Science.gov

Sample records for ahlers ucsb kitp

  1. Developing Online Oceanography at UCSB

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.; Dodson, H.

    2001-12-01

    Oceanography at UCSB is an introductory general education science course taken by up to 200 students per quarter. The emphasis is on learning science process by engaging in authentic science activities that use real earth data. Recently, to increase student motivation, the course has been modified to include an Earth Summit framework. The online support being developed for this course is the first step in the creation of a completely online oceanography class. Foundation software was first tested in the class during Spring 2001. Online activities that are supported are writing and instructor feedback, online threaded discussion with live chat and graphics, automatically graded homeworks and games, auto graded quizzes with questions randomly selected from a database, and thought problems graded by the instructor(s). Future plans include integration with commercial course management software. To allow choice of assignments, all course activities totaled110%. Since grades were based on A=90-100, B=80-90, C= 70-80, etc, it was possible to get a better than A grade. Students see the effect (on their grade) of each assignment by calculating their current course grade. Course activities included (most of which are automatically graded): weekly lab homeworks, weekly mini-quizzes (10 multiple choice questions selected at random from a topic database), weekly thought questions (graded by the TA), 3 written assignments, and "Question of the Day" from lecture (credit given for handing it in), The online writing software allowed students to enter their writing, edit and link to graphic images, print the paper, and electronically hand it in. This has the enormous advantage of allowing the instructor and TA's convenient access to all student papers. At the end of the course, students were asked how effective each of the course activities were in learning the course material. On a five point scale, ranging from highest contribution to lowest, the percentage of students giving

  2. New hyper-K{umlt a}hler manifolds by fixing monopoles

    SciTech Connect

    Houghton, C.J.

    1997-07-01

    The construction of new hyper-K{umlt a}hler manifolds by taking the infinite monopole mass limit of certain Bogomol{close_quote}nyi-Prasad-Sommerfield monopole moduli spaces is considered. The one-parameter family of hyper-K{umlt a}hler manifolds due to Dancer is shown to be an example of such manifolds. A new family of fixed monopole spaces is constructed. They are the moduli spaces of four SU{sub 4} monopoles, in the infinite mass limit of two of the monopoles. These manifolds are shown to be nonsingular when the fixed monopole positions are distinct. {copyright} {ital 1997} {ital The American Physical Society}

  3. Terahertz quantum transport in semiconductor nanostructures with the UCSB free electron lasers

    SciTech Connect

    Allen, S.J.

    1995-12-31

    Quantum transport in semiconductor nanostructures takes on new dimensions in the presence of intense terahertz electric fields. Terahertz frequencies lift us into the regime where the scattering and relaxation is not so important and strong terahertz electric fields provided by the UCSB FEL`s explore non-linear dynamics far from the perturbative limit. New quantum transport channels that are assisted by the absorption or emission of a photon appear in current voltage characteristics. We will describe some of these experiments, the new phenomena they expose and the potential impact on future terahertz semiconductor electronics.

  4. As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor

    SciTech Connect

    Nielsen, Joseph Wayne

    2015-09-01

    The University of California Santa Barbara (UCSB) -1 experiment was irradiated in the A-10 position of the ATR. The experiment was irradiated during cycles 145A, 145B, 146A, and 146B. Capsule 6A was removed from the test train following Cycle 145A and replaced with Capsule 6B. This report documents the as-run physics analysis in support of Post-Irradiation Examination (PIE) of the test. This report documents the as-run fluence and displacements per atom (DPA) for each capsule of the experiment based on as-run operating history of the ATR. Average as-run heating rates for each capsule are also presented in this report to support the thermal analysis.

  5. Strong Earthquake Motion Estimates for the UCSB Campus, and Related Response of the Engineering 1 Building

    SciTech Connect

    Archuleta, R.; Bonilla, F.; Doroudian, M.; Elgamal, A.; Hueze, F.

    2000-06-06

    This is the second report on the UC/CLC Campus Earthquake Program (CEP), concerning the estimation of exposure of the U.C. Santa Barbara campus to strong earthquake motions (Phase 2 study). The main results of Phase 1 are summarized in the current report. This document describes the studies which resulted in site-specific strong motion estimates for the Engineering I site, and discusses the potential impact of these motions on the building. The main elements of Phase 2 are: (1) determining that a M 6.8 earthquake on the North Channel-Pitas Point (NCPP) fault is the largest threat to the campus. Its recurrence interval is estimated at 350 to 525 years; (2) recording earthquakes from that fault on March 23, 1998 (M 3.2) and May 14, 1999 (M 3.2) at the new UCSB seismic station; (3) using these recordings as empirical Green's functions (EGF) in scenario earthquake simulations which provided strong motion estimates (seismic syntheses) at a depth of 74 m under the Engineering I site; 240 such simulations were performed, each with the same seismic moment, but giving a broad range of motions that were analyzed for their mean and standard deviation; (4) laboratory testing, at U.C. Berkeley and U.C. Los Angeles, of soil samples obtained from drilling at the UCSB station site, to determine their response to earthquake-type loading; (5) performing nonlinear soil dynamic calculations, using the soil properties determined in-situ and in the laboratory, to calculate the surface strong motions resulting from the seismic syntheses at depth; (6) comparing these CEP-generated strong motion estimates to acceleration spectra based on the application of state-of-practice methods - the IBC 2000 code, UBC 97 code and Probabilistic Seismic Hazard Analysis (PSHA), this comparison will be used to formulate design-basis spectra for future buildings and retrofits at UCSB; and (7) comparing the response of the Engineering I building to the CEP ground motion estimates and to the design

  6. Ion mobility spectrometry: A personal view of its development at UCSB

    PubMed Central

    Bowers, Michael T.

    2014-01-01

    Ion mobility is not a newly discovered phenomenon. It has roots going back to Langevin at the beginning of the 20th century. Our group initially got involved by accident around 1990 and this paper is a brief account of what has transpired here at UCSB the past 25 years in response to this happy accident. We started small, literally, with transition metal atomic ions and transitioned to carbon clusters, synthetic polymers, most types of biological molecules and eventually peptide and protein oligomeric assembly. Along the way we designed and built several generations of instruments, a process that is still ongoing. And perhaps most importantly we have incorporated theory with experiment from the beginning; a necessary wedding that allows an atomistic face to be put on the otherwise interesting but not fully informative cross section measurements. PMID:25147478

  7. Coupling of Pore Pressure and Ground Motion: Further Studies using Data Recorded at the NEES@UCSB Wildlife Station

    NASA Astrophysics Data System (ADS)

    Seale, S. H.; Lavallee, D.; Archuleta, R. J.; Steidl, J. H.

    2012-12-01

    Pore pressure built up during an earthquake and the hazard associated with soil liquefaction present a major challenge for our society, as has been dramatically illustrated by recent large events (e.g. the 2011 Tohoku-oki, Japan, earthquake). There is consensus among scientists that a better assessment of the liquefaction risk requires a better understanding of the coupling between pore pressure and ground motion time histories. There is a basic need to investigate coupling as a function of the frequency content of the ground motion. The 2010 M7.2 El Mayor-Cucapah event has provided a remarkable opportunity to investigate and model the coupling. The event was well recorded at the NEES@UCSB Wildlife station located 110 km from the hypocenter. The station is equipped with three-component strong-motion accelerometers at the surface and in boreholes at various depths and with pore pressure transducers located in a saturated, liquefiable layer. The recorded pore pressure and ground motion time histories both have frequency content that is a function of time. We have applied a wavelet decomposition technique to the El Mayor ground motion and pore pressure data, looking for a linear relationship between the signals. The analysis shows that the early P-wave accelerations (vertical component) initiate pore pressure response. However, the pore pressure records contain a low-frequency component that dominates the signal with no corresponding low-frequency component in the ground motion signals recorded near-by. Although uncommon, a similar behavior has been also reported in the literature for pore pressure signals recoded during the 1980 Mammoth Lakes, California, earthquake. We have extended this work to the analysis of 4 other seismic events that have induced an increase in pore pressure at WLA. As the response of pore pressure is potentially a local phenomenon, we have restricted our analysis to recordings from the same site. These events include the M5.8 Ocotillo

  8. LHC Olympics Workshop and String Phenomenology 2006 Conference

    SciTech Connect

    David Gross

    2006-10-01

    This is the final report of the organizers of the String Phenomenolgy program of which the LHC Olympics and the String Phenomenolgy conference were a part. In addition, it includes the list of talks from our website which comprise the online proceedings. The KITP no longer publishes conferences proceedings but rather makes recordings and visuals of all talks available on its website at www.kitp.ucsb.edu Program talks are available at http://online.kitp.ucsb.edu/online/strings06/ Conference talks are are at http://online.itp.ucsb.edu/online/strings_c06/ and LHC Olympics talks are at http://online.itp.ucsb.edu/online/lhco_c06/. These talks constitute the proceedings of these meetings.

  9. Spectral Analysis of Pore Pressure Data Recorded from the 2010 Sierra EL Mayor (baja California) Earthquake at the NEES@UCSB Wildlife Field Site

    NASA Astrophysics Data System (ADS)

    Seale, S. H.; Lavallee, D.; Steidl, J. H.; Ratzesberger, H.; Hegarty, P.

    2010-12-01

    On 4 April 2010, the M7.2 Sierra el Mayor event occurred in Baja California, Mexico. The NEES@UCSB Wildlife field site in the Imperial Basin is located 110 km NNW of the hypocenter. The event was recorded on all channels: by three-component strong-motion accelerometers at the surface and in boreholes at various depths and by pore pressure transducers located in a saturated, liquefiable layer. We have computed the spectra of the pore pressure response in the frequency domain for signals recorded at different depths. At each depth, the spectrum is attenuated as a power law with a sharp discontinuity at a frequency close to 1 Hz. We report the value of the exponents that characterize the power-law behavior of these spectra. We also computed cross-spectral analysis of the pore pressure records from different depths. The functional behaviors of the curves of the cross-spectra are similar to that of the original spectra. For comparison, we present the spectrum of each component of the ground motion recorded at a nearby accelerometer. Partially due to the late arrival of the surface waves, the frequency content of the recorded pore pressure signal is a function of time. To gain a better understanding of the time-dependence of the frequency content, we performed spectral analysis of the signal in a moving window and wavelet transforms of the full signals. The spectral analysis suggests that, except for high frequencies, the curves exhibit a complex behavior as a function of the window position. We interpret and discuss the consequences of the estimated spectra, the cross-spectra, and the wavelet transforms.

  10. Does Casing Material Influence Downhole Accelerometer Recordings? a Controlled Study of Earthquake and Experimental Data Recorded at the NEES@UCSB Wildlife Liquefaction Array

    NASA Astrophysics Data System (ADS)

    Huthsing, D. A.; Seale, S. H.; Steidl, J. H.; Ratzesberger, H.; Hegarty, P.; Nees@Ucsb

    2010-12-01

    In 2004, NEES@UCSB outfitted the Wildlife Liquefaction Array (WLA) with new instrumentation and initiated an experiment to test whether casing material influences downhole recordings of strong ground motion. Two 5.5m boreholes were drilled meters apart. One of the boreholes was cased with traditional rigid PVC and the other with flexible Corex® drain pipe. Three-component strong-motion accelerometers were installed in both boreholes. Recently we have obtained a unique set of data at WLA that has allowed us to conduct a controlled study. On 15 June 2010, a Mw 5.7 event occurred near Ocotillo, CA, 57 km SW from WLA. A set of 60 aftershocks with M > 3.0 were recorded at WLA with good signal-to-noise ratio. These data are ideal for our study, as the events are approximately co-located relative to the site and they have similar focal mechanisms. We computed frequency spectra for the three components of motion for these events and we computed average spectral ratios between the data in the two boreholes. The spectral ratios are not flat ( = 1): certain frequencies within the range of engineering interest ( f < 20 Hz) recorded in the flexible borehole show amplification and damping relative to the recordings from the rigid borehole. An amplification factor of 1.4 is the maximum in this frequency range. In May 2010, NEES@UTexas visited WLA with the vibroseis truck T-Rex. We have performed spectral analysis of borehole recordings from 30 T-Rex pulses with frequencies ranging from 3 to 16 Hz. We present these spectral ratios for comparison with the ones computed from earthquake data.

  11. UCSB ATR-­NSUF Irradiation DMC Sample Inspection Report

    SciTech Connect

    Saleh, Tarik A.; Quintana, Matthew Estevan; Romero, Tobias J.

    2015-02-23

    A variety of tensile samples of Ferritic and Oxide Dispersion Strengthened (ODS or nanoferritic) steels were placed the ATR reactor over 2 Years achieving doses of roughly 4-6 dpa at temperatures of roughly 290°C. After irradiation, samples were shipped from the MFC hot cells at Idaho National Laboratory (INL) to the Wing 9 hot cells in the CMR facility at Los Alamos National Laboratory. Samples were cleaned to removed alpha contamination from the MFC hot cells, and then, as needed removed from their irradiation containers, sorted and inspected. This report will summarize the inspection of the Disc Multipurpose Coupon (DMC) inspection from packet 7-1.

  12. Chicanos: A Selective Guide to Materials in the UCSB Library.

    ERIC Educational Resources Information Center

    Najera, Carlos, Comp.

    Intended to assist students and faculty members in locating materials on the life and culture of Mexican Americans or Chicanos found in the Library at the University of California at Santa Barbara, this guide cites 772 books, curriculum development guides, and government publications, published between 1917 and 1970. The guide does not cite the…

  13. AVIRIS Reflectance Retrievals: UCSB Users Manual. Appendix 1

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    The following write-up is designed to help students and researchers take Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance data and retrieve surface reflectance. In the event that the software is not available, but a user has access to a reflectance product, this document is designed to provide a better understanding of how AVIRIS reflectance was retrieved. This guide assumes that the reader has both a basic understanding of the UNIX computing environment, and that of spectroscopy. Knowledge of the Interactive Data Language (IDL) and the Environment for Visualizing Images (ENVI) is helpful. This is a working document, and many of the fine details described in the following pages have been previously undocumented. After having read this document the reader should be able to process AVIRIS to reflectance, provided access to all of the code is possible. The AVIRIS radiance data itself is pre-processed at the Jet Propulsion Laboratory (JPL) in Pasadena, California. The first section of this paper describes how to read data from tape and byte-swap the data. Section 2 describes the procedure in preparing support files before running the 'h2o' suite of programs. Section 3 describes the four programs used in the process, h2olut9.f, h2ospl9.f, vlsfit9.f and rfl9.f.

  14. (2 kF , 2 kF) density-wave orders of interacting p-orbital fermions in square optical lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Zixu; Liu, W. Vincent

    2011-03-01

    We study instabilities of spinless fermionic atoms in the p- orbital bands in two dimensional optical lattices at non- integer filling against interactions. Stripe charge-density- wave or orbital-density-wave orders are found for attractive and repulsive interactions, respectively. A surprising result is that the superfluid phase, usually expected of attractively interacting fermions, is less energetically favored. Nesting quasi-one-dimensional Fermi surfaces in such systems are independent of filling, which ensures that the stripe density- wave orders occur in a large parameter regime. This work is supported by ARO (W911NF-07-1-0293) and ARO-DARPA-OLE (W911NF-07-1-0464). We also thank the KITP at UCSB for its hospitality where this research is supported in part by NSF Grant No. PHY05-51164.

  15. LBL/UCSB /sup 76/Ge double beta decay experiment: first results

    SciTech Connect

    Goulding, F.S.; Cork, C.P.; Landis, D.A.; Luke, P.N.; Madden, N.W.; Malone, D.F.; Pehl, R.H.; Smith, A.R.; Caldwell, D.O.; Eisberg, R.M.

    1984-10-01

    A paper given at the IEEE Nuclear Science Symposium last year presented the scientific justification for this experiment and discussed the design of the detector system. At the present time two of the dual detector systems (i.e., four out of a final total of eight detectors) are operating in the complete active/passive shield in the low background laboratory at LBL. Early results (1620 h) of an experiment using two detectors yield a limit of 4 x 10/sup 22/ years (68% confidence) for the half life of the neutrinoless double beta decay (..beta beta../sub o nu/) of /sup 76/Ge. Although this experiment was carried out above ground, the result approaches those achieved by other groups in deep underground laboratories. Based on studies of the origins of background in our system, we hope to reach a limit of 3 x 10/sup 23/ years (or more) in a two month/four detector experiment to be carried out soon in an underground facility.

  16. Microstructural characterization of selected AEA/UCSB model FeCuMn alloys

    SciTech Connect

    Rice, P.M.; Stoller, R.E.

    1996-06-01

    A set of 22 model ferritic alloys was purchased as part of a collaborative research program by the AEA Harwell Laboratory and the University of California at Santa Barbara. Nine of these alloys were selected by the Oak Ridge National Laboratory for use in a series of ion irradiation experiments investigating dispersed barrier hardening. These nine alloys contain varying amounts of copper, manganese, titanium, carbon, and nitrogen. The alloys have been characterized by transmission electron microscopy in the as-received condition to provide a baseline for comparison with the irradiated specimens. A description of the microstructural observations is provided for future reference. This summary focuses on the type and size distributions of the precipitates present; grain size and dislocation measurements are also included.

  17. Computational simulation of materials notes for lectures given at UCSB, May 1996--June 1996

    SciTech Connect

    LeSar, R.

    1997-01-01

    This report presents information from a lecture given on the computational simulation of materials. The purpose is to introduce modern computerized simulation methods for materials properties and response.

  18. Progress Report on Disassembly and Post-Irradiation Experiments for UCSB ATR-2 Experiment

    SciTech Connect

    Nanstad, Randy K; Odette, G. R.; Robertson, Janet Pawel; Yamamoto, T

    2015-09-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. As stated in previous progress reports, the available embrittlement predictive models, e.g. [1], and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.

  19. Post-irradiation Examination Plan for ORNL and University of California Santa Barbara Assessment of UCSB ATR-2 Irradiation Experiment

    SciTech Connect

    Nanstad, R. K.; Yamamoto, T.; Sokolov, M. A.

    2014-01-25

    New and existing databases will be combined to support development of physically based models of transition temperature shifts (TTS) for high fluence-low flux (φ < 10{sup 11}n/cm{sup 2}-s) conditions, beyond the existing surveillance database, to neutron fluences of at least 1×10{sup 20} n/cm{sup 2} (>1 MeV). All references to neutron flux and fluence in this report are for fast neutrons (>1 MeV). The reactor pressure vessel (RPV) task of the Light Water Reactor Sustainability (LWRS) Program is working with various organizations to obtain archival surveillance materials from commercial nuclear power plants to allow for comparisons of the irradiation-induced microstructural features from reactor surveillance materials with those from similar materials irradiated under high flux conditions in test reactors

  20. What have we Learned after a Decade of Experiments and Monitoring at the NEES@UCSB Permanently Instrumented Field Sites?

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Civilini, F.; Seale, S. H.; Hegarty, P.

    2013-12-01

    The Wildlife Liquefaction Array (WLA) and Garner Valley Downhole Array (GVDA) located in southern California are facilities that for the last decade have been supported under the National Science Foundations George E. Brown, Jr., Network for Earthquake Engineering Simulation (NEES) program. These densely instrumented geotechnical and structural engineering field sites continuously record both acceleration and pore pressure, with accelerometers located on the surface and at various depths below the surface, and pore pressure transducers installed at depth within the liquefiable layers. Permanently instrumented structures for examining soil-foundation-structure interaction and a permanent cross-hole array at the sites have transformed these sites into multi-disciplinary earthquake engineering research facilities. Over the last decade, local and regional seismic activity, including multiple extremely active earthquake swarms, have produced a valuable new data set providing a unique opportunity to observe site response and the evolution of pore pressure generation with time throughout the liquefiable layer at an unprecedented level of detail. In addition to the earthquakes provided by nature, active testing experiments using the mobile shakers from NEES@UTexas and NEES@UCLA have produced an equally valuable data set on both site characterization studies and soil-foundation-structure interaction. The new observations of pore pressure and acceleration with depth are providing in situ empirical evidence documenting the range of ground motion levels at which the onset of nonlinear behavior and excess pore pressure begins, augmenting previous case history data, and laboratory data from cyclic tri-axial and centrifuge testing. The largest static pore pressure increases observed in the 'NEES' decade of monitoring were generated by four events at the WLA site, ranging in magnitude from 4.6 to 5.4 and all at distances less than 10km from the site. The largest peak horizontal acceleration of ~325 gals was generated by a M4.9 event. This event generated ~20 kPa of excess pore pressure on multiple transducers, with a pore pressure ratio Ru of ~60% near the top of the liquefiable layer. Using displacements calculated from the accelerometers above and below the liquefiable layer, peak strain levels reached as high as 1.5 x 10-3. During these events, which did not completely liquefy the site, the excess pore pressure can be seen migrating from the top of the layer towards the bottom in the continuous time history data, as well as dissipation that can take hours, highlighting the importance of continuous monitoring instead of triggered. Nonlinear soil behavior associated with the larger events in this swarm is analyzed in terms of changes in travel times (decrease in shear wave velocity) between accelerometers in the array for the largest ground motions, as well as a reduction in high frequency amplification for these events. The location of accelerometers at the surface and at five additional depths provides the opportunity to examine the contribution of the various layers to the overall site response. Analysis of data during the largest excitation at the WLA site show that the nonlinear soil behavior occurs both near the surface and even at depths below 30 meters.

  1. High Temperature Mechanical Properties, Fractography and Synchrotron Studies of ATF clad materials from the UCSB-NSUF Irradiations.

    SciTech Connect

    Saleh, Tarik A.; Maloy, Stuart Andrew; Romero, Tobias J.; Sprouster, David; Ecker, Lynne

    2015-02-23

    A variety of tensile samples of Ferritic and Oxide Dispersion Strengthened (ODS or nanostructured ferritic) steels were placed the ATR reactor over 2 years achieving doses of roughly 4-6 dpa at temperatures of roughly 290°C. Samples were shipped to Wing 9 in the CMR facility at Los Alamos National Laboratory and imaged then tested in tension. This report summarizes the room temperature tensile tests, the elevated temperature tensile tests (300°C) and fractography and reduction of area calculations on those samples. Additionally small samples were cut from the undeformed grip section of these tensile samples and sent to the NSLS synchrotron for high energy X-ray analysis, initial results will be described here.

  2. Kinetic Model for 1D aggregation of yeast ``prions''

    NASA Astrophysics Data System (ADS)

    Kunes, Kay; Cox, Daniel; Singh, Rajiv

    2004-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).

  3. Topological semimetal: a probable new state of quantum optical lattice gases protected by D4 symmetry

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Liu, W. Vincent; Das Sarma, S.

    2011-03-01

    We demonstrate that a novel topological semimetal emerges as a parity-protected critical theory for fermionic atoms loaded in the p and d orbital bands of a two-dimensional optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2 π , in sharp contrast to the π flux of Dirac points as in graphene. We prove that this topological liquid is a universal property for all lattices of D4 point group symmetry and the band degeneracy is protected by odd parity. Turning on interparticle repulsive interaction, the system undergoes a phase transition to a topological insulator, whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states. KS and SDS acknowledge the support of JQI-NSF-PFC, AFOSR-MURI, ARO-DARPA-OLE and ARO-MURI. W.V.L. is supported by ARO and ARO-DARPA-OLE. We thank the KITP at UCSB for its hospitality where this research is supported in part by NSF Grant No. PHY05-51164.

  4. Inter-species inference of gene set enrichment in lung epithelial cells from proteomic and large transcriptomic datasets

    PubMed Central

    Hormoz, Sahand; Bhanot, Gyan; Biehl, Michael; Bilal, Erhan; Meyer, Pablo; Norel, Raquel; Rhrissorrakrai, Kahn; Dayarian, Adel

    2015-01-01

    request. Contact: hormoz@kitp.ucsb.edu PMID:25152231

  5. Origin and mixing timescale of Earth's late veneer

    NASA Astrophysics Data System (ADS)

    Prescher, C.; Allu Peddinti, D.; Bell, E. A.; Bello, L.; Cernok, A.; Ghosh, N.; Tucker, J.; Wielicki, M. M.; Zahnle, K. J.

    2012-12-01

    amount of mass delivered in the late veneer and the Archean internal heating which is at least 4 times higher than the present values, due to the higher abundance of radioactive elements. Another important parameter is the mechanism of mass addition to the Earth. We test three end-member scenarios: (1) a single very large impactor accounting for the entire mass addition, (2) sprinkling of a large number of small impactors over the whole Earth which then mix into the mantle, or (3) by using a size/frequency distribution estimated from the lunar cratering record and corrected for the difference in gravitational cross section of the Earth and the Moon. This project results from collaborations begun at the CIDER II workshop held at KITP, UCSB, 2012.

  6. Robust Controller for Turbulent and Convective Boundary Layers

    DTIC Science & Technology

    2006-08-01

    integration technique (Gottlieb & Orszag 1977; Canuto et al. 1986; Bodenschatz, Pesch & Ahlers 2000). Marcus (1984) provided a detailed description of the...in channel flows with stochastic excitation. Phys. Fluids 13, 3258–3269. Bodenschatz, E., Pesch , W. & Ahlers, G. 2000 New developments in Rayleigh

  7. Dynamic Vehicle Routing for Robotic Networks: Models, Fundamental Limitations and Algorithms

    DTIC Science & Technology

    2010-04-16

    partitions. SIAM Review, January 2010. Submitted Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 31 / 34 Gossip partitioning policy: sample...Control Conference, Hollywood, CA, October 2009 Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 32 / 34 Gossip partitioning policy: analysis...Dynamic Vehicle Routing for Robotic Networks: Models, Fundamental Limitations and Algorithms Francesco Bullo Center for Control, Dynamical Systems

  8. Former Fermilab boss to lead Lawrence Berkeley National Laboratory

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2016-03-01

    Particle physicist Michael Witherell - current vice-chancellor for research at the University of California, Santa Barbara (UCSB) - has been appointed the next director of the Lawrence Berkeley National Laboratory (LBL).

  9. Potential for AP600 in-vessel retention through ex-vessel flooding

    SciTech Connect

    Rempe, J.L.; Knudson, D.L.; Allison, C.M.; Thinnes, G.L.; Atwood, C.L.

    1997-12-01

    External reactor vessel cooling (ERVC) is a new severe accident management strategy that involves flooding the reactor cavity to submerge the reactor vessel in an attempt to cool core debris that has relocated to the vessel lower head. Advanced and existing light water reactors (LWRs) are considering ERVC as an accident management strategy for in-vessel retention (IVR) of relocated debris. In the probabilistic risk assessment (PRA) for the AP600 design, Westinghouse credits ERVC for preventing vessel failure during postulated severe accidents with successful reactor coolant system (RCS) depressurization and reactor cavity flooding. To support the Westinghouse position on IVR, DOE contracted the University of California--Santa Barbara (UCSB) to produce the peer-reviewed report. To assist in the NRC`s evaluation of IVR of core melt by ex-vessel flooding of the AP6OO, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform: An in-depth critical review of the UCSB study and the model that UCSB used to assess ERVC effectiveness; An in-depth review of the UCSB study peer review comments and of UCSB`s resolution method to identify areas where technical concerns weren`t addressed; and An independent analysis effort to investigate the impact of residual concerns on the margins to failure and conclusions presented in the UCSB study. This report summarizes results from these tasks. As discussed in Sections 1.1 and 1.2, INEEL`s review of the UCSB study and peer reviewer comments suggested that additional analysis was needed to assess: (1) the integral impact of peer reviewer-suggested changes to input assumptions and uncertainties and (2) the challenge present by other credible debris configurations. Section 1.3 summarized the corresponding analysis approach developed by INEEL. The remainder of this report provides more detailed descriptions of analysis methodology, input assumptions, and results.

  10. Proposal 1114.11.2956B

    SciTech Connect

    Degrand, Thomas

    2016-08-17

    The Theoretical Advanced Study Institute was held at the University of Colorado, Boulder, during June 1 - 26, 2015. The topic was "New Frontiers in Fields and Strings." Topics included many discussions of entanglement entropy, the conformal bootstrap, AdS/CFT techniques and applications, cosmology, and the black hole information problem. The organizers were Professors Joseph Polchinski (KITP Santa Barbara) and Pedro Vieira (Perimeter Institute). Sixty-one students heard sixty-two lectures by sixteen lecturers. A Proceedings is in press.

  11. Enabling Multinational Communications with CENTRIXS

    DTIC Science & Technology

    2010-06-01

    JAN-FEB 1 CFAK MALABAR OCT 4 – CFAKs/ BGAN ANNUALEX NOV 2 CFAKs RIMPAC JUL 18 CFAKs Total Assets: CFAKs = 21+ CPOKs = 9 1 Portable Inmarsat 3 BGANs ...Indonesia Demo NOV, 1 CFAK, BGAN CARAT/SEACAT MAY – AUG 4 CFAKs//4 CPOKs DESI OCT 1 CPOK CSOFEX 08-4 OCT 2 CFAKs KITP OCT 1 CFAK 2005 – 8 installs 2008 – 55+ installs

  12. Report on the Program “Fluid-mediated particle transport in geophysical flows” at the Kavli Institute for Theoretical Physics, UC Santa Barbara, September 23 to December 12, 2013

    SciTech Connect

    Jenkins, James T.; Meiburg, Eckart; Valance, Alexandre

    2015-09-15

    The Kavli Institute of Theoretical Physics (KITP) program held at UC Santa Barbara in the fall of 2013 addressed the dynamics of dispersed particulate flows in the environment. By focusing on the prototypes of aeolian transport and turbidity currents, it aimed to establish the current state of our understanding of such two-phase flows, to identify key open questions, and to develop collaborative research strategies for addressing these questions. Here, we provide a brief summary of the program outcome.

  13. Performance of a low data rate speech codec for land-mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Gersho, Allen; Jedrey, Thomas C.

    1990-01-01

    In an effort to foster the development of new technologies for the emerging land mobile satellite communications services, JPL funded two development contracts in 1984: one to the Univ. of Calif., Santa Barbara and the other to the Georgia Inst. of Technology, to develop algorithms and real time hardware for near toll quality speech compression at 4800 bits per second. Both universities have developed and delivered speech codecs to JPL, and the UCSB codec was extensively tested by JPL in a variety of experimental setups. The basic UCSB speech codec algorithms and the test results of the various experiments performed with this codec are presented.

  14. Building a Comprehensive Mental Health System for Young Children

    ERIC Educational Resources Information Center

    Onunaku, Ngozi; Gilkerson, Linda; Ahlers, Therese

    2006-01-01

    Onunaku, Ahlers, and Gilkerson describe Illinois's effort to build infant mental health capacity within the Part C Early Intervention system and Wisconsin's effort to build capacity for infant and early childhood mental health services statewide across all systems that serve children. Because of multiple funding streams, families often experience…

  15. Cooperation Among Theorem Provers

    NASA Technical Reports Server (NTRS)

    Waldinger, Richard J.

    1998-01-01

    In many years of research, a number of powerful theorem-proving systems have arisen with differing capabilities and strengths. Resolution theorem provers (such as Kestrel's KITP or SRI's SNARK) deal with first-order logic with equality but not the principle of mathematical induction. The Boyer-Moore theorem prover excels at proof by induction but cannot deal with full first-order logic. Both are highly automated but cannot accept user guidance easily. The purpose of this project, and the companion project at Kestrel, has been to use the category-theoretic notion of logic morphism to combine systems with different logics and languages.

  16. Culture in a Writing Program: An Organizational Case Study

    ERIC Educational Resources Information Center

    Orton, Haley Elizabeth

    2013-01-01

    This study explored the perceptions of the staff and faculty of one writing program in a large western university, the University of California, Santa Barbara (UCSB). The Writing Program had experienced significant changes including budgetary reductions since 2008 as well as turnover in leadership. These changes have impacted the culture of the…

  17. High-Resolution Measurements of Coastal Bioluminescence

    DTIC Science & Technology

    2006-09-30

    seen at the canyon edge. The bioluminescence signal confirms that this is biological, and likely a swarm of krill , which it also detects high levels...lifesci.ucsb.edu/~biolum/ Invited talks, Outreach articles: Sep. 2006. Science Year 2007. Photos and research discussion in Worldbook supplement

  18. Final technical report, Symposium on New Theoretical Concepts and Directions in Catalysis

    SciTech Connect

    Metiu, Horia

    2014-08-22

    We organized in August 2013 a “Symposium on New Theoretical Concepts and Directions in Catalysis” with the participation of 20 invited distinguished quantum chemists and other researchers who use computations to study catalysis. Symposium website; http://catalysis.cnsi.ucsb.edu/

  19. Chicanos: A Checklist of Current Materials. No. 1, January-June, 1988.

    ERIC Educational Resources Information Center

    Guerena, Salvador, Comp.; Gonzalez, Raquel Quiroz, Comp.

    This is a bibliography of materials held in the Coleccion Tloque Nahuaque of the University of California at Santa Barbara (UCSB). It includes citations of monographs and reference tools about Chicanos written in both English and Spanish. The following categories are listed: agriculture; architecture; art; arts and crafts; bibliographies; border…

  20. SAT Validity for Linguistic Minorities at the University of California, Santa Barbara

    ERIC Educational Resources Information Center

    Zwick, Rebecca; Schlemer, Lizabeth

    2004-01-01

    The validity of the SAT as an admissions criterion for Latinos and Asian Americans who are not native English speakers was examined. The analyses, based on 1997 and 1998 UCSB freshmen, focused on the effectiveness of SAT scores and high school grade-point average (HSGPA) in predicting college freshman grade-point average (FGPA). When regression…

  1. Optimization Strategies for Cognition and Autonomy in Mixed Human-Robot Teams

    DTIC Science & Technology

    2012-07-01

    Conclusions Vaibhav Srivastava & FB (UCSB) Cognition and Autonomy Management AFOSR-DSI Wrkshp 9jul12 8 / 27 Operator Cognition Models Yerkes Dodson effect... Yerkes -Dodson 1908 Evolution of probability of detection Pew ’68 1 operator utilization ratio = linear dynamical system expected (unforced) service time

  2. From 6 to 163: The Chinese International Student Experience in a Time of Increased Enrollment at a University of California Campus

    ERIC Educational Resources Information Center

    Ramos, Adrian

    2013-01-01

    At UCSB the number of degree seeking undergraduate Chinese international students increased from 6 to 163 between 2010 and 2012. With such a controversial and much discussed topic of international student enrollment at U.S universities, this was the perfect time for me to interview Chinese international students. With the help of Kathy Charmaz'…

  3. The Effective Kahler Potential, Metastable Vacua and R-Symmetry Breaking in O'Raifeartaigh Models

    NASA Astrophysics Data System (ADS)

    Kain, Ben; Benjamin, Shermane; Freund, Christopher

    2010-02-01

    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective K"ahler potential. We translate known ideas to this framework and then construct convenient formulas for computing individual terms in the expanded effective K"ahler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous an explicit R-symmetry breaking is included in our analysis. )

  4. Tyrosine Ameliorates a Cold-Induced Delayed Matching-to-Sample Performance Decrement in Rats

    DTIC Science & Technology

    1993-01-01

    were controlled and creased firing rate of CNS neurons and the continued recorded by a computer system. release of catecholamines, tyrosine hydroxylase ... hydroxylase . In: Lipton MA, DiMascio ducing a working memory deficit under field conditions A, Killam KF (eds) Psychopharmacology: a generation of pro...of rats after acute oral doses of aspar- References tame, phenylalanine , and tyrosine. Fundam Appi Toxicol 16:495-505 Ahlers ST, Thomas JR, Berkey DL

  5. Preliminary Investigations Concerning the Training of Tactical Decision Making Behavior

    DTIC Science & Technology

    1976-07-01

    TRAINING OF TACTICAL DECISION MAKING b )EHAVLOIR Human Factors Laboratory Naval Training Equtoient Center 00 Orlando, Florida 32813 July 1976 Final...Concerning the Training of Tattlcal Decision Making Behavior ROBERT H. AHLERS, JR. Human Factors Laboratory July 1976 GOVERNMENT RIGHTS IN DATA... Human Factors Laboratory J. F. HARVEY Di rector Research and Technoloy Department NAVJAL TRAINUING EQUIPMENT CE,,TEi OP LAl!OD FLC" ,) A Best Available

  6. Anomalies, conformal manifolds, and spheres

    DOE PAGES

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; ...

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  7. Anomalies, conformal manifolds, and spheres

    SciTech Connect

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  8. 7-Day Biodefense: Engineered Nanoparticle for Virus Elimination by Opsonization (ENVELOP)

    DTIC Science & Technology

    2013-12-10

    Pilot batches of liposomes produced by Northern Lipids using this process had the same physical properties as similar batches produced at UCSB and...a lipid anchor to create a glycolipid that could be incorporated into liposomes. Alternatives were to conjugate the carbohydrate to a different...molecules such as sucrose when exposed to protein and lipid surfactants in the airway. The pharmacokinetic profile was not dependent on the liposome

  9. Algorithmic Coordination in Robotic Networks

    DTIC Science & Technology

    2010-11-29

    motion.me.ucsb.edu November 29, 2010 Contents 1 Original Proposal Summary i 2 Technical Accomplishments ii 2.1 Dynamic vehicle routing and target assignment ii...as fully or partly supported by this award. The results are organized in four main thrusts: 1. dynamic vehicle routing and target assignment. 2...journal publications, listed in Section 3, are organized in the same four thrusts. 2.1 Dynamic vehicle routing and target assignment Supported

  10. [Physical modeling of sedimentary basins, magma mechanics, and molecular dynamics of aqueous solutions

    SciTech Connect

    Spera, F.J.

    1993-01-01

    Work at UCSB has been in four areas: (1) Convection in porous media, (2) Geochemical fluid dynamics, (3) Experimental rheometry of silicate melts and (4) Molecular dynamics of silicate solutions. In the past 18 months we have published, have in press or submitted 8 papers (see Appendix) and are currently at work on several others. Additionally, a number of abstracts have been published. A list of these works is presented in the Appendix.

  11. [Physical modeling of sedimentary basins, magma mechanics, and molecular dynamics of aqueous solutions]. Technical progress report

    SciTech Connect

    Spera, F.J.

    1993-07-01

    Work at UCSB has been in four areas: (1) Convection in porous media, (2) Geochemical fluid dynamics, (3) Experimental rheometry of silicate melts and (4) Molecular dynamics of silicate solutions. In the past 18 months we have published, have in press or submitted 8 papers (see Appendix) and are currently at work on several others. Additionally, a number of abstracts have been published. A list of these works is presented in the Appendix.

  12. Program for Research on Conducting Polymers

    DTIC Science & Technology

    1991-07-17

    material derived from all monomers). Unfortunately the copper is tenaciously entrained in these materials So that new approaches to couple I hybridized ...characterization of new conducting polymers, processing of these conducting polymers into highly oriented fibers and films, and measurement of the electrical and...is now clear (largely as a result of the effort at UCSB) that the desired combination of properties is available: Electrical and Optical Properties

  13. Epitaxial Hybrid Silicon Technology

    DTIC Science & Technology

    2011-08-01

    this program a system at UCSB that had been used to grow InGaAsP quantum well lasers as well as InP-based heterojunction bipolar transistors was to...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering...laser structures directly after establishing the high quality ELO film. However, in our literature searches we have not found any papers showing the

  14. The Secretary of the Navy/Chief of Naval Operations Chair in Oceanographic Sciences

    DTIC Science & Technology

    2014-09-30

    dynamics, turbulence, internal gravity waves, sediment transport, and harmful algal blooms , and 3) the physical, bio-optical, and biogeochemical...features and eddies; ship-based bio-optical data collected by the Plumes and Blooms Program (Dave Siegel, lead-PI; http://www.icess.ucsb.edu/PnB/PnB.html...analysis in the Southern California Bight from a numerical product, submitted to Journal of Geophysical Research. bloom west of the Island of Hawaii

  15. Investigation of Shock Wave Attenuation in Porous Materials

    DTIC Science & Technology

    2009-12-01

    Brett Compton of the Mechanical Engineering Department of UCSB for their time and help in conducting the gas-gun experiments. I would also like to...elastic compression is governed by elastic buckling of cell walls. b. The beginning of permanent volume change coincides with the start of plastic...target, which was held in the impact chamber. The impact event was captured using a high-speed camera viewed through the transparent armor-glass in

  16. Hydrodynamics of Turning Flocks

    NASA Astrophysics Data System (ADS)

    Yang, Xingbo; Marchetti, M. Cristina

    2015-03-01

    We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well polarized flocks. The continuum equations are derived by coarse graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields spin waves that mediate the propagation of turning information throughout the flock. When the inertia is large, we find a novel instability that signals the transition to complex spatio-temporal patterns of continuously turning and swirling flocks. This work was supported by the NSF Awards DMR-1305184 and DGE-1068780 at Syracuse University and NSF Award PHY11-25915 and the Gordon and Betty Moore Foundation Grant No. 2919 at the KITP at the University of California, Santa Barbara.

  17. Analysis, isolation and insecticidal activity of linear furanocoumarins and other coumarin derivatives fromPeucedanum (Apiaceae: Apioideae).

    PubMed

    Hadaček, F; Müller, C; Werner, A; Greger, H; Proksch, P

    1994-08-01

    Peucedanum arenarium Waldst. & Kit.,P. austriacum (Jacq.) Koch,P. coriaceum Reichenb.,P. longifolium Waldst. & Kit,P. officinale L.,P. oreoselinum (L.) Moench,P. ostruthium L., andP. palustre (L.) Moench accumulate different structural types of coumarins including simple coumarins, linear furanocoumarins, linear dihydropyranocoumarins, angular dihydrofuranocoumarins and angular dihydropyranocoumarins. Linear furanocoumarins, known for various biological activities, include some well-known antifeedants, such as bergapten, isopimpinellin, and xanthotoxin. The aim of this investigation was to screen the diverse coumarins fromPeucedanum for insecticidal activity. LC was used to analyze and isolate coumarins for the bioassays. A growth inhibition bioassay with 17 derivatives, comprising all structural types fromPeucedanum, carried out withSpodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) as test organism, indicated the majority of the linear furanocoumarins and the angular dihydrofuranocoumarin athamantin as active compounds. Oxygenation of the prenyl residue of linear furanocoumarins decreased activity. Further formation of an ester with angelic acid even resulted in complete inactivity. Five active linear furanocoumarins, bergapten, isopimpinellin, xanthotoxin, isoimperatorin, and imperatorin, and two linear furanocoumarins with a substituted furan ring, peucedanin and 8-methoxypeucedanin, were compared in a dietary utilization bioassay. Relative growth rate (RGR) and relative consumption rate (RCR) divided the tested coumarins in three groups of similar activity. Isopimpinellin and peucedanin slightly decreased RGR and RCR of the treated larvae, and xanthotoxin, isoimperatorin, and 8-methoxypeucedanin heavily decreased RGR and RCR. Bergapten and imperatorin differed by the lowest RGR values and rather high RCR values. The effects caused by these two coumarins indicate specific postingestive toxicity. The results obtained in this study add to the reputation

  18. Stochastic perturbations of the five-component Benard system

    NASA Astrophysics Data System (ADS)

    Benzi, R.; Sutera, A.

    1984-08-01

    The effect of added white noise on the dynamical system of a two-dimensional fluid layer heated from below with periodic free stress boundary conditions is investigated analytically. The exit integrations are estimated asymptotically, and the results are compared with those obtained by numerical integration in graphs. The stochastic resonance mechanism is discussed, and it is found that the effect of stochastic perturbations at large values of the aspect ratio (Gamma) is amplified by a factor proportional to Gamma squared. It is argued that such a mechanism could explain the experimental observations of Ahlers and Walden (1980) and Libchaber (1983).

  19. MOLVIE: an interactive visualization environment for molecular structures.

    PubMed

    Sun, Huandong; Li, Ming; Xu, Ying

    2003-05-01

    A Molecular visualization interactive environment (MOLVIE), is designed to display three-dimensional (3D) structures of molecules and support the structural analysis and research on proteins. The paper presents the features, design considerations and applications of MOLVIE, especially the new functions used to compare the structures of two molecules and view the partial fragment of a molecule. Being developed in JAVA, MOLVIE is platform-independent. Moreover, it may run on a webpage as an applet for remote users. MOLVIE is available at http://www.cs.ucsb.edu/~mli/Bioinf/software/index.html.

  20. An Earth Summit in a Large General Education Oceanography Class

    NASA Astrophysics Data System (ADS)

    Dodson, H.; Prothero, W. A.

    2001-12-01

    An Earth Summit approach in UCSB's undergraduate physical oceanography course has raised student interest level while it also supports the course goals of increased learner awareness of the process of science, and critical analysis of scientific claims. At the beginning of the quarter, each group of students chooses a country to represent in the Earth Summit. During the course of the quarter, these groups relate each of the class themes to their chosen country. Themes include 1) ocean basins and plate tectonics, 2) atmospheres, oceans and climate, and 3) fisheries. Students acquire and utilize Earth data to support their positions. Earth data sources include the "Our Dynamic Planet" CDROM (http://oceanography.geol.ucsb.edu/ODP_Advert/odp_onepage.htm), NOAA's ocean and climate database (http://ferret.wrc.noaa.gov/las/), WorldWatcher CD (http://www.worldwatcher.northwestern.edu/) and JPL's Seawinds web site (http://haifung.jpl.nasa.gov/index.html). During the atmospheres, oceans and climate theme, students choose from 12 mini-studies that use various kinds of on-line Earth data related to important global or regional phenomena relevant to the course. The Earth datasets that the students access for their analysis include: winds; atmospheric pressure; ocean chemistry; sea surface temperature; solar radiation; precipitation, etc. The first group of 6 mini-studies focus on atmosphere and ocean, and are: 1) global winds and surface currents, 2) atmosphere and ocean interactions, 3) stratospheric ozone depletion, 4) El Nino, 5) Indian monsoon, and 6) deep ocean circulation. The second group focus on the Earth's heat budget and climate and are: 1) influence of man's activities on the climate, 2) the greenhouse effect, 3) seasonal variation and the Earth's heat budget, 4) global warming, 5) paleoclimate, and 6) volcanoes and climate. The students use what they have learned in these mini-studies to address atmospheric and climatic issues pertinent to their specific Earth

  1. Earth science research

    NASA Technical Reports Server (NTRS)

    Botkin, Daniel B.

    1987-01-01

    The analysis of ground-truth data from the boreal forest plots in the Superior National Forest, Minnesota, was completed. Development of statistical methods was completed for dimension analysis (equations to estimate the biomass of trees from measurements of diameter and height). The dimension-analysis equations were applied to the data obtained from ground-truth plots, to estimate the biomass. Classification and analyses of remote sensing images of the Superior National Forest were done as a test of the technique to determine forest biomass and ecological state by remote sensing. Data was archived on diskette and tape and transferred to UCSB to be used in subsequent research.

  2. Technical Report from the High Energy Physics Group of the University of California, Santa Barbara, DOE grant DE-FG02-91ER40618

    SciTech Connect

    Richman, Jeffrey; Berenstein, David; Campagnari, Claudio; Giddings, Steven; Incandela, Joseph; Nelson, Harry; Stuart, David; Witherell, Michael

    2014-09-11

    The research program of the UCSB high energy physics group encompasses advanced projects in both experimental and theoretical particle physics. This program has been strongly supported by the DOE Office of High Energy Physics for many years. The program addresses questions related to the properties of matter, the fundamental forces of nature, the origin and evolution of the universe, and the nature of spacetime. The mission of the group also has a strong educational component, and the training of physicists in advanced research is a key part of our program.

  3. Thec-map, Tits Satake subalgebras and the search for N=2 inflaton potentials

    NASA Astrophysics Data System (ADS)

    Fré, P.; Sorin, A. S.; Trigiante, M.

    2015-04-01

    In this paper we address the general problem of including inflationary models exhibiting Starobinsky-like potentials into (symmetric) $\\mathcal{N}=2$ supergravities. This is done by gauging suitable abelian isometries of the hypermultiplet sector and then truncating the resulting theory to a single scalar field. By using the characteristic properties of the global symmetry groups of the $\\mathcal{N}=2$ supergravities we are able to make a general statement on the possible $\\alpha$-attractor models which can obtained upon truncation. We find that in symmetric $\\mathcal{N}=2$ models group theoretical constraints restrict the allowed values of the parameter $\\alpha$ to be $\\alpha=1,\\,\\frac{2}{3},\\, \\frac{1}{3}$. This confirms and generalizes results recently obtained in the literature. Our analysis heavily relies on the mathematical structure of symmetric $\\mathcal{N}=2$ supergravities, in particular on the so called $c$-map connection between Quaternionic K\\"ahler manifolds starting from Special K\\"ahler ones. A general statement on the possible consistent truncations of the gauged models, leading to Starobinsky-like potentials, requires the essential help of Tits Satake universality classes. The paper is mathematically self-contained and aims at presenting the involved mathematical structures to a public not only of physicists but also of mathematicians. To this end the main mathematical structures and the general gauging procedure of $\\mathcal{N}=2$ supergravities is reviewed in some detail.

  4. Terahertz signature characterization of bio-simulants

    NASA Astrophysics Data System (ADS)

    Majewski, Alexander J.; Miller, Peter; Abreu, Rene; Grotts, Jeffrey; Globus, Tatiana; Brown, Elliott

    2005-05-01

    Collaboration with the University of Virginia (UVa) and the University of California, Santa Barbara (UCSB) has resulted in the collection of signature data in the THz region of the spectrum for ovalbumin, Bacillus Subtilis (BG) and RNA from MS2 phage. Two independent experimental measurement systems were used to characterize the bio-simulants. Prior to our efforts, only a limited signature database existed. The goal was to evaluate a larger ensemble of biological agent simulants (BG, MS2 and ovalbumin) by measuring their THz absorption spectra. UCSB used a photomixer spectrometer and UVa a Fourier Transform spectrometer to measure absorption spectra. Each group used different sample preparation techniques and made multiple measurements to provide reliable statistics. Data processing culminated in applying proprietary algorithms to develop detection filters for each simulant. Through a covariance matrix approach, the detection filters extract signatures over regions with strong absorption and ignore regions with large signature variation (noise). The discrimination capability of these filters was also tested. The probability of detection and false alarm for each simulant was analyzed by each simulant specific filter. We analyzed a limited set of Bacillus thuringiensis (BT) data (a near neighbor to BG) and were capable of discriminating between BT and BG. The signal processing and filter construction demonstrates signature specificity and filter discrimination capabilities.

  5. School for Scientific Thought: Saturday sessions that bring high school and STEM graduate students together

    NASA Astrophysics Data System (ADS)

    Gwinn, Elisabeth; Ibsen, Wendy

    2011-03-01

    The School for Scientific Thought (http://csep.cnsi.ucsb.edu/k12/sst) is a Saturday morning program that exposes high school students to current research in STEM fields, through 5-week miniclasses that are conceived, developed and taught by graduate students. Now in its second year of sponsorship by UCSB's California Nanosystems Institute, this NSF-supported program provides graduate students with a creative opportunity to communicate their own favorite science to a young audience. The experience solidifies the graduate student's own knowledge while developing expository skills during a limited time commitment that allows them to also progress in their research objectives. High school students make contact with positive scientist role models while learning about exciting topics that are beyond the high school curriculum. SST courses have ranged from ``Surfing the Waves of Light and Matter'' to ``Nanotechnology: Using the Very Small to Solve the World's Problems''. The selection of graduate student instructors and recruitment of high school students will be discussed. SST is an outgrowth of the NSF GK-12 program ``Let's Explore Applied Physical Science'' (LEAPS).

  6. School for Scientific Thought: Saturday sessions that bring high school and STEM graduate students together

    NASA Astrophysics Data System (ADS)

    Gwinn, Elisabeth

    2011-04-01

    The School for Scientific Thought (http://csep.cnsi.ucsb.edu/k12/sst) is a Saturday morning program that exposes high school students to current research in STEM fields, through 5-week miniclasses that are conceived, developed and taught by graduate students. Now in its second year of sponsorship by UCSB's California Nanosystems Institute, this NSF-supported program provides graduate students with a creative opportunity to communicate their own favorite science to a young audience. The experience solidifies the graduate student's own knowledge while developing expository skills during a limited time commitment that allows them to also progress in their research objectives. High school students make contact with positive scientist role models while learning about exciting topics that are beyond the high school curriculum. SST courses have ranged from ``Surfing the Waves of Light and Matter'' to ``Nanotechnology: Using the Very Small to Solve the World's Problems''. The selection of graduate student instructors and recruitment of high school students will be discussed. SST is an outgrowth of the NSF GK-12 program ``Let's Explore Applied Physical Science'' (LEAPS). Supported by the NSF GK-12 program

  7. Initial source and site characterization studies for the U.C. Santa Barbara campus

    SciTech Connect

    Archuleta, R.; Nicholson, C.; Steidl, J.; Gurrola, L.; Alex, C.; Cochran, E.; Ely, G.; Tyler, T.

    1997-12-01

    The University of California Campus-Laboratory Collaboration (CLC) project is an integrated 3 year effort involving Lawrence Livermore National Laboratory (LLNL) and four UC campuses - Los Angeles (UCLA), Riverside (UCR), Santa Barbara (UCSB), and San Diego (UCSD) - plus additional collaborators at San Diego State University (SDSU), at Los Alamos National Laboratory and in industry. The primary purpose of the project is to estimate potential ground motions from large earthquakes and to predict site-specific ground motions for one critical structure on each campus. This project thus combines the disciplines of geology, seismology, geodesy, soil dynamics, and earthquake engineering into a fully integrated approach. Once completed, the CLC project will provide a template to evaluate other buildings at each of the four UC campuses, as well as provide a methodology for evaluating seismic hazards at other critical sites in California, including other UC locations at risk from large earthquakes. Another important objective of the CLC project is the education of students and other professional in the application of this integrated, multidisciplinary, state-of-the-art approach to the assessment of earthquake hazard. For each campus targeted by the CLC project, the seismic hazard study will consist of four phases: Phase I - Initial source and site characterization, Phase II - Drilling, logging, seismic monitoring, and laboratory dynamic soil testing, Phase III - Modeling of predicted site-specific earthquake ground motions, and Phase IV - Calculations of 3D building response. This report cover Phase I for the UCSB campus and incudes results up through March 1997.

  8. The effect of adiabaticity on strongly quenched Bose Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Ling, Hong; Kain, Ben

    2015-05-01

    We study the properties of a Bose-Einstein condensate following a deep quench to a large scattering length during which the condensate fraction nc changes with time. We construct a closed set of equations that highlight the role of the adiabaticity or equivalently, dnc/dt, the rate change of nc, which is to induce an (imaginary) effective interaction between quasiparticles. We show analytically that such a system supports a steady state characterized by a constant condensate density and a steady but periodically changing momentum distribution, whose time average is described exactly by the generalized Gibbs ensemble. We discuss how the nc -induced effective interaction, which cannot be ignored on the grounds of the adiabatic approximation for modes near the gapless Goldstone mode, can significantly affect condensate populations and Tan's contact for a Bose gas that has undergone a deep quench. In particular, we find that even when the Bose gas is quenched to unitarity, nc(t) does not completely deplete, approaching, instead, to a steady state with a finite condensate fraction. ITAMP, Harvard-Smithsonian Center for Astrophysics; KITP, University of Santa Barbara.

  9. Targeted next-generation sequencing identified novel mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Chang, Yu-Cheng; Lin, Huan-Chau; Chiang, Yi-Hao; Chen, Caleb Gon-Shen; Huang, Ling; Wang, Wei-Ting; Cheng, Chun-Chia; Lin, Johnson; Chang, Yi-Fang; Chang, Ming-Chih; Hsieh, Ruey-Kuen; Chen, Shu-Jen; Lim, Ken-Hong; Kuo, Yuan-Yeh

    2017-05-01

    Mutations in JAK2, MPL and CALR genes have been identified in the majority of myeloproliferative neoplasm (MPN) patients, and patients negative for these three mutations are the so-called triple-negative (TN) MPN. In this study, we examined the mutational profiles of 16 triple-negative MPN patients including 7 essential thrombocythemia (ET), 1 primary myelofibrosis and 8 polycythemia vera (PV). Targeted next-generation sequencing was performed using the ACTOnco Comprehensive Cancer Panel (Ion AmpliSeq Comprehensive Cancer Panel, Life Technologies) to target all coding exons of 409 cancer-related genes. Overall, 30 nonsynonymous somatic mutations were detected in 12 (75%) patients with a range of 1-5 mutations per sample. Notably, one ET patient was found to have JAK2V617F and KITP551L mutations at very low allele frequency. One MPLP70L and 1 MPLM602T mutations were identified each in 1 ET and 1 PV, respectively. Other recurrent mutations were also identified including KMT2C, KMT2D, IRS2, SYNE1, PDE4DIP, SETD2, ATM, TNFAIP3 and CCND2. In addition, germline mutations were also found in some cancer-related genes. Copy number changes were rare in this cohort of TN MPNs. In conclusion, both somatic and germline mutations can be detected in TN MPN patients.

  10. High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY15

    SciTech Connect

    Pierce, Aaron T.

    2015-09-18

    The String theory workshop was held from March 4-7, 2015 on the University of Michigan campus. Local organizers were Gordon Kane and Aaron Pierce. Piyush Kumar (Yale), Jim Halverson (KITP), Bobby Acharya (ICTP) and Sven Krippendorf (Oxford) served as external organizers.The meeting focused on the status of work to project 10 or 11 dimensional string/M theories onto our 4 spacetime dimensions (compactification). The workshop had 31 participants, half from outside the U.S. Participants were encouraged to focus on predictions for recent and forthcoming data, particularly for Higgs physics and LHC and dark matter, rather than on the traditional approach of embedding the Standard Model particles and forces. The Higgs boson sympoosium was locally organized by James Wells (chair), Aaron Pierce and Jianming Qian. Additional input in the early stages by Stefan Pokorski (Warsaw) who was unable to attend in the end. The workshop consistent of 22 talks from experts around the world, both theoretical and experimental. Experimentalists summarized the current state of knowledge of the Higgs boson and its varients. The theory talks ranged from technical calculations of Standard Model processes to speculative novel ideas. The YHET visitor program invited weekly young visitors to the University of Michigan campus to present their work. This year 24 participants came under the program, with 17 of them receiving at least partial support for their visits.

  11. Many-body Localization Transition in Rokhsar-Kivelson-type wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Yu, Xiongjie; Cho, Gil Young; Clark, Bryan; Fradkin, Eduardo

    We construct a family of many-body wave functions to study the many-body localization phase transition. The wave functions have a Rokhsar-Kivelson form, in which the weight for the configurations are chosen from the Gibbs weights of a classical spin glass model, known as the Random Energy Model, multiplied by a random sign structure to represent a highly excited state. These wave functions show a phase transition into an MBL phase. In addition, we see three regimes of entanglement scaling with subsystem size: scaling with entanglement corresponding to an infinite temperature thermal phase, constant scaling, and a sub-extensive scaling between these limits. Near the phase transition point, the fluctuations of the Renyi entropies are non-Gaussian. We find that Renyi entropies with different Renyi index transition into the MBL phase at different points and have different scaling behavior, suggesting a multifractal behavior. This work was supported in part by DMR-1064319 and DMR-1408713 (XC,GYC,EF) at the University of Illinois, PHY11-25915 at KITP (EF), DOE, SciDAC FG02-12ER46875 (BKC and XY), and the Brain Korea 21 PLUS Project of Korea Government (GYC).

  12. High-Efficiency Non-Polar GaN-Based LEDs

    SciTech Connect

    Paul Fini

    2010-11-30

    Inlustra Technologies with subcontractor U.C. Santa Barbara conducted a project with the principle goal of demonstrating high internal quantum efficiency blue (430 nm) and green (540nm) light emitting diodes (LEDs) on low-defect density non-polar GaN wafers. Inlustra pursued the fabrication of smooth thick a-plane and m-plane GaN films, as well as defect reduction techniques such as lateral epitaxial overgrowth (LEO) to uniformly lower dislocation density in these films. Limited free-standing wafers were produced as well. By the end of the reporting period, Inlustra had met its milestone of dislocation reduction to < 5 x 10{sup 6} cm{sup -2}. Stacking faults were still present in appreciable density ({approx} 1 x 10{sup 5} cm{sup -1}), but were not the primary focus of defect reduction since there have been no published studies establishing their detrimental effects on LED performance. Inlustra's LEO progress built a solid foundation upon which further commercial development of GaN substrates will occur. UCSB encountered multiple delays in its LED growth and fabrication efforts due to unavoidable facilities outages imposed by ongoing construction in an area adjacent to the metalorganic chemical vapor deposition (MOCVD) laboratory. This, combined with the large amount of ab initio optimization required for the MOCVD system used during the project, resulted in unsatisfactory LED progress. Although numerous blue-green photoluminescence results were obtained, only a few LED structures exhibited electroluminescence at appreciable levels. UCSB also conducting extensive modeling (led by Prof. Van de Walle) on the problem of non-radiative Auger recombination in GaN-based LED structures, which has been posited to contribute to LED efficiency 'droop' at elevated current density. Unlike previous modeling efforts, UCSB's approach was truly a first-principles ab initio methodology. Building on solid numerical foundations, the Auger recombination rates of In{sub x}Ga{sub 1-x

  13. CUES - A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran

    2015-09-01

    Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an

  14. Leo Kadanoff's legacy for turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef

    Rayleigh-Benard (RB) convection -- the buoyancy-driven flow of a fluid heated from below and cooled from above -- is a classical problem in fluid dynamics. It played a crucial role in the development of stability theory in hydrodynamics (Rayleigh, Chandrasekhar) and had been paradigmatic in pattern formation and in the study of spatial-temporal chaos (Ahlers, Libchaber, and many other). It was Leo Kadanoff and his associates in Chicago who, in the 1980s and 1990s, propagated the RB system as paradigmatic for the physics of fully developed turbulence and contributed tremendously to today's understanding of thermally driven turbulence. He and his experimental coworkers (Libchaber et al.) revealed the importance of the thermal plumes and the large-scale wind, and elucidated the interplay between thermal boundary layers and bulk. His scaling analysis laid the basis for our present understanding of turbulent convection, which I will review in this talk, highlighting Leo's trailblazing contributions. Kadanoff session.

  15. Turbulent onset in moderately large convecting layers

    NASA Astrophysics Data System (ADS)

    Behringer, R. P.; Shaumeyer, J. N.; Clark, C. A.; Agosta, C. C.

    1982-12-01

    We present long-time thermal data on turbulent evolution in Rayleigh-Bénard convection for cylindrical containers of aspect ratios Γ=6.22 and 7.87 and Prandtl numbers near 0.6. The first time dependence observed was more complex than the intermittent flows reported by Ahlers and Walden for Γ=4.72, although the periodicity they observed was reproduced for Γ=7.87. The turbulent onset for Γ=6.22, showing substantial regimes of periodicity, was quite different from that for Γ=7.87 or 4.72. We conclude that changes of order unity in Γ strongly affect turbulent onset, even for moderately large aspect ratios.

  16. Ability of a low-dimensional model to predict geometry-dependent dynamics of large-scale coherent structures in turbulence

    NASA Astrophysics Data System (ADS)

    Bai, Kunlun; Ji, Dandan; Brown, Eric

    2016-02-01

    We test the ability of a general low-dimensional model for turbulence to predict geometry-dependent dynamics of large-scale coherent structures, such as convection rolls. The model consists of stochastic ordinary differential equations, which are derived as a function of boundary geometry from the Navier-Stokes equations [Brown and Ahlers, Phys. Fluids 20, 075101 (2008), 10.1063/1.2919806; Phys. Fluids 20, 105105 (2008), 10.1063/1.2991432]. We test the model using Rayleigh-Bénard convection experiments in a cubic container. The model predicts a mode in which the alignment of a convection roll stochastically crosses a potential barrier to switch between diagonals. We observe this mode with a measured switching rate within 30% of the prediction.

  17. Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Stompor, Radoslaw; Juszkiewicz, Roman

    1993-01-01

    We conduct a Monte Carlo simulation of the cosmic microwave background (CMB) anisotropy in the UCSB South Pole 1991 degree-scale experiment. We examine cold dark matter cosmology with large-scale structure seeded by the Harrison-Zel'dovich hierarchy of Gaussian-distributed primordial inhomogeneities normalized to the COBE-DMR measurement of large-angle CMB anisotropy. We find it statistically implausible (in the sense of low cumulative probability F lower than 5 percent, of not measuring a cosmological delta-T/T signal) that the degree-scale cosmological CMB anisotropy predicted in such models could have escaped a detection at the level of sensitivity achieved in the South Pole 1991 experiment.

  18. MUSIC for sub/millimeter astrophysics

    NASA Astrophysics Data System (ADS)

    Maloney, Philip R.; Czakon, Nicole G.; Day, Peter K.; Downes, Thomas P.; Duan, Ran; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; McHugh, Sean G.; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Schlaerth, James A.; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip; Zmuidzinas, Jonas

    2010-07-01

    MUSIC (the Multiwavelength Submillimeter kinetic Inductance Camera) is an instrument being developed for the Caltech Submillimeter Observatory by Caltech, JPL, the University of Colorado, and UCSB. MUSIC uses microwave kinetic inductance detectors (MKIDs) - superconducting micro-resonators - as photon detectors. The readout is almost entirely at room temperature and is highly multiplexed. MUSIC will have 576 spatial pixels in four bands at 850, 1100, 1300 and 2000 microns. MUSIC is scheduled for deployment at the CSO in the winter of 2010/2011. We present an overview of the camera design and readout and describe the current status of the instrument and some results from the highly successful May/June 2010 observing run at the CSO with the prototype camera, which verified the performance of the complete system (optics, antennas/filters, resonators, and readout) and produced the first simultaneous 3-color observations with any MKID camera.

  19. Thermal Analysis of Irradiation Experiments in the ATR

    SciTech Connect

    Paul Murray

    2012-09-01

    Reactor material testing in the INL's Advanced Test Reactor (ATR) involves modeling and simulation of each experiment to accurately determine the irradiation temperature. This paper describes thermal analysis of capsule experiments using gas gap temperature control and provides data on recent material tests that validate the modeling results. Static capsule experiments and lead-out capsule experiments are discussed. The source of temperature variation in capsule experiments and ways to mitigate these variations are also explained. Two examples of instrumented lead-out capsule experiments, TMIST-1 and UCSB-2, are presented. A comparison of measured and calculated temperatures is used to validate the thermal models and to ascertain the accuracy of the calculated temperature.

  20. Using observed warming to identify hazards to Mozambique maize production

    USGS Publications Warehouse

    Funk, Christopher C.; Harrison, Laura; Eilerts, Gary

    2011-01-01

    New Perspectives on Crop Yield Constraints because of Climate Change. Climate change impact assessments usually focus on changes to precipitation because most global food production is from rainfed cropping systems; however, other aspects of climate change may affect crop growth and potential yields.A recent (2011) study by the University of California, Santa Barbara (UCSB) Climate Hazards Group, determined that climate change may be affecting Mozambique's primary food crop in a usually overlooked, but potentially significant way (Harrison and others, 2011). The study focused on the direct relation between maize crop development and growing season temperature. It determined that warming during the past three decades in Mozambique may be causing more frequent crop stress and yield reductions in that country's maize crop, independent of any changes occurring in rainfall. This report summarizes the findings and conclusions of that study.

  1. DNA Gel with dynamic cross-links

    NASA Astrophysics Data System (ADS)

    Park, Chang-Young; Fygenson, Deborah; Saleh, Omar

    2014-03-01

    The mechanical properties of a living cell are strongly related to the cytoskeletal network, which is comprised of diverse protein filaments connected by cross-linking proteins, some of which are dynamic. Gels comprised of dynamic cross-linkers exhibit unique mechanical properties not seen in those using permanent cross-linkers. To investigate the effect of a dynamic cross-linker on mechanical properties of a material, we have synthesized biopolymer gels with a well-known semi-flexible biopolymer, DNA, and probed the mechanics of the system using microrheological techniques. We discuss these results in comparison to cytoskeletal systems, and seek to establish universal principles of dynamic cross-link based gels. This work was supported by the NSF-funded UCSB MRSEC program, Award No. DMR-0520415.

  2. ASAP progress and expenditure report for the month of February 1--29, 1996

    SciTech Connect

    Twogood, R.E.; Brase, J.M.; Chambers, D.H.; Mantrom, D.M.; Miller, M.G.; Newman, M.J.; Robey, H.F.; Vigars, M.

    1996-03-20

    This is the ASAP progress and expenditure report for the month of February, 1996. The individual projects` report includes the sponsoring organization, the project identification, the principal investigator, long term objectives, short term objectives, accomplishments this reporting period, identification of issues or concerns, project budget estimate for the fiscal year, and monthly actual and year to date expenditures. The research project concerns a joint US/UK program to develop a high-priority radar system based on real aperture and synthetic aperature radar. Topics being researched include airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; radar field experiments; data analysis and detection theory; program management; modeling and analysis; UCSB wave tank; stratified wave tank; and experiments in a thermo-stratified tank at the Institute of Applied Physics, Russia.

  3. [Nucleosynthesis, Rotation and Magnetism in Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars

    2004-01-01

    This is my final report on the NASA ATP grant on nucleosynthesis, rotation and magnetism in accreting neutron stars (NAG5-8658). In my last two reports, I summarized the science that I have accomplished, which covered a large range of topics. For this report, I want to point out the graduate students that were partially supported on this grant and where they are now. Andrew Cumming is an Assistant Professor of Physics at McGill University, Greg Ushomirsky is a researcher at MIT s Lincoln Laboratories, Dean Townsley is a postdoctoral researcher at Univ. of Chicago, Chris Deloye is a postdoctoral researcher at Northwestern University. The other two students, Phil Chang and Tony Piro, are still at UCSB and will be completing their PhD s in Summer 05 and Summer 06.

  4. Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS

    USGS Publications Warehouse

    Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise

    2013-01-01

    1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.

  5. Modeling and data analysis of the NASA-WSTF frictional heating apparatus - Effects of test parameters on friction coefficient

    NASA Technical Reports Server (NTRS)

    Zhu, Sheng-Hu; Stoltzfus, Joel M.; Benz, Frank J.; Yuen, Walter W.

    1988-01-01

    A theoretical model is being developed jointly by the NASA White Sands Test Facility (WSTF) and the University of California at Santa Barbara (UCSB) to analyze data generated from the WSTF frictional heating test facility. Analyses of the data generated in the first seconds of the frictional heating test are shown to be effective in determining the friction coefficient between the rubbing interfaces. Different friction coefficients for carobn steel and Monel K-500 are observed. The initial condition of the surface is shown to affect only the initial value of the friction coefficient but to have no significant influence on the average steady-state friction coefficient. Rotational speed and the formation of oxide film on the rotating surfaces are shown to have a significant effect on the friction coefficient.

  6. SeaWiFS Postlaunch Technical Report Series. Volume 11; SeaWIFS Postlaunch Calibration and Validation Analyses

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); OReilly, John E.; Maritorena, Stephane; OBrien, Margaret C.; Siegel, David A.; Toole, Dierdre; Mueller, James L.; Mitchell, B. Greg; Kahru, Mati; Chavez, Francisco P.; Strutton, P.

    2000-01-01

    Volume 11 continues the sequential presentation of postlaunch data analysis and algorithm descriptions begun in Volume 9. Chapters 1 and 2 present the OC2 (version 2) and OC4 (version 4) chlorophyll a algorithms used in the SeaWiFS data second and third reprocessings, August 1998 and May 2000, respectively. Chapter 3 describes a revision of the K(490) algorithm designed to use water-leaving radiances at 490 nm which was implemented for the third reprocessing. Finally, Chapter 4 is an analysis of in situ radiometer calibration data over several years at the University of California, Santa Barbara (UCSB) to establish the temporal consistency of their in-water optical measurements.

  7. Limits on cold dark matter cosmologies from new anisotropy bounds on the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Meinhold, Peter; Lubin, Philip; Muciaccia, Pio Francesco; Silk, Joseph

    1991-01-01

    A self-consistent method is presented for comparing theoretical predictions of and observational upper limits on CMB anisotropy. New bounds on CDM cosmologies set by the UCSB South Pole experiment on the 1 deg angular scale are presented. An upper limit of 4.0 x 10 to the -5th is placed on the rms differential temperature anisotropy to a 95 percent confidence level and a power of the test beta = 55 percent. A lower limit of about 0.6/b is placed on the density parameter of cold dark matter universes with greater than about 3 percent baryon abundance and a Hubble constant of 50 km/s/Mpc, where b is the bias factor, equal to unity only if light traces mass.

  8. Riparian restoration framework for the Upper Gila River, Arizona

    USGS Publications Warehouse

    Orr, Bruce K.; Leverich, Glen L.; Diggory, Zooey E.; Dudley, Tom L.; Hatten, James R.; Hultine, Kevin R.; Johnson, Matthew P.; Orr, Devyn A.

    2014-01-01

    This technical report summarizes the methods and results of a comprehensive riparian restoration planning effort for the Gila Valley Restoration Planning Area, an approximately 53-mile portion of the upper Gila River in Arizona (Figure 1-1). This planning effort has developed a Restoration Framework intended to deliver science-based guidance on suitable riparian restoration actions within the ecologically sensitive river corridor. The framework development was conducted by a restoration science team, led by Stillwater Sciences with contributions from researchers at the Desert Botanical Garden (DBG), Northern Arizona University (NAU), University of California at Santa Barbara (UCSB), and U.S. Geological Survey (USGS). All work was coordinated by the Gila Watershed Partnership of Arizona (GWP), whose broader Upper Gila River Project Area is depicted in Figure 1-1, with funding from the Walton Family Foundation’s Freshwater Initiative Program.

  9. Object-based representations of spatial images

    NASA Astrophysics Data System (ADS)

    Newsam, Shawn; Bhagavathy, Sitaram; Kenney, Charles; Manjunath, B. S.; Fonseca, Leila

    2001-03-01

    Object based representations of image data enable new content-related functionalities while facilitating management of large image databases. Developing such representations for multi-date and multi-spectral images is one of the objectives of the second phase of the Alexandria Digital Library (ADL) project at UCSB. Image segmentation and image registration are two of the main issues that are to be addressed in creating localized image representations. We present in this paper some of the recent and current work by the ADL's image processing group on robust image segmentation, registration, and the use of image texture for content representation. Built upon these technologies are techniques for managing large repositories of data. A texture thesaurus assists in creating a semantic classification of image regions. An object-based representation is proposed to facilitate data storage, retrieval, analysis, and navigation.

  10. Dad's in the Garage: Santa Barbara Physicists in the Long 1970s

    NASA Astrophysics Data System (ADS)

    Mody, Cyrus

    2013-03-01

    American physicists faced many challenges in the 1970s: declining research budgets; public skepticism of scientific authority; declining student enrollments; and pressure to shift to topics such as biomedicine, environmental remediation, alternative energy, public housing and transport, and disability technologies. This paper examines the responses to these challenges of a small group of Santa Barbara physicists. While this group is not representative of the American physics profession, the success and failure of their responses to changed conditions tells us something about how American physicists got through the 1970s, and about the origins of some features of American physics today. The three physicists examined here are Philip Wyatt, David Phillips, and Virgil Elings. In the late `60s, Wyatt left a defense think tank to found an instrumentation firm. The Santa Barbara oil spill and other factors pushed that firm toward civilian markets in biomedicine and pollution measurement. Phillips joined Wyatt's firm from UCSB, while also founding his own company, largely to sell electronic devices for parapsychology. Phillips was also the junior partner in a master's of scientific instrumentation degree curriculum founded by Elings in order to save UCSB Physics' graduate program. Through the MSI program, Elings moved into biomedical research and became a serial entrepreneur. By the 1990s, Wyatt, Phillips, and Elings' turn toward academic entrepreneurship, dual military-civilian markets for physics start-ups, and interdisciplinary collaborations between physicists and life scientists were no longer unusual. Together, their journey through the `70s shows how varied the physics' profession's response to crisis was, and how much it pivoted on new interactions between university and industry.

  11. A Web-Based Borehole Strong-motion Data Dissemination Portal

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Seale, S.; Ratzesberger, H.; Civilini, F.; Vaughan, N.

    2009-12-01

    Accelerometric and pore pressure data from instrumented boreholes in southern California are producing very interesting observations from a large data set that includes 100’s of earthquake observations each month. While the majority of these are very small events, they provide the control data that represents the linear behavior of the site. In addition, the largest motions recorded to date, ~10%g, are getting to the regime where nonlinear soil behavior effects become important. In order to make these data more accessible to the seismology and earthquake engineering research community, software development of a web-based data dissemination portal has taken place under the George E. Brown Jr., Network for Earthquake Engineering (NEES) program. This development includes processing and analysis tools, and web-based data dissemination available through the NEES@UCSB website [http://nees.ucsb.edu]. Of interest to the research community are the tools developed to provide search, waveform viewing, and download capabilities for access to data acquired through the various borehole-monitoring programs at UC Santa Barbara. Researchers interested in obtaining data recorded at the various field sites can use the map-based search tool to select a particular station and instrument(s). The user is then provided another map-based interface that allows the user to select events with choice of magnitude, distance, and time period. Once the user has selected an event of interest, the ability to view the data is provided, along with some waveform parameters like peak velocity and acceleration. The records can then be downloaded in a number of common formats, including MSEED, SAC, and an ASCII text-based real-time data viewer (RDV) format. The last format allows the data to be viewed in the NEES RDV tool, a platform independent JAVA program developed to display both real-time streaming data, or playback data that has been downloaded through the web-based event search tool.

  12. Teaching Introductory Mineralogy With the GeoWall

    NASA Astrophysics Data System (ADS)

    Anderson, C. D.; Haymon, R. M.

    2003-12-01

    Mineralogy, like many topics in Earth Sciences, contains inherently three-dimensional topics that are difficult to teach. Concepts such as crystal symmetry and forms, Miller indices, the polymerization of silica tetrahedra and resulting structures of silicate mineral groups, and the interaction of light and minerals are particularly difficult. Two-dimensional diagrams are limited in their effectiveness, and physical models, while effective, are expensive and do not work as well in large class settings. The GeoWall system brings the effectiveness of physical models to the large classroom. In Fall 2003, we will integrate the GeoWall into our introductory mineralogy classes at UCSB using a combination of commercial software, atomic structure models available on the web, and custom content created in-house. The commercial software SHAPE (www.shapesoftware.com) allows users to build and display crystal shapes and their symmetry. Though not designed for the GeoWall, the software's stereopair display mode works perfectly on the system. Using the Chime web browser plug-in (www.mdl.com), computer models of silicate minerals available from the Virtual Museum of Minerals and Molecules (www.soils.umn.eduvirtual_museum) provide an interactive display of silicate mineral structure that illustrates the tetrahedral framework. Again, while not developed for the GeoWall, the Chime plug-in works seamlessly with the GeoWall hardware. 3-D GeoWall images that display light paths through minerals, and reveal relationships between crystal symmetry and optical indicatrix properties, have been developed in-house using a combination of SHAPE and 3D modeling software. The 3-D GeoWall images should convey in an instant these difficult concepts that students historically have struggled to visualize. Initial assessment of the GeoWall's effectiveness as a mineralogy teaching aid at UCSB in Fall 2003 will come from the instructor's impressions and by comparing test scores with classes from

  13. Cooperation Among Theorem Provers

    NASA Technical Reports Server (NTRS)

    Waldinger, Richard J.

    1998-01-01

    This is a final report, which supports NASA's PECSEE (Persistent Cognizant Software Engineering Environment) effort and complements the Kestrel Institute project "Inference System Integration via Logic Morphism". The ultimate purpose of the project is to develop a superior logical inference mechanism by combining the diverse abilities of multiple cooperating theorem provers. In many years of research, a number of powerful theorem-proving systems have arisen with differing capabilities and strengths. Resolution theorem provers (such as Kestrel's KITP or SRI's, SNARK) deal with first-order logic with equality but not the principle of mathematical induction. The Boyer-Moore theorem prover excels at proof by induction but cannot deal with full first-order logic. Both are highly automated but cannot accept user guidance easily. The PVS system (from SRI) in only automatic within decidable theories, but it has well-designed interactive capabilities: furthermore, it includes higher-order logic, not just first-order logic. The NuPRL system from Cornell University and the STeP system from Stanford University have facilities for constructive logic and temporal logic, respectively - both are interactive. It is often suggested - for example, in the anonymous "QED Manifesto"-that we should pool the resources of all these theorem provers into a single system, so that the strengths of one can compensate for the weaknesses of others, and so that effort will not be duplicated. However, there is no straightforward way of doing this, because each system relies on its own language and logic for its success. Thus. SNARK uses ordinary first-order logic with equality, PVS uses higher-order logic. and NuPRL uses constructive logic. The purpose of this project, and the companion project at Kestrel, has been to use the category-theoretic notion of logic morphism to combine systems with different logics and languages. Kestrel's SPECWARE system has been the vehicle for the implementation.

  14. Using Earth Data in an Introductory Oceanography Course

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2002-12-01

    Activities that engage students in the use and interpretation of real earth data provide an effective way of promoting an understanding of the science process. In UCSB's introductory Oceanography course, major goals are to improve student understanding of how science works and how to interpret science claims in the popular media. Activities are modeled after those of practicing scientists. These include: a) posing a solvable problem, b) choosing and acquiring relevant data, c) describing the data, d) interpreting the data, e) giving talks to peers, and f) publishing and reviewing findings. Each of these activities poses pedagogical challenges that must be addressed in carefully sequenced course assignments that build upon each other, and respond to a variety of learning styles. The use of earth data in education also presents significant challenges in creating effective data acquisition and display tools. However, only item b, above, is pertinent to these tools. The other items present similar challenges. During the course, learners must acquire enough subject knowledge to successfully interpret the data. They must understand the theory or model they are testing, how the relevant data can be used to test the model, and how to illustrate and present their findings orally and in writing. Some of the assignments that support this are: online homework, online subject area mini-quizzes (randomly created from a database of questions), "questions of the day" in lecture, online short answer thought questions, lab section guided mini-investigations, lab section group presentations, short writing exercises, and 2 longer writing assignments. Students rate the writing assignments as the most effective course component that contributes to their learning. The writing assignments focus student effort and also produce a product that we can study in an attempt to measure student learning. Prof. Gregory Kelly and Prof. Charles Bazerman (UCSB Graduate School of Education) are

  15. Land Surface Modeling Applications for Famine Early Warning

    NASA Astrophysics Data System (ADS)

    McNally, A.; Verdin, J. P.; Peters-Lidard, C. D.; Arsenault, K. R.; Wang, S.; Kumar, S.; Shukla, S.; Funk, C. C.; Pervez, M. S.; Fall, G. M.; Karsten, L. R.

    2015-12-01

    AGU 2015 Fall Meeting Session ID#: 7598 Remote Sensing Applications for Water Resources Management Land Surface Modeling Applications for Famine Early Warning James Verdin, USGS EROS Christa Peters-Lidard, NASA GSFC Amy McNally, NASA GSFC, UMD/ESSIC Kristi Arsenault, NASA GSFC, SAIC Shugong Wang, NASA GSFC, SAIC Sujay Kumar, NASA GSFC, SAIC Shrad Shukla, UCSB Chris Funk, USGS EROS Greg Fall, NOAA Logan Karsten, NOAA, UCAR Famine early warning has traditionally required close monitoring of agro-climatological conditions, putting them in historical context, and projecting them forward to anticipate end-of-season outcomes. In recent years, it has become necessary to factor in the effects of a changing climate as well. There has also been a growing appreciation of the linkage between food security and water availability. In 2009, Famine Early Warning Systems Network (FEWS NET) science partners began developing land surface modeling (LSM) applications to address these needs. With support from the NASA Applied Sciences Program, an instance of the Land Information System (LIS) was developed to specifically support FEWS NET. A simple crop water balance model (GeoWRSI) traditionally used by FEWS NET took its place alongside the Noah land surface model and the latest version of the Variable Infiltration Capacity (VIC) model, and LIS data readers were developed for FEWS NET precipitation forcings (NOAA's RFE and USGS/UCSB's CHIRPS). The resulting system was successfully used to monitor and project soil moisture conditions in the Horn of Africa, foretelling poor crop outcomes in the OND 2013 and MAM 2014 seasons. In parallel, NOAA created another instance of LIS to monitor snow water resources in Afghanistan, which are an early indicator of water availability for irrigation and crop production. These successes have been followed by investment in LSM implementations to track and project water availability in Sub-Saharan Africa and Yemen, work that is now underway. Adoption of

  16. Octonionic black holes

    NASA Astrophysics Data System (ADS)

    Bossard, Guillaume

    2012-05-01

    Using algebraic tools inspired by the study of nilpotent orbits in simple Lie algebras, we obtain a large class of solutions describing interacting non-BPS black holes in {N} = 8 supergravity, which depend on 44 harmonic functions. For this purpose, we consider a truncation {E_{{{6}({6})}}}/S{p_{{c}}}( {8,{R}} ) subset {E_{{{8}({8})}}}/{{Spin}}_{{c}}^{ * }( {16} ) of the non-linear sigma model describing stationary solutions of the theory, which permits a reduction of algebraic computations to the multiplication of 27 by 27 matrices. The lift to {N} = 8 supergravity is then carried out without loss of information by using a pertinent representation of the moduli parametrizing E7(7)/SUc (8) in terms of complex valued Hermitian matrices over the split octonions, which generalise the projective coordinates of exceptional special K¨ahler manifolds. We extract the electromagnetic charges, mass and angular momenta of the solutions, and exhibit the duality invariance of the black holes distance separations. We discuss in particular a new type of interaction which appears when interacting non-BPS black holes are not aligned. Finally we will explain the possible generalisations toward the description of the most general stationary black hole solutions of {N} = 8 supergravity.

  17. Noise strength in shaken granular media near onset

    NASA Astrophysics Data System (ADS)

    Kreft, Jennifer

    2005-11-01

    The effects of fluctuations in Rayleigh-Benard (RB) convection near the onset of long range order have been found to be described well by the stochastic Swift-Hohenberg (SH) equation with a noise strength proportional to kT [J. Oh and G. Ahlers, Phys. Rev. Lett. 91, 094501, (2003)]. Similar behavior has been found in vertically oscillated granular material where the thermal fluctuations are negligible [D. I. Goldman, et al., Phys. Rev. Lett.92, 174302, (2004)]. We conjecture that fluctuations in the granular system arise from the small number of particles per wavelength, typically of order 10, in contrast to the 10^6 particles per wavelength in RB convection. Here, we investigate the onset of patterns in an event-driven molecular dynamics simulation of vertically oscillated frictional hard spheres, and we use the SH equation to quantify the strength of the noise for different wavelengths. We show that the noise decreases as the wavelength increases, but is independent of layer depth, suggesting that only the fluidized grains on the surface of the bulk contribute.

  18. Onset of Thermal Convection in a Homeotropically Aligned Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Thomas, Leif N.; Ahlers, Guenter; Bajaj, Kapil M. S.

    1996-11-01

    For a homeotropically aligned nematic liquid crystal in a vertical magnetic field and heated from below, it was predicted^1 that the bifurcation from conduction to convection is a subcritical Hopf bifurcation. Using 4-n-pentyl-4'-cyanobiphenyl (5CB) at a mean temperature of 25.6^oC in a cylindrical cell of aspect ratio (radius/height) Γ=10.6, we observed travelling and standing waves during the transient from conduction to convection. We measured the Hopf frequency ω c and the critical wavenumber kc at different vertical magnetic field strengths in the range 8 alt h ≡ H/ HF alt 17 (HF = 20.1 Gauss is the Fréedericksz field). Over this field range, our results for ωc agree within their scatter of about 2% with the prediction, but our results for kc are systematically lower by about 5%. After the transients, the fully developed flow has a very slow chaotic time dependence which is unrelated to the Hopf frequency.^2 Supported by U.S. Department of Energy Grant DE-FG03-87ER13738. ^1Q. Feng, W. Decker, W. Pesch, and L. Kramer, J. Phys. France II 2, 1303 (1992). ^2G. Ahlers, in Pattern Formation in Liquid Crystals, edited by A. Buka and L. Kramer (Springer, 1996).

  19. Rayleigh-Bénard convection in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Werner, Pesch

    2000-03-01

    Rayleigh-Bénard convection (RBC) in thin layers of nematic liquid crystals (LCs) heated from below or even from above, leads to a rich variety of new phenomena not found in isotropic fluids. The orientational degrees of freedom of the rod-like molecules of the LCs are of crucial importance as in the electro-convection in these materials. For instance a new type of convection rolls (``abnormal rolls''), due to a spontaneous symmetry breaking of the orientational ordering, has recently motivated considerable activities. A system of coupled Ginzburg-Landau-type equations describes very well the bifurcation sequences near onset [1]. LCs also offer a convenient opportunity to study convection in the presence of a first-order phase change, which is relevant in the earth mantle [2]. It will be demonstrated that theory can scope sucessfully also with this case. [1] E. Plaut and W. Pesch, Phys. Rev. E, 59, 1247 (1999) and references therein [2] S. Sakurai, A. Tschammer, W. Pesch and G. Ahlers, Phys. Rev. E, 60, 539 (1999)

  20. Topics in topological and holomorphic quantum field theory

    NASA Astrophysics Data System (ADS)

    Vyas, Ketan

    We investigate topological quantum field theories (TQFTs) in two, three, and four dimensions, as well as holomorphic quantum field theories (HQFTs) in four dimensions. After a brief overview of the two-dimensional (gauged) A and B models and the corresponding the category of branes, we construct analogous three-dimensional (gauged) A and B models and discuss the two-category of boundary conditions. Compactification allows us to identify the category of line operators in the three-dimensional A and B models with the category of branes in the corresponding two-dimensional A and B models. Furthermore, we use compactification to identify the two-category of surface operators in the four-dimensional GL theory at t = 1 and t = i with the two-category of boundary conditions in the corresponding three-dimensional A and B model, respectively. We construct a four-dimensional HQFT related to N = 1 supersymmetric quantum chromodynamics (SQCD) with gauge group SU(2) and two flavors, as well as a four-dimensional HQFT related to the Seiberg dual chiral model. On closed K ̈ahler surfaces with h^(2,0) > 0, we show that the correlation functions of holomorphic SQCD formally compute certain Donaldson invariants. For simply-connected elliptic surfaces (and their blow-ups), we show that the corresponding correlation functions in the holomorphic chiral model explicitly compute these Donaldson invariants.

  1. From Liquid Helium to Granular Materials

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.

    2016-11-01

    This article provides a brief history of work that I have either carried out with Horst Meyer, or that was connected in some way with experiences reaching back to the laboratory known as LTM for low temperature [physics] Meyer, at Duke University. It is not intended as a complete review of all relevant work, but rather to hit highlights. My work with Horst started with studies of critical phenomena in liquid helium. This system provided an extremely rich and diverse testing ground for then newly emerging theories of static and dynamic critical phenomena. A key aspect of the experimental work with Horst was high-precision measurements of temperature and pressure. The ability to measure thermal properties with exceptional precision was at the core of this work. It also provided a natural springboard for entirely different investigations of Rayleigh-Bénard convection, which had just been initiated by Guenter Ahlers. My postdoc with Guenter provided a whole new set of experiences involving convection, dynamical instabilities, and chaos, where again the special properties, measurement techniques, and creative approaches to research associated with liquid helium were critical. In fact, later, knowledge of these techniques allowed me to start a whole new research direction in granular materials, which is a primary focus of my current research.

  2. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection.

    PubMed

    Oprea, Iuliana; Triandaf, Ioana; Dangelmayr, Gerhard; Schwartz, Ira B

    2007-06-01

    It has been suggested by experimentalists that a weakly nonlinear analysis of the recently introduced equations of motion for the nematic electroconvection by M. Treiber and L. Kramer [Phys. Rev. E 58, 1973 (1998)] has the potential to reproduce the dynamics of the zigzag-type extended spatiotemporal chaos and localized solutions observed near onset in experiments [M. Dennin, D. S. Cannell, and G. Ahlers, Phys. Rev. E 57, 638 (1998); J. T. Gleeson (private communication)]. In this paper, we study a complex spatiotemporal pattern, identified as spatiotemporal chaos, that bifurcates at the onset from a spatially uniform solution of a system of globally coupled complex Ginzburg-Landau equations governing the weakly nonlinear evolution of four traveling wave envelopes. The Ginzburg-Landau system can be derived directly from the weak electrolyte model for electroconvection in nematic liquid crystals when the primary instability is a Hopf bifurcation to oblique traveling rolls. The chaotic nature of the pattern and the resemblance to the observed experimental spatiotemporal chaos in the electroconvection of nematic liquid crystals are confirmed through a combination of techniques including the Karhunen-Loeve decomposition, time-series analysis of the amplitudes of the dominant modes, statistical descriptions, and normal form theory, showing good agreement between theory and experiments.

  3. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    NASA Technical Reports Server (NTRS)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  4. Bermuda Bio Optics Project. Chapter 14

    NASA Technical Reports Server (NTRS)

    Nelson, Norm

    2003-01-01

    The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda (N. Nelson, P.I.). The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.

  5. Tsunami source parameters estimated from slip distribution and their relation to tsunami intensity

    NASA Astrophysics Data System (ADS)

    Bolshakova, Anna; Nosov, Mikhail; Kolesov, Sergey

    2015-04-01

    Estimation of the level of tsunami hazard on the basis of earthquake moment magnitude often fails. The most important reason for this is that tsunamis are related to earthquakes in a complex and ambiguous way. In order to reveal a measure of tsunamigenic potential of an earthquake that would be better than moment magnitude of earthquake we introduce a set of tsunami source parameters that can be calculated from co-seismic ocean-bottom deformation and bathymetry. We consider more than two hundred ocean-bottom earthquakes (1923-2014) those for which detailed slip distribution data (Finite Fault Model) are available on USGS, UCSB, Caltech, and eQuake-RC sites. Making use of the Okada formulae the vector fields of co-seismic deformation of ocean bottom are estimated from the slip distribution data. Taking into account bathymetry (GEBCO_08) we determine tsunami source parameters such as double amplitude of bottom deformation, displaced water volume, potential energy of initial elevation, etc. The tsunami source parameters are examined as a function of earthquake moment magnitude. The contribution of horisontal component of ocean bottom deformation to tsunami generation is investigated. We analyse the Soloviev-Imamura tsunami intensity as a function of tsunami source parameters. The possibility of usage of tsunami source parameters instead of moment magnitude in tsunami warning is discussed. This work was supported by the Russian Foundation for Basic Research, project 14-05-31295

  6. FCRD Milestone Report: M21AF050901

    SciTech Connect

    Hoelzer, David T; Sokolov, Mikhail A; Byun, Thak Sang; Odette, George R.; Klingensmith, Doug; Gragg, David; Stergar, Eric; Fields, Kirk

    2011-09-01

    The objective of this study was to perform mechanical testing on large scale heats of the advanced ODS 14YWT alloy to investigate the effects of processing parameters on mechanical properties. Mechanical properties tests were conducted on two heats of the advanced ODS 14YWT ferritic alloy: the 14YWT-SM11 was produced by extrusion at ORNL and OW4 was produced by HIP at UCSB. The 14YWT-SM11 showed very high tensile strength compared to OW4, but showed less ductility as a result. The fracture toughness transition temperature of 14YWT-SM11 was determined in two orientations and showed T{sub 0} = 48 C in the favorably strong L-T direction while shifting by 63 C to T{sub 0} = 111 C in the weaker T-L direction. The fracture toughness transition temperature for OW4 was not determined but appeared to be within the range observed for 14YWT-SM11. The fracture toughness of 14YWT-SM11 at room temperature was 86.8 MPa{radical}m and 93.1 MPa{radical}m, which was much higher than that of OW4 (27.4 MPa{radical}m). The strain rate jump tests conducted on OW4 indicated that the creep properties were similar to MA957 at 750 C.

  7. Integrating observation and statistical forecasts over sub-Saharan Africa to support Famine Early Warning

    USGS Publications Warehouse

    Funk, C.; Verdin, J.P.; Husak, G.

    2007-01-01

    Famine early warning in Africa presents unique challenges and rewards. Hydrologic extremes must be tracked and anticipated over complex and changing climate regimes. The successful anticipation and interpretation of hydrologic shocks can initiate effective government response, saving lives and softening the impacts of droughts and floods. While both monitoring and forecast technologies continue to advance, discontinuities between monitoring and forecast systems inhibit effective decision making. Monitoring systems typically rely on high resolution satellite remote-sensed normalized difference vegetation index (NDVI) and rainfall imagery. Forecast systems provide information on a variety of scales and formats. Non-meteorologists are often unable or unwilling to connect the dots between these disparate sources of information. To mitigate these problem researchers at UCSB's Climate Hazard Group, NASA GIMMS and USGS/EROS are implementing a NASA-funded integrated decision support system that combines the monitoring of precipitation and NDVI with statistical one-to-three month forecasts. We present the monitoring/forecast system, assess its accuracy, and demonstrate its application in food insecure sub-Saharan Africa.

  8. Thermalhydraulic aspects of decay heat removal by natural circulation in fast reactor systems

    SciTech Connect

    Roy, C.M.; Hetsroni, G.; Banerjee, S.

    1990-01-01

    Natural convection in enclosures have been studied numerically to provide insight into the scaling laws existing for removal of decay heat in Liquid Metal Fast Reactors (LMFR). Specifically, 3-D simulations have been carried out for natural circulation in a cylinder with small aspect ratio (of the order of 0.5). These results have been compared to the results of an experiment conducted by UCSB, in collaboration with GE, to provide benchmark data for code validation. Parametric studies have been conducted to establish the validity of a 3-D Finite difference code that uses body-fitted grids for simulations of complex geometries. Further, numerical simulations have been carried out to demonstrate the importance of 3-D computer codes as tools in the design and scale-up of prototype LMFRs. It has been shown that the geometry of the passive safety systems is key to safe operation of LMFRs under shutdown conditions. The key phenomena that occur in such situations have bee studied and the available experimental studies have been identified. The future direction for modeling of natural convection recirculating flows in confined enclosures has been proposed. 31 refs.

  9. Thermalhydraulic aspects of decay heat removal by natural circulation in fast reactor systems. Final report

    SciTech Connect

    Roy, C.M.; Hetsroni, G.; Banerjee, S.

    1990-12-31

    Natural convection in enclosures have been studied numerically to provide insight into the scaling laws existing for removal of decay heat in Liquid Metal Fast Reactors (LMFR). Specifically, 3-D simulations have been carried out for natural circulation in a cylinder with small aspect ratio (of the order of 0.5). These results have been compared to the results of an experiment conducted by UCSB, in collaboration with GE, to provide benchmark data for code validation. Parametric studies have been conducted to establish the validity of a 3-D Finite difference code that uses body-fitted grids for simulations of complex geometries. Further, numerical simulations have been carried out to demonstrate the importance of 3-D computer codes as tools in the design and scale-up of prototype LMFRs. It has been shown that the geometry of the passive safety systems is key to safe operation of LMFRs under shutdown conditions. The key phenomena that occur in such situations have bee studied and the available experimental studies have been identified. The future direction for modeling of natural convection recirculating flows in confined enclosures has been proposed. 31 refs.

  10. Wind turbines mounted on existing structures in windy areas

    SciTech Connect

    Manalis, M.S.; Smith, D.R.

    1995-12-31

    Mel Manalis and Jim Davidson of the Environmental Studies Program at UCSB have done a wind energy study for the California Department of Transportation (Caltrans). Caltrans has control of large areas in California and uses significant amounts of electricity for industrial, commercial, and highway illumination uses, and would like to use as much environmentally sustainable energy as possible. A particularly promising result of the study was the wind resource found to exist under the Antioch Highway Bridge from Solano to Contra Costa counties over the Sacramento River, just downwind (east) of the wind power plants built by Kenetech Windpower for PG&E and the Sacramento Municipal Utility District. Meteorological monitoring has shown the existing bridge structure tends to concentrate the wind flow just under the bridge. In addition, if small wind turbines (in the range of 10 kW) could be suspended from the bridge, the savings in tower costs could result in competitive costs of energy with a short payback time to Caltrans.

  11. The Background Emission Anisotropy Scanning Telescope (BEAST)

    NASA Astrophysics Data System (ADS)

    Seiffert, M.

    1996-12-01

    Since 1988 the UCSB Cosmology Group has performed a number of measurements of the degree scale structure in the Cosmic Background Radiation. These include 3 South Pole expeditions in 1989, 91 and 94. and 8 balloon flights using SIS, HEMTs and bolometer based detectors. We will present a summary of these measurements focusing onthe recent results. In addition, we will describe the recent flight of HACME, a balloon- borne experiment to map CMB anisotropies with 0.75 degree angular resolution over several hundred square degrees. This experiment is a prototype for our next generation CMB experiment, the Background Emission Anisotropy Scanning Telescope (BEAST). BEAST will feature a 2 m diameter carbon fiber composite primary mirror for high angular resolution and a sensitive array of ultra-low noise HEMT amplifiers at 30, 40, and 90 GHz. BEAST is designed for an Antarctic long duration balloon flight allowing an observing time of order two weeks. This experiment will provide an unprecedented combination of sensitivty and angular resolution across a significant region of sky.

  12. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  13. The Bermuda BioOptics Project (BBOP) Years 9-11

    NASA Technical Reports Server (NTRS)

    Nelson, Norm

    2003-01-01

    The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle. This final report addresses specific research activities, research results, and lists of presentations and papers submitted for publication.

  14. The Bermuda BioOptics Project (BBOP) Years 9-11

    NASA Technical Reports Server (NTRS)

    Maritorena, S.; Siegel, D. A.; Nelson, Norm B.

    2004-01-01

    The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.

  15. Heterogeneous sensor networks: a bio-inspired overlay architecture

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Klein, Daniel; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2010-04-01

    Teledyne Scientific Company, the University of California at Santa Barbara (UCSB) and the Army Research Lab are developing technologies for automated data exfiltration from heterogeneous sensor networks through the Institute for Collaborative Biotechnologies (ICB). Unmanned air vehicles (UAV) provide an effective means to autonomously collect data from unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous data-driven collection routes. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data across heterogeneous sensors. A fast and accurate method has been developed for routing UAVs and localizing an event by fusing data from a sparse number of UGSs; it leverages a bio-inspired technique based on chemotaxis or the motion of bacteria seeking nutrients in their environment. The system was implemented and successfully tested using a high level simulation environment using a flight simulator to emulate a UAV. A field test was also conducted in November 2009 at Camp Roberts, CA using a UAV provided by AeroMech Engineering. The field test results showed that the system can detect and locate the source of an acoustic event with an accuracy of about 3 meters average circular error.

  16. The Bermuda Bio-Optics Program (BBOP). Chapter 16

    NASA Technical Reports Server (NTRS)

    Siegel, David A.

    2001-01-01

    The Bermuda Bio-Optics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the US JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux at and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution Advanced Very High Resolution Radiometer (AVHRR) and Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.

  17. T-shaped emitter metal heterojunction bipolar transistors for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Fung, Andy; Samoska, Lorene; Velebir, Jim; Siege, Peter; Rodwell, Mark; Paidi, Vamsi; Griffth, Zach; Urteaga, Miguel; Malik, Roger

    2004-01-01

    We report on the development of submillimeter wave transistors at JPL. The goal of the effort is to produce advance-reliable high frequency and high power amplifiers, voltage controlled oscillators, active multipliers, and high-speed mixed-signal circuits for space borne applications. The technology in development to achieve this is based on the Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT). The HBT is well suited for high speed, high power and uniform (across wafer) performance, due to the ability to tailor the material structure that electrons traverse through by well-controlled epitaxial growth methods. InP with its compatible lattice matched alloys such as indium gallium arsenide (InGaAs) and indium aluminium arsenide (InAlAs) provides for high electron velocities and high voltage breakdown capabilities. The epitaxial methods for this material system are fairly mature, however the implementation of high performance and reliable transistors are still under development by many laboratories. Our most recently fabricated, second generation mesa HBTs at JPL have extrapolated current gain cutoff frequency (FJ of 142GHz and power gain cutoff frequency (Fm,) of approximately 160GHz. This represents a 13% and 33% improvement of Ft and F, respectively, compared to the first generation mesa HBTs [l]. Analysis based on the University of California, Santa Barbara (UCSB) device model, RF device characteristics can be significantly improved by reducing base contact resistance and base metal contact width. We will describe our effort towards increasing transistor performance and yield.

  18. Intercampus institute for research at particle accelerators. Final report, March 15, 1992--September 30, 1995

    SciTech Connect

    1997-09-22

    This is the final report to the DOE for the Intercampus Institute for Research at Particle Accelerators, or IIRPA, at least for the San Diego branch. Over the years that DOE supported IIRPA, we were told that yearly reports (and the final report) were not necessary because the previous year`s summary in our annual request for funds constituted those reports. Therefore, it has taken some effort, and a corresponding long time, to put something together, after the fact. The IIRPA was born as an idea that arose during discussions at the 1974 PEP summer study, and began to be funded by DoE during the early stages of PEP detector design and construction. The intent was for the members of the Institute to be responsible for the PEP-9 Facility; all of the PEP experiments were supposed to be facilities, rather than just experimental setups for a particular group or research goal. IIRPA was approved as a Multicampus Research Unit (MRU) in 1977 by the University of California, and it was active on the UCD, UCSB and UCSD campuses for 10 years. This report concentrates on the period of time when the Directorship of IIRPA was once again at the San Diego campus, 1989 to 1995. The collection of yearly reports consisting of research in different areas of particle physics, make up this report in the appendices.

  19. Influence of phonon emission on intersubband lifetimes in wide GaAs/AlGaAs and Si/SiGe quantum wells

    SciTech Connect

    Murdin, B.N.; Pidgeon, C.R.; Lee, S.C.

    1995-12-31

    We have previously used the picosecond far-infrared free electron laser FELIX, at Rijnhuizen, to make the first direct excite-probe determination of the intersubband relaxation rate in wide GaAs/AlGaAs quantum wells with the subband separation smaller than the optical phonon energy. This measurement yielded short (40ps) lifetimes while acoustic phonon emission occurs on a 200ps scale. This is also in contrast with, among others, saturation measurements of swide wells with the UCSB FEL which gave lifetimes of 600ps. We discuss here the interpretation of the range of published results by calculation of the LO-phonon scattering rate, including the effects of finite electron temperature, T{sub e}. We have shown that relaxation can be dominated by LO-phonon emission even in wide wells, through the high energy tail of the distribution. The rate is very sensitive to T{sub e} between 30-70K, and also to carrier concentration, making it possible to account for the wide variety of published results with a single mechanism. We have extended our measurements to wide Si/SiGe quantum Wells, and find similarly short times (20-30ps). However, in non-polar materials such as SiGe the deformation potential scattering is much weaker and acoustic phonon emission (order 10ps in n-silicon) is expected to dominate.

  20. Hybrid silicon free-space source with integrated beam steering

    NASA Astrophysics Data System (ADS)

    Doylend, J. K.; Heck, M. J. R.; Bovington, J. T.; Peters, J. D.; Davenport, M. L.; Coldren, L. A.; Bowers, J. E.

    2013-02-01

    Free-space beam steering using optical phase arrays are desirable as a means of implementing Light Detection and Ranging (LIDAR) and free-space communication links without the need for moving parts, thus alleviating vulnerabilities due to vibrations and inertial forces. Implementing such an approach in silicon photonic integrated circuits is particularly desirable in order to take advantage of established CMOS processing techniques while reducing both device size and packaging complexity. In this work we demonstrate a free-space diode laser together with beam steering implemented on-chip in a silicon photonic circuit. A waveguide phased array, surface gratings, a hybrid III-V/silicon laser and an array of hybrid III/V silicon amplifiers were fabricated on-chip in order to achieve a fully integrated steerable free-space optical source with no external optical inputs, thus eliminating the need for fiber coupling altogether. The chip was fabricated using a modified version of the hybrid silicon process developed at UCSB, with modifications in order to incorporate diodes within the waveguide layer as well as within the III-V gain layer. Beam steering across a 12° field of view with +/-0.3° accuracy and 1.8°x0.6° beam width was achieved, with background peaks suppressed 7 dB relative to the main lobe within the field of view for arbitrarily chosen beam directions.

  1. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2003-10-30

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  2. FINAL TECHNICAL REPORT to the DOE NABIR PROGRAM

    SciTech Connect

    Holden, Patricia A

    2009-08-31

    This project was funded to Dr. Mary Neu (LANL) and to Dr. Patricia Holden (UCSB) during the period 10/01/04-09/30/07 with the overall objective of, as stated in the proposal, to investigate how key reactions, which are known to affect major redox-active transition metals such as Fe and Mn, can affect Pu speciation and environmental mobility. The goals included investigating a) bacterial accumulation and immobilization of Pu species by Pseudomonas putida biofilm formation, and b) bacterial mineralization and immobilization via direct enzymatic and indirect biogeochemical reduction of Pu species by Geobacter metallireducens. Through a combination of aqueous chemical, radioanalytical, spectroscopic and microscopic analyses, Pu speciation and solution/solid phase distributions were to be characterized. The combination of biotransformation and biogeochemical research was aimed at filling significant gaps in the scientific basis for monitored natural attenuation and in situ stabilization of widespread and problematic Pu contamination, as well as providing immediately useful data to modeling and risk assessment efforts.

  3. Aerosol Characterization and New Instrumentation for Better Understanding Snow Radiative Properties

    NASA Astrophysics Data System (ADS)

    Beres, N. D.

    2015-12-01

    Snow albedo is determined by snowpack thickness and grain size, but also affected by contamination with light-absorbing, microscopic (e.g., mineral dust, combustion aerosols, bio-aerosols) and macroscopic (e.g., microalgae, plant debris, sand, organisms) compounds. Most currently available instruments for measuring snow albedo utilize the natural, downward flux of solar radiation and the reflected upward flux. This reliance on solar radiation (and, thus, large zenith angles and clear-sky conditions) leads to severe constraints, preventing characterization of detailed diurnal snow albedo cycles. Here, we describe instrumentation and methodologies to address these limitations with the development and deployment of new snow radiation sensors for measuring surface spectral and in-snow radiative properties. This novel instrumentation will be tested at the CRREL/UCSB Eastern Sierra (CUES) Snow Study Site at Mammoth Mountain, which is extensively instrumented for characterizing snow properties including snow albedo and surface morphology. However, it has been lacking instrumentation for the characterization of aerosols that can be deposited on the snow surface through dry and wet deposition. Currently, we are installing aerosol instrumentation at the CUES site, which are also described. This includes instruments for the multi-wavelength measurement of aerosol scattering and absorption coefficients and for the characterization of aerosol size distribution. Knowledge of aerosol concentration and physical and optical properties will allow for the study of aerosol deposition and modification of snow albedo and for establishing an aerosol climatology for the CUES site.

  4. Aesthetic Physics Education: A Symmetry Based, Physics and Fine Arts Curriculum

    NASA Astrophysics Data System (ADS)

    van der Veen, Jatila; Lubin, P. M.; Cook-Gumperz, J.; Raley, J. D.; Mazur, E.

    2006-12-01

    Physics education research in the past two decades has focused almost entirely on pedagogical methods, but the curriculum content remains unchanged. In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to “imagine new realities” is correlated with what are traditionally considered non-scientific skills, including imagination and creativity, qualities which are usually associated with fine arts. In view of the new developments in physics of the 21st Century, the importance of developing creativity and imagination through education is gaining recognition. We are investigating the effectiveness of teaching introductory physics from the viewpoint of symmetry, including the foundations of General Relativity and modern cosmology, without the need for the full tensor treatment. We will pilot a new course at UCSB in Winter Quarter, 2007 entitled Symmetry and Aesthetics in Introductory Physics. Our pedagogical model is based on three premises: that the introductory curriculum needs to be modernized; that mathematics should be presented as a language; and that theoretical physics has, at its core, a great deal in common with music, art, and dance. In this talk we will present the contents of our new course, and the means by which we plan to evaluate it in comparison to “regular” introductory courses. It is our hope that this modernized and integrated approach to introductory physics can also serve as a course for future teachers of primary and secondary school. This work is supported by NASA grant #20070268 and the Planck Explorer Mission.

  5. Collective dynamics of lysozyme in water: terahertz absorption spectroscopy and comparison with theory.

    PubMed

    Xu, Jing; Plaxco, Kevin W; Allen, S James

    2006-11-30

    To directly measure the low-frequency vibrational modes of proteins in biologically relevant water environment rather than previously explored dry or slightly hydrated phase, we have developed a broadband terahertz spectrometer suitable for strongly attenuating protein solutions. Radiation is provided by harmonic multipliers (up to 0.21 THz), a Gunn oscillator (at 0.139 THz), and the UCSB free-electron lasers (up to 4.8 THz). Our spectrometer combines these intense sources with a sensitive cryogenic detector and a variable path length sample cell to detect radiation after it is attenuated by more than 7 orders of magnitudes by the aqueous sample. Using this spectrometer, we have measured the molar extinction of solvated lysozyme between 0.075 and 3.72 THz (2.5-124 cm(-1)), and we made direct comparison to several published theoretical models based on molecular dynamics simulations and normal-mode analysis. We confirm the existence of dense, overlapping normal modes in the terahertz frequency range. Our observed spectrum, while in rough qualitative agreement with these models, differs in detail. Further, we observe a low-frequency cutoff in terahertz dynamics between 0.2 and 0.3 THz, and we see no evidence of a predicted normal mode at approximately 0.09 THz for the protein.

  6. Tools for Implementing Science Practice in a Large Introductory Class

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2008-12-01

    Scientists must have in-depth background knowledge of their subject area and know where current knowledge can be advanced. They perform experiments that gather data to test new or existing theories, present their findings at meetings, publish their results, critically review the results of others, and respond to the reviews of their own work. In the context of a course, these activities correspond to learning the background material by listening to lectures or reading a text, formulating a problem, exploring data using student friendly data access and plotting software, giving brief talks to classmates in a small class or lab setting, writing a science paper or lab report, reviewing the writing of their peers, and receiving feedback (and grades) from their instructors and/or peers. These activities can be supported using course management software and online resources. The "LearningWithData" software system allows solid Earth (focused on plate tectonics) data exploration and plotting. Ocean data access, display, and plotting are also supported. Background material is delivered using animations and slide show type displays. Students are accountable for their learning through included homework assignments. Lab and small group activities provide support for data exploration and interpretation. Writing is most efficiently implemented using the "Calibrated Peer Review" method. This methodology is available at http://cpr.molsci.ucla.edu/. These methods have been successfully implemented in a large oceanography class at UCSB.

  7. OVRO CMB Anisotropy Measurement Constraints on Flat-Λ and Open CDM Cosmogonies

    NASA Astrophysics Data System (ADS)

    Mukherjee, Pia; Souradeep, Tarun; Ratra, Bharat; Sugiyama, Naoshi; Gorski, Krzysztof M.

    We use Owens Valley Radio Observatory (OVRO) cosmic microwave background (CMB) anisotropy data to constrain cosmological parameters. We account for the OVRO beamwidth and calibration uncertainties, as well as the uncertainty induced by the removal of non-CMB foreground contamination. We consider open and spatially-flat-Λ cold dark matter cosmogonies, with nonrelativistic-mass density parameter Ω0 in the range 0.1 1, baryonic-mass density parameter ΩB in the range (0.005 0.029)h-2, and age of the universe t0 in the range (10 20) Gyr. Marginalizing over all parameters but Ω0, the OVRO data favors an open (spatially-flat-Λ) model with Ω0≃ 0.33 (0.1). At the 2σ confidence level model normalizations deduced from the OVRO data are mostly consistent with those deduced from the DMR, UCSB South Pole 1994, Python I-III, ARGO, MAX 4 and 5, White Dish, and SuZIE data sets.

  8. Interaction of highly vibrationally excited molecules with clean metal surfaces. Final technical report

    SciTech Connect

    Wodtke, A.M.; Auerbach, D.J.

    1998-11-01

    The authors present results from a grant funded under the Department of Energy Office of Basic Energy Sciences. A collaboration between Prof. Alec Wodtke of the Department of Chemistry at UCSB and Daniel J. Auerbach of IBM Almaden Research Labs has allowed new experiments on the dynamics of surface chemical reactivity to be successfully executed. High quality data has been generated which provides an excellent test of theoretical models of surface reactivity, a topic of importance to catalysis. The authors have obtained the first experimental measurements on the influence of reactant velocity on the steric effect in a chemical reaction: the dissociative adsorption of hydrogen on copper. They have also designed and built a molecular beam scattering apparatus for the study of highly vibrationally excited molecules and their interactions with clean and oxidized metal surfaces. With this apparatus they have observed the vibrational energy exchange of highly vibrationally excited NO with an oxidized copper surface. Multi-quantum vibrational relaxation was found ({Delta}v = 1-5). Such remarkably strong and efficient vibrational energy transfer represents a qualitatively new phenomenon and is representative of the exciting new behavior that they had hoped might be observable in this project. Evidence of chemical reactivity of vibrationally excited NO on a clean copper surface was also found.

  9. Infrared study of charge injection in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang

    2008-03-01

    We present a systematic infrared (IR) spectroscopic study of charge injection in organic field-effect transistors (FET). These experiments have revealed new unexpected aspects of both polymers and molecular crystals. IR spectromicroscopy was employed to image the charges in poly(3-hexylthiophene) (P3HT) FETs. The charge density profile in the conducting channel uncovers a density-dependent mobility in P3HT due to disorder effects. Our IR studies of single crystal rubrene based FETs show that charge transport in these devices at room temperature is governed by light quasiparticles in molecular orbital bands. This result is at variance with the common beliefs of polaron formation in molecular solids. The above experiments have demonstrated the unique potential of IR spectroscopy for investigating physical phenomena at the nanoscale occurring at the semiconductor-insulator interface in FET devices. This work is in collaboration with G. M. Wang, D. Moses, A. J. Heeger (UCSB), V. Podzorov, M.E. Gershenson (Rutgers), Z. Hao, M. C. Martin (ALS), N. Sai, A. D. Meyertholen, M. M. Fogler, M. Di Ventra and D. N. Basov (UCSD).

  10. CMB Anisotropies Two Years after Cobe: Observations, Theory and the Future - Proceedings of the 1994 Cwru Workshop

    NASA Astrophysics Data System (ADS)

    Krauss, Lawrence M.

    1995-01-01

    The Table of Contents for the book is as follows: * Preface * I. The Experimental Situation Two Years After COBE: Anisotropies, and the CMB Power Spectrum * COBE DMR Data, Signal and Noise: Color Plates * CMB Two Years After the COBE Discovery of Anisotropies * Comparison of Spectral Index Determinations * Two-Point Correlations in the COBE-DMR Two-Year Anisotropy Maps * A Preliminary Analysis of UCSB's South Pole 1993-94 Results * CMB Anisotropy Measurements During the Fourth Flight of MAX * Observations of the Anisotropy in the Cosmic Microwave Background by the Firs, SK93, and MSAM-I Experiments * The Python Microwave Background Anisotropy Experiment * II. Theoretical Implications and Cosmology: The Early Universe, Large Scale Structure and Dark Matter * Testing Inflationary Cosmology and Measuring Cosmological Parameters Using the Cosmic Microwave Background * Inflation Confronts the CMB: An Analysis Including the Effects of Foreground * Testing Inflation with MSAM, MAX Tenerife and COBE * CMBR Anisotropy Due to Gravitational Radiation in Inflationary Cosmologies * Black Holes From Blue Spectra * Cosmic Microwave Background Anisotropies and the Geometry of the Universe * Ω and Cosmic Microwave Background Anisotropies * CDM Cosmogony in an Open Universe * Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings * Temperature Anisotropies in a Universe with Global Defects * The Nature Versus Nurture of Anisotropies * The Existence of Baryons at z = 1000 * Polarization-Temperature Correlations in the Microwave Background * III. Related Issues: BBN Limits on ΩB, and Comparing Theoretical Predictions and Observations * Big Bang Nucleosynthesis and ΩB: A Guide for CMB Interpreters * Quoting Experimental Information

  11. Zero-Prandtl-number convection with slow rotation

    NASA Astrophysics Data System (ADS)

    Maity, Priyanka; Kumar, Krishna

    2014-10-01

    We present the results of our investigations of the primary instability and the flow patterns near onset in zero-Prandtl-number Rayleigh-Bénard convection with uniform rotation about a vertical axis. The investigations are carried out using direct numerical simulations of the hydrodynamic equations with stress-free horizontal boundaries in rectangular boxes of size (2π/kx) × (2π/ky) × 1 for different values of the ratio η = kx/ky. The primary instability is found to depend on η and Ta. Wavy rolls are observed at the primary instability for smaller values of η (1/√{3} ≤ η ≤ 2 except at η = 1) and for smaller values of Ta. We observed Küppers-Lortz (KL) type patterns at the primary instability for η = 1/√{3} and Ta ≥ 40. The fluid patterns are found to exhibit the phenomenon of bursting, as observed in experiments [K. M. S. Bajaj, G. Ahlers, and W. Pesch, "Rayleigh-Bénard convection with rotation at small Prandtl numbers," Phys. Rev. E 65, 056309 (2002)]. Periodic wavy rolls are observed at onset for smaller values of Ta, while KL-type patterns are observed for Ta ≥ 100 for η =√{3}. In case of η = 2, wavy rolls are observed for smaller values of Ta and KL-type patterns are observed for 25 ≤ Ta ≤ 575. Quasi-periodically varying patterns are observed in the oscillatory regime (Ta > 575). The behavior is quite different at η = 1. A time dependent competition between two sets of mutually perpendicular rolls is observed at onset for all values of Ta in this case. Fluid patterns are found to burst periodically as well as chaotically in time. It involved a homoclinic bifurcation. We have also made a couple of low-dimensional models to investigate bifurcations for η = 1, which is used to investigate the sequence of bifurcations.

  12. High-Efficiency Nitride-Based Solid-State Lighting

    SciTech Connect

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white

  13. Hybrid III-V Silicon Lasers

    NASA Astrophysics Data System (ADS)

    Bowers, John

    2014-03-01

    Abstract: A number of important breakthroughs in the past decade have focused attention on Si as a photonic platform. We review here recent progress in this field, focusing on efforts to make lasers, amplifiers, modulators and photodetectors on or in silicon. We also describe optimum quantum well design and distributed feedback cavity design to reduce the threshold and increase the efficiency and power output. The impact active silicon photonic integrated circuits could have on interconnects, telecommunications and on silicon electronics is reviewed. Biography: John Bowers holds the Fred Kavli Chair in Nanotechnology, and is the Director of the Institute for Energy Efficiency and a Professor in the Departments of Electrical and Computer Engineering and Materials at UCSB. He is a cofounder of Aurrion, Aerius Photonics and Calient Networks. Dr. Bowers received his M.S. and Ph.D. degrees from Stanford University and worked for AT&T Bell Laboratories and Honeywell before joining UC Santa Barbara. Dr. Bowers is a member of the National Academy of Engineering and a fellow of the IEEE, OSA and the American Physical Society. He is a recipient of the OSA/IEEE Tyndall Award, the OSA Holonyak Prize, the IEEE LEOS William Streifer Award and the South Coast Business and Technology Entrepreneur of the Year Award. He and coworkers received the EE Times Annual Creativity in Electronics (ACE) Award for Most Promising Technology for the hybrid silicon laser in 2007. Bowers' research is primarily in optoelectronics and photonic integrated circuits. He has published ten book chapters, 600 journal papers, 900 conference papers and has received 54 patents. He has published 180 invited papers and conference papers, and given 16 plenary talks at conferences. As well as Chong Zhang.

  14. The National Center for Ecological Analysis and Synthesis

    NASA Astrophysics Data System (ADS)

    Reichman, O. J.

    2001-12-01

    The National Center for Ecological Analysis and Synthesis was created in May 1995 with funding from NSF, the State of California, and UCSB. The Center is based on the premise that a significant amount is known about the environment, but that it is scattered in many places and formats. The purpose of the Center is to obtain and utilize existing information to address important ecological questions. The Center was recently funded by NSF for an additional 6 years. The Center supports several types of research activities. A primary mode of research is through Working Groups, projects made up of approximately a dozen scientists who come to NCEAS to concentrate on specific issues that require in-depth analysis of data and synthesis of ideas. In addition, up to six sabbatical visitors (Center Fellows) and 18 Postdoctoral Associates are in residence at the Center. Since the Center began, over 2,400 scientists (including hundreds of students) from the US and 40 other countries have participated in research activities. These scientists have produced more than 380 scientific articles published in 65 journals and 8 books. The topics addressed by research projects at the Center range from the value of the planet's ecosystem services to the ecological impacts of global climate change. The Center is actively involved in developing a Knowledge Network for Biocomplexity (knb.ecoinformatics.org) involving information management tools for access to ecological data, which are highly dispersed and heterogeneous. The research and implementation involves developing a desktop data management system for individuals researchers and research groups. Embedded in the system would be capabilities for developing metadata (data about data), making both the metadata and raw data available to the broad community interested in such information, and data query tools (knb.ecoinformatics.org).

  15. A linear coherent integrated receiver based on a broadband optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Anand

    Optical Phase-Locked Loops (OPLL) have diverse applications in future communication systems. They can be used in high sensitivity homodyne phase-shift keying receivers for phase noise reduction, provided sufficient loop bandwidth is maintained. Alternative phase-locked loop applications include coherent synchronization of laser arrays and frequency synthesis by offset locking. In this work, a broadband OPLL based coherent receiver is used for linear phase demodulation. Phase modulated (PM) analog optical links have the potential to outperform conventional direct detection links. However, their progress has been stymied by the lack of a linear phase demodulator. We describe how feedback can be used to suppress non-linearities arising from the phase demodulation process. The receiver concept is demonstrated at low frequencies and is found to improve the Spurious Free Dynamic Range (SFDR) of an experimental analog link by over 20dB. In order to extend the operation of the receiver to microwave frequencies, latencies arising from physical delays in the feedback path need to be dramatically reduced. To facilitate this, monolithic and hybrid versions of the receiver based on compact integration of InP photonic integrated circuits (PIC) with InP and SiGe electronic integrated circuits (EIC) have been developed at UCSB. In this work, we develop novel measurement techniques to characterize the linearity of the individual components of the PIC, namely, the semiconductor photodiodes and optical phase modulators. We then demonstrate the operation of the receiver in a high power analog link. The OPLL based receiver has a bandwidth of 1.5GHz. The link gain and shot-noise limited SFDR at 300MHz are -2dB and 125dB-Hz2/3, respectively. Further, optical sampling downconversion is demonstrated as a viable technique to increase the operating frequency of the receiver beyond the baseband range.

  16. Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Lord, N. E.; Wang, H. F.; Fratta, D.; Nigbor, R. L.; Chalari, A.; Karaulanov, R.; Baldwin, J. A.; Castongia, E.

    2014-12-01

    Distributed acoustic sensing (DAS) is a relatively recent development for measurement of ground motion by using a fiber-optic cable itself as the sensor. In September 2013 a field test was conducted at the NEES@UCSB Garner Valley field site in Southern California incorporating DAS technology. A 762 meter long fiber-optic cable was trenched to a depth of about 0.3 m in a rectangular design with two interior diagonal segments. Existing instruments at the field site include the Garner Valley Downhole Array (GVDA) surface and borehole accelerometers and pore pressure transducers. A PASSCAL seismometer array and four NEES@UCLA tri-axial accelerometers were also deployed along the two interior diagonal segments. These sensors also recorded most of the source events. One goal of the field test was to study the response of the fiber-optic cable to various vibration sources, including a 45 kN shear shaker and a smaller 450 N portable mass shaker, both of which were available through NEES@UCLA. In addition to the shear sources, signals were recorded from a mini-Vibe source and hammer blows on a steel plate. The focus of this study is on the directivity and the sensitivity of the fiber-optic cable and the distributed acoustic sensor. Preliminary results indicate that the fiber-optic cable is most effective if oriented in the direction of maximum strain. Even with the directional response, signals were recorded throughout the array for different cable orientations at distances up to two-hundred meters. Move-out of different phases could be seen over several meters of traces recorded one-meter apart. Sensitivity of the fiber-optic cable relative to the other instruments is also presented.

  17. COMMITTEES: Committees

    NASA Astrophysics Data System (ADS)

    2010-01-01

    TAUP STEERING COMMITTEE F T Avignone, University of South Carolina B C Barish, CALTECH E Bellotti, University of Milano, INFN J Bernabeu, University of Valencia A Bottino (Chair), University of Torino, INFN N Fornengo, University of Torino, INFN T Kajita, ICRR University of Tokyo C W Kim, Johns Hopkins University, KIAS V Matveev, INR Moscow J Morales, University of Zaragoza G Raffelt, MPI Munchen D Sinclair, University of Carleton M Spiro, IN2P3 TAUP 2009 INTERNATIONAL ADVISORY COMMITTEE J J Aubert, CNRS Marseille M Baldo-Ceolin, University of Padova, INFN G Bellini, University of Milano, INFN L Bergstrom, University of Stockholm R Bernabei, University of Roma Tor Vergata, INFN A Bettini, University of Padova, INFN, LSC S Bilenky, JINR Dubna D O Caldwell, UCSB J Cronin, University of Chicago A Dar, Technion Haifa G Domogatsky, INR Moscow J Ellis, CERN E Fernandez, IFAE Barcelona E Fiorini, University of Milano, INFN T Gaisser, University of Delaware G Gelmini, UCLA G Gerbier, CEA Saclay A Giazotto, INFN Pisa F Halzen, University of Wisconsin W Haxton, University of Washington T Kirsten MPI Heidelberg L Maiani, University of Roma La Sapienza, INFN A McDonald, Queen's University K Nakamura, KEK R Petronzio, INFN, University of Roma Tor Vergata L Resvanis, University of Athens F Ronga INFN, LNF C Rubbia INFN, LNGS A Smirnov, ICTP Trieste C Spiering, DESY N Spooner, University of Sheffield A Suzuki, KEK S Ting MIT, CERN M S Turner, FNAL, University of Chicago J W F Valle, IFIC Valencia D Vignaud, APC Paris G Zatsepin, INR Moscow TAUP 2009 ORGANIZING COMMITTEE R Aloisio, LNGS R Antolini, LNGS F Arneodo, LNGS Z Berezhiani, University of L'Aquila, INFN V Berezinsky, LNGS R Cerulli, LNGS E Coccia [Chair], LNGS/INFN, U of Roma Tor Vergata N D'Ambrosio, LNGS N Fornengo, University of Torino, INFN M Laubenstein, LNGS O Palamara, LNGS L Pandola [Scientific Secretary], LNGS

  18. Inclusion of a MALDI ion source in the ion chromatography technique: conformational information on polymer and biomolecular ions

    NASA Astrophysics Data System (ADS)

    von Helden, Gert; Wyttenbach, Thomas; Bowers, Michael T.

    1995-08-01

    A matrix-assisted laser desorption ionization (MALDI) source has been coupled to the ion chromatography instrument developed at UCSB. The source produces a strong, consistent signal for several hours on a single sample. In this paper we report the application of this method to a series of poly(ethylene glycol) (PEG) polymers cationized by sodium. Data have been taken for Na+PEG5 to Na+PEG19. The temperature dependence of the ion mobility (collision cross-section) in He gas for Na+PEG9, Na+PEG13 and Na+PEG17 has been measured from 80 to 580 K. A detailed analysis of these three systems has been accomplished in order to extract the conformations of the ion and how they vary with temperature. This analysis included several significant changes from methods used previously. Molecular mechanics methods were used both to obtain the lowest energy 0 K structures and to predict how these structures would change as temperature increases. In order to account for the observed low temperature results, a 12-6-4 potential was incorporated in place of the hard-sphere potential used previously. For all three systems studied in detail, the oxygen atoms on the PEG units solvated the Na+ ion, forming a crown ether type ring of five oxygens surrounding Na+ and several others above and below this ring. The molecular mechanics model was also applied to neutral PEG13. In this instance a quite compact structure is obtained for T <= 200 K but a sudden melting type transition occurs between 200 and 300 K and chaotic motion dominates at and above 300 K. Data are also reported on the temperature dependence of the ion mobility of C60+. This ion is expected to change shape only slightly over the temperature range reported here. Consequently it provided an excellent set of calibration data for evaluating the intramolecular interaction potentials used to describe the collision process.

  19. Evaluation and inter-comparison of modern day reanalysis datasets over Africa and the Middle East

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Arsenault, K. R.; Hobbins, M.; Peters-Lidard, C. D.; Verdin, J. P.

    2015-12-01

    Reanalysis datasets are potentially very valuable for otherwise data-sparse regions such as Africa and the Middle East. They are potentially useful for long-term climate and hydrologic analyses and, given their availability in real-time, they are particularity attractive for real-time hydrologic monitoring purposes (e.g. to monitor flood and drought events). Generally in data-sparse regions, reanalysis variables such as precipitation, temperature, radiation and humidity are used in conjunction with in-situ and/or satellite-based datasets to generate long-term gridded atmospheric forcing datasets. These atmospheric forcing datasets are used to drive offline land surface models and simulate soil moisture and runoff, which are natural indicators of hydrologic conditions. Therefore, any uncertainty or bias in the reanalysis datasets contributes to uncertainties in hydrologic monitoring estimates. In this presentation, we report on a comprehensive analysis that evaluates several modern-day reanalysis products (such as NASA's MERRA-1 and -2, ECMWF's ERA-Interim and NCEP's CFS Reanalysis) over Africa and the Middle East region. We compare the precipitation and temperature from the reanalysis products with other independent gridded datasets such as GPCC, CRU, and USGS/UCSB's CHIRPS precipitation datasets, and CRU's temperature datasets. The evaluations are conducted at a monthly time scale, since some of these independent datasets are only available at this temporal resolution. The evaluations range from the comparison of the monthly mean climatology to inter-annual variability and long-term changes. Finally, we also present the results of inter-comparisons of radiation and humidity variables from the different reanalysis datasets.

  20. Active Travel-Time Tomography using a Distributed Acoustic Sensing Array

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Fratta, D.; Lord, N. E.; Wang, H. F.; Chalari, A.

    2015-12-01

    Distributed acoustic sensing (DAS) is a sensor array used for monitoring ground motion by utilizing the interaction of light pulses with sections of a fiber-optic cable. In September 2013 a field test was conducted at the NEES@UCSB Garner Valley field site in Southern California incorporating DAS technology. A 762-meter-long fiber-optic cable was trenched to a depth of about 0.3 m in a rectangular design with two interior diagonal segments. The fiber was excited by a number of sources, including a 45 kN shear shaker and a smaller 450 N portable mass shaker, both of which were available through NEES@UCLA. In addition to these sources, signals were recorded from a minivib source and hammer blows on a steel plate, as well as 8 hours of overnight ambient noise recording. One goal of the field test was to evaluate the use of DAS for tomographic studies. The large number of measurement points inherent to DAS lends itself well to this type of study. Tomograms were constructed using two of the active-sources at multiple locations. There were 8 minivib locations within the array and 13 hammer locations along the boundary of the array. Travel-time data were collected with the DAS array. Two-dimensional velocity tomograms were constructed for different resolutions from the two active sources and compared. In all the images, the lowest velocities lie near the center of the array with higher velocities surrounding this area. The impact results, however, may contain an artifact due to multiple propagation modes. This research is part of the DOE's PoroTomo project.

  1. Satellite Ocean Color Data Merging Using a Bio-optical model: A Path for Earth Science Data Records ?

    NASA Astrophysics Data System (ADS)

    Maritorena, S.; Siegel, D. A.; Hembise Fanton D'Andon, O.; Mangin, A.; Frew, J.; Nelson, N.

    2009-12-01

    The characteristics and benefits of ocean color merged data sets created using a semi-analytical model and the normalized water-leaving radiance observations from the SeaWiFS, MODIS-AQUA and MERIS ocean color missions are presented. Merged data products are coalesced from multiple mission observations into a single data product with better spatial and temporal coverage than the individual missions. Using the data from SeaWiFS, MODIS-AQUA and MERIS for the 2002-2009 time period, the average daily coverage of a merged product is ~25% of the world ocean which is nearly twice that of any single mission’s observations. The frequency at which a particular area is sampled from space is also greatly improved in merged data as some areas can be sampled as frequently as 64% of the time (in days). The merged data are validated through matchup analyses and by comparing them to the data sets obtained from individual missions. Further, a complete error budget was developed which accounts for uncertainty associated with input water-leaving radiances, the bio-optical model and uncertainty estimates for the output products (i.e. the chlorophyll concentration, the combined dissolved and detrital absorption coefficient and the particulate backscattering coefficient). These merged products and their uncertainties at each pixel were developed within the NASA MEASURES (http://wiki.icess.ucsb.edu/measures/index.php/Main_Page) and ESA GlobColour (http://www.globcolour.info/) projects and are available to the scientific community. The merging approach has many potential benefits for the creation of Earth Science Data Records from satellite ocean color observations.

  2. A framework for assessing the impact of land use policy on community exposure to air toxics.

    PubMed

    Willis, Melvin R; Keller, Arturo A

    2007-04-01

    Our research focuses on the linkage between land use planning policy and the spatial pattern of exposure to air toxics emissions. Our objective is to develop a modeling framework for assessment of the community health risk implications of land use policy. The modeling framework is not intended to be a regulatory tool for small-scale land use decisions, but a long-range planning tool to assess the community health risk implications of alternative land use scenarios at a regional or subregional scale. This paper describes the development and application of an air toxic source model for generating aggregate emission factors for industrial and commercial zoning districts as a function of permitted uses. To address the uncertainty of estimating air toxics emission rates for planned general land use or zoning districts, the source model uses an emissions probability mass function that weights each incremental permitted land use activity by the likelihood of occurrence. We thus reduce the uncertainty involved in planning for development with no prior knowledge of the specific industries that may locate within the land use district. These air toxics emission factors can then be used to estimate pollutant atmospheric mass flux from land use zoning districts, which can then be input to air dispersion and human health risk assessment models to simulate the spatial pattern of air toxics exposure risk. The model database was constructed using the California Air Toxics Inventory, 1997 US Economic Census, and land assessment records from several California counties. The database contains information on more than 200 air toxics at the 2-digit Standard Industrial Classification (SIC) level. We present a case study to illustrate application of the model. LUAIRTOX, the interactive spreadsheet model that applies our methodology to the California data, is available at http://www2.bren.ucsb.edu/~mwillis/LUAIRTOX.htm.

  3. Inverse Bloch-oscillator: Strong Thz-photocurrent resonances at the Bloch frequency

    SciTech Connect

    Unterrainer, K.; Keay, B.J.; Wanke, M.C.

    1995-12-31

    We have observed resonant changes in the current-voltage characteristics of miniband semiconductor superlattices when the Bloch frequency is resonant with a terahertz field and its harmonics: the inverse Bloch oscillator effect. The resonant feature consists of a peak in the current which grows with increasing laser intensity accompanied by a decrease of the current at the low bias side. The peak position moves linearly with the laser frequency. When the intensity is increased further the first peak starts to decrease and a second peak at about twice the voltage of the first peak is observed due to a two photon resonance. At the highest intensities we observe up to a four photon resonance. A superlattice is expected to show negative differential conductance due to the strong nonparabolicity of the miniband. In this situation the carriers should undergo Bloch oscillations with a frequency {omega}{sub B} = eEd/h. Transient Bloch oscillations of photo excited carriers have been observed in time resolved Thz emission measurements. However, the possibility of Thz generation form a DC voltage biased superlattice is still under discussion. We have approached this problem by exploring the inverse Bloch oscillator effect in a superlattice excited by the Thz radiation form the UCSB FEL. The superlattice consists of 40 periods of 80{angstrom} GaAs wells and 20{angstrom} Al{sub 0.3}Ga{sub 0.7}As barriers. To couple the electric field of the Terahertz radiation parallel to the growth direction a coplanar bowtie antenna has been employed. Our results show clearly that the external radiation couples to Bloch oscillations in contrary to theoretical suggestions that Thz radiation would not couple to a uniform Wannier Stark ladder. We conclude that this result is intimately related to dissipation and line broadening of the otherwise identical states in the ladder: absorption appears above the Wannier Stark splitting ({omega}{sub B}<{omega}) and gain below ({omega}{sub B}>{omega}).

  4. FRAMING Linguistics: ``SEANCES"(!!!) Martin-Bradshaw-Siegel ``Buzzwordism, Bandwagonism, Sloganeering For:Fun, Profit, Survival, Ego": Rampant UNethics Sociological-DYSfunctionality!!!

    NASA Astrophysics Data System (ADS)

    Bradshaw, John; Siegel, E.

    2010-03-01

    ``Sciences''/SEANCES(!!!) rampant UNethics!!! WITNESS: Yau v Perelman Poincare-conj.-pf. [Naser, NewYorker(8/06)]; digits log- law Siegel[AMS Nat.Mtg.(02)-Abs.973-60-124] inversion to ONLY BEQS: Newcomb(1881)<<UCSB) (so MIS- called) ``spintronics'' copy of Overhauser(54)-(Slichter)-effect: 54<<<90s!!!; Siegel [AMS Nat.Mtg.(02)-Abs.973-03-126] proof: Fermat's: Last-Theorem = Least-Action Ppl:64<<<94(Wiles); ``Bak''/BNL (so called) ``SOC''= F=ma REdiscovery, copying Siegel [PSS(71);...] acoustic-emission:71<<<88: ``Per Bak''?, PRE Bak!!!; ``Bednorz''(v Raveau-Chu) high-Tc cuprate SC Nobel; ``Emery''(˜93)/ BNL high-Tc SC 3-band Hubbard-model v Siegel generic multi-(2- 10)-band spin-orbital-degeneracy(SOD)[Ph.D.,MSU(70);PSS(72;73); JMMM(76-80);World Cong.SC,Munich(92)]:70<<<93!!!; Anderson [1/3<1] failed cuprate high-Tc SC ``RVB'' v Overhauser correct cuprates/pnictides SSDWs:[(60s)<<<(87)];(so called) ``Anderson'' [1/3<1;PRL(58)] localization REdiscovery v Rayleigh(1881)``short- CUT'' graph-theory method[Doyle-Snell, Random-Walks/Electric-Nets (81)]: 1881<<<58; ``Fert''[PRL(88)] 07-Nobel copying v Siegel[at flickr.com,search on ``GMR''; google: ``If Leaks Could Kill'']: [(78)<<<(88)]!!!: Marti[google: ``Brian Martin'']-Bradshaw [Healing the SHAME that BINDS You(80s)]: Ethics? SHMETHICS!!!

  5. Validation and Application of PHYDOTax In The Santa Barbara Channel

    NASA Astrophysics Data System (ADS)

    Schafer, C. B.; Palacios, S. L.; Broughton, J.; Kudela, R. M.

    2013-12-01

    Phytoplankton Functional Types(PFTs) are conceptual groupings of phytoplankton based on physical or functional characteristics. Understanding phytoplankton is essential in our study of how ecosystems function and in monitoring carbon flow. PHYDOTax is a PFT algorithm that discriminates taxon-specific biomass in images from airborne and spaceborne hyperspectral sensors. The PHYDOTax algorithm uses a spectral library and an inverse matrix approach to deconvolve pure phytoplankton spectral end-members from spectra of natural waters. The spectral library used in development was created from phytoplankton taxa found in Monterey Bay, CA and the California Current System (CCS). PHYDOTax has only been validated in Monterey Bay and for only one airborne sensor, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON). The objectives of this research were to apply PHYDOTax to a different region of the CCS, Santa Barbara Channel (SBC), and to test the usability of PHYDOTax with a different airborne imager, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). PHYDOTax was modified to accommodate the reduced spectral resolution of AVIRIS, which has fewer wavelengths than the SAMSON imagery that was used to validate the model for Monterey Bay. PHYDOTax's predictions were consistent with cell-count data from whole water samples on June 5, 2013, courtesy of the Plumes and Blooms Cruise (UCSB). PHYDOTax's ability to perform in another area of the CCS shows promise that it may be accurately applied to the west coast of the US. PHYDOTax's ability to perform with lower spectral resolution imagery, suggests that it may it may be robust enough to be down-sampled to multi-spectral resolution inputs. This opens the possibility of applying PHYDOTax to historical (SeaWiFS, MODIS, MERIS), existing (VIIRS, HICO), and future (PACE, GEO-CAPE) sensors to describe temporal trends in phytoplankton distribution and carbon flow in the ocean and to build continuity among the sensor

  6. Confinement Effects on the Structure of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Kim, Mahn

    2009-03-01

    Actin is a key component of the protein complex responsible for producing contractile force in skeletal muscle. Filamentous actin, called F-actin, is a two-stranded helical protofilament with a diameter of ˜8nm and a contour length of ˜10m. The experimental results show that the persistence length of the F-actin is 4 -20 m. One of interesting problems is to find the structure of a semiflexible filament in a confined space [1], such as a channel width less than the persistence length. The other interesting problem is to find the surface treatment effect on the liquid crystal structure in a confined space. The boundary conditions imposed by the walls of the microchannel generate the spatial patterning of defect domains in a smectic liquid crystal [2] and the formation of a large-area ordered structure [3] by using the structure of smectic liquid in the microchannels. We found that the F-actin undergoes a transition from a 2D randomly oriented regime to a 1D biaxially confined regime with the effective persistence length. We were able to generate defect domains that are nearly uniformly arranged in 2D ordered patterns by controlling the surface hydrophobicity. Furthermore, the formation of a large-area ordered structure of toric focal conic domains was generated. This work was done with C. R. Safinya's group at UCSB and Hee-Tae Jung's group at KAIST. [4pt] [1] M.C Choi at. al, Macromolecules 2005,38, 9882-9884[0pt] [2] M. C. Choi at. al, PNAS 2004, 101, 17340-17344[0pt] [3] D. K. Yoon at. al, Nature Materials, 2007, 6, 866-870

  7. Garner Valley Vibroseis Data Processing Using Time-Frequency Filtering Techniques to Remove Unwanted Harmonics and External Noise

    NASA Astrophysics Data System (ADS)

    Lord, N. E.; Wang, H. F.; Fratta, D.; Lancelle, C.; Chalari, A.

    2015-12-01

    Time-frequency filtering techniques can greatly improve data quality when combined with frequency swept seismic sources (vibroseis) recorded by seismic arrays by removing unwanted source harmonics or external noise sources (e.g., cultural or ambient noise). A source synchronous filter (SSF) is a time-frequency filter which only passes a specified width frequency band centered on the time varying frequency of the seismic source. A source delay filter (SDF) is a time-frequency filter which only passes those frequencies from the source within a specified delay time range. Both of these time-frequency filters operate on the uncorrelated vibroseis data and allow separate analysis of the source fundamental frequency and each harmonic. In either technique, the time-frequency function of the source can be captured from the source encoder or specified using two or more time-frequency points. SSF and SDF were both used in the processing of the vibroseis data collected in the September 2013 seismic experiment conducted at the NEES@UCSB Garner Valley field site. Three vibroseis sources were used: a 45 kN shear shaker, a 450 N portable mass shaker, and a 26 kN vibroseis truck. Seismic signals from these sources were recorded by two lines of 1 and 3 component accelerometers and geophones, and the Silixa Ltd's intelligent Distributed Acoustic Sensing (iDASTM ) system connected to 762 m of trenched fiber optical cable in a larger rectangular area. SSF and SDF improved vibroseis data quality, simplified data interpretation, and allowed new analysis techniques. This research is part of the larger DOE's PoroTomo project (URL: http://geoscience.wisc.edu/feigl/porotomo).

  8. Remote Sensing Information Science Research

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  9. Recess integration of micro-cleaved laser diode platelets with dielectric waveguides on silicon

    NASA Astrophysics Data System (ADS)

    Fonstad, Clifton G., Jr.; Rumpler, Joseph J.; Barkley, Edward R.; Perkins, James M.; Famenini, Shaya

    2008-02-01

    Ongoing research directed at integrating 1.55 μm III-V ridge waveguide gain elements (i.e. diode lasers and semiconductor optical amplifiers) co-axially aligned with, and coupled to, silicon oxy-nitride waveguides on silicon substrates is presented. The integration techniques used are highly modular and consistent with fabricating waveguides on Si-CMOS wafers and doing the integration of the III-V gain elements after all standard front- and back-end Si processing has been completed. A novel micro-cleaving technique is used to produce active ridge waveguide platelets on the order of 6 µm thick and 100 μm wide, with precisely controlled lengths, in the current work 300 +/- 1 μm, and cleaved end facets. Typical ridge guide micro-cleaved platelet lasers have thresholds under 30 mA. Micro-cleaved platelets are bonded within dielectric recesses etched through the oxy-nitride (SiO xN y) waveguides on a wafer so the ridge and SiO xN y waveguides are co-axially aligned. Transmission measurements indicate coupling losses are as low as 5 db with air filling the gaps between the waveguide ends, and measurements made through filled gaps indicate that the coupling losses can be reduced to below 1.5 dB with a high index (n = 2.2) dielectric fill. Simulations indicate that with further optimization of the mode profile in the III-V waveguide the loss can be reduced to below 1 dB. The paper concludes with a discussion of device design and optimization for co-axial recess integration, and with a comparison of co-axial coupling with the hybrid evanescent vertical coupling III-V/Si integration approach recently introduced by researchers at UCSB and Intel.

  10. Limited Flow of Continental Crust at UHP Depths: Coupled Age and Trace-Element Analyses of Titanite in the Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Garber, J. M.; Hacker, B. R.; Kylander-Clark, A. R.

    2015-12-01

    Coupled age and trace-element data from titanites in the Western Gneiss Region (WGR) of Norway suggest that continental crust underwent limited recrystallization and ductile flow through ~40 My of deep subduction and subsequent exhumation. Precambrian igneous titanites in granitic to tonalitic orthogneisses from the WGR were metastably preserved though Caledonian ultrahigh-pressure (UHP) metamorphism and variably recrystallized through subsequent amphibolite-facies metamorphism from ~420-385 Ma. The inherited Precambrian titanites are not present everywhere but rather cluster primarily in a cooler "southern domain" (peak T ~650oC) and a hotter "northern domain" (peak T ~750-800oC).Titanite data were collected using LASS (laser-ablation split stream inductively-coupled plasma mass spectrometry) at UCSB, and a principal component analysis (PCA) was used to define age and trace-element populations. These data indicate that inherited titanites are LREE-enriched, HFSE-enriched, and have higher Th/U, consistent with Precambrian neocrystallization from a granitic melt. In contrast, the recrystallized titanites have generally lower Th/U and flat, LREE-depleted, or hump-shaped trace-element patterns. These data suggest that (1) Caledonian titanite recrystallization occurred in the presence of LREE-depleted melts or fluids, or that (2) recrystallization was accompanied by a "typical" granitic melt, but that titanite/bulk-rock distribution coefficients are different for neo- and recrystallization; on-going whole-rock analyses will clarify these hypotheses. Critically, the geochemical signature of recrystallized titanite in felsic orthogneisses is comparable across the entire WGR - emphasizing that the petrologic process of titanite recrystallization was similar orogen-wide, but was less extensive in the domains where inherited titanite was preserved. In this case, large volumes of crust outside of the "old domains" may also have retained metastable titanite during subduction

  11. Reconstructing a Past Climate Using Current Multi-species' Climate Spaces

    NASA Astrophysics Data System (ADS)

    Westfall, R. D.; Millar, C. I.

    2004-12-01

    We present an analysis of a ghost forest on WhiteWing Mt at 3000 m in the eastern Sierra Nevada, southeast of Yosemite NP. Killed by a volcanic eruption about 650 years ago, the deadwood on WhiteWing dates by standard tree-ring analysis to 800-1330 CE, during the Medieval Warm Anomaly. Individual stems have been identified by wood anatomical characteristics as Pinus albicualis, P. monticola, P. jeffreyi, P. contorta, P. lambertiana, and Tsuga mertensiana. With the exception of P. albicualis, which is currently in krummholz form at this elevation, the other species are 200 m or more lower in elevation. One, P. lambertiana, is west of the Sierran crest and 600 m lower in elevation. Assuming that climatic conditions on Whitewing during this period were mutually compatible with all species, we reconstruct this climate by the intersection of the current climatic spaces of these species. We did this by first generating individual species' ranges in the Sierran ecoregions through selecting vegetation GIS polygons from the California Gap Analysis database (UCSB) that contain the individual species. Climatic spaces for each species were generated by the GIS intersection of its polygons with 4 km gridded polygons from PRISM climatic estimates (OSU); this was done for annual, January, and July maximum and minimum temperature, and precipitation, merged together for each species. Climatic intersections of the species were generated from the misclassified polygons of a discriminant analysis of species by the climatic data. The average data from these misclassified polygons suggest that the climate on WhiteWing during the existence of this forest community was 230 mm, 1oC, and 3oC greater than present in precipitation, and maximum and minimum temperature, respectively.

  12. National Archive of Marine Seismic Surveys (NAMSS): U.S. Geological Survey Program to Provide new Access to Proprietary Data

    NASA Astrophysics Data System (ADS)

    Childs, J. R.; Hart, P. E.

    2004-12-01

    Marine seismic reflection profile data originally acquired for purposes of offshore oil and gas exploration and development within the United States Exclusive Economic Zone represent a national scientific resource of inestimable value. Although the commercial value of these data has diminished due to technological advances and offshore development moratoria, the value to current and future scientific endeavors continues to be very high. Recently, commercial owners (including WesternGeco and ChevronTexaco) of large data holdings offshore the eastern, western, and Alaskan coasts of the United States have offered to transfer over 200,000 line kilometers of two-dimensional data (vintage 1970 to 1985) to the public domain. Recognizing the value of these data, the U.S. Geological Survey in co-operation with the Institute for Crustal Studies at UCSB, the Incorporated Research Institutions for Seismology, and the American Geological Institute) is promoting efforts to safeguard on behalf of the research community and the nation any data that may otherwise be lost, and to ensure free and open access to that data. To achieve these goals, the USGS has developed a National Archive of Marine Seismic Surveys (NAMSS). Work is underway to organize and reformat digital data currently stored on obsolete media, primarily nine-track tapes. The NAMSS web site below has further information on the project, including trackline maps of surveys that will soon be publicly available. The ultimate objective is the establishment of a data repository accessible through an on-line database, with graphical and text-based search and retrieval interface.

  13. Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RAχFC): A Visual Basic computer code for calculating trace element and isotope variations of open-system magmatic systems

    NASA Astrophysics Data System (ADS)

    Bohrson, Wendy A.; Spera, Frank J.

    2007-11-01

    Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaχFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAχFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAχFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors' Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material.

  14. High-Power, Low-Droop III-Nitrides Based Blue Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Pan, Chih-Chien

    III-Nitrides based light-emitting diodes (LED) have greatly attracted considerable attention due to their use in a range of applications for illumination and are often operated at high drive currents to achieve high emission powers. In order to have enough emission optical powers, LEDs with high internal quantum efficiency (IQE) and light extraction efficiency (LEE) as well as external quantum efficiency (EQE) are required. In this work, first, we explored the optical and material properties of GaN-based polar and semipolar blue LEDs grown on c-plane patterned sapphire substrate (PSS) and free-standing GaN (FS-GaN) substrate, respectively. By analyzing these properties, we were be able to achieve high IQE, LEE, and EQE values using novel designs of the epi structure and LED package. At UCSB, by using a novel vertical transparent ZnO-stand LED (VT-LED) package to reduce the loss of photons in the absorptive materials (p-type GaN, indium-tin oxide, and silver header, etc.), high LEE of 76 and 75% can be achieved for GaN-based LEDs grown on PSS and FS-GaN substrate, respectively. In this study, we also find a close agreement between simulating and experimental results. On the other hand, in order to achieve high IQE and EQE for blue LEDs at high current densities (> 100 A/cm2), low-carrier-density structure design is the key to address efficiency droop (J-droop) and thermal droop (T-droop), in which IQE decreases with increasing the injection current and temperature. A compositionally step-graded (CSG) InGaN quantum barrier (QB) and a single 12-nm-thick quantum well (SQW) structure have been applied in polar (0001) and semipolar (2021) blue LEDs, respectively, to mitigate Shockley-Read-Hall (SRH) and Auger recombination, and carrier leakage by lowering the carrier density in the active region of the LED. As a consequence, high EQE of ˜ 46 and 50% and low thermal droop ratios of ˜ 16 and 10% (when the temperature is elevated from 20 to 100°C) can be achieved for

  15. ANZA Seismic Network- From Monitoring to Science

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    earthquakes, the ANZA network is receiving real-time data from borehole arrays located at the UCSD Thornton Hospital, and from UCSB's Borrego Valley and Garner Valley Downhole Arrays. Finally the ANZA network is acquiring data from seven PBO sites each with 300 meter deep MEMs accelerometers, passive seismometers, and a borehole strainmeter.

  16. Microbial decomposition of dead grassland roots and its influence on the carbon cycle under changing precipitation patterns

    NASA Astrophysics Data System (ADS)

    Becerra, C.; Schimel, J.

    2013-12-01

    Soil is the largest reservoir of organic carbon in terrestrial ecosystems and as such, represents a potential sink for carbon dioxide.The decomposition products of dead roots buried in the soil is a contributor to soil organic carbon. However, changing precipitation patterns may affect its fate by influencing the microbial community responsible for decomposing dead roots. To assess the impact of changing precipitation patterns, we constructed microcosms with grassland soil collected from the UCSB Sedgwick Reserve, an active and long-term research site, and dead roots from greenhouse-grown grass, Bromus diandrus. Microcosms were wetted continuously, every seven days, or every twenty days. Sets of microcosms were periodically deconstructed to assess the soil versus the roots-associated microbial community and its function. Differences in respiration rates of microcosms continuously wetted or wetted every 7 days versus microcosms wetted every 20 days existed for the first 70 days. After which, no differences in respiration rates were seen with microcosms containing roots and the no roots control. Relatedly, after a 70% roots mass loss by day 50, there was no difference in the respiration rate of microcosms containing roots and the no roots control. More than half of the roots mass loss had occurred by 30 days. By the end of the incubation period, the roots mass loss in continuously wet and 7-day wetted microcosms were over 80% compared to 67% for the microcosms wetted every 20 days. Microbial biomass in the soil were constant over time and showed no difference in treatment except with the no roots control during the first half of the incubation period. Hydrolytic enzyme activities (β-1,4-glucosidase; α-1,4-glucosidase; β-1,4-xylosidase; β-1,4-cellobiosidase) on the roots versus the soil attached to the roots were over an order greater and decreased faster with the exception of N-acetyl-glucosaminidase and acid phosphatase. Oxidative enzyme activities (phenol

  17. Monitoring Global Food Security with New Remote Sensing Products and Tools

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Husak, G. J.; Magadzire, T.; Verdin, J. P.

    2012-12-01

    Global agriculture monitoring is a crucial aspect of monitoring food security in the developing world. The Famine Early Warning Systems Network (FEWS NET) has a long history of using remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and climate change. In recent years, it has become apparent that FEWS NET requires the ability to apply monitoring and modeling frameworks at a global scale to assess potential impacts of foreign production and markets on food security at regional, national, and local levels. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara (UCSB) Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of the increased mandate for remote monitoring. We present our monitoring products for measuring actual evapotranspiration (ETa), normalized difference vegetation index (NDVI) in a near-real-time mode, and satellite-based rainfall estimates and derivatives. USGS FEWS NET has implemented a Simplified Surface Energy Balance (SSEB) model to produce operational ETa anomalies for Africa and Central Asia. During the growing season, ETa anomalies express surplus or deficit crop water use, which is directly related to crop condition and biomass. We present current operational products and provide supporting validation of the SSEB model. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with an improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a relatively high spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. We provide an overview of these data and cite specific applications for crop monitoring. FEWS NET uses satellite rainfall estimates as inputs for

  18. The Quaternary North Channel-Pitas Point Fault System in Northwest Santa Barbara Channel, California.

    NASA Astrophysics Data System (ADS)

    Sorlien, C. C.; Nicholson, C.; Behl, R. J.; Marshall, C. J.; Kennett, J.

    2014-12-01

    The north margin of the rapidly-shortening, rapidly subsiding offshore and western onshore Ventura Basin is comprised of major N-dipping faults that step left. Offshore in Santa Barbara Channel, part of the shortening accommodated by the shallow Red Mountain fault is transferred farther offshore to the North Channel-Pitas Point fault system (NC-PP). We previously investigated the eastern offshore 50 km of this fault system using dense grids of industry multichannel seismic reflection (MCS) data and local grids of high resolution MCS data. Timing and rates of the observed deformation were determined by correlation to a detailed dated stratigraphy derived from piston cores that sampled seafloor outcrops back to 740 ka, as well as biostratigraphy, oxygen isotopic stratigraphy, a dated industry well-log horizon, and tephrochonology of the 639 ka Lava Creek ash. We are now continuing our interpretation of the NC-PP through its western 50 km using 2D and 3D MCS data and this previous dated seismic stratigraphy. The PP-NC is variably blind along strike, with its upper tips in places below the 1 Ma horizon and in other locations cutting up to higher levels. The blind slip is absorbed by a progressively-tilting S-dipping forelimb everywhere. Preliminary examination of cross sections through our 8 gridded, depth-converted horizons suggests that the rate of tilting has not significantly changed during the last 1 Myr, and that dips and structural relief, although variable, are not systematically greater in the east than in the west between Carpinteria and the UCSB campus at 119° 50' W.. Farther westward, the rate of tilting, and probably the rate of offshore shortening, decreases steadily through 40 km between 120° 05' W. and the end of the system beyond Point Conception. This trend mirrors the decrease in elevation and structural relief of the Santa Ynez Mountains above the deep fault. As in its eastern part, there is no evidence of a major change in tilt rate through the

  19. Preserving the Context of Science Data

    NASA Astrophysics Data System (ADS)

    Janée, G.; Frew, J.

    2008-12-01

    documentation, and may reside in the same archive or in another. Cross-archive references capture whole-archive dependencies (summarized by whole-archive descriptors located at the root of each archive), allowing us to describe the familiar situation of an entire archive referencing a format registry, or a source data center. We describe as a case study the archiving of the Earth science data records (ESDRs) being produced by the UCSB NASA-funded Ocean MEaSUREs project. The data's context includes complex formats, scientific literature, and software (both commercial and locally-developed). The data's provenance includes dependencies on multiple versions, parameter settings, and satellite data sources. By addressing how much context is required to preserve these data, we hope to begin to answer the question: What does it mean for a library to assume responsibility for a science dataset?

  20. In-Situ X-ray Spectroscopic Studies of the Fundamental Chemistry of Pb and Pb-Bi Corrosion Processes at High Temperatures: Development and Assessment of Composite Corrosion Resistant Materials.

    SciTech Connect

    Carlo Segre

    2009-12-30

    Over the course of this project, we have a number of accomplishments. The following list is presented as a summary statement for the project. Specific details from previous Quarterly Reports are given. (1) We established that it is possible to use EXAFS to study the interface layer between a material and the liquid Pb overlayer. We have discovered that molybdenum grows a selflimiting oxide layer which does not spall even at the highest temperatures studied. There have been 2 publications resulting from these studies. (2) We have fabricated a high temperature environmental chamber capable of extending the Pb overlayer studies by varying the incident x-ray beam angle to perform depth profiling of the Pb layer. This chamber will continue to be available to nuclear materials program researchers who wish to use the MRCAT beam line. (3) We have developed a collaboration with researchers at the Paul Scherrer Institute to study corrosion layers on zircalloy. One publication has resulted from this collaboration and another is in progress. (4) We have developed a collaboration with Prof. G.R. Odette of UCSB in which we studied the local structure of Ti and Y in nanoclusters found in oxygen dispersion strengthened steels. There are two publications in progress form this collaboration and we have extended the project to anomalous small angle x-ray scattering as well as EXAFS. (5) We have promoted the use of EXAFS for the study of nuclear materials to the community over the past 4 years and we have begun to see an increase in demand for EXAFS from the community at the MRCAT beam line. (6) This grant was instrumental in nucleating interest in establishing a new Collaborative Access Team at the Advanced Photon Source, the Nuclear and Radiological Research CAT (NRR-CAT). The co-PI (Jeff Terry) is the lead investigator on this project and it has been approved by the APS Scientific Advisory Committee for further planning. The status of the NRR-CAT project is being discussed in a

  1. Activites to Support and Assess Student Understanding of Earth Data

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.; Regev, J.

    2004-12-01

    In order to use data effectively, learners must construct a mental model that allows them to understand and express spatial relationships in data, relationships between different data types, and relationships between the data and a theoretical model. Another important skill is the ability to identify gross patterns and distinguish them from details that may require increasingly sophisticated models. Students must also be able to express their understanding, both to help them frame their understanding for themselves, and for assessment purposes. Research in learning unequivocally shows that writing about a subject increases understanding of that subject. In UCSB's general education oceanography class, a series of increasingly demanding activities culminates in two science papers that use earth data. These activities are: 1) homework problems, 2) in-class short writing activities, 3) lab section exploration activities and presentations, and 4) the science paper. The subjects of the two papers are: Plate Tectonics and Ocean and Climate. Each student is a member of a group that adopts a country and must relate their paper to the environment of their country. Data are accessed using the "Our Dynamic Planet" and "Global Ocean Data Viewer" (GLODV) CD's. These are integrated into EarthEd Online, a software package which supports online writing, review, commenting, and return to the student. It also supports auto-graded homework assignments, grade calculation, and other class management functions. The writing assignments emphasize the construction of a scientific argument. This process is explained explicitly, requiring statements that: 1) include an observation or description of an observation (e.g. elevation profiles, quakes), 2) name features based on the observation (e.g. trench, ridge), 3) describe of features (e.g. trends NW, xxxkm long), 4) describe relationships between features (e.g. quakes are parallel to trench), 5) describe a model or theory (e.g. cartoon type

  2. Correlations and Statistics of the Discrete Spectra of Multielectron Quantum Dots

    NASA Astrophysics Data System (ADS)

    Marcus, Charles M.

    1998-03-01

    This talk concerns the effects of electron-electron interactions on the ground state and excited state spectra of multielectron quantum dots. Recent experiments are described in which linear and nonlinear magnetoconductance measurements of Coulomb blockade peaks in low-temperature regime, kT<Δ << Ec (Δ is the mean level spacing, Ec is the charging energy), are used to ``fingerprint'' individual quantum levels, as ground states as well as excited states. Quantum levels maintain their magnetofingerprint for up to 4 consecutive peaks, moving sequentially from higher excited states to the ground state as electrons are added to the dot.(D.R. Stewart, D.S. Sprinzak, C.M. Marcus, C. I. Duruoz, J.S. Harris, Jr., Science 278), 17 84 (1997). This observation is (perhaps surprisingly) in accordance with a simple single-particle constant-interaction picture of quantum Coulomb blockade transport, except for a notable absence of spin degeneracy in the spectrum. In a related measurement (S. R. Patel, S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C. M. Marcus, C. I. Duruoz, J. S. Harris, K. Campman, A. C. Gossard, "Statistics of Peak Spacing Fluctuations" (preprint) condmat/9708090), the distribution of spacings between Coulomb blockade peaks measured over ~ 10^4 peaks also fails to show spin degeneracy, which would show up as a bimodal spacing distribution. Both experiments suggest that multielectron chaotic or disordered dots show a breaking of spin pairing similar to Hund's rule effects in atoms and few-electron parabolic dots. Related papers can be found at http:// www.stanford.edu/group/MarcusLab/grouppubs.html. Support for the Marcus Group from ARO (DAAH04-95-1-0331), ONR (N00014-94-1-0622) and NSF-NYI and PECASE programs, for the Harris Group (Stanford) from JSEP (DAAH04-94-G-0058), and for the Gossard Group (UCSB) from the AFOSR (F49620-94-1-0158) and QUEST is greatfully acknowledged.

  3. New Tools for Viewing Spectrally and Temporally-Rich Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Bradley, E. S.; Toomey, M. P.; Roberts, D. A.; Still, C. J.

    2010-12-01

    High frequency, temporally extensive remote sensing datasets (GOES: 30 minutes, Santa Cruz Island webcam: nearly 5 years at every 10 min.) and airborne imaging spectrometry (AVIRIS with 224 spectral bands), present exciting opportunities for education, synthesis, and analysis. However, the large file volume / size can make holistic review and exploration difficult. In this research, we explore two options for visualization (1) a web-based portal for time-series analysis, PanOpt, and (2) Google Earth-based timestamped image overlays. PanOpt is an interactive website (http://zulu.geog.ucsb.edu/panopt/), which integrates high frequency (GOES) and multispectral (MODIS) satellite imagery with webcam ground-based repeat photography. Side-by-side comparison of satellite imagery with webcam images supports analysis of atmospheric and environmental phenomena. In this proof of concept, we have integrated four years of imagery for a multi-view FogCam on Santa Cruz Island off the coast of Southern California with two years of GOES-11 and four years of MODIS Aqua imagery subsets for the area (14,000 km2). From the PHP-based website, users can search the data (date, time of day, etc.) and specify timestep and display size; and then view the image stack as animations or in a matrix form. Extracted metrics for regions of interest (ROIs) can be viewed in different formats, including time-series and scatter plots. Through click and mouseover actions over the hyperlink-enabled data points, users can view the corresponding images. This directly melds the quantitative and qualitative aspects and could be particularly effective for both education as well as anomaly interpretation. We have also extended this project to Google Earth with timestamped GOES and MODIS image overlays, which can be controlled using the temporal slider and linked to a screen chart of ancillary meteorological data. The automated ENVI/IDL script for generating KMZ overlays was also applied for generating same

  4. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Phillips, Cynthia B.; Povich, Matthew S.; Prather, Edward E.; Smecker-Hane, Tammy A.

    2015-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, particularly underrepresented minorities and women, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.CAMPARE is an innovative REU-like summer research program, currently in its sixth year, comprising a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and ten major research institutions (University of Arizona Steward Observatory, the SETI Institute, JPL, Caltech, and the five Southern California UC campuses, UCLA, UCI, UCSD, UCR, and UCSB).In its first five summers, CAMPARE sent a total of 49 students from 10 different CSU and community college campuses to 5 research sites of the program. Of these 49 participants, 25 are women and 24 are men; 22 are Hispanic, 4 are African American, and 1 is Native American, including 6 female Hispanic and 2 female African-American participants. Twenty-one (21) CAMPARE participants have graduated from college, and more than half (11) have attended or are attending a graduate program, including 8 enrolled in PhD or Master's-to-PhD programs. Over twenty CAMPARE students have presented at the AAS and other national meetings.The Cal-Bridge program is a diverse network of higher education institutions in Southern California, including 5 UC campuses, 8 CSU campuses, and 7 community colleges dedicated to the goal of increasing the number of underrepresented minority and female students attending graduate school in astronomy or related fields. We have recently selected our inaugural group of five 2014 Cal-Bridge Scholars, including four women (two Hispanic and one part Native American), and one Hispanic man

  5. CAMPARE and Cal-Bridge: Two Institutional Networks Increasing Diversity in Astronomy

    NASA Astrophysics Data System (ADS)

    Rudolph, Alexander L.; Impey, Chris David; Phillips, Cynthia B.; Povich, Matthew S.; Prather, Edward E.; Smecker-Hane, Tammy A.

    2015-01-01

    We describe two programs, CAMPARE and Cal-Bridge, with the common mission of increasing participation of groups traditionally underrepresented in astronomy, particularly underrepresented minorities and women, through summer research opportunities, in the case of CAMPARE, scholarships in the case of Cal-Bridge, and significant mentoring in both programs, leading to an increase in their numbers successfully pursuing a PhD in the field.CAMPARE is an innovative REU-like summer research program, currently in its sixth year, comprising a network of comprehensive universities and community colleges in Southern California and Arizona (most of which are minority serving institutions), and ten major research institutions (University of Arizona Steward Observatory, the SETI Institute, JPL, Caltech, and the five Southern California UC campuses, UCLA, UCI, UCSD, UCR, and UCSB).In its first five summers, CAMPARE sent a total of 49 students from 10 different CSU and community college campuses to 5 research sites of the program. Of these 49 participants, 25 are women and 24 are men; 22 are Hispanic, 4 are African American, and 1 is Native American, including 6 female Hispanic and 2 female African-American participants. Twenty-one (21) CAMPARE participants have graduated from college, and more than half (11) have attended or are attending a graduate program, including 8 enrolled in PhD or Master's-to-PhD programs. Over twenty CAMPARE students have presented at the AAS and other national meetings.The Cal-Bridge program is a diverse network of higher education institutions in Southern California, including 5 UC campuses, 8 CSU campuses, and 7 community colleges dedicated to the goal of increasing the number of underrepresented minority and female students attending graduate school in astronomy or related fields. We have recently selected our inaugural group of five 2014 Cal-Bridge Scholars, including four women (two Hispanic and one part Native American), and one Hispanic man

  6. Strong Motion Recording in the United States

    NASA Astrophysics Data System (ADS)

    Archuleta, R. J.; Fletcher, J. B.; Shakal, A. F.

    2014-12-01

    The United States strong motion program began in 1932 when the Coast and Geodetic Survey (C&GS) installed eight strong motion accelerographs in California. During the March 1933 Long Beach earthquake, three of these produced the first strong motion records. With this success the C&GS expanded the number of accelerographs to 71 by 1964. With development of less expensive, mass-produced accelerographs the number of strong motion accelerographs expanded to ~575 by 1972. Responsibilities for operating the network and disseminating data were transferred to the National Oceanic and Atmospheric Administration in 1970 and then to the U.S. Geological Survey in 1973. In 1972 the California Legislature established the California Strong Motion Instrumentation Program (CSMIP). CSMIP operates accelerographs at 812 ground stations, with multi-channel accelerographs in 228 buildings, 125 lifelines and 37 geotechnical arrays, in California. The USGS and the ANSS effort operate accelerographs at 1584 ground stations, 96 buildings, 14 bridges, 70 dams, and 15 multi-channel geotechnical arrays. The USC Los Angeles array has 78 ground stations; UCSB operates 5 geotechnical arrays; other government and private institutions also operate accelerographs. Almost all accelerographs are now digital with a sampling rate of 200 Hz. Most of the strong motion data can be downloaded from the Center for Engineering Strong Motion Data (http://strongmotioncenter.org). As accelerographs have become more sophisticated, the concept of what constitutes strong motion has blurred because small earthquakes (M ~3) are well recorded on accelerometers as well as seismometers. However, when accelerations are over ~10%g and velocities over ~1 cm/s, the accelerometers remain on scale, providing the unclipped data necessary to analyze the ground motion and its consequences. Strong motion data are essential to the development of ground motion prediction equations, understanding structural response, performance

  7. STRIDES: Galaxy Evolution over Cosmic Time from new samples of Gravitationally Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Treu, Tommaso

    2015-08-01

    When a quasar is gravitationally lensed by a galaxy, its multiple images show light-curves that are offset by awell defined time delay, which depends on the mass profile of the lens and on cosmological distances to the lens and the source. By measuring the time-delay and accurately modelling the deflector's mass profile, this provides one-step measurements of cosmological distances to objects at redshift $z\\sim1,$ whence the cosmological parameters (primarily $H_0$). One can turn this argument around and learn about galaxies instead, or even perform a joint (and less biased) inference. The joint modelling of the lens, the source structure and time-variability implies that the DM halos of lens galaxies at z~0.4-1 and the source properties of quasars and their hosts at z~1-2are inferred, besides information on cosmology that is complementary to other low-redshift probes such as SN Ia and BAO.A large (N~100) sample of lensed quasars will be transformative in this sense, as these systems are rare on the sky.I will describe our STRIDES[*] searches in the Dark Energy Survey, aiming at 120 previously unknown lensed quasars brighter than i=21. Candidates have been selected with a variety of data mining techniques and flagged for follow-up (on spectroscopy, high-resolution imaging and lightcurve variability), which will take place in the following months. I will also cover recent modelling development of already monitored lenses within our collaboration, including a sharp multi-band reconstruction of the sources and use of stellar kinematics to ensure unbiased uncertainties on the lens mass profiles.This will lead to: (i) percent-level uncertainties on cosmological parameters(ii) insight on the coevolution of quasars and their host galaxies throughout cosmic time, up to z~2(iii) a quantative description of dark matter density profiles and the substructure content in massive galaxies up to z~1.[*] strides.physics.ucsb.edu

  8. EarthEd Online: Open Source Online Software to Support Large Courses

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2003-12-01

    from the course web server. Students rate the writing assignments as the most effective learning activity in the course. This project is in an evaluation and dissemination phase. An open source model is planned for distribution. For documentation and information about the EarthEd team, see: http://oceanography.geol.ucsb.edu/Collab/software.html

  9. PREFACE: Nanosafe 2012: International Conferences on Safe Production and Use of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tardif, François

    2013-04-01

    , FR) Co-chair: Georgios KATALAGARIANAKIS (EC, BE) Mélanie AUFFAN (CEREGE, FR) Jorge BOCZKOWSKI (INSERM, FR) Jean-Yves BOTTERO (CEREGE, FR) Jacques BOUILLARD (INERIS, FR) Derk BROUWER (TNO, NL) Marie CARRIERE (CEA, FR) Claude EMOND (U. MONTREAL, CA) Cassandra ENGEMAN (UCSB, USA) Eric GAFFET (CNRS, FR) François GENSDARMES (IRSN, FR) Alexei GRINBAUM (CEA, FR) Antje GROBE (U.STUTTGART, DE) Peter HOET (KUL, BE) Eric QUEMENEUR (CEA, FR) Olivier LE BIHAN (INERIS, FR) Robert MUIR (NANEUM, UK) Tinh NGUYEN (NIST, USA) Bernd NOWACK (EMPA, CH) Günter OBERDÖRSTER (U. ROCHESTER, USA) David PUI (U. MINNESOTA, USA) Michael RIEDIKER (IST, CH) Yves SAMSON (CEA, FR) Ken TAKEDA (U. TOKYO, JP) Olivier WITSCHGER (INRS, FR) The PDF contains a list of sponsor logos, the conference programme and planning documents.

  10. Borehole Initiatives In France and Greece: The Grenoble and Corinth Gulf Vertical Arrays

    NASA Astrophysics Data System (ADS)

    Lemeille, F.; Berge-Thierry, C.; Hatzfeld, D.; Bernard, P.

    The near-surface geological site conditions in the upper tens of meters are one of the dominant factors in controlling the amplitude and variation of strong ground motion, and the damage patterns that result from large earthquakes. Our understanding of these site effects comes primarily from surface recordings. In recent years, however, the increase in the number of borehole instruments provides a significant step forward in directly measuring the effects of surface geology. In the last ten years, the IPSN has been involved in the Garner Valley Deep Accelerom- eter Project (GVDA) in Southern California in collaboration with the Nuclear Regula- tory Commission (NRC) and the University of California Santa Barbara (UCSB) both in the USA. This project has produced valuable data to study site effects and it con- stituted a milestone in terms of managing experience of a vertical array. In this way in order to study site effects in the European Community, IPSN is also collaborating in two recent projects, one in Grenoble (France), and another in the Gulf of Corinth (Greece). In the Grenoble valley, a 556 m deep borehole has been drilled. This project is also supported by the LGIT in 1999-2000 with local and ministerial funding. The ref- erence accelerometer is in the Mesozoic basement at 556 m deep. On the surface, the accelerometer is also part of the Permanent Accelerometric Network ruled by the LGIT. The borehole drilling was performed together with acoustic logging. One year of recording of accelerations is available on the Web. The LGIT, BRGM and INPG/3S carried out geophysical experiments on the site as well. In the framework of CORSEIS European program, IPSN together with ENS Paris, IPG Paris (France), AUTH and NKUA (Greece), are supporting a vertical array of accelerometers and pore pressure transducers dedicated to the study of liquefaction and nonlinearity in the Aigion harbor. These phenomena occurred during the June 15 1995 (M = 6.2) event. All transducers are

  11. Catalytic conversion of nonfood woody biomass solids to organic liquids.

    PubMed

    Barta, Katalin; Ford, Peter C

    2014-05-20

    This Account outlines recent efforts in our laboratories addressing a fundamental challenge of sustainability chemistry, the effective utilization of biomass for production of chemicals and fuels. Efficient methods for converting renewable biomass solids to chemicals and liquid fuels would reduce society's dependence on nonrenewable petroleum resources while easing the atmospheric carbon dioxide burden. The major nonfood component of biomass is lignocellulose, a matrix of the biopolymers cellulose, hemicellulose, and lignin. New approaches are needed to effect facile conversion of lignocellulose solids to liquid fuels and to other chemical precursors without the formation of intractable side products and with sufficient specificity to give economically sustainable product streams. We have devised a novel catalytic system whereby the renewable feedstocks cellulose, organosolv lignin, and even lignocellulose composites such as sawdust are transformed into organic liquids. The reaction medium is supercritical methanol (sc-MeOH), while the catalyst is a copper-doped porous metal oxide (PMO) prepared from inexpensive, Earth-abundant starting materials. This transformation occurs in a single stage reactor operating at 300-320 °C and 160-220 bar. The reducing equivalents for these transformations are derived by the reforming of MeOH (to H2 and CO), which thereby serves as a "liquid syngas" in the present case. Water generated by deoxygenation processes is quickly removed by the water-gas shift reaction. The Cu-doped PMO serves multiple purposes, catalyzing substrate hydrogenolysis and hydrogenation as well as the methanol reforming and shift reactions. This one-pot "UCSB process" is quantitative, giving little or no biochar residual. Provided is an overview of these catalysis studies beginning with reactions of the model compound dihydrobenzofuran that help define the key processes occurring. The initial step is phenyl-ether bond hydrogenolysis, and this is followed by

  12. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    SciTech Connect

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-12

    are the following: • Photo-excitation of the donor (or the acceptor). • Charge transfer with holes in the donor domain and electrons in the acceptor domain. • Sweep-out to electrodes prior to recombination by the internal electric field. • Energy delivered to the external circuit. Each of these four steps was studied in detail using a wide variety of organic semiconductors with different molecular structures. This UC Santa Barbara group was the first to clarify the origin and the mechanism involved in the ultrafast charge transfer process. The ultrafast charge transfer (time scale approximately 100 times faster than the first step in the photo-synthesis of green plants) is the fundamental reason for the potential for high power conversion efficiency of sunlight to electricity from plastic solar cells. The UCSB group was the first to emphasize, clarify and demonstrate the need for sweep-out to electrodes prior to recombination by the internal electric field. The UCSB group was the first to synthesize small molecule organic semiconductors capable of high power conversion efficiencies. The results of this research were published in high impact peer-reviewed journals. Our published papers (40 in number) provide answers to fundamental questions that have been heavily discussed and debated in the field of Bulk Heterojunction Solar Cells; scientific questions that must be resolved before this technology can be ready for commercialization in large scale for production of renewable energy. Of the forty publications listed, nineteen were co-authored by two or more of the PIs, consistent with the multi-investigator approach described in the original proposal. The specific advantages of this “plastic” solar cell technology are the following: a. Manufacturing by low-cost printing technology using soluble organic semiconductors; this approach can be implemented in large scale by roll-to-roll printing on plastic substrates. b. Low energy cost in manufacturing; all steps

  13. TeraShake-2: Next Steps

    NASA Astrophysics Data System (ADS)

    Minster, J.; Olsen, K.; Day, S.; Cui, Y.; Faerman, M.; Moore, R.; Okaya, D.; Jordan, T.; Archuleta, R.; Hu, Y.; Ely, G.

    2005-12-01

    The SCEC ITR collaboration achieved a series of earthquake simulations on the southern segment of the San Andreas fault that brought to light an heretofore unsuspected pattern of seismic hazard, linked to fault geometry, rupture directivity, and wave propagation through the three-dimensional SCEC Community velocity model. This set of simulations, labeled TeraShake-1 relied on a kinematic fault rupture model scaled from inversion results for the 1999 Denali earthquake. That model is quite severely constrained, and questions remain about the level of uncertainty we should attach to these results. We report on the next stage of development that incorporates a spontaneous rupture model, using one or more of several codes being compared as part of the SCEC spontaneous rupture mode validation effort. There exist about a dozen such codes. We are initially restricting our focus on four such codes: (1) the 2nd-order Dynamic Fault Model (DFM) FD code that has passed numerous tests; (2) the 4th order FD Anelastic Wave Propagation Model (AWM) code, used in the SCEC TeraShake-I and Cybershake projects; (3) the UCSB Finite Element spontaneous rupture and wave propagation code; (4) the SIO 'mimetic' Support-Operator Rupture Dynamic (SORD) code. All these have quite different levels of maturity. A major challenge is that the range of scales involved in such simulations is enormous: the inner scale associated with rupture characteristics is in the range of 1-100 meters, while the outer scale associated with geology, wave propagation, and hazard assessment reaches 600 kilometers. Time scales cover an equally broad range of magnitudes. This combination raises a numerical 'grand challenge' that pushes the limits of available computing systems. Additional considerations include desired capabilities to model nonplanar faults, and to include surface topography in the calculation. Recent SCEC research results show that such complications are indeed potentially important for accurate

  14. Study of the variability of Atlantic Intertropical Convergence Zone using multivariate indices

    NASA Astrophysics Data System (ADS)

    Nóbile Tomaziello, A.; Gandu, A.; Carvalho, L. V.

    2013-05-01

    Ana Carolina Nóbile Tomaziello, Adilson Wagner Gandu Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Brazil carolnobile@model.iag.usp.br; adwgandu@model.iag.usp.br Leila Maria Véspoli de Carvalho Department of Geography, University of California, Santa Barbara, United States leila@eri.ucsb.edu The variability of Atlantic Intertropical Convergence Zone (ITCZ) is studied using multivariate indices based on the first and second combined EOF (EOFc) of anomalies of zonal and meridional wind's components, specific humidity, and air temperature at 850 mb, and precipitation. The EOFc's spatial domain encompassed tropical Atlantic Ocean and part of Brazilian Northeast and western Africa. Silva and Carvalho (2007) described a similar index in order to characterize the South American monsoon. First and second modes of EOFc describe successfully ITCZ's main features. Composites for the percentile of 25% (75%) for EOFc-1 show convection (suppression), and easterly and south (westerly and north) wind anomalies in ITCZ. There are negative anomalies of humidity over central Brazil when there are positive ones over ITCZ, and vice-versa. For the second mode, composites for the percentile of 25% (75%) show convection (suppression), westerly and south (easterly and north) wind anomalies in ITCZ, and negative (positive) anomalies of temperature in tropical Atlantic. Negative (positive) anomalies of humidity in northern and northwestern South America, and central Brazil are accompanied by positive (negative) ones in tropical north Atlantic. Convergence (divergence) of meridional wind in tropical Atlantic is associated with divergence (convergence) over southern and part of southeastern Brazil. EOFc-2 illustrates a possible relationship between SACZ and ITCZ and also shows a Pacific-South America (PSA) like pattern teleconnecting Indian and Pacific Oceans to South America. The PSA-like wave train has opposite phases for percentiles of 25% and 75

  15. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this

  16. Physics-Based Spectra of Accretion Disks around Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2005-01-01

    The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important

  17. Learning Science Process Through Data Exploration and Writing

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2007-12-01

    One of the most effective ways of teaching science process is to have students take part in the same activities that practicing scientists engage in. These activities include studying the current research in the field, discussing ideas with colleagues, formulating a research problem, making a proposal defining the problem and plan of attack, presenting and writing about the results of the study, and critically reviewing the work of others. An inquiry curriculum can use these activities to guide the scaffolding of assignments and learning experiences that help students learn science process. At UCSB, students in a large general education oceanography class use real Earth data to study plate tectonics, the Indian Monsoon, climate change, and the health of the world fisheries. The end product for each subject has been a science paper based on Earth data. Over a period of approximately 15 years, the scaffolding of activities to prepare each student for the written assignments has been modified and improved, in response to student feedback and their success with the assignments. I have found that the following resources and sequence of activities help the oceanography students write good science papers. 1. Lecture: motivation and the opportunity for feedback and questions. 2. Textbook: background information. It is also possible to get the information from the internet, but unless the scope of reading is strictly defined, students don't know when to stop reading and become unhappy. 3. Online assignments: automatically graded assignments that force the student to keep up with reading. 4. Questions of the day: in-class handouts, with diagrams that the students either complete, or answer questions about. They are handed in and tallied, but not graded. They also inform the instructor of misconceptions. 5. Thought questions: student answers are posted on a threaded discussion list, and are due prior to lecture. The answers provide instructor feedback and guide the lecture

  18. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    NASA Astrophysics Data System (ADS)

    Kazemiroodsari, Hadi

    implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.

  19. [Interview]: Alexandre Shvartsburg, Pacific Northwest National Laboratory, Richland, WA, USA

    SciTech Connect

    Shvartsburg, Alexandre A.

    2012-12-01

    Q1. What are your main research activities in ion mobility mass spectrometry (past or present)? My early efforts focused on the structural characterization of atomic (carbon and semiconductor) clusters. After the production of bulk fullerenes, many hoped that other nanoclusters discovered in the gas phase could also coalesce into new materials. As these studies required accurate and robust mobility calculations for any ion geometry, I strived to build the needed theory and implement it in the Mobcal software widely employed today. Since 2004, I have been developing methods and novel applications of differential IMS (FAIMS) at PNNL. The principal achievement has been raising the resolving power by over tenfold (up to ~400 for multiply-charged peptides) using elevated fields, helium and hydrogen-rich buffers, and extended filtering times. This performance broadly allows previously unthinkable separations of very similar species, for example sequence inversions and post-translational modification localization isomers of peptides (including “middle-down” peptides such as histone tails), lipid regioisomers, and even isotopomers. Another major direction is investigating the dipole alignment of larger proteins, which creates an exceptionally strong FAIMS effect that is a potential tool for structural biology. Q2: What have been the most significant instrumentation or applications developments in the history of ion mobility - mass spectrometry? In 1995 when I started graduate research at Northwestern, only two groups worldwide worked with IMS/MS and “the literature” meant papers by Bowers (UCSB). Well-wishers counseled me to “learn something useful like HPLC, as IMS would never have real utility”. This booklet showcases the scale of change since. First, the practical IMS/ToF platforms for complex biological analyses demonstrated by Clemmer have turned IMS/MS from an esoteric physical chemistry technique into a powerful analytical tool. By commercializing the

  20. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    Sathyaprakash, B. S.; Singh, Tejinder

    2014-03-01

    painstaking task of proofreading and copyediting the accepted papers. We also thank the SOC, and the Workshop Chairs for their help in putting together an excellent scientific programme, the LOC for the wonderful organization, and the referees of papers for their help in improving the quality of the papers. Finally, we would like to thank all the authors who have made the publication of these proceedings possible, through their contribution. B S Sathyaprakash and Tejinder P Singh Scientific Organizing Committee Pijushpani Bhattacharjee (SINP, India) J Richard Bond (CITA, Canada) Manuela Campanelli (RIT, USA) Debajyoti Choudhury (Delhi University, India) Richard Ellis (Caltech, USA) Gary Gibbons (DAMTP, UK) Pankaj Joshi (TIFR, India) Romesh Kaul (IMSc, India) Subhabrata Majumdar (TIFR, India) Don Marolf (UCSB, USA) Ramesh Narayan (CfA, Harvard University, USA) Lyman Page (Princeton University, USA) Misao Sasaki (YITP, Japan) B S Sathyaprakash (Cardiff University, UK) Ashoke Sen (HRI, India) Tarun Souradeep (IUCAA, India) [Chair] P S Sreekumar (ISRO, India) Alexei Starobinsky (Landau Institute, Russia) Sumati Surya (RRI, India) C S Unnikrishnan (TIFR, India) Spenta Wadia (TIFR, India) Local Organzing Committee Ghanashyam Date A Gopakumar Subhabrata Majumdar D Narasimha T P Singh (Chair) Supporting Staff V Chellathurai [Scientific Programmes Coordinator] Ashok Deshpande [Accounts Officer] Margaret D'Souza [Secretary] Shobha Jagtap [Secretary] Nishikant Kadam [Secretary] Vijay Kadam [Assistant] A list of participants is available in the PDF

  1. Preliminary results of field mapping of methane plumes offshore of Coal Oil Point, California with a RESON 7125 multibeam sonar in water-column mode

    NASA Astrophysics Data System (ADS)

    Finlayson, D. P.; Hatcher, G.; Lorenson, T. D.; Greinert, J.; Maillard, E.; Weirathmueller, M.; Leifer, I.

    2010-12-01

    From June 17 - 23 2010, the U. S. Geological Survey (USGS) in collaboration with the Bureau of Ocean Energy Management Regulation and Enforcement(BOEMRE), the Royal Netherlands Institute for Sea Research (NIOZ) , RESON Inc. and the University of California, Santa Barbara(UCSB) conducted a comprehensive marine-seep gas-plume mapping study offshore of Coal Oil Point, California. The ultimate goal of the experiment is to quantify the amount of methane emitted from natural seeps using multibeam sonar, with results calibrated using field measurements of aqueous and atmospheric methane in the seep fields. Success will lead to better estimates of natural marine methane contributions to the global methane budget. We mapped selected seeps, some twice, with a pole-mounted RESON 7125 multibeam with a 10-degree forward rake. Other equipment included a Benthos Stingray ROV equipped with high-definition video cameras and in situ gas sampling apparatus, Niskin bottles for water column sampling of dissolved methane, and a Picarro G1301 cavity ringdown spectrometer for mapping atmospheric methane concentrations. This paper focuses primarily on the data reduction and data visualization strategies employed while processing the more than 1.2 TB of raw water column data collected by the multibeam system over several high-output oil and gas seep areas. Water depths ranged from about 30 to 80m. Turnkey software solutions for processing these data are currently unavailable so most of the processing code was developed in-house by the USGS. The main challenge in processing the sonar water-column data is ray-tracing the large volume of data, with each ping containing more than 4500 times as many samples as a conventional multibeam ping. We employed two strategies to make processing tractable on conventional workstations: (1) decimate the raw data based on desired output resolution before ray-tracing; and (2) design the ray-tracing program to run in parallel on multi-core workstations

  2. CEEM Final Technical Report

    SciTech Connect

    Bowers, John

    2014-11-26

    The mission of the Center for Energy Efficient Materials (CEEM) was to serve the Department of Energy and the nation as a center of excellence dedicated to advancing basic research in nano-structured materials and devices for applications to solar electricity, thermoelectric conversion of waste heat to electricity, and solidstate lighting. The foundation of CEEM was based on the unique capabilities of UCSB and its partner institutions to control, synthesize, characterize, model, and apply materials at the nanoscale for more efficient sustainable energy resources. This unique expertise was a key source of the synergy that unified the research of the Center. Although the Center’s focus was basic research, It’s longer-term objective has been to transfer new materials and devices into the commercial sector where they will have a substantial impact on the nation’s need for efficient sustainable energy resources. As one measure of the impact of the Center, two start-up companies were formed based on its research. In addition, Center participants published a total of 210 archival journal articles, of which 51 were exclusively sponsored by the DOE grant. The work of the Center was structured around four specific tasks: Organic Solar Cells, Solid-State Lighting, Thermoelectrics, and High Efficiency Multi-junction Photovoltaic devices. A brief summary of each follows – detailed descriptions are in Sections 4 & 5 of this report. Research supported through CEEM led to an important shift with respect to the choice of materials used for the fabrication of solution deposited organic solar cells. Solution deposition opens the opportunity to manufacture solar cells via economically-viable high throughput tools, such as roll to roll printing. Prior to CEEM, most organic semiconductors utilized for this purpose involved polymeric materials, which, although they can form thin films reliably, suffer from batch to batch variations due to the statistical nature of the chemical

  3. Scaling Mesa Indium Phosphide DHBTs to Record Bandwidths

    NASA Astrophysics Data System (ADS)

    Lobisser, Evan

    investigated with UCSB grown epitaxial material and the fabrication of transmission line model structures. Electron beam lithography processes were developed and employed for both emitter and base layers. Epitaxial designs were scaled and revised, and grown by a commercial vendor. These process developments are detailed in Chapter 3. Transistor electrical characteristics were measured using a semiconductor parameter analyzer at DC and network analyzers for RF measurements at frequencies up to 220 GHz. Both on- and off-wafer network analyzer calibration structures were designed and fabricated, and the calibration techniques were compared. New structures for transmission line model measurements of contact resistivity have been designed and used in the measurement of new ohmic contact processes. Measurement techniques are detailed in Chapter 4. Two transistor results are presented in Chapter 5. For each device, epitaxial designs are presented, and band diagrams, both without current flow and under peak bias conditions are shown. The processes used to fabricate each transistor are detailed. For the first result, referred to as DHBT 43, ftau = 360 GHz and fmax > 800 GHz was obtained with 200 nm wide emitter-base junctions and 150 nm thick collectors. For the second result, referred to as DHBT 60, ftau = 530 GHz and fmax = 750 GHz was obtained with 150 nm wide emitter-base junctions and 70 nm thick collectors. Both transistors feature a refractory emitter contact, and the second result uses electron-beam lithography to narrow the emitter-base and base-collector junction widths. DC measurements of common-emitter I-V curves and Gummel plots are used to extract device parameters like breakdown voltage, current gain, and base and collector ideality constants. On-wafer TLM structures are used to extract device base and collector resistance. S-parameter measurements at RF frequencies are used to extract cutoff frequencies ftau and fmax, as well as device parameters necessary to generate

  4. Preface: SciDAC 2009

    NASA Astrophysics Data System (ADS)

    Simon, Horst

    2009-07-01

    and posters goes to the teams of researchers, the success of this year's conference is due to the strong efforts and support from members of the 2009 SciDAC Program Committee and Organizing Committee, and I would like to extend my heartfelt thanks to them for helping to make the 2009 meeting the largest and most successful to date. Program Committee members were: David Bader, LLNL; Pete Beckman, ANL; John Bell, LBNL; John Boisseau, University of Texas; Paul Bonoli, MIT; Hank Childs, LBNL; Bill Collins, LBNL; Jim Davenport, BNL; David Dean, ORNL; Thom Dunning, NCSA; Peg Folta, LLNL; Glenn Hammond, PNNL; Maciej Haranczyk, LBNL; Robert Harrison, ORNL; Paul Hovland, ANL; Paul Kent, ORNL; Aram Kevorkian, SPAWAR; David Keyes, Columbia University; Kwok Ko, SLAC; Felice Lightstone, LLNL; Bob Lucas, ISI/USC; Paul Mackenzie, Fermilab; Tony Mezzacappa, ORNL; John Negele, MIT; Jeff Nichols, ORNL; Mike Norman, UCSD; Joe Oefelein, SNL; Jeanie Osburn, NRL; Peter Ostroumov, ANL; Valerio Pascucci, University of Utah; Ruth Pordes, Fermilab; Rob Ross, ANL; Nagiza Samatova, ORNL; Martin Savage, University of Washington; Tim Scheibe, PNNL; Ed Seidel, NSF; Arie Shoshani, LBNL; Rick Stevens, ANL; Bob Sugar, UCSB; Bill Tang, PPPL; Bob Wilhelmson, NCSA; Kathy Yelick, NERSC/LBNL; Dave Zachmann, Vista Computational Technology LLC. Organizing Committee members were: Communications: Jon Bashor, LBNL. Contracts/Logistics: Mary Spada and Cheryl Zidel, ANL. Posters: David Bailey, LBNL. Proceedings: John Hules, LBNL. Proceedings Database Developer: Beth Cerny Patino, ANL. Program Committee Liaison/Conference Web Site: Yeen Mankin, LBNL. Tutorials: David Skinner, NERSC/LBNL. Visualization Night: Hank Childs, LBNL; Valerio Pascucci, Chems Touati, Nathan Galli, and Erik Jorgensen, University of Utah. Again, my thanks to all. Horst Simon San Diego, California June 18, 2009

  5. PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert

    2008-10-01

    ) Institute for Laser Engineering (ILE), Osaka, Japan (Division Head: Dr K Nishihara) Illinois Institute of Technology (IIT), Chicago, USA (College of Science and Letters, Department of Applied Mathematics: Dr S I Abarji) and thanks them for making this event possible. The Organizing Committee appreciates the assistance of Suzie Radosic (administrator and assistant, ICTP) Daniil Ilyin (web-master, Chicago) Elena Magnus (assistant, Chicago) We express our gratitude for the help with the Conference Program to the members of the Scientific Advisory Committee S I Abarzhi (The University of Chicago, Illinois Institute of Technology, USA) G Ahlers (University of California at Santa Barbara, USA) M J Andrews (Los Alamos National Laboratory, Texas A & M University, USA) S I Anisimov (Landau Institute for Theoretical Physics, Russia) E Bodenschatz (Max Plank Institute, Gottingen, Germany) S Dalziel (DAMTP, University of Cambridge, UK) R Ecke (Los Alamos National Laboratory, USA) H J Fernando (Arizona State University, USA) S Gauthier (Commissariat à l'Energie Atomique, France) G A Glatzmaier (University of California at Santa Cruz, USA) W A Goddard III (California Institute of Technology, USA) L P Kadanoff (The University of Chicago, USA) D Q Lamb (The University of Chicago, USA) D P Lathrop (University of Maryland, USA) S Lebedev (Imperial College, UK) P Manneville (Ecole Polytechnique, France) D I Meiron (California Institute of Technology, USA) H Nagib (Illinois Institute of Technology, Chicago, USA) J Niemela (International Center for Theoretical Physics, Italy) K Nishihara (Institute for Laser Engineering, Osaka, Japan) S A Orszag (Yale University, USA) E Ott (University of Maryland, USA) N Peters (RWTS, Aachen, Germany) S B Pope (Cornell, USA) B A Remington (Lawrence Livermore National Laboratory, USA) R Rosner (Argonne National Laboratory and The University of Chicago, USA) A Schmidt (Naval Research Laboratory, USA) K R Sreenivasan (International Centre for Theoretical Physics

  6. Preface: SciDAC 2008

    NASA Astrophysics Data System (ADS)

    Stevens, Rick

    2008-07-01

    Microsoft Research at a new conference facility in Redmond, Washington. Over 90 people attended the tutorials, which covered topics ranging from an introduction to BG/P programming to advanced numerical libraries. The SciDAC and INCITE programs and the DOE Office of Advanced Scientific Computing Research core program investments in applied mathematics, computer science, and computational and networking facilities provide a nearly optimum framework for advancing computational science for DOE's Office of Science. At a broader level this framework also is benefiting the entire American scientific enterprise. As we look forward, it is clear that computational approaches will play an increasingly significant role in addressing challenging problems in basic science, energy, and environmental research. It takes many people to organize and support the SciDAC conference, and I would like to thank as many of them as possible. The backbone of the conference is the technical program; and the task of selecting, vetting, and recruiting speakers is the job of the organizing committee. I thank the members of this committee for all the hard work and the many tens of conference calls that enabled a wonderful program to be assembled. This year the following people served on the organizing committee: Jim Ahrens, LANL; David Bader, LLNL; Bryan Barnett, Microsoft; Peter Beckman, ANL; Vincent Chan, GA; Jackie Chen, SNL; Lori Diachin, LLNL; Dan Fay, Microsoft; Ian Foster, ANL; Mark Gordon, Ames; Mohammad Khaleel, PNNL; David Keyes, Columbia University; Bob Lucas, University of Southern California; Tony Mezzacappa, ORNL; Jeff Nichols, ORNL; David Nowak, ANL; Michael Papka, ANL; Thomas Schultess, ORNL; Horst Simon, LBNL; David Skinner, LBNL; Panagiotis Spentzouris, Fermilab; Bob Sugar, UCSB; and Kathy Yelick, LBNL. I owe a special thanks to Mike Papka and Jim Ahrens for handling the electronic theater. I also thank all those who submitted videos. It was a highly successful experiment. Behind the

  7. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    NASA Astrophysics Data System (ADS)

    Kornyshev, Alexei A.

    2010-10-01

    job should be left with computers. No Bessel functions, please!' This point of view was advocated by my office mate at KITP, Rob Philips, Professor of Applied Physics and Molecular Biophysics at Caltech, who found his new love—biology: from solid state theory. We had heated arguments about it. And my strongest one was that it was the maths of the now famous paper by Cochran et al [1] that allowed Watson and Crick to decipher the DNA x-ray patterns of Rosalind Franklin. The CCV formula for the x-ray scattering intensity fully explained the structure of the famous cross of the scattering maxima on the (kz, K)-map, where kz and K are, respectively, the components of the scattering wave-vector transfer in the direction along the main axis of the columnar array of the DNA molecules and in the perpendicular plane. From the distance and the position of the darkest spots on that pattern it was possible to deduce that the studied DNA has a shape of a double helix, to find its radius, the width of the minor and major groove, the vertical rise between base pairs, and the helical pitch. There were still some features in that pattern which have not been noticed, which were only understood half a century later after the corresponding extension of the CCV theory [2, 3], but those were not essential for solving the structure of DNA itself at that time, but rather for the understanding of DNA-DNA interactions and their effect on more subtle aspects of DNA structure, which are an issue today. The 'Bessel function' was the key player in the CCV equation and the extensions that followed. Dogma 3:'This happened once. It is unlikely to ever happen again' (from a conversation with a respectable editor of a high-profile biological journal about the revolution made by physics in biology). This is a common opinion, at least in the biological community. Note, that of the four discoverers of the DNA structure, three were physicists and only Watson was a biologist, and the key secret in that

  8. High energy neutrinos from astrophysical accelerators of cosmic ray nuclei

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.

    2008-02-01

    .SteckerC.DoneM.H.SalamonP.SommersPhys. Rev. Lett.6619912697(Erratum-ibid. 69 (1992) 2738)F.W.SteckerPhys. Rev. D722005107301A.AtoyanC.D.DermerPhys. Rev. Lett.872001221102L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B6002004202E.WaxmanJ.N.BahcallPhys. Rev. Lett.7819972292C.D.DermerA.AtoyanPhys. Rev. Lett.912003071102D.GuettaD.HooperJ.Alvarez-MunizF.HalzenE.ReuveniAstropart. Phys.202004429J.Alvarez-MunizF.HalzenD.W.HooperPhys. Rev. D622000093015A.LoebE.WaxmanJCAP06052006003S. Inoue, G. Sigl, F. Miniati, E. Armengaud, arXiv:astro-ph/0701167.E.WaxmanJ.N.BahcallPhys. Rev. D591999023002Phys. Rev. D642001023002K.MannheimR.J.ProtheroeJ.P.RachenPhys. Rev. D632001023003arXiv:astro-ph/9908031M.AhlersL.A.AnchordoquiH.GoldbergF.HalzenA.RingwaldT.J.WeilerPhys. Rev. D722005023001E.WaxmanAstrophys. J.4521995L1Note that the neutrino spectral shape can deviate from that for protons if the Feynman plateau is not flat in pseudo-rapidity space;L.AnchordoquiH.GoldbergC.NunezPhys. Rev. D712005065014This is in fact suggested by Tevatron data;F.AbeCDF CollaborationPhys. Rev. D4119902330J.G.LearnedS.PakvasaAstropart. Phys.31995267F.HalzenD.SaltzbergPhys. Rev. Lett.8119984305J.F.BeacomN.F.BellD.HooperS.PakvasaT.J.WeilerPhys. Rev. D682003093005(Erratum-ibid. D 72 (2005) 019901)L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B593200442L.A.AnchordoquiH.GoldbergF.HalzenT.J.WeilerPhys. Lett. B621200518A.M.HillasAnn. Rev. Astron. Astrophys.221984425For a general discussion on the acceleration time-scale in these sources see, e.g.,D.F.TorresL.A.AnchordoquiRep. Prog. Phys.6720041663M.C.BegelmanB.RudakM.SikoraAstrophys. J.362199038M.J.ChodorowskiA.A.ZdziarskiM.SikoraAstrophys. J.4001992181S.MichalowskiD.AndrewsJ.EickmeyerT.GentileN.MistryR.TalmanK.UenoPhys. Rev. Lett.391977737J.L.PugetF.W.SteckerJ.H.BredekampAstrophys. J.2051976638D.HooperS.SarkarA.M.TaylorAstropart. Phys.272007199The non-thermal energy release in GRBs is much smaller than that output by AGN.P.L.BiermannP.A.StrittmatterAstrophys. J.3221987643R

  9. AAS 227: Day 4

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 4 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Helen B. Warner Prize: Origins of Structure in Planetary Systems (by Erika Nesvold)Another excellent prize lecture started off todays sessions. The Helen B. Warner Prize is awarded for achievement in observational or theoretical astrophysics by a young researcher (no more than eight years after their Ph.D.). This years Warner Prize was presented to Ruth Murray-Clay of UC Santa Barbara. For her award lecture, Murray-Clay told us all about planetary system architecture: the number, masses, and orbits of planets in a given system.Ruth Murray-Clay [photo from http://web.physics.ucsb.edu/ ~murray/biocv.html]The underlying question motivating this type of research is: How rare is the Solar System? In other words, how likely is it that a given planetary system will have rocky planets close to their star, gas giants farther out, and ice giants at the outer reaches of the system? Answering this question will help us solve the physics problem of how and where planets form, and will also help us on our search for other planets like Earth.The data on exoplanet population from transit and radial velocity observations and from direct imaging tell us that our Solar System is not common (many systems we observe have much more eccentric gas giants), but that doesnt