify their theoretical conclusions. The magnetic Aharonov-Bohm effect, where an electron is influenced by a magnetic field that is zero in the region of space accessible to the electron, and the electric Aharonov-Bohm effect where an electron is affected by a time-dependent electric potential that is constant in the region where the electron is propagating, i.e., such that the electric field vanishes along its trajectory. The Aharonov-Bohm effects imply such a strong departure from the physical intuition coming from classical physics that it is no wonder that they remain a highly controversial issue after more than fifty years, in spite of the fact that they are discussed in most of the text books in quantum mechanics. The magnetic case has been studied extensively. The experimental issues were settled by the remarkable experiments of Tonomura et al. [Phys. Rev. Lett. 48, 1443 (1982); Phys. Rev. Lett. 56, 792 (1986)] with toroidal magnets, that gave a strong evidence of the existence of the effect, and by the recent experiment of Caprez et al. [Phys. Rev. Lett. 99, 210401 (2007)] that shows that the results of the Tonomura et al. experiments cannot be explained by the action of a force. The theoretical issues were settled by Ballesteros and Weder [Commun. Math. Phys. 285, 345 (2009); J. Math. Phys. 50, 122108 (2009); Commun. Math. Phys. 303, 175 (2011)] who rigorously proved that quantum

  3. Photonic Aharonov-Bohm effect based on dynamic modulation.

    PubMed

    Fang, Kejie; Yu, Zongfu; Fan, Shanhui

    2012-04-13

    We show that when the refractive index of a photonic system is harmonically modulated, the phase of the modulation introduces an effective gauge potential for photons. This effective gauge potential can be used to create a photonic Aharonov-Bohm effect. We show that the photonic Aharonov-Bohm effect provides the optimal mechanism for achieving complete on-chip nonmagnetic optical isolation.

  4. Photonic Aharonov-Bohm effect in photon-phonon interactions.

    PubMed

    Li, Enbang; Eggleton, Benjamin J; Fang, Kejie; Fan, Shanhui

    2014-01-01

    The Aharonov-Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov-Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov-Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon-phonon interactions to demonstrate that photonic Aharonov-Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon-phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov-Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential.

  5. A charged particle in a homogeneous magnetic field accelerated by a time-periodic Aharonov-Bohm flux

    SciTech Connect

    Kalvoda, T.; Stovicek, P.

    2011-10-15

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution and a very good agreement is found. - Highlights: > A nonrelativistic quantum charged particle on a plane. > A homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm flux. > The quantum averaging method applied to a time-dependent system. > A resonance of the AB flux with the cyclotron frequency. > An acceleration with linearly increasing energy; a formula for the acceleration rate.

  6. Aharonov-Bohm and Aharonov-Casher tunneling effects and edge states in double-barrier structures

    SciTech Connect

    Bogachek, E.N.; Landman, U. )

    1994-07-15

    The simultaneous occurrence of Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects due to edge states in double-barrier two-dimensional wires formed by an electrostatic confinement potential, in the quantum Hall effect regime, is discussed. The AC effect is manifested via a shift of the AB conductance oscillations, and a method for measurement of the effect is proposed.

  7. Quantum chaos in Aharonov-Bohm oscillations

    SciTech Connect

    Berman, G.P.; Campbell, D.K.; Bulgakov, E.N.; Krive, I.V.

    1995-10-01

    Aharonov-Bohm oscillations in a mesoscopic ballistic ring are considered under the influence of a resonant magnetic field with one and two frequencies. The authors investigate the oscillations of the time-averaged electron energy at zero temperature in the regime of an isolated quantum nonlinear resonance and at the transition to quantum chaos, when two quantum nonlinear resonances overlap. It is shown that the time-averaged energy exhibits resonant behavior as a function of the magnetic flux, and has a ``staircase`` dependence on the amplitude of the external field. The delocalization of the quasi-energy eigenfunctions is analyzed.

  8. Aharonov-Bohm radiation of fermions

    SciTech Connect

    Chu Yizen; Mathur, Harsh; Vachaspati, Tanmay

    2010-09-15

    We analyze Aharonov-Bohm radiation of charged fermions from oscillating solenoids and cosmic strings. We find that the angular pattern of the radiation has features that differ significantly from that for bosons. For example, fermionic radiation in the lowest harmonic is approximately isotropically distributed around an oscillating solenoid, whereas for bosons the radiation is dipolar. We also investigate the spin polarization of the emitted fermion-antifermion pair. Fermionic radiation from kinks and cusps on cosmic strings is shown to depend linearly on the ultraviolet cutoff, suggesting strong emission at an energy scale comparable to the string energy scale.

  9. Spin-selective Aharonov-Bohm oscillations in a lateral triple quantum dot.

    PubMed

    Delgado, F; Shim, Y-P; Korkusinski, M; Gaudreau, L; Studenikin, S A; Sachrajda, A S; Hawrylak, P

    2008-11-28

    We present a theory of spin-selective Aharonov-Bohm oscillations in a lateral triple quantum dot. We show that to understand the Aharonov-Bohm (AB) effect in an interacting electron system within a triple quantum dot molecule (TQD) where the dots lie in a ring configuration requires one to not only consider electron charge but also spin. Using a Hubbard model supported by microscopic calculations we show that, by localizing a single electron spin in one of the dots, the current through the TQD molecule depends not only on the flux but also on the relative orientation of the spin of the incoming and localized electrons. AB oscillations are predicted only for the spin singlet electron complex resulting in a magnetic field tunable "spin valve."

  10. Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry.

    PubMed

    Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi

    2016-04-22

    We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (AB) flux ϕ. We show that by varying the AB flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2e^{2}/h. We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the AB effect between the MBS and ABS.

  11. High-temperature Aharonov-Bohm effect in transport through a single-channel quantum ring

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Polyakov, D. G.; Shmakov, P. M.

    2015-02-01

    We overview transport properties of an Aharonov-Bohm interferometer made of a single-channel quantum ring. Remarkably, in this setup, essentially quantum effects survive thermal averaging: the high-temperature tunneling conductance G of a ring shows sharp dips (antiresonances) as a function of magnetic flux. We discuss effects of the electron-electron interaction, disorder, and spin-orbit coupling on the Aharonov-Bohm transport through the ring. The interaction splits the dip into series of dips broadened by dephasing. The physics behind this behavior is the persistent-current-blockade: the current through the ring is blocked by the circular current inside the ring. Dephasing is then dominated by tunneling-induced fluctuations of the circular current. The short-range disorder broadens antiresonances, while the long-range one induces additional dips. In the presence of a spin-orbit coupling, G exhibits two types of sharp antiresonances: Aharonov-Bohm and Aharonov-Casher ones. In the vicinity of the antiresonances, the tunneling electrons acquire spin polarization, so that the ring serves as a spin polarizer.

  12. Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry

    NASA Astrophysics Data System (ADS)

    Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi

    2016-04-01

    We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.

  13. Locality of the Aharonov-Bohm-Casher effect

    NASA Astrophysics Data System (ADS)

    Kang, Kicheon

    2015-05-01

    We address the question of locality versus nonlocality in the Aharonov-Bohm and the Aharonov-Casher effects. For this purpose, we investigate all possible configurations of ideal shielding of the overlap between the electromagnetic fields generated by a charge and by a magnetic flux and analyze their consequences on the Aharonov-Bohm-Casher interference. In a classical treatment of shielding, the Aharonov-Bohm-Casher effect vanishes regardless of the geometry of shielding when the local overlap of electromagnetic fields is completely eliminated. On the other hand, the result depends on the configuration of shielding if the charge quantization in the superconducting shield is taken into account. It is shown that our results are fully understood in terms of the fluctuating local-field interaction. Our analysis strongly supports the alternative view on the Aharonov-Bohm-Casher interference that the effects originate from the local action of electromagnetic fields.

  14. Calculation of the Aharonov-Bohm wave function

    SciTech Connect

    Alvarez, M.

    1996-08-01

    A calculation of the Aharonov-Bohm wave function is presented. The result is an asymptotic series of confluent hypergeometric functions which is finite at the forward direction. {copyright} {ital 1996 The American Physical Society.}

  15. Aharonov-Casher and scalar Aharonov-Bohm topological effects.

    PubMed

    Dulat, Sayipjamal; Ma, Kai

    2012-02-17

    We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyze the arguments of M. Peshkin and H. J. Lipkin [Phys. Rev. Lett. 74, 2847 (1995)] in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect.

  16. Two-particle nonlocal Aharonov-Bohm effect from two single-particle emitters.

    PubMed

    Splettstoesser, Janine; Moskalets, Michael; Büttiker, Markus

    2009-08-14

    We propose a mesoscopic circuit in the quantum Hall effect regime comprising two uncorrelated single-particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes, which allows us in a controllable way to produce orbitally entangled electrons. Two-particle correlations appear as a consequence of erasing of which-path information due to collisions taking place at distant interferometers and in general at different times. The two-particle correlations manifest themselves as an Aharonov-Bohm effect in noise, while the current is insensitive to magnetic fluxes. In an appropriate time interval the concurrence reaches a maximum and a Bell inequality is violated.

  17. Quantum Faraday effect in a double-dot Aharonov-Bohm loop

    NASA Astrophysics Data System (ADS)

    Kang, Kicheon

    2012-07-01

    We investigate the role of Faraday's law of induction manifested in the quantum state of Aharonov-Bohm (AB) loops. In particular, a flux-switching experiment is proposed for a double-dot AB loop to verify the phase shift induced by Faraday's law. The induced Faraday phase is shown to be geometric and nontopological. This study demonstrates that the relation between the local phases of a ring at different fluxes is not arbitrary but is instead determined by Faraday's inductive law, which is in contrast to the arbitrary local phase of an AB loop for a given flux.

  18. Aharonov-Bohm oscillations in the presence of strong spin-orbit interactions.

    PubMed

    Grbić, Boris; Leturcq, Renaud; Ihn, Thomas; Ensslin, Klaus; Reuter, Dirk; Wieck, Andreas D

    2007-10-26

    We have measured highly visible Aharonov-Bohm (AB) oscillations in a ring structure defined by local anodic oxidation on a p-type GaAs heterostructure with strong spin-orbit interactions. Clear beating patterns observed in the raw data can be interpreted in terms of a spin geometric phase. Besides h/e oscillations, we resolve the contributions from the second harmonic of AB oscillations and also find a beating in these h/2e oscillations. A resistance minimum at B=0 T, present in all gate configurations, is the signature of destructive interference of the spins propagating along time-reversed paths.

  19. Polarization and Aharonov-Bohm oscillations in quantum-ring magnetoexcitons

    SciTech Connect

    Dias da Silva, Luis G.G.V.; Ulloa, Sergio E.; Shahbazyan, Tigran V.

    2005-09-15

    We study interaction and radial polarization effects on the absorption spectrum of neutral bound magnetoexcitons confined in quantum-ring structures. We show that the size and orientation of the exciton's dipole moment, as well as the interaction screening, play important roles in the Aharonov-Bohm (AB) oscillations. In particular, the excitonic absorption peaks display AB oscillations both in position and amplitude for weak electron-hole interaction and large radial polarization. The presence of impurity scattering induces anticrossings in the exciton spectrum, leading to a modulation in the absorption strength. These properties could be used in experimental investigations of the effect in semiconductor quantum-ring structures.

  20. h/2 e Oscillations and negative magneto-resistance in ballistic chaotic Aharonov-Bohm billiards

    NASA Astrophysics Data System (ADS)

    Kawabata, Shiro; Nakamura, Katsuhiro

    1998-07-01

    We study the quantum-interference effect for the single ballistic Aharonov-Bohm (AB) billiard. The reflection coefficient δRD is calculated by use of semi-classical scattering theory. We find: (i) h/2 e Altshuler-Aronov-Spivak (AAS) oscillation is experimentally observable in both ballistic and diffusive systems; (ii) a magnetic field in the conducting region leads to "negative magneto-resistance" and "dampening of the AAS oscillation amplitude". Chaotic and regular AB billiards have turned out to lead to qualitatively different semi-classical formulas for conductance with their behavior determined only by knowledge regarding the underlying classical scattering.

  1. Global analogue of the Aharonov-Bohm effect

    SciTech Connect

    Navin, R.L.

    1993-12-31

    This thesis deals with a global analogue of the Aharonov-Bohm effect previously pointed out by other authors. The effect was not well understood because the pure Aharonov-Bohm cross section was thought to be merely an approximate low energy limit. This thesis provides a detailed analysis and reveals that in the particular model considered, there is an exact Aharonov-Bohm cross section over the energy range that a mass splitting occurs. At energies slightly above the mass splitting, the effect has completely disappeared and there is effectively no scattering at large distances. This is a curious observation as it was previously thought that a global theory would not act exactly like a local one over an extended range of energies. It begs the heretical speculation that experimentally observed forces modelled with Lagrangians possessing local symmetries may have an underlying global theory.

  2. Aharonov-Casher and Scalar Aharonov-Bohm Topological Effects

    NASA Astrophysics Data System (ADS)

    Dulat, Sayipjamal; Ma, Kai

    2012-02-01

    We reexamine the topological and nonlocal natures of the Aharonov-Casher and scalar Aharonov-Bohm phase effects. The underlying U(1) gauge structure is exhibited explicitly. And the conditions for developing topological Aharonov-Casher and scalar Aharonov-Bohm phases are clarified. We analyze the arguments of M. Peshkin and H. J. Lipkin [Phys. Rev. Lett. 74, 2847 (1995)PRLTAO0031-900710.1103/PhysRevLett.74.2847] in detail and show that they are based on the wrong Hamiltonian which yields their conclusion incorrect.

  3. Experimental test for approximately dispersionless forces in the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Becker, Maria; Batelaan, Herman

    2016-07-01

    A new class of forces, approximately dispersionless forces, were recently predicted as part of a semiclassical description of the Aharonov-Bohm effect. Electron time-of-flight measurements have been performed that test for such forces. Magnetized iron cores used in the previous time-of-flight experiment may affect potential back-action forces and have, therefore, been eliminated. We report that no forces were detected. This finding supports the local and nonlocal, quantum descriptions of the AB effect and rules out local, semiclassical descriptions.

  4. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges.

    PubMed

    Wang, Rui-Feng

    2015-09-22

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.

  5. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    PubMed Central

    Wang, Rui-Feng

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge. PMID:26392302

  6. Feynman's Relativistic Electrodynamics Paradox and the Aharonov-Bohm Effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam; Batelaan, Herman

    2009-03-01

    An analysis is done of a relativistic paradox posed in the Feynman Lectures of Physics involving two interacting charges. The physical system presented is compared with similar systems that also lead to relativistic paradoxes. The momentum conservation problem for these systems is presented. The relation between the presented analysis and the ongoing debates on momentum conservation in the Aharonov-Bohm problem is discussed.

  7. Aharonov-Bohm interactions of a vector unparticle

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil

    2007-11-01

    Recently Georgi argued that a hypothetical conformally invariant hidden sector weakly interacting with ordinary particles will have unusual manifestations at low energies in terms of effective degrees of freedom called unparticles. In this paper we consider Aharonov-Bohm type of interactions due to the vector unparticle coupled to elementary fermions. We have found that the quantum mechanical phase shift is path dependent.

  8. Group-theoretical derivation of Aharonov-Bohm phase shifts

    SciTech Connect

    Hagen, C. R.

    2013-02-15

    The phase shifts of the Aharonov-Bohm effect are generally determined by means of the partial wave decomposition of the underlying Schroedinger equation. It is shown here that they readily emerge from an o(2,1) calculation of the energy levels employing an added harmonic oscillator potential which discretizes the spectrum.

  9. Aharonov-Bohm oscillations in singly connected disordered conductors.

    PubMed

    Aleiner, I L; Andreev, A V; Vinokur, V

    2015-02-20

    We show that the transport and thermodynamic properties of a singly connected disordered conductor exhibit quantum Aharonov-Bohm oscillations as a function of the total magnetic flux through the sample. The oscillations are associated with the interference contribution from a special class of electron trajectories confined to the surface of the sample.

  10. Non-traditional Aharonov-Bohm effects in condensed matter

    SciTech Connect

    Krive, I.V. ); Rozhavsky, A.S. )

    1992-05-10

    In 1959, Aharonov and Bohm proposed an elegant experiment demonstrating observability of electromagnetic potentials (or, which is the same, the non-locality of the wave function of charged particles) in quantum mechanics. This paper discusses the Aharonov-Bohm effect, based on the fundamental principles of quantum theory, as the superposition principles, the quantum character of motion of particles and locality of the interaction of a charge with an electromagnetic potential L{sub int} = j{sub {mu}}A{sup {mu}}. It is thus no wonder that the Aharonov-Bohm's paper aroused much dispute which is still ongoing. Originally, the Aharonov-Bohm effect (ABE) means the dependence of the interference pattern on the magnetic fluid flux {phi} in a Gendaken experiment on a coherent electron beam in the field of an infinitely thin solenoid. Later, however, it became common to refer to the Aharonov-Bohm phenomenon wherever the characteristics of systems under study appear to depend on the flux {phi} in the absence of electric and magnetic fields. In this sense, it was highly interesting to analyze the ABE in condensed media (the many-particle Aharonov-Bohm effect), in particular to study the dependence of the thermodynamic and kinetic characteristics, e.g., of metal on the flux. Such a problem was first discussed by Byers and Yang who formulated the general theorems related to the ABE in conducting condensed media. The next important step was the work of Kulik who formulated a concrete model and calculated the flux-dependent contribution to the metal free energy and provided a first clear formulation of the requirements to reveal.

  11. Electron Interferometry in the Quantum Hall Regime: Aharonov-Bohm Effect of Interacting Electrons

    SciTech Connect

    Lin, P.V.; Camino, F.; Goldman, V.J.

    2009-09-01

    An apparent h/fe Aharonov-Bohm flux period, where f is an integer, has been reported in coherent quantum Hall devices. Such subperiod is not expected for noninteracting electrons and thus is thought to result from interelectron Coulomb interaction. Here we report experiments in a Fabry-Perot interferometer comprised of two wide constrictions enclosing an electron island. By carefully tuning the constriction front gates, we find a regime where interference oscillations with period h/2e persist throughout the transition between the integer quantum Hall plateaus 2 and 3, including half-filling. In a large quantum Hall sample, a transition between integer plateaus occurs near half-filling, where the bulk of the sample becomes delocalized and thus dissipative bulk current flows between the counterpropagating edges ('backscattering'). In a quantum Hall constriction, where conductance is due to electron tunneling, a transition between forward and backscattering is expected near the half-filling. In our experiment, neither period nor amplitude of the oscillations show a discontinuity at half-filling, indicating that only one interference path exists throughout the transition. We also present experiments and an analysis of the front-gate dependence of the phase of the oscillations. The results point to a single physical mechanism of the observed conductance oscillations: Aharonov-Bohm interference of interacting electrons in quantum Hall regime.

  12. Further Considerations Regarding the Aharonov-Bohm Effect and the Wavefunction of the Entire System

    NASA Astrophysics Data System (ADS)

    Walstad, Allan

    2016-12-01

    In an earlier paper it was demonstrated that the hypothesized electrostatic version of the Aharonov-Bohm ("AB") effect does not exist. The conclusion follows straightforwardly once one recognizes that interference takes place in the configuration space of the entire system, including the experimental apparatus, and the wavefunction of the apparatus cannot be ignored. Two additional results are presented here. 1. Observations of interference that had been attributed to an analogue of the electrostatic AB effect (or "scalar effect") are actually due to a magnetic AB effect. 2. In the original magnetic AB effect itself, there is no phase shift if it is possible effectively to shield the solenoid from the influence of the passing electron. This result is not in conflict with the landmark experiments of Tonomura and colleagues if Wang's recent claim is correct, that superconductive shielding could not have isolated the toroidal magnet from the magnetic pulse of the passing electron.

  13. Against a proposed alternative explanation of the Aharonov-Bohm effect.

    SciTech Connect

    Peshkin, M.; Physics

    2010-09-03

    The Aharonov-Bohm (AB) effect is understood to demonstrate that the Maxwell fields can act nonlocally in some situations. However it has been suggested from time to time that the AB effect is somehow a consequence of a local classical electromagnetic field phenomenon involving energy that is temporarily stored in the overlap between the external field and the field of which the beam particle is the source. That idea was shown in the past not to work for some models of the source of the external field. Here a more general proof is presented for the magnetic AB effect to show that the overlap energy is always compensated by another contribution to the energy of the magnetic field in such a way that the sum of the two is independent of the external flux. Therefore no such mechanism can underlie the AB effect.

  14. The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings.

    PubMed

    Nguyen, V Hung; Niquet, Y-M; Dollfus, P

    2014-05-21

    We report on a numerical study of the Aharonov-Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π-phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems.

  15. Irregular Aharonov-Bohm effect for interacting electrons in a ZnO quantum ring.

    PubMed

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-02-22

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov-Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number.

  16. Irregular Aharonov-Bohm effect for interacting electrons in a ZnO quantum ring

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-02-01

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov-Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number.

  17. Further Considerations Regarding the Aharonov-Bohm Effect and the Wavefunction of the Entire System

    NASA Astrophysics Data System (ADS)

    Walstad, Allan

    2017-03-01

    In an earlier paper it was demonstrated that the hypothesized electrostatic version of the Aharonov-Bohm ("AB") effect does not exist. The conclusion follows straightforwardly once one recognizes that interference takes place in the configuration space of the entire system, including the experimental apparatus, and the wavefunction of the apparatus cannot be ignored. Two additional results are presented here. 1. Observations of interference that had been attributed to an analogue of the electrostatic AB effect (or "scalar effect") are actually due to a magnetic AB effect. 2. In the original magnetic AB effect itself, there is no phase shift if it is possible effectively to shield the solenoid from the influence of the passing electron. This result is not in conflict with the landmark experiments of Tonomura and colleagues if Wang's recent claim is correct, that superconductive shielding could not have isolated the toroidal magnet from the magnetic pulse of the passing electron.

  18. Electron matter optics of the Aharonov-Bohm and Stern-Gerlach effects

    NASA Astrophysics Data System (ADS)

    McGregor, Scot Cameron

    Since the advent of quantum mechanics and the idea that massive particles exhibit wave properties, physicists have made efforts to make use of the short deBroglie wave length of matter waves for fundamental as well as practical studies. Among these are the precise measurements allowed by interference, diffraction, and microscopy as well as the study of more fundamental aspects of quantum theory such as the Aharonov-Bohm effects or the Stern-Gerlach effect, which are described below. However, in order to use matter waves to observe any of these effects it is necessary to produce and maintain coherence in the waves which are used for measurement. With a grasp of what coherence is and how it may be achieved and maintained one can move forward to study the interesting phenomena associated with coherent matter waves. More specifically in this work the interference and diffraction of electron matter waves are considered. The phenomena under consideration are those associated with the interaction of the electric charge and magnetic dipole moment of the electron with external fields and potentials while in the process of interfering or diffracting. Namely the focus of this dissertation is the Aharonov-Bohm effect, the Aharonov-Casher effect, and the Stern-Gerlach effect. Additionally, a wide-angle electron beam-splitter capable of producing two centimeter beam separation at the detection plane is discussed. The beam-splitter utilizes a nanofabricated periodic grating in combination with a bi-prism element. Contrary to devices utilizing only bi-prism elements, the use of the periodic grating causes amplitude, and not wave front, splitting. Even at maximum separation, beam profiles remain undistorted, providing evidence that coherence is intact. This is a step towards the realization of a large area electron interferometer using such a grating bi-prism combination. Such an interferometer could, in principle, be used to test the dispersionless nature of the Aharonov-Bohm

  19. Observation of Aharonov-Bohm effects by neutron interferometry

    NASA Astrophysics Data System (ADS)

    Werner, Samuel A.; Klein, Anthony G.

    2010-09-01

    The special and unique techniques of neutron interferometry have been used to observe a number of topological effects. These include the quantum mechanical phase shift of a neutron due to the Earth's rotation (the quantum analog of the Michelson-Gale-Pearson experiment with light), the phase shift of a particle carrying a magnetic moment (a neutron) encircling a line charge (the Aharonov-Casher effect) and the scalar Aharonov-Bohm effect, observed with a pulsed magnetic field solenoid and time-of-flight neutron detection. On the occasion of the 50th anniversary of the Aharonov-Bohm paper, we provide an overview of the neutron interferometry technique and a description of these three historic experiments.

  20. Quantum anholonomies in time-dependent Aharonov-Bohm rings

    SciTech Connect

    Tanaka, Atushi; Cheon, Taksu

    2010-08-15

    Anholonomies in eigenstates are studied through time-dependent variations of a magnetic flux in an Aharonov-Bohm ring. The anholonomies in the eigenenergy and the expectation values of eigenstates are shown to persist beyond the adiabatic regime. The choice of the gauge of the magnetic flux is shown to be crucial to clarify the relationship of these anholonomies to the eigenspace anholonomy, which is described by a non-Abelian connection in the adiabatic limit.

  1. Topological Aharonov-Bohm Effect and Pseudo-Particle Bundles

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2016-10-01

    Exploiting a topological approach, we discuss the outstanding Aharonov-Bohm effect and try to explain it in the context of the principal P(M, U(1)) bundle. We show that this could be done by excluding a specific region from the main manifold which acts as the solenoid around which the effect is observed. Moreover, we discuss the impacts of pseudo-particles in this topological approach.

  2. Flux effect in superconducting hybrid Aharonov-Bohm rings

    SciTech Connect

    Stoof, T.H.; Nazarov, Y.V.

    1996-07-01

    We have extended the circuit theory of Andreev conductance [Phys. Rev. Lett. {bold 73}, 1420 (1994)] to diffusive superconducting hybrid structures that contain an Aharonov-Bohm ring. The electrostatic potential distribution in the system is predicted to be flux dependent with a period of the superconducting flux quantum {Phi}{sub 0}={ital h}/2{ital e}. When at least one tunnel barrier is present, the conductance of the system oscillates with the same period. {copyright} {ital 1996 The American Physical Society.}

  3. Nonlinear conductance in a ballistic Aharonov-Bohm ring.

    PubMed

    Hernández, Alexis R; Lewenkopf, Caio H

    2009-10-16

    The nonlinear electronic transport properties of a ballistic Aharonov-Bohm ring are investigated. It is demonstrated how the electronic interaction breaks the phase rigidity in a two-probe mesoscopic device as the voltage bias is increased. The possibility of studying interference effects in the nonlinear regime is addressed. The occurrence of magnetic field symmetries in higher order conductance coefficients is analyzed. The results are compared with recent experimental data.

  4. Levinson theorem for Aharonov-Bohm scattering in two dimensions

    SciTech Connect

    Sheka, Denis D.; Mertens, Franz G.

    2006-11-15

    We apply the recently generalized Levinson theorem for potentials with inverse-square singularities [Sheka et al., Phys. Rev. A 68, 012707 (2003)] to Aharonov-Bohm systems in two dimensions (2D). By this theorem, the number of bound states in a given mth partial wave is related to the phase shift and the magnetic flux. The results are applied to 2D soliton-magnon scattering.

  5. Thermoelectric effect in an Aharonov-Bohm ring with an embedded quantum dot.

    PubMed

    Zheng, Jun; Chi, Feng; Lu, Xiao-Dong; Zhang, Kai-Cheng

    2012-02-28

    Thermoelectric effect is studied in an Aharonov-Bohm interferometer with an embedded quantum dot (QD) in the Coulomb blockade regime. The electrical conductance, electron thermal conductance, thermopower, and thermoelectric figure-of-merit are calculated by using the Keldysh Green's function method. It is found that the figure-of-merit ZT of the QD ring may be quite high due to the Fano effect originated from the quantum interference effect. Moreover, the thermoelectric efficiency is sensitive to the magnitude of the dot-lead and inter-lead coupling strengthes. The effect of intradot Coulomb repulsion on ZT is significant in the weak-coupling regime, and then large ZT values can be obtained at rather high temperature.

  6. Analytic Aharonov-Bohm rings — Currents readout from Zeeman spectrum

    NASA Astrophysics Data System (ADS)

    Xiao, Mufei; Reyes-Serrato, Armando

    2016-06-01

    This paper reports the work on the development and analysis of a model for quantum rings in which persistent currents are induced by Aharonov-Bohm (AB) or other similar effects. The model is based on a centric and annual potential profile. The time-independent Schrödinger equation including an external magnetic field and an AB flux is analytically solved. The outputs, namely energy dispersion and wavefunctions, are analyzed in detail. It is shown that the rotation quantum number m is limited to small numbers, especially in weak confinement, and a conceptual proposal is put forward for acquiring the flux and eventually estimating the persistent currents in a Zeeman spectroscopy. The wavefunctions and electron distributions are numerically studied and compared to one-dimensional (1D) quantum well. It is predicated that the model and its solutions, eigen energy structure and analytic wavefunctions, would be a powerful tool for studying various electric and optical properties of quantum rings.

  7. Resonant Transmission of Electron Spin States through Multiple Aharonov-Bohm Rings

    NASA Astrophysics Data System (ADS)

    Cutright, Jim; Hedin, Eric; Joe, Yong

    2011-10-01

    An Aharonov-Bohm (AB) ring with embedded quantum dots (QD) in each arm and one -dimensional nanowires attached as leads acts as a primitive cell in this analysis. When a tunable, external magnetic field is parallel to the surface area of the ring it causes Zeeman splitting in the energy levels of the QDs. An electron that traverses these energy levels has the potential to interfere with other electrons and to produce spin polarized output. It is already known that upon output the transmission of the electrons through this system will have a resonant peak at each Zeeman split energy level. A system where multiple AB rings are connected in series is studied, to see how having the electrons pass through multiple, identical rings effects the resonant peaks in the transmission and the degree of spin polarization.

  8. Anomalous Aharonov-Bohm conductance oscillations from topological insulator surface states.

    PubMed

    Zhang, Yi; Vishwanath, Ashvin

    2010-11-12

    We study Aharonov-Bohm (AB) conductance oscillations arising from the surface states of a topological insulator nanowire, when a magnetic field is applied along its length. With strong surface disorder, these oscillations are predicted to have a component with anomalous period Φ(0)=hc/e, twice the conventional period. The conductance maxima are achieved at odd multiples of 1/2Φ(0), implying that a π AB phase for electrons strengthens the metallic nature of surface states. This effect is special to topological insulators, and serves as a defining transport property. A key ingredient, the surface curvature induced Berry phase, is emphasized here. We discuss similarities and differences from recent experiments on Bi2Se3 nanoribbons, and optimal conditions for observing this effect.

  9. Absence of localization in a disordered one-dimensional ring threaded by an Aharonov-Bohm flux.

    PubMed

    Heinrichs, Jean

    2009-07-22

    Absence of localization is demonstrated analytically to leading order in weak disorder in a one-dimensional Anderson model of a ring threaded by an Aharonov-Bohm (AB) flux. The result follows from adapting an earlier perturbation treatment of disorder in a superconducting ring subjected to an imaginary vector potential proportional to a depinning field for flux lines bound to random columnar defects parallel to the axis of the ring. The absence of localization in the ring threaded by an AB flux for sufficiently weak disorder is compatible with large free-electron-type persistent current obtained in recent studies of the above model.

  10. Spin-dependent transport caused by the local magnetic moments inserted in the Aharonov-Bohm rings.

    PubMed

    Shelykh, I A; Kulov, M A; Galkin, N G; Bagraev, N T

    2007-06-20

    We analyse the conductance of an Aharonov-Bohm (AB) ring with a quantum point contact (QPC) that is inserted in one of its arms and which contains a single electron. The conductance of the device is calculated as a function of the one-dimensional (1D) carrier concentration and the value of the magnetic field perpendicular to the plane of the AB ring. The exchange interaction between the electron localized inside QPC and freely propagating electrons is shown to modify the conductance pattern at small carrier concentration significantly, giving rise to the effects related to the formation of the '0.7 feature' in the quantum conductance staircase.

  11. Off-Diagonal Long-Range Order, Restricted Gauge Transformations, and Aharonov-Bohm Effect in Conductors

    SciTech Connect

    Peshkin, Murray

    1996-03-25

    The electrons in a conductor surrounding an external magnetic field are acted on by a vector potential that cannot be removed by a gauge transformation. Nevertheless, a macroscopic normal conductor can experience no Aharonov-Bohm (AB) effect. That is proved by assuming only that a normal conductor lacks off-diagonal long-range order (ODLRO), which means that the electrons lack long-range phase coherence. Then by restricting the Hilbert space to density matrices which lack ODLRO, one can introduce a restricted gauge transformation that removes the interaction of the conductor with the vector potential. Consequently, the AB effect on a beam particle is not shielded by the conductor.

  12. Aharonov-Bohm oscillations changed by indirect interdot tunneling via electrodes in parallel-coupled vertical double quantum dots.

    PubMed

    Hatano, T; Kubo, T; Tokura, Y; Amaha, S; Teraoka, S; Tarucha, S

    2011-02-18

    Aharonov-Bohm (AB) oscillations are studied for a parallel-coupled vertical double quantum dot with a common source and drain electrode. We observe AB oscillations of current via a one-electron bonding state as the ground state and an antibonding state as the excited state. As the center gate voltage becomes more negative, the oscillation period is clearly halved for both the bonding and antibonding states, and the phase changes by half a period for the antibonding state. This result can be explained by a calculation that takes account of the indirect interdot coupling via the two electrodes.

  13. Forward-smooth high-order uniform Aharonov-Bohm asymptotics

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2016-07-01

    The Aharonov-Bohm (AB) function, describing a plane wave scattered by a flux line, is expanded asymptotically in a Fresnel-integral based series whose terms are smooth in the forward direction and uniformly valid in angle and flux. Successive approximations are valid for large distance r from the flux (or short wavelength) but are accurate even within one wavelength of it. Coefficients of all the terms are exhibited explicitly for the forward direction, enabling the high-order asymptotics to be understood in detail. The series is factorally divergent, with optimal truncation error exponentially small in r. Systematic resummation gives further exponential improvement. Terms of the series satisfy a resurgence relation: the high orders are related to the low orders. Discontinuities in the backward direction get smaller order by order, with systematic cancellation by successive terms. The relation to an earlier scheme based on the Cornu spiral is discussed.

  14. Aharonov-Bohm excitons at elevated temperatures in type-II ZnTe/ZnSe quantum dots.

    PubMed

    Sellers, I R; Whiteside, V R; Kuskovsky, I L; Govorov, A O; McCombe, B D

    2008-04-04

    Optical emission from type-II ZnTe/ZnSe quantum dots demonstrates large and persistent oscillations in both the peak energy and intensity indicating the formation of coherently rotating states. Furthermore, these Aharonov-Bohm oscillations are shown to be remarkably robust and persist until 180 K. This is at least one order of magnitude greater than the typical temperatures in lithographically defined rings. To our knowledge, this is the highest temperature at which the AB effect has been observed in solid-state and molecular nanostructures.

  15. Electronic Aharonov-Bohm effect induced by quantum vibrations.

    PubMed

    Shekhter, R I; Gorelik, L Y; Glazman, L I; Jonson, M

    2006-10-13

    Mechanical displacements of a nanoelectromechanical system shift the electron trajectories and hence perturb phase coherent charge transport through the device. We show theoretically that in the presence of a magnetic field such quantum-coherent displacements may give rise to an Aharonov-Bohm-type of effect. In particular, we demonstrate that quantum vibrations of a suspended carbon nanotube result in a positive nanotube magnetoresistance, which decreases slowly with the increase of temperature. This effect may enable one to detect quantum displacement fluctuations of a nanomechanical device.

  16. Aharonov-Bohm conductance modulation in ballistic carbon nanotubes.

    PubMed

    Lassagne, B; Cleuziou, J-P; Nanot, S; Escoffier, W; Avriller, R; Roche, S; Forró, L; Raquet, B; Broto, J-M

    2007-04-27

    We report on magnetoconductance experiments in ballistic multiwalled carbon nanotubes threaded by magnetic fields as large as 55 T. In the high temperature regime (100 K), giant modulations of the conductance, mediated by the Fermi level location, are unveiled. The experimental data are consistently analyzed in terms of the field-dependent density of states of the external shell that modulates the injection properties at the electrode-nanotube interface, and the resulting linear conductance. This is the first unambiguous experimental evidence of Aharonov-Bohm effect in clean multiwalled carbon nanotubes.

  17. Hidden photons in Aharonov-Bohm-type experiments

    NASA Astrophysics Data System (ADS)

    Arias, Paola; Diaz, Christian; Diaz, Marco Aurelio; Jaeckel, Joerg; Koch, Benjamin; Redondo, Javier

    2016-07-01

    We discuss the Aharonov-Bohm effect in the presence of hidden photons kinetically mixed with the ordinary electromagnetic photons. The hidden photon field causes a slight phase shift in the observable interference pattern. It is then shown how the limited sensitivity of this experiment can be largely improved. The key observation is that the hidden photon field causes a leakage of the ordinary magnetic field into the supposedly field-free region. The direct measurement of this magnetic field can provide a sensitive experiment with a good discovery potential, particularly below the ˜meV mass range for hidden photons.

  18. Spectroscopic detectability of the molecular Aharonov-Bohm effect.

    PubMed

    Englman, R

    2016-01-14

    It is theoretically shown that the emission spectra from an excited Jahn-Teller state in which the ions undergo a forced periodic trajectory have an M-shaped form, directly due to the sign change by the Berry-phase factor. The presence of a weak spectral sideline is noted and the effects of a nonlinear vibronic coupling are calculated. Experimental verifications of the results, e.g., on R'-centers in LiF, are proposed. The dip in the M-shaped emission line is a novel, and perhaps unique, spectroscopic manifestation of the "molecular Aharonov-Bohm effect."

  19. Perturbation theory and the Aharonov-Bohm effect

    SciTech Connect

    Hagen, C.R.

    1995-08-15

    The perturbation theory expansion of the Aharonov-Bohm scattering amplitude has previously been studied in the context of quantum mechanics for spin-0 and spin-1/2 particles as well as in Galilean covariant field theory. This problem is reconsidered in the framework of the model in which the flux line is considered to have a finite radius which is shrunk to zero at the end of the calculation. General agreement with earlier results is obtained but with the advantage of a treatment which unifies all the various subcases.

  20. Relativistic persistent currents in ideal Aharonov-Bohm rings

    NASA Astrophysics Data System (ADS)

    Cotăescu, Ion I.; Băltăţeanu, Doru-Marcel; Cotăescu, Ion

    2016-11-01

    The exact solutions of the complete Dirac equation for fermions moving in ideal Aharonov-Bohm rings are used for deriving the exact expressions of the relativistic partial currents. It is shown that as in the nonrelativistic case, these currents can be related to the derivative of the fermion energy with respect to the flux parameter. A specific relativistic effect is the saturation of the partial currents for high values of the total angular momentum. Based on this property, the total relativistic persistent current at T = 0 is evaluated giving its analytical expression and showing how this depends on the ring parameters.

  1. Aharonov Bohm-type effects in different arrays of antidots

    NASA Astrophysics Data System (ADS)

    Kato, Masanori; Tanaka, Hiroyasu; Endo, Akira; Katsumoto, Shingo; Iye, Yasuhiro

    2006-08-01

    We have investigated Aharonov-Bohm-type oscillation in the quantum Hall plateau transition region in three types of square arrays of antidots; a large ( 50×160 antidots) array, a small ( 5×10 antidots) array, and the sample with antidots placed only near the side edges. The temperature dependence of the amplitude confirmed that the oscillation originates from the fine structure in the density of single particle states circumnavigating around each antidot. In addition, we have also observed Altshuler-Aronov-Spivak oscillation near zero magnetic field in square arrays of antidots.

  2. Conservation of momentum and the Aharonov-Bohm Effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam; Batelaan, Herman

    2008-05-01

    The Aharonov-Bohm Effect serves as an example of a purely quantum mechanical phenomenon in which classical forces on the electron are thought to vanish. The presence of forces is still an ongoing debate [1,2]. Surprisingly, a complete special relativistic treatment of the forces in the electron-solenoid system has never been done [3]. We present our ongoing theoretical work on the issue, and explore a connection between Feynman's well-known example [3] of two moving point charges and the Aharonov-Bohm Effect. The relation between this theoretical work and our earlier experimental results [4] is also discussed. [1] T.H. Boyer, J. Phys. A. 39, 3455 (2006). [2] G.C. Hegerfeldt and J.T. Neumann, [quant-ph] arXiv:0801.0799v1 (2008). [3] Y. Aharonov and D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley-VCH, Weinheim, 2005). [4] The Feynman Lectures on Physics. Vol. II, pp. 26-2-26-5 (1964). [5] A. Caprez, B. Barwick, and H. Batelaan. Phys. Rev. Lett. 99, 210401 (2007).

  3. Three Quantum Dots Embedded in Aharonov-Bohm Rings

    NASA Astrophysics Data System (ADS)

    Toonen, Ryan; Hãttel, Andreas; Goswami, Srijit; Eberl, Karl; Eriksson, Mark; van der Weide, Daniel; Blick, Robert

    2004-03-01

    Coherent coupling of two quantum dots embedded in a ring-geometry has been demonstrated by Holleitner et al.(A.W. Holleitner, H. Qin, C.R. Decker, K. Eberl, and R.H. Blick, phCoherent Coupling of Two Quantum Dots Embedded in an Aharonov-Bohm Ring), Phys. Rev. Lett. 87, 256802 (2001) Recording of the Aharonov-Bohm oscillations in such a circuit has proven that the phases of electron wave functions can be manipulated directly. We have since enhanced the complexity of this system by embedding three quantum dots in such a ring-geometry. As before, our quantum dots are formed by laterally constricting a two-dimensional electron gas (2DEG) in an Al_xGa_1-xAs/GaAs heterostructure. The new, essential ingredient of this experiment is an additional third port--added to the ring for individually addressing the third quantum dot. This circuit allows us to investigate phenomena associated with phase-switching between separate ports. We will discuss first results and give a simple model of circuit operation.

  4. Relativistic Aharonov-Bohm effect in the presence of planar Coulomb potentials

    SciTech Connect

    Khalilov, V.R.

    2005-01-01

    Exact analytic solutions are found to the Dirac equation in 2+1 dimensions for a combination of an Aharonov-Bohm potential and the Lorentz three-vector and scalar Coulomb potentials. By means of the solutions obtained the relativistic quantum Aharonov-Bohm effect is studied for the free (in the presence of a Lorentz three-vector Coulomb potential) and bound fermion states. We obtain the total scattering amplitude in a combination of the Aharonov-Bohm and Lorentz three-vector Coulomb potentials as a sum of two scattering amplitudes. This modifies the expression for the standard Aharonov-Bohm cross section due to the interference of these two amplitudes with each other. We discuss that the observable quantities can be the phases of electron wave functions or the energies of bound states.

  5. Aharonov-Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields.

    PubMed

    Longhi, Stefano

    2014-10-15

    We suggest a method for trapping photons in quasi-one-dimensional waveguide or coupled-resonator lattices, which is based on an optical analogue of the Aharonov-Bohm cages for charged particles. Light trapping results from a destructive interference of Aharonov-Bohm type induced by a synthetic magnetic field, which is realized by periodic modulation of the waveguide/resonator propagation constants/resonances.

  6. What did we learn from the Aharonov-Bohm effect? Is spin 1/2 different?

    SciTech Connect

    Peshkin, M.

    1994-06-01

    I review what has been learned about fundamental issues in quantum mechanics from the Aharonov-Bohm effect. Following that, I consider the Aharonov-Casher effect and the Scalar Aharonov-Bohm effect, in both of which a spin-1/2 particle interacts with a local electromagnetic field through its magnetic moment, and conclude that those effects can be described as observable effects of local torques.

  7. Aharonov-Bohm oscillations in (311)A GaAs 2D holes

    NASA Astrophysics Data System (ADS)

    Yau, Jeng-Bang; de Poortere, E. P.; Shayegan, M.

    2001-03-01

    We report the observation of Aharonov-Bohm (A-B) oscillations in high mobility (311)A GaAs two-dimensional (2D) holes. The 2D holes in GaAs have been demonstrated to exhibit a significant spin-orbit induced spin-splitting which can be tuned by changing the front/back gate voltages.(Papadakis et al.), Science 283, 2056 (1999). In addition to the A-B phase, a spin wave function acquires a geometrical phase, the Berry's phase,(M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).) when it travels adiabatically in a magnetic field. A-B rings made of this 2D material are therefore good candidates for the measurement of Berry's phase as proposed by Aronov et al..(A. G. Aronov et al.), Phys. Rev. Lett. 70, 343 (1993). We defined the A-B ring with a 2000 Åwide channel by electron beam lithography and deposited Ti/Au as the front gate. At T ~= 30 mK, we observe A-B oscillations with periods matching the geometry of the ring, providing evidence for the phase-coherent transport of 2D holes. By changing the front gate voltage, we observe changes in the magnitude and period of the oscillations. Furthermore, the Fourier spectra of some of the traces reveal a splitting of the peak, which may be a manifestation of the Berry's phase.

  8. Aharonov-Bohm interferences from local deformations in graphene

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Cortijo, Alberto; Vozmediano, María A. H.; Cano, Andrés

    2011-10-01

    One of the most interesting aspects of graphene is the close relation between its structural and electronic properties. The observation of ripples both in free-standing graphene and in samples on a substrate has given rise to active investigation of the membrane-like properties of graphene, and the origin of the ripples remains one of the most interesting open problems concerning this system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields. These fields have become an experimental reality after the observation of the Landau levels that can form in graphene due to strain. Here we propose a device to detect microstresses in graphene based on a scanning-tunnelling-microscopy set-up able to measure Aharonov-Bohm interferences at the nanometre scale. The predicted interferences in the local density of states are created by the fictitious magnetic field associated with elastic deformations of the sample.

  9. Fizeau`s experiment and the Aharonov--Bohm effect

    SciTech Connect

    Cook, R.J.; Fearn, H.; Milonni, P.W.

    1995-08-01

    The electromagnetic wave equations in a moving medium may be approximated by a form similar to that of the Schroedinger equation for a particle in an electromagnetic field, with the velocity {bold v} of the medium and the vorticity {del}{times}{bold v} playing the roles of the vector potential and magnetic field, re- spectively. A purely classical optical analogue of the Aharonov--Bohm effect follows by consider- ation of the interference pattern produced by two beams, each of which propagates in a region with zero vorticity, but such that the flux of the vorticity through the closed loop defined by the optical paths does not vanish. Fizeau`s experiment (1851) on the velocity of light in moving media may be regarded as an example of such a situation. {copyright} {ital 1995} {ital American} {ital Association} {ital of} {ital Physics} {ital Teachers}.

  10. Uniform asymptotic formula for the Aharonov Bohm wavefield

    NASA Astrophysics Data System (ADS)

    Hannay, J. H.

    2016-06-01

    A uniform asymptotic formula for the Aharonov-Bohm wavefield (that of a plane quantum wave scattered by a thin straight solenoid) far away from the solenoid is obtained in a direct way. Actually quite good accuracy is achieved even down to one wavelength away. The error is numerically of order radius^(-3/2) for all values of polar angle, including directly forwards. Several previous formulas, uniform and otherwise, for the far field limit exist in the literature. All contain the essential ingredient: the Fresnel integral (complex error function), but ordinarily the error in these formulas is of order radius^(-1/2) in the forwards direction where the Fresnel contribution is most important.

  11. Aharonov-Bohm oscillations in disordered topological insulator nanowires.

    PubMed

    Bardarson, J H; Brouwer, P W; Moore, J E

    2010-10-08

    A direct signature of electron transport at the metallic surface of a topological insulator is the Aharonov-Bohm oscillation observed in a recent study of Bi2Se3 nanowires [Peng, Nature Mater. 9, 225 (2010)] where conductance was found to oscillate as a function of magnetic flux ϕ through the wire, with a period of one flux quantum ϕ0=h/e and maximum conductance at zero flux. This seemingly agrees neither with diffusive theory, which would predict a period of half a flux quantum, nor with ballistic theory, which in the simplest form predicts a period of ϕ0 but a minimum at zero flux due to a nontrivial Berry phase in topological insulators. We show how h/e and h/2e flux oscillations of the conductance depend on doping and disorder strength, provide a possible explanation for the experiments, and discuss further experiments that could verify the theory.

  12. Nonlinear Aharonov-Bohm Scattering by Optical Vortices

    SciTech Connect

    Neshev, Dragomir; Nepomnyashchy, Alexander; Kivshar, Yuri S.

    2001-07-23

    We study linear and nonlinear wave scattering by an optical vortex in a self-defocusing nonlinear Kerr medium. In the linear case, we find a splitting of a plane-wave front at the vortex proportional to its circulation, similar to what occurs in the scattered wave of electrons for the Aharonov-Bohm effect. For larger wave amplitudes, we study analytically and numerically the scattering of a dark-soliton stripe (a nonlinear analog of a small-amplitude wave packet) by a vortex and observe a significant asymmetry of the scattered wave. Subsequently, a wave-front splitting of the scattered wave develops into transverse modulational instability, ''unzipping'' the stripe into trains of vortices with opposite charges.

  13. Distinguishability of stacks in ZnTe/ZnSe quantum dots via spectral analysis of Aharonov-Bohm oscillations

    NASA Astrophysics Data System (ADS)

    Roy, Bidisha; Ji, Haojie; Dhomkar, Siddharth; Cadieu, Fred J.; Peng, Le; Moug, Richard; Tamargo, Maria C.; Kuskovsky, Igor L.

    2013-02-01

    A spectral analysis of the Aharonov-Bohm (AB) oscillations in photoluminescence intensity was performed for stacked type-II ZnTe/ZnSe quantum dots (QDs) fabricated within multilayered Zn-Se-Te system with sub-monolayer insertions of Te. Robust AB oscillations allowed for fine probing of distinguishable QDs stacks within the ensemble of QDs. The AB transition magnetic field, B AB , changed from the lower energy side to the higher energy side of the PL spectra revealing the presence of different sets of QDs stacks. The change occurs within the spectral range, where the contributing green and blue bands of the spectra overlapped. "Bundling" in lifetime measurements is seen at transition spectral regions confirming the results.

  14. On the relation between the Feynman paradox and the Aharonov-Bohm effects

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Hotovy, Ryan; Caprez, Adam; Batelaan, Herman

    2012-09-01

    The magnetic Aharonov-Bohm (A-B) effect occurs when a point charge interacts with a line of magnetic flux, while its reciprocal, the Aharonov-Casher (A-C) effect, occurs when a magnetic moment interacts with a line of charge. For the two interacting parts of these physical systems, the equations of motion are discussed in this paper. The generally accepted claim is that both parts of these systems do not accelerate, while Boyer has claimed that both parts of these systems do accelerate. Using the Euler-Lagrange equations we predict that in the case of unconstrained motion, only one part of each system accelerates, while momentum remains conserved. This prediction requires a time-dependent electromagnetic momentum. For our analysis of unconstrained motion, the A-B effects are then examples of the Feynman paradox. In the case of constrained motion, the Euler-Lagrange equations give no forces, in agreement with the generally accepted analysis. The quantum mechanical A-B and A-C phase shifts are independent of the treatment of constraint. Nevertheless, experimental testing of the above ideas and further understanding of the A-B effects that are central to both quantum mechanics and electromagnetism could be possible.

  15. Aharonov-Bohm Effect in the Photodetachment Microscopy of Hydrogen Negative Ions in an Electric Field

    NASA Astrophysics Data System (ADS)

    Wang, Dehua

    2014-09-01

    The Aharonov-Bohm (AB) effect in the photodetachment microscopy of the H- ions in an electric field has been studied on the basis of the semiclassical theory. After the H- ion is irradiated by a laser light, they provide a coherent electron source. When the detached electron is accelerated by a uniform electric field, two trajectories of a detached electron which run from the source to the same point on the detector, will interfere with each other and lead to an interference pattern in the photodetachment microscopy. After the solenoid is electrified beside the H- ion, even though no Lorentz force acts on the electron outside the solenoid, the photodetachment microscopy interference pattern on the detector is changed with the variation in the magnetic flux enclosed by the solenoid. This is caused by the AB effect. Under certain conditions, the interference pattern reaches the macroscopic dimensions and could be observed in a direct AB effect experiment. Our study can provide some predictions for the future experimental study of the AB effect in the photodetachment microscopy of negative ions.

  16. Aharonov-Bohm-type quantum interference effects in narrow gap semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Lillianfeld, R. B.; Kallaher, R. L.; Heremans, J. J.; Chen, Hong; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.

    2009-03-01

    We present experiments on quantum interference phenomena in semiconductors with strong spin-orbit interaction, using mesoscopic parallel ring arrays fabricated on InSb/InAlSb and InAs/AlGaSb heterostructures. Both external electric field effects and temperature dependence of the ring magnetoresistance are examined. Top-gate voltage-dependent oscillations in ring resistance in the absence of an external magnetic field are suggestive of Aharonov-Casher interference. At low magnetic fields the ring magnetoresistance is dominated by oscillations with h/2e periodicity characteristic of Altshuler-Aronov-Spivak (AAS) oscillations, whereas the h/e periodicity characteristic of Aharonov-Bohm (AB) oscillations persists to high magnetic fields. Fourier spectra (FS) reveal AB amplitudes on the same order as AAS amplitudes at low fields, and in some samples reveal a splitting of the AB peaks, which has been interpreted as a signature of Berry's phase. The FS are also used to quantify the temperature dependence of the oscillation amplitudes (NSF DMR-0618235, DOE DE-FG02-08ER46532, NSF DMR-0520550).

  17. Time-dependent Aharonov-Bohm effect on the noncommutative space

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Wang, Jian-Hua; Yang, Huan-Xiong

    2016-08-01

    We study the time-dependent Aharonov-Bohm effect on the noncommutative space. Because there is no net Aharonov-Bohm phase shift in the time-dependent case on the commutative space, therefore, a tiny deviation from zero indicates new physics. Based on the Seiberg-Witten map we obtain the gauge invariant and Lorentz covariant Aharonov-Bohm phase shift in general case on noncommutative space. We find there are two kinds of contribution: momentum-dependent and momentum-independent corrections. For the momentum-dependent correction, there is a cancellation between the magnetic and electric phase shifts, just like the case on the commutative space. However, there is a non-trivial contribution in the momentum-independent correction. This is true for both the time-independent and time-dependent Aharonov-Bohm effects on the noncommutative space. However, for the time-dependent Aharonov-Bohm effect, there is no overwhelming background which exists in the time-independent Aharonov-Bohm effect on both commutative and noncommutative space. Therefore, the time-dependent Aharonov-Bohm can be sensitive to the spatial noncommutativity. The net correction is proportional to the product of the magnetic fluxes through the fundamental area represented by the noncommutative parameter θ, and through the surface enclosed by the trajectory of charged particle. More interestingly, there is an anti-collinear relation between the logarithms of the magnetic field B and the averaged flux Φ / N (N is the number of fringes shifted). This nontrivial relation can also provide a way to test the spatial noncommutativity. For BΦ / N ∼ 1, our estimation on the experimental sensitivity shows that it can reach the 10 GeV scale. This sensitivity can be enhanced by using stronger magnetic field strength, larger magnetic flux, as well as higher experimental precision on the phase shift.

  18. Probe of hydrogen atom in plasmas with magnetic, electric, and Aharonov-Bohm flux fields

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2016-09-01

    In this study, for the first time, the combined effects of external magnetic, electric, and Aharonov-Bohm (AB) flux fields on quantum levels of the hydrogen atom embedded in Debye and quantum plasmas modeled by the more general exponential cosine screened Coulomb (MGECSC) potential are investigated within cylindrical coordinate formalism using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in the potential. The corresponding Schrödinger equation is solved numerically in order to examine both strong and weak regimes and confinement effects of external fields. The influence of screening parameters of the MGECSC potential on quantum levels of the hydrogen atom is also studied in detail in the presence of external magnetic, electric, and AB flux fields. As it is possible to model both Debye and quantum plasmas by using screening parameters in the MGECSC potential, the effects of each plasma environment on quantum levels of the hydrogen atom are also considered in the external fields. It is observed that there are important results of external fields on the total interaction potential profile, and the most dominant one in these fields is the magnetic field. Furthermore, the effects of confinement on the physical state of the plasma environment is a subject of this study. These details would be important in experimental and theoretical investigations in plasma and atomic physics fields.

  19. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    PubMed

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  20. Off-diagonal long-range order, restricted gauge transformations, and Aharonov-Bohm effect in conductors

    SciTech Connect

    Peshkin, M.

    1996-03-01

    The electrons in a conductor surrounding an external magnetic field are acted on by a vector potential that cannot be removed by a gauge transformation. Nevertheless, a macroscopic normal conductor can experience no Aharonov-Bohm (AB) effect. That is proved by assuming only that a normal conductor lacks off-diagonal long-range order (ODLRO), which means that the electrons lack long-range phase coherence. Then by restricting the Hilbert space to density matrices which lack ODLRO, one can introduce a restricted gauge transformation that removes the interaction of the conductor with the vector potential. Consequently, the AB effect on a beam particle is not shielded by the conductor. {copyright} {ital 1996 The American Physical Society.}

  1. Aharonov-Bohm oscillations and spin-polarized transport in a mesoscopic ring with a magnetic impurity

    SciTech Connect

    Joshi, Sandeep K.; Sahoo, Debendranath; Jayannavar, A. M.

    2001-08-15

    We present a detailed analysis of Aharonov-Bohm (AB) interference oscillations manifested through transmission of an electron in a mesoscopic ring with a magnetic impurity atom inserted in one of its arms. Spin-polarized transport is also studied. The electron interacts with the impurity through exchange interaction, leading to spin-flip scattering. Transmission in the spin-flipped and -unflipped channels are explicitly calculated. We show that entanglement between electron and spin-flipper states leads to reduction of AB oscillations in spite of the absence of any inelastic scattering. The spin conductance (related to spin-polarized transmission coefficient) is asymmetric under flux reversal, as opposed to the two-probe conductance, which is symmetric. We point out certain limitations of this model in regard to the general notion of dephasing in quantum mechanics.

  2. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-05-01

    This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.

  3. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields.

    PubMed

    Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-05-01

    This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.

  4. Two-Particle Nonlocal Aharonov-Bohm Effect from Two Single-Particle Emitters

    NASA Astrophysics Data System (ADS)

    Splettstoesser, Janine

    2010-03-01

    High-frequency single-particle emitters have been realized experimentally in the integer quantum Hall effect regime [1]: the particles are injected into edge states, operating as wave guides, and encounter splitters realized by quantum point contacts. These tools allow for the implementation of complex interferometers in mesoscopic systems showing two-particle interference effects. An example for tunable two-particle correlations is manifest in the electronic analogue of the Hong-Ou-Mandel interferometer [2], where a noise suppression is found due to the Pauli principle. In the work presented here we explore the entanglement production from two uncorrelated sources. We therefore propose a mesoscopic circuit in the quantum Hall effect regime comprising two independent single-particle sources and two distant Mach-Zehnder interferometers with magnetic fluxes. This and the tunability of the single-particle sources allow in a controllable way to produce orbitally entangled electrons [3]. Two-particle correlations appear as a consequence of erasing of which-path information due to collisions taking place at distant interferometers and in general at different times. While the current in this setup is insensitive to the magnetic flux, the two-particle correlations manifest themselves as an Aharonov-Bohm effect in the noise. In an appropriate time-interval the concurrence reaches a maximum and a Bell inequality is violated, proving the existence of time-bin entanglement.[4pt] [1] G. Fève, A. Mah'e, J.-M. Berroir, T. Kontos, B. Placais, D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, Science 316, 1169 (2007).[0pt] [2] S. Ol'Khovskaya, J. Splettstoesser, M. Moskalets, and M. Buttiker, Phys. Rev. Lett. 101, 166802 (2008).[0pt] [3] J. Splettstoesser, M. Moskalets, and M. Buttiker, Phys. Rev. Lett.103, 076804 (2009).

  5. Dynamics of One-Dimensional Bose Liquids: Andreev-Like Reflection at Y Junctions and the Absence of the Aharonov-Bohm Effect

    SciTech Connect

    Tokuno, Akiyuki; Oshikawa, Masaki; Demler, Eugene

    2008-04-11

    We study one-dimensional Bose liquids of interacting ultracold atoms in the Y-shaped potential when each branch is filled with atoms. We find that the excitation packet incident on a single Y junction should experience a negative density reflection analogous to the Andreev reflection at normal-superconductor interfaces, although the present system does not contain fermions. In a ring-interferometer-type configuration, we find that the transport is completely insensitive to the (effective) flux contained in the ring, in contrast with the Aharonov-Bohm effect of a single particle in the same geometry.

  6. Dynamics of one-dimensional Bose liquids: Andreev-like reflection at Y junctions and the absence of the Aharonov-Bohm effect.

    PubMed

    Tokuno, Akiyuki; Oshikawa, Masaki; Demler, Eugene

    2008-04-11

    We study one-dimensional Bose liquids of interacting ultracold atoms in the Y-shaped potential when each branch is filled with atoms. We find that the excitation packet incident on a single Y junction should experience a negative density reflection analogous to the Andreev reflection at normal-superconductor interfaces, although the present system does not contain fermions. In a ring-interferometer-type configuration, we find that the transport is completely insensitive to the (effective) flux contained in the ring, in contrast with the Aharonov-Bohm effect of a single particle in the same geometry.

  7. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  8. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    PubMed

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  9. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    PubMed Central

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  10. The Aharonov-Bohm effect in Möbius rings

    NASA Astrophysics Data System (ADS)

    Li, Zehao; Ram-Mohan, L.; CenterComputational NanoScience Team

    2013-03-01

    Electron transmission through finite-width 2D ring structures is calculated for cylindrical, flat (Aharonov-Bohm), and Möbius rings. In the presence of an external magnetic field, curves of constructive transmission display a pattern similar to that for a 1D ring. The periodicity in the magnetic flux, in units of h / e , is weakly broken on 2D rings of finite width, so that a description with a 1D-path is very acceptable. The unusual states with half-integer values of observed on Möbius rings, display a different characteristic in transmission. Such resonant states are in constructive interference for transmission at magnetic fields where the contribution from ordinary states with integer is in destructive interference, and vice versa. This leads to an alternating dominance of the set of half-integer states and the set of integer states in transport with increasing magnetic fields. We anticipate that Möbius rings would be synthesized with graphene ribbons in the near future. Z.L. acknowledges support from a Presidents Undergraduate Fellowship and a Summer Undergraduate Research Fellowship at WPI.

  11. Quantum interference and Aharonov-Bohm oscillations in topological insulators

    NASA Astrophysics Data System (ADS)

    Bardarson, Jens H.; Moore, Joel E.

    2013-05-01

    Topological insulators (TIs) have an insulating bulk but a metallic surface. In the simplest case, the surface electronic structure of a three-dimensional (3D) TI is described by a single two-dimensional (2D) Dirac cone. A single 2D Dirac fermion cannot be realized in an isolated 2D system with time-reversal symmetry, but rather owes its existence to the topological properties of the 3D bulk wavefunctions. The transport properties of such a surface state are of considerable current interest; they have some similarities with graphene, which also realizes Dirac fermions, but have several unique features in their response to magnetic fields. In this review we give an overview of some of the main quantum transport properties of TI surfaces. We focus on the efforts to use quantum interference phenomena, such as weak anti-localization and the Aharonov-Bohm effect, to verify in a transport experiment the Dirac nature of the surface state and its defining properties. In addition to explaining the basic ideas and predictions of the theory, we provide a survey of recent experimental work.

  12. Aharonov-Bohm interference in topological insulator nanoribbons.

    PubMed

    Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi

    2010-03-01

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi(2)Se(3) and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi(2)Se(3) nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Planck's constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  13. Quantum interference and Aharonov-Bohm oscillations in topological insulators.

    PubMed

    Bardarson, Jens H; Moore, Joel E

    2013-05-01

    Topological insulators (TIs) have an insulating bulk but a metallic surface. In the simplest case, the surface electronic structure of a three-dimensional (3D) TI is described by a single two-dimensional (2D) Dirac cone. A single 2D Dirac fermion cannot be realized in an isolated 2D system with time-reversal symmetry, but rather owes its existence to the topological properties of the 3D bulk wavefunctions. The transport properties of such a surface state are of considerable current interest; they have some similarities with graphene, which also realizes Dirac fermions, but have several unique features in their response to magnetic fields. In this review we give an overview of some of the main quantum transport properties of TI surfaces. We focus on the efforts to use quantum interference phenomena, such as weak anti-localization and the Aharonov-Bohm effect, to verify in a transport experiment the Dirac nature of the surface state and its defining properties. In addition to explaining the basic ideas and predictions of the theory, we provide a survey of recent experimental work.

  14. Paradoxes of the Aharonov-Bohm and the Aharonov-Casher Effects

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev

    For a believer in locality of Nature, the Aharonov-Bohm effect and the Aharonov-Casher effect are paradoxes. I discuss these and other Aharonov's paradoxes and propose a local explanation of these effects. If the solenoid in the Aharonov-Bohm effect is treated quantum mechanically, the effect can be explained via local interaction between the field of the electron and the solenoid. I argue that the core of the Aharonov-Bohm and the Aharonov-Casher effects is that of quantum entanglement: the quantum wave function describes all systems together. [Editor's note: for a video of the talk given by Prof. Vaidman at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-21.

  15. The Berry phase and the Aharonov-Bohm effect on optical activity.

    PubMed

    Tan, C Z

    2008-09-15

    The helical crystal structure in optically active media acts as the natural micro-solenoids for the electromagnetic waves passing through them, producing the longitudinal magnetic field in the direction of the axis of helices. Magnetic flux through the helical structure is quantized. The Berry phase is induced by rotation of the electrons around the helical structure. Optical rotation is related to the difference in the accumulative Berry phase between the right-, and the left-circularly polarized waves, which is proportional to the magnetic flux through the helical structure, according to the Aharonov-Bohm effect. The optical activity is the natural Faraday effect and the natural Aharonov-Bohm effect.

  16. Dephasing by extremely dilute magnetic impurities revealed by Aharonov-Bohm oscillations.

    PubMed

    Pierre, F; Birge, Norman O

    2002-11-11

    We have probed the magnetic field dependence of the electron phase coherence time tau(phi) by measuring the Aharonov-Bohm conductance oscillations of mesoscopic Cu rings. Whereas tau(phi) determined from the low-field magnetoresistance saturates below 1 K, the amplitude of Aharonov-Bohm h/e oscillations increases strongly on a magnetic field scale proportional to the temperature. This provides strong evidence that a likely explanation for the frequently observed saturation of tau(phi) at low temperature in weakly disordered metallic thin films is the presence of extremely dilute magnetic impurities.

  17. Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes.

    PubMed

    Zaric, Sasa; Ostojic, Gordana N; Kono, Junichiro; Shaver, Jonah; Moore, Valerie C; Strano, Michael S; Hauge, Robert H; Smalley, Richard E; Wei, Xing

    2004-05-21

    We report interband magneto-optical spectra for single-walled carbon nanotubes in high magnetic fields up to 45 tesla, confirming theoretical predictions that the band structure of a single-walled carbon nanotube is dependent on the magnetic flux phi threading the tube. We have observed field-induced optical anisotropy as well as red shifts and splittings of absorption and photoluminescence peaks. The amounts of shifts and splittings depend on the value of phi/phi(0) and are quantitatively consistent with theories based on the Aharonov-Bohm effect. These results represent evidence of the influence of the Aharonov-Bohm phase on the band gap of a solid.

  18. Aharonov-Bohm signature for neutral polarized excitons in type-II quantum dot ensembles.

    PubMed

    Ribeiro, E; Govorov, A O; Carvalho, W; Medeiros-Ribeiro, G

    2004-03-26

    The Aharonov-Bohm effect is commonly believed to be a typical feature of the motion of a charged particle interacting with the electromagnetic vector potential. Here we present a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, revealing the Aharonov-Bohm-type oscillations for neutral excitons when the hole ground state changes its angular momentum from l(h)=0 to l(h)=1, 2, and 3. The hole-ring parameters derived from a simple model are in excellent agreement with the structural parameters for this system.

  19. Cloaking of matter waves under the global Aharonov-Bohm effect

    SciTech Connect

    Lin, D.-H.; Luan, P.-G.

    2009-05-15

    We discuss the Aharonov-Bohm effect of a magnetic flux for its influence on a two-dimensional quantum cloak. It is shown that the matter wave of a charged particle under the global influence of the Aharonov-Bohm effect can still be perfectly cloaked and guided by the quantum cloak. Since the presence of the global influence of a magnetic flux on charged particles is universal, the perfect cloaking and guiding nature not only provides an ideal setup to cloak an object from matter waves but also provides an ideal setup to test the global physics of charged matter waves in the presence of a bare magnetic flux.

  20. Photon mass and quantum effects of the Aharonov-Bohm type

    SciTech Connect

    Spavieri, G.; Rodriguez, M.

    2007-05-15

    The magnetic field due to the photon rest mass m{sub ph} modifies the standard results of the Aharonov-Bohm effect for electrons, and of other recent quantum effects. For the effect involving a coherent superposition of beams of particles with opposite electromagnetic properties, by means of a tabletop experiment, the limit m{sub ph}{approx_equal}10{sup -51} g is achievable, improving by 6 orders of magnitude that derived by Boulware and Deser for the Aharonov-Bohm effect.

  1. The Aharonov-Bohm Effect and the Non-Locality Debate

    NASA Astrophysics Data System (ADS)

    Kennedy, John Bernard, Jr.

    The Aharonov-Bohm effect is a celebrated quantum mechanical effect which some have claimed is an example of non-locality, i.e., of action at a distance. This thesis examines the theory and experimental tests of the effect, and compares it to another supposed example of non-locality, the EPR correlations. The role of the electromagnetic potentials in the quantum formalism, and especially gauge invariance and the physical significance of the vector potential, is detailed. I argue that K. H. Yang's proofs of the gauge arbitrariness of the conventional formalism are mistaken. Four central and conflicting theories of the AB effect are reviewed and critiqued: (i) physically significant potentials, (ii) local effects of electromagnetic fluxes, (iii) multi-valued wave functions, and (iv) non-locality. An entire chapter is devoted to the topological interpretations of the effect which model the potentials as connections in higher-dimensional fiber bundle geometries. The relation between the AB effect and geometric phase phenomena, like Berry's phase, is studied. The new geometric models inherit the merits and demerits of the potentials interpretation. The quantum no-signalling proofs for the case of the EPR-Bohm-Bell experiments are analyzed and unified in a single theorem: they are simple consequences of the tenstor product representation of combined quantum systems. All proposed local theories of the AB effect are finally unsatisfactory--for a variety of reasons. However, given the lack of a clear criterion for non-locality, there are no decisive grounds for the claim that the AB effect is non-local.

  2. Duality in the Aharonov-Casher and Aharonov-Bohm effects

    NASA Astrophysics Data System (ADS)

    Rohrlich, Daniel

    2010-09-01

    A neutral particle with a magnetic moment interacts with a charged particle. Such an interaction is invariant under the interchange of the particles. This interchangeability or duality of the particles elucidates subtleties of the Aharonov-Bohm and Aharonov-Casher effects, including whether and how these two effects are themselves dual.

  3. Exact Green's function of the Aharonov-Bohm-Coulomb system via the Feynman-Kac formula

    NASA Astrophysics Data System (ADS)

    Chuu, Der-San; Lin, De-Hone

    1999-10-01

    The Green's function of the relativistic Aharonov-Bohm-Coulomb system is given by the Feynman-Kac formula. The earlier treatment is based on the multiple-valued transformation of Levi-Civitá. The method used in this contribution involves only the explicit form of a simple Green's function and an explicit path integral is avoided.

  4. Electron-positron pair production in the Aharonov-Bohm potential

    SciTech Connect

    Skarzhinsky, V.D. |; Audretsch, J.; Jasper, U.

    1996-02-01

    In the framework of QED we evaluate the cross section for electron-positron pair production by a single photon in the presence of the external Aharonov-Bohm potential in first order of perturbation theory. We analyze energy, angular, and polarization distributions at different energy regines: near the threshold and at high photon energies. {copyright} {ital 1996 The American Physical Society.}

  5. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    SciTech Connect

    Macdougall, James Singleton, Douglas

    2014-04-15

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology of the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.

  6. The Aharonov-Bohm effect and its applications to electron phase microscopy.

    PubMed

    Tonomura, Akira

    2006-04-01

    The Aharonov-Bohm effect was conclusively established by a series of our electron interference experiments, with the help of some advanced techniques, such as coherent field-emission electron beams and microlithography. Using this fundamental principle behind the interaction of an electron wave with electromagnetic fields, new observation techniques were developed to directly observe microscopic objects and quantum phenomena previously unobservable.

  7. Spin-charge separation in Aharonov-Bohm rings of interacting electrons.

    PubMed

    Hallberg, K; Aligia, A A; Kampf, A P; Normand, B

    2004-08-06

    We investigate the properties of strongly correlated electronic models on a flux-threaded ring connected to semi-infinite free-electron leads. The interference pattern of such an Aharonov-Bohm ring shows sharp dips at certain flux values, determined by the filling, which are a consequence of spin-charge separation in a nanoscopic system.

  8. Aharonov-Bohm and Berry phases for a quantum cloud of charge

    SciTech Connect

    Aharonov, Y.; Coleman, S.; Goldhaber, A.S.; Nussinov, S.; Popescu, S.; Reznik, B.; Rohrlich, D.; Vaidman, L. Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138 Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840 Service de Physique Theorique, Universite Libre de Bruxelles, Campus Plaine, C.P. 225, Boulevard du Triomphe, B-1050 Brussels )

    1994-08-15

    We investigate the phase accumulated by a charged particle in an extended quantum state as it encircles one or more magnetic fluxons, each carrying half a flux unit. A simple, essentially topological analysis reveals an interplay between the Aharonov-Bohm phase and Berry's phase.

  9. Recovery of the Aharonov-Bohm oscillations in asymmetrical quantum rings

    NASA Astrophysics Data System (ADS)

    Voskoboynikov, O.

    2016-07-01

    We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled IncGa1-cAs/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape) under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in IncGa1-cAs/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.

  10. Nucleon statistics in holographic QCD: Aharonov-Bohm effect in a matrix model

    SciTech Connect

    Hashimoto, Koji; Iizuka, Norihiro

    2010-11-15

    We show that the Aharonov-Bohm effect in the nuclear matrix model [K. Hashimoto, N. Iizuka, and P. Yi, J. High Energy Phys. 10 (2010), 3.] derives the statistical nature of nucleons in holographic QCD. For N{sub c}=odd (even), the nucleon is shown to be a fermion (boson).

  11. Line of magnetic monopoles and an extension of the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Chee, J.; Lu, W.

    2016-10-01

    In the Landau problem on the two-dimensional plane, physical displacement of a charged particle (i.e., magnetic translation) can be induced by an in-plane electric field. The geometric phase accompanying such magnetic translation around a closed path differs from the topological phase of Aharonov and Bohm in two essential aspects: The particle is in direct contact with the magnetic field and the geometric phase has an opposite sign from the Aharonov-Bohm phase. We show that magnetic translation on the two-dimensional cylinder implemented by the Schrödinger time evolution truly leads to the Aharonov-Bohm effect. The magnetic field normal to the cylinder's surface corresponds to a line of magnetic monopoles of uniform density whose simulation is currently under investigation in cold atom physics. In order to characterize the quantum problem, one needs to specify the value of the magnetic flux (modulo the flux unit) that threads but not in touch with the cylinder. A general closed path on the cylinder may enclose both the Aharonov-Bohm flux and the local magnetic field that is in direct contact with the charged particle. This suggests an extension of the Aharonov-Bohm experiment that naturally takes into account both the geometric phase due to local interaction with the magnetic field and the topological phase of Aharonov and Bohm.

  12. Nucleon statistics in holographic QCD: Aharonov-Bohm effect in a matrix model

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro

    2010-11-01

    We show that the Aharonov-Bohm effect in the nuclear matrix model [K. Hashimoto, N. Iizuka, and P. Yi, J. High Energy Phys.JHEPFG1029-8479 10 (2010), 3.10.1007/JHEP10(2010)003] derives the statistical nature of nucleons in holographic QCD. For Nc=odd (even), the nucleon is shown to be a fermion (boson).

  13. Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2.

    PubMed

    Willett, R L; Nayak, C; Shtengel, K; Pfeiffer, L N; West, K W

    2013-11-01

    We show that the resistance of the ν = 5/2 quantum Hall state, confined to an interferometer, oscillates with the magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of different sizes, resistance oscillations at ν = 7/3 and integer filling factors have the magnetic field period expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3, 3, 1) state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-type non-Abelian state there would be a rapid oscillation associated with the "even-odd effect" and a slower one associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of the quasiparticle braiding statistics. Our measurements at ν = 5/2 are consistent with the latter.

  14. The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results

    SciTech Connect

    Ballesteros, Miguel; Weder, Ricardo

    2009-12-15

    The Aharonov-Bohm effect is a fundamental issue in physics. It describes the physically important electromagnetic quantities in quantum mechanics. Its experimental verification constitutes a test of the theory of quantum mechanics itself. The remarkable experiments of Tonomura et al. ['Observation of Aharonov-Bohm effect by electron holography', Phys. Rev. Lett 48, 1443 (1982) and 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave', Phys. Rev. Lett 56, 792 (1986)] are widely considered as the only experimental evidence of the physical existence of the Aharonov-Bohm effect. Here we give the first rigorous proof that the classical ansatz of Aharonov and Bohm of 1959 ['Significance of electromagnetic potentials in the quantum theory', Phys. Rev. 115, 485 (1959)], that was tested by Tonomura et al., is a good approximation to the exact solution to the Schroedinger equation. This also proves that the electron, that is, represented by the exact solution, is not accelerated, in agreement with the recent experiment of Caprez et al. in 2007 ['Macroscopic test of the Aharonov-Bohm effect', Phys. Rev. Lett. 99, 210401 (2007)], that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Under the assumption that the incoming free electron is a Gaussian wave packet, we estimate the exact solution to the Schroedinger equation for all times. We provide a rigorous, quantitative error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. Our bound is uniform in time. We also prove that on the Gaussian asymptotic state the scattering operator is given by a constant phase shift, up to a quantitative error bound that we provide. Our results show that for intermediate size electron wave packets, smaller than the ones used in the Tonomura et al. experiments, quantum mechanics predicts the results observed by Tonomura et al. with an error bound smaller than 10

  15. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Anomalous Kondo-Switching Effect of a Spin-Flip Quantum Dot Embedded in an Aharonov-Bohm Ring

    NASA Astrophysics Data System (ADS)

    Chen, Xiong-Wen; Shi, Zhen-Gang; Song, Ke-Hui

    2009-11-01

    We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AB) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC is suppressed due to the enhancing R weakening the Kondo resonance. On the contrary, in the large AB ring, with R increasing, the peak of PC firstly moves up to max-peak and then down. Especially, the PC phase shift of π appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a candidate for quantum switch.

  16. Aharonov-Bohm oscillations caused by non-topological surface states in Dirac nanowires

    NASA Astrophysics Data System (ADS)

    Enaldiev, V. V.; Volkov, V. A.

    2016-12-01

    One intriguing fingerprint of surface states in topological insulators is the Aharonov-Bohm effect in magnetoconductivity of nanowires. We show that surface states in nanowires of Dirac materials (bismuth, bismuth antimony, and lead tin chalcogenides) being in non-topological phase, exhibit the same effect as amendment to magnetoconductivity of the bulk states. We consider a simple model of a cylindrical nanowire, which is described by the 3D Dirac equation with a general T -invariant boundary condition. The boundary condition is determined by a single phenomenological parameter whose sign defines topological-like and nontopological surface states. The non-topological surface states emerge outside the gap. In longitudinal magnetic field B they lead to Aharonov-Bohm amendment for the density of states and correspondingly for conductivity of the nanowire. The phase of these magnetooscillations increases with B from π to 2π.

  17. Graphene under the influence of Aharonov-Bohm flux and constant magnetic field

    NASA Astrophysics Data System (ADS)

    Stepanov, E. A.; Zhukovsky, V. Ch.

    2016-09-01

    Investigation of real two-dimensional systems with Dirac-like electronic behavior under the influence of magnetic field is challenging and leads to many interesting physical results. In this paper we study a 2D graphene model with a particular form of magnetic field as a superposition of a homogeneous field and an Aharonov-Bohm vortex. For this configuration, electronic wave functions and the energy spectrum are obtained and it is shown that the magnetic Aharonov-Bohm vortex plays the role of a charge impurity. As a demonstration of vacuum properties of the system, vacuum current, as well as an electric current, is calculated and their representation for particular limiting cases of a magnetic field is obtained.

  18. Vortex degeneracy lifting and Aharonov-Bohm-like interference in deformed photonic graphene.

    PubMed

    Zhang, Peng; Gallardo, Daniel; Liu, Sheng; Gao, Yuanmei; Li, Tongcang; Wang, Yuan; Chen, Zhigang; Zhang, Xiang

    2017-03-01

    Photonic graphene, a honeycomb lattice of evanescently coupled waveguides, has provided a superior platform for investigating a host of fundamental phenomena such as unconventional edge states, synthetic magnetic fields, photonic Landau levels, Floquet topological insulators, and pseudospin effects. Here, we demonstrate both experimentally and numerically, topological vortex degeneracy lifting and Aharonov-Bohm-like interference from local deformation in a photonic honeycomb lattice. When a single valley is excited, lattice deformation leads to the generation of a vortex pair due to the lifting of degeneracy associated with pseudospin states. In the case of double-valley excitation, we observe the Aharonov-Bohm-like interference merely due to the deformation of the graphene lattice, which gives rise to an artificial gauge field. Our results may provide insight into the understanding of similar phenomena in other graphene-like materials and structures.

  19. Aharonov-Bohm effect and resonances in the circular quantum billiard with two leads

    SciTech Connect

    Ree, S.; Reichl, L.E.

    1999-03-01

    We calculate the conductance through a circular quantum billiard with two leads and a point magnetic flux at the center. The boundary element method is used to solve the Schr{umlt o}dinger equation of the scattering problem, and the Landauer formula is used to calculate the conductance from the transmission coefficients. We use two different shapes of leads, straight and conic, and find that the conductance is affected by lead geometry, the relative positions of the leads and the magnetic flux. The Aharonov-Bohm effect can be seen from shifts and splittings of fluctuations. When the flux is equal to h/2e and the angle between leads is 180{degree}, the conductance tends to be suppressed to zero in the low-energy range due to the Aharonov-Bohm effect. {copyright} {ital 1999} {ital The American Physical Society}

  20. Aharonov-Bohm oscillations caused by non-topological surface states in Dirac nanowires

    NASA Astrophysics Data System (ADS)

    Enaldiev, V. V.; Volkov, V. A.

    2016-12-01

    One intriguing fingerprint of surface states in topological insulators is the Aharonov-Bohm effect in magnetoconductivity of nanowires. We show that surface states in nanowires of Dirac materials (bismuth, bismuth antimony, and lead tin chalcogenides) being in non-topological phase, exhibit the same effect as amendment to magnetoconductivity of the bulk states. We consider a simple model of a cylindrical nanowire, which is described by the 3D Dirac equation with a general T-invariant boundary condition. The boundary condition is determined by a single phenomenological parameter whose sign defines topological-like and non-topological surface states. The non-topological surface states emerge outside the gap. In a longitudinal magnetic field B, they lead to Aharonov-Bohm amendment for the density of states and correspondingly for the conductivity of the nanowire. The phase of these magnetic oscillations increases with B from π to 2π.

  1. Aharonov-Bohm effect in quantum-to-classical correspondence of the Heisenberg principle

    SciTech Connect

    Lin, D.-H.; Chang, J.-G.; Hwang, C.-C.

    2003-04-01

    The exact energy spectrum and wave function of a charged particle moving in the Coulomb field and Aharonov-Bohm's magnetic flux are solved by the nonintegrable phase factor. The universal formula for the matrix elements of the radial operator r{sup {alpha}} of arbitrary power {alpha} is given by an analytical solution. The difference between the classical limit of matrix elements of inverse radius in quantum mechanics and the Fourier components of the corresponding quantity for the pure Coulomb system in classical mechanics is examined in reference to the correspondence principle of Heisenberg. Explicit calculation shows that the influence of nonlocal Aharonov-Bohm effect exists even in the classical limit. The semiclassical quantization rule for systems containing the topological effect is presented in the light of Heisenberg's corresponding principle.

  2. Noncommutative correction to Aharonov-Bohm scattering: A field theory approach

    SciTech Connect

    Anacleto, M.A.; Gomes, M.; Silva, A.J. da; Spehler, D.

    2004-10-15

    We study a noncommutative nonrelativistic theory in 2+1 dimensions of a scalar field coupled to the Chern-Simons field. In the commutative situation this model has been used to simulate the Aharonov-Bohm effect in the field theory context. We verified that, contrary to the commutative result, the inclusion of a quartic self-interaction of the scalar field is not necessary to secure the ultraviolet renormalizability of the model. However, to obtain a smooth commutative limit the presence of a quartic gauge invariant self-interaction is required. For small noncommutativity we fix the corrections to the Aharonov-Bohm scattering and prove that up to one loop the model is free from dangerous infrared/ultraviolet divergences.

  3. Scattering theory and the Aharonov-Bohm effect in quasiclassical physics

    SciTech Connect

    Sitenko, Yurii A.; Vlasii, Nadiia D.

    2011-06-15

    Research Highlights: > Scattering Aharonov-Bohm effect. > Short-wavelength limit of scattered nonrelativistic particles. > Fraunhofer diffraction in the forward direction. > Fresnel diffraction in the forward region in conical space. > Enclosed magnetic flux is a gate for the propagation of quasiclassical particles. - Abstract: Scattering of a nonrelativistic quantum-mechanical particle by an impenetrable magnetic vortex is considered. The nonvanishing transverse size of the vortex is taken into account, and the limit of short, as compared to this size, wavelengths of the scattered particle is analyzed. We show that the scattering Aharonov-Bohm effect persists in the quasiclassical limit owing to the diffraction persisting in the short-wavelength limit. As a result, the vortex flux serves as a gate for the propagation of short-wavelength, almost classical, particles. This quasiclassical effect is more feasible to experimental detection in the case when space outside the vortex is conical.

  4. How the Test of Aharonov-Bohm Effect Was Initiated at Hitachi Laboratory

    NASA Astrophysics Data System (ADS)

    Osakabe, Nobuyuki

    2014-01-01

    I joined the Tonomura's team in 1980. Since then, I have seen his enthusiasm and creativity in science as a member of his team and later as director of the laboratory. I will discuss in this article how the industrially driven technologies met science at Hitachi Central Research Laboratory in the case of verification of the Aharonov-Bohm effect and other scientific achievements by Akira Tonomura.

  5. Time-dependent Pauli equation in the presence of the Aharonov-Bohm effect

    SciTech Connect

    Bouguerra, Y.; Bounames, A.; Maamache, M.; Saadi, Y.

    2008-04-15

    We use the Lewis-Riesenfeld theory to determine the exact form of the wavefunctions of a two-dimensional Pauli equation of a charged spin 1/2 particle with time-dependent mass and frequency in the presence of the Aharonov-Bohm effect and a two-dimensional time-dependent harmonic oscillator. We find that the irregular solution at the origin as well as the regular one contributes to the phase of the wavefunction.

  6. Interlayer Aharonov-Bohm interference in tilted magnetic fields in quasi-one-dimensional organic conductors.

    PubMed

    Cooper, Benjamin K; Yakovenko, Victor M

    2006-01-27

    Different types of angular magnetoresistance oscillations in quasi-one-dimensional layered materials, such as organic conductors (TMTSF)2X, are explained in terms of Aharonov-Bohm interference in interlayer electron tunneling. A two-parameter pattern of oscillations for generic orientations of a magnetic field is visualized and compared to the experimental data. Connections with angular magnetoresistance oscillations in other layered materials are discussed.

  7. Effects of nongauge potentials on the spin-1/2 Aharonov-Bohm problem

    SciTech Connect

    Hagen, C.R. )

    1993-12-15

    Some recent work has attempted to show that the singular solutions which are known to occur in the Dirac description of spin-1/2 Aharonov-Bohm scattering can be eliminated by the inclusion of strongly repulsive potentials inside the flux tube. It is shown here that these calculations are generally unreliable since they necessarily require potentials which lead to the occurrence of Klein's paradox. To avoid that difficulty the problem is solved within the framework of the Galilean spin-1/2 wave equation which is free of that particular complication. It is then found that the singular solutions can be eliminated provided that the nongauge potential is made energy dependent. The effect of the inclusion of a Coulomb potential is also considered with the result being that the range of flux parameter for which singular solutions are allowed is only one-half as great as in the pure Aharonov-Bohm limit. Expressions are also obtained for the binding energies which can occur in the combined Aharonov-Bohm-Coulomb system.

  8. TOPICAL REVIEW: Magnetoresistance of nanoscale molecular devices based on Aharonov Bohm interferometry

    NASA Astrophysics Data System (ADS)

    Hod, Oded; Baer, Roi; Rabani, Eran

    2008-09-01

    Control of conductance in molecular junctions is of key importance in the growing field of molecular electronics. The current in these junctions is often controlled by an electric gate designed to shift conductance peaks into the low bias regime. Magnetic fields, on the other hand, have rarely been used due to the small magnetic flux captured by molecular conductors (an exception is the Kondo effect in single-molecule transistors). This is in contrast to a related field, electronic transport through mesoscopic devices, where considerable activity with magnetic fields has led to a rich description of transport. The scarcity of experimental activity is due to the belief that significant magnetic response is obtained only when the magnetic flux is of the order of the quantum flux, while attaining such a flux for molecular and nanoscale devices requires unrealistic magnetic fields. Here we review recent theoretical work regarding the essential physical requirements necessary for the construction of nanometer-scale magnetoresistance devices based on an Aharonov-Bohm molecular interferometer. We show that control of the conductance properties using small fractions of a magnetic flux can be achieved by carefully adjusting the lifetime of the conducting electrons through a pre-selected single state that is well separated from other states due to quantum confinement effects. Using a simple analytical model and more elaborate atomistic calculations we demonstrate that magnetic fields which give rise to a magnetic flux comparable to 10-3 of the quantum flux can be used to switch a class of different molecular and nanometer rings, ranging from quantum corrals, carbon nanotubes and even a molecular ring composed of polyconjugated aromatic materials. The unique characteristics of the magnetic field as a gate is further discussed and demonstrated in two different directions. First, a three-terminal molecular router devices that can function as a parallel logic gate, processing

  9. Magnetoresistance of nanoscale molecular devices based on Aharonov-Bohm interferometry.

    PubMed

    Hod, Oded; Baer, Roi; Rabani, Eran

    2008-09-24

    Control of conductance in molecular junctions is of key importance in the growing field of molecular electronics. The current in these junctions is often controlled by an electric gate designed to shift conductance peaks into the low bias regime. Magnetic fields, on the other hand, have rarely been used due to the small magnetic flux captured by molecular conductors (an exception is the Kondo effect in single-molecule transistors). This is in contrast to a related field, electronic transport through mesoscopic devices, where considerable activity with magnetic fields has led to a rich description of transport. The scarcity of experimental activity is due to the belief that significant magnetic response is obtained only when the magnetic flux is of the order of the quantum flux, while attaining such a flux for molecular and nanoscale devices requires unrealistic magnetic fields. Here we review recent theoretical work regarding the essential physical requirements necessary for the construction of nanometer-scale magnetoresistance devices based on an Aharonov-Bohm molecular interferometer. We show that control of the conductance properties using small fractions of a magnetic flux can be achieved by carefully adjusting the lifetime of the conducting electrons through a pre-selected single state that is well separated from other states due to quantum confinement effects. Using a simple analytical model and more elaborate atomistic calculations we demonstrate that magnetic fields which give rise to a magnetic flux comparable to 10(-3) of the quantum flux can be used to switch a class of different molecular and nanometer rings, ranging from quantum corrals, carbon nanotubes and even a molecular ring composed of polyconjugated aromatic materials. The unique characteristics of the magnetic field as a gate is further discussed and demonstrated in two different directions. First, a three-terminal molecular router devices that can function as a parallel logic gate, processing

  10. Spin transfer in a ferromagnet-quantum dot and tunnel-barrier-coupled Aharonov-Bohm ring system with Rashba spin-orbit interactions.

    PubMed

    Chen, Xi; Zheng, Qing-Rong; Su, Gang

    2010-05-12

    The spin transfer effect in a ferromagnet-quantum dot (insulator)-ferromagnet Aharonov-Bohm (AB) ring system with Rashba spin-orbit (SO) interactions is investigated by means of the Keldysh nonequilibrium Green function method. It is found that both the magnitude and direction of the spin transfer torque (STT) acting on the right ferromagnet electrode can be effectively controlled by changing the magnetic flux threading the AB ring or the gate voltage on the quantum dot. The STT can be greatly augmented by matching a proper magnetic flux and an SO interaction at a cost of low electrical current. The STT, electrical current and spin current are uncovered to oscillate with the magnetic flux. The present results are expected to be useful for information storage in nanospintronics.

  11. Observation of a Biexciton Wigner Molecule by Fractional Optical Aharonov-Bohm Oscillations in a Single Quantum Ring.

    PubMed

    Kim, Hee Dae; Okuyama, Rin; Kyhm, Kwangseuk; Eto, Mikio; Taylor, Robert A; Nicolet, Aurelien L; Potemski, Marek; Nogues, Gilles; Dang, Le Si; Je, Ku-Chul; Kim, Jongsu; Kyhm, Ji-Hoon; Yoen, Kyu Hyoek; Lee, Eun Hye; Kim, Jun Young; Han, Il Ki; Choi, Wonjun; Song, Jindong

    2016-01-13

    The Aharonov-Bohm effect in ring structures in the presence of electronic correlation and disorder is an open issue. We report novel oscillations of a strongly correlated exciton pair, similar to a Wigner molecule, in a single nanoquantum ring, where the emission energy changes abruptly at the transition magnetic field with a fractional oscillation period compared to that of the exciton, a so-called fractional optical Aharonov-Bohm oscillation. We have also observed modulated optical Aharonov-Bohm oscillations of an electron-hole pair and an anticrossing of the photoluminescence spectrum at the transition magnetic field, which are associated with disorder effects such as localization, built-in electric field, and impurities.

  12. Scattering of spin 1/2 particles by the 2+1 dimensional noncommutative Aharonov-Bohm potential

    SciTech Connect

    Ferrari, A. F.; Gomes, M.; Stechhahn, C. A.

    2007-10-15

    In this work we study modifications in the Aharonov-Bohm effect for relativistic spin 1/2 particles due to the noncommutativity of spacetime in 2+1 dimensions. The noncommutativity gives rise to a correction to the Aharonov-Bohm potential which is highly singular at the origin, producing divergences in a perturbative expansion around the usual solution of the free Dirac equation. This problem is surmounted by using a perturbative expansion around the exact solution of the commutative Aharonov-Bohm problem. We calculate, in this setting, the scattering amplitude and the corrections to the differential and total cross sections for a spin 1/2 particle, in the small-flux limit.

  13. Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm-Casher Effects

    SciTech Connect

    Eckle, H.-P.; Johannesson, H.; Stafford, C. A.

    2001-07-02

    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.

  14. Andreev reflection and Aharonov-Bohm oscillations through a parallel-coupled double quantum dot with spin-flip scattering.

    PubMed

    Li, Jin-Liang; Li, Yu-Xian

    2008-11-19

    Using nonequilibrium Green's function techniques, we investigate Andreev reflection and Aharonov-Bohm oscillations through a parallel-coupled double quantum dot connected with a ferromagnetic lead and a superconductor lead. The possibility of controlling Andreev reflection and Aharonov-Bohm oscillations of the system is explored by tuning the interdot coupling, the gate voltage, the magnetic flux, and the intradot spin-flip scattering. When the spin-flip scattering increases, Fano resonant peaks resulting from the asymmetrical levels of the two quantum dots begin to split, and Aharonov-Bohm oscillations are suppressed. Due to the interdot coupling, one strongly and one weakly coupled state of the system can be formed. The magnetic flux can exchange the function of the two states, which leads to a swap effect.

  15. Kondo resonance in a mesoscopic ring coupled to a quantum dot: exact results for the Aharonov-Bohm-Casher effects.

    PubMed

    Eckle, H P; Johannesson, H; Stafford, C A

    2001-07-02

    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.

  16. Landau quantization, Aharonov-Bohm effect and two-dimensional pseudoharmonic quantum dot around a screw dislocation

    NASA Astrophysics Data System (ADS)

    Filgueiras, Cleverson; Rojas, Moises; Aciole, Gilson; Silva, Edilberto O.

    2016-11-01

    We investigate the influence of a screw dislocation on the energy levels and the wavefunctions of an electron confined in a two-dimensional pseudoharmonic quantum dot under the influence of an external magnetic field inside a dot and Aharonov-Bohm field inside a pseudodot. The exact solutions for energy eigenvalues and wavefunctions are computed as functions of applied uniform magnetic field strength, Aharonov-Bohm flux, magnetic quantum number and the parameter characterizing the screw dislocation, the Burgers vector. We investigate the modifications due to the screw dislocation on the light interband absorption coefficient and absorption threshold frequency. Two scenarios are possible, depending on if singular effects either manifest or not. We found that as the Burgers vector increases, the curves of frequency are pushed up towards of the growth of it. One interesting aspect which we have observed is that the Aharonov-Bohm flux can be tuned in order to cancel the screw effect of the model.

  17. Spin filter effects in an Aharonov-Bohm ring with double quantum dots under general Rashba spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Kondo, Kenji

    2016-01-01

    Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.

  18. Impurity-modulated Aharonov-Bohm oscillations and intraband optical absorption in quantum dot-ring nanostructures

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.; Manaselyan, A. Kh.; Laroze, D.; Kirakosyan, A. A.

    2016-07-01

    In this work we study the electronic states in quantum dot-ring complex nanostructures with an on-center hydrogenic impurity. The influence of the impurity on Aharonov-Bohm energy spectra oscillations and intraband optical absorption is investigated. It is shown that in the presence of a hydrogenic donor impurity the Aharonov-Bohm oscillations in quantum dot-ring structures become highly tunable. Furthermore, the presence of the impurity drastically changes the intraband absorption spectra due to the strong controllability of the electron localization type.

  19. Two-particle Aharonov-Bohm effect and entanglement in the electronic Hanbury Brown-Twiss setup.

    PubMed

    Samuelsson, P; Sukhorukov, E V; Büttiker, M

    2004-01-16

    We analyze a Hanbury Brown-Twiss geometry in which particles are injected from two independent sources into a mesoscopic conductor in the quantum Hall regime. All partial waves end in different reservoirs without generating any single-particle interference; in particular, there is no single-particle Aharonov-Bohm effect. However, exchange effects lead to two-particle Aharonov-Bohm oscillations in the zero-frequency current cross correlations. We demonstrate that this is related to two-particle orbital entanglement, detected via violation of a Bell inequality. The transport is along edge states and only adiabatic quantum point contacts and normal reservoirs are employed.

  20. Scaling relations and the role of bond-charge to the electron transmission through two coupled Aharonov-Bohm rings

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Tran, L.; Cain, C. A.

    2012-05-01

    Electron transport and the exact scaling relations for two irreducibly coupled Aharonov-Bohm (AB) rings with two external terminals attached are investigated. In coupled AB rings, a center common path exists where the phase of the electron wave function can be modulated by two applied fluxes simultaneously. The two coupled rings can be considered as two coupled atoms where Fermi level crossings exist not only between bonding states but also between bonding and anti-bonding states when the applied flux is varied in one of the two cases studied. We show that when the smallest atomic-sized coupled rings are scaled up any odd number of times, an identical electron transmission is preserved. When two terminals are attached to isolated coupled AB rings, there is a further redistribution of bond-charge stored within the center common path. The shift of the electron charge distribution to favor one end of the common path is accompanied by the redistribution of the two partial waves that traverse through the two arms from the input to the output terminal. The flux can control which arm the electron traverses through more favorably, and hence, the center path behaves like a flux-controlled charge reservoir for the electron transport. The unbalanced charge in the entire structure creates a space-charge effect much like a p-n junction. The paradox of the delocalization of the electron wave when two AB rings are coupled and the subsequent localization effect of the electron transport in a quantum network are described.

  1. The Analogue of the Aharonov-Bohm Effect for Bound States for Neutral Particles

    NASA Astrophysics Data System (ADS)

    Bakke, Knut; Furtado, C.

    We study the analogue of the Aharonov-Bohm effect for bound states for a neutral particle with a permanent magnetic dipole moment interacting with an external field. We consider a neutral particle confined to moving between two coaxial cylinders and show the dependence of the energy levels on the Aharonov-Casher quantum flux. Moreover, we show that the same flux dependence of the bound states can be found when the neutral particle is confined to a one-dimensional quantum ring and a quantum dot, and we also calculate the persistent currents in each case.

  2. Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov-Bohm effect.

    PubMed

    Yuan, Luqi; Xu, Shanshan; Fan, Shanhui

    2015-11-15

    We show that nonreciprocal unidirectional single-photon quantum transport can be achieved with the photonic Aharonov-Bohm effect. The system consists of a 1D waveguide coupling to two three-level atoms of the V-type. The two atoms, in addition, are each driven by an external coherent field. We show that the phase of the external coherent field provides a gauge potential for the photon states. With a proper choice of the phase difference between the two coherent fields, the transport of a single photon can exhibit unity contrast in its transmissions for the two propagation directions.

  3. Scattering of spin-polarized electron in an Aharonov-Bohm potential

    SciTech Connect

    Khalilov, V.R.; Ho, C.-L.

    2008-05-15

    The scattering of spin-polarized electrons in an Aharonov-Bohm vector potential is considered. We solve the Pauli equation in 3 + 1 dimensions taking into account explicitly the interaction between the three-dimensional spin magnetic moment of electron and magnetic field. Expressions for the scattering amplitude and the cross section are obtained for spin-polarized electron scattered off a flux tube of small radius. It is also shown that bound electron states cannot occur in this quantum system. The scattering problem for the model of a flux tube of zero radius in the Born approximation is briefly discussed.

  4. Evidence for dark excitons in a single carbon nanotube due to the Aharonov-Bohm effect.

    PubMed

    Matsunaga, Ryusuke; Matsuda, Kazunari; Kanemitsu, Yoshihiko

    2008-10-03

    We studied exciton structures and the Aharonov-Bohm effect in a single carbon nanotube using micro-photoluminescence (PL) spectroscopy under a magnetic field at low temperatures. A single sharp PL peak from the bright exciton state of a single carbon nanotube was observed under zero magnetic field, and the additional PL of dark exciton state appeared below the bright exciton peak under high magnetic fields. It was found that the split between the bright and dark exciton states is several millielectron volts at zero field. The tube diameter dependence of the splitting arises from the intervalley short-range Coulomb interaction.

  5. Anyonic Strings and Membranes in Anti-de Sitter Space and Dual Aharonov-Bohm Effects

    SciTech Connect

    Hartnoll, Sean A.

    2007-03-16

    It is observed that strings in AdS{sub 5}xS{sup 5} and membranes in AdS{sub 7}xS{sup 4} exhibit long range phase interactions. Two well separated membranes dragged around one another in anti-de Sitter space (AdS) acquire phases of 2{pi}/N. The same phases are acquired by a well separated F and D string dragged around one another. The phases are shown to correspond to both the standard and a novel type of Aharonov-Bohm effect in the dual field theory.

  6. Force-free gravitational redshift: proposed gravitational Aharonov-Bohm experiment.

    PubMed

    Hohensee, Michael A; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger

    2012-06-08

    We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atom's Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.

  7. Coherent control of interacting particles using dynamical and Aharonov-Bohm phases.

    PubMed

    Creffield, C E; Platero, G

    2010-08-20

    A powerful method of manipulating the dynamics of quantum coherent particles is to control the phase of their tunneling. We consider a system of two electrons hopping on a quasi-one-dimensional lattice in the presence of a uniform magnetic field and study the effect of adding a time-periodic driving potential. We show that the dynamical phases produced by the driving can combine with the Aharonov-Bohm phases to give precise control of the localization and dynamics of the particles, even in the presence of strong particle interactions.

  8. Magnetically tunable Kondo-Aharonov-Bohm effect in a triangular quantum dot.

    PubMed

    Kuzmenko, T; Kikoin, K; Avishai, Y

    2006-02-03

    The role of discrete orbital symmetry in mesoscopic physics is manifested in a system consisting of three identical quantum dots forming an equilateral triangle. Under a perpendicular magnetic field, this system demonstrates a unique combination of Kondo and Aharonov-Bohm features due to an interplay between continuous [spin-rotation SU(2)] and discrete (permutation C3v) symmetries, as well as U(1) gauge invariance. The conductance as a function of magnetic flux displays sharp enhancement or complete suppression depending on contact setups.

  9. Nonreciprocal diffraction of light based on double-transition-assisted photonic Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Li, Yanfeng

    2016-10-01

    We propose a nonreciprocal diffraction system based on the photonic Aharonov-Bohm effect. The implementation utilizes the simultaneous up and down photonic transition of Bloch modes in a dielectric grating created by time-harmonic dielectric constant modulation. This double transition process generates opposite effective magnetic fluxes for photons in symmetric and antisymmetric modes, which gives rise to nonreciprocal spatial interference between them. With the broken time-reversal symmetry, this system is possible to exhibit unidirectional highly efficient diffraction, which enables grating-based nonmagnetic isolation and circulation of free space light, and integrates the functions of gratings and isolators.

  10. Anyonic strings and membranes in anti-de Sitter space and dual Aharonov-Bohm effects.

    PubMed

    Hartnoll, Sean A

    2007-03-16

    It is observed that strings in AdS(5) x S(5) and membranes in AdS(7) x S(4) exhibit long range phase interactions. Two well separated membranes dragged around one another in anti-de Sitter space (AdS) acquire phases of 2 pi/N. The same phases are acquired by a well separated F and D string dragged around one another. The phases are shown to correspond to both the standard and a novel type of Aharonov-Bohm effect in the dual field theory.

  11. Aharonov-Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire

    NASA Astrophysics Data System (ADS)

    Cho, Sungjae; Dellabetta, Brian; Zhong, Ruidan; Schneeloch, John; Liu, Tiansheng; Gu, Genda; Gilbert, Matthew J.; Mason, Nadya

    2015-07-01

    Aharonov-Bohm oscillations effectively demonstrate coherent, ballistic transport in mesoscopic rings and tubes. In three-dimensional topological insulator nanowires, they can be used to not only characterize surface states but also to test predictions of unique topological behaviour. Here we report measurements of Aharonov-Bohm oscillations in (Bi1.33Sb0.67)Se3 that demonstrate salient features of topological nanowires. By fabricating quasi-ballistic three-dimensional topological insulator nanowire devices that are gate-tunable through the Dirac point, we are able to observe alternations of conductance maxima and minima with gate voltage. Near the Dirac point, we observe conductance minima for zero magnetic flux through the nanowire and corresponding maxima (having magnitudes of almost a conductance quantum) at magnetic flux equal to half a flux quantum; this is consistent with the presence of a low-energy topological mode. The observation of this mode is a necessary step towards utilizing topological properties at the nanoscale in post-CMOS applications.

  12. Aharonov-Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire.

    PubMed

    Cho, Sungjae; Dellabetta, Brian; Zhong, Ruidan; Schneeloch, John; Liu, Tiansheng; Gu, Genda; Gilbert, Matthew J; Mason, Nadya

    2015-07-09

    Aharonov-Bohm oscillations effectively demonstrate coherent, ballistic transport in mesoscopic rings and tubes. In three-dimensional topological insulator nanowires, they can be used to not only characterize surface states but also to test predictions of unique topological behaviour. Here we report measurements of Aharonov-Bohm oscillations in (Bi1.33Sb0.67)Se3 that demonstrate salient features of topological nanowires. By fabricating quasi-ballistic three-dimensional topological insulator nanowire devices that are gate-tunable through the Dirac point, we are able to observe alternations of conductance maxima and minima with gate voltage. Near the Dirac point, we observe conductance minima for zero magnetic flux through the nanowire and corresponding maxima (having magnitudes of almost a conductance quantum) at magnetic flux equal to half a flux quantum; this is consistent with the presence of a low-energy topological mode. The observation of this mode is a necessary step towards utilizing topological properties at the nanoscale in post-CMOS applications.

  13. Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot

    SciTech Connect

    Zhou, Xingfei; Qi, Fenghua; Jin, Guojun

    2014-04-21

    We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (Z{sub s}T ≈ 4.5) accompanying with a small charge figure of merit (Z{sub c}T ≈ 0) can be generated due to the remarkable bipolar effect. Further, when the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that Z{sub s}T is enhanced while Z{sub c}T is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results.

  14. Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring

    SciTech Connect

    Gonzalez-Santander, C.; Dominguez-Adame, F.; Roemer, R. A.

    2011-12-15

    We study theoretically the optical properties of an exciton in a two-dimensional ring threaded by a magnetic flux. We model the quantum ring by a confining potential that can be continuously tuned from strictly one-dimensional to truly two-dimensional with finite radius-to-width ratio. We present an analytic solution of the problem when the electron-hole interaction is short ranged. The oscillatory dependence of the oscillator strength as a function of the magnetic flux is attributed to the Aharonov-Bohm effect. The amplitude of the oscillations changes upon increasing the width of the quantum ring. We find that the Aharonov-Bohm oscillations of the ground state of the exciton decrease with increasing the width, but, remarkably, the amplitude remains finite down to radius-to-width ratios less than unity. We attribute this resilience of the excitonic oscillations to the nonsimple connectedness of our chosen confinement potential with its centrifugal core at the origin.

  15. Aharonov-Bohm order parameters for non-Abelian gauge theories

    SciTech Connect

    Lo, H.

    1995-12-15

    The Aharonov-Bohm effect has been invoked to probe the phase structure of a gauge theory. Yet in the case of non-Abelian gauge theories, it proves difficult to formulate a general procedure that unambiguously specifies the realization of the gauge symmetry, e.g., the unbroken subgroup. In this paper we propose a set of order parameters that will do the job. We articulate the fact that any useful Aharonov-Bohm experiment necessarily proceeds in two stages: calibration and measurement. World sheets of virtual cosmic string loops can wrap around test charges, thus changing their states relative to other charges in the universe. Consequently, repeated flux measurements with test charges will not necessarily agree. This was the main stumbling block to previous attempts to construct order parameters for non-Abelian gauge theories. In those works, the particles that one uses for calibration and subsequent measurement are stored in {ital separate} ``boxes.`` By storing all test particles in the {ital same} ``box`` we show how quantum fluctuations can be overcome. The importance of gauge fixing is also emphasized. {copyright} 1995 The American Physical Society.

  16. Optical detection of the Aharonov-Bohm effect on a charged particle in a nanoscale quantum ring.

    PubMed

    Bayer, M; Korkusinski, M; Hawrylak, P; Gutbrod, T; Michel, M; Forchel, A

    2003-05-09

    We study spectroscopically the current produced by a charged particle moving in a nanosize semiconductor quantum ring subject to a perpendicular magnetic field. Several Aharonov-Bohm oscillations are observed in the emission of a charged exciton confined in a single ring structure. The magnetic field period of the oscillations correlates well with the size of the rings.

  17. Inverse problems for the Schroedinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect

    SciTech Connect

    Eskin, G.

    2008-02-15

    We consider the inverse boundary value problem for the Schroedinger operator with time-dependent electromagnetic potentials in domains with obstacles. We extend the resuls of the author's works [Inverse Probl. 19, 49 (2003); 19, 985 (2003); 20, 1497 (2004)] to the case of time-dependent potentials. We relate our results to the Aharonov-Bohm effect caused by magnetic and electric fluxes.

  18. Extracting fractional statistics from superperiodic Aharonov-Bohm oscillations

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Ah; Kivelson, Steven

    2006-03-01

    We consider a quantum Hall interferometer in which the quasiparticles of a fractional quantum Hall (FQH) liquid with filling factor ν1=1/3 propagate around a large ring of radius r1, which is encircles an island with a smaller radius r2 occupied by FQH liquid with filling factor ν2=2/5. We study the conductance oscillations that result from the incompressibility of the FQH liquid occupying the island and the constructive interference condition for the quasiparticles encircling the outer ring. Since the constructive interference condition depends on both the magnetic flux enclosed by the encircling path and the statistical phase gained by the encircling quasiparticle due to the presence of quasiparticles in the island, such conductance oscillations can be used to detect signatures of fractional statistics. We find that oscillatory period depends on both radii, r1 and r2. We discuss the relation between our results and the recent experiments by F.E.Camino, W. Zhou and V.J. Goldman in the context of our model.

  19. Aharonov-Bohm Effect and High-Velocity Estimates of Solutions to the Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Ballesteros, Miguel; Weder, Ricardo

    2011-04-01

    The Aharonov-Bohm effect is a fundamental issue in physics that has been extensively studied in the literature and is discussed in most of the textbooks in quantum mechanics. The issues at stake are what are the fundamental electromagnetic quantities in quantum physics, if magnetic fields can act at a distance on charged particles and if the magnetic potentials have a real physical significance. The Aharonov-Bohm effect is a very controversial issue. From the experimental side the issues were settled by the remarkable experiments of Tonomura et al. (Phys Rev Lett 48:1443-1446, 1982; Phys Rev Lett 56:792-795, 1986) with toroidal magnets that gave a strong experimental evidence of the physical existence of the Aharonov-Bohm effect, and by the recent experiment of Caprez et al. (Phys Rev Lett 99:210401, 2007) that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Aharonov and Bohm (Phys Rev 115:485-491, 1959) proposed an Ansatz for the solution to the Schrödinger equation in simply connected regions of space where there are no electromagnetic fields. It consists of multiplying the free evolution by the Dirac magnetic factor. The Aharonov-Bohm Ansatz predicts the results of the experiments of Tonomura et al. and of Caprez et al. Recently in Ballesteros and Weder (Math Phys 50:122108, 2009) we gave the first rigorous proof that the Aharonov-Bohm Ansatz is a good approximation to the exact solution for toroidal magnets under the conditions of the experiments of Tonomura et al. We provided a rigorous, simple, quantitative, error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. In this paper we prove that these results do not depend on the particular geometry of the magnets and on the velocities of the incoming electrons used on the experiments, and on the gaussian shape of the wave packets used to obtain our quantitative error bound. We consider a general class of magnets that

  20. Electron spin transport through an Aharonov Bohm ring—a spin switch

    NASA Astrophysics Data System (ADS)

    Jia, Cheng-Long; Wang, Shun-Jin; Luo, Hong-Gang; An, Jun-Hong

    2004-03-01

    Electron spin transport through an Aharonov-Bohm ring driven by time-dependent inhomogeneous magnetic fields is treated. The system possesses an su(2)l × su(2)s dynamical symmetry in both orbital angular momentum space and spin space, and is thus proved to be integrable according to algebraic dynamics. Based on the analytical solutions, the relevant physical quantities such as electric current, spin current, magnetization and conductance are calculated. It is found that for a magnetic field with pgr/2 twist angle, the direction of spin-polarization will be reversed at zero magnetic flux. In the resonant rotating magnetic field, the spin transmission is oscillating with time t, and can reach unity, so that a complete spin flip can also be induced. The results obtained may be of practical significance for the design of nano-electromagnetic spin devices, such as a spin switch, in a controllable way.

  1. Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Zhou, Jun; Marchesoni, Fabio; Li, Baowen

    2014-04-01

    Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schrödinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring.

  2. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Li-Xian; Li, Cai-Zhen; Yu, Da-Peng; Liao, Zhi-Min

    2016-02-01

    Three-dimensional Dirac semimetals, three-dimensional analogues of graphene, are unusual quantum materials with massless Dirac fermions, which can be further converted to Weyl fermions by breaking time reversal or inversion symmetry. Topological surface states with Fermi arcs are predicted on the surface and have been observed by angle-resolved photoemission spectroscopy experiments. Although the exotic transport properties of the bulk Dirac cones have been demonstrated, it is still a challenge to reveal the surface states via transport measurements due to the highly conductive bulk states. Here, we show Aharonov-Bohm oscillations in individual single-crystal Cd3As2 nanowires with low carrier concentration and large surface-to-volume ratio, providing transport evidence of the surface state in three-dimensional Dirac semimetals. Moreover, the quantum transport can be modulated by tuning the Fermi level using a gate voltage, enabling a deeper understanding of the rich physics residing in Dirac semimetals.

  3. The heat kernel for two Aharonov-Bohm solenoids in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Šťovíček, Pavel

    2017-01-01

    A non-relativistic quantum model is considered with a point particle carrying a charge e and moving in the plane pierced by two infinitesimally thin Aharonov-Bohm solenoids and subjected to a perpendicular uniform magnetic field of magnitude B. Relying on a technique originally due to Schulman, Laidlaw and DeWitt which is applicable to Schrödinger operators on multiply connected configuration manifolds a formula is derived for the corresponding heat kernel. As an application of the heat kernel formula, approximate asymptotic expressions are derived for the lowest eigenvalue lying above the first Landau level and for the corresponding eigenfunction while assuming that | eB | R2 /(ħ c) is large, where R is the distance between the two solenoids.

  4. Interplay of Aharonov-Bohm and Berry phases in gate-defined graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Heinl, Julia; Schneider, Martin; Brouwer, Piet W.

    2013-06-01

    We study the influence of a magnetic flux tube on the possibility to electrostatically confine electrons in a graphene quantum dot. Without a magnetic flux tube, the graphene pseudospin is responsible for a quantization of the total angular momentum to half-integer values. On the other hand, with a flux tube containing half a flux quantum, the Aharonov-Bohm phase and Berry phase precisely cancel, and we find a state at zero angular momentum that cannot be confined electrostatically. In this case, true bound states only exist in regular geometries for which states without zero-angular-momentum component exist, while nonintegrable geometries lack confinement. We support these arguments with a calculation of the two-terminal conductance of a gate-defined graphene quantum dot, which shows resonances for a disk-shaped geometry and for a stadium-shaped geometry without flux tube, but no resonances for a stadium-shaped quantum dot with a π-flux tube.

  5. Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring

    NASA Astrophysics Data System (ADS)

    van der Wiel, W. G.; Nazarov, Yu. V.; de Franceschi, S.; Fujisawa, T.; Elzerman, J. M.; Huizeling, E. W.; Tarucha, S.; Kouwenhoven, L. P.

    2003-01-01

    We define a mesoscopic ring in a two-dimensional electron gas interrupted by two tunnel barriers, enabling us to apply a well-defined potential difference between the two halves of the ring. The electron interference in the ring is modified using a perpendicular magnetic field and a bias voltage. We observe clear Aharonov-Bohm oscillations up to the quantum Hall regime as a function of both parameters. The electron travel time between the barriers is found to increase with the applied magnetic field. Introducing a scattering model, we develop a method to measure the nonequilibrium electron dephasing time, which becomes very short at high voltages and magnetic fields. The relevance of electron-electron interactions is discussed.

  6. Scars in Dirac fermion systems: the influence of an Aharonov-Bohm flux

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Zhen; Huang, Liang; Chang, Kai

    2017-01-01

    Time-reversal ({ T }-) symmetry is fundamental to many physical processes. Typically, { T }-breaking for microscopic processes requires the presence of magnetic field. However, for 2D massless Dirac billiards, { T }-symmetry is broken automatically by the mass confinement, leading to chiral quantum scars. In this paper, we investigate the mechanism of { T }-breaking by analyzing the local current of the scarring eigenstates and their magnetic response to an Aharonov-Bohm flux. Our results unveil the complete understanding of the subtle { T }-breaking phenomena from both the semiclassical formula of chiral scars and the microscopic current and spin reflection at the boundaries, leading to a controlling scheme to change the chirality of the relativistic quantum scars. Our findings not only have significant implications on the transport behavior and spin textures of the relativistic pseudoparticles, but also add basic knowledge to relativistic quantum chaos.

  7. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires.

    PubMed

    Wang, Li-Xian; Li, Cai-Zhen; Yu, Da-Peng; Liao, Zhi-Min

    2016-02-23

    Three-dimensional Dirac semimetals, three-dimensional analogues of graphene, are unusual quantum materials with massless Dirac fermions, which can be further converted to Weyl fermions by breaking time reversal or inversion symmetry. Topological surface states with Fermi arcs are predicted on the surface and have been observed by angle-resolved photoemission spectroscopy experiments. Although the exotic transport properties of the bulk Dirac cones have been demonstrated, it is still a challenge to reveal the surface states via transport measurements due to the highly conductive bulk states. Here, we show Aharonov-Bohm oscillations in individual single-crystal Cd3As2 nanowires with low carrier concentration and large surface-to-volume ratio, providing transport evidence of the surface state in three-dimensional Dirac semimetals. Moreover, the quantum transport can be modulated by tuning the Fermi level using a gate voltage, enabling a deeper understanding of the rich physics residing in Dirac semimetals.

  8. Characterisation of ferromagnetic rings for Zernike phase plates using the Aharonov-Bohm effect.

    PubMed

    Edgcombe, C J; Ionescu, A; Loudon, J C; Blackburn, A M; Kurebayashi, H; Barnes, C H W

    2012-09-01

    Holographic measurements on magnetised thin-film cobalt rings have demonstrated both onion and vortex states of magnetisation. For a ring in the vortex state, the difference between phases of electron paths that pass through the ring and those that travel outside it was found to agree very well with Aharonov-Bohm theory within measurement error. Thus the magnetic flux in thin-film rings of ferromagnetic material can provide the phase shift required for phase plates in transmission electron microscopy. When a ring of this type is used as a phase plate, scattered electrons will be intercepted over a radial range similar to the ring width. A cobalt ring of thickness 20 nm can produce a phase difference of π/2 from a width of just under 30 nm, suggesting that the range of radial interception for this type of phase plate can be correspondingly small.

  9. On solutions of Coulomb system and its generalization to the Aharonov-Bohm effect

    SciTech Connect

    Lin, D.-H.

    2009-02-15

    The paper numerically analyzes the Aharonov-Bohm effect of an infinitely thin magnetic flux for its influence on a two- or three-dimensional (3d) solutions of Coulomb system in momentum and coordinate spaces. For any definitive eigenstate, it is shown that the flux shifts the position of the most probable radius (MPR) of a probability distribution inward or outward in momentum or coordinate spaces, respectively. Moreover, the probability density of the shifted MPR is amplified in the momentum space, while reduced in the coordinate space. Since the Coulomb force among charged particles dominate the structure of matter, shifting of the MPR controlling by the flux effect may be beneficial to the construction of nanostructure by manipulating the atomic and molecular bonds.

  10. Elementary Aharonov-Bohm system in three space dimensions: Quantum attraction with no classical force

    SciTech Connect

    Goldhaber, Alfred Scharff; Requist, Ryan

    2003-07-01

    As a consequence of the Aharonov-Bohm effect, there is a quantum-induced attraction between a charged particle and a rigid, impenetrable hoop made from an arbitrarily thin tube containing a superconductor quantum of magnetic flux. This is remarkable because in classical physics there is no force between the two objects, and quantum-mechanical effects (associated with uncertainty-principle energy) generally are repulsive rather than attractive. For an incident spinless charged particle in a P wave (in a configuration with total angular momentum zero) we verify a resonance just above threshold using the Kohn variational principle in its S-matrix form. Even if optimistic choices of parameters describing a model system with these properties were feasible, the temperature required to observe the resonance would be far lower than has yet been attained in the laboratory.

  11. Aharonov-Bohm scattering of relativistic Dirac particles with an anomalous magnetic moment

    SciTech Connect

    Lin Qionggui

    2005-10-15

    The Aharonov-Bohm scattering of relativistic spin-1/2 particles with an anomalous magnetic moment are studied. The scattering cross sections for unpolarized and polarized particles are obtained by solving the Dirac-Pauli equation. It is somewhat unexpected that the results are in general the same as those for particles without an anomalous magnetic moment. However, when the incident energy takes some special values, the cross section for polarized particles is dramatically changed. In these cases the helicity of scattered particles is not conserved. In particular, the helicity of particles scattered in the backward direction is all reversed. In the nonrelativistic limit, a very simple relation between the polarized directions of the incident and scattered particles is found, for both general and special incident energies. For particles without an anomalous magnetic moment this relation can be drawn from previous results but it appears to be unnoticed.

  12. An Elementary Aharonov-Bohm System in Three Space Dimensions: Quantum Attraction With No Classical Force

    SciTech Connect

    Goldhaber, Alfred S.

    2003-01-09

    As a consequence of the Aharonov-Bohm effect, there is a quantum-induced attraction between a charged particle and a rigid impenetrable hoop made from an arbitrarily thin tube containing a superconductor quantum of magnetic flux. This is remarkable because in classical physics there is no force between the two objects, and quantum-mechanical effects (associated with uncertainty-principle energy) generally are repulsive rather than attractive. For an incident spinless charged particle in a P wave, in a configuration with total angular momentum zero, we verify a resonance just above threshold using the Kohn variational principle in its S-matrix form. Even if optimistic choices of parameters describing a model system with these properties turned out to be feasible, the temperature required to observe the resonance would be far lower than has yet been attained in the laboratory.

  13. Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap.

    PubMed

    Noguchi, Atsushi; Shikano, Yutaka; Toyoda, Kenji; Urabe, Shinji

    2014-05-13

    Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ0 through the rotor [(0.99 ± 0.07) × φ0].

  14. Aharonov-Bohm scattering in Chern-Simons theory of scalar particles

    SciTech Connect

    Boz, M.; Fainberg, V.; Pak, N.K.

    1996-03-15

    The S-matrix operator for relativistic theory of charged scalar particles interacting via Chern-Simon field is constructed and is shown to be formally the same as S-matrix in relativistic scalar quantum electrodynamics in which the Feynman diagrams with external photon lines are not considered and the propagators of the Chern-Simons particles are substituted in place of the ones for photons. All the one-loop Feynman diagrams for relativistic scattering amplitude of two charged particles are calculated. Due to the renormalizabilty of the theory only two diagrams have linear divergence, which are regularized. The nonrelativistic limit of the scattering amplitude is also finite, unlike the non-relativistic Chern-Simons scattering theory. It is found that for a certain value of the contact interaction, corresponding to the repulsive case, the scattering amplitude coincides with that of Aharonov-Bohm scattering, in the same approximation. 20 refs., 2 fig.

  15. Wave-packet rectification in nonlinear electronic systems: a tunable Aharonov-Bohm diode.

    PubMed

    Li, Yunyun; Zhou, Jun; Marchesoni, Fabio; Li, Baowen

    2014-04-02

    Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schrödinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring.

  16. Aharonov-Bohm effect as a probe of interaction between magnetic impurities.

    PubMed

    Galitski, Victor M; Vavilov, Maxim G; Glazman, Leonid I

    2005-03-11

    We study the effects of the RKKY interaction between magnetic impurities on the mesoscopic conductance fluctuations of a metal ring with dilute magnetic impurities. At sufficiently low temperatures and strong magnetic fields, the loss of electron coherence occurs mainly due to the scattering off rare pairs of strongly coupled magnetic impurities. We establish a relation between the dephasing rate and the distribution function of the exchange interaction within such pairs. In the case of the RKKY exchange interaction, this rate exhibits 1/B(2) behavior in strong magnetic fields. We demonstrate that the Aharonov-Bohm conductance oscillations may be used as a probe of the distribution function of the exchange interaction between magnetic impurities in metals.

  17. Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases

    SciTech Connect

    McKellar, B. H. J.; He, X-G.; Klein, A. G.

    2014-03-05

    There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed we pay particular attention to how the basic concept of 'an electric dipole encircles magnetic charges' was realised experimentally, and discuss possible future experimental realisations.

  18. Levinson's theorem and higher degree traces for Aharonov-Bohm operators

    SciTech Connect

    Kellendonk, Johannes; Pankrashkin, Konstantin; Richard, Serge

    2011-05-15

    We study Levinson-type theorems for the family of Aharonov-Bohm models from different perspectives. The first one is purely analytical involving the explicit calculation of the wave-operators and allowing to determine precisely the various contributions to the left hand side of Levinson's theorem, namely, those due to the scattering operator, the terms at 0-energy and at energy +{infinity}. The second one is based on non-commutative topology revealing the topological nature of Levinson's theorem. We then include the parameters of the family into the topological description obtaining a new type of Levinson's theorem, a higher degree Levinson's theorem. In this context, the Chern number of a bundle defined by a family of projections on bound states is explicitly computed and related to the result of a 3-trace applied on the scattering part of the model.

  19. Magneto-optical properties in inhomogeneous quantum dot: The Aharonov-Bohm oscillations effect

    NASA Astrophysics Data System (ADS)

    Nasri, Djillali; Bettahar, N.

    2016-11-01

    In this study, we investigated theoretically the effect of a magnetic field B on the linear, nonlinear, and total absorption coefficients (ACs) and the refractive index changes (RICs) associated with intersubband transitions in the HgS quantum shell. In the calculations, a diagonalization method was employed within the effective-mass approximation. We find that a three kinds of optical transitions (S-P, P-D and D-F) between the ground state and the first excited state appear, resulting from the oscillation of the ground state with B (Aharonov-Bohm effect). In the other hand, the magnetic field enhances and diminishes their related RICs and ACs intensities respectively for the three kinds of optical transitions, and shifts their peaks towards low energy (blue shift).

  20. Electromagnetism, Local Covariance, the Aharonov-Bohm Effect and Gauss' Law

    NASA Astrophysics Data System (ADS)

    Sanders, Ko; Dappiaggi, Claudio; Hack, Thomas-Paul

    2014-06-01

    We quantise the massless vector potential A of electromagnetism in the presence of a classical electromagnetic (background) current, j, in a generally covariant way on arbitrary globally hyperbolic spacetimes M. By carefully following general principles and procedures we clarify a number of topological issues. First we combine the interpretation of A as a connection on a principal U(1)-bundle with the perspective of general covariance to deduce a physical gauge equivalence relation, which is intimately related to the Aharonov-Bohm effect. By Peierls' method we subsequently find a Poisson bracket on the space of local, affine observables of the theory. This Poisson bracket is in general degenerate, leading to a quantum theory with non-local behaviour. We show that this non-local behaviour can be fully explained in terms of Gauss' law. Thus our analysis establishes a relationship, via the Poisson bracket, between the Aharonov-Bohm effect and Gauss' law - a relationship which seems to have gone unnoticed so far. Furthermore, we find a formula for the space of electric monopole charges in terms of the topology of the underlying spacetime. Because it costs little extra effort, we emphasise the cohomological perspective and derive our results for general p-form fields A ( p < dim( M)), modulo exact fields, for the Lagrangian density . In conclusion we note that the theory is not locally covariant, in the sense of Brunetti-Fredenhagen-Verch. It is not possible to obtain such a theory by dividing out the centre of the algebras, nor is it physically desirable to do so. Instead we argue that electromagnetism forces us to weaken the axioms of the framework of local covariance, because the failure of locality is physically well-understood and should be accommodated.

  1. Aharonov-Bohm physics with spin. II. Spin-flip effects in two-dimensional ballistic systems

    NASA Astrophysics Data System (ADS)

    Frustaglia, Diego; Hentschel, Martina; Richter, Klaus

    2004-04-01

    We study spin effects in the magnetoconductance of ballistic mesoscopic systems subject to inhomogeneous magnetic fields. We present a numerical approach to the spin-dependent Landauer conductance which generalizes recursive Green-function techniques to the case with spin. Based on this method we address spin-flip effects in quantum transport of spin-polarized and spin-unpolarized electrons through quantum wires and various two-dimensional Aharonov-Bohm geometries. In particular, we investigate the range of validity of a spin-switch mechanism recently found which allows for controlling spins indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a transfer-matrix model for one-dimensional ring structures presented in the first paper [Hentschel et al., Phys. Rev. B, preceding paper, Phys. Rev. B 69, 155326 (2004)] of this series.

  2. Transient electric current through an Aharonov-Bohm ring after switching of a two-level system

    NASA Astrophysics Data System (ADS)

    Tatara, Gen

    2002-05-01

    The response of the electronic current through an Aharonov-Bohm ring after a two-level-system is switched on is calculated perturbatively by use of a nonequilibrium Green function. In the ballistic case the amplitude of the Aharonov-Bohm oscillation is shown to decay to a new equilibrium value due to scattering into other electronic states. The relaxation of the Altshuler-Aronov-Spivak oscillation in the diffusive case, due to the dephasing effect, is also calculated. The time scale of the relaxation is determined by characteristic relaxation times of the system and the splitting of a two-level-system. The oscillation phase is not affected. Experimental studies of current response would give us direct information about characteristic times of mesoscopic systems.

  3. Observation of Aharonov-Bohm and Al'tshuler-Aronov-Spivak oscillations in the background of universal conductance fluctuations in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Mtsuko, Davie; Aslan, Tahir; Ncube, Siphephile; Coleman, Christopher; Wamwangi, Daniel; Bhattacharyya, Somnath

    2016-02-01

    Magnetoresistance (MR) oscillations of multiple periodicities are recorded in singly connected silicon nanowires of diameter ≈50 \\text{nm} . At 100 K we observe oscillations of periodicity ≈1.78 \\text{T} and 0.444 T corresponding to h/e and h/4e Aharonov-Bohm (AB) oscillations, whereas at 10 K we record periodicities of 0.98 T, 0.49 T and 0.25 T corresponding to h/e, h/2e (Al'tshuler-Aronov-Spivak (AAS)) and h/4e oscillations. At 2.5 K we find magnetoresistance oscillations with multiple periodicities of 1.3 T, 0.52 T, and 0.325 T corresponding to AB and AAS oscillations. The h/2e and h/4e peaks can be attributed to the interference of time-reversed paths originating from the core orbits that scatter coherently on the surface of the nanowires multiple times. We also observed 20 mT and 60 mT oscillations of small amplitude superimposed on a quasi-periodic background which we attribute to the quantum interference of special surface states associated with skipping orbits that propagate quasi-ballistically. The aperiodic fluctuations in the MR at all temperatures are universal conductance fluctuations (UCF) originating from randomly spaced impurity scattering in the core of the nanowire.

  4. A Gravitational Aharonov-Bohm Effect, and Its Connection to Parametric Oscillators and Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Chiao, Raymond Y.; Haun, Robert W.; Inan, Nader A.; Kang, Bong-Soo; Martinez, Luis A.; Minter, Stephen J.; Munoz, Gerardo A.; Singleton, Douglas A.

    A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. We begin the analysis starting from four Maxwell-like equations for weak gravitational fields interacting with slowly moving matter. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to the problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. Some room-temperature data will be presented demonstrating the splitting of a single microwave cavity resonance into a spectral doublet due to the insertion of a central wire. This would represent an unseparated kind of parametric oscillator, in which the signal and idler waves would occupy the same volume of space. We then propose a separated parametric oscillator experiment, in which the signal and idler waves are generated in two disjoint regions of space, which are separated from each other by means of an impermeable superconducting membrane. We find that the threshold for parametric oscillation for EM microwave generation is much lower for the separated configuration than the unseparated one, which then leads to an observable dynamical Casimir effect. We speculate that a separated parametric oscillator for generating coherent GR microwaves

  5. Anomalous Oscillations due to Aharonov-Bohm and Aharonov-Casher Effects of the One-Dimensional Hubbard Ring in the Strong Coupling Limit

    NASA Astrophysics Data System (ADS)

    Sano, Kazuhiro; Ōno, Yoshiaki

    2016-12-01

    We investigate anomalous oscillations due to the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects of the one-dimensional Hubbard ring with flux in the strong coupling limit. By using the exact diagonalization method and the Shiba transformation, we examine the energies of the ground-state and a few excited states in the presence of the flux producing the AB or AC effect, where the transformation not only reverses the sign of the interaction U but also exchanges the role between the AB and AC effects in the model Hamiltonian. We systematically classify the AB and AC oscillations by using the number of minima Nmin of the ground-state energy as a function of a normalized phase shift ϕ for 0 ≤ ϕ < 1, and clarify the close relationship between the AB and AC effects. For example, it is shown that Nmin is given by NL - Ne (NL - N↑ + N↓) for the AB (AC) effect in the very strong attraction, where NL, Ne, N↑, and N↓ are the system size, the total number of electrons, the number of electrons with up-spin, and the number of electrons with down-spin, respectively, under the condition of NL > Ne > N↓ > N↑. In more special cases, such as for a half-filled band and the spin-balanced case (NL = Ne and N↓ = N↑), we find Nmin to be 0 (2) for the AB (AC) effect in the case of very strong repulsion. These results show us the nature of interesting phenomena originating from the interplay between the strong correlation and the quantum interference effect in a mesoscopic ring.

  6. Aharonov-Bohm conductance of a disordered single-channel quantum ring

    NASA Astrophysics Data System (ADS)

    Shmakov, P. M.; Dmitriev, A. P.; Kachorovskii, V. Yu.

    2013-06-01

    We study the effect of weak disorder on tunneling conductance of a single-channel quantum ring threaded by magnetic flux. We assume that the temperature is higher than the level spacing in the ring and smaller than the Fermi energy. In the absence of disorder, the conductance shows sharp dips (antiresonances) as a function of magnetic flux. We discuss different types of disorder and find that the short-range disorder broadens antiresonances, while the long-range one leads to the appearance of additional resonant dips. We demonstrate that the resonant dips have essentially non-Lorentzian shape. The results are generalized to account for the spin-orbit interaction, which leads to splitting of the disorder-broadened resonant dips, and consequently, to coexisting of two types of oscillations (both having the form of sharp dips): Aharonov-Bohm oscillations with magnetic flux and Aharonov-Casher oscillations with the strength of the spin-orbit coupling. We also discuss the effect of the Zeeman coupling.

  7. Analytical expression of Kondo temperature in quantum dot embedded in Aharonov-Bohm ring

    PubMed Central

    2011-01-01

    We theoretically study the Kondo effect in a quantum dot embedded in an Aharonov-Bohm ring, using the "poor man's" scaling method. Analytical expressions of the Kondo temperature TK are given as a function of magnetic flux Φ penetrating the ring. In this Kondo problem, there are two characteristic lengths, Lc=ℏvF∕|ε˜0| and LK = ħvF = TK, where vF is the Fermi velocity and ε˜0 is the renormalized energy level in the quantum dot. The former is the screening length of the charge fluctuation and the latter is that of the spin fluctuation, i.e., size of Kondo screening cloud. We obtain diferent expressions of TK(Φ) for (i) Lc ≪ LK ≪ L, (ii) Lc ≪ L ≪ LK, and (iii) L ≪ Lc ≪ LK, where L is the size of the ring. TK is remarkably modulated by Φ in cases (ii) and (iii), whereas it hardly depends on Φ in case (i). PACS numbers: PMID:22112300

  8. Aharonov-Bohm Effect and High-Momenta Inverse Scattering for the Klein-Gordon Equation

    NASA Astrophysics Data System (ADS)

    Ballesteros, Miguel; Weder, Ricardo

    2016-10-01

    We analyze spin-0 relativistic scattering of charged particles propagating in the exterior, $\\Lambda \\subset \\mathbb{R}^3$, of a compact obstacle $K \\subset \\mathbb{R}^3$. The connected components of the obstacle are handlebodies. The particles interact with an electro-magnetic field in $\\Lambda$ and an inaccessible magnetic field localized in the interior of the obstacle (through the Aharonov-Bohm effect). We obtain high-momenta estimates, with error bounds, for the scattering operator that we use to recover physical information: We give a reconstruction method for the electric potential and the exterior magnetic field and prove that, if the electric potential vanishes, circulations of the magnetic potential around handles (or equivalently, by Stokes' theorem, magnetic fluxes over transverse sections of handles) of the obstacle can be recovered, modulo $2 \\pi$. We additionally give a simple formula for the high-momenta limit of the scattering operator in terms of certain magnetic fluxes, in the absence of electric potential. If the electric potential does not vanish, the magnetic fluxes on the handles above referred can be only recovered modulo $\\pi$ and the simple expression of the high-momenta limit of the scattering operator does not hold true.

  9. Transport properties of an Aharonov-Bohm ring with strong interdot Coulomb interaction.

    PubMed

    Liu, Yu-Shen; Chen, Hao; Yang, Xi-Feng

    2007-06-20

    Based on the Keldysh Green's function technique and the equation-of-motion method, we investigate theoretically the electronic transport properties of an Aharonov-Bohm ring with embedded coupled double quantum dots connected to two electrodes in a symmetrical parallel configuration in the presence of strong interdot Coulomb interaction. Special attention is paid to the effects of the interdot Coulomb interaction on the transport properties. It has been shown numerically that the interdot Coulomb interaction gives rise to four electronic states in the ring. The quantum interferences between two strongly coupled electronic states and two weakly coupled ones lead to two Breit-Wigner and two Fano resonances in the linear conductance spectrum with the magnetic flux switched on or the imbalance between the energy levels of two quantum dots. The positions and shapes of the four resonances can be controlled by adjusting the magnetic flux through the device or energy levels of the two quantum dots. When the Fermi energy levels in the leads sweep across the weakly coupled electronic states, the negative differential conductance (NDC) is developed in the current-voltage characteristics for the non-equilibrium case.

  10. Oscillating dipole with fractional quantum source in Aharonov-Bohm electrodynamics

    NASA Astrophysics Data System (ADS)

    Modanese, Giovanni

    We show, in the case of a special dipolar source, that electromagnetic fields in fractional quantum mechanics have an unexpected space dependence: propagating fields may have non-transverse components, and the distinction between near-field zone and wave zone is blurred. We employ an extension of Maxwell theory, Aharonov-Bohm electrodynamics, which is compatible with currents jν conserved globally but not locally; we have derived in another work the field equation ∂μFμν =jν +iν , where iν is a non-local function of jν , called "secondary current". Y. Wei has recently proved that the probability current in fractional quantum mechanics is in general not locally conserved. We compute this current for a Gaussian wave packet with fractional parameter a = 3 / 2 and find that in a suitable limit it can be approximated by our simplified dipolar source. Currents which are not locally conserved may be present also in other quantum systems whose wave functions satisfy non-local equations. The combined electromagnetic effects of such sources and their secondary currents are very interesting both theoretically and for potential applications.

  11. Analytical expression of Kondo temperature in quantum dot embedded in Aharonov-Bohm ring.

    PubMed

    Yoshii, Ryosuke; Eto, Mikio

    2011-11-23

    We theoretically study the Kondo effect in a quantum dot embedded in an Aharonov-Bohm ring, using the "poor man's" scaling method. Analytical expressions of the Kondo temperature TK are given as a function of magnetic flux Φ penetrating the ring. In this Kondo problem, there are two characteristic lengths, Lc=ℏvF∕|ε̃0| and LK = ħvF = TK, where vF is the Fermi velocity and ε̃0 is the renormalized energy level in the quantum dot. The former is the screening length of the charge fluctuation and the latter is that of the spin fluctuation, i.e., size of Kondo screening cloud. We obtain diferent expressions of TK(Φ) for (i) Lc ≪ LK ≪ L, (ii) Lc ≪ L ≪ LK, and (iii) L ≪ Lc ≪ LK, where L is the size of the ring. TK is remarkably modulated by Φ in cases (ii) and (iii), whereas it hardly depends on Φ in case (i).PACS numbers:

  12. Berry's phase manifestation in Aharonov-Bohm oscillations in single Bi nanowires

    NASA Astrophysics Data System (ADS)

    Gitsu, D. V.; Huber, T. E.; Konopko, L. A.; Nikolaeva, A. A.

    2009-02-01

    Here we report on Aharonov-Bohm oscillations of magnetoresistance (MR) of the single Bi nanowires with diameter d<80 nm. The samples were prepared by Ulitovsky technique and represented cylindrical single crystals with the 1011 orientation along the wire axis. Due to semimetal-to-semiconductor transformation and big density of surface states with strong spin-orbit interactions Bi nanowire should effectively become a conducting tube. The equidistant oscillations of the MR have been observed in a wide range of magnetic fields up to 14 T at various temperatures (1.5 K< T< 4.2 K) and angles θ (0< θ < 90°) of the sample orientation relative to the magnetic field. We have obtained longitudinal MR oscillations with periods ΔB1=Φ0/S and ΔB2=Φ0/2S, where Φ0=h/e is the flux quantum and S is the wire cross section. From B approx 8 T down to B=0 the extremums of Φ0/2S oscillations are shifted up to 3π at B=0 which is the manifestation of Berry phase shift due to carriers moving in inhomogeneous magnetic field. An interpretation of the MR oscillations in terms of a subband structure in the surface state band caused by quantum interference is presented.

  13. Quantum nonlinear resonance and quantum chaos in Aharonov-Bohm oscillations in mesoscopic semiconductor rings

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Campbell, D.K.; Krive, I.V.

    1997-10-01

    We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the ballistic regime, we establish that the theory of {open_quotes}quantum nonlinear resonance{close_quotes} applies, and thus that this system represents a possible solid-state realization of {open_quotes}quantum nonlinear resonance{close_quotes} and {open_quotes}quantum chaos.{close_quotes} In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the regimes of (i) an isolated quantum nonlinear resonance and (ii) the transition to quantum chaos, when two quantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a function of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic {open_quotes}solid-state atoms{close_quotes} with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental observation of the effects we predict. {copyright} {ital 1997} {ital The American Physical Society}

  14. Signatures of the Dirac electron in the flux dependence of total persistent currents in isolated Aharonov-Bohm rings.

    PubMed

    Cotaescu, I I; Papp, E

    2007-06-20

    This paper deals with the total persistent current at T = 0 produced by the exact energy solution of the Dirac electron moving on isolated 1D Aharonov-Bohm rings. Leading contributions concerning the non-relativistic limit are written down for large values of the electron number. Usual non-relativistic currents get reproduced, but now in terms of a reversed parity of the electron number. Such an 'anomaly' is able to serve as a signature of the Dirac electron referred to above.

  15. Aharonov-Bohm effect on AdS{sub 2} and nonlinear supersymmetry of reflectionless Poeschl-Teller system

    SciTech Connect

    Correa, Francisco Jakubsky, Vit Plyushchay, Mikhail S.

    2009-05-15

    We explain the origin and the nature of a special nonlinear supersymmetry of a reflectionless Poeschl-Teller system by the Aharonov-Bohm effect for a non-relativistic particle on the AdS{sub 2}. A key role in the supersymmetric structure appearing after reduction by a compact generator of the AdS{sub 2} isometry is shown to be played by the discrete symmetries related to the space and time reflections in the ambient Minkowski space. We also observe that a correspondence between the two quantum non-relativistic systems is somewhat of the AdS/CFT holography nature.

  16. High-Velocity Estimates for the Scattering Operator and Aharonov-Bohm Effect in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Ballesteros, Miguel; Weder, Ricardo

    2009-01-01

    We obtain high-velocity estimates with error bounds for the scattering operator of the Schrödinger equation in three dimensions with electromagnetic potentials in the exterior of bounded obstacles that are handlebodies. A particular case is a finite number of tori. We prove our results with time-dependent methods. We consider high-velocity estimates where the direction of the velocity of the incoming electrons is kept fixed as its absolute value goes to infinity. In the case of one torus our results give a rigorous proof that quantum mechanics predicts the interference patterns observed in the fundamental experiments of Tonomura et al. that gave conclusive evidence of the existence of the Aharonov-Bohm effect using a toroidal magnet. We give a method for the reconstruction of the flux of the magnetic field over a cross-section of the torus modulo 2π. Equivalently, we determine modulo 2π the difference in phase for two electrons that travel to infinity, when one goes inside the hole and the other outside it. For this purpose we only need the high-velocity limit of the scattering operator for one direction of the velocity of the incoming electrons. When there are several tori-or more generally handlebodies-the information that we obtain in the fluxes, and on the difference of phases, depends on the relative position of the tori and on the direction of the velocities when we take the high-velocity limit of the incoming electrons. For some locations of the tori we can determine all the fluxes modulo 2π by taking the high-velocity limit in only one direction. We also give a method for the unique reconstruction of the electric potential and the magnetic field outside the handlebodies from the high-velocity limit of the scattering operator.

  17. Induced vacuum charge of massless fermions in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Mamsurov, I. V.; Khalilov, V. R.

    2016-08-01

    We study the vacuum polarization of zero-mass charged fermions in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions. For this, we construct the Green's function of the two-dimensional Dirac equation in the considered field configuration and use it to find the density of the induced vacuum charge in so-called subcritical and supercritical regions. The Green's function is represented in regular and singular (in the source) solutions of the Dirac radial equation for a charged fermion in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions and satisfies self-adjoint boundary conditions at the source. In the supercritical region, the Green's function has a discontinuity related to the presence of singularities on the nonphysical sheet of the complex plane of "energy," which are caused by the appearance of an infinite number of quasistationary states with negative energies. Ultimately, this situation represents the neutral vacuum instability. On the boundary of the supercritical region, the induced vacuum charge is independent of the self-adjoint extension. We hope that the obtained results will contribute to a better understanding of important problems in quantum electrodynamics and will also be applicable to the problem of screening the Coulomb impurity due to vacuum polarization in graphene with the effects associated with taking the electron spin into account.

  18. Effects of interactions in transport through Aharonov-Bohm-Casher interferometers.

    PubMed

    Lobos, A M; Aligia, A A

    2008-01-11

    We study the conductance through a ring described by the Hubbard model (such as an array of quantum dots), threaded by a magnetic flux and subject to Rashba spin-orbit coupling (SOC). We develop a formalism that is able to describe the interference effects as well as the Kondo effect when the number of electrons in the ring is odd. In the Kondo regime, the SOC reduces the conductance from the unitary limit, and, in combination with the magnetic flux, the device acts as a spin polarizer.

  19. Single-Slit Electron Diffraction with Aharonov-Bohm Phase: Feynman's Thought Experiment with Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-01

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  20. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.

    PubMed

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-10

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  1. Fano effect in the Andreev reflection of the Aharonov-Bohm-Fano ring with Majorana bound states

    NASA Astrophysics Data System (ADS)

    Jiang, Cui; Zheng, Yi-Song

    2015-06-01

    The Andreev reflection in an Aharonov-Bohm-Fano ring induced by Majorana bound states (MBSs) is theoretically investigated. We find that compared with the Fano effect in the normal electron tunneling process, the Fano effect here is more determined by the structural parameters, i.e., the quantum dot level, the dot-MBS coupling, and the dot-MBS and MBS-lead couplings. By transforming the ring into its Nambu representation, we present a comprehensive analysis about the quantum interference in the Andreev reflection, and then explain the reason for the occurrence of the Fano effect. These results will be helpful for understanding the quantum interference in the MBS-assisted Andreev reflection.

  2. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    SciTech Connect

    Smirnov, A. G.

    2015-12-15

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.

  3. Spin-dependent Seebeck effect in Aharonov-Bohm rings with Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Li, Yunyun; Zhou, Jun; Nakayama, Tsuneyoshi; Li, Baowen

    2016-06-01

    We theoretically investigate the spin-dependent Seebeck effect in an Aharonov-Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin-orbit interactions under magnetic flux perpendicular to the ring. We apply the Green's function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin-orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin-orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.

  4. Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov-Bohm flux

    NASA Astrophysics Data System (ADS)

    Amaro Neto, José; Bueno, M. J.; Furtado, Claudio

    2016-10-01

    In this paper we study the relativistic quantum dynamics of a massless fermion confined in a quantum ring. We use a model of confining potential and introduce the interaction via Dirac oscillator coupling, which provides ring confinement for massless Dirac fermions. The energy levels and corresponding eigenfunctions for this model in graphene layer in the presence of Aharonov-Bohm flux in the centre of the ring and the expression for persistent current in this model are derived. We also investigate the model for quantum ring in graphene layer in the presence of a disclination and a magnetic flux. The energy spectrum and wave function are obtained exactly for this case. We see that the persistent current depends on parameters characterizing the topological defect.

  5. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction.

    PubMed

    Bulgakov, Evgeny N; Sadreev, Almas F

    2016-07-06

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  6. Spin-dependent quantum interference in Aharonov-Bohm ring embedded with two double-quantum-dot molecules.

    PubMed

    Wang, Xiaofei; Liu, Xiaojie; Zhao, Xueyang; Yin, Haitao; Wan, Weilong; Feng, Li

    2014-03-01

    The spin polarized transport properties through an Aharonov-Bohm ring embedded with a double quantum dot-molecule in each arm with Rashba spin-orbit (RSO) interaction is theoretically studied in the framework of the equation of motion of Green's function. Based on molecular state representation, the anti-resonance phenomenon in the conductance spectrum is readily explained. We found that the position of antiresonant peaks in conductance spectrum is determined by the interdot coupling strengths. Moreover, the magnitude of conductance of each spin component can be manipulated by the Rashba spin orbit interaction strength. Especially only one spin component electron can be allowed to transport through this structure by modulating the strength of RSO interaction properly.

  7. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Sadreev, Almas F.

    2016-07-01

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  8. Quantum geometric phase in Majorana's stellar representation: mapping onto a many-body Aharonov-Bohm phase.

    PubMed

    Bruno, Patrick

    2012-06-15

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  9. Persistent current in a correlated quantum ring with electron-phonon interaction in the presence of Rashba interaction and Aharonov-Bohm flux

    PubMed Central

    Monisha, P. J.; Sankar, I. V.; Sil, Shreekantha; Chatterjee, Ashok

    2016-01-01

    Persistent current in a correlated quantum ring threaded by an Aharonov-Bohm flux is studied in the presence of electron-phonon interactions and Rashba spin-orbit coupling. The quantum ring is modeled by the Holstein-Hubbard-Rashba Hamiltonian and the energy is calculated by performing the conventional Lang-Firsov transformation followed by the diagonalization of the effective Hamiltonian within a mean-field approximation. The effects of Aharonov-Bohm flux, temperature, spin-orbit and electron-phonon interactions on the persistent current are investigated. It is shown that the electron-phonon interactions reduce the persistent current, while the Rashba coupling enhances it. It is also shown that temperature smoothens the persistent current curve. The effect of chemical potential on the persistent current is also studied. PMID:26831831

  10. Persistent current in a correlated quantum ring with electron-phonon interaction in the presence of Rashba interaction and Aharonov-Bohm flux.

    PubMed

    Monisha, P J; Sankar, I V; Sil, Shreekantha; Chatterjee, Ashok

    2016-02-01

    Persistent current in a correlated quantum ring threaded by an Aharonov-Bohm flux is studied in the presence of electron-phonon interactions and Rashba spin-orbit coupling. The quantum ring is modeled by the Holstein-Hubbard-Rashba Hamiltonian and the energy is calculated by performing the conventional Lang-Firsov transformation followed by the diagonalization of the effective Hamiltonian within a mean-field approximation. The effects of Aharonov-Bohm flux, temperature, spin-orbit and electron-phonon interactions on the persistent current are investigated. It is shown that the electron-phonon interactions reduce the persistent current, while the Rashba coupling enhances it. It is also shown that temperature smoothens the persistent current curve. The effect of chemical potential on the persistent current is also studied.

  11. Measurement of the second-order Zeeman effect on the sodium clock transition in the weak-magnetic-field region using the scalar Aharonov-Bohm phase

    SciTech Connect

    Numazaki, Kazuya; Imai, Hiromitsu; Morinaga, Atsuo

    2010-03-15

    The second-order Zeeman effect of the sodium clock transition in a weak magnetic field of less than 50 {mu}T was measured as the scalar Aharonov-Bohm phase by two-photon stimulated Raman atom interferometry. The ac Stark effect of the Raman pulse was canceled out by adopting an appropriate intensity ratio of two photons in the Raman pulse. The Ramsey fringes for the pulse separation of 7 ms were obtained with a phase uncertainty of {pi}/200 rad. The nondispersive feature of the scalar Aharonov-Bohm phase was clearly demonstrated through 18 fringes with constant amplitude. The Breit-Rabi formula of the sodium clock transition was verified to be {Delta}{nu}=(0.222{+-}0.003)x10{sup 12}xB{sup 1.998{+-}0.004} in a magnetic field of less than 50 {mu}T.

  12. Edge states, Aharonov-Bohm oscillations, and thermodynamic and spectral properties in a two-dimensional electron gas with an antidot

    SciTech Connect

    Bogachek, E.N.; Landman, U.

    1995-11-15

    The thermodynamic and spectral properties of a two-dimensional electron gas with an antidot in a strong magnetic field, {ital r}{sub {ital c}}{le}{ital r}{sub 0}, where {ital r}{sub {ital c}} is the cyclotron radius and {ital r}{sub 0} is the antidot effective radius, are studied via a solvable model with the antidot confinement potential {ital U}{similar_to}1/{ital r}{sup 2}. The edge states localized at the antidot boundary result in an Aharonov-Bohm-type oscillatory dependence of the magnetization as a function of the magnetic field flux through the antidot. These oscillations are superimposed on the de Haas--van Alphen oscillations. In the strong-field limit, {h_bar}{omega}{sub {ital c}}{similar_to}{epsilon}{sub {ital F}}, where {omega}{sub {ital c}} is the cyclotron frequency and {epsilon}{sub {ital F}} is the Fermi energy, the amplitude of the Aharonov-Bohm-type oscillations of the magnetization due to the contribution of the lowest edge state is {similar_to}{mu}{sub {ital B}}{ital k}{sub {ital F}}{ital r}{sub {ital c}} ({mu}{sub {ital B}} is the Bohr magneton and {ital k}{sub {ital F}} is the Fermi wave vector). When the magnetic field is decreased, higher edge states can contribute to the magnetization, leading to the appearance of a beating pattern in the Aharonov-Bohm oscillations. The role of temperature in suppressing the oscillatory contribution due to higher edge states is analyzed. Rapid oscillations of the magnetization as a function of the Aharonov-Bohm flux, occurring on a scale of a small fraction of the flux quantum {ital hc}/{ital e}, are demonstrated. The appearance of a manifold of non- equidistant frequencies in the magneto-optical-absorption spectrum, due to transitions between electronic edge states localized near the antidot boundary, is predicted.

  13. Properties of Type-II ZnTe/ZnSe Submonolayer Quantum Dots Studied via Excitonic Aharonov- Bohm Effect and Polarized Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Haojie

    In this thesis I develop understanding of the fundamental physical and material properties of type-II ZnTe/ZnSe submonolayer quantum dots (QDs), grown via combination of molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE). I use magneto-photoluminescence, including excitonic Aharonov-Bohm (AB) effect and polarized optical spectroscopy as the primary tools in this work. I present previous studies as well as the background of optical and magneto-optical processes in semiconductor nanostructures and introduce the experimental methods in Chapters 1 - 3. In Chapter 4 I focus on the excitonic AB effect in the type-II QDs. I develop a lateral tightly-bound exciton model for ZnTe/ZnSe type-II QDs, using analytical methods and numerical calculations. This explained the magneto-PL observation and allowed for establishing the size and density of the QDs in each sample based on the results of PL and magneto-PL measurements. For samples with larger QDs, I observe behaviors that fall between properties of quantum-dot and quantum-well-like systems due to increased QD densities and their type-II nature. Finally, the decoherence mechanisms of the AB excitons are investigated via the temperature dependent studies of the magneto-PL. It is determined that the AB exciton decoherence is due to transport-like (acoustic phonon) scattering of the electrons moving in the ZnSe barriers, but with substantially smaller magnitude of electron-phonon coupling constant due to relatively strong electron-hole coupling within these type-II QDs. In Chapter 5 I discuss the results of circularly polarized magneto-PL measurements. A model with ultra-long spin-flip time of holes confined to submonolayer QDs is proposed. The g-factor of type-II excitons was extracted from the Zeeman splitting and the g-factor of electrons was obtained by fitting the temperature dependence of the degree of circular polarization (DCP), from which g-factor of holes confined within ZnTe QDs was found. It is shown

  14. Partial wave analysis of scattering with the nonlocal Aharonov-Bohm effect and the anomalous cross section induced by quantum interference

    SciTech Connect

    Lin, D.-H.

    2004-05-01

    Partial wave theory of a three dimensional scattering problem for an arbitrary short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a 'hard sphere'-like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in a quite general potential system and will be useful in understanding some other phenomena in mesoscopic physics.

  15. Excitonic Aharonov-Bohm effect in isotopically pure {sup 70}Ge/Si self-assembled type-II quantum dots

    SciTech Connect

    Miyamoto, Satoru; Ishikawa, Toyofumi; Eto, Mikio; Itoh, Kohei M.; Moutanabbir, Oussama; Haller, Eugene E.; Sawano, Kentarou; Shiraki, Yasuhiro

    2010-08-15

    We report on a magnetophotoluminescence study of isotopically pure {sup 70}Ge/Si self-assembled type-II quantum dots. Oscillatory behaviors attributed to the Aharonov-Bohm effect are simultaneously observed for the emission energy and intensity of excitons subject to an increasing magnetic field. When the magnetic flux penetrates through the ringlike trajectory of an electron moving around each quantum dot, the ground state of an exciton experiences a change in its angular momentum. Our results provide the experimental evidence for the phase coherence of localized electron wave functions in group-IV Ge/Si self-assembled quantum structures.

  16. Theory of electron energy spectrum and Aharonov-Bohm effect in self-assembled InxGa1-xAs quantum rings in GaAs

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Gladilin, V. N.; Klimin, S. N.; Devreese, J. T.; Kleemans, N. A. J. M.; Koenraad, P. M.

    2007-12-01

    We analyze theoretically the electron energy spectrum and the magnetization of an electron in a strained InxGa1-xAs/GaAs self-assembled quantum ring (SAQR) with realistic parameters, determined from the cross-sectional scanning-tunneling microscopy characterization of that nanostructure. The SAQRs have an asymmetric indium-rich craterlike shape with a depression rather than an opening at the center. Although the real SAQR shape differs strongly from an idealized circular-symmetric open ring structure, the Aharonov-Bohm oscillations of the magnetization survive.

  17. The optical Aharonov-Bohm effect and magneto-optical properties in type-II quantum dots

    NASA Astrophysics Data System (ADS)

    Whiteside, Vincent Ryan

    We present a detailed experimental study of the magneto-optical properties of type-II quantum dots (QDs) in: (1) ZnTe/ZnSe superlattices grown by Molecular Beam Epitaxy (MBE)---these Zn(SeTe) QDs evolve from Te-clustering in the ZnSe matrix during growth; and (2) diluted magnetic semiconductor, (ZnMn)Se, QDs in a ZnSe matrix produced by migration enhanced epitaxy. In case (1) the Zn(SeTe) QDs display large and robust (with temperature) oscillations as a function of magnetic field in both the photoluminescence energy and intensity as a result of the optical Aharonov-Bohm effect. The large strength of these oscillations is attributed to a combination of the type-II symmetry and the columnar geometry of the structures; the oscillations persist until 180K. The type-II diluted magnetic semiconductor, (ZnMn)Te quantum dots display similar oscillatory effects in the emission intensity. Interestingly, the coherence of the Aharonov-Bohm phase in these magnetic dots is strongly related to the spin polarization of the system due to the Mn-exciton exchange interaction as shown by the disappearance of the oscillations at low magnetic fields. The enhanced coherence at high fields, which leads to strong oscillations in intensity, is attributed to removal of magnetic disorder by the applied magnetic field. While the magnetic nature of the QDs is clear from the polarization measurements there is the seemingly contradictory behavior of a very small Zeeman shift for material that has a corresponding large Zeeman shift for the comparable composition of bulk (ZnMn)Te. More importantly, a red shift greater than 30 meV is observed in the peak energy of the PL as function of time after excitation with a picosecond pulse. These results can be explained by postulating formation of bound magnetic polarons in the QDs. The overall red shift is identified as the magnetic polaron binding energy, EMP; it is roughly independent of temperature, persisting up to 150K. The large MP binding energy is

  18. An "unreasonable effectiveness" of Hilbert transform for the transition phase behavior in an Aharonov-Bohm two-path interferometer

    NASA Astrophysics Data System (ADS)

    Englman, R.

    2016-08-01

    The recent phase shift data of Takada et al. (Phys. Rev. Lett. 113 (2014) 126601) for a two level system are reconstructed from their current intensity curves by the method of Hilbert transform, for which the underlying Physics is the principle of causality. An introductory algebraic model illustrates pedagogically the working of the method and leads to newly derived relationships involving phenomenological parameters, in particular for the sign of the phase slope between the resonance peaks. While the parametrization of the experimental current intensity data in terms of a few model parameters shows only a qualitative agreement for the phase shift, due to the strong impact of small, detailed variations in the experimental intensity curve on the phase behavior, the numerical Hilbert transform yields a satisfactory reproduction of the phase.

  19. Measurement of the transmission phase of an electron in a quantum two-path interferometer

    SciTech Connect

    Takada, S. Watanabe, K.; Yamamoto, M.; Bäuerle, C.; Ludwig, A.; Wieck, A. D.; Tarucha, S.

    2015-08-10

    A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the true transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless, the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents, and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast, we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the true transmission phase, while the smooth phase shift in the AB oscillation itself does not.

  20. Aharonov-Bohm effect in a helical ring with long-range hopping: Effects of Rashba spin-orbit interaction and disorder

    NASA Astrophysics Data System (ADS)

    Dutta, Paramita; Saha, Arijit; Jayannavar, A. M.

    2016-11-01

    We study the Aharonov-Bohm effect in a two-terminal helical ring with long-range hopping in the presence of Rashba spin-orbit interaction. We explore how the spin polarization behavior changes depending on the applied magnetic flux and the incoming electron energy. The most interesting feature that we articulate in this system is that zero-energy crossings appear in the energy spectra at Φ =0 and also at integer multiples of half-flux quantum values (n Φ0/2 ,n being an integer) of the applied magnetic flux. We investigate the transport properties of the ring using Green's function formalism and find that the zero-energy transmission peaks corresponding to those zero-energy crossings vanish in the presence of Rashba spin-orbit interaction. We also incorporate static random disorder in our system and show that the zero-energy crossings and transmission peaks are not immune to disorder even in the absence of Rashba spin-orbit interaction. The latter prevents the possibility of these helical states in the ring behaving like topological insulator edge states.

  1. Aharonov-casher effect in Bi2Se3 square-ring interferometers.

    PubMed

    Qu, Fanming; Yang, Fan; Chen, Jun; Shen, Jie; Ding, Yue; Lu, Jiangbo; Song, Yuanjun; Yang, Huaixin; Liu, Guangtong; Fan, Jie; Li, Yongqing; Ji, Zhongqing; Yang, Changli; Lu, Li

    2011-07-01

    Electrical control of spin dynamics in Bi(2)Se(3) was investigated in ring-type interferometers. Aharonov-Bohm and Altshuler-Aronov-Spivak resistance oscillations against a magnetic field, and Aharonov-Casher resistance oscillations against the gate voltage were observed in the presence of a Berry phase of π. A very large tunability of spin precession angle by the gate voltage has been obtained, indicating that Bi(2)Se(3)-related materials with strong spin-orbit coupling are promising candidates for constructing novel spintronic devices.

  2. Aharonov-Casher Effect in Bi2Se3 Square-Ring Interferometers

    NASA Astrophysics Data System (ADS)

    Qu, Fanming; Yang, Fan; Chen, Jun; Shen, Jie; Ding, Yue; Lu, Jiangbo; Song, Yuanjun; Yang, Huaixin; Liu, Guangtong; Fan, Jie; Li, Yongqing; Ji, Zhongqing; Yang, Changli; Lu, Li

    2011-07-01

    Electrical control of spin dynamics in Bi2Se3 was investigated in ring-type interferometers. Aharonov-Bohm and Altshuler-Aronov-Spivak resistance oscillations against a magnetic field, and Aharonov-Casher resistance oscillations against the gate voltage were observed in the presence of a Berry phase of π. A very large tunability of spin precession angle by the gate voltage has been obtained, indicating that Bi2Se3-related materials with strong spin-orbit coupling are promising candidates for constructing novel spintronic devices.

  3. Reprint of : Thermodynamic properties of a quantum Hall anti-dot interferometer

    NASA Astrophysics Data System (ADS)

    Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.

    2016-08-01

    We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.

  4. Edge-channel interferometer at the graphene quantum Hall pn junction

    SciTech Connect

    Morikawa, Sei; Moriya, Rai; Masubuchi, Satoru Machida, Tomoki; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-04

    We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.

  5. Thermal Dephasing in the Laughlin Quasiparticle Interferometer

    NASA Astrophysics Data System (ADS)

    Camino, F. E.; Zhou, Wei; Goldman, V. J.

    2006-03-01

    We report experiments on thermal dephasing of the Aharonov-Bohm oscillations in the novel Laughlin quasiparticle (LQP) interferometer, [1] where quasiparticles of the 1/3 FQH fluid execute a closed path around an island of the 2/5 fluid. In the 10.2 <=T <=141 mK temperature range, qualitatively, the experimental results follow a thermal dephasing dependence expected for an electron interferometer, and show clear distinction from the activated behavior observed in resonant tunneling and Coulomb blockade devices, both in the chiral Luttinger liquid (χLL) and the Fermi liquid regimes. The data fit very well the χLL dependence predicted for a g=1/3 two point-contact LQP interferometer. [2] The fit yields a value of the chiral edge excitation velocity, u=1.4x10^4 m/s obtained for the first time for a continuous FQH edge excitation spectrum. The small deviation from the zero-bias theory seen below 20 mK indicates yet unrecognized source of experimental decoherence, not included in theory. [1] F. E. Camino et al., Phys. Rev. B 72, 075342 (2005). [2] C. de C. Chamon et al., Phys. Rev. B 55, 2331 (1997).

  6. A realistic quantum capacitance model for quantum Hall edge state based Fabry-Pérot interferometers

    NASA Astrophysics Data System (ADS)

    Kilicoglu, O.; Eksi, D.; Siddiki, A.

    2017-01-01

    In this work, the classical and the quantum capacitances are calculated for a Fabry-Pérot interferometer operating in the integer quantized Hall regime. We first consider a rotationally symmetric electrostatic confinement potential and obtain the widths and the spatial distribution of the insulating (incompressible) circular strips using a charge density profile stemming from self-consistent calculations. Modelling the electrical circuit of capacitors composed of metallic gates and incompressible/compressible strips, we investigate the conditions to observe Aharonov-Bohm (quantum mechanical phase dependent) and Coulomb blockade (capacitive coupling dependent) effects reflected in conductance oscillations. In a last step, we solve the Schrödinger and the Poisson equations self-consistently in a numerical manner taking into account realistic experimental geometries. We find that, describing the conductance oscillations either by Aharanov-Bohm or Coulomb blockade strongly depends on sample properties also other than size, therefore, determining the origin of these oscillations requires further experimental and theoretical investigation.

  7. Shot noise in the hybrid triple-quantum-dot interferometer coupled to superconductor and normal terminals

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Kang; Wang, Jian; Wang, Qing

    2014-04-01

    The shot noise of a hybrid triple-quantum-dot (TQD) interferometer has been investigated by employing the nonequilibrium Green's function method, and the general shot noise formula has been derived. The oscillation behaviors of transmission coefficients and shot noise versus the Aharonov-Bohm phase ϕ exhibit asymmetric Fano resonance structure and blockade effect. Sub-Poissonian and super-Poissonian behaviors of shot noise appear in different regimes of terminal bias eVγ contributed by the Andreev reflection, and correlation of Andreev tunneling with the normal electron transport. The inverse resonance and resonance structures emerge in the shot noise and Fano factor with respect to one of the gate voltages in different regimes of eVγ. The asymmetric structure can be enhanced by modifying the energy levels and gate biases of the TQD. The self-correlation and cross-correlation of current components contribute to the enhancement and suppression of shot noise.

  8. A realistic quantum capacitance model for quantum Hall edge state based Fabry-Pérot interferometers.

    PubMed

    Kilicoglu, O; Eksi, D; Siddiki, A

    2017-01-25

    In this work, the classical and the quantum capacitances are calculated for a Fabry-Pérot interferometer operating in the integer quantized Hall regime. We first consider a rotationally symmetric electrostatic confinement potential and obtain the widths and the spatial distribution of the insulating (incompressible) circular strips using a charge density profile stemming from self-consistent calculations. Modelling the electrical circuit of capacitors composed of metallic gates and incompressible/compressible strips, we investigate the conditions to observe Aharonov-Bohm (quantum mechanical phase dependent) and Coulomb blockade (capacitive coupling dependent) effects reflected in conductance oscillations. In a last step, we solve the Schrödinger and the Poisson equations self-consistently in a numerical manner taking into account realistic experimental geometries. We find that, describing the conductance oscillations either by Aharanov-Bohm or Coulomb blockade strongly depends on sample properties also other than size, therefore, determining the origin of these oscillations requires further experimental and theoretical investigation.

  9. Aharonov-Bohm Effect in Perturbation Theory.

    ERIC Educational Resources Information Center

    Purcell, Kay M.; Henneberger, Walter C.

    1978-01-01

    The Aharonov-Bohn effect is obtained in first-order perturbation theory. It is shown that the effect occurs only when the initial state is a superposition of eigenstates of Lz corresponding to eigenvalues having opposite sign. (Author/GA)

  10. Realization of a primary-filling e/3 quasiparticle interferometer

    NASA Astrophysics Data System (ADS)

    Camino, F. E.; Zhou, W.; Goldman, V. J.

    2007-03-01

    We report experiments on a quasiparticle interferometer where the entire system is on the f=1/3 primary fractional quantum Hall plateau. Electron-beam lithography is used to define an electron island separated from the 2D bulk by two wide constrictions, much less depleted than in our prior work [1]. This results in the entire electron island being at filling f=1/3 under quantum-coherent tunneling conditions. For the first time in such devices we report interferometric Aharonov-Bohm-like conductance oscillations. The flux and charge periods of the interferometer device are calibrated with electrons in the integer regime. In the fractional regime, we observe magnetic flux and charge periods h/e and e/3, respectively, corresponding to creation of one quasielectron in the island. These periods are the same as in quantum antidots, but the quasiparticle path encloses no electron vacuum in the interferometer. Quantum theory predicts a 3h/e flux period for charge e/3, integer statistics particles. Accordingly, the observed periods demonstrate anyonic statistics of Laughlin quasiparticles. [1] F. E. Camino et al., PRL 95, 246802 (2005); PRB 72, 075342 (2005).

  11. Spin interference controlled by electric field: Ensemble average effect on AAS and AB oscillation amplitudes

    NASA Astrophysics Data System (ADS)

    Nitta, Junsaku; Bergsten, Tobias

    2008-03-01

    Time reversal symmetric Al’tshuler-Aronov-Spivak (AAS) oscillations are measured in an array of InGaAs mesoscopic loops. We confirm that gate voltage dependence of h/2 e period oscillations is due to spin interference from the effect of ensemble average on the AAS and Aharonov-Bohm (AB) amplitudes. This spin interference is based on the time reversal Aharonov-Casher (AC) effect. The AC interference oscillations are controlled over several periods. This result shows evidence for electrical manipulation of the spin precession angle in an InGaAs two-dimensional electron gas channel. We control the precession rate in a precise and predictable way with an electrostatic gate.

  12. Investigation of Quantum Computing With Laughlin Quasiparticles

    DTIC Science & Technology

    2007-12-31

    Review B 72, 075342, 1-8 (2005) F.E.Camino, W.Zhou, and V.J.Goldman Aharonov - Bohm electron interferometer in the integer quantum Hall regime Physical...Review B 72, 155313, 1-6 (2005) F.E.Camino, W.Zhou, and V.J.Goldman Aharonov - Bohm Superperiod in a Laughlin Quasiparticle Interferometer Physical...is the number of particles being encircled. This quantization condition explicitly adds the Aharonov - Bohm and the statistical contributions to the

  13. Fano effect in an AB interferometer with a quantum dot side-coupled to a single Majorana bound state

    NASA Astrophysics Data System (ADS)

    Zeng, Qi-Bo; Chen, Shu; Lü, Rong

    2016-02-01

    We study the conductance and interference effects through an AB interferometer with an embedded quantum dot (QD) side-coupled to a single Majorana bound state (MBS) by using non-equilibrium Green's function method. The energy levels appearing in the QD are calculated by diagonalizing the Hamiltonian of the embedded QD-MBS system. When the single QD energy level ɛ0 is set to 0, there are three discrete energy levels in the QD appearing at around ω = 0, ±√{ɛM2 + 2λ2 } due to the coupling with MBS where ɛM is the coupling strength between the two MBSs at the two ends of the nanowire and λ is the coupling strength between the MBS and the QD. Asymmetric Fano lineshapes are found around these levels in the conductance due to the interference between electrons traversing through different paths. The phase shift of electrons through the QD changes from π / 2 to - π / 2 at each of these three energy values. However, the phase does not vary smoothly between these three energy levels but shows severe changes from - π / 2 to π / 2 at ω = ±√{ɛM2 +λ2 }. As a comparison, we also study the similar AB interferometer in which the QD-MBS system is replaced by a normal QD-QD system or a simple single QD system, which shows only two or one Fano peak and the phase shifts from π / 2 to - π / 2 only at the Fano peaks. These differences reflect the distinct influences of Majorana bound state on the transport properties of AB interferometer.

  14. Magnetic flux superperiods in fractional quantum Hall interferometers

    NASA Astrophysics Data System (ADS)

    Camino, F. E.; Lin, P. V.; Goldman, V. J.

    2010-03-01

    Superperiodic Aharonov-Bohm oscillations in conductance of e/3 quasiparticles have been reported in three Fabry-Perot interferometer devices. Superperiods are observed in the FQH regime, when filling 1/3 edge channel encircles an island of 2/5 FQH fluid. Etch trenches define the devices, which consist of a 2D electron island connected to the 2DES bulk via two wide constrictions. An oscillatory signal in the conductance is observed when tunneling occurs in the constrictions. The width of the 1/3 edge channel weakly depends on the size of the device, on the other hand, the enclosed 2/5 island area varies by a factor of 4. We compare the magnetic field periods in the different size devices and review the evidence that the flux period is 5h/e. [1] The FQH edge channel structure essentially depends on the 2D electron density profile. We discuss the self- consistent density profile in the device defined by the etch trenches. We also discuss electron depletion due to electric field of front gates, which is not screened efficiently by 2D electrons and thus leads to a smaller gradient of the confining potential than the mesa etch. [1] F. E. Camino et al., PRB 72, 075342 (2005); W. Zhou et al., PRB 73, 245322 (2006); P. V. Lin et al., PRB (in press, 2009).

  15. Possibility of an electromechanical which-path interferometer

    NASA Astrophysics Data System (ADS)

    Armour, A. D.; Blencowe, M. P.

    2001-07-01

    We investigate the possibility of an electromechanical which-path interferometer, in which electrons traveling through an Aharonov-Bohm ring incorporating a quantum dot in one of the arms are dephased by an interaction with the fundamental flexural mode of a radio-frequency cantilever. The cantilever is positioned so that its tip lies just above the dot and a bias is applied so that an electric field exists between the dot and the tip. This electric field is modified when an additional electron hops onto the dot, coupling the flexural mode of the cantilever and the microscopic electronic degrees of freedom. We analyze the transmission properties of this system and the dependence of interference fringe visibility on the cantilever-dot coupling and on the mechanical properties of the cantilever. The fringes are progressively destroyed as the interaction with the cantilever is turned up, in part due to dephasing arising from the entanglement of the electron and cantilever states and also due to the thermal smearing that results from fluctuations in the state of the cantilever. When the dwell time of the electron on the dot is comparable to or longer than the cantilever period, we find coherent features in the transmission amplitude. These features are washed out when the cantilever is decohered by its coupling to the environment.

  16. Effect of variation of the central-hole depth and the axial anisotropy on the AB oscillations in a wide nanoring

    NASA Astrophysics Data System (ADS)

    Rodríguez Prada, F. A.; Gutiérrez, W.; Mikhailov, I. D.

    2017-01-01

    The effect of the external magnetic field on the spectral properties of one-electron non-uniform quantum ring with radially directed hills is analysed. The corresponding one-particle wave equation is separable in the adiabatic limit, when the layer thickness is essentially smaller than its lateral dimension. Our calculations show that the presence of a single axially directed hill as well as a rise of the central hole thickness produce a quenching of the Aharonov-Bohm (AB) oscillations of the lower energy levels and of the magnetic momentum. However, as the number of radially directed hills is increased, the system exhibits again oscillations, resulted from an enhancement of tunnelling circular currents.

  17. Optimization of the Geometric Phase Sensitivity of an Array of Atom Ring Interferometers

    NASA Astrophysics Data System (ADS)

    Sandoval-Sanchez, Karina; Campo, Christian; Rivera, Tabitha; Toland, John

    2015-05-01

    Sagnac, and Aharonov-Bohm phase shifts are important geometric phase shifts in atom interferometry. These phase shifts characterize rotational and magnetic field interference effects respectively. Theoretical explorations have shown that a series of ring interferometers can be connected in series to increase the sensitivity of the overall device while keeping the maximum path separation less than the coherence length of the atoms. It has also been shown that the application of an area chirp to the rings will further enhance the sensitivity of the array of rings to geometric phase shifts. Area chirp refers to characterizing all of the rings in the array to a fixed percentage of a reference ring, this allows for the phase shifts in each ring to be characterized by one ring. The goal of this project is to determine a set of parameters namely kL, the product of the ring circumference and the wave number and γ, the chirp factor for the area chirp, that optimize the geometric phase sensitivity for an array of N rings. We model the transmission coefficient of a quantum matter wave through an area chirped array of interferometers as a function of phase, using transfer matrices to represent the transmission and reflection of individual rings in the array. Isolated transmission resonances represent the domain of interest, these are regions of high phase sensitivity. After optimizing a ring array without loss we apply velocity broadening to the input matter waves to investigate a more realistic output.

  18. Quantum Phenomena in Semiconductor Structures

    DTIC Science & Technology

    1988-04-01

    observed by changing the magnetic field through the loop, which changes the phase of the wavefunction, due to the Aharonov - Bohm effect. The...fields (<IT), in order to determine the dependence of the Aharonov - Bohm (AB) effect on channel width and field. The Quantum Hall Effect was studied at...interference may be observed through the addition of an extra phase difference between the two waves. The Aharonov - Bohm effect gives rise to such a phase

  19. Numerical simulations of a ballistic spin interferometer with Rashba spin-orbital interaction

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyue; Sun, Qing-Feng; Chen, Bin; Xie, X. C.

    2006-08-01

    We numerically investigate the transport behavior of a quasi-one-dimensional (1D) square loop device containing the Rashba spin-orbital interaction in the presence of a magnetic flux. The conductance versus the magnetic field shows the Al’tshuler-Aronov-Spivak (AAS) and Aharonov-Bohm (AB) oscillations. We focus on the oscillatory amplitudes, and find that both of them are strongly dependent on the spin precession angle (i.e., the strength of the spin-orbit interaction) and exhibit no periodic oscillations, in good agreement with a recent experiment by Koga [cond-mat/0504743 (unpublished)]. However, our numerical results for the ideal 1D square loop device for the node positions of the amplitudes of the AB and AAS oscillations are found to show some discrepancies with the results for quasi-1D square loops with a finite width. In the presence of disorder and taking the disorder ensemble average, the AB oscillation in the conductance disappears, while the time-reversal symmetric AAS oscillation still remains. Furthermore, the node positions of the AAS oscillatory amplitude remain the same.

  20. Time-dependent wave packet simulations of transport through Aharanov–Bohm rings with an embedded quantum dot

    NASA Astrophysics Data System (ADS)

    Kreisbeck, C.; Kramer, T.; Molina, R. A.

    2017-04-01

    We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin–Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.

  1. Aharonov-Bohm effect on Aharonov-Casher scattering

    NASA Astrophysics Data System (ADS)

    Lin, Qiong-Gui

    2010-01-01

    The scattering of relativistic spin-1/2 neutral particles with a magnetic dipole moment by a long straight charged line and a magnetic flux line at the same position is studied. The scattering cross sections for unpolarized and polarized particles are obtained by solving the Dirac-Pauli equation. The results are in general the same as those for pure Aharonov-Casher scattering (by the charged line alone) as expected. However, in special cases when the incident energy, the line charge density, and the magnetic flux satisfy some relations, the cross section for polarized particles is dramatically changed. Relations between the polarization of incident particles and that of scattered ones are presented, both in the full relativistic case and the nonrelativistic limit. The characteristic difference between the general and special cases lies in the backward direction: in the general cases the incident particles are simply bounced while in the special cases their polarization is turned over simultaneously. For pure Aharonov-Casher scattering there exist cases where the helicities of all scattered particles are reversed. This seems to be remarkable but appears unnoticed previously. Two mathematical approaches are employed to deal with the singularity of the electric and magnetic field and it turns out that the physical results are essentially the same.

  2. Induced current and Aharonov-Bohm effect in graphene

    NASA Astrophysics Data System (ADS)

    Jackiw, R.; Milstein, A. I.; Pi, S.-Y.; Terekhov, I. S.

    2009-07-01

    The effect of vacuum polarization in the field of an infinitesimally thin solenoid at distances much larger than the radius of solenoid is investigated. The induced charge density and induced current are calculated. Though the induced charge density turned out to be zero, the induced current is a finite periodical function of the magnetic flux Φ . The expression for this function is found exactly in a value of the flux. The induced current is equal to zero at the integer values of Φ/Φ0 as well as at half-integer values of this ratio, where Φ0=2πℏc/e is the elementary magnetic flux. The latter is a consequence of the Furry theorem and periodicity of the induced current with respect to magnetic flux. As an example we consider the graphene in the field of solenoid perpendicular to the plane of a sample.

  3. Semifluxon degeneracy choreography in Aharonov-Bohm billiards

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Popescu, S.

    2010-09-01

    Every energy level of a charged quantum particle confined in a region threaded by a magnetic flux line with quantum flux one-half must be degenerate for some position of the semifluxon within the boundary B. This is illustrated by computations for which B is a circle and a conformal transformation of a circle without symmetry. As the shape of B is varied, two degeneracies between the same pair of levels can collide and annihilate. Degeneracy of three levels requires three shape parameters, or the positions of three semifluxons; degeneracy of N levels can be generated by int{N(N + 1)/4} semifluxons. The force on the semifluxon is derived.

  4. Aharonov-Bohm phase in high density quark matter

    NASA Astrophysics Data System (ADS)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    2016-03-01

    Stable non-Abelian vortices, which are color magnetic flux tubes as well as superfluid vortices, are present in the color-flavor locked phase of dense quark matter with diquark condensations. We calculate the Aharanov-Bohm phases of charged particles, that is, electrons, muons, and color-flavor locked mesons made of tetraquarks around a non-Abelian vortex.

  5. The Aharonov-Bohm effect and classical potentials

    SciTech Connect

    Mijatovic, M.; Trencevski, K.; Veljanoski, B.

    1993-06-01

    Using the inverse scattering method we derive the classical potential which produces the same cross section as the Ahaxonov-Bohm effect. Because the potential is velocity dependent it shows that this effect of quantum scattering theory can reduce to non-potential classical mechanics, only. 7 refs., 3 figs.

  6. Aharonov-Bohm effect on Aharonov-Casher scattering

    SciTech Connect

    Lin Qionggui

    2010-01-15

    The scattering of relativistic spin-1/2 neutral particles with a magnetic dipole moment by a long straight charged line and a magnetic flux line at the same position is studied. The scattering cross sections for unpolarized and polarized particles are obtained by solving the Dirac-Pauli equation. The results are in general the same as those for pure Aharonov-Casher scattering (by the charged line alone) as expected. However, in special cases when the incident energy, the line charge density, and the magnetic flux satisfy some relations, the cross section for polarized particles is dramatically changed. Relations between the polarization of incident particles and that of scattered ones are presented, both in the full relativistic case and the nonrelativistic limit. The characteristic difference between the general and special cases lies in the backward direction: in the general cases the incident particles are simply bounced while in the special cases their polarization is turned over simultaneously. For pure Aharonov-Casher scattering there exist cases where the helicities of all scattered particles are reversed. This seems to be remarkable but appears unnoticed previously. Two mathematical approaches are employed to deal with the singularity of the electric and magnetic field and it turns out that the physical results are essentially the same.

  7. Nonequilibrium work statistics of an Aharonov-Bohm flux.

    PubMed

    Yi, Juyeon; Talkner, Peter; Campisi, Michele

    2011-07-01

    We investigate the statistics of work performed on a noninteracting electron gas confined in a ring as a threaded magnetic field is turned on. For an electron gas initially prepared in a grand canonical state it is demonstrated that the Jarzynski equality continues to hold in this case, with the free energy replaced by the grand potential. The work distribution displays a marked dependence on the temperature. While in the classical (high-temperature) regime, the work probability density function follows a Gaussian distribution and the free energy difference entering the Jarzynski equality is null, the free energy difference is finite in the quantum regime, and the work probability distribution function becomes multimodal. We point out the dependence of the work statistics on the number of electrons composing the system.

  8. On a generalized Aharonov-Bohm plus oscillator system

    NASA Astrophysics Data System (ADS)

    Kibler, M.; Campigotto, C.

    1993-09-01

    Dynamical algebras, of the so(3,2) and so(3) types, are obtained for a generalized Aharanov-Bohm plus oscillator (ABO) system. Two types of coherent states are introduced for this generalized ABO system. A ( q,p)-analogue of this system is proposed that reduces to the generalized ABO system in the limiting case p= q-1=1. Finally, the classical motions for the generalized ABO system are briefly described.

  9. On the incorporation of the geometric phase in general single potential energy surface dynamics: A removable approximation to ab initio data.

    PubMed

    Malbon, Christopher L; Zhu, Xiaolei; Guo, Hua; Yarkony, David R

    2016-12-21

    For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian H(d) (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the H(d) by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding H(d) determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.

  10. On the incorporation of the geometric phase in general single potential energy surface dynamics: A removable approximation to ab initio data

    NASA Astrophysics Data System (ADS)

    Malbon, Christopher L.; Zhu, Xiaolei; Guo, Hua; Yarkony, David R.

    2016-12-01

    For two electronic states coupled by conical intersections, the line integral of the derivative coupling can be used to construct a complex-valued multiplicative phase factor that makes the real-valued adiabatic electronic wave function single-valued, provided that the curl of the derivative coupling is zero. Unfortunately for ab initio determined wave functions, the curl is never rigorously zero. However, when the wave functions are determined from a coupled two diabatic state Hamiltonian Hd (fit to ab initio data), the resulting derivative couplings are by construction curl free, except at points of conical intersection. In this work we focus on a recently introduced diabatization scheme that produces the Hd by fitting ab initio determined energies, energy gradients, and derivative couplings to the corresponding Hd determined quantities in a least squares sense, producing a removable approximation to the ab initio determined derivative coupling. This approach and related numerical issues associated with the nonremovable ab initio derivative couplings are illustrated using a full 33-dimensional representation of phenol photodissociation. The use of this approach to provide a general framework for treating the molecular Aharonov Bohm effect is demonstrated.

  11. Extended AB period study of the electron pairing transition in t-J ladders

    SciTech Connect

    Kusakabe, Koichi; Aoki, Hideo

    1996-11-01

    The extended Aharonov-Bohm period test, recently proposed by the present authors, is used to study the electron pairing transition in the t-J ladders. The critical point is detected as a gap opening in the extended spectral flow. The result suggests a pairing prior to the onset of a phase separation, which is consistent with a recent Tomonaga-Luttinger analysis.

  12. Comment on "Aharonov-Casher and Scalar Aharonov-Bohm Topological Effects"

    NASA Astrophysics Data System (ADS)

    Choi, Taeseung; Cho, Sam Young

    2014-04-01

    In this Comment we point out (i) that the Hamiltonian, Eq. (17) in the Letter(Phys. Rev. Lett. 108, 070405 (2012)), is not a relativistic Hamiltonian, (ii) then that the conditions in the Letter are irrelevant for a topological AC and SAB effects, and (iii) conclusively that the non-relativistic Hamiltonian employed by Peshkin and Lipkin (Phys. Rev. Lett. 74, 2847 (1995)) has the same $U(1)_{mm}$ gauge structure for a fixed spin and then is not wrong, but their incorrect interpretation of the spin autocorrelations led to the incorrect conclusion.

  13. Conductance phases in the quantum dots of an Aharonov-Bohm ring

    NASA Astrophysics Data System (ADS)

    Yahalom, A.; Englman, R.

    2006-09-01

    The regimes of growing phases (for electron numbers N≈0 8 ) that pass into regions of self-returning phases (for N>8 ), found recently in quantum dot conductances by Heiblum and co-workers are accounted for by an elementary Green’s function formalism, appropriate to an equi-spaced ladder structure (with at least three rungs) of electronic levels in the quantum dot. The key features of the theory are physically a dissipation rate that increases linearly with the level number (and is tentatively linked to coupling to longitudinal optical phonons) and a set of Fano-like metastable levels, which disturb the unitarity, and mathematically the changeover of the position of the complex transmission amplitude zeros from the upper half in the complex gap-voltage plane to the lower half of that plane. The two regimes are identified with (respectively) the Blaschke term and the Kramers-Kronig integral term in the theory of complex variables.

  14. Random Aharonov Bohm vortices and some exact families of integrals: II

    NASA Astrophysics Data System (ADS)

    Mashkevich, Stefan; Ouvry, Stéphane

    2008-03-01

    At sixth order in perturbation theory, the random magnetic impurity problem at second order in impurity density narrows down to the evaluation of a single Feynman diagram with maximal impurity line crossing. This diagram can be rewritten as a sum of ordinary integrals and nested double integrals of products of the modified Bessel functions Kν and Iν, with ν = 0,1. That sum, in turn, is shown to be a linear combination with rational coefficients of (25-1)ζ(5), \\int_0^{\\infty }u \\,K_0(u)^6\\,\\rmd u , and \\int_0^{\\infty }u^3 K_0(u)^6\\,\\rmd u . Unlike what happens at lower orders, these two integrals are not linear combinations with rational coefficients of Euler sums, even though they appear in combination with ζ(5). On the other hand, any integral \\int_0^{\\infty }u^{n+1} K_0(u)^p (uK_1(u))^q \\,\\rmd u with weight p+q = 6 and an even n is shown to be a linear combination with rational coefficients of the above two integrals and 1, a result that can be easily generalized to any weight p+q = k. A matrix recurrence relation in n is built for such integrals. The initial conditions are such that the asymptotic behavior is determined by the smallest eigenvalue of the transition matrix.

  15. Comment on "Role of potentials in the Aharonov-Bohm effect"

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Rohrlich, Daniel

    2015-08-01

    Are the electromagnetic scalar and vector potentials dispensable? Vaidman [Phys. Rev. A 86, 040101(R) (2012)], 10.1103/PhysRevA.86.040101 has suggested that local interactions of gauge-invariant quantities, e.g., magnetic torques, suffice for the description of all quantum electromagnetic phenomena. We analyze six thought experiments that challenge this suggestion. All of them have explanations in terms of local interactions of gauge-dependent quantities, and, in addition, some have explanations in terms of nonlocal interactions of gauge-invariant quantities. We claim, however, that two of our examples have no gauge-invariant formal description and that, in general, no local description can dispense with electromagnetic potentials.

  16. Single electron bipolar conductance switch driven by the molecular Aharonov-Bohm effect.

    PubMed

    Lee, Joonhee; Tallarida, Nicholas; Rios, Laura; Perdue, Shawn M; Apkarian, Vartkess Ara

    2014-06-24

    We demonstrate a conductance switch controlled by the spin-vibronic density of an odd electron on a single molecule. The junction current is modulated by the spin-flip bistability of the electron. Functional images are provided as wiring diagrams for control of the switch's frequency, amplitude, polarity, and duty-cycle. The principle of operation relies on the quantum mechanical phase associated with the adiabatic circulation of a spin-aligned electron around a conical intersection. The functional images quantify the governing vibronic Hamiltonian.

  17. Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning.

    PubMed

    Fischer, Andrea M; Campo, Vivaldo L; Portnoi, Mikhail E; Römer, Rudolf A

    2009-03-06

    We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and readout.

  18. Aharonov-Bohm interference in neutral excitons: effects of built-in electric fields.

    PubMed

    Teodoro, M D; Campo, V L; Lopez-Richard, V; Marega, E; Marques, G E; Gobato, Y Galvão; Iikawa, F; Brasil, M J S P; Abuwaar, Z Y; Dorogan, V G; Mazur, Yu I; Benamara, M; Salamo, G J

    2010-02-26

    We report a comprehensive discussion of quantum interference effects due to the finite structure of neutral excitons in quantum rings and their first experimental corroboration observed in the optical recombinations. The signatures of built-in electric fields and temperature on quantum interference are demonstrated by theoretical models that describe the modulation of the interference pattern and confirmed by complementary experimental procedures.

  19. Exciton Storage in a Nanoscale Aharonov-Bohm Ring with Electric Field Tuning

    SciTech Connect

    Fischer, Andrea M.; Roemer, Rudolf A.; Campo, Vivaldo L. Jr.; Portnoi, Mikhail E.

    2009-03-06

    We study analytically the optical properties of a simple model for an electron-hole pair on a ring subjected to perpendicular magnetic flux and in-plane electric field. We show how to tune this excitonic system from optically active to optically dark as a function of these external fields. Our results offer a simple mechanism for exciton storage and readout.

  20. Exciton storage in type-II quantum dots using the optical Aharonov-Bohm effect

    SciTech Connect

    Climente, Juan I.; Planelles, Josep

    2014-05-12

    We investigate the bright-to-dark exciton conversion efficiency in type-II quantum dots subject to a perpendicular magnetic field. To this end, we take the exciton storage protocol recently proposed by Simonin and co-workers [Phys. Rev. B 89, 075304 (2014)] and simulate its coherent dynamics. We confirm the storage is efficient in perfectly circular structures subject to weak external electric fields, where adiabatic evolution is dominant. In practice, however, the efficiency rapidly degrades with symmetry lowering. Besides, the use of excited states is likely unfeasible owing to the fast decay rates. We then propose an adaptation of the protocol which does not suffer from these limitations.

  1. Half-period Aharonov-Bohm oscillations in disordered rotating optical ring cavities

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Kottos, Tsampikos; Shapiro, Boris

    2016-09-01

    There exists an analogy between Maxwell equations in a rotating frame and the Schrödinger equation for a charged particle in the presence of a magnetic field. We exploit this analogy to point out that electromagnetic phenomena in the rotating frame, under appropriate conditions, can exhibit periodicity with respect to the angular velocity of rotation. In particular, in disordered ring cavities one finds the optical analog of the Al'tshuler-Aronov-Spivak effect well known in mesoscopic physics of disordered metals.

  2. Keck Interferometer

    NASA Technical Reports Server (NTRS)

    2003-01-01

    At the summit of Mauna Kea, Hawaii, NASA astronomers have linked the two 10-meter (33-foot) telescopes at the W. M. Keck Observatory. The linked telescopes, which together are called the Keck Interferometer, make up the world's most powerful optical telescope system. The Keck Interferometer will search for planets around nearby stars and study dust clouds around those stars that may hamper future space-based searches for habitable, Earthlike planets. The Keck Interferometer is part of NASA's Origins program, which seeks to answer two fundamental questions: How did we get here? Are we alone?

  3. The electronic properties of concentric double quantum ring and possibility designing XOR gate

    NASA Astrophysics Data System (ADS)

    AL-Badry, Lafy. F.

    2017-03-01

    In this paper I have investigated the Aharonov-Bohm oscillation in concentric double quantum ring. The outer ring attached to leads while the inner ring only tunnel-coupled to the outer ring. The effect of inner ring on electron transport properties through outer ring studied and found that the conductance spectrum consists of two types of oscillations. One is the normal Aharonov-Bohm oscillation, and other is a small oscillations superposed above AB oscillation. The AB oscillation utilized to designing nanoscale XOR gate by choosing the magnetic flux and tuning the gate voltages which realization XOR gate action.

  4. Quantum Phenomena Observed Using Electrons

    SciTech Connect

    Tonomura, Akira

    2011-05-06

    Electron phase microscopy based on the Aharonov-Bohm (AB) effect principle has been used to illuminate fundamental phenomena concerning magnetism and superconductivity by visualizing quantitative magnetic lines of force. This paper deals with confirmation experiments on the AB effect, the magnetization process of tiny magnetic heads for perpendicular recording, and vortex behaviors in high-Tc superconductors.

  5. Quantum mechanical effects of topological origin

    NASA Technical Reports Server (NTRS)

    Duru, I. H.

    1993-01-01

    Following a brief review of the original Casimir and Aharonov-Bohm effects, some other effects of similar natures are mentioned. A Casimir interaction between AB fluxes is presented. Possible realizations of the Casimir effects for massive charged fields in solid state structures and a new AB effect for photons are suggested.

  6. Michelson Interferometer

    NASA Technical Reports Server (NTRS)

    Rogers, Ryan

    2007-01-01

    The Michelson Interferometer is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson Interferometer for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.

  7. Using Time-Reversal Symmetry for Sensitive Incoherent Matter-Wave Sagnac Interferometry

    SciTech Connect

    Japha, Y.; Arzouan, O.; Avishai, Y.; Folman, R.

    2007-08-10

    We present a theory of the transmission of guided matter-waves through Sagnac interferometers. Interferometer configurations with only one input and one output port have a property similar to the phase rigidity observed in the transmission through Aharonov-Bohm interferometers in coherent mesoscopic electronics. This property enables their operation with incoherent matter-wave sources. High rotation sensitivity is predicted for high finesse configurations.

  8. Special relativity and interferometers

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.

    1988-01-01

    A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.

  9. Aharonov-Bohm conductance through a single-channel quantum ring: persistent-current blockade and zero-mode dephasing.

    PubMed

    Dmitriev, A P; Gornyi, I V; Kachorovskii, V Yu; Polyakov, D G

    2010-07-16

    We study the effect of electron-electron interaction on transport through a tunnel-coupled single-channel ring. We find that the conductance as a function of magnetic flux shows a series of interaction-induced resonances that survive thermal averaging. The period of the series is given by the interaction strength α. The physics behind this behavior is the blocking of the tunneling current by the circular current. The main mechanism of dephasing is due to circular-current fluctuations. The dephasing rate is proportional to the tunneling rate and does not depend on α.

  10. Two interacting charged particles in an Aharonov-Bohm ring: Bound state transitions, symmetry breaking, persistent currents, and Berry's phase

    SciTech Connect

    Moulopoulos, Konstantinos; Constantinou, Martha

    2004-12-15

    By using a Green's function procedure we determine exactly the energy spectrum and the associated eigenstates of a system of two oppositely charged particles interacting through a contact potential and moving in a one-dimensional ring threaded by a magnetic flux. Critical interactions for the appearance of bound states are analytically determined and are viewed as limiting cases of many-body results from the area of interaction-induced metal-insulator transitions in charged quantal mixtures. Analytical expressions on one-body probability and charge current densities for this overall neutral system are derived and their single-valuedness leads to the possibility of states with broken symmetry, with possible experimental signatures in exciton spectra. Persistent currents are analytically determined and their properties investigated from the point of view of an interacting mesoscopic system. A cyclic adiabatic process on the interaction potential is also identified, with the associated Berry's phase directly linked to the electric (persistent) currents, the probability currents having no contribution for a neutral system.

  11. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  12. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  13. Femtosecond plasmon interferometer

    NASA Astrophysics Data System (ADS)

    Melentiev, Pavel N.; Kuzin, Artur A.; Gritchenko, Anton S.; Kalmykov, Alexey S.; Balykin, Victor I.

    2017-01-01

    We have realized a plasmonic interferometer formed by a nanoslit and a nanogroove in a single-crystal gold film. The possibility of measuring laser pulses of ultimately short durations, corresponding to two periods of a light wave (6 fs pulse duration), has been demonstrated using this interferometer.

  14. Thank You and Farewell to Tonomura-kun

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidetoshi

    2014-01-01

    "Science triggers technology; technology inspires science" is true, so is your case, when you proved partially1 in 1982 and completely2,3 in 1986 the Aharonov-Bohm(AB) effect, the principal manifestation of gauge field, based on the state-of-the-art electron microscope that you developed. You put "period," i.e., an end, on the controversy associated with the AB effect...

  15. Quantum gates with topological phases

    SciTech Connect

    Ionicioiu, Radu

    2003-09-01

    We investigate two models for performing topological quantum gates with the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects. Topological one- and two-qubit Abelian phases can be enacted with the AB effect using charge qubits, whereas the AC effect can be used to perform all single-qubit gates (Abelian and non-Abelian) for spin qubits. Possible experimental setups suitable for a solid-state implementation are briefly discussed.

  16. Quantum oscillation and decoherence in triangular antidot lattice

    NASA Astrophysics Data System (ADS)

    Ueki, M.; Endo, A.; Katsumoto, S.; Iye, Y.

    2004-04-01

    Quantum oscillation phenomena in triangular antidot lattice have been investigated. Altshuler-Aronov-Spivak oscillations and Aharonov-Bohm (AB)-type oscillations are observed at low magnetic field, and AB-type oscillations due to edge channels are observed in the quantum Hall regime. Measurements of the temperature dependence of these oscillations furnish information on the mechanism of decoherence in the antidot lattice, which is compared with the single ring case.

  17. Quantum interference and decoherence in hexagonal antidot lattices

    NASA Astrophysics Data System (ADS)

    Iye, Yasuhiro; Ueki, Masaaki; Endo, Akira; Katsumoto, Shingo

    2003-09-01

    The Altshuler-Aronov-Spivak (AAS) oscillations and the Aharonov-Bohm (AB) type oscillations both at low and high magnetic fields were observed in hexagonal antidot lattices fabricated from a GaAs/AlGaAs two-dimensional electron gas sample. The periodicities in the magnetic field and in the gate bias voltage, of the high field AB oscillation furnish information on the edge states localized around the antidots. The temperature dependences of these quantum oscillations are studied.

  18. Geophysical Fiber Interferometer Gyroscope.

    DTIC Science & Technology

    1979-12-31

    gravitational antenna. Basically, their device was a Twyman -Green laser interferometer that was allegedly well-isolated from its thermal and...r ~AD-AO92 913 UTAH UNIV RESEARCH INST SALT LAKE CITY GEOSPACE SCIE-EYC F/B 20/6 GEOPHYSICAL FIBER INTERFEROMETER GYROSCOPE(U) .S DEC 79 L 0 WEAVER...ACCESSION no: S, 111CIPIENT’S CATALOG NUMBER AF6ii M_ __ _ __I_ _ 4. TItLIL (eovm4jk"IU .TYEo nPaTawn.ocoet GEOPHYSICAL FIBER INTERFEROMETER GYROSCOPE. / 9

  19. Sub-Aperture Interferometers

    NASA Technical Reports Server (NTRS)

    Zhao, Feng

    2010-01-01

    Sub-aperture interferometers -- also called wavefront-split interferometers -- have been developed for simultaneously measuring displacements of multiple targets. The terms "sub-aperture" and "wavefront-split" signify that the original measurement light beam in an interferometer is split into multiple sub-beams derived from non-overlapping portions of the original measurement-beam aperture. Each measurement sub-beam is aimed at a retroreflector mounted on one of the targets. The splitting of the measurement beam is accomplished by use of truncated mirrors and masks, as shown in the example below

  20. Nonlinearity-reduced interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Chien-ming

    2007-12-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.

  1. Fizeau plasma interferometer

    SciTech Connect

    Frank, A.M.

    1980-01-01

    This paper describes a technique by which the sensitivity of plasma interferometers can be increased. Stabilization and fractional fringe measurement techniques have improved to the point where additional optical sensitivity could be useful. (MOW)

  2. Dual surface interferometer

    DOEpatents

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  3. Dual surface interferometer

    DOEpatents

    Pardue, Robert M.; Williams, Richard R.

    1982-01-01

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  4. The Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.

    1999-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.

  5. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  6. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  7. Michelson and His Interferometer

    ERIC Educational Resources Information Center

    Shankland, Robert S.

    1974-01-01

    Presents a brief historical account of Michelson's invention of his interferometer with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)

  8. Compactness of lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-01

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  9. Competition of phase-breaking and thermal broadening in few-mode mesoscopic rings

    NASA Astrophysics Data System (ADS)

    Espe Hansen, Adam; Kristensen, Anders; Pedersen, Simon; Sorensen, Claus; Lindelof, Poul Erik

    2001-03-01

    The electron phase coherence length L_φ is measured in a ballistic few-mode ring interferometer. For the first time, it is demonstrated that the phase-breaking rate of the n'th harmonic h/ne of the Aharonov-Bohm (AB) magnetoconductance oscillations depends on temperature T like n\\cdot L/L_φ(T), hence scales with the actual pathlength n\\cdot L. Here L is half the ring circumference. To obtain this result, it is necessary to account for the effect of thermal broadening, which depends on the phase-shifts of the AB oscillations. The even harmonics h/2ne are found to be less affected by thermal broadening than the odd harmonics h/(2n+1)e, which can be understood in terms of a simple argument, resembling the argument explaining the h/2e Aharonov-Altshuler-Spivak oscillations in disordered systems. The rings are fabricated by shallow wet-etching in GaAs/GaAlAs heterostructures. The phase coherence length is found to vary as T-1 in the temperature regime from 0.3 K to 4 K, and is estimated to be of the order of 30 μ m at T = 0.3 K.

  10. PDX multichannel interferometer

    SciTech Connect

    Bitzer, R.; Ernst, W.; Cutsogeorge, G.

    1980-10-01

    A 10 channel, 140 GHz homodyne interferometer is described for use on PDX. One feature of this interferometer is the separation of the signal source and electronics from the power splitters, delay line, and receiving systems. The latter is situated near the upper and lower vacuum ports between the toroidal field magnets. A second feature is the signal stabilization of the EIO source by means of an AFC system. The complete interferometer is described including block diagrams, circuit diagrams, test data, and magnetic field test conducted on the preamplifiers, microwave diodes, isolators, etc., to determine the extent of magnetic shielding required. The description of the tracking filters and digital phase display circuit is referenced to accompanying reports.

  11. Heterodyne Interferometer Angle Metrology

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  12. Nimbus 4 michelson interferometer.

    PubMed

    Hanel, R A; Schlachman, B; Rogers, D; Vanous, D

    1971-06-01

    The Michelson interferometer, IRIS-D, flown on Nimbus 4 in April 1970 is an improved version of the interferometer, IRIS-B, flown on Nimbus 3 a year earlier. Thermal emission spectra of the earth are being recorded between 400 cm(-1) and 1600 cm(-1) with a nominal spectral resolution of 2.8 cm(-1) and a noise equivalent radiance between approximately 0.5 and 1 erg sec(-1) cm(-2) ster(-1) cm. This paper describes the design and performance of the IRIS-D and concentrates on the design differences that exist between the interferometers flown on Nimbus 3 and 4. The performance is demonstrated by examples of spectra obtained while in earth orbit.

  13. Mariner 9 Michelson interferometer.

    NASA Technical Reports Server (NTRS)

    Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.

    1972-01-01

    The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.

  14. Keck interferometer autoaligner

    NASA Astrophysics Data System (ADS)

    van Belle, Gerard T.; Colavita, M. Mark; Ligon, Edgar R., III; Moore, James D.; Palmer, Dean L.; Reder, Leonard J.; Smythe, Robert F.

    2003-02-01

    A key thrust of NASA's Origins program is the development of astronomical interferometers. Pursuing this goal in a cost-effective and expedient manner from the ground has led NASA to develop the Keck Interferometer, which saw first fringes between the twin 10m Keck telescopes in March of 2001. In order to enhance the imaging potential of this facility, and to add astrometric capabilities for the detection of giant planets about nearby stars, four 1.8 m 'outrigger' telescopes may be added to the interferometer. Robust performance of the multi-aperture instrument will require precise alignment of the large number of optical elements found in the six optical beamtrains spread about the observatory site. The requirement for timely and reliable alignments dictated the development of an automatic alignment system for the Keck Interferometer. The autoaligner consists of swing-arm actuators that insert light-emitting diodes on the optical axis at the location of each optical element, which are viewed by a simple fixed-focus CCD camera at the end of the beamtrain. Sub-pixel centroiding is performed upon the slightly out-of-focus target spots using images provided by a frame grabber, providing steering information to the two-axis actuated optical elements. Resulting mirror-to-mirror alignments are good to within 2 arcseconds, and trimming the alignment of a full beamtrain is designed to take place between observations, within a telescope repointing time. The interactions of the autoaligner with the interferometer delay lines and coude trains are discussed in detail. The overall design of the interferometer's autoaligner system is presented, examining the design philosophy, system sequencing, optical element actuation, and subsystem co-alignment, within the context of satisfying performance requirements and cost constraints.

  15. Interferometer systems in machine industry

    NASA Astrophysics Data System (ADS)

    Rzepka, Janusz; Pienkowski, Janusz; Sambor, Slawomir; Budzyn, Grzegorz

    2003-10-01

    In the report the arrangements of laser interferometers for machine history are presented; the laser interferometer LSP30 for investigation of geometry of machine tools, the setup for inspection of ball screw and laser liner for CNC machine. Outstanding feature of the interferometers is the stabilization system of laser frequency using surface stabilized ferroelectric liquid cells (SSFLC).

  16. Mesoscopic Interferometers for Electron Waves

    SciTech Connect

    Rohrlich, D.

    2005-09-15

    Mesoscopic interferometers are electronic analogues of optical interferometers, with 'quantum point contacts' playing the role of optical beam splitters. Mesoscopic analogues of two-slit, Mach-Zehnder and Fabry-Perot interferometers have been built. A fundamental difference between electron and photon interferometry is that electron interferometry is nonlocal.

  17. Atom Wave Interferometer

    DTIC Science & Technology

    1991-04-05

    make improved measurements of the polarizability of sodium and the Aharonov - Casher effect . RECENT PUBLICATIONS Experimenal Study of Sub-Poissonian...constructing interferometers with varying degrees of beam collimation, and we plan to study the effects of source coherence (the collimator does not

  18. Dual beam optical interferometer

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    2003-01-01

    A dual beam interferometer device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.

  19. Ultrasonic Interferometers Revisited

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2007-01-01

    I have been tinkering with ultrasonic transducers once more. In earlier notes I reported on optics-like experiments performed with ultrasonics, described a number of ultrasonic interferometers, and showed how ultrasonic transducers can be used for Fourier analysis. This time I became interested in trying the technique of using two detectors in…

  20. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  1. Remembering AB

    NASA Astrophysics Data System (ADS)

    Belyayev, S. T.

    2013-06-01

    In 1947 I became a second-year student at Moscow State University's Physics and Engineering Department, where a part of the week's classes were taught at base organizations. Our group's base was the future Kurchatov Institute, at that time known as the mysterious "Laboratory N^circ 2," and later as LIPAN. . Besides group lectures and practical work at the experimental laboratories, we also had access to the general seminars which Igor Vasilyevich Kurchatov tried to hold, with Leonid Vasilyevich Groshev filling in when he was absent. At the seminar, theorists spoke as welcome co-presenters and commentators. In 1949 I felt ready to approach A. B. Migdal to ask if I could transfer to his theoretical sector. In response, he suggested a number of simple qualitative problems, which I then successfully solved. (Incidentally, AB used the very same "introductory problems" for screening many generations of students.) So I wound up among AB's students. From 1952 on (for 10 years) I also served as an employee of the Migdal Sector. My memoirs here are mainly inspired by these years of constant communication with AB. After my departure for Novosibirsk in 1962, although our meetings still took place, they became occasional....

  2. Fano-Rashba effect in thermoelectricity of a double quantum dot molecular junction.

    PubMed

    Liu, Ys; Hong, Xk; Feng, Jf; Yang, Xf

    2011-12-07

    We examine the relation between the phase-coherent processes and spin-dependent thermoelectric effects in an Aharonov-Bohm (AB) interferometer with a Rashba quantum dot (QD) in each of its arm by using the Green's function formalism and equation of motion (EOM) technique. Due to the interplay between quantum destructive interference and Rashba spin-orbit interaction (RSOI) in each QD, an asymmetrical transmission node splits into two spin-dependent asymmetrical transmission nodes in the transmission spectrum and, as a consequence, results in the enhancement of the spin-dependent thermoelectric effects near the spin-dependent asymmetrical transmission nodes. We also examine the evolution of spin-dependent thermoelectric effects from a symmetrical parallel geometry to a configuration in series. It is found that the spin-dependent thermoelectric effects can be enhanced by controlling the dot-electrode coupling strength. The simple analytical expressions are also derived to support our numerical results.PACS numbers: 73.63.Kv; 71.70.Ej; 72.20.Pa.

  3. Double integrated laser interferometer

    NASA Astrophysics Data System (ADS)

    Motyka, Zbigniew

    2003-10-01

    The layout of integrated optical system compromising the basis of proposed solution of double laser interferometer composed of two integrated Michelson's interferometers is presented and shortly discussed. Such an integrated system is designed for work with two lasers of different wavelength. It may serve for mapping surfaces and deformations of objects under investigation with the use of simultaneous recording of two mutually orthogonal gratings, each one composed of equidistant, parallel interference fringes projected onto the surface of such an object. The picture resulting two-coloured is recorded with the digital camera and may be used for obtaining these maps and deformations directly or in the indirect way after suitable digital processing applied to each colour component separately.

  4. Interferometers without observable fringes

    NASA Astrophysics Data System (ADS)

    Garcia-Marquez, Jorge L.; Malacara-Hernandez, Daniel; Malacara-Doblado, Daniel

    1997-10-01

    There are some optical arrangements that closely resemble interferometric configurations but do not produce fringe patterns. An important characteristics of these devices is that they do not have two different outputs with complementary patterns, but only one. Some of these interferometers are described here, pointing out their common properties and differences. It is shown that if we open the second output, both complementary patterns will appear.

  5. Coaxial Mirau interferometer.

    PubMed

    Dobroiu, Adrian; Sakai, Hiroshi; Ootaki, Hitoshi; Sato, Manabu; Tanno, Naohiro

    2002-07-01

    We describe a new interferometric configuration for optical coherence tomography that is based on the Mirau interferometer. It uses the photodetector included in a superluminescent diode package, which makes possible a highly miniaturized device. Other advantages of the configuration include its totally coaxial structure, confocal microscope operation, availability of the full working distance of the imaging objective, and no central obscuration. Fundamental characteristics such as resolution and dynamic range are discussed, and the result of measurement on a rough metallic surface is presented.

  6. Multipulsed dynamic moire interferometer

    DOEpatents

    Deason, Vance A.

    1991-01-01

    An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

  7. Atom-Light Hybrid Interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L. Q.; Ou, Z. Y.; Zhang, Weiping

    2015-07-01

    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.

  8. Atom-Light Hybrid Interferometer.

    PubMed

    Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L Q; Ou, Z Y; Zhang, Weiping

    2015-07-24

    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.

  9. SISAM interferometer for distance measurements.

    PubMed

    Verrier, I; Brun, G; Goure, J P

    1997-09-01

    We measure short distances with a spectromètre interférentiel à sélection par l'amplitude de la modulation (SISAM) (interferential spectrometer by selection of amplitude modulation) interferometer that correlates optical fields. We present the method and the resolution of the system. A test with a Michelson interferometer shows SISAM's ability to detect phase change in one arm of the Michelson interferometer.

  10. Orbiting Space Interferometer (OSI): A first generation space interferometer

    NASA Technical Reports Server (NTRS)

    Shao, Michael

    1992-01-01

    The technical requirements and performance of a first generation space interferometer is discussed. The performance of an interferometer, sensitivity, field of view, dynamic range, astrometric accuracy, etc, in space is set by what cannot be achieved for a ground-based instrument. For the Orbiting Space Interferometer (OSI), the nominal performance parameters are 20 mag sensitivity, field of view of approximately 500*500 pixels, a 1000:1 dynamic range in the image with one milliarcsec resolution, and an astrometric accuracy of 0.1 milliarcsec for wide angle astrometry and 10 microarcsec accuracy for narrow field astrometry (few degrees). OSI is a fully phased interferometer where all critical optical paths are controlled to 0.05 wavelengths. The instrument uses two guide interferometers locked on bright stars several degrees away to provide the spacecraft attitude information needed to keep the fringes from the faint science object stable on the detector.

  11. Holographic Twyman-Green Interferometer

    NASA Technical Reports Server (NTRS)

    Chen, C. W.; Wyant, J. C.; Breckinridge, J. B.

    1984-01-01

    Off-axis Fresnel zone plate used to obtain fringe visibility close to unity. Holographic Twyman-Green Interferometer (HTG) employs off-axis Fresnel zone plate (OFZP) as beam splitter and beam diverger in place of two separate elements that perform those functions in conventional TwymanGreen interferometer.

  12. Wavelength independent interferometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)

    1991-01-01

    A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.

  13. Folding gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Sanders, J. R.; Ballmer, Stefan W.

    2017-01-01

    The sensitivity of kilometer-scale terrestrial gravitational wave interferometers is limited by mirror coating thermal noise. Alternative interferometer topologies can mitigate the impact of thermal noise on interferometer noise curves. In this work, we explore the impact of introducing a single folding mirror into the arm cavities of dual-recycled Fabry–Perot interferometers. While simple folding alone does not reduce the mirror coating thermal noise, it makes the folding mirror the critical mirror, opening up a variety of design and upgrade options. Improvements to the folding mirror thermal noise through crystalline coatings or cryogenic cooling can increase interferometer range by as much as a factor of two over the Advanced LIGO reference design.

  14. He-McKellar-Wilkens-type effect, quantum holonomies and Aharonov-Bohm-type effect for bound states from the Lorentz symmetry breaking effects

    NASA Astrophysics Data System (ADS)

    de Lima, A. G.; Belich, H.; Bakke, K.

    2016-10-01

    From the effects of the Lorentz symmetry violation in the CPT-even gauge sector of the Standard Model Extension determined by a tensor background (KF)μναβ, we establish a possible scenario where an analogue of the He-McKellar-Wilkens effect can stem from. Besides, we build quantum holonomies associated with the analogue of the He-McKellar-Wilkens effect and discuss a possible analogy with the geometric quantum computation. Finally, we investigate the dependence of the energy levels on the He-McKellar-Wilkens geometric phase induced by Lorentz symmetry breaking effects when the particle is confined to a hard-wall confining potential.

  15. Challenges for first-principles methods in theoretical and computational physics: multiple excitations in many-electrons systems and the Aharonov-Bohm effect in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sarkar, Daipayan

    The objective of this research is to understand the temperature variation in dielectric materials of different geometry. The work is divided into three major segments. The Thermal Wave model has been taken into consideration as the classical Fourier law of heat conduction breaks down when a dielectric material of sub-micron geometry is heated rapidly. The first part of the work discusses primarily about the temperature distribution in a semi-infinite dielectric material, followed by the temperature profile in a finite body (plate) and finally mathematical formulation is presented for a two-layered body. The thermal wave equation is used because in dielectric materials the lag time due to temperature (taut) is much less than the lag time due to heat flux (tauq), ( taut <

  16. The Fizeau Interferometer Testbed

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2003-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  17. Guided magnonic Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Ahmed, Muhammad H.; Jeske, Jan; Greentree, Andrew D.

    2017-01-01

    Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks.

  18. Radio Seeing Monitor Interferometer

    NASA Astrophysics Data System (ADS)

    Hiriart, David; Valdez, Jorge; Zaca, Placido; Medina, José L.

    2002-10-01

    A two-element interferometer for monitoring atmospheric phase fluctuations (radio seeing) is presented; this uses the unmodulated beacon signal at 11.715 GHz from a geostationary satellite. The system measures phase differences on the signal received by two small antennas separated by 50 m. The system incorporates the best features from previous designs: a heterodyne phase-lock receiver and an IQ demodulator system. Phase fluctuations measured at this frequency may be extrapolated to millimetric and submillimetric wavelengths since the atmosphere is not dispersive at these frequencies. The instrument has been tested at the Observatory San Pedro Martir (Mexico) at 2800 m above sea level. The final destination of the instrument is Cerro la Negra (Mexico), where the Large Millimeter Telescope is under construction, at an altitude of 4600 m.

  19. Guided magnonic Michelson interferometer.

    PubMed

    Ahmed, Muhammad H; Jeske, Jan; Greentree, Andrew D

    2017-01-30

    Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks.

  20. Guided magnonic Michelson interferometer

    PubMed Central

    Ahmed, Muhammad H.; Jeske, Jan; Greentree, Andrew D.

    2017-01-01

    Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks. PMID:28134271

  1. THE KECK INTERFEROMETER NULLER

    SciTech Connect

    Serabyn, E.; Mennesson, B.; Colavita, M. M.; Koresko, C.; Kuchner, M. J.

    2012-03-20

    The Keck Interferometer Nuller (KIN), the first operational separated-aperture infrared nulling interferometer, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which 'cross-combination' on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline-a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant ({approx}order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.

  2. The Keck Interferometer Nuller

    NASA Technical Reports Server (NTRS)

    Serabyn, E.; Mennesson, B.; Colavita, M. M.; Koresko, C.; Kuchner, M. J.

    2012-01-01

    The Keck Interferometer Nuller (KIN), the first operational separated-aperture infrared nulling interferometer, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it 10 the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which "cross-combination" on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive itellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline-a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positivedefinite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-tenns combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant (approx. order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.

  3. The Keck Interferometer Nuller

    NASA Astrophysics Data System (ADS)

    Serabyn, E.; Mennesson, B.; Colavita, M. M.; Koresko, C.; Kuchner, M. J.

    2012-03-01

    The Keck Interferometer Nuller (KIN), the first operational separated-aperture infrared nulling interferometer, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which "cross-combination" on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline—a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant (~order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.

  4. MIT's interferometer CST testbed

    NASA Technical Reports Server (NTRS)

    Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-01-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  5. Overview of the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    vanBelle, Gerard

    1999-01-01

    This is a presentation about the Keck Interferometer which is being constructed on top of Mauna Kea, Hawaii. This includes using the world's largest telescopes for optical and near-infrared astronomy, the twin 10 meter Keck telescopes. The two Keck telescopes, in conjunction with four proposed outrigger telescopes, will be used as an interferometer to conduct observations as part of NASA's Origins Program. These observations will address a variety of topics, including the origin and evolution of planetary systems. This presentation reviews the key features of the interferometer, and the specifications of the telescopes that will be used. It shows diagrams of the site, and the basement layout. It also reviews the science for which the interferometer will be used.

  6. Balloon exoplanet nulling interferometer (BENI)

    NASA Astrophysics Data System (ADS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-08-01

    We evaluate the feasibility of a balloon-borne nulling interferometer to detect and characterize an exosolar planet and the surrounding debris disk. The existing instrument consists of a three-telescope Fizeau imaging interferometer with thre fast steering mirrors and three delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer would be coupled to the imaging interferometer and in principle, allows deep starlight suppression. Atmospheric simulations of the environment above 100,000 feet show that balloonborne payloads are a possible path towards the direct detection and characterization of a limited set of exoplanets and debris disks. Furthermore, rapid development of lower cost balloon payloads provide a path towards advancement of NASA technology readiness levels for future space-based exoplanet missions. Discussed are the BENI mission and instrument, the balloon environment and the feasibility of such a balloon-borne mission.

  7. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  8. T 3-Interferometer for atoms

    NASA Astrophysics Data System (ADS)

    Zimmermann, M.; Efremov, M. A.; Roura, A.; Schleich, W. P.; DeSavage, S. A.; Davis, J. P.; Srinivasan, A.; Narducci, F. A.; Werner, S. A.; Rasel, E. M.

    2017-04-01

    The quantum mechanical propagator of a massive particle in a linear gravitational potential derived already in 1927 by Kennard [2, 3] contains a phase that scales with the third power of the time T during which the particle experiences the corresponding force. Since in conventional atom interferometers the internal atomic states are all exposed to the same acceleration a, this T^3-phase cancels out and the interferometer phase scales as T^2. In contrast, by applying an external magnetic field we prepare two different accelerations a_1 and a_2 for two internal states of the atom, which translate themselves into two different cubic phases and the resulting interferometer phase scales as T^3. We present the theoretical background for, and summarize our progress towards experimentally realizing such a novel atom interferometer.

  9. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  10. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  11. Surface profiling interferometer

    DOEpatents

    Takacs, Peter Z.; Qian, Shi-Nan

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  12. Michelson Interferometer (MINT)

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew; Carlson, Barbara

    1993-01-01

    MINT is a Michelson interferometer designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.

  13. Electronic Properties of Semimetal-Semiconductor (V/III-V) Heterostructures and Devices

    DTIC Science & Technology

    2007-11-02

    structures exhibiting negative differential resistances and Sb submicron loops displaying Aharonov - Bohm oscil- lations. 14. SUBJECT TERMS 17...resonant tunneling structures exhibiting negative differential resistances and Sb submicron loops displaying Aharonov - Bohm oscillations. B...structures were fabricated using ion beam milling techniques. Aharonov - Bohm effects were studied in a l|i.m diameter Sb loop. Variation of the sample

  14. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  15. The Electromagnetic Duality Formulation of Geometric Phases

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchao; Li, Kang

    2015-06-01

    This paper focuses on the electromagnetic(EM) duality formulation of geometric phases of Aharonov-Bohm(A-B) effect and Aharonov-Casher(A-C) effect. Through the two four-vector potential formulation of electromagnetic theory, we construct a EM duality formulation for both A-B effect and A-C effect. The He-McKellar-Wilkens(HMW) effect is included as a EM duality counterpart of the A-C effect, and also the EM duality counterpart of the A-B effect is also predicted.

  16. Ensemble Averaging in Metallic Quantum Networks

    NASA Astrophysics Data System (ADS)

    Mallet, François; Schopfer, Félicien; Ericsson, Jerry; Saminadayar, Laurent; Bäuerle, Christopher; Mailly, Dominique; Texier, Christophe; Montambaux, Gilles

    2008-10-01

    We report on the size dependence of the amplitudes of Aharonov-Bohm (AB) as well as Altshuler-Aronov-Spivak (AAS) magnetoconductance oscillations in silver networks with anisotropic aspect ratio and for various sizes ranging from 10 to 106 plaquettes. We show that the amplitude of both AB and AAS oscillations exhibit an unexpected dependence as a function of number of plaquettes N when the smallest dimension of the network becomes smaller than the phase coherence length: in this case, the network can be considered as a fully coherent object (mesoscopic) in one direction, whereas macroscopic in the other.

  17. An experimental proposal to test the physical effect of the vector potential.

    PubMed

    Wang, Rui-Feng

    2016-01-29

    There are two interpretations of the Aharonov-Bohm (A-B) effect. One interpretation asserts that the A-B effect demonstrates that the vector potential is a physical reality that can result in the phase shift of a moving charge in quantum mechanics. The other interpretation asserts that the phase shift of the moving charge results from the interaction energy between the electromagnetic field of the moving charge and external electromagnetic fields. This paper briefly reviews these two interpretations and analyzes their differences. In addition, a new experimental scheme is proposed to determine which interpretation is correct.

  18. Liquid-helium-cooled Michelson interferometer

    NASA Technical Reports Server (NTRS)

    Augason, G. C.; Young, N.

    1972-01-01

    Interferometer serves as a rocket-flight spectrometer for examination of the far infrared emission spectra of astronomical objects. The double beam interferometer is readily adapted to make spectral scans and for use as a detector of discrete line emissions.

  19. Interferometer for optical coherence tomography.

    PubMed

    Hauger, Christoph; Wörz, Marco; Hellmuth, Thomas

    2003-07-01

    We describe a new interferometer setup for optical coherence tomography (OCT). The interferometer is based on a fiber arrangement similar to Young's two-pinhole interference experiment with spatial coherent and temporal incoherent light. Depth gating is achieved detection of the interference signal on a linear CCD array. Therefore no reference optical delay scanning is needed. The interference signal, the modulation of the signal, the axial resolution, and the depth range are derived theoretically and compared with experiments. The dynamic range of the setup is compared with OCT sensors in the time domain. To our knowledge, the first images of porcine brain and heart tissue and human skin are presented.

  20. The Nimbus III Michelson Interferometer.

    PubMed

    Hanel, R A; Schlachman, B; Clark, F D; Prokesh, C H; Taylor, J B; Wilson, W M; Chaney, L

    1970-08-01

    The Michelson interferometer flown on Nimbus III in April 1969 has obtained infrared emission spectra of the earth and its atmosphere within 400 cm(-1) and 2000 cm(-1) (5 micro and 25 micro). Spectra of good quality have been recorded with a spectral resolution corresponding to 5 cm(-1). This paper discusses the design of the instrument including the optical layout, the phase locked loop operation of the Michelson motor, and the functioning of the reference interferometer. The methods of data reduction and in-flight calibration are demonstrated on sample spectra recorded while in orbit around the earth.

  1. The NIST Length Scale Interferometer

    PubMed Central

    Beers, John S.; Penzes, William B.

    1999-01-01

    The National Institute of Standards and Technology (NIST) interferometer for measuring graduated length scales has been in use since 1965. It was developed in response to the redefinition of the meter in 1960 from the prototype platinum-iridium bar to the wavelength of light. The history of the interferometer is recalled, and its design and operation described. A continuous program of modernization by making physical modifications, measurement procedure changes and computational revisions is described, and the effects of these changes are evaluated. Results of a long-term measurement assurance program, the primary control on the measurement process, are presented, and improvements in measurement uncertainty are documented.

  2. Multiplex Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Snell, Hilary E.

    1991-01-01

    Attention is given to a Fabry-Perot interferometer (FPI) technique in which one of the etalon plates is moved over a large optical distance while the other remains fixed, thus exploiting the multiplex advantage of the instrument. This technique involves the application of Fourier-transform spectrometer to the multiple harmonics passing through the FPI etalon. It is shown that the multiplex FPI acts as several Michelson interferometers working at the same time, over the same spectral interval, and at different spectral resolutions. A high spectral resolution has been obtained over a large wavenumber interval, while the advantage of a reasonable scan length has been retained.

  3. Interferometer for the measurement of plasma density

    DOEpatents

    Jacobson, Abram R.

    1980-01-01

    An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

  4. Microwave interferometer controls cutting depth of plastics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1969-01-01

    Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.

  5. Holographic Twyman-Green interferometer.

    PubMed

    Chen, C W; Breckinridge, J B

    1982-07-15

    A dichromated gelatin off-axis Fresnel zone plate (OFZP) was designed, fabricated, and used in a new type of interferometer for optical metrology. This single hologram optical element combines the functions of a beam splitter, beam diverger, and aberrated null lens. Data presented show the successful application for an interferometric test of an f/6, 200-mm diam parabolic mirror.

  6. Holographic Twyman-Green interferometer

    NASA Technical Reports Server (NTRS)

    Chen, C. W.; Breckinridge, J. B.

    1982-01-01

    A dichromated gelatin off-axis Fresnel zone plate was designed, fabricated, and used in a new type of interferometer for optical metrology. This single hologram optical element combines the functions of a beam splitter, beam diverger, and aberrated null lens. Data presented show the successful application for an interferometric test of an f/6, 200-mm diam parabolic mirror.

  7. Standing waves in fiber-optic interferometers.

    PubMed

    de Haan, V; Santbergen, R; Tijssen, M; Zeman, M

    2011-10-10

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach-Zehnder and Michelson-Morley interferometer. The response of the Mach-Zehnder interferometer is similar to the Sagnac interferometer. However, the Sagnac interferometer is much harder to study because of the fact that one input port and output port coincide. Further, the Mach-Zehnder interferometer has the advantage that the output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic interferometers with weak-absorbing layers incorporated. A method is described for how these can be theoretically analyzed and experimentally measured. Further experiments are needed for a thorough comparison between theory and experiment.

  8. Nulling at the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.

    2006-01-01

    The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.

  9. Holography with a neutron interferometer

    NASA Astrophysics Data System (ADS)

    Sarenac, Dusan; Cory, David G.; Pushin, Dmitry A.; Heacock, Benjamin; Huber, Michael G.; Arif, M.; Clark, Charles W.; Shahi, Chandra B.; Cfref Collaboration

    2017-01-01

    We demonstrate the first neutron hologram of a macroscopic object. Using a Mach-Zehnder neutron interferometer in a configuration similar to the optical setup of Bazhenov et al., our reference beam passes through a fused silica prism that provides a linear phase gradient, and our object beam beam passes through an aluminum spiral phase plate with a topological charge of l = 2 , which was recently used in studies of neutron orbital angular momentum. Interference of reference and object beams in a two-dimensional imaging detector produces the hologram, which is a fork dislocation structure similar to those used to generate atomic and electronic vortex beams. Our neutron hologram is made in an interferometer in which at most one neutron is present at any given time.

  10. Stellar Interferometer Technology Experiment (SITE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  11. Stellar Interferometer Technology Experiment (SITE)

    NASA Astrophysics Data System (ADS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-02-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  12. Polarized-interferometer feasibility study

    NASA Technical Reports Server (NTRS)

    Raab, F. H.

    1983-01-01

    The feasibility of using a polarized-interferometer system as a rendezvous and docking sensor for two cooperating spacecraft was studied. The polarized interferometer is a radio frequency system for long range, real time determination of relative position and attitude. Range is determined by round trip signal timing. Direction is determined by radio interferometry. Relative roll is determined from signal polarization. Each spacecraft is equipped with a transponder and an antenna array. The antenna arrays consist of four crossed dipoles that can transmit or receive either circularly or linearly polarized signals. The active spacecraft is equipped with a sophisticated transponder and makes all measurements. The transponder on the passive spacecraft is a relatively simple repeater. An initialization algorithm is developed to estimate position and attitude without any a priori information. A tracking algorithm based upon minimum variance linear estimators is also developed. Techniques to simplify the transponder on the passive spacecraft are investigated and a suitable configuration is determined. A multiple carrier CW signal format is selected. The dependence of range accuracy and ambiguity resolution error probability are derived and used to design a candidate system. The validity of the design and the feasibility of the polarized interferometer concept are verified by simulation.

  13. Unequal-Arms Michelson Interferometers

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo; Armstrong, J. W.

    2000-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.

  14. Unequal-Arms Michelson Interferometers

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo; Armstrong, J. W.

    1999-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time-shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detectors of gravitational radiation is discussed.

  15. Relativistic Killingbeck energy states under external magnetic fields

    NASA Astrophysics Data System (ADS)

    Eshghi, M.; Mehraban, H.; Ikhdair, S. M.

    2016-07-01

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states.

  16. Observation of Spin-Orbit Berry’s Phase in Magnetoresistance of a Two-Dimensional Hole Anti-dot System

    NASA Astrophysics Data System (ADS)

    Kang, Ning; Abe, Eisuke; Hashimoto, Yoshiaki; Iye, Yasuhiro; Katsumoto, Shingo

    2007-08-01

    We report a study of the Aharonov-Bohm (AB) type oscillation of weak field magnetoresistance in an anti-dot lattice (ADL) of a two-dimensional hole system in the presence of strong spin-orbit interaction. The Fourier transform of the oscillations reveals non-monotonic evolutions with the different range of harmonic component, which are indicative of the existence of additional phase factors. A simulation considering Berry’s phase and the phase arising from the spin-orbit shift in the momentum space shows qualitative agreement with the experiment.

  17. Equal-Path, Phase-Shifting, Sample-Point Interferometer

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K.

    1991-01-01

    Proposed interferometer combination of sample-point interferometer and equal-path interferometer. Used to monitor optical figures of arrays of mirrors or of segmented mirrors. Incorporation of phase shifting with part of equal-path interferometer renders new interferometer insensitive to vibration and air turbulence. Instrument used over large distances, on ground, or on vibrating structures.

  18. Keck Interferometer Science: Present and Future

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel L.

    2004-01-01

    The Keck Interferometer is a NASA funded project developed by the Jet Propulsion Laboratory, the William M. Keck Observatory and the Michelson Science Center at the California Institute of Technology. A technical description of the interferometer is given elsewhere in this volume. This paper will discuss the science topics and goals of the Keck Interferometer project, including a brief description of the Key Science projects, the science projects executed to date and the current availability of the interferometer for new projects. The Keck Interferometer Project consists of the Keck-Keck Interferometer, which combines the two Keck lo-meter telescopes on an 85-meter baseline, and the Outrigger Telescopes Project, a proposal to add four to six 1.8-meter telescopes that would work in conjunction with the two Kecks.

  19. Nonlocal polarization interferometer for entanglement detection

    DOE PAGES

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, wemore » present the relevant theory and experimental results.« less

  20. Nonlocal polarization interferometer for entanglement detection

    SciTech Connect

    Williams, Brian P.; Humble, Travis S.; Grice, Warren P.

    2014-10-30

    We report a nonlocal interferometer capable of detecting entanglement and identifying Bell states statistically. This is possible due to the interferometer's unique correlation dependence on the antidiagonal elements of the density matrix, which have distinct bounds for separable states and unique values for the four Bell states. The interferometer consists of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that share a polarization-entangled source. Correlations between these interferometers exhibit nonlocal interference, while single-photon interference is suppressed. This interferometer also allows for a unique version of the Clauser-Horne-Shimony-Holt Bell test where the local reality is the photon polarization. In conclusion, we present the relevant theory and experimental results.

  1. Infrared interferometer with a scanned aperture.

    PubMed

    Edwin, R P

    1975-08-01

    A Twyman-Green interferometer operating at a 3.39-microm wavelength has been built in which the collimator aperture was scanned by a laser beam. The scanning was produced by reflecting the laser beam from a mirror supported by four piezoelectric elements and oscillated about two orthogonal axes. The radiation transmitted by the interferometer was measured by a stationary detector of small area. The complete system offers a cheap and efficient alternative to conventional ir interferometers.

  2. Monolithically integrated interferometer for optical displacement measurement

    NASA Astrophysics Data System (ADS)

    Hofstetter, Daniel; Zappe, Hans P.

    1996-01-01

    We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.

  3. Ordinary SQUID interferometers and superfluid helium matter wave interferometers: The role of quantum fluctuations

    SciTech Connect

    Golovashkin, A. I.; Zherikhina, L. N. Tskhovrebov, A. M.; Izmailov, G. N.; Ozolin, V. V.

    2010-08-15

    When comparing the operation of a superfluid helium matter wave quantum interferometer (He SQUID) with that of an ordinary direct-current quantum interferometer (dc SQUID), we estimate their resolution limitation that correspond to quantum fluctuations. An alternative mode of operation of the interferometer as a unified macroquantum system is considered.

  4. Holography with a neutron interferometer.

    PubMed

    Sarenac, Dusan; Huber, Michael G; Heacock, Benjamin; Arif, Muhammad; Clark, Charles W; Cory, David G; Shahi, Chandra B; Pushin, Dmitry A

    2016-10-03

    We use a Mach-Zehnder interferometer to perform neutron holography of a spiral phase plate. The object beam passes through a spiral phase plate, acquiring the phase twist characteristic of orbital angular momentum states. The reference beam passes through a fused silica prism, acquiring a linear phase gradient. The resulting hologram is a fork dislocation image, which could be used to reconstruct neutron beams with various orbital angular momenta. This work paves the way for novel applications of neutron holography, diffraction and imaging.

  5. Note: Periodic error measurement in heterodyne interferometers using a subpicometer accuracy Fabry-Perot interferometer.

    PubMed

    Zhu, Minhao; Wei, Haoyun; Wu, Xuejian; Li, Yan

    2014-08-01

    Periodic error is the major problem that limits the accuracy of heterodyne interferometry. A traceable system for periodic error measurement is developed based on a nonlinearity free Fabry-Perot (F-P) interferometer. The displacement accuracy of the F-P interferometer is 0.49 pm at 80 ms averaging time, with the measurement results referenced to an optical frequency comb. Experimental comparison between the F-P interferometer and a commercial heterodyne interferometer is carried out and it shows that the first harmonic periodic error dominates in the commercial heterodyne interferometer with an error amplitude of 4.64 nm.

  6. Algorithms for Unequal-Arm Michelson Interferometers

    NASA Technical Reports Server (NTRS)

    Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.

    1994-01-01

    A method of data acquisition and data analysis is described in which the performance of Michelson-type interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.

  7. Dual-prism interferometer for collimation testing

    SciTech Connect

    Hii, King Ung; Kwek, Kuan Hiang

    2009-01-10

    An air-wedge lateral-shear interferometer using two prisms is presented. With a variable shear, the interferometer is suitable for testing collimation of a wide range of beam sizes down to a few millimeters in diameter. No antireflection coatings are necessary. Collimation for a light source with short coherent length is also demonstrated.

  8. Liquid-Crystal Point-Diffraction Interferometer

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1996-01-01

    Liquid-crystal point-diffraction interferometer (LCPDI) invented to combine flexible control of liquid-crystal phase-shifts with robustness of point-diffraction interferometers. Produces interferograms indicative of shapes of wavefronts of laser beams having passed through or reflected from objects of interest. Interferograms combined in computers to produce phase maps describing wavefronts.

  9. In-fiber integrated Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-01

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  10. In-fiber integrated Michelson interferometer.

    PubMed

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  11. CIST....CORRTEX interferometer simulation test

    SciTech Connect

    Heinle, R.A.

    1994-12-01

    Testing was performed in order to validate and cross calibrate an RF interferometer and the crush threshold of cable. Nitromethane was exploded (inside of PVC pipe). The explosion was used to crush the interferometer sensor cables which had been placed inside and outside the pipe. Results are described.

  12. Study Of Space-Based Optical Interferometer

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Laskin, Robert A.; Breckenridge, William G.; Shao, Michael

    1992-01-01

    Report discusses calibration and operation of conceptual Focus Mission Interferometer (FMI), consisting of component instruments mounted at widely separated locations on large truss structure in orbit 1,400 km above Earth. Includes six telescopes in linear array. Outputs combined in pairlike fashion so FMI operates as three distinct two-telescope interferometers. Accurate enough for submilliarcsecond astrometry.

  13. Observation of interaction-induced modulations of a quantum Hall liquid's area

    NASA Astrophysics Data System (ADS)

    Sivan, I.; Choi, H. K.; Park, Jinhong; Rosenblatt, A.; Gefen, Yuval; Mahalu, D.; Umansky, V.

    2016-07-01

    Studies of electronic interferometers, based on edge-channel transport in the quantum Hall effect regime, have been stimulated by the search for evidence of abelian and non-abelian anyonic statistics of fractional charges. In particular, the electronic Fabry-Pérot interferometer has been found to be Coulomb dominated, thus masking coherent Aharonov-Bohm interference patterns: the flux trapped within the interferometer remains unchanged as the applied magnetic field is varied, barring unobservable modulations of the interference area. Here we report on conductance measurements indicative of the interferometer's area `breathing' with the variation of the magnetic field, associated with observable (a fraction of a flux quantum) variations of the trapped flux. This is the result of partial (controlled) screening of Coulomb interactions. Our results introduce a novel experimental tool for probing anyonic statistics.

  14. TPF interferometer planet detection sensitivity

    NASA Astrophysics Data System (ADS)

    Elias, Nicholas M., II; Noecker, M. Charles

    2003-11-01

    Data-reduction algorithms for nulling interferometers can be divided into two categories, model-fitting and imaging. We deal mostly with single-Bracewell instruments because of their simplicity, even though they suffer from "nuisance sources" such as stellar leakage and exo-zodiacal light. To simplify data reduction, we work with the Fourier compo-nents of the time series. Exo-zodiacal light dominates at low frequencies. In principle, it should be possible to model the exo-zodiacal light contribution and separate it from planets using data from a single observation. In practice, however, the uncertainty in the exact form of the exo-zodiacal cloud limits our ability to model and remove its contribution. The only unambiguous way to detect planets with a single Bracewell is to observe a system multiple times through its orbit, and look for month-to-month variations in the Fourier components. To calculate the planet parameters, we discuss a cor-relation technique based on Fourier components instead of time series, in conjunction with a linearized least-squares so-lution. Because the fringe pattern on the sky is wavelength dependent, observations over multiple bandpasses signifi-cantly increases the confidence in planet detection. These algorithms may be used with other types of nulling interfer-ometers. We briefly discuss their application to dual Bracewell data.

  15. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  16. Interferometer for Space Station Windows

    NASA Technical Reports Server (NTRS)

    Hall, Gregory

    2003-01-01

    Inspection of space station windows for micrometeorite damage would be a difficult task insitu using current inspection techniques. Commercially available optical profilometers and inspection systems are relatively large, about the size of a desktop computer tower, and require a stable platform to inspect the test object. Also, many devices currently available are designed for a laboratory or controlled environments requiring external computer control. This paper presents an approach using a highly developed optical interferometer to inspect the windows from inside the space station itself using a self- contained hand held device. The interferometer would be capable as a minimum of detecting damage as small as one ten thousands of an inch in diameter and depth while interrogating a relatively large area. The current developmental state of this device is still in the proof of concept stage. The background section of this paper will discuss the current state of the art of profilometers as well as the desired configuration of the self-contained, hand held device. Then, a discussion of the developments and findings that will allow the configuration change with suggested approaches appearing in the proof of concept section.

  17. Interferometer Techniques for Gravitational-Wave Detection

    NASA Astrophysics Data System (ADS)

    Freise, Andreas; Strain, Kenneth

    2010-12-01

    Several km-scale gravitational-wave detectors have been constructed world wide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques, however, the complex optical layouts provide a new challenge. In this review we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

  18. Orientational atom interferometers sensitive to gravitational waves

    SciTech Connect

    Lorek, Dennis; Laemmerzahl, Claus; Wicht, Andreas

    2010-02-15

    We present an atom interferometer that differs from common atom interferometers as it is not based on the spatial splitting of electronic wave functions, but on orienting atoms in space. As an example we present how an orientational atom interferometer based on highly charged hydrogen-like atoms is affected by gravitational waves. We show that a monochromatic gravitational wave will cause a frequency shift that scales with the binding energy of the system rather than with its physical dimension. For a gravitational wave amplitude of h=10{sup -23} the frequency shift is of the order of 110 {mu}Hz for an atom interferometer based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current atom interferometers in 1 s.

  19. Optimal interferometer designs for optical coherence tomography.

    PubMed

    Rollins, A M; Izatt, J A

    1999-11-01

    We introduce a family of power-conserving fiber-optic interferometer designs for low-coherence reflectometry that use optical circulators, unbalanced couplers, and (or) balanced heterodyne detection. Simple design equations for optimization of the signal-to-noise ratio of the interferometers are expressed in terms of relevant signal and noise sources and measurable system parameters. We use the equations to evaluate the expected performance of the new configurations compared with that of the standard Michelson interferometer that is commonly used in optical coherence tomography (OCT) systems. The analysis indicates that improved sensitivity is expected for all the new interferometer designs, compared with the sensitivity of the standard OCT interferometer, under high-speed imaging conditions.

  20. Interferometer techniques for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Bond, Charlotte; Brown, Daniel; Freise, Andreas; Strain, Kenneth A.

    2016-12-01

    Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

  1. Interferometer techniques for gravitational-wave detection.

    PubMed

    Bond, Charlotte; Brown, Daniel; Freise, Andreas; Strain, Kenneth A

    2016-01-01

    Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.

  2. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an

  3. Erythema ab igne.

    PubMed

    Miller, Kristen; Hunt, Raegan; Chu, Julie; Meehan, Shane; Stein, Jennifer

    2011-10-15

    Erythema ab igne is a reticulated, erythematous or hyperpigmented dermatosis that results from chronic and repeated exposure to low levels of infrared radiation. Multiple heat sources have been reported to cause this condition, which include heated reclining chairs, heating pads, hot water bottles, car heaters, electric space heaters, and, more recently, laptop computers. Treatment consists of withdrawing the inciting heat source. Although erythema ab igne carries a good prognosis, it is not necessarily a self-limited diagnosis as patients are at long-term risk of developing subsequent cutaneous malignant conditions, which include squamous cell and merkel-cell carcinomas.

  4. Beam shuttering interferometer and method

    DOEpatents

    Deason, Vance A.; Lassahn, Gordon D.

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  5. Angle interferometer cross axis errors

    SciTech Connect

    Bryan, J.B.; Carter, D.L.; Thompson, S.L.

    1994-01-01

    Angle interferometers are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of rotary tables when the centerline of the double comer cube mirror assembly is not square to the axes of rotation of the angle calibrator and the calibrator axis is not parallel to the rotary table axis. Commercial double comer cube assemblies typically have non-parallelism errors of ten milli-radians between their centerlines and their sides and similar values for non-squareness between their centerlines and end surfaces. The authors have developed a simple method for measuring these errors and correcting them by remachining the reference surfaces.

  6. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  7. Multiple spacecraft Michelson stellar interferometer

    NASA Technical Reports Server (NTRS)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  8. Angle interferometer cross axis errors

    NASA Astrophysics Data System (ADS)

    Bryan, J. B.; Carter, D. L.; Thompson, S. L.

    1994-01-01

    Angle interferometers are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of rotary tables when the centerline of the double comer cube mirror assembly is not square to the axes of rotation of the angle calibrator and the calibrator axis is not parallel to the rotary table axis. Commercial double comer cube assemblies typically have non-parallelism errors of ten milli-radians between their centerlines and their sides and similar values for non-squareness between their centerlines and end surfaces. The authors have developed a simple method for measuring these errors and correcting them.

  9. Hubble Extra Solar Planet Interferometer

    NASA Technical Reports Server (NTRS)

    Shao, M.

    1991-01-01

    This paper describes a proposed third-generation Hubble instrument for extra-solar planet detection, the Hubble Extra-Solar Planet Interferometer (HESPI). This instrument would be able to achieve starlight cancellation at the 10 exp 6 to 10 exp 8 level, given a stellar wavefront with phase errors comparable to the present Hubble telescope wavefront. At 10 exp 6 starlight cancellation, HESPI would be able to detect a Jupiter-like planet next to a star at a distance of about 10 parsec, for which there are about 400 candidate stars. This paper describes a novel approach for starlight suppression, using a combination of active control and single-mode spatial filters, to achieve starlight suppression far below the classical limit set by scattering due to microsurface imperfections. In preliminary lab experiments, suppression by a factor of 40 below the classical scatter limit due to optical wavefront errors has been demonstrated.

  10. Beam shuttering interferometer and method

    DOEpatents

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  11. Polarization fidelity in an optical interferometer

    NASA Astrophysics Data System (ADS)

    Buscher, David F.; Baron, Fabien; Haniff, Christopher A.

    2008-07-01

    The optical trains of interferometers invariably contain oblique reflections that alter the polarization state of the light from the source. Even for arrays with symmetric optical paths, large systematic visibility errors can be introduced when observing sources with intrinsic polarization. We have identified the key metric for polarization fidelity in an optical interferometer - the diattenuation of the optical train - and we evaluate the visibility penalties incurred by an interferometer that is not optimized for polarimetric purity for a number of different types of polarized source.

  12. Dynamic models of Fabry-Perot interferometers.

    PubMed

    Redding, David; Regehr, Martin; Sievers, Lisa

    2002-05-20

    Long-baseline, high-finesse Fabry-Perot interferometers can be used to make distance measurements that are precise enough to detect gravity waves. This level of sensitivity is achieved in part when the interferometer mirrors are isolated dynamically, with pendulum mounts and high-bandwidth cavity length control servos to reduce the effects of seismic noise. We present dynamical models of the cavity fields and signals of Fabry-Perot interferometers for use in the design and evaluation of length control systems for gravity-wave detectors. Models are described and compared with experimental data.

  13. The Millimeter-Wave Bolometric Interferometer

    NASA Technical Reports Server (NTRS)

    Ali, S.; Ade, P. A. R.; Bock, J. J.; Novak, G.; Piccirillo, L.; Timbie, P.; Tucker, G. S.

    2004-01-01

    The Millimeter-wave Bolometric Interferometer (MBI) is a proposed ground-based instrument designed for a wide range of cosmological and astrophysical observations including studies of the polarization of the cosmic microwave background (CMB). MBI combines the advantages of two well-developed technologies - interferometers and bolometric detectors. Interferometers have many advantages over .filled-aperture telescopes and are particularly suitable for high resolution imaging. Cooled bolometers are the highest sensitivity detectors at millimeter and sub-millimeter wavelengths. The combination of these two technologies results in an instrument with both high sensitivity and high angular resolution.

  14. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  15. Cascaded interferometers structure based on dual-pass Mach-Zehnder interferometer and Sagnac interferometer for dual-parameter sensing.

    PubMed

    Wang, Shun; Lu, Ping; Mao, Lili; Liu, Deming; Jiang, Shibin

    2015-01-26

    In this article, we propose and demonstrate a cascaded interferometers structure based on a dual-pass Mach-Zehnder interferometer (DP-MZI) and a Sagnac interferometer (SI) for simultaneous measurement of strain and lateral stress. The cascaded interferometers configuration consists of a SI structure following with a MZI setup. By inserting a section of polarization-maintaining photonic crystal fiber (PM-PCF) in the sensing loop of the SI structure, an inline interference between the two orthogonal polarization modes of PM-PCF, as well as the interference between the sensing arm and the reference arm of the DP-MZI, i.e., the cascaded interferometers with dual interference, are realized. Theoretical study shows that the reflection spectrum of such cascaded interferometers is consisted of two parts: the big spectrum envelope owing to the SI and the fine interference fringes as a result of the DP-MZI. Experimental results show that the SI achieves the sensitivity of lateral stress and strain 1.28 nm/kPa, 0.78 pm/µε, respectively, while the DP-MZI achieves -0.009 nm/kPa and 5.65 pm/µε, demonstrating the ability for dual parameters measurement with high accuracy.

  16. Double-grating interferometer with a one-to-one correspondence with a Michelson interferometer.

    PubMed

    Xu, Yande; Sasaki, Osami; Suzuki, Takamasa

    2003-10-01

    We describe a double-grating interferometer that has a one-to-one correspondence with a Michelson interferometer. The half spatial periods of the gratings are equivalent to the wavelengths of the interferometer. The widths of the interference fringes can be changed easily. The intensity distribution of the interference pattern is independent of the wavelength of the light source used. The surface profile of an object can be measured because two interference beams can coincide precisely on the image plane of the object. The measuring range is much larger than that of a Michelson interferometer.

  17. Improved double-pass michelson interferometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A.

    1978-01-01

    Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.

  18. Naturally stable Sagnac-Michelson nonlinear interferometer.

    PubMed

    Lukens, Joseph M; Peters, Nicholas A; Pooser, Raphael C

    2016-12-01

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

  19. Naturally stable Sagnac-Michelson nonlinear interferometer

    NASA Astrophysics Data System (ADS)

    Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.

    2016-12-01

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing---conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9\\% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

  20. The effect of rotations on Michelson interferometers

    NASA Astrophysics Data System (ADS)

    Maraner, Paolo

    2014-11-01

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer's speed to the speed of light, further suppressed by the ratio of the interferometer's arms length to the radius of rotation and depends on the interferometer's position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth's rotated kilometer-scale Fabry-Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations.

  1. Naturally stable Sagnac–Michelson nonlinear interferometer

    DOE PAGES

    Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.

    2016-11-16

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less

  2. Naturally stable Sagnac–Michelson nonlinear interferometer

    SciTech Connect

    Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.

    2016-11-16

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

  3. Polymeric slot waveguide interferometer for sensor applications.

    PubMed

    Hiltunen, Marianne; Hiltunen, Jussi; Stenberg, Petri; Aikio, Sanna; Kurki, Lauri; Vahimaa, Pasi; Karioja, Pentti

    2014-03-24

    A refractive index sensor based on slot waveguide Young interferometer was developed in this work. The interferometer was fabricated on a polymer platform and operates at a visible wavelength of 633 nm. The phase shift of the interference pattern was measured with various concentrations of glucose-water solutions, utilizing both TE and TM polarization states. The sensor was experimentally observed to detect a refractive index difference of 6.4 × 10(-6) RIU. Furthermore, the slot Young interferometer was found to compensate for temperature variations. The results of this work demonstrate that high performance sensing capability can be obtained with a polymeric slot Young interferometer, which can be fabricated by a simple molding process.

  4. Mathematical interpretation of radial shearing interferometers.

    PubMed

    Malacara, D

    1974-08-01

    The procedure for computing a radial shearing interferometric pattern is given. The interferometric pattern is analyzed to obtain the wavefront shape. Restricting the discussion to wavefronts having rotational symmetry, we give two different methods of finding the wavefront. One approach is to scan along a diameter of the interferometric pattern and the other is to examine the shape of the fringes. The relative sensitivity of a radial shearing interferometer with respect to that of a Twyman-Green interferometer is also analyzed.

  5. Single and double superimposing interferometer systems

    DOEpatents

    Erskine, David J.

    2000-01-01

    Interferometers which can imprint a coherent delay on a broadband uncollimated beam are described. The delay value can be independent of incident ray angle, allowing interferometry using uncollimated beams from common extended sources such as lamps and fiber bundles, and facilitating Fourier Transform spectroscopy of wide angle sources. Pairs of such interferometers matched in delay and dispersion can measure velocity and communicate using ordinary lamps, wide diameter optical fibers and arbitrary non-imaging paths, and not requiring a laser.

  6. The WIND-HAARP-HIPAS Interferometer Experiment

    DTIC Science & Technology

    1999-04-22

    of HAARP and HIPAS are sufficient to modify the intervening plasma through heating and affect the fringe pattern. Repeating experiments of this kind...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--99-8349 The WIND- HAARP -HIPAS Interferometer Experiment P. RODRIGUEZ AND M. J...1999 3. REPORT TYPE AND DATES COVERED Interim Report 4. TITLE AND SUBTITLE The WIND- HAARP -HIPAS Interferometer Experiment 5. FUNDING NUMBERS JO

  7. Nonlinear Michelson interferometer for improved quantum metrology

    NASA Astrophysics Data System (ADS)

    Luis, Alfredo; Rivas, Ángel

    2015-08-01

    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the energy resources.

  8. Simple phase-shifting lateral shearing interferometer.

    PubMed

    Mihaylova, Emilia; Whelan, Maurice; Toal, Vincent

    2004-06-01

    A phase-shifting electronic speckle pattern shearing interferometer with a very simple shearing device is proposed. Two partially reflective glass plates are used to introduce the shear in this new interferometer. The reflection coefficients of the coatings on the two plates are 0.3 and 0.7. The distance between the two glass plates controls the size of the shear. The proposed new interferometric system is simple, flexible, and low cost.

  9. The VLA Atmospheric Phase Interferometer

    NASA Astrophysics Data System (ADS)

    Morris, Keith

    2014-05-01

    The Atmospheric Phase Interferometer (API) is a two-element atmospheric seeing monitor located at the Very Large Array (VLA) site. The instrument measures turbulent refractive index variation through the atmosphere by examining phase differences in a satellite beacon signal detected at two (or more) antennas. With this measurement, the VLA scheduling software is able to consider atmospheric stability when determining which frequency observation to schedule next. We are in the process of extending this two-element interferometer to four elements, which will allow us to measure the turbulence in two dimensions and at multiple length scales. This thesis will look at some statistical properties of turbulence, the effects of atmospheric stability on radio interferometric observations, and discuss details of the instrument and the data that it collects. The thesis will also cover some techniques and principles of signal processing, and an analysis of some data from the instrument. The results demonstrate that other surface atmospheric variables (e.g. windspeed, water vapor pressure) show the same structure function exponent as the atmospheric phase fluctuations. In particular, the structure functions of water vapor partial pressure and wind speed show the same exponent as the phase. Though the agreement between meteorological variables and atmospheric phase is scientifically satisfying, these surface measurements are not nearly as sensitive as the API saturation phase measurement, and therefore cannot be used to schedule telescope time in its stead. What is informative about these results is that the similar structure functions for API and meteorological data are detecting reinforce the claim that both measurements represent turbulent transport, and not instrumental noise. Data from the instrument reveals that measurements are consistent with both Kolmogorov turbulence theory, and with prior observations. The API predominately measures three-dimensional isotropic

  10. Keck Interferometer Nuller science highlights

    NASA Astrophysics Data System (ADS)

    Mennesson, Bertrand; Millan-Gabet, Rafael; Colavita, M. M.; Serabyn, E.; Hinz, P.; Kuchner, M.; Liu, W.; Barry, R.; Stark, C.; Ragland, S.; Woillez, J.; Traub, W.; Absil, O.; Defrère, Denis; Augereau, J. C.; Lebreton, J.

    2012-07-01

    We report here on some of the major astronomical observations obtained by the Keck Interferometer Nuller (KIN), the high dynamic range instrument recombining the Keck Telescopes at wavelengths of 8 to 13 microns. A few science targets were observed during the commissioning phase (2004-2007). These early observations aimed at demonstrating the KIN’s ability to spatially resolve and characterize circumstellar dust emission around a variety of targets, ranging from evolved stars to young debris disks. Science operations started then in 2008 with the more demanding KIN exozodi key science programs, augmented by observations of YSOs and hot debris disks between 2009 and 2011. The last KIN observations were gathered in 2011B, and the interpretation of some of the results depicted here is still preliminary (exo-zodi survey) or pending (complicated behavior observed in YSOs). We discuss in particular the initial results of the KIN’s exo-zodi observations, which targeted a total of 40 nearby main sequence single stars. We look for trends in this sample, searching for possible correlations between the measured KIN excesses and basic stellar properties such as spectral type or the presence of dust inferred from separate observations.

  11. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, Mark

    1994-01-01

    A self-referencing Mach-Zehnder interferometer for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ("first" interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources.

  12. Achromatic self-referencing interferometer

    DOEpatents

    Feldman, M.

    1994-04-19

    A self-referencing Mach-Zehnder interferometer is described for accurately measuring laser wavefronts over a broad wavelength range (for example, 600 nm to 900 nm). The apparatus directs a reference portion of an input beam to a reference arm and a measurement portion of the input beam to a measurement arm, recombines the output beams from the reference and measurement arms, and registers the resulting interference pattern ([open quotes]first[close quotes] interferogram) at a first detector. Optionally, subportions of the measurement portion are diverted to second and third detectors, which respectively register intensity and interferogram signals which can be processed to reduce the first interferogram's sensitivity to input noise. The reference arm includes a spatial filter producing a high quality spherical beam from the reference portion, a tilted wedge plate compensating for off-axis aberrations in the spatial filter output, and mirror collimating the radiation transmitted through the tilted wedge plate. The apparatus includes a thermally and mechanically stable baseplate which supports all reference arm optics, or at least the spatial filter, tilted wedge plate, and the collimator. The tilted wedge plate is mounted adjustably with respect to the spatial filter and collimator, so that it can be maintained in an orientation in which it does not introduce significant wave front errors into the beam propagating through the reference arm. The apparatus is polarization insensitive and has an equal path length configuration enabling measurement of radiation from broadband as well as closely spaced laser line sources. 3 figures.

  13. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  14. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors.

    PubMed

    Baker, John G; Thorpe, J I

    2012-05-25

    We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  15. With the VLT Interferometer towards Sharper Vision

    NASA Astrophysics Data System (ADS)

    2000-05-01

    awarded a contract for the delivery of the three Delay Lines of the VLTI. This mechanical-optical system will compensate the optical path differences of the light beams from the individual telescopes. It is necessary to ensure that the light from all telescopes arrives in the same phase at the focal point of the interferometer. Otherwise, the very sharp interferometric images cannot be obtained. More details are available in the corresponding ESO PR 04/98 and recent video sequences, included in ESO Video News Reel No. 9 and Video Clip 04a/00 , cf. below. Also in 1998, the company AMOS (Liège, Belgium) was awarded an ESO contract for the delivery of the three 1.8-m Auxiliary Telescopes (ATs) and of the full set of on-site equipment for the 30 AT observing stations, cf. ESO PR Photos 25a-b/98. This work is now in progress at the factory - various scenes are incorporated into ESO Video News Reel No. 9 and Video Clip 04b/00 . Several instruments for imaging and spectroscopy are currently being developed for the VLTI. The first will be the VLT Interferometer Commissioning Instrument (VINCI) that is the test and first-light instrument for the VLT Interferometer. It is being built by a consortium of French and German institutes under ESO contract. The VLTI Near-Infrared / Red Focal Instrument (AMBER) is a collaborative project between five institutes in France, Germany and Italy, under ESO contract. It will operate with two 8.2-m UTs in the wavelength range between 1 and 2.5 µm during a first phase (2001-2003). The wavelength coverage will be extended in a second phase down to 0.6 µm (600 nm) at the time the ATs become operational. Main scientific objectives are the investigation at very high-angular resolution of disks and jets around young stellar objects and dust tori at active galaxy nuclei with spectroscopic observations. The Phase-Referenced Imaging and Microarcsecond Astrometry (PRIMA) device is managed by ESO and will allow simultaneous interferometric observations of

  16. Spot size effects in miniaturized moving-optical-wedge interferometer.

    PubMed

    Al-Saeed, Tarek A; Khalil, Diaa A

    2011-06-10

    In this paper we study the effect of diffraction on the performance of a miniaturized moving-optical-wedge interferometer. By using the Gaussian model, we calculate the degradation of the interferometer visibility due to diffraction effects. We use this model to optimize the detector size required to obtain maximum visibility and study its effect on resolution of Fourier transform spectrometers based on a moving-optical-wedge interferometer. A comparison between these effects in Michelson and wedge interferometers is also presented showing the advantage of the moving-optical-wedge interferometer in suppressing the diffraction effects with respect to the Michelson interferometer.

  17. Interferometer for Testing in Vibration Environments

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Freischlad, Klaus; Hadaway, James; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    Temporal phase shifting interferometers require a stable environment during the data acquisition, so that well controlled phase steps can be introduced between successively acquired interferograms. In contrast, single-frame interferometers need to acquire only one interferogram to provide a phase map with very good precision at high spatial resolution. Thus these interferometers are well suited for the interferometric testing of large optics with long radius of curvature for which vibration isolation is difficult, eg. testing astronomical telescope mirrors in a test tower, or testing space optics inside a cryogenic vacuum chamber. This paper describes the Instantaneous Phase Interferometer (IPI) by ADE Phase Shift, together with measurement results at NASA. The IPI consists of a polarization Twyman-Green interferometer operating at 632.8 nm, with single-frame data acquisition based on a spatial carrier technique. The spatial carrier fringes are generated by introducing large amount of tilt between the test beam and the reference beam. The phase information of the optical surface under test is encoded in the straightness of the interference fringes, which can be detected in a single frame with spatial sampling of 1000 x 1000 pixels. Measurements taken at the NASA Marshall Space Flight Cater in support of the characterization of developmental optics for the Next Generation Space Telescope are presented. Such tests consist of a mirror placed inside a cryogenic vacuum chamber, with the IPI placed outside the test chamber without any additional vibration isolation.

  18. Michelson interferometer based spatial phase shift shearography.

    PubMed

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  19. Process control system using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1994-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  20. Furnace control apparatus using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-03-28

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  1. Furnace control apparatus using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1995-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  2. Process control system using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1994-02-15

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  3. Circular common-path point diffraction interferometer.

    PubMed

    Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan

    2012-10-01

    A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.

  4. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  5. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  6. A heterodyne interferometer for angle metrology.

    PubMed

    Hahn, Inseob; Weilert, M; Wang, X; Goullioud, R

    2010-04-01

    We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/square root of Hz at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately +/-0.15 mrad, and 3 microrad rms, respectively.

  7. Fourier Transform Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Snell, Hilary E.; Hays, Paul B.

    1992-01-01

    We are developing a compact, rugged, high-resolution remote sensing instrument with wide spectral scanning capabilities. This relatively new type of instrument, which we have chosen to call the Fourier-Transform Fabry-Perot Interferometer (FT-FPI), is accomplished by mechanically scanning the etalon plates of a Fabry-Perot interferometer (FPI) through a large optical distance while examining the concomitant signal with a Fourier-transform analysis technique similar to that employed by the Michelson interferometer. The FT-FPI will be used initially as a ground-based instrument to study near-infrared atmospheric absorption lines of trace gases using the techniques of solar absorption spectroscopy. Future plans include modifications to allow for measurements of trace gases in the stratosphere using spectral lines at terahertz frequencies.

  8. A heterodyne interferometer for angle metrology

    SciTech Connect

    Hahn, Inseob; Weilert, M.; Wang, X.; Goullioud, R.

    2010-04-15

    We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/{radical}(Hz) at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately {+-}0.15 mrad, and 3 {mu}rad rms, respectively.

  9. Coherence and information in a fiber interferometer

    NASA Astrophysics Data System (ADS)

    Kellerer, Aglaé; Wright, Sidney; Lacour, Sylvestre

    2017-01-01

    We present an experiment based on a fibered Mach-Zehnder interferometer, with the aim of familiarizing students with fibered optics and interferometry, and of improving their understanding of optical amplification. The laboratory project has two parts. In the first, students modulate the optical path of the interferometer to study the spectra of light sources via Fourier Transform Spectroscopy. In the second, an optical amplifier is placed in one or both arms of the interferometer. The set-up uses monomode, polarization-maintaining fibers that propagate light with a wavelength of 1.5 μm. Here, we describe the set-up and the analysis of the measurements, and we present results from student reports.

  10. The Table Mountain 8-mm wavelength interferometer

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Gary, B. L.; Gulkis, S.; Olsen, E. T.; Soltis, F. S.; Yamane, N. I.

    1979-01-01

    A two-element radio interferometer operating at 8.33-mm wavelength has been developed at the Jet Propulsion Laboratory's Table Mountain Observatory near Wrightwood, CA. The interferometer employs a 5.5-m and a 3-m diameter antenna on an east-west baseline of 60 or 120 m, yielding fringe spacings at transit of 28 or 14 arcsec, respectively. The broad intermediate-frequency bandpass of 100-350 MHz and the system noise temperature of 500 K provide high sensitivity for the measurement of continuum sources. The interferometer has been used for high-resolution studies of the planets and the sun, and it is currently being adapted to study solar flare emissions at high spatial and time resolution.

  11. Design of the ST 3 Formation Flying Interferometer

    NASA Technical Reports Server (NTRS)

    Lay, O.; Blackwood, G.; Dubovitsky, S.; Gorham, P.; Linfield, R.

    1999-01-01

    The interferometer will operate in both a single spacecraft mode and a formation flying mode using two spacecraft. The primary goal is to validate interferometer and formation flying technology for future missions.

  12. Optimum quantum states for interferometers with fixed and moving mirrors

    SciTech Connect

    Luis, Alfredo

    2004-04-01

    We address a systematic approach to the study of the optimum states reaching maximum resolution for interferometers with moving mirrors. We find a correspondence between the optimum states for interferometers with fixed and moving mirrors.

  13. (presentation) Precision Mechanisms for Space Interferometers: A Tutorial

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.

    1993-01-01

    To maximize salability, spaceborne interferometer designs must minimize actuator cost while maximizing science quality and quantity. Interferometer designers must have the knowledge to design a system with the simplist, most reliable, and least expensive actuators possible.

  14. Theoretical Studies of the Lifetime of Metastable H3

    DTIC Science & Technology

    1990-11-01

    Aharonov - Bohm , MAB, metastable 21 09 lifetimes 19. ABSTRACT (Continue on reverse if necessary and identify by block number) In this report, the major steps...Molecular Aharonov - Bohm (MAB) effect (or Berry’s geometric phase). This effect has a profound influence on both the bound and scattering states of...this surface and the ground state one introduces the Molecular Aharonov - Bohm (MBA) effect 49 - 5 2 which needs special treatment, and since we also want

  15. Electronic Transport Control of Bi Nanowires

    DTIC Science & Technology

    2007-09-07

    TERMS night vision coolers, thermoelectrics, nanowires, bismuth, Aharonov Bohm , quantum, confinement Tito E. Huber Howard University Office Of...journals or in conference proceedings (N/A for none) Quantum Interference of Surface States in Bismuth Nanowires probed by the Aharonov - Bohm Oscillation of...indications that this in indeed the case because the nanowires exhibit Aharonov - Bohm oscillations that are generally observed in tubes or rings. 6

  16. Geometrical misalignment retrieval of the IASI interferometer

    NASA Astrophysics Data System (ADS)

    Henault, Francois; Hebert, Philippe-Jean; Lucchini, Christophe; Miras, Didier

    1999-12-01

    The IASI instrument (Infrared Atmospheric Sounding Interferometer) is a Fourier-Transform Spectrometer (FTS) providing spectra of the Earth's atmosphere observed from space. The heart of the instrument is a Michelson interferometer (IHOS) equipped with two hollow cube-corners retro-reflectors in place of the classical flat mirrors. The main alignment requirements of the IASI interferometer are the lateral shift, or shear, of the moving cube-corner (seen through the beamsplitter) and the misalignment of its scanning axis: these contributions should not exceed 20 micrometer and 250 (mu) rad respectively during the five years mission in orbit. Thus the most difficult challenge of the IHOS integration on-ground probably is their measurement accuracy, which shall respectively be better than 1 micrometer and 100 (mu) rad. The envisaged characterization method consists in a specific data processing of the fringe patterns created by the interferometer at four different points located in the IHOS Field of View (FoV), corresponding to the IASI instrument pixels. For each acquired interferogram the Optical Path Difference (OPD) created by the interferometer are evaluated using a double Fourier-transform algorithm, and the results are combined together in order to retrieve the apparent trajectory of the mobile cube-corner. This principle was tested on a breadboard interferometer already assembled in the CNES laboratories. The numerical results presented herein tend to demonstrate the efficiency of the method, since the achieved accuracy does not exceed 1.2 micrometer (whatever the cube-corner axial position) and 120 (mu) rad respectively. The main error sources also are discussed.

  17. Reflective grating interferometer: a folded reversal and shearing wave-front interferometer.

    PubMed

    Ferraro, Pietro; De, Nicola Sergio; Finizio, Andrea; Pierattini, Giovanni

    2002-01-10

    The reflecting grating interferometer (RGI) is a folded and reversal wave-front interferometer sensitive only to asymmetrical aberrations such as third-order coma. The RGI can isolate and evaluate coma both in nearly collimated and in noncollimated beams. We propose a RGI with a different optical configuration that includes a lateral shearing in addition to folding and reversal operations. With lateral shear, the RGI also becomes sensitive to other terms of third-order aberrations such as defocusing, astigmatism, and spherical aberration. Optical path difference equations for interpreting interferograms and numerical simulations are presented to show how the interferometer works in the shearing configuration. Its potential applications are described and discussed.

  18. Nulling Measurements with the Keck Interferometer

    SciTech Connect

    Serabyn, Eugene

    2009-08-05

    The Keck Interferometer provides a mid-infrared nulling capability that is designed to detect faint mid-infrared emission from the immediate vicinity of bright stars. The Keck Interferometer Nuller (KIN) has now been used to carry out initial shared-risk science observations, followed by three nulling key-science projects performed in the 2008 observing semesters. This paper describes the novel measurement technique employed by the KIN, and lists some of the initial observations obtained with it. These data sets are now in the process of being analyzed, and results should begin emerging in the near future.

  19. Observing NGC 4151 with the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    Swain, Mark R.

    2004-01-01

    Observations of the nucleus of NGC 4151 at 2.2 microns using the two 10-meter Keck telescopes as an interferometer show a marginally resolved source less than or equal to 0.1 pc in diameter. These observations are the first measurement of an extragalactic source with an optical/IR interferometer. These observations represent a ten-fold improvement in angular resolution when compared to previous near-infrared measurements of AGN and make it possible to test the subparsecscale, near-infrared emission models of NGC 4151.

  20. Self-referenced interferometer for cylindrical surfaces.

    PubMed

    Šarbort, Martin; Řeřucha, Šimon; Holá, Miroslava; Buchta, Zdeněk; Lazar, Josef

    2015-11-20

    We present a new interferometric method for shape measurement of hollow cylindrical tubes. We propose a simple and robust self-referenced interferometer where the reference and object waves are represented by the central and peripheral parts, respectively, of the conical wave generated by a single axicon lens. The interferogram detected by a digital camera is characterized by a closed-fringe pattern with a circular carrier. The interference phase is demodulated using spatial synchronous detection. The capabilities of the interferometer are experimentally tested for various hollow cylindrical tubes with lengths up to 600 mm.