Science.gov

Sample records for ahr active chemicals

  1. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction

    PubMed Central

    Vacca, Margherita; Nardelli, Claudia; Castegna, Alessandra; Arnesano, Fabio; Carella, Nicola; Depalo, Raffaella

    2016-01-01

    Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb. PMID:27008165

  2. Cardiac myocyte-specific AHR activation phenocopies TCDD-induced toxicity in zebrafish.

    PubMed

    Lanham, Kevin A; Plavicki, Jessica; Peterson, Richard E; Heideman, Warren

    2014-09-01

    Exposure of zebrafish embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the zebrafish aryl hydrocarbon receptor 2 (AHR) to produce developmental and cardiovascular toxicity. AHR is found in the heart; however, AHR activation by TCDD is not confined to the heart and occurs throughout the organism. In order to understand the cause of cardiotoxicity, we constructed a constitutively active AHR (caAHR) based on the zebrafish AHR2 and expressed it specifically in cardiomyocytes. We show that AHR activation within the cardiomyocytes can account for the heart failure induced by TCDD. Expression of the caAHR within the heart produced cardiac malformations, loss of circulation, and pericardial edema. The heart-specific activation of AHR reproduced several other well-characterized endpoints of TCDD toxicity outside of the cardiovascular system, including defects in swim bladder and craniofacial development. This work identifies a single cellular site of TCDD action, the myocardial cell, that can account for the severe cardiovascular collapse observed following early life stage exposure to TCDD, and contributes to other forms of toxicity. PMID:25037585

  3. Cardiac Myocyte-Specific AHR Activation Phenocopies TCDD-Induced Toxicity in Zebrafish

    PubMed Central

    Lanham, Kevin A.; Plavicki, Jessica; Peterson, Richard E.; Heideman, Warren

    2014-01-01

    Exposure of zebrafish embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the zebrafish aryl hydrocarbon receptor 2 (AHR) to produce developmental and cardiovascular toxicity. AHR is found in the heart; however, AHR activation by TCDD is not confined to the heart and occurs throughout the organism. In order to understand the cause of cardiotoxicity, we constructed a constitutively active AHR (caAHR) based on the zebrafish AHR2 and expressed it specifically in cardiomyocytes. We show that AHR activation within the cardiomyocytes can account for the heart failure induced by TCDD. Expression of the caAHR within the heart produced cardiac malformations, loss of circulation, and pericardial edema. The heart-specific activation of AHR reproduced several other well-characterized endpoints of TCDD toxicity outside of the cardiovascular system, including defects in swim bladder and craniofacial development. This work identifies a single cellular site of TCDD action, the myocardial cell, that can account for the severe cardiovascular collapse observed following early life stage exposure to TCDD, and contributes to other forms of toxicity. PMID:25037585

  4. AhR activation underlies the CYP1A autoinduction by A-998679 in rats

    PubMed Central

    Liguori, Michael J.; Lee, Chih-Hung; Liu, Hong; Ciurlionis, Rita; Ditewig, Amy C.; Doktor, Stella; Andracki, Mark E.; Gagne, Gerard D.; Waring, Jeffrey F.; Marsh, Kennan C.; Gopalakrishnan, Murali; Blomme, Eric A. G.; Yang, Yi

    2012-01-01

    Xenobiotic-mediated induction of cytochrome P450 (CYP) drug metabolizing enzymes (DMEs) is frequently encountered in drug discovery and can influence disposition, pharmacokinetic, and toxicity profiles. The CYP1A subfamily of DMEs plays a central role in the biotransformation of several drugs and environmental chemicals. Autoinduction of drugs through CYP3A enzymes is a common mechanism for their enhanced clearance. However, autoinduction via CYP1A is encountered less frequently. In this report, an experimental compound, A-998679 [3-(5-pyridin-3-yl-1,2,4-oxadiazol-3-yl) benzonitrile], was shown to enhance its own clearance via induction of Cyp1a1 and Cyp1a2. Rats were dosed for 5 days with 30, 100, and 200 mg/kg/day A-998679. During the dosing period, the compound's plasma AUC decreased at 30 mg/kg (95%) and 100 mg/kg (80%). Gene expression analysis and immunohistochemistry of the livers showed a large increase in the mRNA and protein levels of Cyp1a, which was involved in the biotransformation of A-998679. Induction of CYP1A was confirmed in primary rat, human, and dog hepatocytes. The compound also weakly inhibited CYP1A2 in human liver microsomes. A-998679 activated the aryl hydrocarbon receptor (AhR) in a luciferase gene reporter assay in HepG2 cells, upregulated expression of genes associated with AhR activation in rat liver and enhanced nuclear migration of AhR in HepG2 cells. Collectively these results demonstrate that A-998679 is an AhR activator that induces Cyp1a1 and Cyp1a2 expression, resulting in an autoinduction phenomenon. The unique properties of A-998679, along with its novel structure distinct from classical polycyclic aromatic hydrocarbons (PAHs), may warrant its further evaluation as a tool compound for use in studies involving AhR biology and CYP1A-related mechanisms of drug metabolism and toxicity. PMID:23112805

  5. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. PMID:20303573

  6. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC.

    PubMed

    Occhi, Gianluca; Barollo, Susi; Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-10-13

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  7. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases.

    PubMed

    Vikström Bergander, Linda; Cai, Wen; Klocke, Bernward; Seifert, Martin; Pongratz, Ingemar

    2012-09-01

    The function of the aryl hydrocarbon receptor (AhR) in mediating the biological effect to environmental pollutants is well established. However, accumulated evidence indicates a wide range of physiological and pathological functions mediated by the AhR, suggesting the existence of endogenous AhR ligand(s). The nature of an AhR ligand remain elusive; however, it is known that the AhR is activated by several compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin or the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. In this study, we show that physiological concentrations of tryptamine (TA) lead to induction of cytochrome P4501A1 transcription through an AhR-dependent mechanism. In addition, we show that activation of the AhR by TA requires a functional monoamino oxidase system, suggesting that TA acts as an AhR proligand possibly by converting to a high-affinity AhR ligand. Taken together, we show a possible mechanism, through which AhR signaling is activated by endogenous conversion of TA involving monoamine oxidases. PMID:22865928

  8. Activation of Aryl Hydrocarbon Receptor (AhR) Leads to Reciprocal Epigenetic Regulation of FoxP3 and IL-17 Expression and Amelioration of Experimental Colitis

    PubMed Central

    Singh, Balwan; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2011-01-01

    Background Aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, is well characterized to regulate the biochemical and toxic effects of environmental chemicals. More recently, AhR activation has been shown to regulate the differentiation of Foxp3+ Tregs as well as Th17 cells. However, the precise mechanisms are unclear. In the current study, we investigated the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, on epigenetic regulation leading to altered Treg/Th17 differentiation, and consequent suppression of colitis. Methodology/Principal Findings Dextran sodium sulphate (DSS) administration induced acute colitis in C57BL/6 mice, as shown by significant weight loss, shortening of colon, mucosal ulceration, and increased presence of CXCR3+ T cells as well as inflammatory cytokines. Interestingly, a single dose of TCDD (25 µg/kg body weight) was able to attenuate all of the clinical and inflammatory markers of colitis. Analysis of T cells in the lamina propria (LP) and mesenteric lymph nodes (MLN), during colitis, revealed decreased presence of Tregs and increased induction of Th17 cells, which was reversed following TCDD treatment. Activation of T cells from AhR+/+ but not AhR -/- mice, in the presence of TCDD, promoted increased differentiation of Tregs while inhibiting Th17 cells. Analysis of MLN or LP cells during colitis revealed increased methylation of CpG islands of Foxp3 and demethylation of IL-17 promoters, which was reversed following TCDD treatment. Conclusions/Significance These studies demonstrate for the first time that AhR activation promotes epigenetic regulation thereby influencing reciprocal differentiation of Tregs and Th17 cells, and amelioration of inflammation. PMID:21858153

  9. Malformation of certain brain blood vessels caused by TCDD activation of Ahr2/Arnt1 signaling in developing zebrafish

    PubMed Central

    Teraoka, Hiroki; Ogawa, Akira; Kubota, Akira; Stegeman, John J.; Peterson, Richard E.; Hiraga, Takeo

    2011-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). The AHR also plays important roles in normal development in mice, and AHR-/- mice show abnormal development of vascular structures in various blood vessels. Our previous studies revealed that Ahr type 2 (Ahr2) activation by TCDD and β-naphthoflavone (BNF) caused a significant decrease in blood flow in the dorsal midbrain of zebrafish embryos. Here we report effects of TCDD exposure on the morphology of some blood vessels in the head of developing zebrafish. TCDD caused concentration-dependent anatomical rearrangements in the shape of the prosencephalic artery in zebrafish larvae. In contrast, no major vascular defects were recognized in the trunk and tail regions following exposure to TCDD at least at the concentrations used. Essentially, the same observations were also confirmed in BNF-exposed larvae. Knock-down of either Ahr2 or Ahr nuclear translocator type 1 (Arnt1) by morpholino oligonucleotides (MOs) protected larvae against abnormal shape of the prosencephalic artery caused by TCDD and BNF. On the other hand, knock-down of Ahr2 or Arnt1 in vehicle-exposed zebrafish larvae had no clear effect on morphology of the prosencephalic artery or trunk vessels. Ascorbic acid, an antioxidant, protected against the TCDD-induced decrease in blood flow through the prosencephalic artery, but not the abnormal morphological changes in the shape of this artery. These results indicate that activation of Ahr2/Arnt1 pathway by TCDD and BNF affects the shape of certain blood vessels in the brain of developing zebrafish. PMID:20554057

  10. AhR signalling and dioxin toxicity.

    PubMed

    Sorg, Olivier

    2014-10-15

    Dioxins are a family of molecules associated to several industrial accidents such as Ludwigshafen in 1953 or Seveso in 1976, to the Agent Orange used during the war of Vietnam, and more recently to the poisoning of the former president of Ukraine, Victor Yushchenko. These persistent organic pollutants are by-products of industrial activity and bind to an intracellular receptor, AhR, with a high potency. In humans, exposure to dioxins, in particular 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a cutaneous syndrome known as chloracne, consisting in the development of many small skin lesions (hamartoma), lasting for 2-5 years. Although TCDD has been classified by the WHO as a human carcinogen, its carcinogenic potential to humans is not clearly demonstrated. It was first believed that AhR activation accounted for most, if not all, biological properties of dioxins. However, certain AhR agonists found in vegetables do not induce chloracne, and other chemicals, in particular certain therapeutic agents, may induce a chloracne-like syndrome without activating AhR. It is time to rethink the mechanism of dioxin toxicity and analyse in more details the biological events following exposure to these compounds and other AhR agonists, some of which have a very different chemical structure than TCDD. In particular various food-containing AhR agonists are non-toxic and may on the contrary have beneficial properties to human health. PMID:24239782

  11. Role of endocrine disrupting chemicals in the occurrence of benign uterine leiomyomata: special emphasis on AhR tissue levels.

    PubMed

    Bidgoli, Sepideh Arbabi; Khorasani, Hoda; Keihan, Heideh; Sadeghipour, Alireza; Mehdizadeh, Abolfazl

    2012-01-01

    Although benign uterine leiomyomata (LMA) is the most common reproductive tumor in premenopausal women, its etiology is largely unknown. We aimed in the present study to demonstrate the potential role of environmental factors with estrogenic activity in tumor etiology by focusing on the role of aryl hydrocarbon receptor (AhR) which mediates the effects of many environmental endocrine disruptors and contributes to the loss of normal ovarian function in polluted environments. This case-control study aimed to compare the interactions between AhR and lifestyle factors in a clinical setting for the first time among 138 newly diagnosed LMA patients and 138 normal controls who lived in Tehran and Mashhad, respectively, during the last 10 years. To conduct immunohistochemical studies using appropriate monoclonal antibodies, 30 cases were selected retrospectively from 2009-2011 from the pathology departments of two university hospitals in Tehran. Although the levels of sex steroid receptors were similar in adjacent myometrium and uterine leiomyomas of all cases, AhR was significantly overexpressed (p=0.034, OR=1.667) in uterine LMA and this overexpression was correlated with living in Tehran [(p=0.04, OR=16 (1.216-210.58)], smoking[P=0.04, OR=2.085 (1.29-3.371)], living near polycyclic aromative hydrocarbon producing companies [p=0.007, OR=2.22 (1.256-3.926)] and eating grilled meat [p=0.042, OR=1.28 (1.92-3.842)]. Our study contributes to the understanding of the effects of EDCs on AhR levels as well as women's health and points out possible risk factors for the development and growth of uterine LMA. It seems that the development of LMA could be the result of interactions between hormonal and environmental factors. PMID:23317198

  12. Arylhydrocarbon receptor (AhR) activation in airway epithelial cells induces MUC5AC via reactive oxygen species (ROS) production.

    PubMed

    Chiba, Takahito; Uchi, Hiroshi; Tsuji, Gaku; Gondo, Hisaki; Moroi, Yoichi; Furue, Masutaka

    2011-02-01

    The dioxins and dioxin-like compounds in cigarette smoke regulate various immunological responses via the arylhydrocarbon receptor (AhR). These environmental toxicants are known to cause bronchitis, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have demonstrated that AhR activation upregulates the expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) in the airway epithelial cell line. However, the mechanism for the production of mucin has not been clarified. In this study, we investigated the role and pathway of AhR in airway epithelial cells by using selective agonists and antagonists. After stimulation with or without benzopyrene (B[a]P), an AhR agonist, MUC5AC expression was measured by real-time RT-PCR. The mechanism of AhR-induced MUC5AC expression in airway epithelial cells was studied in terms of the production of cytokine and reactive oxygen species (ROS). Treatment with B[a]P increased ROS generation in NCI-H₂₉₂ cells. Furthermore, B[a]P-induced MUC5AC upregulation and mucin production were inhibited by AhR siRNA or the use of an antioxidative agent. These results suggest that the AhR-induced increase of mucin production is partially mediated by ROS generation. An antioxidant therapy approach may help to cure AhR-induced mucus hypersecretory diseases. PMID:20709182

  13. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line.

    PubMed

    Zaragoza-Ojeda, Montserrat; Eguía-Aguilar, Pilar; Perezpeña-Díazconti, Mario; Arenas-Huertero, Francisco

    2016-08-10

    Polycyclic aromatic hydrocarbons (PAH) are produced by incomplete combustion of organic material. In the Mexico City atmosphere, the most abundant PAH is benzo[ghi]perylene (BghiP), a gasoline combustion marker. At present, there are no reports of the effects of BghiP on human bronchial cells, so the aim of the study was to evaluate the effects in vitro of BghiP on the NL-20 cell line. Results showed that BghiP induced the formation of small vesicles throughout the cytoplasm, with absence of nuclear fragmentation. At 48h exposition, damage in cell membrane increased significantly at 1.24μg/mL of BghiP (p<0.05). Immunocytochemistry revealed that BghiP provokes nuclear translocation of AhR receptor, which indicates that this compound can induce transcription of genes via receptor binding (AhR pathway activation). BghiP induced a two-fold increase (p<0.05) in the expression of AhR and CYP4B1 (a lung-specific pathway effector). In the presence of the receptor antagonist CH-223191, the loss of viability, the nuclear translocation and the overexpression of genes decreased, though this did not prevent the formation of vesicles. BghiP induced oxidative stress and in presence of the receptor antagonist this increased significantly. In conclusion, BghiP can activate the overexpression of AhR and CYP4B1, and the effects are abated by the AhR receptor antagonist. This is the first report to prove that BghiP utilizes the AhR pathway to exert its toxic effects on the NL-20 human bronchial cell line . PMID:27234499

  14. Exposure to Diesel Exhaust Particle Extracts (DEPe) Impairs Some Polarization Markers and Functions of Human Macrophages through Activation of AhR and Nrf2

    PubMed Central

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-01-01

    Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP. PMID:25710172

  15. Khellin and Visnagin Differentially Modulate AHR Signaling and Downstream CYP1A Activity in Human Liver Cells

    PubMed Central

    Proksch, Peter; Abel, Josef; Dvorak, Zdenek; Haarmann-Stemmann, Thomas

    2013-01-01

    Khellin and visnagin are two furanochromones that can be frequently found in ethnomedical formulations in Asia and the Middle East. Both compounds possess anti-inflammatory and analgesic properties, therefore modern medicine uses these compounds or structurally related derivatives for treatment of vitiligo, bronchial asthma and renal colics. Despite their frequent usage, the potential toxic properties of visnagin and khellin are not well characterized up-to-now. Many natural compounds modulate the expression and activity of cytochrome P450 1A1 (CYP1A1), which is well-known to bioactivate pro-carcinogens. The expression of this enzyme is controlled by the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor and regulator of drug metabolism. Here, we investigated the influence of both furanochromones on AHR signaling in human HepG2 hepatocarcinoma cells and primary human hepatocytes. Both compounds transactivated xenobiotic response element (XRE)-driven reporter gene activity in a dose-dependent manner and induced CYP1A1 transcription in HepG2 cells and primary hepatocytes. The latter was abolished in presence of a specific AHR antagonist. CYP1A enzyme activity assays done in HepG2 cells and primary hepatocytes revealed an inhibition of enzyme activity by both furanochromones, which may become relevant regarding the metabolism of xenobiotics and co-administered therapeutic drugs. The observed induction of several other members of the AHR gene battery, whose gene products are involved in regulation of cell growth, differentiation and migration, indicates that a further toxicological characterization of visnagin and khelllin is urgently required in order to minimize potential drug-drug interactions and other toxic side-effects that may occur during therapeutic usage of these furanochromones. PMID:24069365

  16. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells.

    PubMed

    Ghotbaddini, Maryam; Powell, Joann B

    2015-07-01

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models. PMID:26154658

  17. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    PubMed Central

    Ghotbaddini, Maryam; Powell, Joann B.

    2015-01-01

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models. PMID:26154658

  18. AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse

    PubMed Central

    Kimura, Eiki; Ding, Yunjie; Tohyama, Chiharu

    2016-01-01

    Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals. PMID:27197834

  19. AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse.

    PubMed

    Kimura, Eiki; Ding, Yunjie; Tohyama, Chiharu

    2016-01-01

    Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals. PMID:27197834

  20. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling.

    PubMed

    Gao, Zhan; Bu, Yongjun; Liu, Xiaozhuan; Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling; Li, Qiaoyun; Fu, Jianhong; Yu, Zengli

    2016-05-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. PMID:26971374

  1. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders.

    PubMed

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2013-06-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3(+) regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  2. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders

    PubMed Central

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3+ regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  3. The licorice flavonoid isoliquiritigenin reduces DNA-binding activity of AhR in MCF-7 cells.

    PubMed

    Wong, Tsz Yan; Lin, Shu-mei; Poon, Ching Ho; Leung, Lai K

    2014-09-25

    Licorice is derived from the rhizomes of Glycyrrhiza glabra. It has been used for confectioneries or culinary purposes. The rhizomes contain many flavonoidal compounds that have been shown to be biologically active. In the present study, effect of the licorice flavonoid isoliquiritigenin (ILN) on polycyclic aromatic hydrocarbon (PAH)-induced XRE transactivation and the downstream expression were investigated in MCF-7 cells. The environmental toxicant PAHs are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by cytochrome P450 (CYP) 1 enzymes. Reporter gene assay revealed that ILN reduced XRE transactivation triggered by 7,12-dimethylbenz[α]anthracene (DMBA) or 2,3,7,8-Tetrachlorodibenzodioxin (TCDD). Our EMSA results also demonstrated that the flavonoid diminished DMBA-induced XRE binding. The reduced transactivation could be the result of a decreased amount of AhR translocating from cytosol to nucleus as shown in Western analysis. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay demonstrated that expressions of genes with XRE-containing promoters, including CYP1A1, 1A2, and 1B1, followed the same pattern of XRE transactivation. The present study illustrated that ILN might downregulate PAH-induced expressions through antagonizing AhR translocation. PMID:25110319

  4. In vitro and in silico evaluation of transactivation potencies of avian AHR1 and AHR2 by endogenous ligands: Implications for the physiological role of avian AHR2.

    PubMed

    Kim, In-Sung; Hwang, Ji-Hee; Hirano, Masashi; Iwata, Hisato; Kim, Eun-Young

    2016-09-01

    Aryl hydrocarbon receptor (AHR) is well conserved from invertebrates to vertebrates, and it mediates the toxic effects of exogenous ligands, including dioxins. Recent studies reported that AHRs activated by endogenous ligands play critical roles in mammalian physiological homeostasis. Avian species possess at least two AHR isoforms (AHR1 and AHR2), which exhibit species- and isoform-specific transactivation potencies to exogenous ligands, whereas mammals possess a single AHR. To delineate the profiles and roles of endogenous ligands for avian AHR isoforms, we investigated in vitro transactivation potencies of avian AHRs (AHR1 and AHR2 from the jungle crow, Corvus macrorhynchos; common cormorant, Phalacrocorax carbo; and black-footed albatross, Phoebastria nigripes) treated with the endogenous tryptophan metabolites 6-formylindolo [3,2-b] carbazole (FICZ), l-kynurenine (l-Kyn), kynurenic acid (KYNA), and indoxyl sulfate (IS). Furthermore, we analyzed the binding mode of these ligands to each avian AHR isoform by in silico docking simulations. The EC50 of FICZ (0.009-0.032nM) was similar regardless of the species or isoform of AHR. The estimated in silico binding mode of FICZ to AHRs was well conserved in both isoforms. The transactivation potencies of avian AHRs to other tryptophan metabolites were 10(5)-10(7) fold lower than those for FICZ, and EC50 values varied in a species- and isoform-specific manner. This was consistent with poor conservation of the binding mode of l-Kyn, KYNA, and IS predicted in in silico docking simulations. Our results suggest that in avian species, FICZ is the most potent endogenous AHR ligand, and that AHR1 and AHR2 are physiologically functional. PMID:27060260

  5. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    SciTech Connect

    Cheng, Ya-Hsin; Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan; Hung, Chein-Hui; Chang, Nai Wen; Lin, Chingju

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  6. Measured and predicted affinities of binding and relative potencies to activate the AhR of PAHs and their alkylated analogues.

    PubMed

    Lee, Sangwoo; Shin, Woong-Hee; Hong, Seongjin; Kang, Habyeong; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Seok, Chaok; Giesy, John P; Choi, Kyungho

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAHs) and their alkylated forms are important components of crude oil. Both groups of PAHs have been reported to cause dioxin-like responses, mediated by aryl hydrocarbon receptor (AhR). Thus, characterization of binding affinity to the AhR of unsubstituted or alkylated PAHs is important to understand the toxicological consequences of oil contamination on ecosystems. We investigated the potencies of major PAHs of crude oil, e.g., chrysene, phenanthrene and dibenzothiophene, and their alkylated forms (n=17) to upregulate expression of AhR-mediated processes by use of the H4IIE-luc transactivation bioassay. In addition, molecular descriptors of different AhR activation potencies among PAHs were investigated by use of computational molecular docking models. Based on responses of the H4IIE-luc in vitro assay, it was shown that potencies of PAHs were determined by alkylation in addition to the number and conformation of rings. Potencies of AhR-mediated processes were generally greater when a chrysene group was substituted, especially in 1-methyl-chrysene. Significant negative correlations were observed between the in vitro dioxin-like potency measured in H4IIE-luc cells and the binding distance estimated from the in silico modeling. The difference in relative potency for AhR activation observed among PAHs and their alkylated forms could be explained by differences among binding distances in the ligand binding domain of the AhR caused by alkylation. The docking model developed in the present study may have utility in predicting risks of environmental contaminants of which toxicities are mediated by AhR binding. PMID:26037956

  7. Aryl hydrocarbon receptor (AhR) activation during pregnancy, and in adult nulliparous mice, delays the subsequent development of DMBA-induced mammary tumors

    PubMed Central

    Wang, Tao; Gavin, Heather M.; Arlt, Volker M.; Lawrence, B. Paige; Fenton, Suzanne E.; Medina, Daniel; Vorderstrasse, Beth A.

    2010-01-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), the prototypic ligand for the aryl hydrocarbon receptor (AhR), promotes tumor formation in some model systems. However with regard to breast cancer, epidemiological and animal studies are inconclusive as to whether exposure increases tumor incidence or may instead be protective. We have previously reported that mice exposed to TCDD during pregnancy have impaired differentiation of mammary tissue, including decreased branching and poor development of lobuloalveolar structures. Because normal pregnancy-induced mammary differentiation may protect against subsequent neoplastic transformation, we hypothesized that TCDD-treated mice would be more susceptible to chemical carcinogenesis after parturition. To test this, mice were treated with TCDD or vehicle during pregnancy. Four weeks later, DMBA (7,12-dimethylbenz[a]anthracene) was administered to induce mammary tumor formation. Contrary to our hypothesis, TCDD-exposed parous mice showed a four-week delay in tumor formation relative to controls, and had a lower tumor incidence throughout the 27-week time course. The same results were obtained in nulliparous mice given TCDD and DMBA on the same schedule. We next addressed whether the delayed tumor incidence was a reflection of decreased tumor initiation, by testing the formation of DMBA-DNA adducts and preneoplastic lesions, induction of cytochrome P450s, and cell proliferation. None of these markers of tumor initiation differed between vehicle- and TCDD-treated animals. The expression of CXCL12 and CXCR4 was also measured to address their possible role in tumorigenesis. Taken together, our results suggest that AhR activation by TCDD slows the promotion of preneoplastic lesions to overt mammary tumors. PMID:20521247

  8. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    SciTech Connect

    Wincent, Emma; Stegeman, John J.; Jönsson, Maria E.

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.

  9. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. PMID:27180721

  10. Effects of carcinogenic versus non-carcinogenic AHR-active PAHs and their mixtures: lessons from ecological relevance.

    PubMed

    Martins, Marta; Santos, José M; Diniz, Mário S; Ferreira, Ana M; Costa, Maria H; Costa, Pedro M

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental mutagens and carcinogens that occur in the aquatic environment as mixtures rather than the individual compounds for which guidelines are issued. The present work aimed at understanding the interaction effects between carcinogenic and non-carcinogenic PAHs in a model marine fish (Dicentrarchus labrax) in realistic scenarios. Laboratory assays under ecologically-relevant parameters were conducted for 28 days with sediments spiked with low-moderate concentrations (250-800ngg(-1)) of two model PAHs, phenanthrene (non-carcinogenic) and benzo[b]fluoranthene (carcinogenic to experimental animals). Both PAHs induced hepatic histopathological changes that indicate metabolic failure and inflammation, especially in animals exposed to mixtures. Phenanthrene elicited biochemical changes better related to oxidative stress (lipid peroxidation, glutathione and glutathione S-transferase activity) and CYP function, whereas B[b]F disrupted metabolic responses and defences to toxicological challenge. Conversely, mixed PAHs yielded lesions and responses that, altogether, are compatible with the AHR dependent pathway (the basis of PAH mutagenicity), potentially generating supra-additive effects. Nonetheless, the low, ecologically-relevant, concentrations of PAHs diluted dose and time-response relations. Overall, although seemingly predicting the risk of individual PAHs, environmental guidelines may not apply to mixtures by underestimating adverse effects, which calls for a redefinition of standards when determining the true risk of toxicants under realistic circumstances. PMID:25704830

  11. Tumorigenic effects of endocrine-disrupting chemicals are alleviated by licorice (Glycyrrhiza glabra) root extract through suppression of AhR expression in mammalian cells.

    PubMed

    Chu, Xiao Ting; de la Cruz, Joseph; Hwang, Seong Gu; Hong, Heeok

    2014-01-01

    Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells, used as a tumor model, were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, 400 μg/mL) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. The expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, was also down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analysis also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated diseases. PMID:24998545

  12. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast.

    PubMed

    Mexia, Nikitia; Gaitanis, Georgios; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S; Magiatis, Prokopios

    2015-04-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in the human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on l-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assay in recombinant cell lines derived from four different species, although significant species differences in relative potency were observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. M. furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner. PMID:25721496

  13. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast

    PubMed Central

    Mexia, Nikitia; Gaitanis, George; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S.; Magiatis, Prokopios

    2015-01-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on L-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assays in recombinant cell lines derived from four different species, although significant species differences in relative potency was observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. Malassezia furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.1 PMID:25721496

  14. Cancer-promoting and Inhibiting Effects of Dietary Compounds: Role of the Aryl Hydrocarbon Receptor (AhR)

    PubMed Central

    Powell, Joann B.; Ghotbaddini, Maryam

    2014-01-01

    Polyaromatic hydrocarbons, heterocyclic aromatic amines and dioxin-like compounds are environmental carcinogens shown to initiate cancer in a number of tissue types including prostate and breast. These environmental carcinogens elicit their effects through interacting with the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor. Naturally occurring compounds found in fruits and vegetables shown to have anti-carcinogenic effects also interact with the AhR. This review explores dietary and environmental exposure to chemical carcinogens and beneficial natural compounds whose effects are elicited by the AhR. PMID:25258701

  15. AHR-11797: a novel benzodiazepine antagonist

    SciTech Connect

    Johnson, D.N.; Kilpatrick, B.F.; Hannaman, P.K.

    1986-03-01

    AHR-11797(5,6-dihydro-6-methyl-1-phenyl-/sup 3/H-pyrrolo(3,2,1-ij)quinazolin-3-one) displaced /sup 3/H-flunitrazepam (IC/sub 50/ = 82 nM) and /sup 3/H-Ro 15-1877 (IC/sub 50/ = 104 nM) from rat brain synaptosomes. AHR-11797 did not protect mice from seizures induced by maximal electroshock or subcutaneous Metrazol (scMET), nor did it induce seizures in doses up to the lethal dose. However, at 31.6 mg/kg, IP, it significantly increased the anticonvulsant ED/sub 50/ of chlordiazepoxide (CDPX) from 1.9 to 31.6 mg/kg, IP. With 56.7 mg/kg, IP, of AHR-11797, CDPX was inactive in doses up to 100 mg/kg, IP. AHR-11797 did not significantly increase punished responding in the Geller and Seifter conflict procedure, but it did attenuate the effects of diazepam. Although the compound is without anticonvulsant or anxiolytic activity, it did have muscle relaxant properties. AHR-11797 blocked morphine-induced Straub tail in mice (ED/sub 50/ = 31 mg/kg, IP) and it selectively suppressed the polysnaptic linguomandibular reflex in barbiturate-anesthetized cats. The apparent muscle relaxant activity of AHR-11797 suggests that different receptor sites are involved for muscle relaxant vs. anxiolytic/anticonvulsant activities of the benzodiazepines.

  16. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  17. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    SciTech Connect

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  18. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1.

    PubMed

    Moyer, Benjamin J; Rojas, Itzel Y; Kerley-Hamilton, Joanna S; Hazlett, Haley F; Nemani, Krishnamurthy V; Trask, Heidi W; West, Rachel J; Lupien, Leslie E; Collins, Alan J; Ringelberg, Carol S; Gimi, Barjor; Kinlaw, William B; Tomlinson, Craig R

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity

  19. ITE and TCDD differentially regulate the vascular remodeling of rat placenta via the activation of AhR.

    PubMed

    Wu, Yanming; Chen, Xiao; Zhou, Qian; He, Qizhi; Kang, Jiuhong; Zheng, Jing; Wang, Kai; Duan, Tao

    2014-01-01

    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in

  20. ITE and TCDD Differentially Regulate the Vascular Remodeling of Rat Placenta via the Activation of AhR

    PubMed Central

    Zhou, Qian; He, Qizhi; Kang, Jiuhong; Zheng, Jing; Wang, Kai; Duan, Tao

    2014-01-01

    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in

  1. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  2. Immunological Relevance of the Coevolution of IDO1 and AHR

    PubMed Central

    Jaronen, Merja; Quintana, Francisco J.

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified because of its role in controlling the cellular response to environmental molecules. More recently, AHR has been shown to play a crucial role in controlling innate and adaptive immune responses through several mechanisms, one of which is the regulation of tryptophan metabolism. Indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are considered rate-limiting enzymes in the tryptophan catabolism and play important roles in the regulation of the immunity. Moreover, AHR and IDO/TDO are closely interconnected: AHR regulates IDO and TDO expression, and kynurenine produced by IDO/TDO is an AHR agonist. In this review, we propose to examine the relationship between AHR and IDO/TDO and its relevance for the regulation of the immune response in health and disease. PMID:25368620

  3. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  4. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    SciTech Connect

    Manning, Gillian E.; Mundy, Lukas J.; Crump, Doug; Jones, Stephanie P.; Chiu, Suzanne; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, in combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity than CYP

  5. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NF{kappa}B and AhR and EGFR-ERK pathway

    SciTech Connect

    Potapovich, Alla I.; Lulli, Daniela; Fidanza, Paolo; Kostyuk, Vladimir A.; De Luca, Chiara; Pastore, Saveria; Korkina, Liudmila G.

    2011-09-01

    Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure, the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights

  6. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity

    PubMed Central

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-01-01

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity. PMID:27068235

  7. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity.

    PubMed

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-01-01

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity. PMID:27068235

  8. AHR signaling in prostate growth, morphogenesis, and disease

    PubMed Central

    Vezina, Chad M.; Lin, Tien-Min; Peterson, Richard E.

    2010-01-01

    Most evidence of aryl hydrocarbon receptor (AHR) signaling in prostate growth, morphogenesis, and disease stems from research using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to pharmacologically activate the AHR at various stages of development. This review discusses effects of TCDD on prostate morphogenesis and highlights interactions between AHR and other signaling pathways during normal and aberrant prostate growth. Although AHR signaling modulates estrogen and androgen signaling in other tissues, crosstalk between these steroid hormone receptors and AHR signaling cannot account for actions of TCDD on prostate morphogenesis. Instead, the AHR appears to act within a cooperative framework of developmental signals to regulate timing and patterning of prostate growth. Inappropriate activation of AHR signaling as a result of early life TCDD exposure disrupts the balance of these signals, impairs prostate morphogenesis, and has an imprinting effect on the developing prostate that predisposes to prostate disease in adulthood. Mechanisms of AHR signaling in prostate growth and disease are only beginning to be unraveled and recent studies have revealed its interactions with WNT5A, retinoic acid, fibroblast growth factor 10, and vascular endothelial growth factor signaling pathways. PMID:18977204

  9. Expression of aryl hydrocarbon receptor 1 (AHR1), AHR1 nuclear translocator 1 (ARNT1) and CYP1 family monooxygenase mRNAs and their activity in chicken ovarian follicles following in vitro exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

    PubMed

    Antos, Piotr A; Błachuta, Małgorzata; Hrabia, Anna; Grzegorzewska, Agnieszka K; Sechman, Andrzej

    2015-09-01

    The aim of this in vitro study was to determine the effect of TCDD and luteinizing hormone (LH) on mRNA expression of aryl hydrocarbon receptor 1 (AHR1), AHR1 nuclear translocator 1 (ARNT1), and the CYP1 family monooxygenases (CYP1A4, CYP1A5, CYP1B1), and to assess the basal and TCDD-induced activity of these enzymes in chicken ovarian follicles. White (WF) and yellowish (YF) prehierarchical follicles and fragments of the theca (TL) and granulosa (GL) layers of the 3 largest preovulatory follicles (F3-F1) were exposed to TCDD (10nM), ovine LH (oLH; 10ng/mL) or a combination of TCDD (10nM) and oLH (10ng/mL), and increasing doses of TCDD (0.01-100nM). AHR1 and ARNT1 mRNA transcripts were found in all examined follicles. The effect of TCDD and oLH on AHR1 and ARNT1 mRNA expression depended on the maturational state of the follicle. CYP1A4 was predominantly expressed in the GL of the F3-F1 follicles; in comparison with the WF, a higher level of CYP1A5 mRNA was found both in the GL and TL of F3-F1 follicles. Alternatively, the highest level of CYP1B1 mRNA was noticed in the WF follicles. In different developmental stages of the follicle TCDD and oLH induced a different CYP1 isoform. TCDD increased EROD and MROD activities in all the investigated ovarian follicles. In conclusion, AHR1 and ARNT1 mRNA expression indicate that the chicken ovary is a target tissue for dioxin and dioxin-like compounds. The expression of CYP1-family genes and TCDD-inducible EROD and MROD activities in ovarian follicles suggest the possibility of xenobiotic detoxification in the chicken ovary. PMID:26043675

  10. Time-dependent transcriptomic and biochemical responses of 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are explained by AHR activation time.

    PubMed

    Farmahin, Reza; Crump, Doug; O'Brien, Jason M; Jones, Stephanie P; Kennedy, Sean W

    2016-09-01

    6-Formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are ligands of the aryl hydrocarbon receptor (AHR) and bind to the AHR with high affinity. Until recently, TCDD was considered to be the most potent AHR agonist, but several recent studies indicate that FICZ binds with greater affinity to the AHR than TCDD. To advance our understanding of the similarities and differences of the effects of FICZ and TCDD exposure in chicken embryo hepatocyte (CEH) cultures, we compared relative expression changes of 27 dioxin-responsive genes by the use of a chicken PCR array, porphyrin accumulation and ethoxyresorufin-O-deethylase (EROD) activity at different time points. In addition, an egg injection study was performed to assess the effects of FICZ on the developing chicken embryo. The results of the current study showed: (1) mean EROD-derived relative potency values for FICZ compared to TCDD changed as a function of time (i.e. 9, 0.004, 0.0008 and 0.00008 at 3, 8, 24, and 48h, respectively) in CEH cultures; (2) FICZ exposure did not result in porphyrin accumulation in CEH cultures; (3) concordance between gene expression profiles for FICZ and TCDD was time- and concentration-dependent, and (4) no mortality or morphological abnormalities were observed in chicken embryos injected with 0.87ng FICZ/g egg into the air cell. The results presented herein suggest that while FICZ and TCDD share similar molecular targets, transient versus sustained AHR activation by FICZ and TCDD result in differential transcriptomic responses. Moreover, rapid metabolism of FICZ in hepatocytes resulted in a significant decrease in the induction of EROD activity. PMID:27301797

  11. AhR activation by 6-formylindolo[3,2-b]carbazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibit the development of mouse intestinal epithelial cells.

    PubMed

    Park, Joo-Hung; Choi, Ah-Jeong; Kim, Soo-Ji; Cheong, Seon-Woo; Jeong, So-Yeon

    2016-04-01

    The intestinal epithelium plays a central role in immune homeostasis in the intestine. AhR, a ligand-activated transcription factor, plays an important role in diverse physiological processes. The intestines are exposed to various exogenous and endogenous AhR ligands. Thus, AhR may regulate the intestinal homeostasis, directly acting on the development of intestinal epithelial cells (IEC). In this study, we demonstrated that 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited the in vitro development of mouse intestinal organoids. The number of Paneth cells in the small intestine and the depth of crypts of the small and large intestines were reduced in mice administrated with FICZ. Immunohistochemical and flow cytometric assays revealed that AhR was highly expressed in Lgr5(+) stem cells. FICZ inhibited Wnt signaling lowering the level of β-catenin protein. Gene expression analyses demonstrated that FICZ increased expression of Lgr5, Math1, BMP4, and Indian Hedgehog while inhibiting that of Lgr4. PMID:26950395

  12. AhR sensing of bacterial pigments regulates antibacterial defence.

    PubMed

    Moura-Alves, Pedro; Faé, Kellen; Houthuys, Erica; Dorhoi, Anca; Kreuchwig, Annika; Furkert, Jens; Barison, Nicola; Diehl, Anne; Munder, Antje; Constant, Patricia; Skrahina, Tatsiana; Guhlich-Bornhof, Ute; Klemm, Marion; Koehler, Anne-Britta; Bandermann, Silke; Goosmann, Christian; Mollenkopf, Hans-Joachim; Hurwitz, Robert; Brinkmann, Volker; Fillatreau, Simon; Daffe, Mamadou; Tümmler, Burkhard; Kolbe, Michael; Oschkinat, Hartmut; Krause, Gerd; Kaufmann, Stefan H E

    2014-08-28

    The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns. PMID:25119038

  13. Molecular and functional characterization of a novel aryl hydrocarbon receptor isoform, AHR1β, in the chicken (Gallus gallus).

    PubMed

    Lee, Jin-Seon; Iwabuchi, Kohei; Nomaru, Koji; Nagahama, Nobumasa; Kim, Eun-Young; Iwata, Hisato

    2013-12-01

    Dioxins including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause toxic effects through activation of the aryl hydrocarbon receptor (AHR)-mediated signaling pathway. Our previous studies have investigated the function of 2 AHR isoforms (AHR1 and AHR2) in avian species and identified a third AHR in the chicken (Gallus gallus) genome. Knowledge of multiple avian AHRs is indispensable to understand molecular mechanisms of AHR-mediated toxic effects and establish risk assessment framework for environmental AHR ligands in avian species. In this study, we successfully isolated a third novel AHR1-like cDNA from chicken and designated it as chicken AHR1 beta (ckAHR1β). The mRNA expression of ckAHR1β was primarily detected in the liver, and the hepatic protein expression was confirmed by Western blotting. Although mRNA expression of ckAHR1β was not altered by in ovo TCDD exposure, ckAHR1β exhibited specific binding to [(3)H]TCDD, TCDD-dependent nuclear translocation, and interaction with xenobiotic responsive elements (XREs) and AHR nuclear translocators (ARNTs). In vitro XRE-driven reporter gene assays revealed ckAHR1β-mediated transactivation of TCDD in a dose-dependent manner, showing a 10-fold reduced sensitivity (high EC50) compared with that mediated by ckAHR1. The mutation of Val(371) to Ser(371) in the ligand-binding domain of ckAHR1β shifted the TCDD-EC50 toward the value observed in ckAHR1, indicating the critical roles of the amino acid in sensitivity. Furthermore, ckAHR1β-mediated transactivation of TCDD was enhanced by 17β-estradiol (E2)-activated chicken estrogen receptor α (ckERα), suggesting a positive cross talk between ckERα and ckAHR1β signaling pathway. Both TCDD-induced and its enhanced activities by E2 were suppressed by the ckAHR repressor in a manner similar to ckAHR1. Collectively, our findings discover the role of ckAHR1β in dioxin toxicity and give an insight into the evolutionary history of the AHR signaling pathway. PMID:23997109

  14. INSIGHTS FROM AHR AND ARNT GENE KNOCKOUT STUDIES REGARDING RESPONSES TO TCDD AND REGULATION OF NORMAL EMBRYONIC DEVELOPMENT

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) and the AhR nuclear translocator (ARNT) are members of the Per-ARNT-Sim (PAS) family of proteins. The AhR binds members of the chemical family that includes dioxins, furans and coplanar polychlorinated biphenyls (PCBs). A ligand-AhR-ARNT comp...

  15. AHR-related activities in a creosote-adapted population of adult atlantic killifish, Fundulus heteroclitus, two decades post-EPA superfund status at the Atlantic Wood Site, Portsmouth, VA USA.

    PubMed

    Wojdylo, Josephine V; Vogelbein, Wolfgang; Bain, Lisa J; Rice, Charles D

    2016-08-01

    Atlantic killifish, Fundulus heteroclitus, are adapted to creosote-based PAHs at the US EPA Superfund site known as Atlantic Wood (AW) on the southern branch of the Elizabeth River, VA USA. Subsequent to the discovery of the AW population in the early 1990s, these fish were shown to be recalcitrant to CYP1A induction by PAHs under experimental conditions, and even to the time of this study, killifish embryos collected from the AW site are resistant to developmental deformities typically associated with exposure to PAHs in reference fish. Historically, however, 90 +% of the adult killifish at this site have proliferative hepatic lesions including cancer of varying severity. Several PAHs at this site are known to be ligands for the aryl hydrocarbon receptor (AHR). In this study, AHR-related activities in AW fish collected between 2011 and 2013 were re-examined nearly 2 decades after first discovery. This study shows that CYP1A mRNA expression is three-fold higher in intestines of AW killifish compared to a reference population. Using immunohistochemistry, CYP1A staining in intestines was uniformly positive compared to negative staining in reference fish. Livers of AW killifish were examined by IHC to show that CYP1A and AHR2 protein expression reflect lesions-specific patterns, probably representing differences in intrinsic cellular physiology of the spectrum of proliferative lesions comprising the hepatocarcinogenic process. We also found that COX2 mRNA expression levels were higher in AW fish livers compared to those in the reference population, suggesting a state of chronic inflammation. Overall, these findings suggest that adult AW fish are responsive to AHR signaling, and do express CYP1A and AHR2 proteins in intestines at a level above what was observed in the reference population. PMID:27262937

  16. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. PMID:25797602

  17. A high-resolution structure of the DNA-binding domain of AhrC, the arginine repressor/activator protein from Bacillus subtilis

    SciTech Connect

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.; Phillips, Simon E. V.

    2007-11-01

    The structure of the winged helix–turn–helix DNA-binding domain of AhrC has been determined at 1.0 Å resolution. The largely hydrophobic β-wing shows high B factors and may mediate the dimer interface in operator complexes. In Bacillus subtilis the concentration of l-arginine is controlled by the transcriptional regulator AhrC, which interacts with 18 bp DNA operator sites called ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a 100 kDa homohexamer, with each subunit having two domains. The C-terminal domains form the core, mediating intersubunit interactions and binding of the co-repressor l-arginine, whilst the N-terminal domains contain a winged helix–turn–helix DNA-binding motif and are arranged around the periphery. The N-terminal domain of AhrC has been expressed, purified and characterized and it has been shown that the fragment still binds DNA operators as a recombinant monomer. The DNA-binding domain has also been crystallized and the crystal structure refined to 1.0 Å resolution is presented.

  18. Down regulation of hepatic PPARalpha function by AhR ligand.

    PubMed

    Shaban, Zein; El-Shazly, Samir; Abdelhady, Shawky; Fattouh, Ibrahim; Muzandu, Kaampwe; Ishizuka, Mayumi; Kimura, Kazuhiro; Kazusaka, Akio; Fujita, Shoichi

    2004-11-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates a spectrum of toxic and biological effects of 2,3,7,8-tetrachloro dibenzo-p-dioxin (TCDD) and related compounds. Peroxisome proliferator activated receptor alpha (PPARalpha) is a nuclear receptor involved in the maintenance of lipid and glucose homeostasis. In this study we hypothesized that one of the possible mechanisms for the effect of TCDD and its related chemicals on fat metabolism could be through down regulation of PPARalpha functions. We treated Wistar rats with an AhR ligand, Sudan III (S.III), and/or PPARalpha ligand, Clofibric Acid (CA), for 3 days. We analysed the expression of one of the PPARalpha-target gene products, CYP4A protein and its mRNA. We also tested HepG2 cells with the afore-mentioned treatments and evaluated their effects on PPARalpha and RXRalpha protein. Treatment of Wistar rats with S.III was found to down regulates CYP4A protein expression and reduced its induction with CA. It also decreased mRNA expressions of CYP4A1, CYP4A2, CYP4A3 and PPARalpha. In HepG2 cells, PPARalpha and RXRalpha protein expression was decreased by S.III treatment in a dose dependent manner. Our results suggest that AhR has an inhibitory effect on PPARalpha function and a new pathway by which AhR ligands could disturb lipid metabolism. PMID:15585952

  19. Potential protective mechanisms of aryl hydrocarbon receptor (AHR) signaling in benign prostatic hyperplasia.

    PubMed

    Mehta, Vatsal; Vezina, Chad M

    2011-01-01

    The aryl hydrocarbon receptor (AHR) is an evolutionarily conserved ligand activated transcription factor best known for its role in mediating toxic responses to dioxin-like environmental contaminants. However, AHR signaling has also emerged as an active participant in processes of normal development and disease progression. Here, we review the role of AHR signaling in prostate development and disease processes, with a particular emphasis on benign prostatic hyperplasia (BPH). Inappropriate AHR activation has recently been associated with a decreased risk of symptomatic BPH in humans and has been shown to impair prostate development and disrupt endocrine signaling in rodents. We highlight known physiological responses to AHR activation in prostate and other tissues and discuss potential mechanisms by which it may act in adult human prostate to protect against symptomatic BPH. PMID:21684673

  20. Chemical Activities. Teacher Edition.

    ERIC Educational Resources Information Center

    Borgford, Christie L.; Summerlin, Lee R.

    This sourcebook for chemical activities is designed to be used as a student laboratory book for both junior and senior high school students. The student's role as a knowledgeable consumer and informed citizen is stressed. Each activity includes a list of needed materials, procedures, reactions, questions, and notes for the teacher which include…

  1. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    SciTech Connect

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  2. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells.

    PubMed

    Bekki, Kanae; Vogel, Helena; Li, Wen; Ito, Tomohiro; Sweeney, Colleen; Haarmann-Stemmann, Thomas; Matsumura, Fumio; Vogel, Christoph F A

    2015-05-01

    The aryl hydrocarbon receptor (AhR) is well known as a ligand binding transcription factor regulating various biological effects. Previously we have shown that long-term exposure to estrogen in breast cancer cells caused not only down regulation of estrogen receptor (ER) but also overexpression of AhR. The AhR interacts with several cell signaling pathways associated with induction of tyrosine kinases, cytokines and growth factors which may support the survival roles of AhR escaping from apoptosis elicited by a variety of apoptosis inducing agents in breast cancer. In this study, we studied the anti-apoptotic role of AhR in different breast cancer cells when apoptosis was induced by exposure to UV light and chemotherapeutic agents. Activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in AhR overexpressing breast cancer cells effectively suppressed the apoptotic response induced by UV-irradiation, doxorubicin, lapatinib and paclitaxel. The anti-apoptotic response of TCDD was uniformly antagonized by the treatment with 3'methoxy-4'nitroflavone (MNF), a specific antagonist of AhR. TCDD's survival action of apoptosis was accompanied with the induction of well-known inflammatory genes, such as cyclooxygenase-2 (COX-2) and NF-κB subunit RelB. Moreover, TCDD increased the activity of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase (IDO), which metabolizes tryptophan to kynurenine (Kyn) and mediates tumor immunity. Kyn also acts as an AhR ligand like TCDD, and kyn induced an anti-apoptotic response in breast cancer cells. Accordingly, our present study suggests that AhR plays a pivotal role in the development of breast cancer via the suppression of apoptosis, and provides an idea that the use of AhR antagonists with chemotherapeutic agents may effectively synergize the elimination of breast cancer cells. PMID:25987214

  3. Activation of Aryl Hydrocarbon Receptor Dissociates Fatty Liver from Insulin Resistance by Inducing FGF21

    PubMed Central

    Lu, Peipei; Yan, Jiong; Liu, Ke; Garbacz, Wojciech G.; Wang, Pengcheng; Xu, Meishu; Ma, Xiaochao; Xie, Wen

    2015-01-01

    The aryl hydrocarbon receptor (AHR), also known as the dioxin receptor, was originally characterized as a xenobiotic receptor that senses xenotoxicants. Here we investigated the endobiotic and hepatic role of AHR in fatty liver and energy metabolism, and identified the endocrine factor that mediates the metabolic function of AHR. Wild type and liver-specific constitutively activated human AHR transgenic (TG) mice were used to investigate the role of AHR in fatty liver and energy homeostasis. Adenovirus expressing short hairpin RNA targeting the fibroblast growth factor 21 (FGF21) were used to determine the involvement of FGF21 in the metabolic effect of AHR. We showed that despite their severe fatty liver, the TG mice were protected from diet-induced obesity and type 2 diabetes. We identified the endocrine hormone FGF21 as a mediator for the metabolic benefit of AHR and established FGF21 as a direct transcriptional target of AHR. Interestingly, the transactivation of FGF21 by AHR contributed to both hepatic steatosis and systemic insulin hypersensitivity, both of which were largely abolished upon FGF21 knockdown. Conclusions The AHR-FGF21 endocrine signaling pathway establishes AHR as a pivotal environmental modifier that integrates signals from chemical exposure in the regulation of lipid and energy metabolism. PMID:25614121

  4. Screening a mouse liver gene expression compendium identifies modulators of the aryl hydrocarbon receptor (AhR).

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S; Applegate, Dawn; Gonzalez, Frank J; Aleksunes, Lauren M; Klaassen, Curtis D; Corton, J Christopher

    2015-10-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dioxin-like compounds (DLC) as well as some drugs and endogenous tryptophan metabolites. Short-term activation of AhR can lead to hepatocellular steatosis, and chronic activation can lead to liver cancer in mice and rats. Analytical approaches were developed to identify biosets in a genomic database in which AhR activity was altered. A set of 63 genes was identified (the AhR gene expression biomarker) that was dependent on AhR for regulation after exposure to TCDD or benzo[a]pyrene and includes the known AhR targets Cyp1a1 and Cyp1b1. A fold-change rank-based test (Running Fisher's test; p-value ≤ 10(-4)) was used to evaluate the similarity between the AhR biomarker and a test set of 37 and 41 biosets positive or negative, respectively for AhR activation. The test resulted in a balanced accuracy of 95%. The rank-based test was used to identify factors that activate or suppress AhR in an annotated mouse liver/mouse primary hepatocyte gene expression database of ∼ 1850 comparisons. In addition to the expected activation of AhR by TCDD and DLC, AhR was activated by AP20189 and phenformin. AhR was suppressed by phenobarbital and 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) in a constitutive activated receptor (CAR)-dependent manner and pregnenolone-16α-carbonitrile in a pregnane X receptor (PXR)-dependent manner. Inactivation of individual genes in nullizygous models led to AhR activation (Pxr, Ghrhr, Taf10) or suppression (Ahr, Ilst6st, Hnf1a). This study describes a novel screening strategy for identifying factors in mouse liver that perturb AhR in a gene expression compendium. PMID:26215100

  5. Chemical Engineering Division Activities

    ERIC Educational Resources Information Center

    Chemical Engineering Education, 1978

    1978-01-01

    The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)

  6. Species-Specific Differential AhR Expression Protects Human Neural Progenitor Cells against Developmental Neurotoxicity of PAHs

    PubMed Central

    Gassmann, Kathrin; Abel, Josef; Bothe, Hanno; Haarmann-Stemmann, Thomas; Merk, Hans F.; Quasthoff, Kim N.; Rockel, Thomas Dino; Schreiber, Timm; Fritsche, Ellen

    2010-01-01

    Background Because of their lipophilicity, persistent organic pollutants (POPs) cross the human placenta, possibly affecting central nervous system development. Most POPs are known aryl hydrocarbon receptor (AhR) ligands and activators of AhR signaling. Therefore, AhR activation has been suggested to cause developmental neurotoxicity (DNT). Objective We studied the effects of AhR ligands on basic processes of brain development in two comparative in vitro systems to determine whether AhR-activation is the underlying mechanism for reported DNT of POPs in humans. Methods We employed neurosphere cultures based on human neural progenitor cells (hNPCs) and wild-type and AhR-deficient mouse NPCs (mNPCs) and studied the effects of different AhR agonists [3-methylcholanthrene (3-MC), benzo(a)pyrene [B(a)P], and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and an antagonist [3′-methoxy-4′-nitroflavone (MNF)] on neurosphere development. Moreover, we analyzed expression of AhR and genes involved in AhR signaling. Results In contrast to wild-type mNPCs, hNPCs and AhR-deficient mNPCs were insensitive to AhR agonism or antagonism. Although AhR modulation attenuated wild-type mNPC proliferation and migration, hNPCs and AhR-deficient mNPCs remained unaffected. Results also suggest that species-specific differences resulted from nonfunctional AhR signaling in hNPCs. Conclusion Our findings suggest that in contrast to wild-type mNPCs, hNPCs were protected against polycyclic aromatic hydrocarbon–induced DNT because of an absence of AhR. This difference may contribute to species-specific differences in sensitivity to POPs. PMID:20570779

  7. Progesterone, as well as 17β-estradiol, is important for regulating AHR battery homoeostasis in the rat uterus.

    PubMed

    Rataj, Felicitas; Möller, Frank Josef; Jähne, Maria; Hönscheid, Pia; Zierau, Oliver; Vollmer, Günter; Kretzschmar, Georg

    2015-03-01

    Several studies indicate that the aryl hydrocarbon receptor (AHR), which plays an important role in mediating the toxicity of many industrial chemicals, plays an important role in the physiology of female reproductive tract organs. This makes it likely that the AHR and additional components of the AHR signalling pathway are under the control of female sex steroids. In a previous study, we could already demonstrate the regulation of many members of the AHR battery by 17β-estradiol (E2) in the uterus of rats. In this study, we addressed the potential role of progesterone (P4) in this context. In a comparative approach using ovariectomized rats which were treated for 3 days with either vehicle control, E2, progesterone (P4) or the combination of both hormones in addition to sham-operated animals, we could demonstrate that in addition to E2, P4 is also an important factor in regulating AHR signalling in the rat uterus. P4 has effects similar to E2 on uterine Ahr, Arnt and Arnt2 mRNA levels, resulting in a downregulation of these genes, while the E2-mediated downregulation of key AHR response genes Cyp1a1, Gsta2 and Ugt1 is completely antagonized by P4. As with E2, P4 leads to an increase in uterine AHR levels, especially in the endometrial epithelium despite the decrease in corresponding mRNA levels. This indicates a complex gene-specific regulatory network involving E2, P4 and possibly AHR itself to maintain all components of the AHR signalling cascade at the required levels during all stages of the oestrous cycle and pregnancy. PMID:24777823

  8. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization

    PubMed Central

    Lindsey, Stephan; T. Papoutsakis, Eleftherios

    2012-01-01

    Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. PMID:21226706

  9. Activation of aryl hydrocarbon receptor signaling by extracts of teak and other wood dusts.

    PubMed

    Wilson, Mark J; Sabbioni, Gabriele; Rando, Roy; Miller, Charles A

    2015-12-01

    Wood dusts, as a group, are categorized as known human carcinogens, but the risks of exposure to specific types of wood dusts and the carcinogenic chemicals they contain are not well studied. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is linked to the carcinogenic action of specific classes of chemicals. Here we examined whether chemicals in various wood dusts had the potential to activate AhR signaling as a potential toxic mechanism of action. We found that methanol extracts of teak, walnut, mahogany, and poplar dusts contained a wide range of AhR ligand activity, whereas extracts of oak, pine, and other softwoods did not contain appreciable activity. Teak dust extract, being particularly potent, was subjected to chemical analysis. The 2-methylanthraquinone (2-MAQ) accounted for the AhR ligand activity and was present at an average concentration of 0.27 parts per hundred in teak dust. Pure 2-MAQ potently induced AhR signaling (EC50 115 nM), confirming that this was the active ligand. Aqueous extracts of teak dust made using yeast or mammalian cell culture medium also contained robust AhR activity, suggesting the 2-MAQ ligand is soluble at bioactive concentrations in physiologically relevant fluids. The high concentration and potency of 2-MAQ in teak wood suggest it may mediate toxic effects through activation of AhR signaling in exposed wood workers. PMID:24898320

  10. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DNA damage in rats.

    PubMed

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. PMID:23999541

  11. The tertiary structures of porcine AhR and ARNT proteins and molecular interactions within the TCDD/AhR/ARNT complex.

    PubMed

    Orlowska, Karina; Molcan, Tomasz; Swigonska, Sylwia; Sadowska, Agnieszka; Jablonska, Monika; Nynca, Anna; Jastrzebski, Jan P; Ciereszko, Renata E

    2016-06-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse synthetic and natural chemicals, including toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the present study, homology models of the porcine AhR-ligand binding domain (LBD) and the porcine aryl hydrocarbon receptor nuclear translocator-ligand binding domain (ARNT-LBD) were created on the basis of structures of closely related respective proteins i.e., human Hif-2α and ARNT. Molecular docking of TCDD to the porcine AhR-LBD model revealed high binding affinity (-8.8kcal/mol) between TCDD and the receptor. Moreover, formation of the TCDD/AhR-LBD complex was confirmed experimentally with the use of electrophoretic mobility shift assay (EMSA). It was found that TCDD (10nM, 2h of incubation) not only bound to the AhR in the porcine granulosa cells but also activated the receptor. The current study provides a framework for examining the key events involved in the ligand-dependent activation of the AhR. PMID:27288759

  12. Neuro-immune interactions in chemical-induced airway hyperreactivity.

    PubMed

    Devos, Fien C; Boonen, Brett; Alpizar, Yeranddy A; Maes, Tania; Hox, Valérie; Seys, Sven; Pollaris, Lore; Liston, Adrian; Nemery, Benoit; Talavera, Karel; Hoet, Peter H M; Vanoirbeek, Jeroen A J

    2016-08-01

    Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR. PMID:27126687

  13. The Evolving Role of the Aryl Hydrocarbon Receptor (AHR) in the Normophysiology of Hematopoiesis

    PubMed Central

    Lindsey, Stephan; Papoutsakis, Eleftherios T.

    2012-01-01

    In addition to its role as a toxicological signal mediator, the Aryl Hydrocarbon Receptor (AHR) is also a transcription factor known to regulate cellular responses to oxidative stress and inflammation through transcriptional regulation of molecules involved in the signaling of nucear factor-erythroid 2-related factor-2 (Nrf2), p53 (TRP53), retinoblastoma (RB1), and NFκB. Recent research suggests that AHR activation of these signaling pathways may provide the molecular basis for understanding AHR’s evolving role in endogenous developmental functions during hematopoietic stem-cell maintenance and differentiation. Recent developments into the hematopoietic roles for AHR are reviewed, aiming to reconcile divergent findings as to the endogenous function of AHR in hematopoiesis. Potential mechanistic explanations for AHR’s involvement in hematopoietic differentiation are discussed, focusing on its known role as a cell cycle mediator and its interactions with Hypoxia-inducible transcription factor-1 alpha (HIF1-α). Understanding the physiological mechanisms of AHR activation and signaling have far reaching implications ranging from explaining the action of various toxicological agents to providing novel ways to expand stem cell populations ex vivo for use in transplant therapies. PMID:22628113

  14. Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines

    SciTech Connect

    Dumont, Julie Josse, Rozenn Lambert, Carine Antherieu, Sebastien Laurent, Veronique Loyer, Pascal Robin, Marie-Anne Guillouzo, Andre

    2010-11-15

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are two of the most common heterocyclic aromatic amines (HAA) produced during cooking of meat, fish and poultry. Both HAA produce different tumor profiles in rodents and are suspected to be carcinogenic in humans. In order to better understand the molecular basis of HAA toxicity, we have analyzed gene expression profiles in the metabolically competent human HepaRG cells using pangenomic oligonucleotide microarrays, after either a single (24-h) or a repeated (28-day) exposure to 10 {mu}M PhIP or MeIQx. The most responsive genes to both HAA were downstream targets of the arylhydrocarbon receptor (AhR): CYP1A1 and CYP1A2 after both time points and CYP1B1 and ALDH3A1 after 28 days. Accordingly, CYP1A1/1A2 induction in HAA-treated HepaRG cells was prevented by chemical inhibition or small interference RNA-mediated down-regulation of the AhR. Consistently, HAA induced activity of the CYP1A1 promoter, which contains a consensus AhR-related xenobiotic-responsive element (XRE). In addition, several other genes exhibited both time-dependent and compound-specific expression changes with, however, a smaller magnitude than previously reported for the prototypical AhR target genes. These changes concerned genes mainly related to cell growth and proliferation, apoptosis, and cancer. In conclusion, these results identify the AhR gene battery as the preferential target of PhIP and MeIQx in HepaRG cells and further support the hypothesis that intake of HAA in diet might increase human cancer risk.

  15. Activation of the aryl hydrocarbon receptor by carcinogenic aromatic amines and modulatory effects of their N-acetylated metabolites.

    PubMed

    Juricek, Ludmila; Bui, Linh-Chi; Busi, Florent; Pierre, Stéphane; Guyot, Erwan; Lamouri, Aazdine; Dupret, Jean-Marie; Barouki, Robert; Coumoul, Xavier; Rodrigues-Lima, Fernando

    2015-12-01

    Aromatic amines (AAs) are an important class of chemicals which account for 12 % of known carcinogens. The biological effects of AAs depend mainly on their biotransformation into reactive metabolites or into N-acetylated metabolites which are generally considered as less toxic. Although the activation of the aryl hydrocarbon receptor (AhR) pathway by certain carcinogenic AAs has been reported, the effects of their N-acetylated metabolites on the AhR have not been addressed. Here, we investigated whether carcinogenic AAs and their N-acetylated metabolites may activate/modulate the AhR pathway in the absence and/or the presence of a bona fide AhR ligand (benzo[a]pyrene/B(a)P]. In agreement with previous studies, we found that certain AAs activated the AhR in human liver and lung cells as assessed by an increase in cytochrome P450 1A1 (CYP1A1) expression and activity. Altogether, we report for the first time that these properties can be modulated by the N-acetylation status of the AA. Whereas 2-naphthylamine significantly activated the AhR and induced CYP1A1 expression, its N-acetylated metabolite was less efficient. In contrast, the N-acetylated metabolite of 2-aminofluorene was able to significantly activate AhR, whereas the parent AA, 2-aminofluorene, did not. In the presence of B(a)P, activation of AhR or antagonist effects were observed depending on the AA or its N-acetylated metabolite. Activation and/or modulation of the AhR pathway by AAs and their N-acetylated metabolites may represent a novel mechanism contributing to the toxicological effects of AAs. More broadly, our data suggest biological interactions between AAs and other classes of xenobiotics through the AhR pathway. PMID:25224404

  16. The Aryl Hydrocarbon Receptor: A Key Bridging Molecule of External and Internal Chemical Signals

    PubMed Central

    Tian, Jijing; Feng, Yu; Fu, Hualing; Xie, Heidi Qunhui; Jiang, Joy Xiaosong; Zhao, Bin

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a highly evolutionary conserved, ligand-activated transcription factor that is best known to mediate the toxicities of dioxins and dioxin-like compounds. Phenotype of AhR-null mice, together with the recent discovery of a variety of endogenous and plant-derived ligands, point to the integral roles of AhR in normal cell physiology, in addition to its roles in sensing the environmental chemicals. Here, we summarize the current knowledge about AhR signaling pathways, its ligands and AhR-mediated effects on cell specialization, host defense and detoxification. AhR-mediated health effects particularly in liver, immune, and nervous systems, as well as in tumorgenesis are discussed. Dioxin-initiated embryotoxicity and immunosuppressive effects in fish and birds are reviewed. Recent data demonstrate that AhR is a convergence point of multiple signaling pathways that inform the cell of its external and internal environments. As such, AhR pathway is a promising potential target for therapeutics targeting nervous, liver, and autoimmune diseases through AhR ligand-mediated interventions and other perturbations of AhR signaling. Additionally, using available laboratory data obtained on animal models, AhR-centered adverse outcome pathway analysis is useful in reexamining known and potential adverse outcomes of specific or mixed compounds on wildlife. PMID:26079192

  17. Aryl Hydrocarbon Receptor (AhR) Regulates Silica-Induced Inflammation But Not Fibrosis

    PubMed Central

    Beamer, Celine A.; Seaver, Benjamin P.; Shepherd, David M.

    2012-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is responsible for mediating a variety of pharmacological and toxicological effects caused by halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, recent evidence has revealed that the AhR also has numerous physiological roles aside from xenobiotic metabolism, including regulation of immune and inflammatory signaling as well as normal development and homeostasis of several organs. To investigate the role of the AhR in crystalline silica (SiO2)–induced inflammation and fibrosis, C57Bl/6 and AhR−/− mice were exposed to SiO2 or vehicle. Similarly, C57Bl/6 mice were exposed to SiO2 and TCDD either simultaneously or sequentially to assess whether AhR activation alters inflammation and fibrosis. SiO2-induced acute lung inflammation was more severe in AhR−/− mice; however, the fibrotic response of AhR−/− mice was attenuated compared with C57Bl/6 mice. In a model of chronic SiO2 exposure, AhR activation by TCDD in C57Bl/6 mice resulted in reduced inflammation; however, the fibrotic response was not affected. Bone marrow–derived macrophages (BMM) from AhR−/− mice also produced higher levels of cytokines and chemokines in response to SiO2. Analysis of gene expression revealed that BMM derived from AhR−/− mice exhibit increased levels of pro-interleukin (IL)-1β, IL-6, and Bcl-2, yet decreased levels of signal transducers and activators of transcription (STAT)2, STAT5a, and serpin B2 (Pai-2) in response to SiO2. PMID:22273745

  18. Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-α

    PubMed Central

    Mascanfroni, Ivan D.; Takenaka, Maisa C.; Yeste, Ada; Patel, Bonny; Wu, Yan; Kenison, Jessica E.; Siddiqui, Shafiuddin; Basso, Alexandre S.; Otterbein, Leo E.; Pardoll, Drew M.; Pan, Fan; Priel, Avner; Clish, Clary B.; Robson, Simon C.; Quintana, Francisco J.

    2015-01-01

    Our understanding of the pathways that regulate lymphocyte metabolism, as well as the effects of metabolism and its products on the immune response, is still limited. We report that a metabolic program controlled by the transcription factors hypoxia inducible factor-1α (HIF1-α) and aryl hydrocarbon receptor (AHR) supports the differentiation of type 1 regulatory (Tr1) cells. HIF1-α controls the early metabolic reprograming of Tr1 cells. At later time points, AHR promotes HIF1-α degradation and takes control of Tr1 cell metabolism. Extracellular adenosine triphosphate (eATP) and hypoxia, linked to inflammation, trigger AHR inactivation by HIF1-α and inhibit Tr1 cell differentiation. Conversely, CD39 promotes Tr1 cell differentiation by depleting eATP. CD39 also contributes to Tr1 suppressive activity by generating adenosine in cooperation with CD73 expressed by responder T cells and antigen presenting cells. These results suggest that HIF1-α and AHR integrate immunological, metabolic and environmental signals to regulate the immune response. PMID:26005855

  19. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin) receptor.

    PubMed

    Zhao, Bin; Bohonowych, Jessica E S; Timme-Laragy, Alicia; Jung, Dawoon; Affatato, Alessandra A; Rice, Robert H; Di Giulio, Richard T; Denison, Michael S

    2013-01-01

    Activation of the Ah receptor (AhR) by halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products. PMID:23441220

  20. Common Commercial and Consumer Products Contain Activators of the Aryl Hydrocarbon (Dioxin) Receptor

    PubMed Central

    Zhao, Bin; Bohonowych, Jessica E. S.; Timme-Laragy, Alicia; Jung, Dawoon; Affatato, Alessandra A.; Rice, Robert H.; Di Giulio, Richard T.; Denison, Michael S.

    2013-01-01

    Activation of the Ah receptor (AhR) by halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products. PMID:23441220

  1. Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development

    PubMed Central

    Smith, Brenden W.; Stanford, Elizabeth A.; Sherr, David H.; Murphy, George J.

    2016-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages, we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs) to incorporate a reporter cassette at the transcription start site of one of its canonical targets, cytochrome P450 1A1 (CYP1A1). This cell line faithfully reports on CYP1A1 expression, with luciferase levels as its functional readout, when treated with an endogenous AHR ligand (FICZ) at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands, and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed, this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR. PMID:27148368

  2. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR.

    PubMed

    Litzenburger, Ulrike M; Opitz, Christiane A; Sahm, Felix; Rauschenbach, Katharina J; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-02-28

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR-IL-6-STAT3 signaling loop. Inhibition of the AHR-IL-6-STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients. PMID:24657910

  3. Benzo[a]pyrene, 3-methylcholanthrene and beta-naphthoflavone induce oxidative stress in hepatoma hepa 1c1c7 Cells by an AHR-dependent pathway.

    PubMed

    Elbekai, Reem H; Korashy, Hesham M; Wills, Kelly; Gharavi, Negar; El-Kadi, Ayman O S

    2004-11-01

    Polycyclic aromatic hydrocarbons have been shown to cause oxidative stress in vitro and in vivo in various animal models but the mechanisms by which these compounds produce oxidative stress are unknown. In the current study we have investigated the role of the aryl hydrocarbon receptor (AHR) in the production of reactive oxygen species (ROS) by its cognate ligands and the consequent effect on cyp1a1 activity, mRNA and protein expressions. For this purpose, Hepa 1c1c7 cells wild-type (WT) and C12 mutant cells, which are AHR-deficient, were incubated with increasing concentrations of the AHR-ligands, benzo[a]pyrene (B[a]P, 0.25-25 microM), 3-methylcholanthrene (3MC, 0.1-10 microM) and beta-naphthoflavone (betaNF, 1-50 microM). The studied AHR-ligands dose-dependently increased lipid peroxidation in WT but not in C12 cells. However, only B[a]P and betaNF, at the highest concentrations tested, significantly increased H2O2 production in WT but not C12 cells. The increase in lipid peroxidation and H2O2 production by AHR-ligands were accompanied by a decrease in the cyp1a1 catalytic activity but not mRNA or protein expressions, which were significantly induced in a dose-dependent manner by all AHR-ligands, suggesting a post-translational mechanism is involved in the decrease of cyp1a1 activity. The AHR-ligand-mediated decrease in cyp1a1 activity was reversed by the antioxidant N-acetylcysteine. Our results show that the AHR-ligands induce oxidative stress by an AHR-dependent pathway. PMID:15621696

  4. Simulator for SUPO, a Benchmark Aqueous Homogeneous Reactor (AHR)

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-10-14

    A simulator has been developed for SUPO (Super Power) an aqueous homogeneous reactor (AHR) that operated at Los Alamos National Laboratory (LANL) from 1951 to 1974. During that period SUPO accumulated approximately 600,000 kWh of operation. It is considered the benchmark for steady-state operation of an AHR. The SUPO simulator was developed using the process that resulted in a simulator for an accelerator-driven subcritical system, which has been previously reported.

  5. Assessing the estrogenic and dioxin-like activities of chemicals and complex mixtures using in vitro recombinant receptor-reporter gene assays.

    PubMed

    Balaguer, P; Joyeux, A; Denison, M S; Vincent, R; Gillesby, B E; Zacharewski, T

    1996-02-01

    In vitro recombinant receptor-reporter gene assays have been used to assess and rank the potency of chemicals and complex mixtures suspected of possessing estrogen and (or) aryl hydrocarbon receptor (AhR) mediated activity. The environmental estrogen (E2) bioassay consists of a Gal4-human estrogen receptor chimeric construct (Gal4-HEGO) and a Gal4-regulated luciferase reporter gene (17m5-G-Luc) that have been stably integrated into HeLa cells. The assay exhibits 10-fold induction in luciferase reporter gene activity following treatment with 1 nM 17 beta-estradiol and has a detection limit of approximately 5 pg of 17 beta-estradiol/mL. The AhR bioassay uses Hepa 1c1c7 wild-type cells transiently transfected with a dioxin response element regulated luciferase reporter gene. These assays were used to assess the estrogen and dioxin-like activities of naringenin, atrazine, and simazine and complex mixtures such as pulp and paper mill black liquor and urban air particulates. The activities of these chemicals and complex mixtures are confirmed using the pure antiestrogen ICI 164,384 and in in vitro gel retardation assays. Results of this study demonstrate the utility of in vitro recombinant receptor-reporter gene assays in identifying and assessing the estrogenic and dioxin-like activities of chemicals and complex mixtures. PMID:8723035

  6. Inorganic chemically active adsorbents (ICAAs)

    SciTech Connect

    Ally, M.R.; Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  7. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice

    PubMed Central

    Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G.; Hao, Ruixin; Correll, Jared; Smith, Philip B.; Chiaro, Christopher R.; Perdew, Gary H.; Patterson, Andrew D.

    2016-01-01

    Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) were assessed using global 1H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolic profiling of extracts obtained from serum and liver. 1H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was also observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure. PMID:26023891

  8. The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling

    PubMed Central

    Tkachenko, Anna; Henkler, Frank; Brinkmann, Joep; Sowada, Juliane; Genkinger, Doris; Kern, Christian; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The aryl hydrocarbon receptor (AHR) shuttles continuously between cytoplasm and nucleus, unless ligand-binding triggers association with the AHR nuclear translocator (ARNT) and subsequent binding to cognate DNA motifs. We have now identified Val 647 as mandatory residue for export from the nucleus and AHR-function. This residue prevents inactivation of the receptor as a consequence of nuclear sequestration via constitutive import. Concomitantly mutants lacking this residue are exclusively localised in the nucleus. Although ligands accelerate nuclear import transiently, stable nuclear transition depends on a motif adjacent to Val 647 that comprises residues 650–661. Together, this defined region within the Q-rich domain regulates intracellular trafficking of the AHR in context of both nucleocytoplasmic shuttling and receptor activation. Nuclear export therefore depends on the previously characterised N-terminal NES and the newly identified motif that includes V647. Nucleocytoplasmic distribution of full-length human AHR is further affected by a section of the PST domain that shows sequence similarities with nuclear export signals. In concert, these motifs maintain a predominant cytoplasmic compartmentalisation, receptive for ligand binding. PMID:27535013

  9. The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling.

    PubMed

    Tkachenko, Anna; Henkler, Frank; Brinkmann, Joep; Sowada, Juliane; Genkinger, Doris; Kern, Christian; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The aryl hydrocarbon receptor (AHR) shuttles continuously between cytoplasm and nucleus, unless ligand-binding triggers association with the AHR nuclear translocator (ARNT) and subsequent binding to cognate DNA motifs. We have now identified Val 647 as mandatory residue for export from the nucleus and AHR-function. This residue prevents inactivation of the receptor as a consequence of nuclear sequestration via constitutive import. Concomitantly mutants lacking this residue are exclusively localised in the nucleus. Although ligands accelerate nuclear import transiently, stable nuclear transition depends on a motif adjacent to Val 647 that comprises residues 650-661. Together, this defined region within the Q-rich domain regulates intracellular trafficking of the AHR in context of both nucleocytoplasmic shuttling and receptor activation. Nuclear export therefore depends on the previously characterised N-terminal NES and the newly identified motif that includes V647. Nucleocytoplasmic distribution of full-length human AHR is further affected by a section of the PST domain that shows sequence similarities with nuclear export signals. In concert, these motifs maintain a predominant cytoplasmic compartmentalisation, receptive for ligand binding. PMID:27535013

  10. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits.

    PubMed

    Jeuken, Anoek; Keser, Bart J G; Khan, Elaine; Brouwer, Abraham; Koeman, Jan; Denison, Michael S

    2003-08-27

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by a structurally diverse range of synthetic and natural chemicals, and it mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The spectrum of chemicals that bind to and activate the AhR signal transduction pathway and the identity of materials containing AhR active chemicals is only now being defined. Utilizing AhR-dependent gel retardation and reporter gene bioassays, the screening of extracts of 22 dietary herbal supplements and 21 food products (vegetables and fruits) was performed to identify those containing AhR agonists. Several herbal extracts (ginseng, Fo-Ti, white oak bark, licorice, ginkgo biloba, and black cohosh) stimulated AhR DNA binding and gene expression to levels between 20 and 60% of that produced by TCDD. Although some food extracts (corn, jalapeño pepper, green bell pepper, apple, Brussels sprout, and potato) were relatively potent activators of AhR DNA binding (30-50% of TCDD), only corn and jalapeño pepper extracts induced AhR-dependent luciferase reporter gene expression. However, dilution of corn, jalapeño pepper, bell pepper, and potato extracts dramatically increased their ability to induce luciferase activity, suggesting that these extracts contained AhR antagonists whose effectiveness was overcome by dilution. Overall, these results demonstrate that dietary products can be a major source of naturally occurring AhR ligands to which animals and humans are chronically exposed. PMID:12926901

  11. Dioxin-like activity in sediments from Tai Lake, China determined by use of the H4IIE-luc bioassay and quantification of individual AhR agonists.

    PubMed

    Xia, Jie; Su, Guanyong; Zhang, Xiaowei; Shi, Wei; Giesy, John P; Yu, Hongxia

    2014-01-01

    Deterioration of the general ecosystem and specifically quality of the water in Tai Lake (Ch: Taihu), the third largest freshwater in China, is of great concern. However, knowledge on status and trends of dioxin-like compounds in Tai Lake was limited. This study investigated AhR-mediated potency and quantified potential aryl hydrocarbon receptor (AhR) agonists in sediments from four regions (Meiliang Bay, Zhushan Lake, Lake Center, Corner of Zhushan Lake, and Meiliang Bay) of Tai Lake by use of the in vitro H4IIE-luc, cell-based, transactivation, reporter gene assay, and instrumental analysis. Concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (Bio-TEQs) in sediments ranged from less than the limit of detection to 114.5 pg/g, dry weight, which indicated that organic extracts of sediments exhibited significant AhR-mediated potencies. Results of the potency balance analysis demonstrated that acid-labile, dioxin-like compounds represented a greater proportion of concentrations of Bio-TEQs in sediments from Tai Lake. Concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents calculated as the sum of the product of concentrations of individual congeners and their respective relative potencies (Chem-TEQs) based on polycyclic aromatic hydrocarbons and/or polychlorinated biphenyls represented no more than 10% of the total concentrations of Bio-TEQs. PMID:23925657

  12. Ultraviolet light converts propranolol, a nonselective β-blocker and potential lupus-inducing drug, into a proinflammatory AhR ligand.

    PubMed

    Dorgham, Karim; Amoura, Zahir; Parizot, Christophe; Arnaud, Laurent; Frances, Camille; Pionneau, Cédric; Devilliers, Hervé; Pinto, Sandra; Zoorob, Rima; Miyara, Makoto; Larsen, Martin; Yssel, Hans; Gorochov, Guy; Mathian, Alexis

    2015-11-01

    UV light and some medications are known to trigger lupus erythematosus (LE). A common mechanism underlying the immunopathologic effect, resulting from exposure to these two seemingly unrelated factors, remains unknown. The aryl hydrocarbon receptor (AhR) plays a key role in the regulation of IL-22 production in humans and can be activated by both xenobiotics and naturally occurring photoproducts. A significant expansion of Th17 and Th22 cells was observed in the peripheral blood of active systemic LE (SLE) patients, compared to inactive patients and controls. We also show that propranolol, a potential lupus-inducing drug, induced stronger AhR activation in PBMCs of SLE patients than in those of controls. AhR agonist activity of propranolol was enhanced by UV light exposure. MS analysis of irradiated propranolol revealed the generation of a proinflammatory photoproduct. This compound behaves like the prototypic AhR ligand 6-formylindolo[3,2-b]carbazole, a cutaneous UV light-induced tryptophan metabolite, both promoting IL-22, IL-8, and CCL2 secretion by T-cells and macrophages. Finally, LE patients exhibit signs of cutaneous AhR activation that correlate with lesional expression of the same proinflammatory cytokines, suggesting a role for photometabolites in the induction of skin inflammation. The AhR might therefore represent a target for therapeutic intervention in LE. PMID:26354876

  13. ROLE OF THE ARYL HYDROCARBON RECEPTOR (AHR) IN LUNG INFLAMMATION1

    PubMed Central

    Beamer, Celine A.; Shepherd, David M.

    2013-01-01

    Millions of individuals worldwide are afflicted with acute and chronic respiratory diseases, causing temporary and permanent disabilities and even death. Oftentimes, these diseases occur as a result of altered immune responses. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acts as a regulator of mucosal barrier function and may influence immune responsiveness in the lungs through changes in gene expression, cell-cell adhesion, mucin production, and cytokine expression. This review updates the basic immunobiology of the AhR signaling pathway with regards to inflammatory lung diseases such as asthma, chronic obstructive pulmonary disorder, and silicosis following data in rodent models and humans. Finally, we address the therapeutic potential of targeting the in regulating inflammation during acute and chronic respiratory diseases. PMID:23963493

  14. Zebrafish Cardiotoxicity: The Effects of CYP1A Inhibition and AHR2 Knockdown Following Exposure to Weak Aryl Hydrocarbon Receptor Agonists

    PubMed Central

    Clark, Bryan William; Van Tiem Garner, Lindsey; Di Giulio, Richard Thomas

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates many of the toxic effects of dioxin-like compounds (DLCs) and some polycyclic aromatic hydrocarbons (PAHs). Strong AHR agonists, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, such as benzo[a]pyrene and β-naphthoflavone, have been shown to cause similar cardiotoxic effects when coupled with a cytochrome P450 1A (CYP1A) inhibitor, such as fluoranthene (FL). We sought to determine if weak AHR agonists, when combined with a CYP1A inhibitor (FL) or CYP1A morpholino gene knockdown, are capable of causing cardiac deformities similar to moderately strong AHR agonists (Wassenberg and Di Giulio 2004; Wassenberg and Di Giulio 2004; Billiard, Timme-Laragy et al. 2006; Van Tiem and Di Giulio 2011). The weak AHR agonists included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. The results showed a complex pattern of cardiotoxic response to weak agonist inhibitor exposure and morpholino-knockdown. Danio rerio (zebrafish) embryos were first exposed to weak AHR agonists at equimolar concentrations. The agonists were assessed for their relative potency as inducers of CYP1 enzyme activity, measured by the ethoxyresorufin-o-deethylase (EROD) assay, and cardiac deformities. Carbaryl, 2-methylindole, and 3-methylindole induced the highest CYP1A activity in zebrafish. Experiments were then conducted to determine the individual cardiotoxicity of each compound. Next, zebrafish were co-exposed to each agonist (at concentrations below those determined to be cardiotoxic) and FL in combination to assess if CYP1A inhibition could induce cardiac deformities. Carbaryl, 2-methylindole, 3-methylindole, and phenanthrene significantly increased pericardial edema relative to controls when combined with FL. To further evaluate the

  15. A novel AhR ligand, 2AI, protects the retina from environmental stress

    PubMed Central

    Gutierrez, Mark A.; Davis, Sonnet S.; Rosko, Andrew; Nguyen, Steven M.; Mitchell, Kylie P.; Mateen, Samiha; Neves, Joana; Garcia, Thelma Y.; Mooney, Shaun; Perdew, Gary H.; Hubbard, Troy D.; Lamba, Deepak A.; Ramanathan, Arvind

    2016-01-01

    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2′-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice. PMID:27364765

  16. A novel AhR ligand, 2AI, protects the retina from environmental stress.

    PubMed

    Gutierrez, Mark A; Davis, Sonnet S; Rosko, Andrew; Nguyen, Steven M; Mitchell, Kylie P; Mateen, Samiha; Neves, Joana; Garcia, Thelma Y; Mooney, Shaun; Perdew, Gary H; Hubbard, Troy D; Lamba, Deepak A; Ramanathan, Arvind

    2016-01-01

    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2'-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice. PMID:27364765

  17. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    SciTech Connect

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K. . E-mail: mkwalker@unm.edu

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.

  18. Science Activities in Energy: Chemical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 15 activities relating to chemical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined on a single card which is introduced by a question. A teacher's…

  19. AhR ligand Aminoflavone inhibits α6-integrin expression and breast cancer sphere-initiating capacity.

    PubMed

    Brantley, Eileen; Callero, Mariana A; Berardi, Damian E; Campbell, Petreena; Rowland, Leah; Zylstra, Dain; Amis, Louisa; Yee, Michael; Simian, Marina; Todaro, Laura; Loaiza-Perez, Andrea I; Soto, Ubaldo

    2016-06-28

    Traditional chemotherapies debulk tumors but fail to produce long-term clinical remissions due to their inability to eradicate tumor-initiating cells (TICs). This necessitates therapy with activity against the TIC niche. Αlpha6-integrin (α6-integrin) promotes TIC growth. In contrast, aryl hydrocarbon receptor (AhR) signaling activation impedes the formation of mammospheres (clusters of cells enriched for TICs). We investigated the ability of AhR agonist Aminoflavone (AF) and AF pro-drug (AFP464) to disrupt mammospheres derived from breast cancer cells and a M05 mammary mouse model of breast cancer respectively. We further examined the capacity of AF and AFP464 to exhibit anticancer activity and modulate the expression of 'stemness' genes including α6-integrin using immunofluorescence, flow cytometry and qRT-PCR analysis. AF disrupted mammospheres and prevented secondary mammosphere formation. In contrast, AF did not disrupt mammospheres derived from AhR ligand-unresponsive MCF-7 cells. AFP464 treatment suppressed M05 tumor growth and disrupted corresponding mammospheres. AF and AFP464 reduced the expression and percentage of cells that stained for 'stemness' markers including α6-integrin in vitro and in vivo respectively. These data suggest AFP464 thwarts bulk breast tumor and TIC growth via AhR agonist-mediated α6-integrin inhibition. PMID:26996297

  20. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  1. Chemical Potentials and Activities: An Electrochemical Introduction.

    ERIC Educational Resources Information Center

    Wetzel, T. L.; And Others

    1986-01-01

    Describes a laboratory experiment which explores the effects of adding inert salts to electrolytic cells and demonstrates the difference between concentration and chemical activity. Examines chemical potentials as the driving force of reactions. Provides five examples of cell potential and concentration change. (JM)

  2. Characterization testing of a 40 Ahr bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.

    1989-01-01

    In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.

  3. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  4. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  5. Behavioral Rhythmicity of Mice Lacking AhR and Attenuation of Light-induced Phase Shift by 2,3,7,8-Tetracholordibenzo-p-dioxin

    PubMed Central

    Mukai, Motoko; Lin, Tien-Min; Peterson, Richard E.; Cooke, Paul S.; Tischkau, Shelley A.

    2008-01-01

    Transcription factors belonging to the Per/Arnt/Sim (PAS) domain family are highly conserved and many are involved in circadian rhythm regulation. One member of this family, aryl hydrocarbon receptor (AhR), is an orphan receptor whose physiological role is unknown. Recent findings have led to the hypothesis that AhR has a role in circadian rhythm, which is the focus of the present investigation. First, time-of-day dependent mRNA expression of AhR and its signaling target, cytochrome p4501A1 (Cyp1a1) was determined in C57BL/6J mice by quantitative RT-PCR. Circadian expression of AhR and Cyp1a1 was observed both in the suprachiasmatic nucleus (SCN) and liver. Next, the circadian phenotype of mice lacking AhR (AhRKO) was investigated using behavioral monitoring. Intact AhRKO mice had robust circadian rhythmicity with a similar tau under constant conditions compared to wild-type mice, but a significant difference in tau was observed between genotypes in ovariectomized female mice. Time to re-entrainment following 6-h advances or delays of the light/dark cycle was not significantly different between genotypes. However, mice exposed to the AhR agonist 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD, 1 μg/kg BW) displayed decreased phase shifts in response to light and had altered expression of Per1 and Bmal1. These results suggest that chronic activation of AhR may affect the ability of the circadian timekeeping system to adjust to alterations in environmental lighting by affecting canonical clock genes. Further studies are necessary to decipher the mechanism of how AhR agonists could disrupt light-induced phase shifts. If AhR does have a role in circadian rhythm, it may share redundant roles with other PAS domain proteins and/or the role of AhR may not be exhibited in the behavioral activity rhythm, but could be important elsewhere in the peripheral circadian system. PMID:18487412

  6. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer

    SciTech Connect

    Spink, Barbara C.; Bloom, Michael S.; Wu, Susan; Sell, Stewart; Schneider, Erasmus; Ding, Xinxin; Spink, David C.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC){sub n}, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC){sub 2} alleles were observed; however, in western gorilla, (GGGGC){sub n} alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC){sub n} was n = 4 > 5 ≫ 2, 6. When frequencies of the (GGGGC){sub n} alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC){sub 2} was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC){sub n} short tandem repeats are inherited, and that the (GGGGC){sub 2} allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. - Highlights: • The AHR proximal promoter contains a polymorphism, (GGGGC){sub n}, where n = 4 > 5 ≫ 2, 6 • Matched tumor and non-tumor DNA did not show (GGGGC){sub n} microsatellite instability • AHR promoter activity of a construct with (GGGGC){sub 2} was lower than that of (GGGGC){sub 4} • The frequency of (GGGGC){sub 2} in lung

  7. The chlorinated AHR ligand 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) promotes reactive oxygen species (ROS) production during embryonic development in the killifish (Fundulus heteroclitus)

    USGS Publications Warehouse

    Arzuaga, Xabier; Wassenberg, Deena; Giulio, Richard D.; Elskus, Adria

    2006-01-01

    Exposure to dioxin-like chemicals that activate the aryl hydrocarbon receptor (AHR) can result in increased cellular and tissue production of reactive oxygen species (ROS). Little is known of these effects during early fish development. We used the fish model, Fundulus heteroclitus, to determine if the AHR ligand and pro-oxidant 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) can increase ROS production during killifish development, and to test a novel method for measuring ROS non-invasively in a living organism. The superoxide-sensitive fluorescent dye, dihydroethidium (DHE), was used to detect in ovo ROS production microscopically in developing killifish exposed to PCB126 or vehicle. Both in ovo CYP1A activity (ethoxyresorufin-o-deethylase, EROD) and in ovo ROS were induced by PCB126. In ovo CYP1A activity was inducible by PCB126 concentrations as low as 0.003 nM, with maximal induction occurring at 0.3 nM PCB126. These PCB126 concentrations also significantly increased in ovo ROS production in embryonic liver, ROS being detectable as early as 5 days post-fertilization. These data demonstrate that the pro-oxidant and CYP1A inducer, PCB126, increases both CYP1A activity and ROS production in developing killifish embryos. The superoxide detection assay (SoDA) described in this paper provides a semi-quantitative, easily measured, early indicator of altered ROS production that can be used in conjunction with simultaneous in ovo measurements of CYP1A activity and embryo development to explore functional relationships among biochemical, physiological and developmental responses to AHR ligands.

  8. Biological effects of 6-formylindolo[3,2-b]carbazole (FICZ) in vivo are enhanced by loss of CYP1A function in an Ahr2-dependent manner.

    PubMed

    Wincent, Emma; Kubota, Akira; Timme-Laragy, Alicia; Jönsson, Maria E; Hahn, Mark E; Stegeman, John J

    2016-06-15

    6-Formylindolo[3,2-b]carbazole (FICZ) is a potent aryl hydrocarbon receptor (AHR) agonist that is efficiently metabolized by AHR-regulated cytochrome P4501 enzymes. FICZ is a proposed physiological AHR ligand that induces its own degradation as part of a regulatory negative feedback loop. In vitro studies in cells show that CYP1 inhibition in the presence of FICZ results in enhanced AHR activation, suggesting that FICZ accumulates in the cell when its metabolism is blocked. We used zebrafish (Danio rerio) embryos to investigate the in vivo effects of FICZ when CYP1A is knocked down or inhibited. Embryos were injected with morpholino antisense oligonucleotides targeting CYP1A (CYP1A-MO), Ahr2, or a combination of both. FICZ exposure of non-injected embryos or embryos injected with control morpholino had little effect. In CYP1A-MO-injected embryos, however, FICZ dramatically increased mortality, incidence and severity of pericardial edema and circulation failure, reduced hatching frequency, blocked swim bladder inflation, and strongly potentiated expression of Ahr2-regulated genes. These effects were substantially reduced in embryos with a combined knockdown of Ahr2 and CYP1A, indicating that the toxicity was mediated at least partly by Ahr2. Co-exposure to the CYP1 inhibitor alpha-naphthoflavone (αNF) and FICZ had similar effects as the combination of CYP1A-MO and FICZ. HPLC analysis of FICZ-exposed embryos showed increased levels of FICZ after concomitant CYP1A-MO injection or αNF co-exposure. Together, these results show that a functioning CYP1/AHR feedback loop is crucial for regulation of AHR signaling by a potential physiological ligand in vivo and further highlights the role of CYP1 enzymes in regulating biological effects of FICZ. PMID:27112072

  9. Deficiency in Aryl Hydrocarbon Receptor (AHR) Expression throughout Aging Alters Gene Expression Profiles in Murine Long-Term Hematopoietic Stem Cells

    PubMed Central

    Bennett, John A.; Singh, Kameshwar P.; Unnisa, Zeenath; Welle, Stephen L.; Gasiewicz, Thomas A.

    2015-01-01

    Dysregulation of hematopoietic stem cell (HSC) signaling can contribute to the development of diseases of the blood system. Lack of aryl hydrocarbon receptor (AhR) has been associated with alterations in gene expression related to HSC function and the subsequent development of a myeloproliferative disorder in aging female mice. We sorted the most primitive population of HSCs with the highest stem cell potential (Long-term, or LT-HSCs) from 18-month-old AhR-null-allele (AhR-KO) and WT mice and analyzed gene expression using microarray to determine alterations in gene expression and cell signaling networks in HSCs that could potentially contribute to the aging phenotype of AhR-KO mice. Comparisons with previous array data from 8-week old mice indicated that aging alone is sufficient to alter gene expression. In addition, a significant number of gene expression differences were observed in aged LT-HSCs that are dependent on both aging and lack of AhR. Pathway analysis of these genes revealed networks related to hematopoietic stem cell activity or function. qPCR was used to confirm the differential expression of a subset of these genes, focusing on genes that may represent novel AhR targets due to the presence of a putative AhR binding site in their upstream regulatory region. We verified differential expression of PDGF-D, Smo, Wdfy1, Zbtb37 and Zfp382. Pathway analysis of this subset of genes revealed overlap between cellular functions of the novel AhR targets and AhR itself. Lentiviral-mediated knockdown of AhR in lineage-negative hematopoietic cells was sufficient to induce changes in all five of the candidate AhR targets identified. Taken together, these data suggest a role for AhR in HSC functional regulation, and identify novel HSC AhR target genes that may contribute to the phenotypes observed in AhR-KO mice. PMID:26208102

  10. Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine

    SciTech Connect

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.; Phillips, Simon E. V.

    2007-11-01

    The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolic sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented.

  11. Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins.

    PubMed

    Farmahin, Reza; Wu, Dongmei; Crump, Doug; Hervé, Jessica C; Jones, Stephanie P; Hahn, Mark E; Karchner, Sibel I; Giesy, John P; Bursian, Steven J; Zwiernik, Matthew J; Kennedy, Sean W

    2012-03-01

    There are large differences in sensitivity to the toxic and biochemical effects of dioxins and dioxin-like compounds (DLCs) among vertebrates. Previously, we demonstrated that the difference in sensitivity between domestic chicken (Gallus gallus domesticus) and common tern (Sterna hirundo) to aryl hydrocarbon receptor 1 (AHR1)-dependent changes in gene expression following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is based upon the identities of the amino acids at two sites within the ligand binding domain of AHR1 (chicken--highly sensitive; Ile324_Ser380 vs common tern--250-fold less sensitive than chicken; Val325_Ala381). Here, we tested the hypotheses that (i) the sensitivity of other avian species to TCDD, 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 2,3,7,8-tetrachlorodibenzofuran (TCDF) is also determined by the amino acids at sites that are equivalent to sites 324 and 380 in chicken, and (ii) Ile324_Ala380 and Val324_Ser380 genotypes confer intermediate sensitivity to DLCs in birds. We compared ligand-induced transactivation function of full-length AHR1s from chicken, common tern, ring-necked pheasant (Phasianus colchicus; Ile324_Ala380) and Japanese quail (Coturnix japonica; Val324_Ala380), and three Japanese quail AHR1 mutants. The results support our hypothesis that avian species can be grouped into three general classes of sensitivity to DLCs. Both AHR1 genotype and in vitro transactivation assays predict in vivo sensitivity. Contrary to the assumption that TCDD is the most potent DLC, PeCDF was more potent than TCDD at activating Japanese quail (13- to 26-fold) and common tern (23- to 30-fold) AHR1. Our results support and expand previous in vitro and in vivo work that demonstrated ligand-dependent species differences in AHR1 affinity. The findings and methods will be of use for DLC risk assessments. PMID:22296185

  12. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  13. Coordinated Regulation of Hepatic Phase I and II Drug-Metabolizing Genes and Transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-Null Mice

    PubMed Central

    Aleksunes, Lauren M.

    2012-01-01

    The transcription factors aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor α (PPARα), and nuclear factor erythroid 2-related factor 2 (Nrf2) regulate genes encoding drug-metabolizing enzymes and transporters in livers of mice after chemical activation. However, the specificity of their transcriptional regulation has not been determined systematically in vivo. The purpose of this study was to identify genes encoding drug-metabolizing enzymes and transporters altered by chemical activators in a transcription factor-dependent manner using wild-type and transcription factor-null mice. Chemical activators were administered intraperitoneally to mice once daily for 4 days. Livers were collected 24 h after the final dose, and total RNA was isolated for mRNA quantification of cytochromes P450, NAD(P)H quinone oxidoreductase 1 (Nqo1), aldehyde dehydrogenases (Aldhs), glutathione transferases (Gsts), sulfotransferases (Sults), UDP-glucuronosyltransferases (Ugts), organic anion-transporting polypeptides (Oatps), and multidrug resistance-associated proteins (Mrps). Pharmacological activation of each transcription factor leads to mRNA induction of drug metabolic and transport genes in livers of male and female wild-type mice, but no change in null mice: AhR (Cyp1a2, Nqo1, Aldh7a1, Ugt1a1, Ugt1a6, Ugt1a9, Ugt2b35, Sult5a1, Gstm3, and Mrp4), CAR (Cyp2b10, Aldh1a1, Aldh1a7, Ugt1a1, Ugt2b34, Sult1e1, Sult3a1, Sult5a1, Papps2, Gstt1, Gsta1, Gsta4, Gstm1–4, and Mrp2–4), PXR (Cyp3a11, Ugt1a1, Ugt1a5, Ugt1a9, Gsta1, Gstm1–m3, Oatp1a4, and Mrp3), PPARα (Cyp4a14, Aldh1a1, mGst3, Gstm4, and Mrp4), and Nrf2 (Nqo1, Aldh1a1, Gsta1, Gsta4, Gstm1–m4, mGst3, and Mrp3–4). Taken together, these data reveal transcription factor specificity and overlap in regulating hepatic drug disposition genes by chemical activators. Coordinated regulation of phase I, phase II, and transport genes by

  14. Activity Therapy Services and Chemical Dependency Rehabilitation.

    ERIC Educational Resources Information Center

    James, Mark R.; Townsley, Robin K.

    1989-01-01

    Discusses how music, occupational, and recreation therapies can contribute to comprehensive treatment programs for chemical dependency. Sees prime contribution of activity therapy as lying in nature of experiential education, applying insight gained in counseling sessions and discussion groups to practical real-life situations. (Author/NB)

  15. BFCOD activity in fish cell lines and zebrafish embryos and its modulation by chemical ligands of human aryl hydrocarbon and nuclear receptors.

    PubMed

    Creusot, N; Brion, F; Piccini, B; Budzinski, H; Porcher, J M; Aït-Aïssa, S

    2015-11-01

    Assessment of exposure and effect of fish to pharmaceuticals that contaminate aquatic environment is a current major issue in ecotoxicology and there is a need to develop specific biological marker to achieve this goal. Benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD) enzymatic activity has been commonly used to monitor CYP3A activity in fish. In this study, we assessed the capacity of a panel of toxicologically relevant chemicals to modulate BFCOD activity in fish, by using in vitro and in vivo bioassays based on fish liver cell lines (PLHC-1, ZFL, RTL-W1) and zebrafish embryos, respectively. Basal BFCOD activity was detectable in all biological models and was differently modulated by chemicals. Ligands of human androgens, glucocorticoids, or pregnanes X receptors (i.e., dexamethasone, RU486, rifampicin, SR12813, T0901317, clotrimazole, ketoconazole, testosterone, and dihydrotestosterone) moderately increased or inhibited BFCOD activity, with some variations between the models. No common feature could be drawn by regards to their capacity to bind to these receptors, which contrasts with their known effect on mammalian CYP3A. In contrast, dioxins and polycyclic aromatic hydrocarbons (PAHs) strongly induced BFCOD activity (up to 30-fold) in a time- and concentration-dependent manner, both in vitro in all cell lines and in vivo in zebrafish embryos. These effects were AhR dependent as indicated by suppression of induced BFCOD by the AhR pathway inhibitors 8-methoxypsoralen and α-naphthoflavone. Altogether our result further question the relevance of using liver BFCOD activity as a biomarker of fish exposure to CYP3A-active compounds such as pharmaceuticals. PMID:25471715

  16. Aminoflavone, a ligand of the Aryl Hydrocarbon Receptor (AhR), inhibits HIF-1α expression in an AhR-independent fashion

    PubMed Central

    Terzuoli, Erika; Puppo, Maura; Rapisarda, Annamaria; Uranchimeg, Badarch; Cao, Liang; Burger, Angelika M.; Ziche, Marina; Melillo, Giovanni

    2010-01-01

    Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1β/ARNT, which is shared with HIF-1α, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacological activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1α transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1α by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1α expression in AhR100 cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1α in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1α mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to down-regulate HIF-1α mRNA, indicating that active transcription was required for the inhibition of HIF-1α expression. Finally, AF inhibited HIF-1α protein accumulation and the expression of HIF-1-target genes in MCF-7 xenografts. These results demonstrate that AF inhibits HIF-1α in an AhR-independent fashion and they unveil additional activities of AF that may be relevant for its further clinical development. PMID:20736373

  17. Differential Proteomics Analysis Reveals a Role for E2F2 in the Regulation of the Ahr Pathway in T Lymphocytes§

    PubMed Central

    Azkargorta, Mikel; Fullaondo, Asier; Laresgoiti, Usua; Aloria, Kerman; Infante, Arantza; Arizmendi, Jesus M.; Zubiaga, Ana M.

    2010-01-01

    E2F transcription factors (E2F1-8) are best known for their role in cell proliferation, although it is clear that they regulate many other biological processes through the transcriptional modulation of distinct target genes. However, the specific set of genes regulated by each E2F remains to be characterized. To gain insight into the molecular pathways regulated by E2F2, we have analyzed the proteome of antigen receptor–activated T cells lacking E2F2. We report that loss of E2F2 results in a deregulated Aryl-hydrocarbon-receptor pathway. Proliferating E2F2−/− T lymphocytes expressed significantly higher levels of Aip, Ahr, and Arnt relative to wild-type (WT)1 controls. The mechanism for increased levels of Aip appears straightforward, involving direct regulation of the Aip gene promoter by E2F2. Although the Ahr and Arnt promoters also bind E2F2, their regulation appears to be more complex. Nevertheless, exposure to the environmental xenobiotic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known exogenous ligand of the Ahr pathway, led to overexpression of the Ahr target gene Cyp1a1, and to increased sensitivity to TCDD-triggered apoptosis in E2F2−/− T cells compared with WT controls. These results suggest that E2F2 modulates cellular sensitivity to xenobiotic signals through the negative regulation of the Ahr pathway. PMID:20573986

  18. Comparative in vitro transformation of the aromatic hydrocarbon receptor (AhR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (MC)

    SciTech Connect

    Riddick, D.S.; Harper, P.A.; Okey, A.B.; Riddick, D.S. )

    1992-02-26

    The induction of CYP1A1 by halogenated (e.g. TCDD) and nonhalogenated (e.g. MC) aromatic hydrocarbons is mediated by the AhR. In cytosol prepared from the mouse hepatoma cell line Hepa-1, AhR bound TCDD with 3 to 4-fold greater affinity than MC, whereas TCDD was 960-fold more potent than MC as an inducer of aryl hydrocarbon hydroxylase (AHH) activity in cultured Hepa-1 cells. The objective of this study was to compare the potency and efficacy of TCDD and MC with respect to transformation of the cytosolic AhR to its DNA-binding form. Following incubation of Hepa-1 cytosol with TCDD or MC at 30 C for 4 h, the extent of AhR transformation was assessed by measuring interaction of the AhR-ligand complex with a {sup 32}P-labeled 26-bp oligonucleotide containing a single dioxin-responsive element (DRE) consensus sequence in a gel retardation assay. Concentration-response studies indicated that TCDD and MC did not differ significantly in AhR transformation potency, but MC displayed only about 70% of the efficacy of TCDD. In vitro transformation efficacy appears to be a determinant of AHH induction efficacy, but the small difference between TCDD and MC in transformation potency does not seem adequate to explain quantitatively the large difference in AHH induction potency displayed by these ligands.

  19. Collective surfing of chemically active particles.

    PubMed

    Masoud, Hassan; Shelley, Michael J

    2014-03-28

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures. PMID:24724685

  20. Collective Surfing of Chemically Active Particles

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Shelley, Michael J.

    2014-03-01

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  1. The aryl hydrocarbon receptor-mediated disruption of vitellogenin synthesis in the fish liver: Cross-talk between AHR- and ERα-signalling pathways

    PubMed Central

    Bemanian, Vahid; Male, Rune; Goksøyr, Anders

    2004-01-01

    Background In the fish liver, the synthesis of egg yolk protein precursor vitellogenin (VTG) is under control of the estrogen receptor alpha (ERα). Environmental contaminants such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) are suspected to have antiestrogenic effects. The aryl hydrocarbon receptor (AHR) is the initial cellular target for TCDD and related compounds. The AHR is a ligand-activated transcription factor that stimulates the expression of the genes encoding xenobiotic metabolizing enzymes, such as cytochrome P450 1A (CYP1A). In this study, the effects of activation of AHR on the hepatic expression of VTG and ERα genes, in primary cultured salmon hepatocytes, have been investigated. Results The expression of the genes encoding VTG and ERα were strongly induced by 17β-estradiol (E2). However, the expression of VTG was disrupted by exposure of the cells to TCDD while CYP1A expression was enhanced. The effect of TCDD on VTG and CYP1A expression was annulled by the AHR-inhibitor α-naphthoflavone. Furthermore, exposure of the cells to TCDD abolished E2-induced accumulation of ERα mRNA. The AHR-mediated inhibitory effects on the expression of the VTG and ERα genes may occur at transcriptional and/or post-transcriptional levels. Nuclear run-off experiments revealed that simultaneous exposure of the cells to E2 and TCDD strongly inhibited the initiation of transcription of the VTG and ERα genes. In addition, inhibition of RNA synthesis by actinomycin D treatment showed that post-transcriptional levels of VTG and ERα mRNAs were not significantly altered upon treatment of the cells with TCDD. These results suggested that activation of AHR may inhibit the transactivation capacity of the ERα. Further, electrophoretic mobility shift assays using nuclear extracts prepared from cells treated for one or two hours with E2, alone or in mixture with TCDD, showed a strong reduction in the DNA binding activities upon TCDD treatment. These results also suggested

  2. Dioxin-like activity in environmental and human samples from Greenland and Denmark.

    PubMed

    Long, Manhai; Bonefeld-Jørgensen, Eva C

    2012-11-01

    Dioxins and dioxin-like (DL) compounds are some of the most toxic chemicals being highly persistent in the environment. The toxicological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Compounds of diverse structure and lipophility can bind and activate AhR. The AhR transactivation bioassay is utilized in an array of projects to study the AhR-mediated activities of individual chemicals and mixtures and for epidemiological purposes. This review summarizes a series of studies regarding the DL-activity of single compounds and complex compound mixtures in the environment and humans. We found that some pesticides, plasticizers and phytoestrogens can activate the AhR, and the combined effect of compounds with no or weak AhR potency cannot be ignored. The significant DL-activity in the wastewater effluent indicates the treatment is not sufficient to prevent contamination of surface waters with dioxins. Our results from human studies suggest that the serum DL-activity reflect the complex mixture of persistent organic pollutants (POPs). Greenlandic Inuit had lower serum DL-activity level compared to Europeans, probably due to long distance from the dioxin sources and UV degradation of the high potent dioxin and/or the inhibitory effect of the high level of non-DL POPs. Selective bioaccumulation of PCBs in the food chain may contribute to the negative correlation between serum POPs and DL-activity observed in Greenlandic Inuit. Hence the AhR transactivation bioassay provides a cost-effective and integrated screening tool for measurement of the DL-activity in human, environmental and commercial samples. PMID:22858370

  3. Chemical activity of simple basic peptides

    NASA Astrophysics Data System (ADS)

    Brack, André; Barbier, Bernard

    1990-03-01

    Alternating all-L poly(leucyl-lysyl) increases markedly the rate of hydrolysis of oligoribonucleotides. Pure D poly (leucyl-lysyl) is as active as the all-L polymer. The homochiral polypeptides adopt aβ-sheet structure when complexed to the oligonucleotides. Alternating poly(D,L-Leu-D,L-Lys) made of racemic amino acids is much less efficient and is unable to adopt aβ-sheet structure. A set of alternating poly (leucyl-lysyl) ranging from the racemic to the homochiral all-L polymer has been checked. Their conformations can be described as a mixture of random coil andβ-sheet conformations, the amount ofβ-sheet increasing with the optical purity of the polymer. The hydrolytic activity follows the proportion ofβ-sheets, suggesting that the chemical activity is related to the geometry of the chain. Short peptides were prepared in order to evaluate the critical chain length required for the hydrolytic activity. A decapeptide is long enough to present 90% of the activity of the corresponding polypeptide.

  4. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells.

    PubMed

    de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura

    2015-10-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects

  5. Active Chemical Thermodynamics promoted by activity of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Rao, Madan

    2011-03-01

    The spatial distribution and dynamics of formation and breakup of the nanoclusters of cell surface proteins is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we have proposed a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. We study the consequences of such active actin-based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that the active remodeling of cortical actin, can give rise to a dramatic increase in efficiency and extent of conformational spread, even at low levels of expression at the cell surface. We define a activity temperature (τa) arising due to actin activities which can be used to describe chemical thermodynamics of the system. We plot TTT (time-temparature-transformation) curves and compute the Arrhenius factors which depend on τa . With this, the active asters can be treated as enzymes whose enzymatic reaction rate can be related to the activity.

  6. Antitumor activity of chemical modified natural compounds.

    PubMed

    de Oliveira, M M

    1991-01-01

    Search of new activity substances starting from chemotherapeutic agents, continuously appears in international literature. Perhaps this search has been done more frequently in the field of antitumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of super computers and emergence of computer net systems, will open new avenues to rational drug design" (Portoghese, P. S., J. Med. Chem. 1989, 32, 1). Unknown pharmacological active compounds synthetized by plants can be found even without this electronic devices, as traditional medicine has pointed out in many countries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inhibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplastic drugs will be examined, particularly those done by Brazilian researches. PMID:1842015

  7. 76 FR 80447 - Eighth Meeting: RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 219: Attitude and Heading Reference...). ACTION: Notice of RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS). SUMMARY: The...: Attitude and Heading Reference Systems (AHRS). DATES: The meeting will be held January 24-26, 2012, from...

  8. 75 FR 49550 - Fifth Meeting: RTCA Special Committee 219: Attitude and Heading Reference System (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 219: Attitude and Heading Reference...: Notice of RTCA Special Committee 219: Attitude and Heading Reference System (AHRS). SUMMARY: The FAA is... Heading Reference System (AHRS). DATES: The meeting will be held September 14-16, 2010 from 9 a.m. to 5...

  9. Preparation of activated carbon by chemical activation under vacuum.

    PubMed

    Juan, Yang; Ke-Qiang, Qiu

    2009-05-01

    Activated carbons especially used for gaseous adsorption were prepared from Chinesefir sawdust by zinc chloride activation under vacuum condition. The micropore structure, adsorption properties, and surface morphology of activated carbons obtained under atmosphere and vacuum were investigated. The prepared activated carbons were characterized by SEM, FTIR, and nitrogen adsorption. It was found that the structure of the starting material is kept after activation. The activated carbon prepared under vacuum exhibited higher values of the BET surface area (up to 1079 m2 g(-1)) and total pore volume (up to 0.5665 cm3 g(-1)) than those of the activated carbon obtained under atmosphere. This was attributed to the effect of vacuum condition that reduces oxygen in the system and limits the secondary reaction of the organic vapor. The prepared activated carbon has well-developed microstructure and high microporosity. According to the data obtained, Chinese fir sawdust is a suitable precursor for activated carbon preparation. The obtained activated carbon could be used as a low-cost adsorbent with favorable surface properties. Compared with the traditional chemical activation, vacuum condition demands less energy consumption, simultaneity, and biomass-oil is collected in the procedure more conveniently. FTIR analysis showed that heat treatment would result in the aromatization of the carbon structure. PMID:19534162

  10. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  11. AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio)

    SciTech Connect

    Van Tiem, Lindsey A.; Di Giulio, Richard T.

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants often present in aquatic systems as complex mixtures. Embryonic fish are sensitive to the developmental toxicity of some PAHs, but the exact mechanisms involved in this toxicity are still unknown. This study explored the role of the aryl hydrocarbon receptor (AHR) in the oxidative stress response of zebrafish to the embryotoxicity of select PAHs. Embryos were exposed to two PAHs, benzo[k]fluoranthene (BkF; a strong AHR agonist) and fluoranthene (FL; a cytochrome P4501A (CYP1A) inhibitor), alone and in combination. CYP1A, CYP1B1, CYP1C1, and redox-responsive genes glutathione s-transferase pi 2 (GSTp2), glutathione peroxidase 1 (GPx1), the glutamate-cysteine ligase catalytic subunit (GCLc), MnSOD and CuZnSOD mRNA expression was examined. CYP1 activity was measured via an in vivo ethoxyresorufin-O-deethlyase (EROD) activity assay, and the area of the pericardium was measured as an index of cardiotoxicity. BkF or FL alone caused no deformities whereas BkF + FL resulted in extreme pericardial effusion. BkF induced CYP activity above controls and co-exposure with FL inhibited this activity. BkF induced expression of all three CYPs, GSTp2, and GCLc. BkF + FL caused greater than additive induction of the three CYPs, GSTp2, GPx1, and GCLc but had no effect on MnSOD or CuZnSOD. AHR2 knockdown protected against the cardiac deformities caused by BkF + FL and significantly inhibited the induction of the CYPs, GSTp2, GPx1, and GCLc after BkF + FL compared to non-injected controls. These results further show the protective role of AHR2 knockdown against cardiotoxic PAHs and the role of AHR2 as a mediator of redox-responsive gene induction. - Research Highlights: > Co-exposure of the PAHs BkF and FL causes cardiotoxicity in zebrafish. > BkF and FL co-exposure upregulates certain XRE- and ARE-associated genes. > AHR2 knockdown prevents the deformities caused by BkF and FL co-exposure. > AHR2

  12. AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio)

    PubMed Central

    Van Tiem, Lindsey A.; Di Giulio, Richard T.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants often present in aquatic systems as complex mixtures. Embryonic fish are sensitive to the developmental toxicity of some PAHs, but the exact mechanisms involved in this toxicity are still unknown. This study explored the role of the aryl hydrocarbon receptor (AHR) in the oxidative stress response of zebrafish to the embryotoxicity of select PAHs. Embryos were exposed to two PAHs, benzo[k]fluoranthene (BkF; a strong AHR agonist) and fluoranthene (FL; a cytochrome P4501A (CYP1A) inhibitor), alone and in combination. CYP1A, CYP1B1, CYP1C1, and redox-responsive genes glutathione s-transferase pi 2 (GSTp2), glutathione peroxidase 1 (GPx1), the glutamate-cysteine ligase catalytic subunit (GCLc), MnSOD and CuZnSOD mRNA expression was examined. CYP1 activity was measured via an in vivo ethoxyresorufin-O-deethlyase (EROD) activity assay, and the area of the pericardium was measured as an index of cardiotoxicity. BkF or FL alone caused no deformities whereas BkF + FL resulted in extreme pericardial effusion. BkF induced CYP activity above controls and co-exposure with FL inhibited this activity. BkF induced expression of all three CYPs, GSTp2, and GCLc. BkF + FL caused greater than additive induction of the three CYPs, GSTp2, GPx1, and GCLc but had no effect on MnSOD or CuZnSOD. AHR2 knockdown protected against the cardiac deformities caused by BkF + FL and significantly inhibited the induction of the CYPs, GSTp2, GPx1 and GCLc after BkF + FL compared to non-injected controls. These results further show the protective role of AHR2 knockdown against cardiotoxic PAHs and the role of AHR2 as a mediator of redox-responsive gene induction. PMID:21600235

  13. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation

    PubMed Central

    Corrada, Dario; Soshilov, Anatoly A.; Denison, Michael S.

    2016-01-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  14. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    PubMed

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. PMID:24769090

  15. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    SciTech Connect

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  16. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    PubMed

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  17. SOME CHEMICAL PROPERTIES UNDERLYING ARSENIC'S BIOLOGICAL ACTIVITY

    EPA Science Inventory

    ABSTRACT

    In this paper some of the chemical properties of arsenicals (atomic
    and molecular orbitals, electronegativity, valence state, changes between
    valence state, nucleophilicity, the hard/soft acid/base principle) that may
    account for some of the b...

  18. Differential effects of mercury, lead and copper on the constitutive and inducible expression of aryl hydrocarbon receptor (AHR)-regulated genes in cultured hepatoma Hepa 1c1c7 cells.

    PubMed

    Korashy, Hesham M; El-Kadi, Ayman O S

    2004-09-01

    Both simultaneous and sequential exposure to heavy metals and aryl hydrocarbon receptor (AHR)-ligands potentially occur in human populations, yet there have been relatively few studies of combined effects of heavy metals and AHR-ligands on AHR-regulated genes. To investigate the effects of heavy metals on AHR-regulated genes; cytochrome P450 1a1 (cyp1a1), NAD(P)H:quinone oxidoreductase (QOR) and glutathione S-transferase Ya (GST Ya), murine hepatoma Hepa 1c1c7 cells were incubated with increasing concentrations of Hg2+ (2.5-10 microM), Pb2+ (10-100 microM), and Cu2+ (1-100 microM) alone or with the AHR-ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (0.1 nM), 3-methylcholanthrene (0.25 microM), beta-naphthoflavone (10 microM), or benzo[a]pyrene (1 microM). The results clearly showed that metals alone did not significantly alter the cyp1a1 activity and protein levels but increased its mRNA expression, whereas a significant reduction in AHR ligand-mediated induction of cyp1a1 activity was observed by all metals. The decrease in cyp1a1 activity was associated with an increase, no change, or decrease in cyp1a1 mRNA and protein levels by Hg2+, Pb2+ and Cu2+ respectively, suggesting pre- and post-transcription mechanisms are involved. With respect to QOR, the activity and mRNA levels were increased by all metals in the absence or presence of an AHR-ligand, with the exception of Cu2+ which significantly decreased the induction of QOR. Differently, GST Ya activity was significantly increased by Cu2+ and Pb2+ and inhibited by Hg2+, while its mRNA was increased by Hg2+ and Pb2+ and decreased by Cu2+. All metals significantly increased the expression of heme oxygenase-1, which coincided with the changes in the phase I and phase II enzyme activities. These results demonstrate that heavy metals differentially modulate the constitutive and the inducible expression of AHR-regulated genes. PMID:15297030

  19. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells.

    PubMed

    Ibabao, Christopher N; Bunaciu, Rodica P; Schaefer, Deanna M W; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14(+)CD11b(+) monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47(phox). Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr. PMID:25941627

  20. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin

    PubMed Central

    Saucedo, Manuel; Ponce, Georgina; Campos, María Eugenia; Eapen, Delfeena; García, Edith; Luján, Rosario; Sánchez, Yoloxóchitl; Cassab, Gladys I.

    2012-01-01

    Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response. PMID:22442413

  1. Genome-wide RNAi high-throughput screen identifies proteins necessary for the AHR-dependent induction of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Solaimani, Parrisa; Damoiseaux, Robert; Hankinson, Oliver

    2013-11-01

    The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes. PMID:23997114

  2. Genome-Wide RNAi High-Throughput Screen Identifies Proteins Necessary for the AHR-Dependent Induction of CYP1A1 by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

    PubMed Central

    Hankinson, Oliver

    2013-01-01

    The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes. PMID:23997114

  3. ILO activities in the area of chemical safety.

    PubMed

    Obadia, Isaac

    2003-08-21

    The ILO has been active in the area of safety in the use of chemicals at work since the year of its creation in 1919, including the development of international treaties and other technical instruments, the provision of technical assistance to its member States, and the development of chemical safety information systems. The two key ILO standards in this area are the Conventions on safety in the use of chemicals at work (No. 170, 1990), and the Prevention of Major Industrial Accidents (No. 174, 1993). The ILO Programme on occupational safety, health and environment (Safe Work) is currently responsible for ILO chemical safety activities. In the past two decades, most of ILO work in this area has been carried out within the context of inter-agency collaboration frameworks linking the ILO, WHO, UNEP, FAO, UNIDO, UNITAR, and the OECD, including the International Programme on Chemical Safety (IPCS), the Inter-Organisation Programme for the Sound Management of Chemicals (IOMC), and the Intergovernmental Forum on Chemical Safety (IFCS). Apart from the regular development, updating and dissemination of chemical safety information data bases such as the IPCS International Chemical Cards, the elaboration of a Globally harmonized system for the classification and labelling of Chemicals (GHS) has been the most outstanding achievement of this international collaboration on chemical safety. PMID:12909402

  4. Regulation of zebrafish CYP3A65 transcription by AHR2

    SciTech Connect

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin; Tzou, Wen-Shyong; Hu, Chin-Hwa

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  5. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  6. Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats

    PubMed Central

    2014-01-01

    Background The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. Results We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Conclusion Together, these data suggest that F. heteroclitus populations in reference

  7. Molecular emission in chemically active protostellar outflows

    NASA Astrophysics Data System (ADS)

    Lefloch, B.

    2011-12-01

    Protostellar outflows play an important role in the dynamical and chemical evolution of cloud through shocks. The Herschel Space Observatory (HSO) brings new insight both on the molecular content and the physical conditions in protostellar shocks through high spectral and angular resolution studies of the emission of major gas cooling agents and hydrides. The Herschel/CHESS key-program is carrying out an in depth study of the prototypical shock region L1157-B1. Analysis of the line profiles detected allows to constrain the formation/destruction route of various molecular species, in relation with the predictions of MHD shock models. The Herschel/WISH key-program investigates the properties and origin of water emission in a broad sample of protostellar outflows and envelopes. Implications of the first results for future studies on mass-loss phenomena are discussed.

  8. The method of decreasing of chemical activity of coals

    SciTech Connect

    Korobetskii, I.A.; Nazimov, S.A.

    1998-07-01

    The investigations of the tendency of coal products to self-ignite show the decreasing of chemical activity of this product after its modification in cool oxygen plasma. A new method for the passivation of coal products was suggested.

  9. Method of decreasing of chemical activity of coals

    SciTech Connect

    Korobetskii, I.A.; Nazimov, S.A.

    1998-04-01

    The investigations of tendency of coal products to selfignition show the decreasing of chemical activity of this product after its modification in cool oxygen plasma. Was suggested a new method of coal products passivation.

  10. Data on AHR-dependent changes in the mitochondrial proteome in response to ,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Hwang, Hye Jin; Dornbos, Peter; LaPres, John J

    2016-09-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is the principal regulator of a cell׳s response to many polyaromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To gain a better understanding of the impact of TCDD on the mitochondrial proteome, a stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic analysis was performed. We used two mouse hepatoma cell lines that differ in AHR expression levels, hepa1c1c7 (AHR-expressing) and hepac12 (AHR-deficient). The cell lines were exposed to TCDD (10 nM) for 72 h; each treatment was assayed in triplicate and were analyzed as separate runs on the mass-spectrometer. Mitochondria were then isolated and mitochondrial proteins were separated by SDS-PAGE and subject to mass spectrometry. The data presented were collected from four independent SILAC experiments. Within each experiment, three isotopes were employed to compare protein ratios via mass-spectrometry: (1) light l-arginine/l-lysine HCl (Arg0, Lys0), (2) medium (15)N4-l-arginin/(13)C6l-lysine HCl (Arg4, Lys6), and (3) heavy (13)C6 (15)N4l-arginine/(13)C6 (15)N2l-lysine HCl (Arg10, Lys8). The raw data includes approximately 2500 annotated proteins. The datasets provided by this study can be a reference to other toxicologists investigating TCDD-induced mitochondrial dysfunction. The data presented here are associated with the research article, "Mitochondrial-targeted Aryl Hydrocarbon Receptor and the Impact of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on Cellular Respiration and the Mitochondrial Proteome" (Hwang et al. (2016) [1]). PMID:27331086

  11. TCDD and a Putative Endogenous AhR Ligand, ITE, Elicit the Same Immediate Changes in Gene Expression in Mouse Lung Fibroblasts

    PubMed Central

    Henry, Ellen C.; Welle, Stephen L.; Gasiewicz, Thomas A.

    2010-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1′H-indolo-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5μM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible. PMID:19933214

  12. In silico predictive studies of mAHR congener binding using homology modelling and molecular docking.

    PubMed

    Panda, Roshni; Cleave, A Suneetha Susan; Suresh, P K

    2014-09-01

    The aryl hydrocarbon receptor (AHR) is one of the principal xenobiotic, nuclear receptor that is responsible for the early events involved in the transcription of a complex set of genes comprising the CYP450 gene family. In the present computational study, homology modelling and molecular docking were carried out with the objective of predicting the relationship between the binding efficiency and the lipophilicity of different polychlorinated biphenyl (PCB) congeners and the AHR in silico. Homology model of the murine AHR was constructed by several automated servers and assessed by PROCHECK, ERRAT, VERIFY3D and WHAT IF. The resulting model of the AHR by MODWEB was used to carry out molecular docking of 36 PCB congeners using PatchDock server. The lipophilicity of the congeners was predicted using the XLOGP3 tool. The results suggest that the lipophilicity influences binding energy scores and is positively correlated with the same. Score and Log P were correlated with r = +0.506 at p = 0.01 level. In addition, the number of chlorine (Cl) atoms and Log P were highly correlated with r = +0.900 at p = 0.01 level. The number of Cl atoms and scores also showed a moderate positive correlation of r = +0.481 at p = 0.01 level. To the best of our knowledge, this is the first study employing PatchDock in the docking of AHR to the environmentally deleterious congeners and attempting to correlate structural features of the AHR with its biochemical properties with regards to PCBs. The result of this study are consistent with those of other computational studies reported in the previous literature that suggests that a combination of docking, scoring and ranking organic pollutants could be a possible predictive tool for investigating ligand-mediated toxicity, for their subsequent validation using wet lab-based studies. PMID:23081860

  13. Regulation of zebrafish CYP3A65 transcription by AHR2.

    PubMed

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin; Tzou, Wen-Shyong; Hu, Chin-Hwa

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5' flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. PMID:23624173

  14. Active disturbance rejection controller for chemical reactor

    SciTech Connect

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  15. Active Emulsions: Synchronization of Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Fraden, Seth

    2012-02-01

    We explore the dynamical behavior of emulsions consisting of nanoliter volume droplets of the oscillatory Belousov-Zhabotinsky (BZ) reaction separated by a continuous oil phase. Some of the aqueous BZ reactants partition into the oil leading to chemical coupling of the drops. We use microfluidics to vary the size, composition and topology of the drops in 1D and 2D. Addition of a light sensitive catalyst to the drops and illumination with a computer projector allows each drop to be individually perturbed. A variety of synchronous regimes are found that systematically vary with the coupling strength and whether coupling is dominated by activatory or inhibitory species. In 1D we observe in- and anti-phase oscillations, stationary Turing patterns in which drops stop oscillating, but form spatially periodic patterns of drops in the oxidized and reduced states, and more complex combinations of stationary and oscillatory drops. In 2D, the attractors are more complex and vary with network topology and coupling strength. For hexagonal lattices as a function of increasing coupling strength we observe right and left handed rotating oscillations, mixed oscillatory and Turing states and finally full Turing states. Reaction -- diffusion models based on a simplified description of the BZ chemistry and diffusion of messenger species reproduce a number of the experimental results. For a range of parameters, a simplified phase oscillator model provides an intuitive understanding of the complex synchronization patterns. [4pt] ``Coupled oscillations in a 1D emulsion of Belousov--Zhabotinsky droplets,'' Jorge Delgado, Ning Li, Marcin Leda, Hector O. Gonzalez-Ochoa, Seth Fraden and Irving R. Epstein, Soft Matter, 7, 3155 (2011).

  16. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution. PMID:23011851

  17. Changes in thyroid peroxidase activity in response to various chemicals.

    PubMed

    Song, Mee; Kim, Youn-Jung; Park, Yong-Keun; Ryu, Jae-Chun

    2012-08-01

    Thyroperoxidase (TPO) is a large heme-containing glycoprotein that catalyzes the transfer of iodine to thyroglobulin during thyroid hormone (TH) synthesis. Previously, we established an in vitro assay for TPO activity based on human recombinant TPO (hrTPO) stably transfected into human follicular thyroid carcinoma (FTC-238) cells. It is important to determine whether environmental chemicals can disrupt TPO activity because it is an important factor in the TH axis. In this study, we used our assay to examine the changes in TPO activity in response to various chemicals, including benzophenones (BPs), polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs). Overall, BPs, PAHs, and POPs slightly altered TPO activity at low doses, as compared with the positive controls methimazole (MMI), genistein, and 2,2',4,4'-tetrahydroxy BP. Benzophenone, benzhydrol, 3-methylchloranthracene, pyrene, benzo(k)fluoranthene, benzo(e)pyrene, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and heptachlor decreased TPO activity, while 2,4-dihydroxy BP, 2,2'-dihydroxy-4-methoxy BP, and dibenzo(a,h)anthracene increased TPO activity. From these data, we can predict the disruption of TPO activity by various chemicals as a sensitive TH end point. TPO activity should be considered when enacting measures to regulate environmental exposure to thyroid-disrupting chemicals. PMID:22699773

  18. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway.

    PubMed

    Clark, Bryan W; Bone, A J; Di Giulio, R T

    2014-12-01

    Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable. PMID:24374617

  19. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway

    PubMed Central

    Clark, B. W.; Bone, A. J.; Di Giulio, R. T.

    2014-01-01

    Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3’,4,4’,5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable. PMID:24374617

  20. Guiding Catalytically Active Particles with Chemically Patterned Surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M.

    2016-07-01

    Catalytically active Janus particles suspended in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemiosmosis, providing an additional contribution to self-motility. Chemiosmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate "point-particle" approach, that by chemically patterning a planar substrate one can direct the motion of Janus particles: the induced chemiosmotic flows can cause particles to either "dock" at the chemical step between the two materials or follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  1. Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing red seabream (Pagrus major) embryo: an association of morphological deformities with AHR1, AHR2 and CYP1A expressions.

    PubMed

    Yamauchi, Masanobu; Kim, Eun-Young; Iwata, Hisato; Shima, Yasuhiro; Tanabe, Shinsuke

    2006-11-16

    The toxicity of dioxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is mainly mediated by the aryl hydrocarbon receptor (AHR), which regulates the multiple target genes including cytochrome P4501A (CYP1A). In general, bony fishes, which possess at least two distinct AHRs are one of the most sensitive vertebrates to TCDD in early life stage. However, the physiological and toxicological roles of piscine multiple AHRs are not fully understood, especially in marine fish. To understand which AHR is responsible for TCDD toxicity in a marine fish species, we characterized the early life stage toxicity related to the expression of AHRs and CYP1A in red seabream (Pagrus major). The embryos at 10h post-fertilization (hpf) were treated with 0-100 microg/L TCDD for 80 min waterborne exposure. TCDD dose-dependently elicited developmental toxicities including mortality, yolk sac edema, retarded body growth, spinal deformity, reduced heart rate, shortened snout, underdeveloped fin, heart, and lower jaw. Intriguingly, hemorrhage and pericardium edema, typical TCDD developmental defects noticed in other fish species, were not found in red seabream until test termination. The EC(egg)50s for yolk sac edema, underdeveloped fin, and spinal deformity were 170, 240, and 340 pg/g, respectively. The LC(egg)50 was 360 pg/g embryo, indicating that this species is one of the most sensitive fishes to TCDD toxicity. The expression levels of rsAHR1, rsAHR2 and CYP1A mRNAs were also determined in different developmental stages. The rsAHR2 mRNA expression dose-dependently increased following TCDD exposure, while rsAHR1 mRNA level was not altered. Level of rsAHR2 mRNA measured by two-step real-time PCR was 30 times higher than rsAHR1 in embryos treated with the highest dose. Temporal patterns of rsAHR2 and CYP1A mRNAs were similar in TCDD-treated embryos, representing a significant positive correlation between rsAHR2 and CYP1A mRNA levels, but not between rsAHR1 and CYP1A. In comparison of

  2. EXPRESSION OF AHR AND ARNT MRNA IN CULTURED HUMAN ENDOMETRIAL EXPLANTS EXPOSED TO TCDD

    EPA Science Inventory

    Expression of AhR and ARNT mRNA in cultured human endometrial explants exposed to TCDD.

    Pitt JA, Feng L, Abbott BD, Schmid J, Batt RE, Costich TG, Koury ST, Bofinger DP.

    Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA.

    Endom...

  3. AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus)

    PubMed Central

    Clark, Bryan W.; Matson, Cole W.; Jung, Dawoon; Di Giulio, Richard T.

    2010-01-01

    Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by β-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in Fundulus. PMID:20605646

  4. Quantitative genetic activity graphical profiles for use in chemical evaluation

    SciTech Connect

    Waters, M.D.; Stack, H.F.; Garrett, N.E.; Jackson, M.A.

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  5. A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer.

    PubMed

    D'Amato, Nicholas C; Rogers, Thomas J; Gordon, Michael A; Greene, Lisa I; Cochrane, Dawn R; Spoelstra, Nicole S; Nemkov, Travis G; D'Alessandro, Angelo; Hansen, Kirk C; Richer, Jennifer K

    2015-11-01

    The ability of a cancer cell to develop resistance to anoikis, a programmed cell death process triggered by substratum detachment, is a critical step in the metastatic cascade. Triple-negative breast cancers (TNBC) exhibit higher rates of metastasis after diagnosis, relative to estrogen-positive breast cancers, but while TNBC cells are relatively more resistant to anoikis, the mechanisms involved are unclear. Through gene expression and metabolomic profiling of TNBC cells in forced suspension culture, we identified a molecular pathway critical for anchorage-independent cell survival. TNBC cells in suspension upregulated multiple genes in the kynurenine pathway of tryptophan catabolism, including the enzyme tryptophan 2,3-dioxygenase (TDO2), in an NF-κB-dependent manner. Kynurenine production mediated by TDO2 in TNBC cells was sufficient to activate aryl hydrocarbon receptor (AhR), an endogenous kynurenine receptor. Notably, pharmacologic inhibition or genetic attenuation of TDO2 or AhR increased cellular sensitivity to anoikis, and also reduced proliferation, migration, and invasion of TNBC cells. In vivo, TDO2 inhibitor-treated TNBC cells inhibited colonization of the lung, suggesting that TDO2 enhanced metastatic capacity. In clinical specimens of TNBC, elevated expression of TDO2 was associated with increased disease grade, estrogen receptor-negative status, and shorter overall survival. Our results define an NF-κB-regulated signaling axis that promotes anoikis resistance, suggest functional connections with inflammatory modulation by the kynurenine pathway, and highlight TDO2 as an attractive target for treatment of this aggressive breast cancer subtype. PMID:26363006

  6. AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model.

    PubMed

    Cochez, Perrine M; Michiels, Camille; Hendrickx, Emilie; Van Belle, Astrid B; Lemaire, Muriel M; Dauguet, Nicolas; Warnier, Guy; de Heusch, Magali; Togbe, Dieudonnée; Ryffel, Bernhard; Coulie, Pierre G; Renauld, Jean-Christophe; Dumoutier, Laure

    2016-06-01

    IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis. As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr(-/-) mice but less than in wild-type mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4(-) CD8(-) TCRβ(+) T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4(-) CD8(-) TCRβ(+) T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4(-) CD8(-) TCRβ(+) T cells and ILCs. PMID:27000947

  7. Bioorthogonal Chemical Activation of Kinases in Living Systems

    PubMed Central

    2016-01-01

    Selective manipulation of protein kinases under living conditions is highly desirable yet extremely challenging, particularly in a gain-of-function fashion. Here we employ our recently developed bioorthogonal cleavage reaction as a general strategy for intracellular activation of individual kinases. Site-specific incorporation of trans-cyclooctene-caged lysine in place of the conserved catalytic lysine, in conjunction with the cleavage partner dimethyl-tetrazine, allowed efficient lysine decaging with the kinase activity chemically rescued in living systems. PMID:27280167

  8. Chemical Components and Cardiovascular Activities of Valeriana spp.

    PubMed Central

    Chen, Heng-Wen; Wei, Ben-Jun; He, Xuan-Hui; Liu, Yan; Wang, Jie

    2015-01-01

    Valeriana spp. is a flowering plant that is well known for its essential oils, iridoid compounds such as monoterpenes and sesquiterpenes, flavonoids, alkaloids, amino acids, and lignanoids. Valeriana spp. exhibits a wide range of biological activities such as lowering blood pressure and heart rate, antimyocardial ischemia reperfusion injury, antiarrhythmia, and regulation of blood lipid levels. This review focuses on the chemical constituents and cardiovascular activities of Valeriana spp. PMID:26788113

  9. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  10. Ring closure dynamics for a chemically active polymer.

    PubMed

    Sarkar, Debarati; Thakur, Snigdha; Tao, Yu-Guo; Kapral, Raymond

    2014-12-21

    The principles that underlie the motion of colloidal particles in concentration gradients and the propulsion of chemically-powered synthetic nanomotors are used to design active polymer chains. The active chains contain catalytic and noncatalytic monomers, or beads, at the ends or elsewhere along the polymer chain. A chemical reaction at the catalytic bead produces a self-generated concentration gradient and the noncatalytic bead responds to this gradient by a diffusiophoretic mechanism that causes these two beads to move towards each other. Because of this chemotactic response, the dynamical properties of these active polymer chains are very different from their inactive counterparts. In particular, we show that ring closure and loop formation are much more rapid than those for inactive chains, which rely primarily on diffusion to bring distant portions of the chain in close proximity. The mechanism presented in this paper can be extended to other chemical systems which rely on diffusion to bring reagents into contact for reactions to occur. This study suggests the possibility that synthetic systems could make use of chemically-powered active motion or chemotaxis to effectively carry out complex transport tasks in reaction dynamics, much like those that molecular motors perform in biological systems. PMID:25365034

  11. EVALUATION AND DEMONSTRATION OF THE CHEMICALLY ACTIVE FLUID BED

    EPA Science Inventory

    The report gives results of the operation of a 17-MW Chemically Active Fluid Bed (CAFB) demonstration unit, retrofitted to a natural gas boiler. The CAFB process gasifies high-sulfur, high-metals-content liquid and solid fuels. Residual oil, lignite, and bituminous coal were gasi...

  12. QUANTITATIVE GENETIC ACTIVITY GRAPHICAL PROFILES FOR USE IN CHEMICAL EVALUATION

    EPA Science Inventory

    A graphic approach termed a Genetic Activity Profile (GAP) has been developed to display a matrix of data on the genetic and related effects of selected chemical agents. he profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each...

  13. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    SciTech Connect

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng; Li, Zhanguo; Yuan, Huihui; Zhao, Wenming

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  14. Chemical and structural features influencing the biological activity of curcumin.

    PubMed

    Priyadarsini, K Indira

    2013-01-01

    Curcumin, a polyphenolic natural product, exhibits therapeutic activity against a number of diseases, attributed mainly to its chemical structure and unique physical, chemical, and biological properties. It is a diferuloyl methane molecule [1,7-bis (4-hydroxy-3- methoxyphenyl)-1,6-heptadiene-3,5-dione)] containing two ferulic acid residues joined by a methylene bridge. It has three important functionalities: an aromatic o-methoxy phenolic group, α, β-unsaturated β-diketo moiety and a seven carbon linker. Extensive research in the last two decades has provided evidence for the role of these different functional groups in its crucial biological activities. A few highlights of chemical structural features associated with the biological activity of curcumin are: The o-methoxyphenol group and methylenic hydrogen are responsible for the antioxidant activity of curcumin, and curcumin donates an electron/ hydrogen atom to reactive oxygen species. Curcumin interacts with a number of biomolecules through non-covalent and covalent binding. The hydrogen bonding and hydrophobicity of curcumin, arising from the aromatic and tautomeric structures along with the flexibility of the linker group are responsible for the non-covalent interactions. The α, β-unsaturated β-diketone moiety covalently interacts with protein thiols, through Michael reaction. The β-diketo group forms chelates with transition metals, there by reducing the metal induced toxicity and some of the metal complexes exhibit improved antioxidant activity as enzyme mimics. New analogues with improved activity are being developed with modifications on specific functional groups of curcumin. The physico-chemical and structural features associated with some of the biological activities of curcumin and important analogues are summarized in this article. PMID:23116315

  15. Structure activity relationships to assess new chemicals under TSCA

    SciTech Connect

    Auletta, A.E.

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  16. Sensitive detection of chemical agents and toxic industrial chemicals using active open-path FTIRs

    NASA Astrophysics Data System (ADS)

    Walter, William T.

    2004-03-01

    Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.

  17. Chemical constituents of Solanum coagulans and their antimicrobial activities.

    PubMed

    Qin, Xu-Jie; Lunga, Paul-Keilah; Zhao, Yun-Li; Liu, Ya-Ping; Luo, Xiao-Dong

    2016-04-01

    The present study aimed at determining the chemical constituents of Solanum coagulans and their antimicrobial activities. The compounds were isolated by various chromatographic techniques and their structures were elucidated on the basis of extensive spectroscopic analysis, chemical methods, and comparison with reported spectroscopic data. One new phenolic glycoside, methyl salicylate 2-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (1), together with 12 known compounds (2-13), were isolated from the aerial parts of Solanum coagulans. Compound 1 was a new phenolic glycoside, and 2-6 were isolated from Solanum genus for the first time. The antimicrobial activities of the isolated compounds were also evaluated. Compound 7 showed remarkable antifungal activity against T. mentagrophytes, M. gypseum and E. floccosum with MIC values being 3.13, 1.56 and 3.13 μg·mL(-1), respectively. PMID:27114320

  18. Chemical tools for probing histone deacetylase (HDAC) activity.

    PubMed

    Minoshima, Masafumi; Kikuchi, Kazuya

    2015-01-01

    Histone deacetylases (HDACs) enzymes are responsible for removing epigenetic markers on histone proteins, which results in chromatin inactivation and gene repression. An evaluation of HDAC activity is essential for not only determining the physiological function of HDACs, but also for developing HDAC-targeting drugs. This review focuses on the chemical tools used to detect HDAC activity. We highlight activity-based probes and positron emission tomography probes based on the chemical structure of the inhibitors. We also summarize fluorogenic probes used in single-step methods for HDAC detection. These fluorogenic probes are designed based on the nucleophilicity of the amino group, aggregation via electrostatic interactions, and changes in the DNA binding properties. These fluorogenic systems may enable facile and rapid screening to evaluate HDAC inhibitors, which will contribute to the development of epigenetic drugs. PMID:25864671

  19. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  20. Promoter analysis of TCDD-inducible genes in a thymic epithelial cell line indicates the potential for cell-specific transcription factor crosstalk in the AhR response

    SciTech Connect

    Frericks, Markus; Burgoon, Lyle D.; Zacharewski, Timothy R.; Esser, Charlotte

    2008-10-15

    Activation of the aryl hydrocarbon receptor (AhR{sup 1}) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits severe immunosuppression accompanied by thymic atrophy. Previous evidence suggests that TCDD targets both thymocytes and thymic epithelial cells. The AhR induces cell-specific changes in gene transcription via binding to the dioxin response element DRE; however, the underlying specificity-mechanisms, in particular with regard to the role of promoter element context, and possible transcription factor crosstalk remain poorly understood. Global gene expression in the cortical thymic epithelial cell line ET at 2, 4, and 6 h following 5 nM TCDD exposure resulted in differential regulation of 201 genes. JASPAR and TRANSFAC mapped the statistically over-represented promoter elements in the regulated genes to specific transcription factor binding sites, suggesting a regulatory role in AhR signaling. Over-represented elements included the xenobiotic response element XRE, NF{kappa}B-Rel, HRE, PPAR{gamma}, GR, PAX-4 and estrogen receptor binding sites. Co-treatment experiments with TCDD and CoCl{sub 2}, to induce hypoxia, or TCDD and 17-{beta}-estradiol (E2) indicated crosstalk between AhR and Hif or ER, in agreement with other experimental models. The computational identification of TFBS and the demonstration of interaction confirm their interactions with AhR signaling and suggest that the other over-represented elements may also be important in the immunosuppressive effects elicited by TCDD. In conclusion, we demonstrated the importance of promoter element cooperation in the shaping of a cell-specific AhR response. Our findings regarding the transcriptional changes in cortical epithelial cells are congruent with the well-known thymotoxic TCDD-phenotype, and useful in new hypothesis generation of the role of cortical TECs in TCDD toxicity.

  1. Characterization testing of a 40 AHR bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gemeiner, Russel P.

    1989-01-01

    Extensive characterization testing has been done on a second 40 amp-hour (Ahr), 10-cell bipolar nickel-hydrogen (Ni-H2) battery to study the effects of such operating parameters as charge and discharge rates, temperature, and pressure, on capacity, Ahr and watt-hour (Whr) efficiencies, end-of-charge (EOC) and mid-point discharge voltages. Testing to date has produced many interesting results, with the battery performing well throughout all of the test matrix except during the high-rate (5C and 10C) discharges, where poorer than expected results were observed. The exact cause of this poor performance is, as yet, unknown. Small scale 2 x 2 inch battery tests are to be used in studying this problem. Low earth orbit (LEO) cycle life testing at a 40 percent depth of discharge (DOD) and 10 C is scheduled to follow the characterization testing.

  2. Dynamics of self-propelled nanomotors in chemically active media

    NASA Astrophysics Data System (ADS)

    Thakur, Snigdha; Kapral, Raymond

    2011-07-01

    Synthetic chemically powered nanomotors often rely on the environment for their fuel supply. The propulsion properties of such motors can be altered if the environment in which they move is chemically active. The dynamical properties of sphere dimer motors, composed of linked catalytic and noncatalytic monomers, are investigated in active media. Chemical reactions occur at the catalytic monomer and the reactant or product of this reaction is involved in cubic autocatalytic or linear reactions that take place in the bulk phase environment. For these reactions, as the bulk phase reaction rates increase, the motor propulsion velocity decreases. For the cubic autocatalytic reaction, this net effect arises from a competition between a reduction of the nonequilibrium concentration gradient that leads to smaller velocity and the generation of fuel in the environment that tends to increase the motor propulsion. The role played by detailed balance in determining the form of the concentration gradient in the motor vicinity in the active medium is studied. Simulations are carried out using reactive multiparticle collision dynamics and compared with theoretical models to obtain further insight into sphere dimer dynamics in active media.

  3. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  4. A dioxin response element in the multiple cloning site of the pGL3 luciferase reporter influences transcriptional activity1

    PubMed Central

    Ochs, Sharon; Liu, Jing; Fernando, Tharu; Fecher, Roger; Sulentic, Courtney E.W.

    2012-01-01

    Luciferase reporter plasmids (pGL3 backbone, Promega) have been utilized to characterize the transcriptional effects of the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) ligands. Following ligand activation, the AhR and its dimerization partner AhR nuclear translocator (ARNT) regulate transcription by binding dioxin response elements (DREs) in regulatory regions of dioxin-sensitive genes. Upon sequencing of our luciferase reporters, we unexpectedly identified a DRE core motif within the multiple cloning site (mcsDRE) of the pGL3 luciferase plasmid backbone in a subset of our reporters. Therefore, the objective of this study was to determine if the mcsDRE inadvertently influences reporter activity. Utilizing deletional analysis we determined that the mcsDRE did significantly alter the transcriptional effect induced by TCDD. Since many chemicals have been shown to interact with the AhR and influence transcription through the DRE, the presence of the mcsDRE in the pGL3 luciferase plasmid may inappropriately influence promoter and enhancer analysis. As such, insertion of regulatory elements into pGL3 reporters should be designed to avoid retaining the mcsDRE core motif (GCGTG) and currently utilized pGL3 reporters should be evaluated for the presence of the mcsDRE. PMID:22652426

  5. Mining Chemical Activity Status from High-Throughput Screening Assays

    PubMed Central

    Soufan, Othman; Ba-alawi, Wail; Afeef, Moataz; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare. PMID:26658480

  6. Chemical basis of the photosensitizing activity of angelicins.

    PubMed

    Dall'Acqua, F; Vedaldi, D; Caffieri, S; Guiotto, A; Bordin, F; Rodighiero, G

    1984-12-01

    Angelicins are a group of compounds that show marked photobiologic activity on various substrates; some of them have been proposed as potential agents for the photochemotherapy of skin diseases. A good correlation exists between the photosensitizing activity of these compounds and their capacity to induce monofunctional lesions to DNA; therefore, we believe the chemical nature of these photolesions, we isolated from the products of hydrolysis of the photocombinations between 5 angelicins (angelicin, 4-methyl, 5-methyl, 5'-methyl, and 5,5'-dimethylangelicin) and DNA, the corresponding new fluorescent monoadducts between the 4',5'-double bond of the furocoumarins and the 5,6-double bond of thymine. PMID:6531039

  7. Selective Aryl Hydrocarbon Receptor Modulator 3,3'-Diindolylmethane Impairs AhR and ARNT Signaling and Protects Mouse Neuronal Cells Against Hypoxia.

    PubMed

    Rzemieniec, J; Litwa, E; Wnuk, A; Lason, W; Krzeptowski, W; Kajta, M

    2016-10-01

    The neuroprotective potential of 3,3'-diindolylmethane (DIM), which is a selective aryl hydrocarbon receptor modulator, has recently been shown in cellular and animal models of Parkinson's disease and lipopolysaccharide-induced inflammation. However, there are no data concerning the protective capacity and mechanisms of DIM action in neuronal cells exposed to hypoxia. The aim of the present study was to investigate the neuroprotective potential of DIM against the hypoxia-induced damage in mouse hippocampal cells in primary cultures, with a particular focus on DIM interactions with the aryl hydrocarbon receptor (AhR), its nuclear translocator ARNT, and estrogen receptor β (ERβ). In the present study, 18 h of hypoxia induced apoptotic processes, in terms of the mitochondrial membrane potential, activation of caspase-3, and fragmentation of cell nuclei. These effects were accompanied by substantial lactate dehydrogenase release and neuronal cell death. The results of the present study demonstrated strong neuroprotective and anti-apoptotic actions of DIM in hippocampal cells exposed to hypoxia. In addition, DIM decreased the Ahr and Arnt mRNA expression and stimulated Erβ mRNA expression level. DIM-induced mRNA alterations were mirrored by changes in protein levels, except for ERβ, as detected by ELISA, Western blotting, and immunofluorescence labeling. We also demonstrated that DIM decreased the expression of AhR-regulated CYP1A1. Using specific siRNAs, we provided evidence that impairment of AhR and ARNT, but not ERβ plays a key role in the neuroprotective action of DIM against hypoxia-induced cell damage. This study may have implication for identifying new agents that could protect neurons against hypoxia by targeting AhR/ARNT signaling. PMID:26476840

  8. An Assessment of Technical and Production Risks of Candidate Low-Cost Attitude/Heading Reference Systems(AHRS)

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel; Burgess, Malcolm; Hammers, William

    1999-01-01

    This report provides an assessment of technical and production risks of candidate low-cost attitude/heading reference systems (AHRS) for use in the Advanced General Aviation Transport Experiments (AGATE) airplanes. A low-cost AHRS is a key component of modem "glass cockpit" flight displays for General Aviation (GA) aircraft. The technical capabilities of several candidate low-cost AHRS were examined and described along with the technical issues involved with using all solid-state components for attitude measurement. An economic model was developed which describes the expected profit, rate of return, and volume requirements for the manufacture of low-cost AHRS for GA aircraft in the 2000 to 2020 time frame. The model is the result of interviews with GA airframe manufacturers, avionics manufacturers and historical analysis of avionics of similar complexity. The model shows that a manufacturer will break even after three years of AHRS production, realizing an 18 percent rate of return (23 percent profit) on an investment of $3.5M over the 20 year period. A start-up production estimate showed costs of $6-12M for a new company to build and certify an AHRS from scratch, considered to be a high-risk proposition, versus $0.25-0.75M for an experienced avionics manufacturer to manufacture a design under license, a low-risk proposition.

  9. Chemical structure and immunobiological activity of Porphyromonas gingivalis lipid A.

    PubMed

    Ogawa, Tomohiko; Asai, Yasuyuki; Makimura, Yutaka; Tamai, Riyoko

    2007-01-01

    In 1933, Boivin et al. extracted an endotoxin from Salmonella typhimurium for the first time, after which a variety of chemical and biological studies on endotoxins have been performed. In 1952, the structural and functional properties of endotoxic lipopolysaccharide (LPS), extracted by a hot phenol and water method devised by Westphal et al., were reported, which led to a number of studies of Gram-negative bacteria in regards to the host defense mechanism. Since 1960, the unique chemical structure and biological activity of Bacteroides species LPS have received a great deal of attention, and there is a long history of such studies. In addition, among oral bacterial strains that have received attention as causative periodontopathic bacteria, many have been classified as Bacteroides species. In particular, a number of researchers have investigated whether LPS of Porphyromonas gingivalis (formerly Bacteroides gingivalis), a black-pigmented oral anaerobic rod, is a virulent factor of the bacterium. The active center of the LPS of these Bacteroides species, the lipid A molecule, is known to be an active participant in endotoxic activation, though its other biological activities are weak, due to its unique chemical structure and action as an antagonist of LPS. On the other hand, many reports have noted that the LPS of those species activate cells in C3H/HeJ mice, which generally do not respond to LPS. We were the first to reveal the chemical structure of P. gingivalis lipid A and, together with other researchers, reported that P. gingivalis LPS and its lipid A have activities toward C3H/HeJ mice. Since that time, because of the popularity of Toll-like receptor (TLR) studies, a great deal of evidence has been reported indicating that P. gingivalis LPS and its lipid A are ligands that act on TLR2. In order to solve such problems as heterogeneity and contamination of the biologically active components of P. gingivalis lipid A, we produced a chemical synthesis counterpart

  10. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  11. STRUCTURE-ACTIVITY RELATIONSHIP STUIDES AND THEIR ROLE IN PREDICTING AND INVESTIGATING CHEMICAL TOXICITY

    EPA Science Inventory

    Structure-Activity Relationship Studies and their Role in Predicting and Investigating Chemical Toxicity

    Structure-activity relationships (SAR) represent attempts to generalize chemical information relative to biological activity for the twin purposes of generating insigh...

  12. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia.

    PubMed

    Lee, Yi-Hsuan; Lin, Chun-Hua; Hsu, Pei-Chien; Sun, Yu-Yo; Huang, Yu-Jie; Zhuo, Jiun-Horng; Wang, Chen-Yu; Gan, Yu-Ling; Hung, Chia-Chi; Kuan, Chia-Yi; Shie, Feng-Shiun

    2015-07-01

    The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders. PMID:25690886

  13. Chemically programmed bispecific antibodies that recruit and activate T cells.

    PubMed

    Cui, Huiting; Thomas, Joshua D; Burke, Terrence R; Rader, Christoph

    2012-08-17

    Bispecific antibodies (biAbs) that mediate cytotoxicity by recruiting and activating endogenous immune cells are an emerging class of next-generation antibody therapeutics. Of particular interest are biAbs of relatively small size (∼50 kDa) that can redirect cytotoxic T cells through simultaneous binding of tumor cells. Here we describe a conceptually unique class of biAbs in which the tumor cell specificity of a humanized antibody fragment that recognizes CD3 on T cells is chemically programmed through a C-terminal selenocysteine (Sec) residue. We demonstrate that through chemically programmed specificity for integrin α(4)β(1) or folate receptor 1 (FOLR1), and common specificity for CD3, these hybrid molecules exert potent and specific in vitro and ex vivo cytotoxicity toward tumor cell lines and primary tumor cells in the presence of primary T cells. Importantly, the generic nature of chemical programming allows one to apply our approach to virtually any specificity, promising a broad utility of chemically programmed biAbs in cancer therapy. PMID:22761439

  14. Sila-fulleranes: promising chemically active fullerene analogs

    NASA Astrophysics Data System (ADS)

    Marsusi, Farah; Qasemnazhand, Mohammad

    2016-07-01

    Density-functional theory (DFT) was applied to investigate the geometry and electronic properties of bare Si60 and H-terminated Si-fullerene. DFT predicts outward sites on a bare Si60 cage. By using π-orbital axis analysis (POAV), it is shown that these sites result from a strong tendency of silicon atoms to form sp3 hybridization bonds. Natural bond orbital (NBO) analysis confirms the sp3 hybridization nature of Si–Si bonds in Si-fulleranes. The quantum confinement effect (QCE) does not affect band gap (BG) so strongly in the size between 1 and 1.7 nm. In contrast, the geometry and symmetry of the cage have a significant influence on the BG. In contrast to their carbon analogs, pentagon rings increase the stability of the cages. Functionalized Si-cages are stable and can be chemically very active. The electronic properties are highly sensitive to the surface chemistry via functionalization with different chemical groups. As a result, BGs and chemical activities of these cages can be drastically tuned through the chemistry of the surface.

  15. Sila-fulleranes: promising chemically active fullerene analogs.

    PubMed

    Marsusi, Farah; Qasemnazhand, Mohammad

    2016-07-01

    Density-functional theory (DFT) was applied to investigate the geometry and electronic properties of bare Si60 and H-terminated Si-fullerene. DFT predicts outward sites on a bare Si60 cage. By using π-orbital axis analysis (POAV), it is shown that these sites result from a strong tendency of silicon atoms to form sp(3) hybridization bonds. Natural bond orbital (NBO) analysis confirms the sp(3) hybridization nature of Si-Si bonds in Si-fulleranes. The quantum confinement effect (QCE) does not affect band gap (BG) so strongly in the size between 1 and 1.7 nm. In contrast, the geometry and symmetry of the cage have a significant influence on the BG. In contrast to their carbon analogs, pentagon rings increase the stability of the cages. Functionalized Si-cages are stable and can be chemically very active. The electronic properties are highly sensitive to the surface chemistry via functionalization with different chemical groups. As a result, BGs and chemical activities of these cages can be drastically tuned through the chemistry of the surface. PMID:27240656

  16. Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands

    PubMed Central

    2010-01-01

    Background Two year cancer bioassays conducted by the National Toxicology Program have shown chronic exposure to dioxin-like compounds (DLCs) to lead to the development of both neoplastic and non-neoplastic lesions in the hepatic tissue of female Sprague Dawley rats. Most, if not all, of the hepatotoxic effects induced by DLC's are believed to involve the binding and activation of the transcription factor, the aryl hydrocarbon receptor (AhR). Toxicogenomics was implemented to identify genomic responses that may be contributing to the development of hepatotoxicity in rats. Results Through comparative analysis of time-course microarray data, unique hepatic gene expression signatures were identified for the DLCs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (100 ng/kg/day) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) (1000 ng/kg/day) and the non-DLC 2,2',4,4',5,5',-hexachlorobiphenyl (PCB153) (1000 μg/kg/day). A common time independent signature of 41 AhR genomic biomarkers was identified which exhibited at least a 2-fold change in expression following subchronic (13-wk) and chronic (52-wk) p.o. exposure to TCDD and PCB126, but not the non DLC, PCB153. Real time qPCR analysis validated that 30 of these genes also exhibited at least a 2-fold change in hepatic expression at 24 hr following a single exposure to TCDD (5 μg/kg, po). Phenotypic anchoring was conducted which identified forty-six genes that were differently expressed both following chronic p.o. exposure to DLCs and in previously reported studies of cholangiocarcinoma or hepatocellular adenoma. Conclusions Together these analyses provide a comprehensive description of the genomic responses which occur in rat hepatic tissue with exposure to AhR ligands and will help to isolate those genomic responses which are contributing to the hepatotoxicity observed with exposure to DLCs. In addition, the time independent gene expression signature of the AhR ligands may assist in identifying other agents with the potential

  17. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death.

    PubMed

    Wei, Kuo-Liang; Chen, Fei-Yun; Lin, Chih-Yi; Gao, Guan-Lun; Kao, Wen-Ya; Yeh, Chi-Hui; Chen, Chang-Rong; Huang, Hao-Chun; Tsai, Wei-Ren; Jong, Koa-Jen; Li, Wan-Jung; Su, Jyan-Gwo Joseph

    2016-09-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG0/G1 population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. PMID:27286660

  18. Influences of chemical activators on incinerator bottom ash.

    PubMed

    Qiao, X C; Cheeseman, C R; Poon, C S

    2009-02-01

    This research has applied different chemical activators to mechanically and thermally treated fine fraction (<14 mm) of incinerator bottom ash (IBA), in order to investigate the influences of chemical activators on this new pozzolanic material. IBA has been milled and thermally treated at 800 degrees C (TIBA). The TIBA produced was blended with Ca(OH)(2) and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na(2)SO(4), K(2)SO(4), Na(2)CO(3), K(2)CO(3), NaOH, KOH and CaCl(2) into 100g of binder (TIBA+Ca(OH)(2)). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca(2)Al(2)SiO(7)), wollastonite (CaSiO(3)) and mayenite (Ca(12)Al(14)O(33)) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na(2)CO(3) can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na(2)SO(4), K(2)SO(4), K(2)CO(3), NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl(2) has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca(4)Al(2)O(6)(CO(3))(0.67)(SO(3))(0.33)(H(2)O)(11)) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl(2). PMID:18718749

  19. Chemical activation of a food deprivation signal extends lifespan.

    PubMed

    Lucanic, Mark; Garrett, Theo; Yu, Ivan; Calahorro, Fernando; Asadi Shahmirzadi, Azar; Miller, Aaron; Gill, Matthew S; Hughes, Robert E; Holden-Dye, Lindy; Lithgow, Gordon J

    2016-10-01

    Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology. PMID:27220516

  20. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    PubMed

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  1. Chemical constituents from Swietenia macrophylla bark and their antioxidant activity.

    PubMed

    Falah, S; Suzuki, T; Katayama, T

    2008-08-15

    Chemical constituents of the bark of Swietenia macrophylla King (Meliaceae) was investigated not only to develop further bark utilization but also to understand the biochemical function of the bark in the forest environment. A new phenylpropanoid-substituted catechin, namely, swietemacrophyllanin [(2R*,3S*,7"R*)-catechin-8,7"-7,2"-epoxy-(methyl 4",5"-dihydroxyphenylpropanoate)] (1) was isolated from the bark of S. macrophylla together with two known compounds, catechin (2) and epicatechin (3). The structure of 1 was elucidated by spectroscopic data and by comparison of the NMR data with those of catiguanins A and B, phenylpropanoid-substituted epicatechins. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of the isolated compounds indicated that all of the three compounds have strong activity compared with trolox as a reference. Swietemacrophyllanin (1) had the strongest activity with a 50% inhibitory concentration (IC50) value of 56 microg mL(-1). PMID:19266907

  2. Chemical Signaling and Functional Activation in Colloidosome-Based Protocells.

    PubMed

    Sun, Shiyong; Li, Mei; Dong, Faqin; Wang, Shengjie; Tian, Liangfei; Mann, Stephen

    2016-04-13

    An aqueous-based microcompartmentalized model involving the integration of partially hydrophobic Fe(III)-rich montmorillonite (FeM) clay particles as structural and catalytic building blocks for colloidosome membrane assembly, self-directed membrane remodeling, and signal-induced protocell communication is described. The clay colloidosomes exhibit size- and charge-selective permeability, and show dual catalytic functions involving spatially confined enzyme-mediated dephosphorylation and peroxidase-like membrane activity. The latter is used for the colloidosome-mediated synthesis and assembly of a temperature-responsive poly(N-isopropylacrylamide)(PNIPAM)/clay-integrated hybrid membrane. In situ PNIPAM elaboration of the membrane is coupled to a glucose oxidase (GOx)-mediated signaling pathway to establish a primitive model of chemical communication and functional activation within a synthetic "protocell community" comprising a mixed population of GOx-containing silica colloidosomes and alkaline phosphatase (ALP)-containing FeM-clay colloidosomes. Triggering the enzyme reaction in the silica colloidosomes gives a hydrogen peroxide signal that induces polymer wall formation in a coexistent population of the FeM-clay colloidosomes, which in turn generates self-regulated membrane-gated ALP-activity within the clay microcompartments. The emergence of new functionalities in inorganic colloidosomes via chemical communication between different protocell populations provides a first step toward the realization of interacting communities of synthetic functional microcompartments. PMID:26923794

  3. Atypical Hydrogen Uptake on Chemically Activated, Ultramicroporous Carbon

    SciTech Connect

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C; Baker, Frederick S

    2010-01-01

    Hydrogen adsorption at near-ambient temperatures on ultramicroporous carbon (UMC), derived through secondary chemical activation from a wood-based activated carbon was studied using volumetric and gravimetric methods. The results showed that physisorption is accompanied by a process of different nature that causes slow uptake at high pressures and hysteresis on desorption. In combination, this results in unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e.g. up to 0.8 wt % at 25 oC and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17 20 kJ/mol) is higher than usually reported for carbon materials, but the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis. These unusual properties were attributed to contributions from polarization-enhanced physisorption caused by traces of alkali metals residual from chemical activation. The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents.

  4. Transient assembly of active materials fueled by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  5. TCDD dysregulation of 13 AHR-target genes in rat liver

    SciTech Connect

    Watson, John D.; Prokopec, Stephenie D.; Smith, Ashley B.; Okey, Allan B.; Pohjanvirta, Raimo; Boutros, Paul C.

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules

  6. Fabrication of optically active nanostructures by chemical methods

    NASA Astrophysics Data System (ADS)

    Moran, Cristin Erin

    A new method of fabricating long-range, planar arrays of discrete, submicron metal structures on glass or SiO2/Si surfaces has been developed without the use of resist masks or chemical etching. The approach combines microcontact printing and electroless plating for the controlled deposition of islands or lines of gold or silver. The metallic structures are varied in size, separation and shape by using a variety of commercial diffraction gratings to mold the polydimethylsiloxane (PDMS) elastomer stamps. An assortment of distinct geometrical patterns have been fabricated and imaged on a range of length scales using scanning probe, scanning electron, and optical microscopies. Additionally, the same chemical techniques can be used to pattern surfaces with biomolecules and ordered arrays of metal nanoshells. These arrays of metal nanostructures support surface plasmon propagation and also show plasmon-plasmon interactions dependent on the geometry of the metal features. These structures were used to investigate the effects of molecular functionalization on the excitation and propagation properties of the surface plasmons that are supported by this geometry. Distinct variations in the dispersion and energy gaps of surface plasmons on these structures due to chemical functionalization of the metal structures is observed. A second type of optically active structure, rare-earth doped silica particles, has been synthesized using wet chemistry. The polydispersity of the particles can be controlled by changing the concentration of dopant salt. These particles may be useful for microlaser or display technologies.

  7. Xeno-sensing activity of the aryl hydrocarbon receptor in human pluripotent stem cell-derived hepatocyte-like cells

    PubMed Central

    Kim, Hye-Min; Kim, Ji-Woo; Choi, Youngjun; Chun, Hang-Suk; Im, Ilkyun; Han, Yong-Mahn; Song, Chang-Woo; Yoon, Seokjoo; Park, Han-Jin

    2016-01-01

    Although hepatocyte-like cells derived from human pluripotent stem cells (hPSC-HLCs) are considered a promising model for predicting hepatotoxicity, their application has been restricted because of the low activity of drug metabolizing enzymes (DMEs). Here we found that the low expression of xenobiotic receptors (constitutive androstane receptor, CAR; and pregnane X receptor, PXR) contributes to the low activity of DMEs in hPSC-HLCs. Most CAR- and PXR-regulated DMEs and transporters were transcriptionally down-regulated in hPSC-HLC. Transcriptional expression of CAR and PXR was highly repressed in hPSC-HLCs, whereas mRNA levels of aryl hydrocarbon receptor (AHR) were comparable to those of adult liver. Furthermore, ligand-induced transcriptional activation was observed only at AHR in hPSC-HLCs. Bisulfite sequencing analysis demonstrated that promoter hypermethylation of CAR and PXR was associated with diminished transcriptional activity in hPSC-HLCs. Treatment with AHR-selective ligands increased the transcription of AHR-dependent target genes by direct AHR-DNA binding at the xenobiotic response element. In addition, an antagonist of AHR significantly inhibited AHR-dependent target gene expression. Thus, AHR may function intrinsically as a xenosensor as well as a ligand-dependent transcription factor in hPSC-HLCs. Our results indicate that hPSC-HLCs can be used to screen toxic substances related to AHR signaling and to identify potential AHR-targeted therapeutics. PMID:26899675

  8. Different AhR binding sites of diterpenoid ligands from Andrographis paniculata caused differential CYP1A1 induction in primary culture in mouse hepatocytes.

    PubMed

    Chatuphonprasert, Waranya; Remsungnen, Tawun; Nemoto, Nobuo; Jarukamjorn, Kanokwan

    2011-12-01

    Andrographis paniculata has been employed as a folklore remedy. Andrographolide (Andro), 14-deoxy-11,12-didehydroandrographolide (DHA), andrographiside (AS), and neoandrographolide (Neo), are major diterpenoids isolated from this plant. In the present study, influence of the four diterpenoids on CYP1A1 mRNA expression was investigated in primary cultured mouse hepatocytes. Additionally, binding of these compounds to aryl hydrocarbon receptor (AhR) was examined using molecular docking analysis to clarify mechanism of CYP1A1 induction. Andro and DHA induced CYP1A1 expression by itself, and co-treatment with a CYP1A1 inducer (BNF, beta-naphthoflavone) showed a synergistic increase of CYP1A1 expression. Andro demonstrated higher enhancing activity than DHA at every similar concentration. On the other hand, Neo suppressed BNF-induced CYP1A1 expression, but AS did not modify the induction. Results from molecular docking analysis of BNF and four diterpenoids on ligand binding domain of AhR were consistent with levels of CYP1A1 mRNA expressions. Furthermore, difference of binding sites of BNF in the presence of diterpenoids might affect the synergism or inhibition of CYP1A1 expression. These results suggest that use of A. paniculata as a health supplement should be concerned in term of herb-drugs interactions or risk of carcinogenesis, according to its ability to influence CYP1A1 expression. PMID:21963808

  9. Discovery and Biological Characterization of 1-(1H-indol-3-yl)-9H-pyrido[3,4-b]indole as an Aryl Hydrocarbon Receptor Activator Generated by Photoactivation of Tryptophan by Sunlight

    PubMed Central

    Diani-Moore, Silvia; Ma, Yuliang; Labitzke, Erin; Tao, Hui; Warren, J. David; Anderson, Jared; Chen, Qiuying; Gross, Steven S.; Rifkind, Arleen B.

    2011-01-01

    Activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is required for AHR dependent transcriptional activation and TCDD toxicity. We previously reported that aqueous tryptophan exposed to sunlight through window glass (aTRP) contains multiple photoproducts, including the well characterized 6-formylindolo[3,2-b]carbazole (FICZ), capable of activating the AHR and inducing CYP1A and CYP1A-mediated enzyme activities. We report here the isolation from aTRP and chemical characterization and synthesis of 1-(1H-indol-3-yl)-9H-pyrido[3,4-b]indole (IPI), a compound previously identified as a natural product of marine ascidia and now shown to be a TRP photoproduct with AHR-inducing properties. IPI, FICZ and TCDD produced equieffective induction of CYP1A-mediated 7-ethoxyresorufin deethylase (EROD) activity in chick embryo primary hepatocytes and mammalian Hepa1c1c7 cells. EROD induction by IPI was markedly curtailed in AHR-defective c35 cells, supporting the AHR dependence of the IPI response. Although IPI had a higher EC50 for EROD induction than FICZ, the much larger amount of IPI than FICZ in aTRP makes IPI a prominent contributor to EROD induction in aTRP. IPI was detected in TRP-containing culture medium under ambient laboratory conditions but not in TRP-free medium, consistent with its production from TRP. Cotreatment of hepatocytes with submaximal EROD-inducing doses of IPI and FICZ or TCDD produced additive increases in EROD without synergistic or inhibitory interactions. IPI and FICZ were readily metabolized by cultured hepatocytes. In addition to increasing CYP1A4 mRNA and EROD, IPI and FICZ decreased hepatocyte phosphoenolpyruvate carboxykinase mRNA expression and glucose output, biological effects associated with TCDD metabolic dysregulation. The findings underscore a role for sunlight in generating AHR-activating bioactive molecules. PMID:21722628

  10. Chemical activation of the mechanotransduction channel Piezo1

    PubMed Central

    Syeda, Ruhma; Xu, Jie; Dubin, Adrienne E; Coste, Bertrand; Mathur, Jayanti; Huynh, Truc; Matzen, Jason; Lao, Jianmin; Tully, David C; Engels, Ingo H; Petrassi, H Michael; Schumacher, Andrew M; Montal, Mauricio; Bandell, Michael; Patapoutian, Ardem

    2015-01-01

    Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ∼3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function. DOI: http://dx.doi.org/10.7554/eLife.07369.001 PMID:26001275

  11. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  12. [Advances on chemical constituents and pharmacological activity of genus Scilla].

    PubMed

    Fan, Meng-Yang; Wang, Yan-Min; Wang, Zhi-Min; Gao, Hui-Min

    2014-01-01

    The genus Scilla consists of 90 species widely distributed in Europe, Asia and Africa, one and its variant of which can be found in China Some species of the genus have been used in traditional medicine to treat various diseases related to inflammation and pain. Phytochemical studies have demonstrated the presence of triterpene and tritepenoid saponins derived from eucosterol, bufadienolides, alkaloids, stilbenoids and lignan in the plants of this genus. Various bioactivities such as antimicrobial, anti-inflammatory, antioxidant, anti-tumor and glycosidase inhibitory activities, have been reported. In this review, the advance of chemical constituents and pharmacological activities of the Scilla species are summarized for further development and utilization of the resource. PMID:24761625

  13. TCDD dysregulation of 13 AHR-target genes in rat liver.

    PubMed

    Watson, John D; Prokopec, Stephenie D; Smith, Ashley B; Okey, Allan B; Pohjanvirta, Raimo; Boutros, Paul C

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long-Evans (Turku/AB; L-E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000μg/kg at 19h after TCDD exposure and time points ranging from 1.5 to 384h after exposure to 100μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose-response analysis, none had an ED50 equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10-100 fold higher, in at least one strain (Ahrr (L-E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L-E), Inmt (both), Nfe2l2 (L-E), Nqo1 (L-E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. PMID:24355419

  14. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  15. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection. PMID:27329138

  16. Influences of chemical activators on incinerator bottom ash

    SciTech Connect

    Qiao, X.C. Cheeseman, C.R.; Poon, C.S.

    2009-02-15

    This research has applied different chemical activators to mechanically and thermally treated fine fraction (<14 mm) of incinerator bottom ash (IBA), in order to investigate the influences of chemical activators on this new pozzolanic material. IBA has been milled and thermally treated at 800 deg. C (TIBA). The TIBA produced was blended with Ca(OH){sub 2} and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, NaOH, KOH and CaCl{sub 2} into 100 g of binder (TIBA+Ca(OH){sub 2}). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca{sub 2}Al{sub 2}SiO{sub 7}), wollastonite (CaSiO{sub 3}) and mayenite (Ca{sub 12}Al{sub 14}O{sub 33}) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na{sub 2}CO{sub 3} can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, K{sub 2}CO{sub 3}, NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl{sub 2} has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca{sub 4}Al{sub 2}O{sub 6}(CO{sub 3}){sub 0.67}(SO{sub 3}){sub 0.33}(H{sub 2}O){sub 11}) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl{sub 2}.

  17. Speciation and chemical activities in superheated sodium borate solutions

    SciTech Connect

    Weres, O. )

    1993-06-01

    The system H[sub 2]O-B[sub 2]O[sub 3]-Na[sub 2]O has been studied experimentally at 277[degrees] and 317[degrees]C. The activities of water and boric acid have been determined at mole ratios Na/B from 0 to 1.5, and total dissolved solids 3 to 80 weight percent. The activity of boric acid has been fitted to within experimental error using a speciation model with eight complex species. This model is consistent with the model previously published by Mesmer et al. The electrolyte properties of the liquid are modelled using the Pitzer-Simonson Model of very concentrated electrolyte solutions. The calculated values of water activity agree with experiment, and the activity of NaOH and pOH have also been calculated. These data will allow prediction of the composition and chemical behavior of sodium borate liquids that may accumulate in the superheated crevices within a steam generator. A modified form of the model is provided for use with MULTEQ. The potassium borate system also was briefly studied at 317[degrees]C, and is adequately described by a model with five complex species. The potassium borate liquid is more alkaline at K/B = 1 than a sodium borate liquid at the same mole ratio, but pOH in the two systems is the same at lower mole ratios.

  18. Chemical constituents and antibacterial activity of Melastoma malabathricum L.

    PubMed

    Wong, Keng-Chong; Hag Ali, Dafaalla Mohamed; Boey, Peng-Lim

    2012-01-01

    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety. PMID:21834640

  19. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  20. Chemical Fingerprints of Star Forming Regions and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, Juan-Pablo

    2010-10-01

    This thesis is devoted to the study of the physical conditions of the interstellar medium (ISM) in active galactic nuclei (AGNs) and Galactic star-forming regions, using mostly single-dish millimeter observations. I first study the excitation conditions of dense gas in a group of Seyfert galaxies using radiative transfer models (Chapter 2). I then study the galaxy NGC 1068, and try to distinguish signatures of the contributions from the AGN and the starburst ring by incorporating observations of high-J transitions of dense gas tracers (Chapter 3). Later, I venture into the mid-infrared spectral region to study different aspects of the AGN and starburst components in the galaxy NGC 4945 (Chapter 4). In Chapter 5 I delve into theoretical aspects of the dynamical evolution of gas in an AGN torus. I use a 3D hydrodynamic simulation with chemical abundances driven by X-rays. The aim is to understand the effects of X-ray irradiation by the AGN on the temperature, formation and destruction of the molecular gas. I finally explore a Galactic star-forming region, the Omega Nebula, with high resolution single dish observations, to study the properties of the warm gas and to constrain chemical models (Chapters 6 and 7).

  1. Suppression of Chemically Induced and Spontaneous Mouse Oocyte Activation by AMP-Activated Protein Kinase1

    PubMed Central

    Ya, Ru; Downs, Stephen M.

    2013-01-01

    ABSTRACT Oocyte activation is an important process triggered by fertilization that initiates embryonic development. However, parthenogenetic activation can occur either spontaneously or with chemical treatments. The LT/Sv mouse strain is genetically predisposed to spontaneous activation. LT oocytes have a cell cycle defect and are ovulated at the metaphase I stage instead of metaphase II. A thorough understanding of the female meiosis defects in this strain remains elusive. We have reported that AMP-activated protein kinase (PRKA) has an important role in stimulating meiotic resumption and promoting completion of meiosis I while suppressing premature parthenogenetic activation. Here we show that early activation of PRKA during the oocyte maturation period blocked chemically induced activation in B6SJL oocytes and spontaneous activation in LT/SvEiJ oocytes. This inhibitory effect was associated with high levels of MAPK1/3 activity. Furthermore, stimulation of PRKA partially rescued the meiotic defects of LT/Sv mouse oocytes in concert with correction of abnormal spindle pole localization of PRKA and loss of prolonged spindle assembly checkpoint activity. Altogether, these results confirm a role for PRKA in helping sustain the MII arrest in mature oocytes and suggest that dysfunctional PRKA contributes to meiotic defects in LT/SvEiJ oocytes. PMID:23390161

  2. [Chemical constituents from Callicarpa nudiflora and their cytotoxic activities].

    PubMed

    Ma, Yan-Chun; Zhang, Min; Xu, Wen-Tong; Feng, Shi-Xiu; Lei, Ming; Yi, Bo

    2014-08-01

    The chemical consitituents from cytotoxic fraction of the Callicarpa nudiflora extract were isolated and purified by a combination of HP-20 macroporous resin, silica gel and Sephadex LH-20 column chromatographies. The structures were elucidated on the basis of the spectroscopic data and comparison of their spectroscopic data with reported data. The cytotoxicity was evaluated by the MTT assay. The 50% and 70% EtOH elutions of EtOH-extract showed significant cytotoxic activities, leading to the isolation of twelve compounds, which were identified as luteoloside(1), lutedin-4'-O-β-D-glucoside(2), 6-hydroxyluteolin-7-O-β-glucoside(3), lutedin-7-O-neohesperidoside(4), rhoifolin (5), luteolin-7, 4'-di-O-glucoside (6), forsythoside B (7), acteoside (8), alyssonoside (9), catalpol(10), nudifloside(11), and leonuride(12). Compounds 3-6, 10 and 12 were isolated from this genus for the first time, and compound 9 was isolated from this plant for the first time. The cytotoxicity assay demonstrated that flavonoids 1-6, in various concentrations, showed monolithic proliferation inhibitory activities against Hela, A549 and MCF-7 cell lines. Compounds 3, 5 and iridoid glycoside 11 possessed higher cytotoxicacivities. In short, flavonoids are the main components of cytotoxic extract from C. nudiflora, while phenylethanoid glycosides are the predominant ingredient but inactive to cancer cell lines. In addition, the minor iridoid glycoside expressed weak cytotoxic activity. PMID:25509294

  3. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route

    PubMed Central

    2012-01-01

    Background The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs). In this research, silver nanoparticles (Ag NPs) were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. Results The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa) and Gram-positive (S. aureus and M. luteus) by diffusion method using Muller-Hinton agar. Conclusions The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix. PMID:22967920

  4. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    PubMed

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry. PMID:25870697

  5. Dynamic model for selective metabolic activation in chemical carcinogenesis

    SciTech Connect

    Selkirk, J.K.; MacLeod, M.C.

    1980-01-01

    Theoretical calculations predict the relative ease of formation of carbonium ions from 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene-9,10-oxide or from either of the 2 symmetrical bay regions of B(e)P, and suggest their attraction to cellular nucleophiles. When both isomers were metabolized by hamster embryo fibroblasts (HEF) and the products analyzed, the results showed that the probable reason for benzo(e)pyrene's lack of carcinogenicity was its metabolic preference to attack the molecule away from the bay-region area. Particularly striking was the absence of any evidence for the formation of a significant amount of B(e)P-9,10-dihydrodiol. This suggests a metabolic basis for the relative lack of carcinogenic and mutagenic activity of B(e)P. The reason for this is not clear but may be due to physical or chemical factors such as membrane solubility or stereochemical requirements of the active site of the enzyme. The bay-region theory of PAH carcinogenesis predicts that carbonium ion formation from 9,10-dihydro-9,10-dihydroxybenzo(e)pyrene-11, 12-oxide, if formed, would be energetically favorable. Thus, the inability of HEF and microcomes to form B(e)P-9,10-dihydrodiol, the precursor of its potentially highly reactive diol-epoxide, would explain the relative inertness of B(e)P in several biological systems. As the subtle biochemical interactions of the various carcinogen intermediates become clarified, it becomes apparent that susceptibility and resistance to malignant transformation are based on a complex set of both chemical and physical parameters. It is becoming clear that metabolism kinetics, membrane interaction, and the role of nuclear metabolism help dictate the passage of the carcinogen and its reactive intermediates into and through the metabolic machinery of the cell. (ERB)

  6. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  7. Chemical labelling of active serum thioester proteins for quantification.

    PubMed

    Holm, Lotta; Ackland, Gareth L; Edwards, Mark R; Breckenridge, Ross A; Sim, Robert B; Offer, John

    2012-02-01

    The complement serum proteins C3 and C4 and the protease inhibitor α-2 macroglobulin are all members of the C3/α-2M thioester protein family, an evolutionarily ancient and conserved family that contains an intrachain thioester bond. The chemistry of the thioester bond is a key to the function of the thioester proteins. All these proteins function by covalently linking to their target by acyl transfer of the protein via the thioester moiety. We show that the signature thioester bond can be targeted with nucleophiles linked to a bioreporter molecule, site-specifically modifying the whole, intact thioester protein. Conditions were optimised to label selectively and efficiently pull-down unprocessed thioester-containing proteins from serum. We demonstrated pull-down of full-length C3, α-2M and C4 from sera in high salt, using a biotinylated nucleophile and streptavidin-coated resin, confirmed by MALDI-TOF MS identification of the gel bands. The potential for the development of a quantitative method for measuring active C3 in serum was investigated in patient sera pre and post operation. Quantifying active C3 in clinical assays using current methods is difficult. Methods based on antibody detection (e.g. nephelometry) do not distinguish between active C3 and inactive breakdown products. C3-specific haemolytic assays can be used, but these require use of relatively unstable reagents. The current work represents a promising robust, enzyme- and antibody-free chemical method for detecting active thioester proteins in blood, plasma or serum. PMID:21852021

  8. Chemical activation by mechanochemical mixing, microwave, and ultrasonic irradiation

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste ad reaction times in several organic syntheses and chemical transformations. This editorial comments on the recent developments in mechanochemica...

  9. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  10. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  11. Chemical Composition and Antioxidant Activities of Broussonetia papyrifera Fruits

    PubMed Central

    Sun, Jie; Liu, Shao-fang; Zhang, Chu-shu; Yu, Li-na; Bi, Jie; Zhu, Feng; Yang, Qing-li

    2012-01-01

    Fruits of Broussonetia papyrifera from South China were analyzed for their total chemical composition, and antioxidant activities in ethanol and aqueous extracts. In the fruit of this plant, the crude protein, crude fat and carbohydrates was 7.08%, 3.72% and 64.73% of dry weight, respectively. The crude protein, crude fat and carbohydrates were 15.71%, 20.51% and 36.09% of dry weight, respectively. Fatty acid and amino acid composition of the fruit were analyzed. Unsaturated fatty acid concentration was 70.6% of the total fatty acids. The percentage of the essential amino acids (EAAs) was 40.60% of the total amino acids. Furthermore, B. papyrifera fruit are rich in many mineral elements and vitamins. Total phenolic content was assessed using the Folin-Ciocalteau assay, whereas antioxidant activities were assessed by measuring the ability of the two extracts to scavenge DPPH radicals, inhibit peroxidation, and chelate ferric ions. Their reducing power was also assessed. Results indicated that the aqueous extract of B. papyrifera was a more potent reducing agent and radical-scavenger than the ethanol extract. GC–MS analysis of the ethanol extract showed the presence of some acid-containing compounds. The changes in total phenolic content and antioxidant capacity in B. papyrifera from four different regions grown under normal conditions were assessed. The antioxidant activity of different extracts was positively associated with their total phenolic content. These results suggest that the fruit of B. papyrifera could be used in dietary supplement preparations, or as a food additive, for nutritional gain, or to prevent oxidation in food products. PMID:22389678

  12. Brazilian Propolis: Correlation Between Chemical Composition and Antimicrobial Activity

    PubMed Central

    Salomão, Kelly; Pereira, Paulo Roberto S.; Campos, Leila C.; Borba, Cintia M.; Cabello, Pedro H.; Marcucci, Maria Cristina

    2008-01-01

    The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs) determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp), B (B. dracunculifolia) and C (Araucaria spp). Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM) and 3-(4-hydroxy-3-(oxo-butenyl)-phenylacrylic acid (DHCA1) and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4) and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN). When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF) and dicaffeoylquinic acid 3 (CAFQ3), of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2) and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis. PMID:18830454

  13. Improved calibration of IMU biases in analytic coarse alignment for AHRS

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Li, Baoguo; Wen, Ting

    2016-07-01

    An improved method for the inertial measurement unit (IMU) calibration of coarse alignment for the low-accuracy attitude heading reference system (AHRS) is proposed in this paper. The sensitivities of the Euler angles with respect to the inertial sensor biases are studied based on the analytic coarse alignment principle, and the errors of earth rotation rate and local gravity in the body frame caused by initial attitude error are analyzed. Then, an improved analytic coarse alignment algorithm with accelerometer and gyro bias calibration in an arbitrary three-position is proposed. Simulation and experiment results show that the novel method can calibrate accelerometer and gyro biases, reduce Euler angle attitude error, and improve navigation precision in practical applications. Moreover, this method can be applied to other low-accuracy inertial navigation systems.

  14. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  15. Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN.

    PubMed

    Ernst, Jana; Jann, Johann-Christoph; Biemann, Ronald; Koch, Holger M; Fischer, Bernd

    2014-09-01

    Environmental contaminants binding to transcription factors, such as the aryl hydrocarbon receptor (AhR) and the alpha and gamma peroxisome proliferator-activated receptors (PPARs), contribute to adverse effects on the reproductive system. Expressing both the AhR and PPARs, the human granulosa cell line KGN offers the opportunity to investigate the regulatory mechanisms involved in receptor crosstalk, independent of overriding hormonal control. The aim of the present study was to investigate the impact of two environmental contaminants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an AhR ligand) and di-(2-ethylhexyl) phthalate (DEHP, a PPAR ligand), on gonadotrophin sensitivity and estrogen synthesis in KGN cells. Accumulation of the DEHP metabolite mono-(2-ethylhexyl) phthalate (MEHP) in DEHP-exposed cells was measured by high-performance liquid chromatography mass spectrometry, thereby demonstrating DEHP metabolism to MEHP by KGN cells. By employing TCDD ( an AhR agonist), rosiglitazone (a PPARgamma agonist) or bezafibrate (a PPARalpha agonist), the presence of a functional AhR and PPAR cascade was confirmed in KGN cells. Cytotoxicity testing revealed no effect on KGN cell proliferation for the concentrations of TCDD and DEHP used in the current study. FSH-stimulated cells were exposed to TCDD, DEHP or a mix of both and estradiol synthesis was measured by enzyme-linked immunosorbent assay and gene expression by quantitative RT-PCR. Exposure decreased estradiol synthesis (TCDD, DEHP, mix) and reduced the mRNA expression of CYP19 aromatase (DEHP, mix) and FSHR (DEHP). DEHP induced the expression of the alpha and gamma PPARs and AhR, an effect which was inhibited by selective PPAR antagonists. Studies in the human granulosa cell line KGN show that the action of endocrine-disrupting chemicals may be due to a direct activation of AhR, for example by TCDD, and by a transactivation via PPARs, for example by DEHP, inducing subsequent transcriptional changes with a broad

  16. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells.

    PubMed

    Rentas, Stefan; Holzapfel, Nicholas T; Belew, Muluken S; Pratt, Gabriel A; Voisin, Veronique; Wilhelm, Brian T; Bader, Gary D; Yeo, Gene W; Hope, Kristin J

    2016-04-28

    Umbilical cord blood-derived haematopoietic stem cells (HSCs) are essential for many life-saving regenerative therapies. However, despite their advantages for transplantation, their clinical use is restricted because HSCs in cord blood are found only in small numbers. Small molecules that enhance haematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified, but in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular circuitry that underpins the self-renewal of human HSCs will facilitate the development of targeted strategies that expand HSCs for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs, the post-transcriptional mechanisms that guide HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2-RNA interactions, we show that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signalling through post-transcriptional downregulation of canonical AHR pathway components in cord blood HSPCs. Our study gives mechanistic insight into RNA networks controlled by RNA-binding proteins that underlie self-renewal and provides evidence that manipulating such networks ex vivo can enhance the regenerative potential of human HSCs. PMID:27121842

  17. Chemical and thermal modulation of molecular motor activities

    NASA Astrophysics Data System (ADS)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  18. Two-phase flow in a chemically active porous medium

    SciTech Connect

    Darmon, Alexandre Dauchot, Olivier; Benzaquen, Michael; Salez, Thomas

    2014-12-28

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species, in a one-dimensional macroscopic description, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy’s law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements for optimization of the reactor.

  19. Chemical synthesis and immunosuppressive activity of dipalmitoyl phosphatidylinositol hexamannoside.

    PubMed

    Ainge, Gary D; Compton, Benjamin J; Hayman, Colin M; Martin, William John; Toms, Steven M; Larsen, David S; Harper, Jacquie L; Painter, Gavin F

    2011-06-17

    Phosphatidylinositol mannosides (PIMs) isolated from mycobacteria have been identified as an important class of phosphoglycolipids with significant immune-modulating properties. We present here the synthesis of dipalmitoyl phosphatidylinositol hexamannoside (PIM(6)) 1 and the first reported functional biology of a synthetic PIM(6). Key steps in the synthetic protocol included the selective glycosylation of an inositol 2,6-diol with a suitably protected mannosyl donor and construction of the glycan core utilizing a [3 + 4] thio-glycosylation strategy. The target 1 was purified by reverse phase chromatography and characterized by standard spectroscopic methods, HPLC, and chemical modification by deacylation to dPIM(6). The (1)H NMR spectrum of synthetic dPIM(6) obtained from 1 matched that of dPIM(6) obtained from nature. PIM(6) (1) exhibited dendritic cell-dependent suppression of CD8(+) T cell expansion in a human mixed lymphocyte reaction consistent with the well established immunosuppressive activity of whole mycobacteria. PMID:21574597

  20. Adsorption of copper cyanide on chemically active adsorbents

    SciTech Connect

    Lee, J.S.; Deorkar, N.V.; Tavlarides, L.L.

    1998-07-01

    An inorganic chemically active adsorbent (ICAA), SG(1)-TEPA (tetraethylenepentaamine)-propyl, is developed for removal, recovery, and recycling of copper cyanide from industrial waste streams. Equilibrium studies are executed to determine and model adsorption of the copper cyanide complex from aqueous solutions in a batch and packed column. It appears that adsorption is dependent on anionic copper cyanide species and the basicity of the ligand. Aqueous-phase equilibrium modeling shows that monovalent (Cu(CN){sub 2}{sup {minus}}), divalent (Cu(CN){sub 3}{sup 2{minus}}), and trivalent (Cu(CN){sub 4}{sup 3{minus}}) species of copper cyanide exist in the solution, depending on the pH and the concentration of total cyanide ions. Batch adsorption data are modeled using a modified multicomponent Langmuir isotherm which includes aqueous-phase speciation and basicity of the SG(1)-TEPA-propyl. This developed model is applied with a mass balance equation to describe the adsorption of copper cyanide complexes in a packed column.

  1. Internal Activation of Peptidyl Prolyl Thioesters in Native Chemical Ligation.

    PubMed

    Gui, Yue; Qiu, Lingqi; Li, Yaohao; Li, Hongxing; Dong, Suwei

    2016-04-13

    Prolyl thioesters have shown significantly lower reactivities in native chemical ligation (NCL) in comparison to that of the alanyl thioester. This report describes a mild and efficient internal activation protocol of peptidyl prolyl thioesters in NCL without using any thiol-based additives, where the introduction of a 4-mercaptan substituent on the C-terminal proline significantly improves the reactivity of prolyl thioesters via the formation of a bicyclic thiolactone intermediate. The kinetic data indicate that the reaction rate is comparable to that of the reported data of alanyl thioesters, and the mechanistic studies suggest that the ligation of two peptide segments proceeds through an NCL-like pathway instead of a direct aminolysis, which ensures the chemoselectivity and compatibility of various amino acid side chains. This 4-mercaptoprolyl thioester-based protocol also allows an efficient one-pot ligation-desulfurization procedure. The utility of this method has been further demonstrated in the synthesis of a proline-rich region of Wilms tumor protein 1. PMID:26982082

  2. 75 FR 6386 - Pesticide Products; Registration Applications for a New Active Ingredient Chemical; Demiditraz

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... AGENCY Pesticide Products; Registration Applications for a New Active Ingredient Chemical; Demiditraz.... Product name: Demiditraz Technical. Active ingredient: Insecticide and Demiditraz at 100%. Proposed...., Kalamazoo, MI 49001. Product name: CA Acaricide. Active ingredient: Insecticide and Demiditraz at...

  3. Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR

    PubMed Central

    Szöllősi, Dániel; Erdei, Áron; Gyimesi, Gergely; Magyar, Csaba; Hegedűs, Tamás

    2016-01-01

    Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics. PMID:26727491

  4. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    SciTech Connect

    Carpenter, Michael; Oh, Sang-Hyun

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting

  5. The influence of chemical chaperones on enzymatic activity under thermal and chemical stresses: common features and variation among diverse chemical families.

    PubMed

    Levy-Sakin, Michal; Berger, Or; Feibish, Nir; Sharon, Noa; Schnaider, Lee; Shmul, Guy; Amir, Yaniv; Buzhansky, Ludmila; Gazit, Ehud

    2014-01-01

    Molecular and chemical chaperones are key components of the two main mechanisms that ensure structural stability and activity under environmental stresses. Yet, chemical chaperones are often regarded only as osmolytes and their role beyond osmotic regulation is not fully understood. Here, we systematically studied a large group of chemical chaperones, representatives of diverse chemical families, for their protective influence under either thermal or chemical stresses. Consistent with previous studies, we observed that in spite of the structural similarity between sugars and sugar alcohols, they have an apparent difference in their protective potential. Our results support the notion that the protective activity is mediated by the solvent and the presence of water is essential. In the current work we revealed that i) polyols and sugars have a completely different profile of protective activity toward trifluoroethanol and thermal stress; ii) minor changes in solvent composition that do not affect enzyme activity, yet have a great effect on the ability of osmolytes to act as protectants and iii) increasing the number of active groups of carbohydrates makes them better protectants while increasing the number of active groups of methylamines does not, as revealed by attempts to synthesize de novo designed methylamines with multiple functional groups. PMID:24520396

  6. The Influence of Chemical Chaperones on Enzymatic Activity under Thermal and Chemical Stresses: Common Features and Variation among Diverse Chemical Families

    PubMed Central

    Feibish, Nir; Sharon, Noa; Schnaider, Lee; Shmul, Guy; Amir, Yaniv; Buzhansky, Ludmila; Gazit, Ehud

    2014-01-01

    Molecular and chemical chaperones are key components of the two main mechanisms that ensure structural stability and activity under environmental stresses. Yet, chemical chaperones are often regarded only as osmolytes and their role beyond osmotic regulation is not fully understood. Here, we systematically studied a large group of chemical chaperones, representatives of diverse chemical families, for their protective influence under either thermal or chemical stresses. Consistent with previous studies, we observed that in spite of the structural similarity between sugars and sugar alcohols, they have an apparent difference in their protective potential. Our results support the notion that the protective activity is mediated by the solvent and the presence of water is essential. In the current work we revealed that i) polyols and sugars have a completely different profile of protective activity toward trifluoroethanol and thermal stress; ii) minor changes in solvent composition that do not affect enzyme activity, yet have a great effect on the ability of osmolytes to act as protectants and iii) increasing the number of active groups of carbohydrates makes them better protectants while increasing the number of active groups of methylamines does not, as revealed by attempts to synthesize de novo designed methylamines with multiple functional groups. PMID:24520396

  7. Advanced deposition model for thermal activated chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  8. Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2

    NASA Astrophysics Data System (ADS)

    Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.

    2006-06-01

    Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonisation temperature and the ZnCl 2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N 2 at -196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m 2 g -1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.

  9. Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling.

    PubMed

    Grančič, Peter; Štěpánek, František

    2011-08-01

    The multibody dynamics of a system of chemical swarm robots in a porous environment is investigated. The chemical swarm robots are modeled as brownian particles capable of delivering an encapsulated chemical payload toward a given target location and releasing it in response to an external stimulus. The presence of chemical signals (chemo-attractant) in the system plays a crucial role in coordinating the collective movement of the particles via chemotaxis. For a number of applications, such as distributed chemical processing and targeted drug delivery, the understanding of factors that govern the collective behavior of the particles, especially their ability to localize a given target, is of immense importance. A hybrid modeling methodology based on the combination of the brownian dynamics method and diffusion problem coupled through the chemotaxis phenomena is used to analyze the impact of a varying signaling threshold and the strength of chemotaxis on the ability of the chemical robots to fulfill their target localization mission. The results demonstrate that the selected performance criteria (the localization half time and the success rate) can be improved when an appropriate signaling process is chosen. Furthermore, for an optimum target localization strategy, the topological complexity of the porous environment needs to be reflected. PMID:21929036

  10. Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling

    NASA Astrophysics Data System (ADS)

    Grančič, Peter; Štěpánek, František

    2011-08-01

    The multibody dynamics of a system of chemical swarm robots in a porous environment is investigated. The chemical swarm robots are modeled as Brownian particles capable of delivering an encapsulated chemical payload toward a given target location and releasing it in response to an external stimulus. The presence of chemical signals (chemo-attractant) in the system plays a crucial role in coordinating the collective movement of the particles via chemotaxis. For a number of applications, such as distributed chemical processing and targeted drug delivery, the understanding of factors that govern the collective behavior of the particles, especially their ability to localize a given target, is of immense importance. A hybrid modeling methodology based on the combination of the Brownian dynamics method and diffusion problem coupled through the chemotaxis phenomena is used to analyze the impact of a varying signaling threshold and the strength of chemotaxis on the ability of the chemical robots to fulfill their target localization mission. The results demonstrate that the selected performance criteria (the localization half time and the success rate) can be improved when an appropriate signaling process is chosen. Furthermore, for an optimum target localization strategy, the topological complexity of the porous environment needs to be reflected.

  11. METABOLISM AND METABOLIC ACTIVATION OF CHEMICALS: IN-SILICO SIMULATION

    EPA Science Inventory

    The role of metabolism in prioritizing chemicals according to their potential adverse health effects is extremely important because innocuous parents can be transformed into toxic metabolites. This work presents the TIssue MEtabolism Simulator (TIMES) platform for simulating met...

  12. Ligand-independent activation of the arylhydrocarbon receptor by ETK (Bmx) tyrosine kinase helps MCF10AT1 breast cancer cells to survive in an apoptosis-inducing environment.

    PubMed

    Fujisawa, Yasuko; Li, Wen; Wu, Dalei; Wong, Patrick; Vogel, Christoph; Dong, Bin; Kung, Hsing-Jien; Matsumura, Fumio

    2011-10-01

    It has been reported that the arylhydrocarbon receptor (AHR) is overexpressed in certain types of breast tumors. However, so far no concrete evidence has been provided yet as to why and how the overexpressed AHR in those cancer cells is functionally activated without exogenous ligands. Here we show that the AHR was functionally activated when estrogen receptor-negative, AHR overexpressing MCF10AT1 human breast cancer cells (designated P20E) were subjected to serum starvation. Transfection of cells with ETK-KQ, a plasmid for kinase-dead epithelial and endothelial tyrosine kinase (ETK), attenuated this AHR activation. Artificial over-expression of ETK in P20E cells through transfection with wild-type ETK plasmid (ETK-wt) caused up-regulation of cytochrome P4501a1 (CYP1A1; a marker of functional activation of AHR). Furthermore, ablation of ETK expression by a specific antisense oligonucleotide or AG879, a specific inhibitor of ETK kinase suppressed activation of AHR induced by omeprazole, a strong ligand-independent activator of AHR. Activation of ETK in those cells conferred them resistance to UVB- as well as doxorubicin-induced apoptosis, both of which were reversed by ETK-KQ. Together, these findings support our conclusion that ETK is the tyrosine kinase responsible for the functional activation of the AHR in these mammary epithelial cells. PMID:21861773

  13. The combined effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and the phytoestrogen genistein on steroid hormone secretion, AhR and ERβ expression and the incidence of apoptosis in granulosa cells of medium porcine follicles.

    PubMed

    Piasecka-Srader, Joanna; Sadowska, Agnieszka; Nynca, Anna; Orlowska, Karina; Jablonska, Monika; Jablonska, Olga; Petroff, Brian K; Ciereszko, Renata E

    2016-02-20

    Low doses of endocrine disrupting chemicals (EDCs) used in combination may act in a manner different from that of individual compounds. The objective of the study was to examine in vitro effects of low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 100 pM) and genistein (500 nM) on: 1) progesterone (P4) and estradiol (E2) secretion (48 h); 2) dynamic changes in aryl hydrocarbon receptor (AhR) mRNA and protein expression (1, 3, 6, 24 and 48 h); 3) dynamic changes in estrogen receptor β (ERβ) mRNA and protein expression (1, 3, 6, 24 and 48 h); and 4) induction of apoptosis in porcine granulosa cells derived from medium follicles (3, 6 and 24 h). TCDD had no effect on P4 or E2 production, but potentiated the inhibitory effect of genistein on P4 production. In contrast to the individual treatments which did not produce any effects, TCDD and genistein administered together decreased ERβ and AhR protein expression in granulosa cells. Moreover, the inhibitory effect of TCDD on AhR mRNA expression was abolished by genistein. The treatments did not induce apoptosis in the cells. In summary, combined effects of low concentrations of TCDD and genistein on follicular function of pigs differed from that of individual compounds. The results presented in the current paper clearly indicate that effects exerted by low doses of EDCs applied in combination must be taken into consideration when studying potential risk effects of EDCs on biological processes. PMID:26568065

  14. Chemical properties and toxicity of soils contaminated by mining activity.

    PubMed

    Agnieszka, Baran; Tomasz, Czech; Jerzy, Wieczorek

    2014-09-01

    This research is aimed at assessing the total content and soluble forms of metals (zinc, lead and cadmium) and toxicity of soils subjected to strong human pressure associated with mining of zinc and lead ores. The research area lay in the neighbourhood of the Bolesław Mine and Metallurgical Plant in Bukowno (Poland). The study obtained total cadmium concentration between 0.29 and 51.91 mg, zinc between 7.90 and 3,614 mg, and that of lead between 28.4 and 6844 mg kg(-1) of soil d.m. The solubility of the heavy metals in 1 mol dm(-3) NH4NO3 was 1-49% for zinc, 5-45% for cadmium, and <1-10% for lead. In 1 mol HCl dm(-3), the solubility of the studied metals was much higher and obtained values depending on the collection site, from 45 to 92% for zinc, from 74 to 99%, and from 79 to 99% for lead. The lower solubility of the heavy metals in 1 mol dm(-3) NH4NO3 than 1 mol HCl dm(-3) is connected with that, the ammonium nitrate has low extraction power, and it is used in determining the bioavailable (active) form of heavy metals. Toxicity assessment of the soil samples was performed using two tests, Phytotoxkit and Microtox(®). Germination index values were between 22 and 75% for Sinapis alba, between 28 and 100% for Lepidium sativum, and between 10 and 28% for Sorghum saccharatum. Depending on the studied soil sample, Vibrio fischeri luminescence inhibition was 20-96%. The sensitivity of the test organisms formed the following series: S. saccharatum > S. alba = V. fischeri > L. sativum. Significant positive correlations (p ≤ 0.05) of the total and soluble contents of the metals with luminescence inhibition in V. fischeri and root growth inhibition in S. saccharatum were found. The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in soils. All the soil samples were classified into toxicity class III, which means that they are toxic and present severe danger. Biotest are a good complement to

  15. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action

    PubMed Central

    Shanle, Erin K.; Xu, Wei

    2011-01-01

    Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and non-genomic ER activity through direct interactions with ERs, indirectly through transcription factors like the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study. PMID:21053929

  16. Aryl hydrocarbon receptor activation leads to impairment of estrogen-driven chicken vitellogenin promoter activity in LMH cells.

    PubMed

    Bussmann, Ursula A; Pérez Sáez, Juan M; Bussmann, Leonardo E; Barañao, J Lino

    2013-03-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates most of the toxic effects of environmental contaminants. Among the multiple pleiotropic responses elicited by AHR agonists, the antiestrogenic and endocrine-disrupting action of the receptor activation is one of the most studied. It has been demonstrated that some AHR agonists disrupt estradiol-induced vitellogenin synthesis in the fish liver via a mechanism that involves crosstalk between the AHR and the estrogen receptor (ER). Chicken hepatocytes have become a model for the study of AHR action in birds and the induction of the signal and its effect in these cells are well established. However, the impact of AHR activation on estradiol-regulated responses in the chicken liver remains to be demonstrated. The aim of the present study was, therefore, to determine the effect of AHR action on ER-driven transcription in a convenient model of chicken liver cells. For this purpose, we designed a reporter construct bearing the 5' regulatory region of the chicken vitellogenin II gene and used it to transfect chicken hepatoma LMH cells. We found that β-naphthoflavone represses ER-driven vitellogenin promoter activity and that this action is mediated by the AHR. This inhibitory crosstalk between both pathways appears to be unidirectional, since estradiol did not alter the transcript levels of an AHR target gene. Besides, and highly relevant, we show that LMH cell line transfected with a reporter construct bearing the chicken vitellogenin promoter sequence is a useful and convenient model for the study of AHR-ER interaction in chicken liver-derived cells. PMID:23103859

  17. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    PubMed

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  18. Combined Chemical Activation and Fenton Degradation to Convert Waste Polyethylene into High-Value Fine Chemicals.

    PubMed

    Chow, Cheuk-Fai; Wong, Wing-Leung; Ho, Keith Yat-Fung; Chan, Chung-Sum; Gong, Cheng-Bin

    2016-07-01

    Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems. PMID:27168079

  19. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    PubMed

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  20. LIMITED-USE CHEMICAL PROTECTIVE CLOTHING FOR EPA SUPERFUND ACTIVITIES

    EPA Science Inventory

    Because contractor field personnel complained about the poor durability and fit of limited-use chemical protective clothing (CPC) most commonly used at hazardous waste site operations, the U.S. Environmental Protection Agency (EPA) initiated a study to characterize use of CPC; de...

  1. LIMITED-USE CHEMICAL PROTECTIVE CLOTHING FOR EPA SUPERFUND ACTIVITIES

    EPA Science Inventory

    Because contractor field personnel complained about the poor durability and fit of limited-use chemical protective clothing (CPC) most commonly used at hazardous waste site operations, the U.S. Environmental Protection Agency (EPA) initiated a study to • characterize use of CPC...

  2. Chemical and enzymatic reductive activation of acylfulvene to isomeric cytotoxic reactive intermediates

    PubMed Central

    Pietsch, Kathryn E.; Neels, James F.; Yu, Xiang; Gong, Jiachang; Sturla, Shana J.

    2011-01-01

    Acylfulvenes, a class of semisynthetic analogues of the sesquiterpene natural product illudin S, are cytotoxic towards cancer cells. The minor structural changes between illudin S and AFs translate to an improved therapeutic window in preclinical cell-based assays and xenograft models. AFs are, therefore, unique tools for addressing the chemical and biochemical basis of cytotoxic selectivity. AFs elicit cytotoxic responses by alkylation of biological targets, including DNA. While AFs are capable of direct alkylation, cytosolic reductive bioactivation to an electrophilic intermediate is correlated with enhanced cytotoxicity. Data obtained in this study illustrates chemical aspects of the process of AF activation. By tracking reaction mechanisms with stable isotope-labeled reagents, enzymatic versus chemical activation pathways for AF were compared for reactions involving the NADPH-dependent enzyme prostaglandin reductase 1 (PTGR1) or sodium borohydride, respectively. These two processes resulted in isomeric products that appear to give rise to similar patterns of DNA modification. The chemically activated isomer has been newly isolated and chemically characterized in this study, including an assessment of its relative stereochemistry, and stability at varying pH and under bioassay conditions. In mammalian cancer cells, this chemically activated analog was shown to not rely on further cellular activation to significantly enhance cytotoxic potency, in contrast to the requirements of AF. On the basis of this study, we anticipate that the chemically activated form of AF will serve as a useful chemical probe for evaluating biomolecular interactions independent of enzyme-mediated activation. PMID:21939268

  3. Aryl‐hydrocarbon receptor activity modulates prolactin expression in the pituitary

    SciTech Connect

    Moran, Tyler B.; Brannick, Katherine E.; Raetzman, Lori T.

    2012-11-15

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotrope and lactotrope adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somatolactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction in pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggest that environmental dioxins can exert endocrine disrupting effects at the pituitary. -- Highlights: ► AhR signaling suppresses Prl mRNA expression. ► AhR signaling does not influence pituitary proliferation in culture. ► AhR is necessary for Prl, Lhb and Fshb expression at postnatal day 3.

  4. Antimicrobial activity and chemical composition of some essential oils.

    PubMed

    Aridoğan, Buket Cicioğlu; Baydar, Hasan; Kaya, Selçuk; Demirci, Mustafa; Ozbaşar, Demir; Mumcu, Ethem

    2002-12-01

    In this study the composition and antimicrobial properties of essential oils obtained from Origanum onites, Mentha piperita, Juniperus exalsa, Chrysanthemum indicum, Lavandula hybrida, Rosa damascena, Echinophora tenuifolia, Foeniculum vulgare were examined. To evaluate the in vitro antibacterial activities of these eight aromatic extracts; their in vitro antimicrobial activities were determined by disk diffusion testing, according to the NCCLS criteria. Escherichia coli (ATTC 25922), Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATTC 27853 were used as standard test bacterial strains. Origanum onites recorded antimicrobial activity against all test bacteria, and was strongest against Staphylococcus aureus. For Rosa damascena, Mentha piperita and Lavandula hybrida antimicrobial activity was recorded only to Staphylococcus aureus. Juniperus exalsa, and Chrysanthemum indicum exhibited antibacterial activities against both Staphylococcus aureus and Escherichia coli. We also examined the in vitro antimicrobial activities of some components of the essential oils and found some components with antimicrobial activity. PMID:12510839

  5. Chemical modification of capuramycins to enhance antibacterial activity

    PubMed Central

    Bogatcheva, Elena; Dubuisson, Tia; Protopopova, Marina; Einck, Leo; Nacy, Carol A.; Reddy, Venkata M.

    2011-01-01

    Objectives To extend capuramycin spectrum of activity beyond mycobacteria and improve intracellular drug activity. Methods Three capuramycin analogues (SQ997, SQ922 and SQ641) were conjugated with different natural and unnatural amino acids or decanoic acid (DEC) through an ester bond at one or more available hydroxyl groups. In vitro activity of the modified compounds was determined against Mycobacterium spp. and representative Gram-positive and Gram-negative bacteria. Intracellular activity was evaluated in J774A.1 mouse macrophages infected with Mycobacterium tuberculosis (H37Rv). Results Acylation of SQ997 and SQ641 with amino undecanoic acid (AUA) improved in vitro activity against most of the bacteria tested. Conjugation of SQ922 with DEC, but not AUA, improved its activity against Gram-positive bacteria. In the presence of efflux pump inhibitor phenylalanine arginine β-naphthyl amide, MICs of SQ997-AUA, SQ641-AUA and SQ922-DEC compounds improved even further against drug-susceptible and drug-resistant Staphylococcus aureus. In Gram-negative bacteria, EDTA-mediated permeabilization caused 4- to 16-fold enhancement of the activity of AUA-conjugated SQ997, SQ922 and SQ641. Conjugation of all three capuramycin analogues with AUA improved intracellular killing of H37Rv in murine macrophages. Conclusions Conjugation of capuramycin analogues with AUA or DEC enhanced in vitro activity, extended the spectrum of activity in Gram-positive bacteria and increased intracellular activity against H37Rv. PMID:21186194

  6. Activated persulfate for organic chemical degradation: A review.

    PubMed

    Matzek, Laura W; Carter, Kimberly E

    2016-05-01

    Activated persulfate reactions have widespread application for groundwater and environmental remediation, as many of these reactions involve destruction of environmental contaminants. Within the last five years, knowledge of activated persulfate degradation reactions has grown to include novel means of activating persulfate for enhanced removal of organic species. These current studies cover a long list of organic analytes, including pharmaceuticals, pesticides, halogenated compounds and dyes. An extensive review of recently published experimental parameters and results for the destruction of organic compounds via activated persulfate is presented. Focus is placed on emerging methodologies and manipulation of traditional activation techniques. Knowledge gaps are identified and discussed, as despite the number of publications on this subject, more broad-reaching guidelines are needed for optimizing applications of activated persulfate in water treatment. PMID:26938680

  7. Evaluation of Kinase Activity Profiling Using Chemical Proteomics.

    PubMed

    Ruprecht, Benjamin; Zecha, Jana; Heinzlmeir, Stephanie; Médard, Guillaume; Lemeer, Simone; Kuster, Bernhard

    2015-12-18

    Protein kinases are important mediators of intracellular signaling and are reversibly activated by phosphorylation. Immobilized kinase inhibitors can be used to enrich these often low-abundance proteins, to identify targets of kinase inhibitors, or to probe their selectivity. It has been suggested that the binding of kinases to affinity beads reflects a kinase's activation status, a concept that is under considerable debate. To assess the merits of the idea, we performed a series of experiments including quantitative phosphoproteomics and purification of kinases by single or mixed affinity matrices from signaling activated or resting cancer cells. The data show that mixed affinity beads largely bind kinases independent of their activation status, and experiments using individual immobilized kinase inhibitors show mixed results in terms of preference for binding the active or inactive conformation. Taken together, activity- or conformation-dependent binding to such affinity resins depends (i) on the kinase, (ii) on the affinity probe, and (iii) on the activation status of the lysate or cell. As a result, great caution should be exercised when inferring kinase activity from such binding data. The results also suggest that assaying kinase activity using binding data is restricted to a limited number of well-chosen cases. PMID:26378887

  8. Oncogene activation in spontaneous and chemically induced rodent tumors: implications for risk analysis

    SciTech Connect

    Reynolds, S.H.; Stowers, S.J.; Patterson, R.M.; Maronpot, R.R.; Anderson, M.W.

    1988-06-01

    The validity of rodent tumor end points in assessing the potential hazards of chemical exposure to humans is a somewhat controversial but very important issue since most chemicals are classified as potentially hazardous to humans on the basis of long-term carcinogenesis studies in rodents. The ability to distinguish between genotoxic, cytotoxic, or receptor-mediated promotion effects of chemical treatment would aid in the interpretation of rodent carcinogenesis data. Activated oncogenes in spontaneously occurring and chemically induced rodent tumors were examined and compared as one approach to determine the mechanism by which chemical treatment caused an increased incidence of rodent tumors. Different patterns of activated oncogenes were found not only in spontaneous versus chemically induced mouse liver tumors but also in a variety of spontaneous rat tumors versus chemically induced rat lung tumors. In the absence of cytotoxic effects, it could be argued that the chemicals in question activated protooncogenes by a direct genotoxic mechanism. These results provided a basis for the analysis of activated oncogenes in spontaneous and chemically induced rodent tumors to provide information at a molecular level to aid in the extrapolation of rodent carcinogenesis data to human risk assessment.

  9. A new chemical probe for phosphatidylinositol kinase activity.

    PubMed

    Sherratt, Allison R; Nasheri, Neda; McKay, Craig S; O'Hara, Shifawn; Hunt, Ashley; Ning, Zhibin; Figeys, Daniel; Goto, Natalie K; Pezacki, John Paul

    2014-06-16

    Phosphatidylinositol kinases (PIKs) are key enzymatic regulators of membrane phospholipids and membrane environments that control many aspects of cellular function, from signal transduction to secretion, through the Golgi apparatus. Here, we have developed a photoreactive "clickable" probe, PIK-BPyne, to report the activity of PIKs. We investigated the selectivity and efficiency of the probe to both inhibit and label PIKs, and we compared PIK-BPyne to a wortmannin activity-based probe also known to target PIKs. We found that PIK-BPyne can act as an effective in situ activity-based probe, and for the first time, report changes in PI4K-IIIβ activity induced by the hepatitis C virus. These results establish the utility of PIK-BPyne for activity-based protein profiling studies of PIK function in native biological systems. PMID:24850173

  10. Phospholipase A2 Activity Triggers the Wound-Activated Chemical Defense in the Diatom Thalassiosira rotula

    PubMed Central

    Pohnert, Georg

    2002-01-01

    The activation of oxylipin-based chemical defense in the diatom Thalassiosira rotula is initiated by phospholipases that act immediately after cell damage. This lipase activity is responsible for the preferential release of free mono- and polyunsaturated fatty acids. Among these, eicosatetraenoic- and eicosapentaenoic acid are further converted by lipoxygenases to reactive defensive metabolites such as the antiproliferative α,β,γ,δ-unsaturated aldehydes 2,4-decadienal and 2,4,7-decatrienal. We show that mainly saturated free fatty acids are present in the intact diatom T. rotula, whereas the amount of free polyunsaturated eicosanoids is drastically increased in the first minutes after wounding. Using fluorescent probes, the main enzyme activity responsible for initiation of the aldehyde-generating lipase/lipoxygenase/hydroperoxide lyase cascade was characterized as a phospholipase A2. All enzymes involved in this specific defensive reaction are active in seawater over several minutes. Thus, the mechanism allows the unicellular algae to overcome restrictions arising out of potential dilution of defensive metabolites. Only upon predation are high local concentrations of aldehydes formed in the vicinity of the herbivores, whereas in times of low stress, cellular resources can be invested in the formation of eicosanoid-rich phospholipids. In contrast to higher plants, which use lipases acting on galactolipids to release C18 fatty acids for production of leaf-volatile aldehydes, diatoms rely on phospholipids and the transformation of C20 fatty acids to form 2,4-decadienal and 2,4,7-decatrienal as an activated defense. PMID:12011342

  11. The chemical nature of the hypothalamocortical activation underlying drinking behavior.

    PubMed

    Batuev, A S; Gafurov, B G

    1993-01-01

    The injection of cholinergic substances (carbocholine, carbathin [karbatin], acetylcholine) into the lateral field of the hypothalamus of cats is accompanied by the appearance in the electrohypothalamogram of characteristic hypersynchronized activity and drinking behavior. The swallowing of water temporarily stops the hypersynchronized activity; the injection of adrenaline into the hypothalamus elicits the same effect. The injection of the same cholinergic preparations into the posterior sigmoid gyrus of the cerebral cortex is accompanied by similar, but less pronounced bioelectrical and behavioral effects. The presentation of a closed drink dispenser containing water to the animals against the background of cholinergic activation of the hypothalamus or cortex leads to desynchronization of the bioelectrical activity and suppression of the bursts of hypersynchronized activity. The drinking behavior of cats which appears on the basis of centrally created thirst motivation reflects the activity of a primary dominant focus in the hypothalamus and of a secondary dominant focus in the sensorimotor cortex. These foci are cholinergic in nature. The cessation of the drinking behavior may be related to the activation of adrenergic mechanisms of the same brain structures. PMID:8464543

  12. Functional Imaging of Chemically Active Surfaces with Optical Reporter Microbeads

    PubMed Central

    Ahuja, Punkaj; Nair, Sumitha; Narayan, Sreenath; Gratzl, Miklós

    2015-01-01

    We have developed a novel approach to allow for continuous imaging of concentration fields that evolve at surfaces due to release, uptake, and mass transport of molecules, without significant interference of the concentration fields by the chemical imaging itself. The technique utilizes optical “reporter” microbeads immobilized in a thin layer of transparent and inert hydrogel on top of the surface. The hydrogel has minimal density and therefore diffusion in and across it is like in water. Imaging the immobilized microbeads over time provides quantitative concentration measurements at each location where an optical reporter resides. Using image analysis in post-processing these spatially discrete measurements can be transformed into contiguous maps of the dynamic concentration field across the entire surface. If the microbeads are small enough relative to the dimensions of the region of interest and sparsely applied then chemical imaging will not noticeably affect the evolution of concentration fields. In this work colorimetric optode microbeads a few micrometers in diameter were used to image surface concentration distributions on the millimeter scale. PMID:26332766

  13. Phenotype refinement strengthens the association of AHR and CYP1A1 genotype with caffeine consumption.

    PubMed

    McMahon, George; Taylor, Amy E; Davey Smith, George; Munafò, Marcus R

    2014-01-01

    Two genetic loci, one in the cytochrome P450 1A1 (CYP1A1) and 1A2 (CYP1A2) gene region (rs2472297) and one near the aryl-hydrocarbon receptor (AHR) gene (rs6968865), have been associated with habitual caffeine consumption. We sought to establish whether a more refined and comprehensive assessment of caffeine consumption would provide stronger evidence of association, and whether a combined allelic score comprising these two variants would further strengthen the association. We used data from between 4,460 and 7,520 women in the Avon Longitudinal Study of Parents and Children, a longitudinal birth cohort based in the United Kingdom. Self-report data on coffee, tea and cola consumption (including consumption of decaffeinated drinks) were available at multiple time points. Both genotypes were individually associated with total caffeine consumption, and with coffee and tea consumption. There was no association with cola consumption, possibly due to low levels of consumption in this sample. There was also no association with measures of decaffeinated drink consumption, indicating that the observed association is most likely mediated via caffeine. The association was strengthened when a combined allelic score was used, accounting for up to 1.28% of phenotypic variance. This was not associated with potential confounders of observational association. A combined allelic score accounts for sufficient phenotypic variance in caffeine consumption that this may be useful in Mendelian randomization studies. Future studies may therefore be able to use this combined allelic score to explore causal effects of habitual caffeine consumption on health outcomes. PMID:25075865

  14. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    SciTech Connect

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Smith, Andrew G.; Sinclair, Peter R. . E-mail: psinc@dartmouth.edu

    2007-06-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb{sub 1}), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential.

  15. Coumarin heterocyclic derivatives: chemical synthesis and biological activity.

    PubMed

    Medina, Fernanda G; Marrero, Joaquín G; Macías-Alonso, Mariana; González, Magdalena C; Córdova-Guerrero, Iván; Teissier García, Ariana G; Osegueda-Robles, Soraya

    2015-09-23

    This review highlights the broad range of science that has arisen from the synthesis of coumarin-linked and fused heterocycle derivatives. Specific topics include their synthesis and biological activity. PMID:26151411

  16. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities.

    PubMed

    Muschin, Tegshi; Budragchaa, Davaanyam; Kanamoto, Taisei; Nakashima, Hideki; Ichiyama, Koji; Yamamoto, Naoki; Shuqin, Han; Yoshida, Takashi

    2016-08-01

    Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8μg/mL and 0.2-1.1μg/mL, compared to those curdlan sulfates, 0.1μg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities. PMID:27154517

  17. Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with ??18O values ???5??? lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  18. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    SciTech Connect

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  19. HIGH-DIMENSIONAL PROFILING OF TRANSCRIPTION FACTOR ACTIVITY DIFFERENTIATES TOXCAST CHEMICAL GROUPS

    EPA Science Inventory

    The ToxCast™ project at the U.S. EPA uses a diverse battery of high throughput screening assays and informatics models to rapidly characterize the activity of chemicals. A central goal of the project is to provide empirical evidence to aid in the prioritization of chemicals for a...

  20. STRUCTURE-ACTIVITY RELATIONSHIPS FOR SCREENING ORGANIC CHEMICALS FOR POTENTIAL ECOTOXICITY EFFECTS

    EPA Science Inventory

    The paper presents structure-activity relationships (QSAR) for estimating the bioconcentration factor and acute toxicity of some classes of industrial chemicals using only the n-octanol/water partition coefficient (Log P) which is derived from chemical structure. The bioconcentra...

  1. Chemical Constituents Antioxidant and Anticholinesterasic Activity of Tabernaemontana catharinensis

    PubMed Central

    Moura, Sidnei; Echeverrigaray, Sergio

    2013-01-01

    The present work aimed to analyze the alkaloid content of the ethanolic extract of Tabernaemontana catharinensis (Apocynaceae family) and its fractions as well as to evaluate their antioxidant and anticholinesterasic activities. The analyses of the ethanolic extract of T. catharinensis by mass spectrometry allowed identifying the presence of the alkaloids 16-epi-affinine, coronaridine-hydroxyindolenine, voachalotine, voacristine-hydroxyindolenine, and 12-methoxy-n-methyl-voachalotine, as well as an alkaloid with m/z 385.21 whose spectrum suggests a derivative of voacristine or voacangine. The extract and its alkaloid rich fractions showed antioxidant activity, especially those that contain the alkaloid m/z 385.21 or 16-epi-affinine with DPPH scavenging activity (IC50) between 37.18 and 74.69 μg/mL. Moreover, the extract and its fractions exhibited anticholinesterasic activity, particularly the fractions characterized by the presence of 12-methoxy-n-methyl-voachalotine, with IC50 = 2.1 to 2.5 μg/mL. Fractions with 16-epi-affinine combined good antioxidant (IC50 = 65.59 to 74.69 μg/mL) and anticholinesterasic (IC50 = 7.7 to 8.3 μg/mL) activities, representing an option for further studies aimed at treating neurodegenerative diseases. PMID:23983637

  2. CHEMICALLY ACTIVE FLUID BED FOR SOX CONTROL. VOLUME I. PROCESS EVALUATION STUDIES

    EPA Science Inventory

    The report describes selected process evaluation studies supporting the development of an atmospheric-pressure, fluidized-bed, chemically active gasification process, using a regenerative limestone sulfur sorbent to produce low- to intermediate-Btu fuel gas. Limestone sorbent sel...

  3. Chemical Modification of Papain and Subtilisin: An Active Site Comparison

    ERIC Educational Resources Information Center

    St-Vincent, Mireille; Dickman, Michael

    2004-01-01

    An experiment using methyle methanethiosulfonate (MMTS) and phenylmethylsulfonyl flouride (PMSF) to specifically modify the cysteine and serine residues in the active sites of papain and subtilism respectively is demonstrated. The covalent modification of these enzymes and subsequent rescue of papain shows the beginning biochemist that proteins…

  4. Antifungal activities and chemical composition of some medicinal plants.

    PubMed

    Mohammadi, A; Nazari, H; Imani, S; Amrollahi, H

    2014-06-01

    The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists and natural-products scientists are combing the earth for phytochemicals and leads, which could be developed for treatment of infectious diseases. The aim of this study was to investigate the antifungal activities of the essential oils of some medicinal plants such as Stachys pubescens, Thymus kotschyanus, Thymus daenensis and Bupleurum falcatum against Fusarium oxysporum, Aspergillus flavus and Alternaria alternata. The essential oils were used to evaluate their MICs and MFCs compared to the amphotricin B as a standard drug. The essential oils were also analyzed by GC/MS. Essential oils isolated from the S. pubescens, T. kotschyanus and B. falcatum showed strong antifungal activities. The essential oil of T. daenensis exhibited a moderate activity against the selected fungi in comparison with the other plants' essential oils. In addition, the results showed that 26, 23, 22 and 15 components were identified from the essential oils of T. kotschyanus, S. pubescens, T. daenensis and B. falcatum, respectively. These oils exhibited a noticeable antifungal activity against the selected fungi. Regarding obtained results and that natural antimicrobial substances are inexpensive and have fewer side effects, they convey potential for implementation in fungal pathogenic systems. PMID:24768063

  5. Genipin as a novel chemical activator of EBV lytic cycle.

    PubMed

    Son, Myoungki; Lee, Minjung; Ryu, Eunhyun; Moon, Aree; Jeong, Choon-Sik; Jung, Yong Woo; Park, Gyu Hwan; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-02-01

    Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that causes acute infection and establishes life-long latency. EBV causes several human cancers, including Burkitt's lymphoma, nasopharyngeal and gastric carcinoma. Antiviral agents can be categorized as virucides, antiviral chemotherapeutic agents, and immunomodulators. Most antiviral agents affect actively replicating viruses, but not their latent forms. Novel antiviral agents must be active on both the replicating and the latent forms of the virus. Gardenia jasminoides is an evergreen flowering plant belonging to the Rubiaceae family and is most commonly found growing wild in Vietnam, Southern China, Taiwan, Japan, Myanmar, and India. Genipin is an aglycone derived from an iridoid glycoside called geniposide, which is present in large quantities in the fruit of G. jasminoides. In this study, genipin was evaluated for its role as an antitumor and antiviral agent that produces inhibitory effects against EBV and EBV associated gastric carcinoma (EBVaGC). In SNU719 cells, one of EBVaGCs, genipin caused significant cytotoxicity (70 μM), induced methylation on EBV C promoter and tumor suppressor gene BCL7A, arrested cell-cycle progress (S phases), upregulated EBV latent/lytic genes in a dose-dependent manner, stimulated EBV progeny production, activated EBV F promoter for EBV lytic activation, and suppressed EBV infection. These results indicated that genipin could be a promising candidate for antiviral and antitumor agents against EBV and EBVaGC. PMID:25626372

  6. Incorporating Nondrug Social & Recreational Activities in Outpatient Chemical Dependency Treatment

    ERIC Educational Resources Information Center

    Siporin, Sheldon; Baron, Lisa

    2012-01-01

    "Contingency Management programs (CMP) and non-drug social and recreational activities (NDSRA) are interventions premised on behavior theory that rely on external sources of reinforcement alternative to drug-based forms to decrease drug use. CMP usually employs vouchers as reinforcement for negative toxicologies. Despite research support, CMP…

  7. Flavin-containing monooxygenase-3: induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver1

    PubMed Central

    Celius, Trine; Pansoy, Andrea; Matthews, Jason; Okey, Allan B.; Henderson, Marilyn C.; Krueger, Sharon K.; Williams, David E.

    2010-01-01

    Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1). In mouse liver, 3-methylcholanthrene (3MC) induced FMO3 mRNA 8-fold. In Hepa-1 cells, 3MC and benzo[a]pyrene (BaP) induced FMO3 mRNA >30-fold. Induction by 3MC and BaP was AHR-dependent but, surprisingly, the potent AHR agonist, TCDD, did not induce FMO3 mRNA in Hepa-1 cells nor did chromatin immunoprecipitation assays detect recruitment of AHR or ARNT to Fmo3 regulatory elements after exposure to 3MC in liver or in Hepa-1 cells. However, in Hepa-1, 3MC and BaP (but not TCDD) caused recruitment of p53 protein to a p53 response element in the 5'-flanking region of the Fmo3 gene. We tested the possibility that FMO3 induction in Hepa-1 cells might be mediated by Nrf2/antioxidant response pathways but agents known to activate Nrf2 or to induce oxidative stress did not affect FMO3 mRNA levels. The protein synthesis inhibitor, cycloheximide (which causes “superinduction” of CYP1A1 mRNA in TCDD-treated cells) by itself caused dramatic upregulation (>300-fold) of FMO3 mRNA in Hepa-1 suggesting that cycloheximide prevents synthesis of a labile protein that suppresses FMO3 expression. Although FMO3 mRNA is highly induced by 3MC or TCDD in mouse liver and in Hepa-1 cells, FMO protein levels and FMO catalytic function showed only modest elevation. PMID:20570689

  8. Flavin-containing monooxygenase-3: Induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver

    SciTech Connect

    Celius, Trine; Pansoy, Andrea; Matthews, Jason; Okey, Allan B.; Henderson, Marilyn C.; Krueger, Sharon K.; Williams, David E.

    2010-08-15

    Flavin-containing monooxygenases often are thought not to be inducible but we recently demonstrated aryl hydrocarbon receptor (AHR)-dependent induction of FMO mRNAs in mouse liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Celius et al., Drug Metab Dispos 36:2499, 2008). We now evaluated FMO induction by other AHR ligands and xenobiotic chemicals in vivo and in mouse Hepa1c1c7 hepatoma cells (Hepa-1). In mouse liver, 3-methylcholanthrene (3MC) induced FMO3 mRNA 8-fold. In Hepa-1 cells, 3MC and benzo[a]pyrene (BaP) induced FMO3 mRNA > 30-fold. Induction by 3MC and BaP was AHR dependent but, surprisingly, the potent AHR agonist, TCDD, did not induce FMO3 mRNA in Hepa-1 cells nor did chromatin immunoprecipitation assays detect recruitment of AHR or ARNT to Fmo3 regulatory elements after exposure to 3MC in liver or in Hepa-1 cells. However, in Hepa-1, 3MC and BaP (but not TCDD) caused recruitment of p53 protein to a p53 response element in the 5'-flanking region of the Fmo3 gene. We tested the possibility that FMO3 induction in Hepa-1 cells might be mediated by Nrf2/anti-oxidant response pathways, but agents known to activate Nrf2 or to induce oxidative stress did not affect FMO3 mRNA levels. The protein synthesis inhibitor, cycloheximide (which causes 'superinduction' of CYP1A1 mRNA in TCDD-treated cells), by itself caused dramatic upregulation (> 300-fold) of FMO3 mRNA in Hepa-1 suggesting that cycloheximide prevents synthesis of a labile protein that suppresses FMO3 expression. Although FMO3 mRNA is highly induced by 3MC or TCDD in mouse liver and in Hepa-1 cells, FMO protein levels and FMO catalytic function showed only modest elevation.

  9. Push for new materials, chemicals from biomass sparks active R and D

    SciTech Connect

    Borman, S. )

    1990-09-01

    This paper discusses how a resurgence of interest in the production of new materials, chemicals, and fuels from biomass resources such as wood, cellulose, lignin, starch, and chitin is sparking active R and D efforts in these areas. Biobased materials and chemicals currently under development include composites of conventional plastics with lignocellulosics (chemicals from wood and other plant sources); lignocellulosic nonwoven mates that can be pressed into rigid shapes to form doors, walls, and even auto body parts; phenolic chemicals produced from wood waste and bark; membranes made from chitosan (a substance derived from crustacean shells); and biodegradable plastics containing starch.

  10. Chemical constituents and larvicidal activity of Hymenaea courbaril fruit peel.

    PubMed

    Aguiar, José Cláudio D; Santiago, Gilvandete M P; Lavor, Patrícia L; Veras, Helenicy N H; Ferreira, Yana S; Lima, Michele A A; Arriaga, Angela M C; Lemos, Telma L G; Lima, Jefferson Q; de Jesus, Hugo C R; Alves, Péricles B; Braz-Filho, Raimundo

    2010-12-01

    The chemical compositions of the essential oils from the peel of ripe and unripe fruits of Hymenaea courbaril L., obtained by hydrodistillation, were analyzed by GC and GC-MS. The main constituents of the essential oil from the peel of the ripe fruits were the sesquiterpenes alpha-copaene (11.1%), spathulenol (10.1%) and beta-selinene (8.2%), while germacrene-D (31.9%), beta-caryophyllene (27.1%) and bicyclogermacrene (6.5%) were the major compounds in the oil from unripe fruits. The essential oils were tested against Aedes aegypti larvae and showed LC50 values of 14.8 +/- 0.4 microg/mL and 28.4 +/- 0.3 microg/mL for the ripe and unripe fruit peel oils, respectively. From the peel of the ripe fruits, the diterpenes zanzibaric acid and isoozic acid were isolated, along with the sesquiterpene caryolane-1,9beta-diol. To the best of our knowledge, this is the first report of this sesquiterpene in the genus. The structures of all compounds isolated were identified on the basis of their spectral data (IR, MS, 1D- and 2D-NMR) and by comparison with literature spectral data. PMID:21299135

  11. Antimicrobial activity and chemical investigation of Brazilian Drosera.

    PubMed

    Ferreira, Dalva Trevisan; Andrei, César Cornélio; Saridakis, Halha Ostrensky; Faria, Terezinha de Jesus; Vinhato, Elisângela; Carvalho, Kátia Eliane; Daniel, Juliana Feijó Souza; Machado, Sílvio Luiz; Saridakis, Dennis Panayotis; Braz-Filho, Raimundo

    2004-11-01

    The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol) obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 ) were tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecium (ATCC23212), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC11229), Salmonella choleraesuis (ATCC10708), Klebsiella pneumoniae (ATCC13883), and Candida albicans (a human isolate). Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin); long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa. PMID:15654434

  12. Hangman Catalysis for Photo- and Photoelectro- Chemical Activation of Water

    SciTech Connect

    Nocera, Daniel

    2014-04-15

    The focus of this DOE program is solar fuels – specifically the chemistry for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) from water and the oxygen reduction reaction (ORR) to water These three reactions are at the heart of renewable energy conversion. The bond-making and bond-breaking chemistry that underpins these transformations is not well understood. We are developing insight into such chemistry by creating a series of ligand constructs that poise an acid-base functionality over a redox active metal platform. These “hangman” ligands utilize the acid-base functionality to form a secondary coordination sphere that can assist proton movement and facilitate substrate assembly and activation within the molecular cleft. The grant period funding cycle focused on synthesis and reactivity of hangman porphyrins and corroles for HER, OER and ORR.

  13. Effect of chemicals on fungal alpha-amylase activity.

    PubMed

    Ali, F S; Abdel-Moneim, A A

    1989-01-01

    The effect of 8 growth regulators at concentrations of 1,000, 5,000 and 10,000 ppm on the activity of fungal (Aspergillus flavus var. columnaris) alpha-amylase was studied. Indol acetic acid (IAA) and naphthalene acetic acid (NAA) inhibited alpha-amylase activity by 2% and 7% at 1,000 ppm. The other 6 growth regulators, indol butyric acid (IBA), gibberellic acid, cumarin, cycocel (CCC), atonik-G and kylar, did not inhibit but stimulated alpha-amylase activity (0 to 9%) at 1,000 ppm. All growth regulators studied inhibited alpha-amylase activity at 5,000 and 10,000 ppm concentration except kylar. The effect of organic acids and formaldehyde at 0.01, 0.005, and 0.001 M was studied. Acetic acid stimulated alpha-amylase at all concentrations, but formic acid, oxalic acid, lactic acid and citric acid inhibited alpha-amylase activity by 91, 100, 100 and 79%, respectively, at a concentration of 0.01 M, while by 31, 100, 15 and 20%, respectively, at 0.005 M. Formaldehyde induced 7, 3 and 2% inhibition at 0.01, 0.005 and 0.001 M, respectively. At 0.01 M either sorbitol or fructose inhibited alpha-amylase by 8%, Maltose 7%, sucrose 6%, phenol, glucose and galactose each by 5%, ethanol, glycerol, arabinose and sodium benzoate each by 4%, isopropanol and mannitol 1%, but methanol and ammonium citrate dibasic did not inhibit alpha-amylase. The results indicate that CuCl2, SnCl2, AgNO3 and Fe2(SO4)3 were the strongest inhibitors, followed by Cd(C2H3O2), HgCl2, Na2-EDTA, Na2HPO4, and CaCl2 in decreasing order. NaCl, NaBr and Mn SO4 did not inhibit alpha-amylase at concentrations from 10 mM to 0.01 mM. PMID:2515680

  14. Xenobiotic activity in serum and sperm chromatin integrity in European and inuit populations.

    PubMed

    Krüger, Tanja; Spanò, Marcello; Long, Manhai; Eleuteri, Patrizia; Rescia, Michele; Hjelmborg, Philip S; Manicardi, Gian-Carlo; Bizzaro, Davide; Giwercman, Alexander; Toft, Gunnar; Bonde, Jens Peter; Bonefeld-Jorgensen, Eva C

    2008-04-01

    Lipophilic persistent organic pollutants (POPs) are ubiquitous in the environment and suspected to interfere with hormone activities and reproduction. In previous studies we demonstrated that POP exposure can affect sperm DNA integrity and differences between Inuits and Europeans in sperm DNA integrity and xenobiotic activity were observed. The aim of this study was to investigate possible relations between human sperm chromatin integrity and the xenobiotic serum activity of lipophilic POPs assessed as effects on the estrogen (ER), androgen (AR), and/or aryl hydrocarbon (AhR) receptors. Human sperm chromatin integrity was assessed as DNA fragmentation index (%DFI) and high DNA stainability (%HDS) using the flow cytometric sperm chromatin structure assay (SCSA). Xenobiotic receptor activities were determined using chemically activated luciferase gene expression (CALUX) assay. The study included 53 Greenlandic Inuits and 247 Europeans (Sweden, Warsaw (Poland) and Kharkiv (Ukraine)). A heterogeneous pattern of correlations was found. For Inuits, ER and AhR activities and %DFI were inversely correlated, whereas a positive correlation between AR activity and %DFI was found for Europeans. In contrast, no correlation between receptor activities and %HDS was observed for Inuits but for Europeans positive and negative correlations were observed between ER and AR activities and %HDS, respectively. We suggest that the different patterns of xenobiotic serum activities, in combination with diet associated factors and/or genetics, might be connected to the observed differences in sperm chromatin integrity between the Inuits and Europeans. PMID:18076054

  15. Large enhancement of photocatalytic activity by chemical etching of TiO2 crystallized glass

    NASA Astrophysics Data System (ADS)

    Yoshida, Kazuki; Takahashi, Yoshihiro; Ihara, Rie; Terakado, Nobuaki; Fujiwara, Takumi; Kato, Hideki; Kakihana, Masato

    2014-10-01

    The authors aim to report the largest enhancement of photocatalytic activity by chemical etching in anatase-type TiO2 crystallized glass. Optimization of several conditions for crystallization behavior and chemical etching to realize the nano-structured ceramics (NSC) has been performed in the crystallized glass. NSC-fabrication by chemical etching in the crystallized glass is one of the most effective solutions to provide bulk materials with high specific surface area. We have found that the best condition for the NSC fabrication as a novel bulk photocatalyst in our glass system, and have obtained 16 times higher catalytic activity than that of non-etched one.

  16. Chemical constituents of Anacolosa pervilleana and their antiviral activities.

    PubMed

    Bourjot, Mélanie; Leyssen, Pieter; Eydoux, Cécilia; Guillemot, Jean-Claude; Canard, Bruno; Rasoanaivo, Philippe; Guéritte, Françoise; Litaudon, Marc

    2012-09-01

    In an effort to identify novel inhibitors of Chikungunya (CHIKV) and Dengue (DENV) virus replication, a systematic study with 820 ethyl acetate extracts of Madagascan plants was performed in a virus-cell-based assay for CHIKV and a DENV NS5 RNA-dependant RNA polymerase (RdRp) assay. The extract obtained from the leaves of Anacolosa pervilleana was selected for its significant activity in both assays. One new (E)-tridec-2-en-4-ynedioic acid named anacolosine (1), together with three known acetylenic acids, the octadeca-9,11,13-triynoic acid (2), (13E)-octadec-13-en-9,11-diynoic acid (3), (13E)-octadec-13-en-11-ynoic acid (4), two terpenoids, lupenone (5) and β-amyrone (6), and one cyanogenic glycoside, (S)-sambunigrin (7) were isolated. Their structures were elucidated by comprehensive analyses of NMR spectroscopy and mass spectrometry data. The inhibitory potency of these compounds was evaluated on CHIKV, DENV RdRp and West-Nile polymerase virus (WNV RdRp). Both terpenoids showed a moderate activity against CHIKV (EC(50) 77 and 86 μM, respectively) and the acetylenic acids produced IC(50) values around 3 μM in the DENV RdRp assay. PMID:22613073

  17. Prompt activation of telomerase by chemical carcinogens in rats detected with a modified TRAP assay.

    PubMed

    Miura, M; Karasaki, Y; Abe, T; Higashi, K; Ikemura, K; Gotoh, S

    1998-05-01

    The maintenance of telomere length is crucial for survival of cells. Telomerase is an RNA-containing reverse transcriptase, which is responsible for elongation of shortened telomeres. Telomerase reactivation has been suggested to be involved in malignant progressions. To study on the involvement of telomerase activation in in vivo carcinogenesis, we first modified the original TRAP assay by changing the primer designs and the labeling method of PCR products to an end-labeling method. Second, we investigated the activation of telomerase in different organs after treatments of rats with various chemical carcinogens. Very early after the beginning of the treatment, telomerase activity in the liver, kidney, and lung was increased. In most cases, telomerase activation occurred in the primary or favorite target organs. The present results suggest that telomerase activation occurs promptly when animals are exposed to chemical carcinogens, which may contribute to in vivo chemical carcinogenesis. PMID:9600060

  18. X-ray imaging of chemically active valence electrons during a pericyclic reaction

    NASA Astrophysics Data System (ADS)

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-11-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions.

  19. X-ray imaging of chemically active valence electrons during a pericyclic reaction

    PubMed Central

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  20. Immune activation affects chemical sexual ornaments of male Iberian wall lizards

    NASA Astrophysics Data System (ADS)

    López, Pilar; Gabirot, Marianne; Martín, José

    2009-01-01

    Many animals use chemical signals in sexual selection, but it is not clear how these sexual traits might have evolved to signal honestly male condition. It is possible that there is a trade-off between maintaining the immune system and the elaboration of ornaments. We experimentally challenged the immune system of male Iberian wall lizards, Podarcis hispanica, with a bacterial antigen (lipopolysaccharide), without pathogenic effects, to explore whether the immune activation affected chemical ornaments. Immune activation resulted in decreased proportions of a major chemical in femoral secretions (cholesta-5,7-dien-3-ol = provitamin D3) known to be selected in scent of males by females and which active form (vitamin D) has a variety of important effects on immune system function. This result suggests the existence of a potential trade-off between physiological regulation of the immune system and the allocation of essential nutrients (vitamins) to sexual chemical ornaments in male lizards.

  1. Identifying the structural requirements for chromosomal aberration by incorporating molecular flexibility and metabolic activation of chemicals.

    PubMed

    Mekenyan, Ovanes; Todorov, Milen; Serafimova, Rossitsa; Stoeva, Stoyanka; Aptula, Aynur; Finking, Robert; Jacob, Elard

    2007-12-01

    Modeling the potential of chemicals to induce chromosomal damage has been hampered by the diversity of mechanisms which condition this biological effect. The direct binding of a chemical to DNA is one of the underlying mechanisms that is also responsible for bacterial mutagenicity. Disturbance of DNA synthesis due to inhibition of topoisomerases and interaction of chemicals with nuclear proteins associated with DNA (e.g., histone proteins) were identified as additional mechanisms leading to chromosomal aberrations (CA). A comparative analysis of in vitro genotoxic data for a large number of chemicals revealed that more than 80% of chemicals that elicit bacterial mutagenicity (as indicated by the Ames test) also induce CA; alternatively, only 60% of chemicals that induce CA have been found to be active in the Ames test. In agreement with this relationship, a battery of models is developed for modeling CA. It combines the Ames model for bacterial mutagenicity, which has already been derived and integrated into the Optimized Approach Based on Structural Indices Set (OASIS) tissue metabolic simulator (TIMES) platform, and a newly derived model accounting for additional mechanisms leading to CA. Both models are based on the classical concept of reactive alerts. Some of the specified alerts interact directly with DNA or nuclear proteins, whereas others are applied in a combination of two- or three-dimensional quantitative structure-activity relationship models assessing the degree of activation of the alerts from the rest of the molecules. The use of each of the alerts has been justified by a mechanistic interpretation of the interaction. In combination with a rat liver S9 metabolism simulator, the model explained the CA induced by metabolically activated chemicals that do not elicit activity in the parent form. The model can be applied in two ways: with and without metabolic activation of chemicals. PMID:18052113

  2. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    PubMed

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites. PMID:26443032

  3. Chemical Determinants of antimalarial activity of reversed siderophores.

    PubMed Central

    Tsafack, A; Libman, J; Shanzer, A; Cabantchik, Z I

    1996-01-01

    Reversed siderophores (RSFs) are artificial hydroxamate-based iron chelators designed after the natural siderophore ferrichrome. The modular molecular design of RSF derivatives allowed the synthesis of various congeners with controlled iron-binding capacities and partition coefficients. These two physicochemical properties were assessed by a novel fluorescent method and were found to be the major determinants of RSF permeation across erythrocyte membranes and scavenging of compartmentalized iron. The partition coefficient apparently conferred upon RSFs two major features: (i) the ability to rapidly access iron pools of in vitro-grown Plasmodium falciparum at all developmental stages and to mobilize intracellular iron and transfer it to the medium and (ii) the ability to suppress parasite growth at all developmental stages. These features of RSFs were assessed by quantitative determination of the structure-activity relationships of the biological activities and partition coefficients spanning a wide range of values. The most effective RSF containing the aromatic group of phenylalanine (RSFm2phe) showed 50% inhibitory concentration of 0.60 +/- 0.03 nmol/ml in a 48-h test and a 2-h onset of inhibition of ring development at 5 nmol/ml. The lipophilic compound RSFm2phe and the lipophilic and esterase-cleavable compound RSFm2pee inhibited parasite growth at all developmental stages whether inhibition was assessed in a continuous mode or after discontinuing drug administration. The antimalarial effects of RSFm2phe and cleavable RSFm2pee were potentiated in the presence of desferrioxamine (DFO) at concentrations at which DFO alone had no effect on parasite growth. These studies provide experimental evidence indicating that the effective and persistent antimalarial actions of RSFs are associated with drug access to infected cells and scavenging of iron from intracellular parasites. Moreover, the optimal antimalarial actions of RSFs are apparently also determined by improved

  4. Dioxin-like compounds in agricultural soils near e-waste recycling sites from Taizhou area, China: chemical and bioanalytical characterization.

    PubMed

    Shen, Chaofeng; Chen, Yingxu; Huang, Shengbiao; Wang, Zijian; Yu, Chunna; Qiao, Min; Xu, Yiping; Setty, Karen; Zhang, Jianying; Zhu, Youfeng; Lin, Qi

    2009-01-01

    The crude recycling of electronic and electric waste (e-waste) is now creating a new set of environmental problems especially in developing countries such as China. The present study aimed to characterize the dioxin-like compounds in Taizhou area, one of the largest e-waste recycling centers in China, using both chemical analysis and in vitro bioassay. Agricultural soil samples were screened for aryl hydrocarbon receptor (AhR) activity with EROD bioassay in H4IIE cells, and the concentrations of the target AhR agonists including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were determined by instruments. The bioassay-derived TCDD equivalents (TEQ(bio)) and the chemical-calculated TCDD equivalents (TEQ(cal)) were then compared, and mass balance analysis was conducted to identify the contributors of the observed response. Raw soil extracts from all locations induced significant AhR activities, where the TEQ(bio) ranged from 5.3 to 210 pg/g dry weight soil (pg/g dw). The total concentrations of 17 PCDD/Fs, 36 PCBs and 16 PAHs varied from 210 to 850 pg/g dw, 11 to 100 ng/g dw, and 330 to 20,000 ng/g dw, respectively. Profile characterization of the target analytes revealed that there were similar sources originating from the crude dismantling of electric power equipments and the open burning of e-waste. There was a significant relationship between TEQ(cal) and TEQ(bio) (r=0.99, p<0.05). Based on the mass balance analysis, PCDD/Fs, PCBs and PAHs could account for the observed AhR responses in vitro elicited by soil extracts, though their respective contributions varied depending on sample location. In this study, the combination of chemical analysis and bioanalytical measurements proved valuable for screening, identifying and prioritizing the causative agents within complex environmental matrices. PMID:18757099

  5. Extended Functional Groups (EFG): An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds.

    PubMed

    Salmina, Elena S; Haider, Norbert; Tetko, Igor V

    2015-01-01

    The article describes a classification system termed "extended functional groups" (EFG), which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts) of the On-line CHEmical database and Modeling (OCHEM) environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models. PMID:26703557

  6. The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes

    NASA Astrophysics Data System (ADS)

    Sutrisno, Bachrun; Hidayat, Arif

    2015-12-01

    This research focused on investigating in the effect of activation temperature on the physico-chemical properties of palm empty fruit bunch (PEFB) based activated carbon prepared by physical activation with carbon dioxide. The activation temperature was studied in the range of 400-800°C by keeping the activation temperature at 800°C for 120 min. It was found that the porous properties of activated carbon decreased with an increase in carbonization temperature. The activated carbons prepared at the highest activation temperature at 800°C and activation time of 120 min gave the activated carbon with the highest of BET surface area and pore volume of 938 m2/g and 0.4502 cm3/g, respectively

  7. Elucidating mechanisms of toxicity using phenotypic data from primary human cell systems--a chemical biology approach for thrombosis-related side effects.

    PubMed

    Berg, Ellen L; Polokoff, Mark A; O'Mahony, Alison; Nguyen, Dat; Li, Xitong

    2015-01-01

    Here we describe a chemical biology approach for elucidating potential toxicity mechanisms for thrombosis-related side effects. This work takes advantage of a large chemical biology data set comprising the effects of known, well-characterized reference agents on the cell surface levels of tissue factor (TF) in a primary human endothelial cell-based model of vascular inflammation, the BioMAP® 3C system. In previous work with the Environmental Protection Agency (EPA) for the ToxCast™ program, aryl hydrocarbon receptor (AhR) agonists and estrogen receptor (ER) antagonists were found to share an usual activity, that of increasing TF levels in this system. Since human exposure to compounds in both chemical classes is associated with increased incidence of thrombosis-related side effects, we expanded this analysis with a large number of well-characterized reference compounds in order to better understand the underlying mechanisms. As a result, mechanisms for increasing (AhR, histamine H1 receptor, histone deacetylase or HDAC, hsp90, nuclear factor kappa B or NFκB, MEK, oncostatin M receptor, Jak kinase, and p38 MAPK) and decreasing (vacuolar ATPase or V-ATPase) and mTOR) TF expression levels were uncovered. These data identify the nutrient, lipid, bacterial, and hypoxia sensing functions of autophagy as potential key regulatory points controlling cell surface TF levels in endothelial cells and support the mechanistic hypothesis that these functions are associated with thrombosis-related side effects in vivo. PMID:25569083

  8. CO2 adsorption on chemically modified activated carbon.

    PubMed

    Caglayan, Burcu Selen; Aksoylu, A Erhan

    2013-05-15

    CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200°C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 °C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively. PMID:23500788

  9. Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.

    PubMed

    Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R

    2016-10-01

    The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan. PMID:27311502

  10. Using Laboratory Chemicals to Imitate Illicit Drugs in a Forensic Chemistry Activity

    ERIC Educational Resources Information Center

    Hasan, Shawn; Bromfield-Lee, Deborah; Oliver-Hoyo, Maria T.; Cintron-Maldonado, Jose A.

    2008-01-01

    This forensic chemistry activity utilizes presumptive forensic testing procedures and laboratory chemicals that produce screening results similar to controlled substances. For obvious reasons, obtaining heavily regulated controlled substances to create an undergraduate student activity is not practical for most educational institutions. We were…

  11. "SimChemistry" as an Active Learning Tool in Chemical Education

    ERIC Educational Resources Information Center

    Bolton, Kim; Saalman, Elisabeth; Christie, Michael; Ingerman, Ake; Linder, Cedric

    2008-01-01

    The publicly available free computer program, "SimChemistry," was used as an active learning tool in the chemical engineering curriculum at the University College of Boras, Sweden. The activity involved students writing their own simulation programs on topics in the area of molecular structure and interactions. Evaluation of the learning…

  12. MULTI-FACTOR POTENCY SCHEME FOR COMPARING THE CARCINOGENIC ACTIVITY OF CHEMICALS

    EPA Science Inventory

    A scheme for ranking the quantitative activity `of chemical carcinogens is described. his activity scheme uses as its base, dose potency measured as TD50, which after conversion into an inverse log scale, a decile scale, is adjusted by weighing factors that describe other paramet...

  13. CHARACTERIZATION OF ACTIVATED CARBONS' PHYSICAL AND CHEMICAL PROPERTIES IN RELATION TO THEIR MERCURY ADSORPTION

    EPA Science Inventory

    The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....

  14. Chemical proteomic probes for profiling cytochrome P450 activities and drug interactions in vivo

    PubMed Central

    Wright, Aaron T.; Cravatt, Benjamin F.

    2007-01-01

    The cytochrome P450 (P450) superfamily metabolizes many endogenous signaling molecules and drugs. P450 enzymes are regulated by post-translational mechanisms in vivo, which hinders their functional characterization by conventional genomic or proteomic methods. Here, we describe a chemical proteomic strategy to profile P450 activities directly in living systems. Derivatization of a mechanism-based inhibitor with a “clickable” handle provided an activity-based probe that labels multiple P450s both in proteomic extracts and in vivo. This probe was used to record alterations in liver P450 activities triggered by chemical agents, including inducers of P450 expression and direct P450 inhibitors. The chemical proteomic strategy described herein thus offers a versatile method to monitor P450 activities and small molecule interactions in any biological system and, through doing so, should facilitate the functional characterization of this large and diverse enzyme class. PMID:17884636

  15. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma

    PubMed Central

    Gu, Wen; Guo, Xue-jun

    2016-01-01

    The aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD), a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Furthermore, stimulation with TCDD promoted Treg differentiation and inhibited Th17 differentiation. However, the maturation of dendritic cells may not be inhibited by AhR activation. This study thus indicates a critical role of TCDD-induced AhR activation in the regulation of non-eosinophilic airway inflammation. PMID:26938767

  16. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma.

    PubMed

    Li, Xiao-ming; Peng, Juan; Gu, Wen; Guo, Xue-jun

    2016-01-01

    The aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD), a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Furthermore, stimulation with TCDD promoted Treg differentiation and inhibited Th17 differentiation. However, the maturation of dendritic cells may not be inhibited by AhR activation. This study thus indicates a critical role of TCDD-induced AhR activation in the regulation of non-eosinophilic airway inflammation. PMID:26938767

  17. Structure-activity comparison of hydrazine to other Nasotoxic chemicals. Final report, August-October 1991

    SciTech Connect

    Godin, C.S.; Wall, H.G.

    1992-08-01

    The biotransformation of 19 chemicals that have caused nasal epithelial toxicity in-long-term carcinogenesis experiments in laboratory rodents was compared with the biotransformation of hydrazine, in order to determine if these chemicals share common metabolic pathways. Ten of the 19 chemicals were tumorigenic; four were epoxides or epoxide-formers; three were metabolized to reactive aldehydes; and one was metabolized to a lactone ring. The two remaining chemicals, p-cresidene and 2,6-xylidene, possess an amino group that can undergo biotransformation to reactive metabolites in a way similar to hydrazine, but there is no evidence to support this hypothesis. Therefore, none of the 19 chemicals are metabolized in a way similar to hydrazine.... Structure-activity, Hydrazine, Nasotoxicity, Carcinogenicity.

  18. Investigation of the chemical composition-antibacterial activity relationship of essential oils by chemometric methods.

    PubMed

    Miladinović, Dragoljub L; Ilić, Budimir S; Mihajilov-Krstev, Tatjana M; Nikolić, Nikola D; Miladinović, Ljiljana C; Cvetković, Olga G

    2012-05-01

    The antibacterial effects of Thymus vulgaris (Lamiaceae), Lavandula angustifolia (Lamiaceae), and Calamintha nepeta (Lamiaceae) Savi subsp. nepeta var. subisodonda (Borb.) Hayek essential oils on five different bacteria were estimated. Laboratory control strain and clinical isolates from different pathogenic media were researched by broth microdilution method, with an emphasis on a chemical composition-antibacterial activity relationship. The main constituents of thyme oil were thymol (59.95%) and p-cymene (18.34%). Linalool acetate (38.23%) and β-linalool (35.01%) were main compounds in lavender oil. C. nepeta essential oil was characterized by a high percentage of piperitone oxide (59.07%) and limonene (9.05%). Essential oils have been found to have antimicrobial activity against all tested microorganisms. Classification and comparison of essential oils on the basis of their chemical composition and antibacterial activity were made by utilization of appropriate chemometric methods. The chemical principal component analysis (PCA) and hierachical cluster analysis (HCA) separated essential oils into two groups and two sub-groups. Thyme essential oil forms separate chemical HCA group and exhibits highest antibacterial activity, similar to tetracycline. Essential oils of lavender and C. nepeta in the same chemical HCA group were classified in different groups, within antibacterial PCA and HCA analyses. Lavender oil exhibits higher antibacterial ability in comparison with C. nepeta essential oil, probably based on the concept of synergistic activity of essential oil components. PMID:22389175

  19. Activity profiles of 309 ToxCast™ chemicals evaluated across 292 biochemical targets.

    PubMed

    Knudsen, Thomas B; Houck, Keith A; Sipes, Nisha S; Singh, Amar V; Judson, Richard S; Martin, Matthew T; Weissman, Arthur; Kleinstreuer, Nicole C; Mortensen, Holly M; Reif, David M; Rabinowitz, James R; Setzer, R Woodrow; Richard, Ann M; Dix, David J; Kavlock, Robert J

    2011-03-28

    Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The present study is a performance evaluation and critical analysis of assay results for an array of 292 high-throughput cell-free assays aimed at preliminary toxicity evaluation of 320 environmental chemicals in EPA's ToxCast™ project (Phase I). The chemicals (309 unique, 11 replicates) were mainly precursors or the active agent of commercial pesticides, for which a wealth of in vivo toxicity data is available. Biochemical HTS (high-throughput screening) profiled cell and tissue extracts using semi-automated biochemical and pharmacological methodologies to evaluate a subset of G-protein coupled receptors (GPCRs), CYP450 enzymes (CYPs), kinases, phosphatases, proteases, HDACs, nuclear receptors, ion channels, and transporters. The primary screen tested all chemicals at a relatively high concentration 25 μM concentration (or 10 μM for CYP assays), and a secondary screen re-tested 9132 chemical-assay pairs in 8-point concentration series from 0.023 to 50 μM (or 0.009-20 μM for CYPs). Mapping relationships across 93,440 chemical-assay pairs based on half-maximal activity concentration (AC50) revealed both known and novel targets in signaling and metabolic pathways. The primary dataset, summary data and details on quality control checks are available for download at http://www.epa.gov/ncct/toxcast/. PMID:21251949

  20. Value of monitoring Nrf2 activity for the detection of chemical and oxidative stress

    PubMed Central

    Mutter, Fiona E.; Park, B. Kevin; Copple, Ian M.

    2015-01-01

    Beyond specific limits of exposure, chemical entities can provoke deleterious effects in mammalian cells via direct interaction with critical macromolecules or by stimulating the accumulation of reactive oxygen species (ROS). In particular, these chemical and oxidative stresses can underpin adverse reactions to therapeutic drugs, which pose an unnecessary burden in the clinic and pharmaceutical industry. Novel pre-clinical testing strategies are required to identify, at an earlier stage in the development pathway, chemicals and drugs that are likely to provoke toxicity in humans. Mammalian cells can adapt to chemical and oxidative stress via the action of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which up-regulates the expression of numerous cell defence genes and has been shown to protect against a variety of chemical toxicities. Here, we provide a brief overview of the Nrf2 pathway and summarize novel experimental models that can be used to monitor changes in Nrf2 pathway activity and thus understand the functional consequences of such perturbations in the context of chemical and drug toxicity. We also provide an outlook on the potential value of monitoring Nrf2 activity for improving the pre-clinical identification of chemicals and drugs with toxic liability in humans. PMID:26551708

  1. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption

    PubMed Central

    Sulem, Patrick; Gudbjartsson, Daniel F.; Geller, Frank; Prokopenko, Inga; Feenstra, Bjarke; Aben, Katja K.H.; Franke, Barbara; den Heijer, Martin; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Yanek, Lisa R.; Becker, Lewis C.; Boyd, Heather A.; Stacey, Simon N.; Walters, G. Bragi; Jonasdottir, Adalbjorg; Thorleifsson, Gudmar; Holm, Hilma; Gudjonsson, Sigurjon A.; Rafnar, Thorunn; Björnsdottir, Gyda; Becker, Diane M.; Melbye, Mads; Kong, Augustine; Tönjes, Anke; Thorgeirsson, Thorgeir; Thorsteinsdottir, Unnur; Kiemeney, Lambertus A.; Stefansson, Kari

    2011-01-01

    Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), the Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10−14) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10−11). An effect of ∼0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers. PMID:21357676

  2. 6-shogaol, a major compound in ginger, induces aryl hydrocarbon receptor-mediated transcriptional activity and gene expression.

    PubMed

    Yoshida, Kazutaka; Satsu, Hideo; Mikubo, Ayano; Ogiwara, Haru; Yakabe, Takafumi; Inakuma, Takahiro; Shimizu, Makoto

    2014-06-18

    Xenobiotics are usually detoxified by drug-metabolizing enzymes and excreted from the body. The expression of many of drug-metabolizing enzymes is regulated by the aryl hydrocarbon receptor (AHR). Some substances in vegetables have the potential to be AHR ligands. To search for vegetable components that exhibit AHR-mediated transcriptional activity, we assessed the activity of vegetable extracts and identified the active compounds using the previously established stable AHR-responsive HepG2 cell line. Among the hot water extracts of vegetables, the highest activity was found in ginger. The ethyl acetate fraction of the ginger hot water extract remarkably induced AHR-mediated transcriptional activity, and the major active compound was found to be 6-shogaol. Subsequently, the mRNA levels of AHR-targeting drug-metabolizing enzymes (CYP1A1, UGT1A1, and ABCG 2) and the protein level of CYP1A1 in HepG2 cells were shown to be increased by 6-shogaol. This is the first report that 6-shogaol can regulate the expression of detoxification enzymes by AHR activation. PMID:24857157

  3. Effect of various chemicals on the aldehyde dehydrogenase activity of the rat liver cytosol.

    PubMed

    Marselos, M; Vasiliou, V

    1991-01-01

    The cytosolic activity of aldehyde dehydrogenase (ALDH) was studied in the rat liver, after acute administration of various carcinogenic and chemically related compounds. Male Wistar rats were treated with 27 different chemicals, including polycyclic aromatic hydrocarbons, aromatic amines, nitrosamines, azo dyes, as well as with some known direct-acting carcinogens. The cytosolic ALDH activity of the liver was determined either with propionaldehyde and NAD (P/NAD), or with benzaldehyde and NADP (B/NADP). The activity of ALDH remained unaffected after treatment with 1-naphthylamine, nitrosamines and also with the direct-acting chemical carcinogens tested. On the contrary, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (Arochlor 1254) and 2-naphthylamine produced a remarkable increase of ALDH. In general, the response to the effectors was disproportionate between the two types of enzyme activity, being much in favour for the B/NADP activity. This fact resulted to an inversion of the ratio B/NADP vs. P/NAD, which under constitutive conditions is lower than 1. In this respect, the most potent compounds were found to be polychlorinated biphenyls, 3-methylcholanthrene, benzo(a)pyrene and 1,2,5,6-dibenzoanthracene. Our results suggest that the B/NADP activity of the soluble ALDH is greatly induced after treatment with compounds possessing aromatic ring(s) in their molecule. It is not known, if this response of the hepatocytes is related with the process of chemical carcinogenesis. PMID:2060039

  4. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities. PMID:25686854

  5. Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver

    SciTech Connect

    Qu Xiaoyu; Metz, Richard P.; Porter, Weston W.; Cassone, Vincent M.; Earnest, David J.

    2009-02-01

    The aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) are transcription factors that express Per-Arnt-Sim (PAS) DNA-binding motifs and mediate the metabolism of drugs and environmental toxins in the liver. Because these transcription factors interact with other PAS genes in molecular feedback loops forming the mammalian circadian clockworks, we determined whether targeted disruption or siRNA inhibition of Per1 and Per2 expression alters toxin-mediated regulation of the AhR signaling pathway in the mouse liver and Hepa1c1c7 hepatoma cells in vitro. Treatment with the prototypical Ahr ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on the primary targets of AhR signaling, Cyp1A1 and Cyp1B1, in the liver of all animals, but genotype-based differences were evident such that the toxin-mediated induction of Cyp1A1 expression was significantly greater (2-fold) in mice with targeted disruption of Per1 (Per1{sup ldc} and Per1{sup ldc}/Per2{sup ldc}). In vitro experiments yielded similar results demonstrating that siRNA inhibition of Per1 significantly increases the TCDD-induced expression of Cyp1A1 and Cyp1B1 in Hepa1c1c7 cells. Per2 inhibition in siRNA-infected Hepa1c1c7 cells had the opposite effect and significantly decreased both the induction of these p450 genes as well as AhR and Arnt expression in response to TCDD treatment. These findings suggest that Per1 may play a distinctive role in modulating AhR-regulated responses to TCDD in the liver.

  6. A Global Genomic Screening Strategy Reveals Genetic and Chemical Activators ofPeroxisome Proliferator-Activated Receptor alpha (PPARalpha)

    EPA Science Inventory

    A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify the factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha ac...

  7. Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constituents.

    PubMed

    Feng, Xiaolu; Lu, Jincai; Xin, Hailiang; Zhang, Lei; Wang, Yuliang; Tang, Kexuan

    2011-03-01

    The aim of this study was to ascertain the anti-arthritic active fraction of Capparis spinosa L. (Capparidaceae) fruits and its chemical constituents. The adjuvant arthritic rat model was developed to evaluate the anti-arthritic effects of different fractions of ethanol extraction from C. spinosa L. The fraction eluted by ethanol-water (50:50, v/v) had the most significant anti-arthritic activity. The chemical constituents of this fraction were therefore studied; seven known compounds were isolated and identified as: P-hydroxy benzoic acid; 5-(hydroxymethyl) furfural; bis(5-formylfurfuryl) ether; daucosterol; α-D-fructofuranosides methyl; uracil; and stachydrine. PMID:21372539

  8. Chemical intra-Mediterranean variation and insecticidal activity of Crithmum maritimum.

    PubMed

    Tsoukatou, M; Tsitsimpikou, C; Vagias, C; Roussis, V

    2001-01-01

    The chemical composition of the volatile metabolites of Crithmum maritimum harvested from several geographic localities along the Mediterranean coasts was studied by GC and GC-MSD. The major oil constituents were found to be dillapiole, gamma-terpinene, sabinene, limonene and beta-phellandrene. The Western populations were richer in dillapiole, whereas the Southern collections were characterized by increased amounts of thymol methyl ether and gamma-terpinene. The Italian chemical profiles differentiated by the significant contributions of carvacrol methyl ether and isoterpinolene. The essential oils were also investigated for their insecticidal activity and their repellency against Pheidole pallidula (Nylander) ants and found to possess significant activity. PMID:11371010

  9. Screening chemicals for thyroid-disrupting activity: A critical comparison of mammalian and amphibian models.

    PubMed

    Pickford, Daniel B

    2010-11-01

    In order to minimize risks to human and environmental health, chemical safety assessment programs are being reinforced with toxicity tests more specifically designed for detecting endocrine disrupters. This includes the necessity to detect thyroid-disrupting chemicals, which may operate through a variety of modes of action, and have potential to impair neurological development in humans, with resulting deficits of individual and social potential. Mindful of these concerns, the consensus favors in vivo models for both hazard characterization (testing) and hazard identification (screening) steps, in order to minimize false negatives. Owing to its obligate dependence on thyroid hormones, it has been proposed that amphibian metamorphosis be used as a generalized vertebrate model for thyroid function in screening batteries for detection of thyroid disrupters. However, it seems unlikely that such an assay would ever fully replace in vivo mammalian assays currently being validated for human health risk assessment: in its current form the amphibian metamorphosis screening assay would not provide capacity for reliably detecting other modes of endocrine-disrupting activity. Conversely, several candidate mammalian screening assays appear to offer robust capacity to detect a variety of modes of endocrine-disrupting activity, including thyroid activity. To assess whether omission of an amphibian metamorphosis assay from an in vivo screening battery would generate false negatives, the response of amphibian and mammalian assays to a variety known thyroid disrupters, as reported in peer-reviewed literature or government agency reports, was critically reviewed. Of the chemicals investigated from the literature selected (41), more had been tested in mammalian studies with thyroid-relevant endpoints (32) than in amphibian assays with appropriate windows of exposure and developmental endpoints (27). One chemical (methoxychlor) was reported to exhibit thyroid activity in an appropriate

  10. In Utero and Lactational Exposure to PCBs in Mice: Adult Offspring Show Altered Learning and Memory Depending on Cyp1a2 and Ahr Genotypes

    PubMed Central

    Curran, Christine P.; Genter, Mary Beth; Patel, Krishna V.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2011-01-01

    Background: Both coplanar and noncoplanar polychlorinated biphenyls (PCBs) exhibit neurotoxic effects in animal studies, but individual congeners do not always produce the same effects as PCB mixtures. Humans genetically have > 60-fold differences in hepatic cytochrome P450 1A2 (CYP1A2)-uninduced basal levels and > 12-fold variability in aryl hydrocarbon receptor (AHR)affinity; because CYP1A2 is known to sequester coplanar PCBs and because AHR ligands include coplanar PCBs, both genotypes can affect PCB response. Objectives: We aimed to develop a mouse paradigm with extremes in Cyp1a2 and Ahr genotypes to explore genetic susceptibility to PCB-induced developmental neurotoxicity using an environmentally relevant mixture of PCBs. Methods: We developed a mixture of eight PCBs to simulate human exposures based on their reported concentrations in human tissue, breast milk, and food supply. We previously characterized specific differences in PCB congener pharmacokinetics and toxicity, comparing high-affinity–AHR Cyp1a2 wild-type [Ahrb1_Cyp1a2(+/+)], poor-affinity–AHR Cyp1a2 wild-type [Ahrd_Cyp1a2(+/+)], and high-affinity–AHR Cyp1a2 knockout [Ahrb1_Cyp1a2(–/–)] mouse lines [Curran CP, Vorhees CV, Williams MT, Genter MB, Miller ML, Nebert DW. 2011. In utero and lactational exposure to a complex mixture of polychlorinated biphenyls: toxicity in pups dependent on the Cyp1a2 and Ahr genotypes. Toxicol Sci 119:189–208]. Dams received a mixture of three coplanar and five noncoplanar PCBs on gestational day 10.5 and postnatal day (PND) 5. In the present study we conducted behavioral phenotyping of exposed offspring at PND60, examining multiple measures of learning, memory, and other behaviors. Results: We observed the most significant deficits in response to PCB treatment in Ahrb1_Cyp1a2(–/–) mice, including impaired novel object recognition and increased failure rate in the Morris water maze. However, all PCB-treated genotypes showed significant differences on

  11. 15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to...

  12. 15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to...

  13. 15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to...

  14. 15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to...

  15. 15 CFR 712.1 - Round to zero rule that applies to activities involving Schedule 1 chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING SCHEDULE 1 CHEMICALS § 712.1 Round to...

  16. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    SciTech Connect

    Tahir, D. Halide, H. Kurniawan, D.; Wahab, A. W.

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  17. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L.

    NASA Astrophysics Data System (ADS)

    Tahir, D.; Halide, H.; Wahab, A. W.; Kurniawan, D.

    2014-09-01

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  18. Relationship between redox activity and chemical speciation of size-fractionated particulate matter

    PubMed Central

    Ntziachristos, Leonidas; Froines, John R; Cho, Arthur K; Sioutas, Constantinos

    2007-01-01

    Background Although the mechanisms of airborne particulate matter (PM) related health effects remain incompletely understood, one emerging hypothesis is that these adverse effects derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. Typically, ROS are formed in cells through the reduction of oxygen by biological reducing agents, with the catalytic assistance of electron transfer enzymes and redox active chemical species such as redox active organic chemicals and metals. The purpose of this study was to relate the electron transfer ability, or redox activity, of the PM samples to their content in polycyclic aromatic hydrocarbons and various inorganic species. The redox activity of the samples has been shown to correlate with the induction of the stress protein, hemeoxygenase-1. Results Size-fractionated (i.e. < 0.15; < 2.5 and 2.5 – 10 μm in diameter) ambient PM samples were collected from four different locations in the period from June 2003 to July 2005, and were chemically analyzed for elemental and organic carbon, ions, elements and trace metals and polycyclic aromatic hydrocarbons. The redox activity of the samples was evaluated by means of the dithiothreitol activity assay and was related to their chemical speciation by means of correlation analysis. Our analysis indicated a higher redox activity on a per PM mass basis for ultrafine (< 0.15 μm) particles compared to those of larger sizes. The PM redox activity was highly correlated with the organic carbon (OC) content of PM as well as the mass fractions of species such as polycyclic aromatic hydrocarbons (PAH), and selected metals. Conclusion The results of this work demonstrate the utility of the dithiothreitol assay for quantitatively assessing the redox potential of airborne particulate matter from a wide range of sources. Studies to characterize the redox activity of PM from various sources throughout the Los Angeles basin are currently

  19. Thermo-poro-mechanics of chemically active creeping faults: 2. Transient considerations

    NASA Astrophysics Data System (ADS)

    Veveakis, E.; Poulet, T.; Alevizos, S.

    2014-06-01

    This work studies the transient behavior of a chemically active, fluid-saturated fault zone under shear. These fault zones are displaying a plethora of responses spanning from ultrafast instabilities, like thermal pressurization, to extremely slow creep localization events on geological timescales. These instabilities can be described by a single model of a rate-dependent and thermally dependent fault, prone to fluid release reactions at critical temperatures which was introduced in our companion work. In this study we integrate it in time to provide regimes of stable creep, nonperiodic and periodic seismic slip events due to chemical pressurization, depending on the physical properties of the fault material. It is shown that this chemically induced seismic slip takes place in an extremely localized band, several orders of magnitude narrower than the initial shear zone, which is indeed the signature field observation. Furthermore, in the field and in laboratory experiments the ultralocalized deformation is embedded in a chemical process zone that forms part of the shear zone. The width of this zone is shown here to depend on the net activation energy of the chemical reaction. The larger the difference in forward and backward activation energies, the narrower is the chemical process zone. We apply the novel findings to invert the physical parameters from a 16year GPS observation of the Cascadia episodic tremor and slip events and show that this sequence is the fundamental mode of a serpentinite oscillator defined by slow strain localization accompanying shear heating and chemical dehydration reaction at the critical point, followed by diffusion and backward reaction leading the system back to slow slip.

  20. Idaho Chemical Processing Plant low-activity waste grout stabilization development program FY-97 status report

    SciTech Connect

    Herbst, A.K.; Marshall, D.W.; McCray, J.A.

    1998-02-01

    The general purpose of the Grout Development Program is to solidify and stabilize the liquid low-activity wastes (LAW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LAW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste, (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines, (3) facility decontamination processes, and (4) process equipment waste. Grout formulation studies for sodium-bearing LAW, including decontamination and process equipment waste, continued this fiscal year. A second task was to develop a grout formulation to solidify potential process residual heels in the tank farm vessels when the vessels are closed.

  1. Essential Oil Composition of Phagnalon sordidum (L.) from Corsica, Chemical Variability and Antimicrobial Activity.

    PubMed

    Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain

    2016-03-01

    The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms. PMID:26916729

  2. Chemical composition and antibacterial activity of essential oil and extracts of Citharexylum spinosum flowers from Thailand.

    PubMed

    Mar, Ae; Pripdeevech, Patcharee

    2014-05-01

    The chemical composition and antibacterial and antioxidant activities of the essential oil and various solvent extracts of Citharexylum spinosum flowers are reported. The chemical compositions were determined by GC-MS with 151 volatile constituents identified. Methyl benzoate, piperitone, maltol, and maple furanone were the major constituents. All extracts were tested for their antibacterial activity against eight microorganisms. The flower oil had the greatest antibacterial activity against all bacterial strains (MIC values of 31.2 microg/mL), while the other solvent extracts had MIC values ranging from 31.2 to 1000 microg/mL. The essential oil had the highest antioxidant activity and total phenol content with IC50 values of 62.7 and 107.3 microg/mL, respectively. PMID:25026728

  3. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  4. Research on the chemical inactivation of antibiotic activity in assays of sterility and contamination of pharmaceuticals.

    PubMed

    Negretti, F; Casetta, P

    1991-01-01

    Membrane filtration, frequently used for removing antibacterial activity in assays of sterility and contamination of the antibiotics, presents the drawback of adsorption of antibiotic to membrane. The washing with large volumes of peptone water removes partially interferences with microbial growth. We evaluated the inactivating action of some chemical substances (albumin, calcium pantothenate, heparin, hydroxylamine, tri-valent iron) on the antimicrobial activity of membranes employed for antibiotic filtration. The results are not positive for the use of chemical substances in the antibiotic activity neutralization. In fact the per cent reduction of inhibition zones ranges from -61.5% to +20.0% and the inhibiting activity on the growth of colony forming units (CFU) oscillates from 89.6% to 100%. Discovery of new neutralizing substances and severe measures of asepsis in pharmaceutical production are recommended. PMID:12041793

  5. Modeling Chemical Detection Sensitivities of Active and Passive Remote Sensing Systems

    SciTech Connect

    Scharlemann, E T

    2003-07-28

    During nearly a decade of remote sensing programs under the auspices of the U. S. Department of Energy (DOE), LLNL has developed a set of performance modeling codes--called APRS--for both Active and Passive Remote Sensing systems. These codes emphasize chemical detection sensitivity in the form of minimum detectable quantities with and without background spectral clutter and in the possible presence of other interfering chemicals. The codes have been benchmarked against data acquired in both active and passive remote sensing programs at LLNL and Los Alamos National Laboratory (LANL). The codes include, as an integral part of the performance modeling, many of the data analysis techniques developed in the DOE's active and passive remote sensing programs (e.g., ''band normalization'' for an active system, principal component analysis for a passive system).

  6. Transcription alterations of microRNAs, cytochrome P4501A1 and 3A65, and AhR and PXR in the liver of zebrafish exposed to crude microcystins.

    PubMed

    Li, Xiaoyu; Ma, Junguo; Fang, Qian; Li, Yuanyuan

    2013-10-01

    MicroRNAs are small non-coding regulatory RNAs that not only control diverse cellular processes but also regulate gene expression induced by environmental chemicals. However, little is known about the role of microRNAs in liver response of fish to the exposure of cyanobacterial hepatotoxin microcystins (MCs). In the present study, the transcription levels of 4 miRNAs (dre-miR-21, dre-miR-122, dre-miR-27b, and dre-miR-148), cytochromes P450s CYP1A1 and CYP3A65, and their receptors, aryl hydrocarbon receptor (AhR, for CYP1A1) and pregnane X receptor (PXR, for CYP3A65), in the liver of zebrafish were evaluated after 24 h of 50, 200, or 800 μg/L of crude MCs exposure by using the quantitative real-time PCR method. The results showed that MCs-exposure elevated the transcription levels of dre-miR-21 and dre-miR-27b while down-regulated the expressions of dre-miR-122 and dre-miR-148. However, CYP1A1 transcription remained unchanged while mRNA levels of AhRR1 and AhR2 were significantly higher than that of control. Furthermore, the expressions of CYP3A65 and its receptor PXR were up-regulated by MCs-exposure at higher concentrations (200, or 800 μg/L of crude MCs). Therefore we suggest that CYP3A65 and PXR may be involved in the metabolization and detoxification of MCs in zebrafish, which may be regulated by dre-miR-27b. This work might be beneficial for the discovery of new potential diagnostic biomarker and drug target for hepatosis caused by MC. PMID:23851223

  7. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  8. Chemical synthesis of nucleoside-gamma-[32P]triphosphates of high specific activity.

    PubMed

    Janecka, A; Panusz, H; Pankowski, J; Koziołkiewicz, W

    1980-01-01

    A simple chemical procedure for the preparation of four common ribonucleoside 5-gamma-[32P]triphosphates of high specific activity (up to 10 Ci/mmole) based on the condensation of orthophosphoric acid with the corresponding nucleoside 5-diphosphate in the presence of ethyl chloroformate as well as the methods of purification and identification of the products are described. PMID:7375446

  9. VAPORIZATION TECHNIQUE TO MEASURE MUTAGENIC ACTIVITY OF VOLATILE ORGANIC CHEMICALS IN THE AMES/'SALOMELLA' ASSAY

    EPA Science Inventory

    The purpose of the research was to develop and characterize a sensitive test method to detect mutagenic activity of volatile liquid organic chemicals (i.e., volatiles) in the Ames/Salmonella assay. A Tedlar bag vaporization technique was developed which increased contact time bet...

  10. Evaluation of surface waters associated with animal feeding operations for estrogenic chemicals and activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogens and estrogenic activity (EA) were evaluated in surface waters associated with animal feeding operations. Water was sampled at 19 sites in 12 states using discrete (n=41) and POCIS (n=19) sampling methods. Estrogenic chemicals measured in unfiltered water by GC/MS2 included: estrone (E1),17...

  11. Combining phosphate and bacteria removal on chemically active filter membranes allows prolonged storage of drinking water.

    PubMed

    Rotzetter, A C C; Kellenberger, C R; Schumacher, C M; Mora, C; Grass, R N; Loepfe, M; Luechinger, N A; Stark, W J

    2013-11-13

    A chemically active filtration membrane with incorporated lanthanum oxide nanoparticles enables the removal of bacteria and phosphate at the same time and thus provides a simple device for preparation of drinking water and subsequent safe storage without using any kind of disinfectants. PMID:23913409

  12. Chemical forms of selenium affect glutatione peroxidase activity in human Caco-2 cell model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bioavailability of selenium (Se) is complicated because there are multiple naturally occurring chemical forms of this element in nature. Assessing the ability of a Se source to restore GPX1 activity in laboratory animals and humans is the most commonly used method. To search for an alternative (...

  13. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  14. Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study

    EPA Science Inventory

    MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...

  15. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  16. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  17. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1990-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  18. EFFECT OF WATER POLLUTANTS AND OTHER CHEMICALS UPON THE ACTIVITY OF LIPASE 'IN VITRO'

    EPA Science Inventory

    Lipase preparations were treated in vitro with 100 chemicals of various classes, many of which are environmental pollutants, to determine their effect upon enzyme activity. The greatest inhibition was caused by mercuric ion and certain heavy metal cations; almost as inhibiting we...

  19. Phoenix dactylifera L. spathe essential oil: Chemical composition and repellent activity against the yellow fever mosquito

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...

  20. Application of Protein Expression Profiling to Screen Chemicals for Androgenic Activity.

    EPA Science Inventory

    Protein expression changes can be used for detection of biomarkers that can be applied diagnostically to screen chemicals for endocrine modifying activity. In this study, Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS) coupled with a s...

  1. FIRST TRIALS OF CHEMICALLY ACTIVE FLUIDIZED-BED (CAFB) PILOT PLANT ON COAL

    EPA Science Inventory

    The report gives results of a minirun, carried out on a 0.75-MWe continuous, chemically active fluidized-bed (CAFB) pilot plant during July-August 1976, as part of a program to extend the CAFB process to operate on coal. After 8.5 hours of gasification on Texas lignite and Illino...

  2. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  3. CHEMICALLY ACTIVE FLUID BED PROCESS FOR SULPHUR REMOVAL DURING GASIFICATION OF CARBONACEOUS FUELS

    EPA Science Inventory

    The report covers the final 3 years of a 9-year program to evaluate the Chemically Active Fluid Bed (CAFB) process for gasification and desulfurization of liquid and solid fuels in a fluidized bed of hot lime. A range of alternative fuels, including three coals and a lignite, wer...

  4. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes: implications for aquatic resources, 1994-2008

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.

    2010-01-01

    Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.

  5. Single DNA molecule stretching measures the activity of chemicals that target the HIV-1 nucleocapsid protein

    PubMed Central

    Cruceanu, Margareta; Stephen, Andrew G.; Beuning, Penny J.; Gorelick, Robert J.; Fisher, Robert J.; Williams, Mark C.

    2006-01-01

    We develop a biophysical method for investigating chemical compounds that target the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NCp7). We used an optical tweezers instrument to stretch single λ-DNA molecules through the helix-to-coil transition in the presence of NCp7 and various chemical compounds. The change in the helix-coil transition width induced by wild-type NCp7 and its zinc finger variants correlates with in vitro nucleic acid chaperone activity measurements and in vivo assays. The compound-NC interaction measured here reduces NCp7’s capability to alter the transition width. Purified compounds from the NCI Diversity set, 119889, 119911, and 119913 reduce the chaperone activity of 5 nM NC in aqueous solution at 10 nM, 25 nM, and 100 nM concentration, respectively. Similarly, gallein reduced the activity of 4 nM NC at 100 nM concentration. Further analysis allows us to dissect the impact of each compound on both sequence-specific and non-sequence-specific DNA binding of NC, two of the main components of NC’s nucleic acid chaperone activity. These results suggest that DNA stretching experiments can be used to screen chemical compounds targeting NC proteins, and to further explore the mechanisms by which these compounds interact with NC and alter its nucleic acid chaperone activity. PMID:17034752

  6. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Technical Reports Server (NTRS)

    Leone, D. M.; Turns, S. R.

    1994-01-01

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  7. The expert system for toxicity prediction of chemicals based on structure-activity relationship.

    PubMed Central

    Nakadate, M; Hayashi, M; Sofuni, T; Kamata, E; Aida, Y; Osada, T; Ishibe, T; Sakamura, Y; Ishidate, M

    1991-01-01

    The prediction systems of chemical toxicity has been developed by means of structure-activity relationship based on the computerized fact database (BL-DB). Numbers and ratio of elements, side chains, bonding, position, and microenvironment of side chains were used as structural factors of the chemical for the prediction. Such information was obtained from the BL-DB database by Wiswesser line-formula chemical notation. In the present study, the Salmonella/microsome assay was chosen as indicative of the target toxicity of chemicals. A set of chemicals specified with mutagenicity data was retrieved, and necessary information was extracted and transferred to the working file. Rules of the relations between characteristics of chemical structure and the assay result are extracted as parameters for rules by experts on the rearranged data set. These were analyzed statistically by the discriminant analysis and the prediction with the rules were evaluated by the elimination method. Eight kinds of rules to predict Salmonella/microsome assay were constructed, and currently results of the assay on aliphatic and heterocyclic compounds can be predicted as accurately as +90%. PMID:1820282

  8. Active chlorine and nitric oxide formation from chemical rocket plume afterburning

    NASA Astrophysics Data System (ADS)

    Leone, D. M.; Turns, S. R.

    Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

  9. Species-specific relative AHR1 binding affinities of 2,3,4,7,8-pentachlorodibenzofuran explain avian species differences in its relative potency.

    PubMed

    Farmahin, Reza; Jones, Stephanie P; Crump, Doug; Hahn, Mark E; Giesy, John P; Zwiernik, Matthew J; Bursian, Steven J; Kennedy, Sean W

    2014-04-01

    Results of recent studies showed that 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are equipotent in domestic chicken (Gallus gallus domesticus) while PeCDF is more potent than TCDD in ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica). To elucidate the mechanism(s) underlying these differences in relative potency of PeCDF among avian species, we tested the hypothesis that this is due to species-specific differential binding affinity of PeCDF to the aryl hydrocarbon receptor 1 (AHR1). Here, we modified a cell-based binding assay that allowed us to measure the binding affinity of dioxin-like compounds (DLCs) to avian AHR1 expressed in COS-7 (fibroblast-like cells). The results of the binding assay show that PeCDF and TCDD bind with equal affinity to chicken AHR1, but PeCDF binds with greater affinity than TCDD to pheasant (3-fold) and Japanese quail (5-fold) AHR1. The current report introduces a COS-7 whole-cell binding assay and provides a mechanistic explanation for differential relative potencies of PeCDF among species of birds. PMID:24434118

  10. GABA-A receptor antagonists increase firing, bursting and synchrony of spontaneous activity in neuronal networks grown on microelectrode arrays: a step towards chemical "fingerprinting"

    EPA Science Inventory

    Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....

  11. Removal of endocrine-disrupting chemicals in activated sludge treatment works.

    PubMed

    Johnson, A C; Sumpter, J P

    2001-12-15

    The release of endocrine-disrupting chemicals into the aquatic environment has raised the awareness of the central role played by sewage treatment in lowland water quality. This review focuses on the activated sludge process, which is commonly used to treat sewage in large towns and cities and which successfully removes the bulk of the organic compounds that enter the works. However, not all compounds are completely broken down or converted to biomass. For example, the estrogenic alkylphenols and steroid estrogens found in effluent are the breakdown products of incomplete breakdown of their respective parent compounds. Batch microcosm studies have indicated that estrone, ethinylestradiol, and alkylphenols will not be completely eliminated in activated sludge over typical treatment times. Field data suggest that the activated sludge treatment process can consistently remove over 85% of estradiol, estriol, and ethinylestradiol. The removal performance for estrone appears to be less and is more variable. Because of its relatively high hydrophobicity, the accumulation of alkylphenol in sludge has been observed. Although it has not been examined, accumulation of ethinylestradiol in sludge is a possibility due to its recalcitrance and hydrophobicity. A comparison between the concentrations of some of the major endocrine-active chemicals in effluents and their biological potencies has been made, to direct attention to the chemicals of most concern. While water purification techniques such as UV or activated charcoal could significantly remove these microorganic contaminants, the high costs involved suggest that research into the potential for treatment optimization should receive more attention. PMID:11775141

  12. Chemical composition and antibacterial activity of Opuntia ficus-indica f. inermis (cactus pear) flowers.

    PubMed

    Ennouri, Monia; Ammar, Imene; Khemakhem, Bassem; Attia, Hamadi

    2014-08-01

    Opuntia ficus-indica f. inermis (cactus pear) flowers have wide application in folk medicine. However, there are few reports focusing on their biological activity and were no reports on their chemical composition. The nutrient composition and hexane extracts of Opuntia flowers at 4 flowering stages and their antibacterial and antifungal activities were investigated. The chemical composition showed considerable amounts of fiber, protein, and minerals. Potassium (K) was the predominant mineral followed by calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), and zinc (Zn). The main compounds in the various hexane extracts were 9.12-octadecadienoic acid (29-44%) and hexadecanoic acid (8.6-32%). The antibacterial activity tests showed that O. inermis hexane extracts have high effectiveness against Escherichia coli and Staphylococcus aureus, making this botanical source a potential contender as a food preservative or food control additive. PMID:24650181

  13. Aerobic Damage to [FeFe]-Hydrogenases: Activation Barriers for the Chemical Attachment of O2**

    PubMed Central

    Kubas, Adam; De Sancho, David; Best, Robert B; Blumberger, Jochen

    2014-01-01

    [FeFe]-hydrogenases are the best natural hydrogen-producing enzymes but their biotechnological exploitation is hampered by their extreme oxygen sensitivity. The free energy profile for the chemical attachment of O2 to the enzyme active site was investigated by using a range-separated density functional re-parametrized to reproduce high-level ab initio data. An activation free-energy barrier of 13 kcal mol−1 was obtained for chemical bond formation between the di-iron active site and O2, a value in good agreement with experimental inactivation rates. The oxygen binding can be viewed as an inner-sphere electron-transfer process that is strongly influenced by Coulombic interactions with the proximal cubane cluster and the protein environment. The implications of these results for future mutation studies with the aim of increasing the oxygen tolerance of this enzyme are discussed. PMID:24615978

  14. LASERS: Efficient chemical oxygen — iodine laser with a high total pressure of the active medium

    NASA Astrophysics Data System (ADS)

    Zagidullin, M. V.; Nikolaev, V. D.; Svistun, M. I.; Khvatov, N. A.; Heiger, G. D.; Madden, T. J.

    2001-01-01

    A new concept of obtaining a high total pressure of the active medium of a chemical oxygen — iodine laser (OIL) is proposed and verified. The nozzle unit of the laser consists of the alternating vertical arrays of cylindrical nozzles to produce high-pressure nitrogen jets, plane slotted nozzles for the flow of O2(1Δ) oxygen, and vertical arrays of cylindrical nozzles to inject the N2 — I2 mixture between the first two streams. For a molar chlorine flow rate of 39.2 mmol s-1, the output power was 700 W and the chemical efficiency was 19.7 %. The combined use of the ejector nozzle unit proposed to obtain the active medium and a super-sonic diffuser allows a significant simplification of the ejection system for the exhaust active medium of the OIL.

  15. Spatiotemporal regulation of chemical reaction kinetics of cell surface molecules by active remodeling of cortical actin

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Bhaswati; Chaudhuri, Abhishek; Gowrishankar, Kripa; Mayor, Satyajit; Rao, Madan

    2010-03-01

    Cell surface proteins such as lipid tethered GPI-anchored proteins and Ras-proteins are distributed as monomers and nanoclusters on the surface of living cells. Recent work from our laboratory suggests that the spatial distribution and dynamics of formation and breakup of these nanoclusters is controlled by the active remodeling dynamics of the underlying cortical actin. To explain these observations, we propose a novel mechanism of nanoclustering, involving the transient binding to and advection along constitutively occuring ``asters'' of cortical actin. Here we study the consequences of such active actin based clustering, in the context of chemical reactions involving conformational changes of cell surface proteins. We find that active remodeling of cortical actin, can give rise to a dramatic increase in the reaction efficiency and output levels. In general, such actin driven clustering of membrane proteins could be a cellular mechanism to spatiotemporally regulate and amplify local chemical reaction rates, in the context of signalling and endocytosis.

  16. Evaluation of mycobactericidal activity of selected chemical disinfectants and antiseptics according to European standards

    PubMed Central

    Bocian, Ewa; Grzybowska, Wanda; Tyski, Stefan

    2014-01-01

    Background The history of the investigation of standardized mycobactericidal activity of disinfectants and antiseptics is not very long. There is growing interest among the manufacturers of disinfectants in carrying out research on the antimicrobial activities in accordance with European standards (EN). This research could facilitate the introduction of high-quality disinfectants to the market. The aim of this study was to evaluate the mycobactericidal activity of selected chemical disinfectants and antiseptics used in the medical and veterinary fields. Material/Methods This study included 19 products submitted to the National Medicines Institute in Poland for evaluation of mycobactericidal activity. These products contain in their composition active substances belonging to different chemical groups, including aldehydes, alcohols, amines, quaternary ammonium compounds, phenols, guanidine, and oxidizing compounds. This study, conducted according to the manufacturers’ description of the preparations, was carried out in accordance with European standards, which also met the Polish standards: PN-EN 14204: 2013, PN-EN 14348: 2006, and PN-EN 14563: 2012. Results Tested products for disinfection and antiseptics containing active substances from different chemical groups showed high mycobactericidal activity and met the requirements of the appropriate European standards in most cases. In the case of products containing guanidine and amine compounds, the concentration of active ingredients used in the test and the test conditions specified by the manufacturer did not provide the mycobactericidal activity required by the standards. Conclusions Prior to the launch of a new product on the market, it is important to establish the appropriate usage and testing conditions of the preparation, such as its practical concentration, contact time, and environment condition (clean or dirty). PMID:24755666

  17. Chemical Modulation of the Biological Activity of Reutericyclin: a Membrane-Active Antibiotic from Lactobacillus reuteri

    PubMed Central

    Cherian, Philip T.; Wu, Xiaoqian; Maddox, Marcus M.; Singh, Aman P.; Lee, Richard E.; Hurdle, Julian G.

    2014-01-01

    Whilst the development of membrane-active antibiotics is now an attractive therapeutic concept, progress in this area is disadvantaged by poor knowledge of the structure-activity relationship (SAR) required for optimizing molecules to selectively target bacteria. This prompted us to explore the SAR of the Lactobacillus reuteri membrane-active antibiotic reutericyclin, modifying three key positions about its tetramic acid core. The SAR revealed that lipophilic analogs were generally more active against Gram-positive pathogens, but introduction of polar and charged substituents diminished their activity. This was confirmed by cytometric assays showing that inactive compounds failed to dissipate the membrane potential. Radiolabeled substrate assays indicated that dissipation of the membrane potential by active reutericyclins correlated with inhibition of macromolecular synthesis in cells. However, compounds with good antibacterial activities also showed cytotoxicity against Vero cells and hemolytic activity. Although this study highlights the challenge of optimizing membrane-active antibiotics, it shows that by increasing antibacterial potency the selectivity index could be widened, allowing use of lower non-cytotoxic doses. PMID:24739957

  18. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    SciTech Connect

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia R.; Woodin, Bruce; Stegeman, John J.

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox

  19. Influence of Copper Nanoparticles on the Physical-Chemical Properties of Activated Sludge

    PubMed Central

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity. PMID:24663333

  20. Determination of Chemical States of Mercury on Activated Carbon Using XANES

    SciTech Connect

    Takaoka, Masaki; Takeda, Nobuo; Oshita, Kazuyuki; Yamamoto, Takashi; Tanaka, Tsunehiro; Uruga, Tomoya

    2007-02-02

    Although the adsorption of mercury vapor onto activated carbon is a widely used technology to prevent environmental release, the adsorption mechanism is not clearly understood. In this study, we determined the chemical states of mercury on two kinds of activated carbon using X-ray absorption near-edge spectroscopy (XANES) to elucidate the adsorption mechanism. The adsorption experiments of elemental mercury onto activated carbon were conducted under air and nitrogen atmospheres at temperatures of 20 and 160 deg. C. Two types of activated carbon were prepared. X-ray absorption fine structure (XAFS) measurements were carried out on beamline BL01B1 at SPring-8. Hg-LIII edge XANES spectra suggested that chemical adsorption of elemental mercury on the activated carbon occurred in the 20-160 deg. C temperature range. According to the XANES spectra, a difference occurred in the chemical states of mercury between AC no. 1 and AC no. 2. The Hg XANES spectra on AC no. 1 were similar to those of Hg2Cl2 and HgS, and the Hg XANES spectra on AC no. 2 were similar to that of HgO, which suggested that nitric acid treatment removed sulfur from AC no. 1 and functional groups that were strong oxidizers on the surface of AC no. 2 created HgO. According to the EXAFS oscillation, a difference occurred in the chemical states of mercury on AC no. 1 between 20 and 160 deg. C. We found that impurities and oxidant functional groups on activated carbon play key roles in mercury adsorption.

  1. Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds.

    PubMed Central

    Lascombe, I; Beffa, D; Rüegg, U; Tarradellas, J; Wahli, W

    2000-01-01

    Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:10903615

  2. [Progress in study of chemical constituents and anti-tumor activities of Cnidium monnieri].

    PubMed

    Zhou, Ze-wei; Liu, Pei-xun

    2005-09-01

    The main pharmacological constituents of Chinese traditional medicine herb Cnidium monnieri are coumarin compounds and volatile oil. In addition, it contains monoterpene polyols, glucides, as well as recently discovered sesquiterpene components. In recent years, rather active investigations of its anti-tumor were performed at home and abroad. C. monnieri possesses multi-aspect and comprehensive anti-tumor functions, involving directly tumor-inhibitory activity, anti-mutagenicity, reversing multi-drug tolerance of tumor, as well as improving immune functions and so on. In this review, chemical constituents, anti-tumor activities and relevant investigations of Fructus Cnidii were summarized recent decade. PMID:16323535

  3. Coupling of physical erosion and chemical weathering after phases of intense human activity

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter W.

    2014-05-01

    with long-term 10Be derived denudation rates, and tectonic uplift rates. Our data do not provide direct evidence of an imbalance between soil production and chemical weathering, despite more than 2000 years of intense human activity.

  4. Nonperfect mixing affects synchronization on a large number of chemical oscillators immersed in a chemically active time-dependent chaotic flow.

    PubMed

    Pérez-Muñuzuri, V; Garaboa-Paz, D; Muñuzuri, A P

    2016-07-01

    The problem of synchronization of finite-size chemical oscillators described by active inertial particles is addressed for situations in which they are immersed in a reacting nonstationary chaotic flow. Active substances in the fluid will be modeled by Lagrangian particles closely following the fluid streamlines. Their interaction with the active inertial particles as well as the properties of the fluid dynamics will result in modifying the synchronization state of the chemical oscillators. This behavior is studied in terms of the exchange rate between the Lagrangian and inertial particles, and the finite-time Lyapunov exponents characterizing the flow. The coherence of the population of oscillators is determined by means of the order parameter introduced by Kuramoto. The different dynamics observed for the inertial particles (chemical oscillators) and Lagrangian particles (describing chemicals in the flow) lead to nonlinear interactions and patches of synchronized regions within the domain. PMID:27575213

  5. Nonperfect mixing affects synchronization on a large number of chemical oscillators immersed in a chemically active time-dependent chaotic flow

    NASA Astrophysics Data System (ADS)

    Pérez-Muñuzuri, V.; Garaboa-Paz, D.; Muñuzuri, A. P.

    2016-07-01

    The problem of synchronization of finite-size chemical oscillators described by active inertial particles is addressed for situations in which they are immersed in a reacting nonstationary chaotic flow. Active substances in the fluid will be modeled by Lagrangian particles closely following the fluid streamlines. Their interaction with the active inertial particles as well as the properties of the fluid dynamics will result in modifying the synchronization state of the chemical oscillators. This behavior is studied in terms of the exchange rate between the Lagrangian and inertial particles, and the finite-time Lyapunov exponents characterizing the flow. The coherence of the population of oscillators is determined by means of the order parameter introduced by Kuramoto. The different dynamics observed for the inertial particles (chemical oscillators) and Lagrangian particles (describing chemicals in the flow) lead to nonlinear interactions and patches of synchronized regions within the domain.

  6. Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides

    EPA Science Inventory

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eight...

  7. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide

    NASA Astrophysics Data System (ADS)

    Okman, Irem; Karagöz, Selhan; Tay, Turgay; Erdem, Murat

    2014-02-01

    Activated carbons were produced from grape seed using either potassium carbonate (K2CO3) or potassium hydroxide (KOH). The carbonization experiments were accomplished at 600 and 800 °C. The effects of the experimental conditions (i.e., type of activation reagents, reagent concentrations, and carbonization temperatures) on the yields and the properties of these activated carbons were analyzed under identical conditions. An increase in the temperature at the same concentrations for both K2CO3 and KOH led to a decrease in the yields of the activated carbons. The lowest activated carbon yields were obtained at 800 °C at the highest reagent concentration (100 wt%) for both K2CO3 and KOH. The activated carbon with the highest surface area of 1238 m2g-1 was obtained at 800 °C in K2CO3 concentration of 50 wt% while KOH produced the activated carbon with the highest surface area of 1222 m2g-1 in a concentration of 25wt% at 800 °C. The obtained activated carbons were mainly microporous.

  8. Evaluation of the Enterococcus faecalis Biofilm-Associated Virulence Factors AhrC and Eep in Rat Foreign Body Osteomyelitis and In Vitro Biofilm-Associated Antimicrobial Resistance

    PubMed Central

    Frank, Kristi L.; Vergidis, Paschalis; Brinkman, Cassandra L.; Greenwood Quaintance, Kerryl E.; Barnes, Aaron M. T.; Mandrekar, Jayawant N.; Schlievert, Patrick M.; Dunny, Gary M.; Patel, Robin

    2015-01-01

    Enterococcus faecalis can cause healthcare-associated biofilm infections, including those of orthopedic devices. Treatment of enterococcal prosthetic joint infection is difficult, in part, due to biofilm-associated antimicrobial resistance. We previously showed that the E. faecalis OG1RF genes ahrC and eep are in vitro biofilm determinants and virulence factors in animal models of endocarditis and catheter-associated urinary tract infection. In this study, we evaluated the role of these genes in a rat acute foreign body osteomyelitis model and in in vitro biofilm-associated antimicrobial resistance. Osteomyelitis was established for one week following the implantation of stainless steel orthopedic wires inoculated with E. faecalis strains OG1RF, ΩahrC, and ∆eep into the proximal tibiae of rats. The median bacterial loads recovered from bones and wires did not differ significantly between the strains at multiple inoculum concentrations. We hypothesize that factors present at the infection site that affect biofilm formation, such as the presence or absence of shear force, may account for the differences in attenuation in the various animal models we have used to study the ΩahrC and ∆eep strains. No differences among the three strains were observed in the planktonic and biofilm antimicrobial susceptibilities to ampicillin, vancomycin, daptomycin, linezolid, and tetracycline. These findings suggest that neither ahrC nor eep directly contribute to E. faecalis biofilm-associated antimicrobial resistance. Notably, the experimental evidence that the biofilm attachment mutant ΩahrC displays biofilm-associated antimicrobial resistance suggests that surface colonization alone is sufficient for E. faecalis cells to acquire the biofilm antimicrobial resistance phenotype. PMID:26076451

  9. Evaluation of the Enterococcus faecalis Biofilm-Associated Virulence Factors AhrC and Eep in Rat Foreign Body Osteomyelitis and In Vitro Biofilm-Associated Antimicrobial Resistance.

    PubMed

    Frank, Kristi L; Vergidis, Paschalis; Brinkman, Cassandra L; Greenwood Quaintance, Kerryl E; Barnes, Aaron M T; Mandrekar, Jayawant N; Schlievert, Patrick M; Dunny, Gary M; Patel, Robin

    2015-01-01

    Enterococcus faecalis can cause healthcare-associated biofilm infections, including those of orthopedic devices. Treatment of enterococcal prosthetic joint infection is difficult, in part, due to biofilm-associated antimicrobial resistance. We previously showed that the E. faecalis OG1RF genes ahrC and eep are in vitro biofilm determinants and virulence factors in animal models of endocarditis and catheter-associated urinary tract infection. In this study, we evaluated the role of these genes in a rat acute foreign body osteomyelitis model and in in vitro biofilm-associated antimicrobial resistance. Osteomyelitis was established for one week following the implantation of stainless steel orthopedic wires inoculated with E. faecalis strains OG1RF, ΩahrC, and ∆eep into the proximal tibiae of rats. The median bacterial loads recovered from bones and wires did not differ significantly between the strains at multiple inoculum concentrations. We hypothesize that factors present at the infection site that affect biofilm formation, such as the presence or absence of shear force, may account for the differences in attenuation in the various animal models we have used to study the ΩahrC and ∆eep strains. No differences among the three strains were observed in the planktonic and biofilm antimicrobial susceptibilities to ampicillin, vancomycin, daptomycin, linezolid, and tetracycline. These findings suggest that neither ahrC nor eep directly contribute to E. faecalis biofilm-associated antimicrobial resistance. Notably, the experimental evidence that the biofilm attachment mutant ΩahrC displays biofilm-associated antimicrobial resistance suggests that surface colonization alone is sufficient for E. faecalis cells to acquire the biofilm antimicrobial resistance phenotype. PMID:26076451

  10. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus.

    PubMed

    Ma, Lishuai; Chen, Haixia; Zhang, Yu; Zhang, Ning; Fu, Lingling

    2012-06-20

    Chemical modification polysaccharides exerted potent biological property which was related to the physicochemical properties. In the present study, polysaccharides from Inonotus obliquus were modified by suflation, acetylation and carboxymethylation. The physicochemical and antioxidant properties of I. obliquus polysaccharide (IOPS) and its derivatives were comparatively investigated by chemical methods, gas chromatography, size exclusion chromatography, scanning electron micrograph, infrared spectra and circular dichroism spectra, and ferric reducing power assay and lipid peroxidation inhibition assay, respectively. Results showed that physicochemical and antioxidant properties of IOPS were differed each other after the chemical modification of suflation, acetylation and carboxymethylation. Among the three derivatives, acetylationed polysaccharide (Ac-IOPS) resulted in lower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, higher antioxidant abilities on ferric-reducing power and lipid peroxidation inhibition activity compared with the native polysaccharide IOPS. Ac-IOPS might be explored as a novel potential antioxidant for human consumption. PMID:24750732

  11. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    PubMed

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. PMID:27344951

  12. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    PubMed Central

    2011-01-01

    Background Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated. Results Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique. Conclusions The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile. PMID:21699688

  13. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials

    PubMed Central

    Reichenberg, Fredrik; Smedes, Foppe; Jönsson, Jan-Åke; Mayer, Philipp

    2008-01-01

    Background In soils contaminated by hydrophobic organic compounds, the concentrations are less indicative of potential exposure and distribution than are the associated chemical activities, fugacities and freely dissolved concentrations. The latter can be measured by diffusive sampling into thin layers of polymer, as in, for example, solid phase micro-extraction. Such measurements require equilibrium partitioning of analytes into the polymer while ensuring that the sample is not depleted. We introduce the validation of these requirements based on parallel sampling into polymer layers of different thicknesses. Results Equilibrium sampling devices were made by coating glass vials internally with 3–12 μm thick layers of polydimethylsiloxane (PDMS). These were filled with slurries of a polluted soil and gently agitated for 5 days. The concentrations of 7 polycyclic aromatic hydrocarbons (PAHs) in the PDMS were measured. Validation confirmed fulfilment of the equilibrium sampling requirements and high measurement precision. Finally, chemical activities of the PAHs in the soil were determined from their concentrations and activity coefficients in the PDMS. Conclusion PAHs' thermodynamic activities in a soil test material were determined via a method of uptake into PDMS. This can be used to assess chemical exposure and predict diffusion and partitioning processes. PMID:18460193

  14. Determining chemical activity of (semi)volatile compounds by headspace solid-phase microextraction.

    PubMed

    Legind, Charlotte N; Karlson, Ulrich; Burken, Joel G; Reichenberg, Fredrik; Mayer, Philipp

    2007-04-01

    This research introduces a new analytical methodology for measuring chemical activity of nonpolar (semi)volatile organic compounds in different sample matrices using automated solid-phase microextraction (SPME). The chemical activity of an analyte is known to determine its equilibrium concentration in the SPME fiber coating. On this basis, SPME was utilized for the analytical determination of chemical activity, fugacity, and freely dissolved concentration using these steps: (1) a sample is brought into a vial, (2) the SPME fiber is introduced into the headspace and equilibrated with the sample, (3) the SPME fiber is injected into the GC for thermal desorption and analysis, and (4) the method is calibrated by SPME above partitioning standards in methanol. Model substances were BTEX, naphthalene, and alkanes, which were measured in a variety of sample types: liquid polydimethylsiloxane (PDMS), wood, soil, and nonaqueous phase liquid (NAPL). Variable sample types (i.e., matrices) had no influence on sampling kinetics because diffusion through the headspace was rate limiting for the overall sampling process. Sampling time was 30 min, and relative standard deviations were generally below 5% for homogeneous solutions and somewhat higher for soil and NAPL. This type of activity measurement is fast, reliable, almost solvent free, and applicable for mixed-media sampling. PMID:17313185

  15. Effect of amine activators on the properties of chemical cured dental composites.

    PubMed

    Mathew, L; Joseph, R; Krishnan, V K

    1997-01-01

    The purpose of this study was to evaluate the reactivity and the effect of concentration of three tertiary amines upon the mechanical properties of a chemical curing dental composite. Chemical cured composite pastes were prepared by keeping peroxide concentration constant at 1 wt% (by weight of resin mixture) and by varying the amine/peroxide molar ratio from 0.25 to 1.5. Composite samples were prepared for all three amine pastes aged for 1, 15, 30, 45, and 60 d stored at 8, 22, and 37 degrees C. The loss in activity of the tertiary amine with time was measured. Changes in compressive strength, diametral tensile strength, and microhardness were also measured. A sharp decrease in working and setting times corresponding to increased activity was noticed with an increased amine content. The activity was found to vary in the order N,N-dimethyl p-toluidine (DMPT) > 2-(4-dimethylaminophenyl)ethanol (DMAPEA) > N,Ndiethanol p-toluidine (DEPT). DMPT is found to be more temperature sensitive than DMAPEA and DEPT. However, DEPT is found to provide better storage stability out of all three amines tested. Each amine was found to possess optimum concentrations at which the mechanical properties showed maximum values. DEPT is preferred for long-term storage stability in chemical-cured dental composites where aging tends to reduce the activity of the amine. PMID:9067811

  16. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    PubMed Central

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  17. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    NASA Astrophysics Data System (ADS)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  18. Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions.

    PubMed

    Putz, Mihai V; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  19. [Salt resistance and its mechanism of cucumber under effects of exogenous chemical activators].

    PubMed

    Song, Shiqing; Liu, Wei; Guo, Shirong; Shang, Qingmao; Zhang, Zhigang

    2006-10-01

    With root injection and foliar spray, this paper studied the effects of different concentrations salicylic acid, brassinolide, chitosan and spermidine on the growth, morphogenesis, and physiological and biochemical characters of cucumber ( Cucumis sativus L. ) seedlings under 200 mmol x L(-1) NaCl stress. The results showed that at proper concentrations, these four exogenous chemical activators could markedly decrease the salt stress index and mortality of cucumber seedlings, and the decrement induced by 0. 01 mg x L (-1) brassinolide was the largest, being 63. 0% and 75. 0% , respectively. The activities of superoxide dismutase (SOD) , peroxidase (POD) and catalase (CAT) increased significantly, resulting in a marked decrease of malondialdehyde (MDA) content and electrolyte leakage. The dry weight water content and morphogenesis of cucumber seedlings improved, and the stem diameter, leaf number, and healthy index increased significantly. All of these suggested that exogenous chemical activators at proper concentrations could induce the salt resistance of cucumber, and mitigate the damage degree of salt stress. The salt resistance effect of test exogenous chemical activators decreased in the sequence of 0.005 -0.05 mg (L-1) brassinolide, 150 -250 mg x L (-1) spermidine, 100 -200 mg x L(-1) chitosan, and 50 -150 mg x L(-1) salicylic acid. PMID:17209385

  20. Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention.

    PubMed

    Okino, Steven T; Pookot, Deepa; Basak, Shashwati; Dahiya, Rajvir

    2009-03-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated regulatory protein that controls estrogen action through two distinct pathways. In one pathway, AhR acts as a transcription factor that induces the expression of the CYP1 family of estrogen-metabolizing genes; in the other pathway, AhR initiates the degradation of the estrogen receptor and suppresses estrogen signaling. The AhR ligand 3,3'-diindolylmethane (DIM) is a beneficial dietary constituent that prevents breast tumors in rodents and is associated with decreased breast cancer risk in humans. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic AhR ligand that is implicated in birth defects, infertility, and cancer. We analyzed MCF-7 cells to gain insight into how two AhR ligands can exert such fundamentally different health effects. We find that DIM and TCDD have differing abilities to activate the distinct AhR-controlled pathways. TCDD strongly induces AhR-dependent CYP1 gene expression, whereas DIM is a relatively weak CYP1 inducer. DIM strongly inhibits estrogen receptor-alpha expression and estrogen signaling, whereas TCDD has a notably weaker effect on these processes. Small interfering RNA knockdown of AhR confirms that the effects of DIM and TCDD are indeed AhR dependent. Our findings reveal that DIM and TCDD each elicit a unique pattern of change in pathways that control estrogen action; such patterns may determine if an AhR ligand has beneficial or adverse health effects. PMID:19223575

  1. Metabolomic Assessment of Induced and Activated Chemical Defence in the Invasive Red Alga Gracilaria vermiculophylla

    PubMed Central

    Nylund, Göran M.; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  2. Computational reverse chemical ecology: Virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis

    PubMed Central

    2014-01-01

    Background Semiochemical is a generic term used for a chemical substance that influences the behaviour of an organism. It is a common term used in the field of chemical ecology to encompass pheromones, allomones, kairomones, attractants and repellents. Insects have mastered the art of using semiochemicals as communication signals and rely on them to find mates, host or habitat. This dependency of insects on semiochemicals has allowed chemical ecologists to develop environment friendly pest management strategies. However, discovering semiochemicals is a laborious process that involves a plethora of behavioural and analytical techniques, making it expansively time consuming. Recently, reverse chemical ecology approach using odorant binding proteins (OBPs) as target for elucidating behaviourally active compounds is gaining eminence. In this scenario, we describe a “computational reverse chemical ecology” approach for rapid screening of potential semiochemicals. Results We illustrate the high prediction accuracy of our computational method. We screened 25 semiochemicals for their binding potential to a GOBP of B. dorsalis using molecular docking (in silico) and molecular dynamics. Parallely, compounds were subjected to fluorescent quenching assays (Experimental). The correlation between in silico and experimental data were significant (r2 = 0.9408; P < 0.0001). Further, predicted compounds were subjected to behavioral bioassays and were found to be highly attractive to insects. Conclusions The present study provides a unique methodology for rapid screening and predicting behaviorally active semiochemicals. This methodology may be developed as a viable approach for prospecting active semiochemicals for pest control, which otherwise is a laborious process. PMID:24640964

  3. Activation of chemical promutagens by Selenastrum capricornutum in the plant cell/microbe coincubation assay

    SciTech Connect

    Gentile, J.M.; Lippert, M.; Johnson, P.; Shafer, T. )

    1990-05-01

    The critical balance of organisms living in aquatic environments is influenced by the presence and relationship of plants to those environments. However, even though plants occupy a fundamental trophic level within aquatic ecosystems, few studies have focused upon the effect of xenobiotics on aquatic plants, and even fewer studies have dealt with xenobiotic metabolism by aquatic plants. It is well established that plants can metabolize chemicals into mutagens. The impact of these unique plant-activated chemical mutagens on ecosystems, food chains and, ultimately, human health is an important question that will require intensive and integrative investigation. The plant cell/microbe coincubation assay is particularly advantageous for use with unicellular algae. The conditions of this assay are such that chemical metabolism and subsequent mutagen detection can be followed in intact algal cells under simulated field conditions. The purpose of this research was to demonstrate that a unicellular algal species could be used effectively in the plant cell/microbe coincubation assay to activate model chemical mutagens.

  4. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones

    PubMed Central

    Xu, Ren-Bo; Yang, Xin; Wang, Jing; Zhao, Hai-Tian; Lu, Wei-Hong; Cui, Jie; Cheng, Cui-Lin; Zou, Pan; Huang, Wei-Wei; Wang, Pu; Li, Wen-Jing; Hu, Xing-Long

    2012-01-01

    The traditional method of gas chromatography-mass spectrometry for monosaccharide component analysis with pretreatment of acetylation is described with slight modifications and verified in detail in this paper. It was then successfully applied to the quantitative analysis of component monosaccharides in polysaccharides extracted from the pine cones. The results demonstrated that the three pine cone polysaccharides all consisted of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in different molar ratios. According to the recovery experiment, the described method was proved accurate and practical for the analysis of pine cone polysaccharides, meeting the need in the field of chemical analysis of Pinus plants. Furthermore; the chemical characteristics, such as neutral sugar, uronic acids, amino acids, molecular weights, and antioxidant activities of the polysaccharides were investigated by chemical and instrumental methods. The results showed that the chemical compositions of the polysaccharides differed from each other, especially in the content of neutral sugar and uronic acid. In the antioxidant assays, the polysaccharide fractions exhibited effective scavenging activities on ABTS radical and hydroxyl radical, with their antioxidant capabilities decreasing in the order of PKP > PAP > PSP. Therefore, although the polysaccharide fractions had little effect on superoxide radical scavenging, they still have potential to be developed as natural antioxidant agents in functional foods or medicine. PMID:23203063

  5. Chemical aspects of the trapping and recovery of uranium hexafluoride and fluorine during remediation activities

    SciTech Connect

    Del Cul, G.D.; Toth, L.M.

    1996-10-01

    Decontamination and decommission activities related to the Molten Salt Reactor Experiment (MSRE) involve the trapping and recovery of radiolitically generated uranium hexafluoride and fluorine. Although fission product radiolysis was known to generate F{sub 2}, the formation of UF{sub 6} and its transport from the fuel salt was unexpected. Some of these gaseous radiolysis products have been moving through the gas piping to a charcoal bed since the reactor was shut down in 1969. Current and planned remediation and clean-up activities involve the trapping of the gaseous products, deactivation and treatment of the activated charcoal bed, stabilization and reconditioning of the fuel salt, and recovery of the uranium. The chemical aspects of these processes, including radiolytic generation mechanisms, reactions between uranium hexafluoride and fluorine and trapping materials such as activated charcoal, activated alumina, and sodium fluoride, along with the analytical techniques used for the characterization of the materials and process control will be described.

  6. Chemical Composition, Antioxidant, and Antimicrobial Activities of Lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae)

    PubMed Central

    Manojlovic, Nedeljko T.; Vasiljevic, Perica J.; Maskovic, Pavle Z.; Juskovic, Marina; Bogdanovic-Dusanovic, Gordana

    2012-01-01

    The phytochemical analysis of methanol and chloroform extracts of Umbilicaria cylindrica was determined by HPLC-UV method. The predominant phenolic compound in both extracts was depsidone, salazinic acid (1). Besides salazinic acid, the tested extracts of U. cylindrica contain norstictic acid (2), methyl-β-orcinol carboxylate (3), ethyl haematommate (4), atranorin (5), and usnic acid (6), in different amounts and relations. The lichen extracts showed comparable and strong antioxidant activity, exhibited higher DPPH and hydroxyl radical scavengings, chelating activity, and inhibitory activity towards lipid peroxidation. The lichen extracts demonstrated important antimicrobial activity against eight strains with MIC values from 15.62 to 62.50 μg/mL. This is the first report of the detail chemical composition and antioxidant activity of the lichen Umbilicaria cylindrica, and the results suggest that this lichen can be used as a new source of the natural antioxidants and the substances with antimicrobial features. PMID:21915186

  7. Mechanisms of xenobiotic receptor activation: Direct vs. indirect.

    PubMed

    Mackowiak, Bryan; Wang, Hongbing

    2016-09-01

    The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26877237

  8. Plastic components affect the activation of the aryl hydrocarbon and the androgen receptor.

    PubMed

    Krüger, Tanja; Long, Manhai; Bonefeld-Jørgensen, Eva C

    2008-04-18

    Phenols and plasticizers are widely used in the plastic industry, in food packaging and to impart softness and flexibility to normally rigid plastic medical devices and children's toys. The effects on the aryl hydrocarbon receptor (AhR) and the androgen receptor (AR) were assessed using luciferase reporter gene assays of the following compounds: bisphenol A (BPA), 4-n-nonylphenol (nNP), 4-tert-octylphenol (tOP), bis(2-ethylhexyl) phthalate (DEHP), di-isononyl phthalate (DINP), diisodecyl phthalate (DIDP), di-n-octyl phthalate (DNOP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), 4-chloro-3-methylphenol (CMP), 2-phenylphenol (2-PP), 2,4-dichlorophenol (DCP), resorcinol and bis(2-ethylhexyl) adipate (DEHA). Furthermore, a mixture of selected compounds was tested at the no-observed-effect concentration (NOEC), the low-observed-effect concentration (LOEC) and the half-maximum-effect/inhibitory concentration (EC50/IC50) of the single chemicals. Both receptors were affected by BPA, nNP, BBP, CMP, DCP and resorcinol whereas DEHP, DIDP and DBP affected only the AhR and tOP and 2-PP antagonised the AR activity. The mixture was composed of 6 compounds, of which one compound weakly induced the AhR but all compounds antagonized the AR activation. Using the concentration addition principle additive effects were observed at the NOEC, LOEC and EC50/IC50 for both receptors. Our in vitro data suggest that the effect of a mixture depends on the concentration, character, potency and composition of the single mixture compounds and that also the combined effects of the compounds should be taken into consideration for risk assessment of human health. PMID:18294747

  9. Redox activity and chemical interactions of metal oxide nano- and micro-particles with dithiothreitol (DTT).

    PubMed

    Nicolas, Johny; Jaafar, Malek; Sepetdjian, Elizabeth; Saad, Walid; Sioutas, Constantinos; Shihadeh, Alan; Saliba, Najat A

    2015-11-01

    The wide application and production of nanotechnology have increased the interest in studying the toxicity of nano- and micro-sized particles escaping into air from various aspects of the production process. Metal oxides (MOs) are one particular class of particles that exist abundantly in ambient PM. Studies show an emphasis on biological mechanisms by which inhalation exposure to MOs leads to disease. However, different biological assays provide different redox activity rankings making it difficult to assess the contributions of various MOs to measures of aggregate toxicity in multi-pollutant systems such as ambient PM. Therefore, research to evaluate the chemical interaction between these particles and molecules that are relevant to cellular redox activity can help in establishing indicators of reactivity. In particular, this study assesses the redox activity of six MOs mainly emitted from anthropogenic industrial activities using the dithiothreitol (DTT) assay. DTT is commonly used in acellular assays due to its analogous structure to cellular glutathione. The structural and chemical behaviors between active MOs and DTT were elucidated using FTIR, NMR, and BET methods. The results indicate that the health risk (redox activity) associated with MOs is mainly a function of their surface reactivity demonstrated by the ability of the oxidized (S-H) bond in DTT to form a stable bond with the MO surface. PMID:26406549

  10. Chemical Constituents and Antimicrobial Activity of Indian Green Leafy Vegetable Cardiospermum halicacabum.

    PubMed

    Jeyadevi, R; Sivasudha, T; Ilavarasi, A; Thajuddin, N

    2013-06-01

    The present study was carried out to analyze chemical constituents and antibacterial activity of ethanolic leaf extract of Cardiospermum halicacabum (ECH). The FT-IR spectrum confirmed the presence of alcohols, phenols, alkanes, alkynes, aliphatic ester and flavonoids in ECH. The GC-MS analysis revealed that ECH contained about twenty four compounds. The major chemical compounds identified were cyclohexane-1, 4, 5-triol-3-one-1-carboxylic acid, benzene acetic acid, caryophyllene, phytol and neophytadiene. The ECH was screened for its antibacterial activity against different bacterial strains and anti fungal activity against Candida albicans by agar well diffusion and minimum inhibitory concentration (MIC) assay. ECH exhibited antibacterial and antifungal activity. All the tested bacterial strains showed MIC values ranging from 80 to 125 μg of extract/ml and C. albicans showed 190 μg of extract/ml as a MIC. The maximum activity ECH was observed against human pathogen Staphylococcus aureus followed by Escherichia coli and the fish pathogen Aeromonas hydrophila. ECH exhibited moderate activity against some of the tested multidrug resistant strains. PMID:24426110

  11. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    PubMed

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production. PMID:27536531

  12. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.

    PubMed

    Park, Kyung-Won; Sung, Yung-Eun

    2005-07-21

    Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state. PMID:16852701

  13. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria.

    PubMed

    Gormez, Arzu; Bozari, Sedat; Yanmis, Derya; Gulluce, Medine; Sahin, Fikrettin; Agar, Guleray

    2015-01-01

    In this study, we aimed to determine chemical composition and antibacterial activities of Satureja hortensis and Calamintha nepeta against to 20 phytopathogenic bacteria causing serious crop loss. The essential oils of S. hortensis and C. nepeta were isolated by the hydrodistillation method and the chemical composition of the essential oils were analyzed by GC-MS. The antibacterial properties of the essential oils were evaluated against 20 phytopathogenic bacteria through Disc diffusion assay and micro dilution assay. The results revealed that the essential oils of S. hortensis and C. nepeta have significant antibacterial activity. Furthermore, the findings of the study are valuable for future investigations focusing on the alternative natural compounds to control plant diseases. PMID:26373171

  14. Modelling of evaporation of a dispersed liquid component in a chemically active gas flow

    NASA Astrophysics Data System (ADS)

    Kryukov, V. G.; Naumov, V. I.; Kotov, V. Yu.

    1994-01-01

    A model has been developed to investigate evaporation of dispersed liquids in chemically active gas flow. Major efforts have been directed at the development of algorithms for implementing this model. The numerical experiments demonstrate that, in the boundary layer, significant changes in the composition and temperature of combustion products take place. This gives the opportunity to more correctly model energy release processes in combustion chambers of liquid-propellant rocket engines, gas-turbine engines, and other power devices.

  15. Chemical Constituents from the Fruiting Bodies of Hexagonia apiaria and Their Anti-inflammatory Activity.

    PubMed

    Thang, Tran Dinh; Kuo, Ping-Chung; Ngoc, Nguyen Thi Bich; Hwang, Tsong-Long; Yang, Mei-Lin; Ta, Shih-Huang; Lee, E-Jian; Kuo, Dai-Huang; Hung, Nguyen Huy; Tuan, Nguyen Ngoc; Wu, Tian-Shung

    2015-11-25

    A chemical investigation of the fruiting bodies of Hexagonia apiaria resulted in the identification of nine compounds including five new triterpenoids, hexagonins A-E (1-5), along with four known compounds. The purified constituents were examined for their anti-inflammatory activity. Among the tested compounds, hexatenuin A displayed the most significant inhibition of superoxide anion generation and elastase release. These triterpenoids may have potentials as anti-inflammatory agents. PMID:26575215

  16. Chemical techniques for pretreating and regenerating active slag filters for improved phosphorus removal.

    PubMed

    Pratt, C; Shilton, A; Haverkamp, R G; Pratt, S

    2011-07-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewaters. Recent research revealed that adsorption onto Fe oxides/oxyhydroxides at near-neutral pH and oxidizing Eh is the key mechanism of P removal by melter slag filters. Currently, filter lifespan is limited by available adsorption sites. This study examined whether the performance and longevity of active filters could be improved via chemical treatment to create additional reactive sites as well as regenerate exhausted ones. Fresh original melter slag as well as slag from an exhausted full-scale filter was tested. Chemical reagents that could manipulate the pH/Eh of the slag granule surfaces and potentially activate them for further P removal were used, namely hydrochloric acid (HCI), sodium hydroxide (NaOH) and sodium dithionite (Na2S2O4). Waste stabilization pond effluent was then applied to the treated slag to assess the effectiveness of the treatments at improving P removal. Fresh slag treated with Na2S204 and HCl, respectively, retained 1.9 and 1.4 times more P from the effluent than the untreated fresh slag. These reagents were even more effective at regenerating the exhausted slag, increasing total retained P by a factor of 13 and six, respectively, compared with untreated slag. Sodium hydroxide was ineffective at increasing P removal. The higher P retention by the 'treated exhausted slag' compared with the 'treated fresh media' indicates that adsorption sites on melter slag filters become increasingly reactive with time. This research is the first study to provide evidence that P retention by active slag filters can be increased by both (1) chemical pre treatment and (2) chemical post-treatment once their P removal is exhausted, thereby potentially transforming them from a single use system to a more viable, reusable treatment technology. PMID:21882558

  17. Effect of chemical activation of 10% carbamide peroxide gel in tooth bleaching.

    PubMed

    Batista, Graziela Ribeiro; Arantes, Paula Tamiao; Attin, Thomas; Wiegand, Annette; Torres, Carlos Rocha

    2013-01-01

    This study aimed to evaluate the efficacy of chemical agents to increase the bleaching effectiveness of 10% carbamide peroxide. Two hundred and ninety enamel-dentin discs were prepared from bovine incisors. The color measurement was performed by a spectrophotometer using the CIE L*a*b*system. The groups were divided according to the bleaching treatment: negative control group (NC): without bleaching; positive control group (PC): bleached with 10% carbamide peroxide gel without any chemical activator; Manganese gluconate (MG); Manganese chloride (MC); Ferrous gluconate (FG); Ferric chloride (FC); and Ferrous sulphate (FS). Three different concentrations (MG, MC, FG, FC: 0.01, 0.02 and 0.03% w/w; FS: 0.001, 0.002 and 0.003% w/w) for each agent were tested. The bleaching gel was applied on the specimens for 8 h, after which they were immersed in artificial saliva for 16 h, during 14 days. Color assessments were made after 7 and 14 days. The data were analyzed by repeated measures analysis of variance and Tukey's test (5%). Generally, the test groups were unable to increase the bleaching effect (ΔE) significantly compared to the PC group. Only for ΔL, significant higher values compared to the PC group could be seen after 7 days in groups MG (0.02%), and FS (0.002 and 0.003%). The NC group showed significantly lower values than all tested groups. It was concluded that for home bleaching procedures, the addition of chemical activators did not produce a bleaching result significantly higher than the use of 10% carbamide peroxide without activation, and that the concentration of chemical activators used did not significantly influence the effectiveness of treatment. PMID:23390623

  18. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    PubMed

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-01-01

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal. PMID:26703535

  19. Relationship of spontaneous chemical transformation of arylsulfonylhydrazones of 2-pyridinecarboxaldehyde 1-oxide to anticancer activity.

    PubMed

    Shiba, D A; May, J A; Sartorelli, A C

    1983-05-01

    The arylsulfonyl-hydrazones of 2-pyridinecarboxaldehyde 1-oxide represent a relatively new class of antineoplastic agents with the potential for clinical usefulness. The requirement for spontaneous chemical transformation of these agents to exert anticancer activity was evaluated using as the prototype the most potent member of this class synthesized to date, the 3,4-dimethoxybenzene sulfonylhydrazone of 2-pyridinecarboxaldehyde 1-oxide (3,4-DSP. 3,4-DSP was chemically unstable, decomposing with a half-life of 19 min in 0.01 M potassium phosphate buffer (pH 7.4) at 37 degrees. The major chemical decomposition product was identified as 2-pyridylcarbinol 1-oxide by comparison with the authentic compound. This carbinol is hypothesized to be formed via the intramolecular abstraction of hydrogen from the arylsulfonyl-hydrazone, a process that leads to the release of 3,4-dimethoxybenzenesulfinic acid and the formation of 1-oxidopyridin-2-yldiazomethane, which subsequently reacts with water. The diazomethane intermediate is a potent alkylating agent which, if generated in cells, would have the potential to alkylate nucleophilic groups of biologically important macromolecules. The proposed reactive species was trapped using both 4-(4-nitrobenzyl)pyridine (NBP) and morpholine, and the latter product was characterized by mass spectroscopy. The importance of the chemical formation of an alkylating species to cytotoxicity was demonstrated by studies in which solutions of 3,4-DSP were "aged" prior to addition to L1210 leukemia cells in culture and prior to incubation with NBP. The "aging" of 3,4-DSP for 20 min resulted in a 4-fold decrease in cytotoxicity, and aging for 1 to 3 hr led to complete loss of cytotoxicity. Correspondingly, a 20-min aging period decreased alkylation of NBP by 51%, and 3-hr aging resulted in essentially no alkylation of the nucleophile. Further support for the above proposed chemical activation pathway was provided by correlations between in vitro

  20. Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound

    PubMed Central

    Lawrence, B. Paige; Denison, Michael S.; Novak, Hermann; Vorderstrasse, Beth A.; Harrer, Nathalie; Neruda, Wolfgang; Reichel, Claudia

    2008-01-01

    VAF347 is a low-molecular-weight compound that inhibits allergic lung inflammation in vivo. This effect is likely the result of a block of dendritic cell (DC) function to generate proinflammatory T-helper (Th) cells because VAF347 inhibits interleukin (IL)–6, CD86, and human leukocyte antigen (HLA)–DR expression by human monocyte-derived DC, 3 relevant molecules for Th-cell generation. Here we demonstrate that VAF347 interacts with the aryl hydrocarbon receptor (AhR) protein, resulting in activation of the AhR signaling pathway. Functional AhR is responsible for the biologic activity of VAF347 because (1) other AhR agonists display an identical activity profile in vitro, (2) gene silencing of wild-type AhR expression or forced overexpression of a trans-dominant negative AhR ablates VAF347 activity to inhibit cytokine induced IL-6 expression in a human monocytic cell line, and (3) AhR-deficient mice are resistant to the compound's ability to block allergic lung inflammation in vivo. These data identify the AhR protein as key molecular target of VAF347 and its essential role for mediating the anti-inflammatory effects of the compound in vitro and in vivo. PMID:18270326

  1. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    SciTech Connect

    Chang, Binbin Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  2. Tracking SERS-active nanoprobe intracellular uptake for chemical and biological sensing

    NASA Astrophysics Data System (ADS)

    Gregas, Molly K.; Yan, Fei; Scaffidi, Jonathan; Wang, Hsin-Neng; Khoury, Christopher; Zhang, Yan; Vo-Dinh, Tuan

    2007-09-01

    A critical aspect of the use of nanoprobes for intracellular studies in chemical and biological sensing involves a fundamental understanding of their uptake and trajectory in cells. In this study, we describe experiments using surface-enhanced Raman scattering (SERS) spectroscopy and mapping to track cellular uptake of plasmonics-active labeled nanoparticles. Three different Raman-active labels with positive, negative, and neutral charges were conjugated to silver colloidal nanoparticles with the aim of spatially and temporally profiling intracellular delivery and tracking of nanoprobes during uptake in single mammalian cells. 1-D Raman spectra and 2-D Raman mapping are used to identify and locate the probes via their SERS signal intensities. Because Raman spectroscopy is very specific for identification of chemical and molecular signatures, the development of functionalized plasmonics-active nanoprobes capable of exploring intracellular spaces and processes has the ability to provide specific information on the effects of biological and chemical pollutants in the intracellular environment. The results indicate that this technique will allow study of when, where, and how these substances affect cells and living organisms.

  3. Eupatorium capillifolium essential oil: chemical composition antifungal activity and insecticidal activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...

  4. An Update on Oligosaccharides and Their Esters from Traditional Chinese Medicines: Chemical Structures and Biological Activities

    PubMed Central

    Chen, Xiang-Yang; Wang, Ru-Feng; Liu, Bin

    2015-01-01

    A great number of naturally occurring oligosaccharides and oligosaccharide esters have been isolated from traditional Chinese medicinal plants, which are used widely in Asia and show prominent curative effects in the prevention and treatment of kinds of diseases. Numerous in vitro and in vivo experiments have revealed that oligosaccharides and their esters exhibited various activities, including antioxidant, antidepressant, cytotoxic, antineoplastic, anti-inflammatory, neuroprotective, cerebral protective, antidiabetic, plant growth-regulatory, and immunopotentiating activities. This review summarizes the investigations on the distribution, chemical structures, and bioactivities of natural oligosaccharides and their esters from traditional Chinese medicines between 2003 and 2013. PMID:25861364

  5. Activation of chemicals into mutagens by green plants: a preliminary discussion.

    PubMed Central

    Plewa, M J

    1978-01-01

    This paper is a review of recent studies that demonstrate the activation of chemicals (especially pesticides into mutagens by green plants. Such activation of pesticides may be hazardous to the public health because of their widespread use in agriculture and the current lack of information that exists about such processes. The mutagenic properties of the s-triazine herbicides (atrazine, simazine, and cyanazine) as exhibited in various assay systems are discussed. In vivo, in vitro, and in situ plant assays are presented, and the maize wx locus assay is discussed. PMID:367774

  6. Chemical and biochemical activities of sonochemically synthesized poly(N-isopropyl acrylamide)/silica nanocomposite

    NASA Astrophysics Data System (ADS)

    Chowdhury, Pranesh; Saha, Swadhin Kr; Guha, Arun; Saha, Samar Kr

    2012-11-01

    Poly(N-isopropyl acrylamide) (PNIPA) grafted mesoporous silica nanoparticles (MPSNP) leading to novel inorganic/organic core-shell nanocomposite has been synthesized sonochemically in an aqueous medium without additives like cross-linker, hydrophobic agent, organic solvent. The colloidal stability of MPSNP is enhanced significantly due to encapsulation of the polymer. The composites are characterized by TEM, FTIR and TGA. The chemical and biochemical activities of the sonochemically synthesized materials have been studied in the light of reaction with acid-base, protein adsorption, antimicrobial activity, biocompatibility and nonthrombogenic property. Advantages of sonochemical synthesis compared to other techniques have been evaluated.

  7. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4

    NASA Astrophysics Data System (ADS)

    Xu, Jianzhong; Chen, Lingzhi; Qu, Hongqiang; Jiao, Yunhong; Xie, Jixing; Xing, Guangen

    2014-11-01

    Activated carbons were produced from reedy grass leaves by chemical activation with H3PO4 in N2 atmosphere and their characteristics were investigated. The effects of activation temperature and time were examined. Adsorption capacity was demonstrated with BET and iodine number. Micropore volume and pore size distribution of activated carbons were characterized by N2 adsorption isotherms. The surface area and iodine number of the activated carbons produced at 500 °C for 2 h were 1474 m2/g and 1128 mg/g, respectively. Thermal decomposition of pure reedy grass leaves and H3PO4-impregnated reedy grass leaves have been investigated with thermogravimetric/mass spectroscopy (TG-MS) technique. It was found that the temperature and intensity of maximum evolution of H2O and CO2 of H3PO4-impregnated reedy grass leaves were lower than that of pure reedy grass leaves. This implies that H3PO4 as an activating reagent changed the thermal degradation of the reedy grass leaves, stabilized the cellulose structure, leading to a subsequent change in the evolution of porosity. The results of X-ray photoelectron spectroscopy and Fourier-infrared spectroscopy analysis indicate that the produced activated carbons have rich functional groups on surface.

  8. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation

    NASA Astrophysics Data System (ADS)

    Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; İçduygu, G.

    2005-12-01

    Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K 2CO 3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N 2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m 2/g) and micropore volume (0.355 cm 3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.

  9. Omani propolis: chemical profiling, antibacterial activity and new propolis plant sources

    PubMed Central

    2013-01-01

    Background Propolis (bee glue) is a resinous honeybee product having a long history of application in many countries as a traditional remedy for treating wounds, burns, soar throat, stomach disorders, etc. It has been proved to possess beneficial biological effects, including antimicrobial, antioxidant, anti-inflammatory, cytotoxic, antiulcer, and many others. Bees gather propolis from diverse resinous plant parts and in different phytogeographic regions its chemical composition might vary significantly. In this article we report the results of the first study on the chemical profiles of propolis from Oman, its plant origin and antibacterial activity. Results The chemical profiles of Omani propolis extracts were obtained by GC-MS analysis after silylation. Over 50 individual compounds were identified in the samples, belonging to different compound types: sugars, polyols, hydroxy acids, fatty acids, cardanols and cardols, anacardic acids, flavan derivatives, triterpenes, prenylated flavanones and chalcones. The profiles were dissimilar from other known propolis types. They demonstrate that although Oman is not a large country, the plant sources of propolis vary significantly, even in the same apiary and the same season. Based on chemical profiles, and isolation and identification of major marker compounds (new propolis constituents), new plant sources of propolis were found: Azadiracta indica (neem tree) and Acacia spp. (most probably A. nilotica). The ethanol extracts of the studied propolis samples demonstrated activity against S. aureus (MIC < 100 μg. mL-1) and E. coli (MIC < 380 μg. mL-1). Conclusion Omani propolis is different form the known propolis types and demonstrates significant chemical diversity. Its most important plant source is the resin of Azadirachta indica, and as a result its typical components are С5-prenyl flavanones. Other plant sources have been identified, too, playing some role in resin collection by bees in Oman: Acacia spp

  10. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview

    PubMed Central

    Simlai, Aritra; Roy, Amit

    2013-01-01

    This review represents the studies performed on some beneficial mangrove plants such as Ceriops decandra, Xylocarpus granatum, Xylocarpus moluccensis, Excoecaria agallocha, Sarcolobus globosus, Sonneratia caseolaris and Acanthus ilicifolius from the Sundarban estuary spanning India and Bangladesh with regard to their biological activities and chemical investigations till date. Sundarban is the largest single chunk of mangrove forest in the world. The forest is a source of livelihood to numerous people of the region. Several of its plant species have very large applications in the traditional folk medicine; various parts of these plants are used by the local people as cure for various ailments. Despite such enormous potential, remarkably few reports are available on these species regarding their biological activities and the active principles responsible for such activities. Though some chemical studies have been made on the mangrove plants of this estuary, reports pertaining to their activity-structure relationship are few in number. An attempt has been made in this review to increase the awareness for the medicinal significance as well as conservation and utilization of these mangrove species as natural rich sources of novel bioactive agents. PMID:24347925

  11. Antimicrobial Activity and Chemical Composition of Essential Oil From the Seeds of Artemisia aucheri Boiss

    PubMed Central

    Asghari, Gholamreza; Jalali, Mohamad; Sadoughi, Ehsan

    2012-01-01

    Background Artemisia aerial parts are well known for antimicrobial activities including anti malaria. Objectives This study was carried out to evaluate the antimicrobial activity and chemical composition of essential oil from the seeds of Artemisia aucheri Boiss (Asteraceae). Materials and Methods Essential oil was extracted from the powdered seeds of Artemisia aucheri by hydrodistillation. Antimicrobial activity against five bacterial species was tested using the disc diffusion method, and the chemical composition of the essential oil was analyzed by gas chromatography-mass spectrometry (GC-MS). Results The essential oil of Artemisia aucheri seed showed activity against Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. The essential oil constituents identified by GC-MS were as follows: decane, ρ-cymene, 1,8-cineole, linalool, ρ-mentha-8-ol, triene, borneol, lavandulol, bornyl acetate, chrysanthenyl acetate, dehydro aromadenderene, and caryophyllene oxide. Most of these compounds are also found in the aerial parts of Artemisia aucheri. Conclusions Variation in the compositions of essential oils from Artemisia aucheri, and thus variation in the antimicrobial activity of these oils, may be due to the plant parts used for essential oil prepration. PMID:24624145

  12. Pachira glabra Pasq. essential oil: chemical constituents, antimicrobial and insecticidal activities.

    PubMed

    Lawal, Oladipupo A; Ogunwande, Isiaka A; Salvador, Atinuke F; Sanni, Adetayo A; Opoku, Andy R

    2014-01-01

    The chemical composition of essential oil obtained by hydrodistillation of the leaves of Pachira glabra Pasq., (PgEO) has been studied by Gas Chromatography (GC) and Gas Chromatography coupled with Mass Spectrometry (GC/MS). Thirty three constituents representing 98.4% of total contents were identified from the essential oil. The major constituents of oil were limonene (23.2%), β-caryophyllene (14.5%), phtyol (8.5%) and β-bisabolene (6.3%). The antimicrobial activity of the PgEO was evaluated against a panel of ten bacteria and three fungal strain using agar diffusion and broth microdilution methods. Results have shown that the PgEO exhibited moderate to strong antimicrobial activity against the tested microorganisms except Citrobacter youagae, Micrococcus spp. and Proteus spp. The activity zones of inhibition (ZI) and minimum inhibitory concentrations (MIC) ranged between 13.7 mm-24.0 mm and 0.3 mg/mL-2.5 mg/mL, respectively. The insecticidal activity of PgEO was assayed against the adult Sitophilus zeamais. The lethal concentrations (LC50 and LC90) of the PgEO showed it to be toxic against adult S. zeamais at 32.2 and 53.7 mg/mL, respectively. This is the first report on the chemical composition and in vitro biological activities of essential oil of P. glabra growing in Nigeria. PMID:24881772

  13. Biological activities and chemical constituents of some mangrove species from Sundarban estuary: An overview.

    PubMed

    Simlai, Aritra; Roy, Amit

    2013-07-01

    This review represents the studies performed on some beneficial mangrove plants such as Ceriops decandra, Xylocarpus granatum, Xylocarpus moluccensis, Excoecaria agallocha, Sarcolobus globosus, Sonneratia caseolaris and Acanthus ilicifolius from the Sundarban estuary spanning India and Bangladesh with regard to their biological activities and chemical investigations till date. Sundarban is the largest single chunk of mangrove forest in the world. The forest is a source of livelihood to numerous people of the region. Several of its plant species have very large applications in the traditional folk medicine; various parts of these plants are used by the local people as cure for various ailments. Despite such enormous potential, remarkably few reports are available on these species regarding their biological activities and the active principles responsible for such activities. Though some chemical studies have been made on the mangrove plants of this estuary, reports pertaining to their activity-structure relationship are few in number. An attempt has been made in this review to increase the awareness for the medicinal significance as well as conservation and utilization of these mangrove species as natural rich sources of novel bioactive agents. PMID:24347925

  14. SARConnect: A Tool to Interrogate the Connectivity Between Proteins, Chemical Structures and Activity Data

    PubMed Central

    Eriksson, Mats; Nilsson, Ingemar; Kogej, Thierry; Southan, Christopher; Johansson, Martin; Tyrchan, Christian; Muresan, Sorel; Blomberg, Niklas; Bjäreland, Marcus

    2012-01-01

    Abstract The access and use of large-scale structure-activity relationships (SAR) is increasing as the range of targets and availability of bioactive compound-to-protein mappings expands. However, effective exploitation requires merging and normalisation of activity data, mappings to target classifications as well as visual display of chemical structure relationships. This work describes the development of the application “SARConnect” to address these issues. We discuss options for delivery and analysis of large-scale SAR data together with a set of use-cases to illustrate the design choices and utility. The main activity sources of ChEMBL,1 GOSTAR2 and AstraZeneca’s internal system IBIS, had already been integrated in Chemistry Connect.3 For target relationships we selected human UniProtKB/Swiss-Prot4 as our primary source of a heuristic target classification. Similarly, to explore chemical relationships we combined several methods for framework and scaffold analysis into a unified, hierarchical classification where ease of navigation was the primary goal. An application was built on TIBCO Spotfire to retrieve data for visual display. Consequently, users can explore relationships between target, activity and structure across internal, external and commercial sources that encompass approximately 3 million compounds, 2000 human proteins and 10 million activity values. Examples showing the utility of the application are given. PMID:23308082

  15. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  16. The effects of chemically modifying serum apolipoproteins on their ability to activate lipoprotein lipase.

    PubMed Central

    Dodds, P F; Lopez-Johnston, A; Welch, V A; Gurr, M I

    1987-01-01

    Lipoprotein lipase activity was measured in an acetone-dried-powder preparation from rat epididymal adipose tissue using pig serum or pig serum lipoprotein, which had been chemically modified, as activator. Modification of acidic amino acids of lipoproteins with NN-dimethyl-1,3-diamine resulted in a complete loss of ability to activate lipoprotein lipase. Modification of 34% of lipoprotein arginine groups with cyclohexanedione resulted in the loss of 75% of the activation of lipoprotein lipase; approx. 42% of the original activity was recovered after reversal of the modification. This effect was dependent on the cyclohexanedione concentration. Modification of 48% of lipoprotein lysine groups with malonaldehyde decreased the maximum activation by 20%, but three times as much lipoprotein was required to achieve this. Non-enzymic glycosylation of lipoprotein with glucose, under a variety of conditions resulting in up to 28 nmol of glucose/mg of protein, had no effect upon the ability to activate lipoprotein lipase. In contrast non-enzymic sialylation resulted in a time-dependent loss of up to 60% of ability to activate lipoprotein lipase. Reductive methylation and acetoacetylation of serum did not affect the ability to activate lipoprotein lipase. The results are compared to the effects of similar modifications to low density lipoproteins on receptor-mediated endocytosis. PMID:3593262

  17. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    SciTech Connect

    Kovtun, Maxim Kearsley, Elsabe P. Shekhovtsova, Julia

    2015-06-15

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.

  18. Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure

    PubMed Central

    Hollister, Kyle A.; Conner, Elizabeth S.; Zhang, Xinxing; Spell, Mark; Bernard, Gary M.; Patel, Pratik; de Carvalho, Ana Carolina G.V.; Butcher, Rebecca A.; Ragains, Justin R.

    2015-01-01

    The nematode Caenorhabditis elegans secretes ascarosides, structurally diverse derivatives of the 3,6-dideoxysugar ascarylose, and uses them in chemical communication. At high population densities, specific ascarosides, which are together known as the dauer pheromone, trigger entry into the stress-resistant dauer larval stage. In order to study the structure-activity relationships for the ascarosides, we synthesized a panel of ascarosides and tested them for dauer-inducing activity. This panel includes a number of natural ascarosides that were detected in crude pheromone extract, but as yet have no assigned function, as well as many unnatural ascaroside derivatives. Most of these ascarosides, some of which have significant structural similarity to the natural dauer pheromone components, have very little dauer-inducing activity. Our results provide a primer to ascaroside structure-activity relationships and suggest that slight modifications to ascaroside structure dramatically influence binding to the relevant G protein-coupled receptors that control dauer formation. PMID:23920482

  19. Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene

    SciTech Connect

    Ania, C.O.; Bandosz, T.J.

    2005-08-16

    The performance of various activated carbons obtained from different carbon precursors (i.e., plastic waste, coal, and wood) as adsorbents for the desulfurization of liquid hydrocarbon fuels was evaluated. To increase surface heterogeneity, the carbon surface was modified by oxidation with ammonium persulfate. The results showed the importance of activated carbon pore sizes and surface chemistry for the adsorption of dibenzothiophene (DBT) from liquid phase. Adsorption of DBT on activated carbons is governed by two types of contributions: physical and chemical interactions. The former include dispersive interactions in the microporous network of the carbons. While the volume of micropores governs the amount physisorbed, mesopores control the kinetics of the process. On the other hand, introduction of surface functional groups enhances the performance of the activated carbons as a result of specific interactions between the acidic centers of the carbon and the basic structure of DBT molecule as well as sulfur-sulfur interactions.

  20. Chemical Signals of Synthetic Disaccharide Derivatives Dominate Rhamnolipids at Controlling Multiple Bacterial Activities.

    PubMed

    Singh, Nischal; Shetye, Gauri S; Zheng, Hewen; Sun, Jiayue; Luk, Yan-Yeung

    2016-01-01

    Microbes secrete molecules that modify their environment. Here, we demonstrate a class of synthetic disaccharide derivatives (DSDs) that mimics and dominates the activity of naturally secreted rhamnolipids by Pseudomonas aeruginosa. The DSDs exhibit the dual function of activating and inhibiting the swarming motility through a concentration-dependent activity reversal that is characteristic of signaling molecules. Whereas DSDs tethered with a saturated farnesyl group exhibit inhibition of both biofilm formation and swarming motility, with higher activities than rhamnolipids, a saturated farnesyl tethered with a sulfonate group only inhibits swarming motility but promote biofilm formation. These results identified important structural elements for controlling swarming motility, biofilm formation, and bacterial adhesion and suggest an effective chemical approach to control intertwined signaling processes that are important for biofilm formation and motilities. PMID:26511780

  1. Pattern formation in chemically interacting active rotors with self-propulsion.

    PubMed

    Liebchen, Benno; Cates, Michael E; Marenduzzo, Davide

    2016-09-21

    We demonstrate that active rotations in chemically signalling particles, such as autochemotactic E. coli close to walls, create a route for pattern formation based on a nonlinear yet deterministic instability mechanism. For slow rotations, we find a transient persistence of the uniform state, followed by a sudden formation of clusters contingent on locking of the average propulsion direction by chemotaxis. These clusters coarsen, which results in phase separation into a dense and a dilute region. Faster rotations arrest phase separation leading to a global travelling wave of rotors with synchronized roto-translational motion. Our results elucidate the physics resulting from the competition of two generic paradigms in active matter, chemotaxis and active rotations, and show that the latter provides a tool to design programmable self-assembly of active matter, for example to control coarsening. PMID:27526180

  2. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China

    PubMed Central

    Liang, Linghong; Wu, Xiangyang; Zhu, Maomao; Zhao, Weiguo; Li, Fang; Zou, Ye; Yang, Liuqing

    2012-01-01

    Background: Mulberry (Morus, Moraceae) is widely distributed in the temperate, subtropical, or tropical regions of the world, while there are no conclusive reports on the chemical composition, nutritional value, and antioxidant properties of mulberry cultivars from China. Objective: To investigate chemical properties and to determine proximate nutritive compounds of the eight mulberry cultivars. Materials and Methods: Chemical properties (including moisture, ash, total dry matter, total soluble solids, pH, and total titratable acidity) of the eight mulberry cultivars were investigated. Proximate nutritive compounds (including crude protein, crude fat, mineral elements, total anthocyanins, total polyphenols, total flavonoids, and total sugars) were also determined. Results: The results indicated that the moisture contents were 70.0-87.4%, the crude protein contents 1.62-5.54%, and the crude fat contents from 1.23-2.23%. The major fatty acids in mulberry fruits were linoleic acid (C18:2) and palmitic acid (C16:0), 26.40-74.77% and 9.29-22.26%, respectively. Mulberry fruit is also a good source of minerals and the potassium content (521.37-1718.60 mg/100g DW) is especially higher than that of other elements. Compared with other species, the Morus atropurpurea Roxb. had relatively high total polyphenols content (189.67-246.00 mg GAE/100mg) and anthocyanins content (114.67-193.00 mg/100mg). There was a good linear correlation between antioxidant activity and total polyphenols content. Conclusion: Significant differences of the chemical composition, nutritional value, and antioxidant activities among the mulberry cultivars were observed, the Morus atropurpurea Roxb. showed considerable high nutritional value and antioxidant activity which could be developed for functional food that benefits human health. PMID:23060696

  3. The chemical precipitation of nickel on ion exchangers and active carbons

    NASA Astrophysics Data System (ADS)

    Khorol'Skaya, S. V.; Zolotukhina, E. V.; Polyanskii, L. N.; Peshkov, S. V.; Kravchenko, T. A.; Krysanov, V. A.

    2010-12-01

    The chemical precipitation of nickel in the form of poorly soluble precipitates in ion exchanger matrices and on active carbons from solutions of nickel chloride and chemical nickel plating electrolytes was studied. The sorption of nickel ions from a solution of nickel chloride occurs most effectively on Purolite D24002 macroporous chelate forming ion exchanger, KU-23-15/100 sulfo cation exchanger, and KU-2-8 gel sulfo cation exchanger. Nickel enters sulfo cation exchangers in the form of counterions, and is adsorbed on Purolite D24002 largely because of complex formation. The subsequent precipitation of nickel in the solid state in matrix pores liberates ionogenic centers, which allows repeated sorption cycles to be performed. After three chemical precipitation cycles under static conditions, the amount of nickel is higher by 170-250% than the ion exchange capacity of the sorbents. The electrolyte of chemical nickel plating contains nickel predominantly in the form of negatively charged and neutral complexes with glycine, which cannot form bonds with the matrices under study. It is therefore reasonable to perform sorption at decreased solution pH values.

  4. Toxmatch--a chemical classification and activity prediction tool based on similarity measures.

    PubMed

    Gallegos-Saliner, Ana; Poater, Albert; Jeliazkova, Nina; Patlewicz, Grace; Worth, Andrew P

    2008-11-01

    Chemical similarity forms the underlying basis for the development of (Quantitative) Structure-Activity Relationships ((Q)SARs), expert systems and chemical groupings. Recently a new software tool to facilitate chemical similarity calculations named Toxmatch was developed. Toxmatch encodes a number of similarity indices to help in the systematic development of chemical groupings, including endpoint specific groupings and read-across, and the comparison of model training and test sets. Two rule-based classification schemes were additionally implemented, namely: the Verhaar scheme for assigning mode of action for aquatic toxicants and the BfR rulebase for skin irritation and corrosion. In this study, a variety of different descriptor-based similarity indices were used to evaluate and compare the BfR training set with respect to its test set. The descriptors utilised in this comparison were the same as those used to derive the original BfR rules i.e. the descriptors selected were relevant for skin irritation/corrosion. The Euclidean distance index was found to be the most predictive of the indices in assessing the performance of the rules. PMID:18617309

  5. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, L.B.; Brown, G.K.; Nettesheim, T.G.; Murphy, E.W.; Bartell, S.E.; Schoenfuss, H.L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 ??g/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4- tert-octylphenol, and 4- tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 ??g/L). The biogenic steroidal hormones 17??-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 ??g/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish

  6. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream.

    PubMed

    Barber, Larry B; Brown, Gregory K; Nettesheim, Todd G; Murphy, Elizabeth W; Bartell, Stephen E; Schoenfuss, Heiko L

    2011-10-15

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which >80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (>100μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (<5μg/L). The biogenic steroidal hormones 17β-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (<0.005μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited

  7. Egyptian propolis: 3. Antioxidant, antimicrobial activities and chemical composition of propolis from reclaimed lands.

    PubMed

    Hegazi, Ahmed G; Abd El Hady, Faten K

    2002-01-01

    The free radical scavenging effect of two propolis samples collected from reclaimed land, Egypt as well as of vitamin C and caffeic acid in 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical system was determined. The antimicrobial (Staphylococcus aureus; Escherichia coli and Candida albicans) activity was also investigated. The results of the free radical scavenging effect of El-Saff and Ismailia propolis showed a concentration-dependent activity. The antioxidant activity was varied according to the examined material. It was obvious that caffeic acid and vitamin C showed the highest activity if compared with the propolis samples. El- Saff propolis had a higher antioxidant activity than Ismailia propolis, it showed a higher antibacterial activity against Staphylococcus aureus and a higher anti-fungal activity against Candida albicans. While the Ismailia propolis had a higher antibacterial activity against Escherichia coli, than El-Saff propolis. The chemical composition of propolis samples was investigated by GC/MS, where 75 compounds were identified, 22 being new for propolis. The Ismailia propolis was characterized by the presence of a highly significant amount of aromatic acid esters (47.3%) and triterpenoids (17.3%), while El-Saff propolis contained 3% and 1.9% respectively. The new esters belonged to 4-methoxyhydrocinnamic acid, hydroferulic acid and ferulic acid. El-Saff propolis had a very high significant amount (27%) of 2,6-bis-(pentanyloxy)-4-pentanylphenethanol, which is also a new compound for propolis. PMID:12064746

  8. Chemical Profiling Using Uplc Q-Tof/Ms and Antioxidant Activities of Fortunella Fruits.

    PubMed

    Tan, Si; Zhao, Xijuan; Yang, Ying; Ke, Zunli; Zhou, Zhiqin

    2016-07-01

    The fruits of Fortunella Swingle are widely consumed as fresh fruits and traditional medicine in China. China is the origin center and has the largest cultivated area of the genus Fortunella. In this study, the chemical compositions of ethanol extracts of the major Fortunella cultivated types including Fortunella japonica Swingle, Fortunella margarita Swingle, Fortunella crassifolia Swingle 1 (Lanshang) and Fortunella crassifolia Swingle 2 (Liuyang) were determined using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC Q-TOF/MS) method, and their antioxidant activities were evaluated. 12 compounds were identified and 5 compounds were tentatively characterized. The results showed that the chemical compositions of the ethanol extracts of 4 Fortunella cultivated types were largely the same. 3', 5'-di-C-glucopyranosylphloretin was the predominant flavonoid in Fortunella fruits, and Fortunella margarita Swingle had higher contents of flavonoids than other species. In addition, the data demonstrated high antioxidant activities of Fortunella fruits. The developed method could be available to rapidly analyze the chemical compounds in Fortunella fruits and its products. This study will provide information for further quality assessment and utilization of Fortunella resources. PMID:27243926

  9. Chemical composition and antioxidant activity of a Lebanese plant Euphorbia macroclada schyzoceras

    PubMed Central

    Farhan, Hussein; Rammal, Hassan; Hijazi, Akram; Daher, Ahmad; Reda, Mohamad; Annan, Hussein; Chokr, Ali; Bassal, Ali; Badran, Bassam; Ghaloub, Abdulameer Nasser

    2013-01-01

    Objective To determine the chemical composition, total phenolic and total flavonoid contents of the crude extracts from leaves and stems of a Lebanese plant Euphorbia macroclada schyzoceras (E. macroclada), and to evaluate their antioxidant potential using DPPH, H2O2, and chelating of ferrous ions tests. Methods Quantification of the total phenolic and total flavonoid contents of the crude extracts from leaves and stems and the antioxidant activities were evaluated using spectrophotometric analyses. The chemical composition has been estimated using different techniques such as IR, LC/MS and NMR. Results Ethanolic extract from leaves of E. macroclada was better than aqueous extract and showed higher content in total phenolic and total flavonoid than found in the stems. On the other hand, using DPPH and H2O2 tests, this extract from leaves showed higher antioxidant capacity than aqueous extract. However, using the chelating of ferrous ions test, the antioxidant activity of the aqueous extract of both stems and leaves was stronger than that of ethanolic once. The chemical composition of the whole plant showed the presence of some aromatic compounds and fatty acids. Conclusions Both ethanolic and water extracts from both parts of this plant are effective and have good antioxidant power. So, this plant can be used in the prevention of a number of diseases related to oxidative stress. PMID:23836193

  10. Active coherent laser spectrometer for remote detection and identification of chemicals

    NASA Astrophysics Data System (ADS)

    MacLeod, Neil A.; Weidmann, Damien

    2012-10-01

    Currently, there exists a capability gap for the remote detection and identification of threat chemicals. We report here on the development of an Active Coherent Laser Spectrometer (ACLaS) operating in the thermal infrared and capable of multi-species stand-off detection of chemicals at sub ppm.m levels. A bench top prototype of the instrument has been developed using distributed feedback mid-infrared quantum cascade lasers as spectroscopic sources. The instrument provides active eye-safe illumination of a topographic target and subsequent spectroscopic analysis through optical heterodyne detection of the diffuse backscattered field. Chemical selectivity is provided by the combination of the narrow laser spectral bandwidth (typically < 2 MHz) and frequency tunability that allows the recording of the full absorption spectrum of any species within the instrument line of sight. Stand-off detection at distances up to 12 m has been demonstrated on light molecules such as H2O, CH4 and N2O. A physical model of the stand-off detection scenario including ro-vibrational molecular absorption parameters was used in conjunction with a fitting algorithm to retrieve quantitative mixing ratio information on multiple absorbers.

  11. Activities of the Institute of Chemical Processing of Coal at Zabrze

    SciTech Connect

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  12. Altering the interfacial activation mechanism of a lipase by solid-phase selective chemical modification.

    PubMed

    López-Gallego, Fernando; Abian, Olga; Guisán, Jose Manuel

    2012-09-01

    This study presents a combined protein immobilization, directed mutagenesis, and site-selective chemical modification approach, which was used to create a hyperactivated semisynthetic variant of BTL2. Various alkane chains were tethered at three different positions in order to mimic the lipase interfacial activation exogenously triggered by detergents. Optimum results were obtained when a dodecane chain was introduced at position 320 by solid-phase site-selective chemical modification. The resulting semisynthetic variant showed a 2.5-fold higher activity than the wild-type nonmodified variant in aqueous conditions. Remarkably, this is the maximum hyperactivation ever observed for BTL2 in the presence of detergents such as Triton X-100. We present evidence to suggest that the endogenous dodecane chain hyperactivates the enzyme in a similar fashion as an exogenous detergent molecule. In this way, we also observe a faster irreversible enzyme inhibition and an altered detergent sensitivity profile promoted by the site-selective chemical modification. These findings are also supported by fluorescence studies, which reveal that the structural conformation changes of the semisynthetic variant are different to those of the wild type, an effect that is more pronounced in the presence of detergent. Finally, the optimal immobilized semisynthetic variant was successfully applied to the selective synthesis of oxiran-2-yl butyrate. Significantly, this biocatalyst is 12-fold more efficient than the immobilized wild-type enzyme, producing the S-enantiomer with higher enantiospecificity (ee = 92%). PMID:22876885

  13. Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals.

    PubMed

    Woo, Y T; Lai, D Y; Argus, M F; Arcos, J C

    1995-09-01

    Since the inception of Section 5 (Premanufacturing/Premarketing Notification, PMN) of the Toxic Substances Control Act (TSCA), structure-activity relationship (SAR) analysis has been effectively used by U.S. Environmental Protection Agency's (EPA) Structure Activity Team (SAT) in the assessment of potential carcinogenic hazard of new chemicals for which test data are not available. To capture, systematize and codify the Agency's predictive expertise in order to make it more widely available to assessors outside the TSCA program, a cooperative project was initiated to develop a knowledge rule-based expert system to mimic the thinking and reasoning of the SAT. In this communication, we describe the overall structure of this expert system, discuss the scientific bases and principles of SAR analysis of chemical carcinogens used in the development of SAR knowledge rules, and delineate the major factors/rules useful for assessing the carcinogenic potential of fibers, polymers, metals/metalloids and several major classes of organic chemicals. An integrative approach using available short-term predictive tests and non-cancer toxicological data to supplement SAR analysis has also been described. PMID:7570659

  14. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis

    PubMed Central

    Machado, Christiane Schineider; Mokochinski, João Benhur; de Lira, Tatiana Onofre; de Oliveira, Fátima de Cassia Evangelista; Cardoso, Magda Vieira; Ferreira, Roseane Guimarães; Sawaya, Alexandra Christine Helena Frankland; Ferreira, Antonio Gilberto; Pessoa, Cláudia; Cuesta-Rubio, Osmany; Monteiro, Marta Chagas; de Campos, Mônica Soares

    2016-01-01

    The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing 1H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated. PMID:27525023

  15. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis.

    PubMed

    Machado, Christiane Schineider; Mokochinski, João Benhur; de Lira, Tatiana Onofre; de Oliveira, Fátima de Cassia Evangelista; Cardoso, Magda Vieira; Ferreira, Roseane Guimarães; Sawaya, Alexandra Christine Helena Frankland; Ferreira, Antonio Gilberto; Pessoa, Cláudia; Cuesta-Rubio, Osmany; Monteiro, Marta Chagas; de Campos, Mônica Soares; Torres, Yohandra Reyes

    2016-01-01

    The chemical composition and biological activity of a sample of yellow propolis from Mato Grosso do Sul, Brazil (EEP-Y MS), were investigated for the first time and compared with green, brown, and red types of Brazilian propolis and with a sample of yellow propolis from Cuba. Overall, EEP-Y MS had different qualitative chemical profiles, as well as different cytotoxic and antimicrobial activities when compared to the other types of propolis assessed in this study and it is a different chemotype of Brazilian propolis. Absence of phenolic compounds and the presence of mixtures of aliphatic compounds in yellow propolis were determined by analysing (1)H-NMR spectra and fifteen terpenes were identified by GC-MS. EEP-Y MS showed cytotoxic activity against human tumour strain OVCAR-8 but was not active against Gram-negative or Gram-positive bacteria. Our results confirm the difficulty of establishing a uniform quality standard for propolis from diverse geographical origins. The most appropriate pharmacological applications of yellow types of propolis must be further investigated. PMID:27525023

  16. Chemical Diversity and Antimicrobial Activity of Salvia multicaulis Vahl Essential Oils.

    PubMed

    Fahed, Layal; Stien, Didier; Ouaini, Naïm; Eparvier, Véronique; El Beyrouthy, Marc

    2016-05-01

    The chemical compositions and antimicrobial activities of the essential oils (EOs) of aerial parts of Salvia multicaulis Vahl, collected during the same week from two different Lebanese regions, were investigated. The EOs were obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC and GC/MS analyses. The minimum inhibitory concentrations of these EOs were determined against one Gram-negative and two Gram-positive bacteria, one yeast, and five dermatophytes using the broth microdilution technique. One EO was notably active against Staphylococcus aureus, methicillin-resistant S. aureus, and all of the Trichophyton species tested. Nerolidol was found to be the major compound in the active oil; nerolidol was also absent from the inactive oil. This study demonstrated that nerolidol shows antimicrobial activity and therefore significantly contributes to the antimicrobial potential of the oil. The chemical diversity of worldwide S. multicaulis EOs was analyzed, revealing that the EOs of this study belong to two different chemotypes found in the literature. The nerolidol chemotype appears to be restricted to Lebanon, and it can be used as antimicrobial agent against external bacterial and fungal infections. PMID:27038067

  17. Chemical composition and antioxidant, antimicrobial, and antifungal activities of the essential oil of Achillea ligustica all.

    PubMed

    Tuberoso, Carlo I G; Kowalczyk, Adam; Coroneo, Valentina; Russo, Maria Teresa; Dessì, Sandro; Cabras, Paolo

    2005-12-28

    The chemical composition of the essential oil from flowering tops of Achillea ligustica All. was studied. Samples were collected in different localities of Sardinia (Italy) and hydrodistilled both with Clevenger-type and with simultaneous distillation-extraction apparatus. The yields ranged between 0.88 +/- 0.06 and 0.43 +/- 0.02% (vol/dry wt). The essential oils were analyzed by GC-MS, and a total of 96 components were detected. From a qualitative point of view, irrelevant differences between samples were observed. Strong chemical variability depending on the origin of the samples was observed. The major compounds found were santolina alcohol (6.7-21.8%, for the first time detected in A. ligustica), borneol (3.4-20.8%), sabinol (2.1-15.5%), trans-sabinyl acetate (0.9-17.6%), alpha-thujone (0.4-25.8%), and, among sesquiterpenes, viridiflorol (0.7-3.6%). No significant differences were detected between essential oils extracted by hydrodistillation and simultaneous distillation-extraction with CH2Cl2 and n-hexane. Antioxidant activity as DPPH radical scavenging activity was expressed in TEAC and ranged between 0.40 and 0.88 mmol/L. The antimicrobial and antifungal activities were investigated on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Penicillium commune, Fusarium oxysporum, Rizoctonia solani, and Aspergillus flavus, showing low activity. PMID:16366708

  18. Automated Structure-Activity Relationship Mining: Connecting Chemical Structure to Biological Profiles.

    PubMed

    Wawer, Mathias J; Jaramillo, David E; Dančík, Vlado; Fass, Daniel M; Haggarty, Stephen J; Shamji, Alykhan F; Wagner, Bridget K; Schreiber, Stuart L; Clemons, Paul A

    2014-06-01

    Understanding the structure-activity relationships (SARs) of small molecules is important for developing probes and novel therapeutic agents in chemical biology and drug discovery. Increasingly, multiplexed small-molecule profiling assays allow simultaneous measurement of many biological response parameters for the same compound (e.g., expression levels for many genes or binding constants against many proteins). Although such methods promise to capture SARs with high granularity, few computational methods are available to support SAR analyses of high-dimensional compound activity profiles. Many of these methods are not generally applicable or reduce the activity space to scalar summary statistics before establishing SARs. In this article, we present a versatile computational method that automatically extracts interpretable SAR rules from high-dimensional profiling data. The rules connect chemical structural features of compounds to patterns in their biological activity profiles. We applied our method to data from novel cell-based gene-expression and imaging assays collected on more than 30,000 small molecules. Based on the rules identified for this data set, we prioritized groups of compounds for further study, including a novel set of putative histone deacetylase inhibitors. PMID:24710340

  19. Chemical Compositions and Antimicrobial Activities of Ocimum sanctum L. Essential Oils at Different Harvest Stages

    PubMed Central

    Saharkhiz, Mohammad Jamal; Kamyab, Amir Alam; Kazerani, Narges Khatoon; Zomorodian, Kamiar; Pakshir, Keyvan; Rahimi, Mohammad Javad

    2014-01-01

    Background: Essential Oils (EOs) possess antibacterial properties and represent a natural source to treat infections and prevent food spoilage. Their chemical composition might be affected by the environmental condition and the developmental growth stages of the plant. Objectives: The current study aimed to determine the variations in chemical compositions and antimicrobial activities of the EOs of Ocimum sanctum L. at different stages of harvesting. Materials and Methods: The oils constituents were analyzed by gas chromatography/mass spectrometry (GC/MS). The effects of three different harvest stages of O. sanctum EOs against most common causes of food-borne were evaluated by broth micro-dilution method as recommended by the Clinical and Laboratory Standards Institute (CLSI). Results: The analysis of the EOs indicated that eugenol was the major compound of the EOs at all developmental stages which reached its maximum level at the second stage. The results showed that the tested EOs exhibited antimicrobial activities against all of the examined pathogens at concentrations of 0.125-32 µL/mL, except Pseudomonas aeruginosa which was only inhibited by high concentrations of the floral budding and full flowering EOs. EO distilled from the second developmental growth stage (floral budding) of O. sanctum exhibited the strongest antibacterial activities against the food borne bacteria. Conclusions: Considering the wide range of antimicrobial activities of the examined EOs, they might have the potential to be used to manage infectious diseases or extend the shelf life of food products. PMID:25763132

  20. The chemical origin and catalytic activity of coinage metals: from oxidation to dehydrogenation.

    PubMed

    Syu, Cih-Ying; Yang, Hao-Wen; Hsu, Fu-Hsing; Wang, Jeng-Han

    2014-04-28

    The high oxidation activity of coinage metals (Cu, Ag and Au) has been widely applied in various important reactions, such as oxidation of carbon monoxide, alkenes or alcohols. The catalytic behavior of those inert metals has mostly been attributable to their size effect, the physical effect. In the present study, the chemical effects on their high oxidation activity have been investigated. We mechanistically examine the direct and oxidative dehydrogenation (partial oxidation) reactions of ethanol to acetaldehyde on a series of transition metals (groups 9, 10 and 11) with identical physical characteristics and varied chemical origins using density functional theory (DFT) calculations and electronic structure analyses at the GGA-PW91 level. The energetic results show that coinage metals have much lower activation energies and higher exothermicities for the oxidative dehydrogenation steps although they have higher energy for the direct dehydrogenation reaction. In the electronic structure analyses, coinage metals with saturated d bands can efficiently donate electrons to O* and OH*, or other electronegative adspecies, and better promote their p bands to higher energy levels. The negatively charged O* and OH* with high-lying p bands are responsible for lowering the energies in oxidative steps. The mechanistic understanding well explains the better oxidation activity of coinage metals and provides valuable information on their utilization in other useful applications, for example, the dehydrogenation process. PMID:24626959

  1. Chemical compositions and antioxidant activities of polysaccharides from the sporophores and cultured products of Armillaria mellea.

    PubMed

    Zhang, Shanshan; Liu, Xiaoqian; Yan, Lihua; Zhang, Qiwei; Zhu, Jingjing; Huang, Na; Wang, Zhimin

    2015-01-01

    Armillaria mellea is a traditional Chinese medicinal and edible mushroom. Many cultured products of A. mellea have been used to develop commercial medicines in recent years. The chemical composition and activities of the major bioactive chemical components-polysaccharides-may be different because of differences in the raw materials used. Four polysaccharides (SP, CMP, CFBP and CFMP) were obtained from wild sporophores and cultured products (including mycelia, fermentation broth and fermentation mixture) of A. mellea. Their yields, carbohydrate contents, monosaccharide compositions, FT-IR spectra, NMR spectroscopy and antioxidant activities were investigated. All of the polysaccharides were composed of xylose, glucose and galactose without protein. Glucose was the dominant monosaccharide in SP, CMP and CFMP, whereas galactose was the dominant monosaccharide in CFBP. SP and CMP showed higher scavenging DPPH• and ABTS•+ activities and reducing power among four polysaccharides. The carbohydrate content and corresponding glucose percentage were positive influences on the antioxidant activities, whereas the corresponding xylose and galactose percentage were negative influences. A. mellea polysaccharides are potential natural antioxidants. Polysaccharides from cultured products, especially mycelia, are good substitutes for SP and are also potential sources for both dietary supplements and food industries. PMID:25838171

  2. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations.

    PubMed

    Afoulous, Samia; Ferhout, Hicham; Raoelison, Emmanuel Guy; Valentin, Alexis; Moukarzel, Béatrice; Couderc, François; Bouajila, Jalloul

    2011-01-01

    Helichrysum gymnocephalum essential oil (EO) was prepared by hydrodistillation of its leaves and characterized by GC-MS and quantified by GC-FID. Twenty three compounds were identified. 1,8-Cineole (47.4%), bicyclosesquiphellandrene (5.6%), γ-curcumene (5.6%), α-amorphene (5.1%) and bicyclogermacrene (5%) were the main components. Our results confirmed the important chemical variability of H. gymnocephalum. The essential oil was tested in vitro for cytotoxic (on human breast cancer cells MCF-7), antimalarial (Plasmodium falciparum: FcB1-Columbia strain, chloroquine-resistant) and antioxidant (ABTS and DPPH assays) activities. H. gymnocephalum EO was found to be active against MCF-7 cells, with an IC(50) of 16 ± 2 mg/L. The essential oil was active against P. falciparum (IC(50) = 25 ± 1 mg/L). However, the essential oil exhibited a poor antioxidant activity in the DPPH (IC(50) value > 1,000 mg/L) and ABTS (IC(50) value = 1,487.67 ± 47.70 mg/L) assays. We have reviewed the existing results on the anticancer activity of essential oils on MCF-7 cell line and on their antiplasmodial activity against the P. falciparum. The aim was to establish correlations between the identified compounds and their biological activities (antiplasmodial and anticancer). β-Selinene (R² = 0.76), α-terpinolene (R² = 0.88) and aromadendrene (R² = 0.90) presented a higher relationship with the anti-cancer activity. However, only calamenene (R² = 0.70) showed a significant correlation for the antiplasmodial activity. PMID:21959299

  3. Peroxisome induction potential and lipid-regulating activity in rats. Quantitative microscopy and chemical structure-activity relationships.

    PubMed Central

    McGuire, E. J.; Lucas, J. A.; Gray, R. H.; de la Iglesia, F. A.

    1991-01-01

    Structurally diverse lipid-regulating agents induce hepatomegaly, hepatic peroxisome proliferation, and hepatocarcinoma in rats by mechanisms not fully understood. Nevertheless the initial hepatic response is a prompt, florid proliferation of peroxisomes. In investigations reported here, changes in the rat hepatic peroxisome compartment were measured by quantitative microscopy to determine chemical structure requirements that relate to peroxisome proliferation and lipid regulation. Aryloxyalkanoic acids plus amide analogs, and thio, benzimidazole, phenylpiperazine, and oxazole derivatives induced peroxisome proliferation and generally decreased plasma triglyceride and total cholesterol levels. These compounds contain an acidic function or are readily metabolized to a chemical with an acidic function. Substitution of the acidic function with an adamantyloxy eliminated peroxisome proliferation and induced contrasting effects on lipid profile, increasing triglycerides and decreasing total cholesterol. A previously unreported, direct correlation emerged between peroxisome proliferation and plasma high-density lipoprotein-cholesterol levels. These effects could not be elicited separately, negating identification of functional groups that could be associated with either activity. Chemical structure and resulting peroxisome proliferation with changes in plasma lipoproteins are therefore closely interrelated in rats. Images Figure 1 PMID:1853935

  4. Chemically induced enucleation of activated bovine oocytes: chromatin and microtubule organization and production of viable cytoplasts.

    PubMed

    Saraiva, Naiara Zoccal; Oliveira, Clara Slade; Leal, Cláudia Lima Verde; de Lima, Marina Ragagnin; Del Collado, Maite; Vantini, Roberta; Monteiro, Fabio Morato; Niciura, Simone Cristina Méo; Garcia, Joaquim Mansano

    2015-12-01

    As the standard enucleation method in mammalian nuclear transfer is invasive and damaging to cytoplast spatial organization, alternative procedures have been developed over recent years. Among these techniques, chemically induced enucleation (IE) is especially interesting because it does not employ ultraviolet light and reduces the amount of cytoplasm eliminated during the procedure. The objective of this study was to optimize the culture conditions with demecolcine of pre-activated bovine oocytes for chemically IE, and to evaluate nuclear and microtubule organization in cytoplasts obtained by this technique and their viability. In the first experiment, a negative effect on oocyte activation was verified when demecolcine was added at the beginning of the process, reducing activation rates by approximately 30%. This effect was not observed when demecolcine was added to the medium after 1.5 h of activation. In the second experiment, although a reduction in the number of microtubules was observed in most oocytes, these structures did not disappear completely during assessment. Approximately 50% of treated oocytes presented microtubule reduction at the end of the evaluation period, while 23% of oocytes were observed to exhibit the complete disappearance of these structures and 28% exhibited visible microtubules. These findings indicated the lack of immediate microtubule repolymerization after culture in demecolcine-free medium, a fact that may negatively influence embryonic development. However, cleavage rates of 63.6-70.0% and blastocyst yield of 15.5-24.2% were obtained in the final experiment, without significant differences between techniques, indicating that chemically induced enucleation produces normal embryos. PMID:25318529

  5. Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system.

    PubMed

    Mahara, Hitoshi; Okada, Koichi; Nomura, Atsushi; Miike, Hidetoshi; Sakurai, Tatsunari

    2009-07-01

    We found a rotating global structure induced by the dynamical force of local chemical activity in a thin solution layer of excitable Belousov-Zhabotinsky reaction coupled with diffusion. The surface flow and deformation associated with chemical spiral waves (wavelength about 1 mm) represents a global unidirectional structure and a global tilt in the entire Petri dish (100 mm in diameter), respectively. For these observations, we scanned the condition of hierarchal pattern selection. From this result, the bromomalonic acid has an important role to induce the rotating global structure. An interaction between a reaction-diffusion process and a surface-tension-driven effect leads to such hierarchal pattern with different scales. PMID:19658764

  6. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    PubMed

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  7. Activation of Aluminum as an Effective Reducing Agent by Pitting Corrosion for Wet-chemical Synthesis

    PubMed Central

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F−, Cl−, and Br− in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu2Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  8. Air-activated chemical warming devices: effects of oxygen and pressure.

    PubMed

    Raleigh, G; Rivard, R; Fabus, S

    2005-01-01

    Air-activated chemical warming devices use an exothermic chemical reaction of rapidly oxidizing iron to generate heat for therapeutic purposes. Placing these products in a hyperbaric oxygen environment greatly increases the supply of oxidant and thus increases the rate of reaction and maximum temperature. Testing for auto-ignition and maximum temperatures attained by ThermaCare Heat Wraps, Playtex Heat Therapy, and Heat Factory disposable warm packs under ambient conditions and under conditions similar to those encountered during hyperbaric oxygen treatments in monoplace and multiplace hyperbaric chambers (3 atm abs and > 95% oxygen) revealed a maximum temperature of 269 degrees F (132 degrees C) with no spontaneous ignition. The risk of thermal burn injury to adjacent skin may be increased significantly if these devices are used under conditions of hyperbaric oxygen. PMID:16509287

  9. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    SciTech Connect

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  10. In vivo monitoring of chemically evoked activity patterns in the rat trigeminal ganglion

    PubMed Central

    Lübbert, Matthias; Kyereme, Jessica; Rothermel, Markus; Wetzel, Christian H.; Hoffmann, Klaus-Peter; Hatt, Hanns

    2013-01-01

    Albeit lacking a sense of smell, anosmic patients maintain a reduced ability to distinguish different volatile chemicals by relying exclusively on their trigeminal system (TS). To elucidate differences in the neuronal representation of these volatile substances in the TS, we performed voltage-sensitive dye imaging (VSDI) in the rat trigeminal ganglion (TG) in vivo. We demonstrated that stimulus-specific patterns of bioelectrical activity occur within the TG upon nasal administration of ten different volatile chemicals. With regard to spatial differences between the evoked trigeminal response patterns, these substances could be sorted into three groups. Signal intensity and onset latencies were also dependent on the administered stimulus and its concentration. We conclude that particular compounds detected by the TS are represented by (1) a specific spatial response pattern, (2) the signal intensity, and (3) onset latencies within the pattern. Jointly, these trigeminal representations may contribute to the surprisingly high discriminative skills of anosmic patients. PMID:24115922

  11. Chemical characterization and biological activity of Macfadyena unguis-cati (Bignoniaceae).

    PubMed

    Duarte, D S; Dolabela, M F; Salas, C E; Raslan, D S; Oliveiras, A B; Nenninger, A; Wiedemann, B; Wagner, H; Lombardi, J; Lopes, M T

    2000-03-01

    Macfadyena unguis-cati (L.) has been widely used in folk medicine as an anti-inflammatory, antimalarial and antivenereal. The purpose of this study was to chemically characterize the main plant components, and to evaluate the biological properties of some of the fractions derived from leaves (MACb) and liana (MACa) of this plant. Chemical characterization allowed the identification of the compounds corymboside, vicenin-2, quercitrin, chlorogenic acid, isochlor