Science.gov

Sample records for ahr agonist activity

  1. Characterization of AhR agonists reveals antagonistic activity in European herring gull (Larus argentatus) eggs.

    PubMed

    Muusse, Martine; Christensen, Guttorm; Gomes, Tânia; Kočan, Anton; Langford, Katherine; Tollefsen, Knut Erik; Vaňková, Lenka; Thomas, Kevin V

    2015-05-01

    European herring gull (Larus argentatus) eggs from two Norwegian islands, Musvær in the south east and Reiaren in Northern Norway, were screened for dioxins, furans, and dioxin-like and selected non-dioxin-like polychlorinated biphenyls (PCBs), and subjected to non-target analysis to try to identify the aryl hydrocarbon receptor (AhR) agonists, responsible for elevated levels measured using the dioxin responsive chemically activated luciferase expression (DR-CALUX) assay. Eggs from Musvær contained chemically calculated toxic equivalent (WHO TEQ) levels of between 109 and 483 pg TEQ/g lw, and between 82 and 337 pg TEQ/g lw was determined in eggs from Reiaren. In particular PCB126 contributed highly to the total TEQ (69-82%). In 19 of the 23 samples the calculated WHO TEQ was higher than the TEQCALUX. Using CALUX specific relative effect potencies (REPs), the levels were lower at between 77 and 292 pg/g lw in eggs from Musvær and between 55 and 223 pg/g lw in eggs from Reiaren, which was higher than the TEQCALUX in 16 of the 23 samples. However, the means of the REP values and the TEQCALUX were not significantly different. This suggests the presence of compounds that can elicit antagonist effects, with a low binding affinity to the AhR. Non-target analysis identified the presence of hexachlorobenzene (HCB) (quantified at 9.6-185 pg/g lw) but neither this compound nor high concentrations of PCB126 and non-dioxin-like PCBs could explain the differences between the calculated TEQ or REP values and the TEQCALUX. Even though, for most AhR agonists, the sensitivity of herring gulls is not known, the reported levels can be considered to represent a risk for biological effects in the developing embryo, compared to LC50 values in chicken embryos. For human consumers of herring gull eggs, these eggs contain TEQ levels up to four times higher than the maximum tolerable weekly intake.

  2. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  3. Aryl hydrocarbon receptor (AHR)-active pharmaceuticals are selective AHR modulators in MDA-MB-468 and BT474 breast cancer cells.

    PubMed

    Jin, Un-Ho; Lee, Syng-ook; Safe, Stephen

    2012-11-01

    Leflunomide, flutamide, nimodipine, mexiletine, sulindac, tranilast, 4-hydroxytamoxifen, and omeprazole are pharmaceuticals previously characterized as aryl hydrocarbon receptor (AHR) agonists in various cell lines and animal models. In this study, the eight AHR-active pharmaceuticals were investigated in highly aggressive aryl hydrocarbon (Ah)-responsive BT474 and MDA-MB-468 breast cancer cell lines, and their effects on AHR protein, CYP1A1 (protein and mRNA), CYP1B1 (mRNA), and cell migration were determined. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was used as a positive control. The AHR agonist activities of the pharmaceuticals depended on structure, response, and cell context. Most compounds induced one or more AHR-mediated responses in BT474 cells, whereas in Ah-responsive MDA-MB-468 cells effects of the AHR-active pharmaceuticals were highly variable. 4-Hydroxytamoxifen, mexiletine, and tranilast did not induce CYP1A1 in MDA-MB-468 cells; moreover, in combination with TCDD, mexiletine was a potent AHR antagonist, tranilast was a partial antagonist, and 4-hydroxytamoxifen also exhibited some AHR antagonist activity. Omeprazole and, to a lesser extent, sulindac and leflunomide were full and partial AHR agonists, respectively, in both breast cancer cell lines. These data indicate that the AHR-active pharmaceuticals are selective AHR modulators, and applications of these drugs for targeting the AHR must be confirmed by studies using the most relevant cell context. PMID:22879383

  4. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    SciTech Connect

    Wincent, Emma; Stegeman, John J.; Jönsson, Maria E.

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.

  5. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: implications for physiological and toxicological AHR functions

    PubMed Central

    Wincent, Emma; Stegeman, John J.; Jönsson, Maria E.

    2016-01-01

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholine-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes. PMID:25711857

  6. Zebrafish Cardiotoxicity: The Effects of CYP1A Inhibition and AHR2 Knockdown Following Exposure to Weak Aryl Hydrocarbon Receptor Agonists

    PubMed Central

    Clark, Bryan William; Van Tiem Garner, Lindsey; Di Giulio, Richard Thomas

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates many of the toxic effects of dioxin-like compounds (DLCs) and some polycyclic aromatic hydrocarbons (PAHs). Strong AHR agonists, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, such as benzo[a]pyrene and β-naphthoflavone, have been shown to cause similar cardiotoxic effects when coupled with a cytochrome P450 1A (CYP1A) inhibitor, such as fluoranthene (FL). We sought to determine if weak AHR agonists, when combined with a CYP1A inhibitor (FL) or CYP1A morpholino gene knockdown, are capable of causing cardiac deformities similar to moderately strong AHR agonists (Wassenberg and Di Giulio 2004; Wassenberg and Di Giulio 2004; Billiard, Timme-Laragy et al. 2006; Van Tiem and Di Giulio 2011). The weak AHR agonists included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. The results showed a complex pattern of cardiotoxic response to weak agonist inhibitor exposure and morpholino-knockdown. Danio rerio (zebrafish) embryos were first exposed to weak AHR agonists at equimolar concentrations. The agonists were assessed for their relative potency as inducers of CYP1 enzyme activity, measured by the ethoxyresorufin-o-deethylase (EROD) assay, and cardiac deformities. Carbaryl, 2-methylindole, and 3-methylindole induced the highest CYP1A activity in zebrafish. Experiments were then conducted to determine the individual cardiotoxicity of each compound. Next, zebrafish were co-exposed to each agonist (at concentrations below those determined to be cardiotoxic) and FL in combination to assess if CYP1A inhibition could induce cardiac deformities. Carbaryl, 2-methylindole, 3-methylindole, and phenanthrene significantly increased pericardial edema relative to controls when combined with FL. To further evaluate the

  7. Mono-Substituted Isopropylated Triaryl Phosphate, a Major Component of Firemaster 550, is an AHR Agonist that Exhibits AHR-Independent Cardiotoxicity in Zebrafish

    PubMed Central

    Gerlach, Cory V.; Das, Siba R.; Volz, David C.; Bisson, William H.; Kolluri, Siva K.; Tanguay, Robert L.

    2014-01-01

    Firemaster 550 (FM550) is an additive flame retardant mixture used within polyurethane foam and is increasingly found in house dust and the environment due to leaching. Despite the widespread use of FM550, very few studies have investigated the potential toxicity of its ingredients during early vertebrate development. In the current study, we sought to specifically investigate mono-substituted isopropylated triaryl phosphate (mITP), a component comprising approximately 32% of FM550, which has been shown to cause cardiotoxicity during zebrafish embryogenesis. Previous research showed that developmental defects are rescued using an aryl hydrocarbon receptor (AHR) antagonist (CH223191), suggesting that mITP-induced toxicity was AHR-dependent. As zebrafish have three known AHR isoforms, we used a functional AHR2 knockout line along with AHR1A-and AHR1B-specific morpholinos to determine which AHR isoform, if any, mediates mITP-induced cardiotoxicity. As in silico structural homology modeling predicted that mITP may bind favorably to both AHR2 and AHR1B isoforms, we evaluated AHR involvement in vivo by measuring CYP1A mRNA and protein expression following exposure to mITP in the presence or absence of CH223191 or AHR-specific morpholinos. Based on these studies, we found that mITP interacts with both AHR2 and AHR1B isoforms to induce CYP1A expression. However, while CH223191 blocked mITP-induced CYP1A induction and cardiotoxicity, knockdown of all three AHR isoforms failed to block mITP-induced cardiotoxicity in the absence of detectable CYP1A induction. Overall, these results suggest that, while mITP is an AHR agonist, mITP causes AHR-independent cardiotoxicity through a pathway that is also antagonized by CH223191. PMID:24865613

  8. Teratogenic impact of dioxin-activated AHR in laboratory animals

    EPA Science Inventory

    AHR and ARNT are expressed in mouse and human palatal shelves and in the urinary tract of the mouse fetus. AHR expression, translocation to the nucleus, binding to DRE, and activation are required for mediation of TCDD-induction of CP and HN. Although the human palate requires a ...

  9. Combined chemical and toxicological long-term monitoring for AhR agonists with SPMD-based virtual organisms in drinking water Danjiangkou Reservoir, China.

    PubMed

    Wang, Jingxian; Song, Guoqiang; Li, Aimin; Henkelmann, Bernhard; Pfister, Gerd; Tong, Anthony Z; Schramm, Karl-Werner

    2014-08-01

    SPMD-based virtual organisms (VOs) were employed for time-integrating, long-term sampling combined biological and chemical analyses for exposure assessment of hydrophobic organic pollutants (HOPs) in a drinking water reservoir, China. The SPMDs were deployed at four and five sites in the Danjiangkou (DJK) reservoir over two periods of 26 and 31 d to sequester the hydrophobic contaminants in water. The chosen bioassay response for the extracts of the SPMDs, the induction of 7-ethoxyresorufin-o-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The known aryl hydrocarbon receptor (AhR) agonists PAHs and PCBs were analyzed by HRGC/HRMS instrument. The cause-effect relationship between the observed AhR activities and chemical concentrations of detected AhR agonists was examined. The results show that the extracts from the SPMD samples could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) was not correlated with the bioassay-derived TCDD equivalent (TEQbio). The known AhR agonists could only account for 2-10% of the observed AhR responses among which the contribution of PCBs could almost be neglected. Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent (TCDD-EQ) in SPMD samples from DJK. Based on the first assessment, the VO followed by the combination of chemical and biological analyses emerges as a resource efficient water monitoring device in ecotoxicological assessment for toxicologically relevant compounds which are readily available for uptake by resident aquatic biota in drinking water resources. PMID:24548649

  10. Combined chemical and toxicological long-term monitoring for AhR agonists with SPMD-based virtual organisms in drinking water Danjiangkou Reservoir, China.

    PubMed

    Wang, Jingxian; Song, Guoqiang; Li, Aimin; Henkelmann, Bernhard; Pfister, Gerd; Tong, Anthony Z; Schramm, Karl-Werner

    2014-08-01

    SPMD-based virtual organisms (VOs) were employed for time-integrating, long-term sampling combined biological and chemical analyses for exposure assessment of hydrophobic organic pollutants (HOPs) in a drinking water reservoir, China. The SPMDs were deployed at four and five sites in the Danjiangkou (DJK) reservoir over two periods of 26 and 31 d to sequester the hydrophobic contaminants in water. The chosen bioassay response for the extracts of the SPMDs, the induction of 7-ethoxyresorufin-o-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The known aryl hydrocarbon receptor (AhR) agonists PAHs and PCBs were analyzed by HRGC/HRMS instrument. The cause-effect relationship between the observed AhR activities and chemical concentrations of detected AhR agonists was examined. The results show that the extracts from the SPMD samples could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) was not correlated with the bioassay-derived TCDD equivalent (TEQbio). The known AhR agonists could only account for 2-10% of the observed AhR responses among which the contribution of PCBs could almost be neglected. Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent (TCDD-EQ) in SPMD samples from DJK. Based on the first assessment, the VO followed by the combination of chemical and biological analyses emerges as a resource efficient water monitoring device in ecotoxicological assessment for toxicologically relevant compounds which are readily available for uptake by resident aquatic biota in drinking water resources.

  11. Arylhydrocarbon receptor (AhR) activation in airway epithelial cells induces MUC5AC via reactive oxygen species (ROS) production.

    PubMed

    Chiba, Takahito; Uchi, Hiroshi; Tsuji, Gaku; Gondo, Hisaki; Moroi, Yoichi; Furue, Masutaka

    2011-02-01

    The dioxins and dioxin-like compounds in cigarette smoke regulate various immunological responses via the arylhydrocarbon receptor (AhR). These environmental toxicants are known to cause bronchitis, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have demonstrated that AhR activation upregulates the expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) in the airway epithelial cell line. However, the mechanism for the production of mucin has not been clarified. In this study, we investigated the role and pathway of AhR in airway epithelial cells by using selective agonists and antagonists. After stimulation with or without benzopyrene (B[a]P), an AhR agonist, MUC5AC expression was measured by real-time RT-PCR. The mechanism of AhR-induced MUC5AC expression in airway epithelial cells was studied in terms of the production of cytokine and reactive oxygen species (ROS). Treatment with B[a]P increased ROS generation in NCI-H₂₉₂ cells. Furthermore, B[a]P-induced MUC5AC upregulation and mucin production were inhibited by AhR siRNA or the use of an antioxidative agent. These results suggest that the AhR-induced increase of mucin production is partially mediated by ROS generation. An antioxidant therapy approach may help to cure AhR-induced mucus hypersecretory diseases. PMID:20709182

  12. Cardiac Myocyte-Specific AHR Activation Phenocopies TCDD-Induced Toxicity in Zebrafish

    PubMed Central

    Lanham, Kevin A.; Plavicki, Jessica; Peterson, Richard E.; Heideman, Warren

    2014-01-01

    Exposure of zebrafish embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the zebrafish aryl hydrocarbon receptor 2 (AHR) to produce developmental and cardiovascular toxicity. AHR is found in the heart; however, AHR activation by TCDD is not confined to the heart and occurs throughout the organism. In order to understand the cause of cardiotoxicity, we constructed a constitutively active AHR (caAHR) based on the zebrafish AHR2 and expressed it specifically in cardiomyocytes. We show that AHR activation within the cardiomyocytes can account for the heart failure induced by TCDD. Expression of the caAHR within the heart produced cardiac malformations, loss of circulation, and pericardial edema. The heart-specific activation of AHR reproduced several other well-characterized endpoints of TCDD toxicity outside of the cardiovascular system, including defects in swim bladder and craniofacial development. This work identifies a single cellular site of TCDD action, the myocardial cell, that can account for the severe cardiovascular collapse observed following early life stage exposure to TCDD, and contributes to other forms of toxicity. PMID:25037585

  13. AhR signalling and dioxin toxicity.

    PubMed

    Sorg, Olivier

    2014-10-15

    Dioxins are a family of molecules associated to several industrial accidents such as Ludwigshafen in 1953 or Seveso in 1976, to the Agent Orange used during the war of Vietnam, and more recently to the poisoning of the former president of Ukraine, Victor Yushchenko. These persistent organic pollutants are by-products of industrial activity and bind to an intracellular receptor, AhR, with a high potency. In humans, exposure to dioxins, in particular 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a cutaneous syndrome known as chloracne, consisting in the development of many small skin lesions (hamartoma), lasting for 2-5 years. Although TCDD has been classified by the WHO as a human carcinogen, its carcinogenic potential to humans is not clearly demonstrated. It was first believed that AhR activation accounted for most, if not all, biological properties of dioxins. However, certain AhR agonists found in vegetables do not induce chloracne, and other chemicals, in particular certain therapeutic agents, may induce a chloracne-like syndrome without activating AhR. It is time to rethink the mechanism of dioxin toxicity and analyse in more details the biological events following exposure to these compounds and other AhR agonists, some of which have a very different chemical structure than TCDD. In particular various food-containing AhR agonists are non-toxic and may on the contrary have beneficial properties to human health. PMID:24239782

  14. New CYP1 genes in the frog Xenopus (Silurana) tropicalis: Induction patterns and effects of AHR agonists during development

    SciTech Connect

    Joensson, Maria E.; Berg, Cecilia; Goldstone, Jared V.; Stegeman, John J.

    2011-01-15

    The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), {beta}-naphthoflavone ({beta}NF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versus the control, respectively). {beta}NF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and {beta}NF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 {mu}M PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 {mu}M PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.

  15. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC

    PubMed Central

    Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  16. Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities

    PubMed Central

    Jin, Un-Ho; Lee, Syng-Ook; Sridharan, Gautham; Lee, Kyongbum; Davidson, Laurie A.; Jayaraman, Arul; Chapkin, Robert S.; Alaniz, Robert

    2014-01-01

    The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome. PMID:24563545

  17. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays.

    PubMed

    Wang, Jingxian; Bovee, Toine F H; Bi, Yonghong; Bernhöft, Silke; Schramm, Karl-Werner

    2014-02-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activities. The estrogenic activity was assessed using a rapid yeast estrogen bioassay, based on the expression of a green fluorescent reporter protein. Weak anti-estrogenic activity was detected in sediments from an area close to the dam of the reservoir, and weak estrogenic activities ranging from 0.3 to 1 ng 17β-estradiol (E2) equivalents (EQ) g(-1) dry weight sediment (dw) were detected in sediments from the Wanzhou to Guojiaba areas. In the upstream areas Wanzhou and Wushan, sediments demonstrated additive effects in co-administration of 1 nM E2 in the yeast test system, while sediments from the downstream Badong and Guojiaba areas showed estrogenic activities which seemed to be more than additive (synergistic activity). There was an increasing tendency in estrogenic activity from upstream of TGR to downstream, while this tendency terminated and converted into anti-estrogenic activity in the area close to the dam. The AhR activity was detected employing rat hepatoma cell line (H4IIE). EROD activities were found homogenously distributed in sediments in TGR ranging from 200 to 311 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) EQ g(-1) dw for total AhR agonists and from 45 to 76 pg TCDD EQ g(-1) dw for more persistent AhR agonists. The known AhR agonists polycyclic aromatic hydrocarbon, polychlorinated biphenyl, and PCDD/F only explained up to 8 % of the more persistent AhR agonist activity in the samples, which suggests that unidentified AhR-active compounds represented a great proportion of the TCDD EQ in sediments from TGR. These findings of estrogenic potential and dioxin-like activity in TGR sediments provide possible weight-of-evidence of potential

  18. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays.

    PubMed

    Wang, Jingxian; Bovee, Toine F H; Bi, Yonghong; Bernhöft, Silke; Schramm, Karl-Werner

    2014-02-01

    Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activities. The estrogenic activity was assessed using a rapid yeast estrogen bioassay, based on the expression of a green fluorescent reporter protein. Weak anti-estrogenic activity was detected in sediments from an area close to the dam of the reservoir, and weak estrogenic activities ranging from 0.3 to 1 ng 17β-estradiol (E2) equivalents (EQ) g(-1) dry weight sediment (dw) were detected in sediments from the Wanzhou to Guojiaba areas. In the upstream areas Wanzhou and Wushan, sediments demonstrated additive effects in co-administration of 1 nM E2 in the yeast test system, while sediments from the downstream Badong and Guojiaba areas showed estrogenic activities which seemed to be more than additive (synergistic activity). There was an increasing tendency in estrogenic activity from upstream of TGR to downstream, while this tendency terminated and converted into anti-estrogenic activity in the area close to the dam. The AhR activity was detected employing rat hepatoma cell line (H4IIE). EROD activities were found homogenously distributed in sediments in TGR ranging from 200 to 311 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) EQ g(-1) dw for total AhR agonists and from 45 to 76 pg TCDD EQ g(-1) dw for more persistent AhR agonists. The known AhR agonists polycyclic aromatic hydrocarbon, polychlorinated biphenyl, and PCDD/F only explained up to 8 % of the more persistent AhR agonist activity in the samples, which suggests that unidentified AhR-active compounds represented a great proportion of the TCDD EQ in sediments from TGR. These findings of estrogenic potential and dioxin-like activity in TGR sediments provide possible weight-of-evidence of potential

  19. Functional and phenotypic effects of AhR activation in inflammatory dendritic cells

    SciTech Connect

    Bankoti, Jaishree; Rase, Ben; Simones, Tom; Shepherd, David M.

    2010-07-15

    Aryl hydrocarbon receptor (AhR) activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces immune suppression. Dendritic cells (DCs) are key antigen presenting cells governing T cell activation and differentiation. However, the consequences of AhR activation in DCs are not fully defined. We hypothesized that AhR activation alters DC differentiation and generates dysfunctional DCs. To test this hypothesis, inflammatory bone marrow-derived DCs (BMDCs) from C57Bl/6 mice were generated in the presence of vehicle or TCDD. TCDD decreased CD11c expression but increased MHC class II, CD86 and CD25 expression on the BMDCs. The effects of TCDD were strictly AhR-dependent but not exclusively DRE-mediated. Similar effects were observed with two natural AhR ligands, 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid (ITE). TCDD increased LPS- and CpG-induced IL-6 and TNF-{alpha} production by BMDCs but decreased their NO production. TCDD decreased CpG-induced IL-12p70 production by BMDCs but did not affect their secretion of IL-10. TCDD downregulated LPS- and CpG-induced NF-kB p65 levels and induced a trend towards upregulation of RelB levels in the BMDCs. AhR activation by TCDD modulated BMDC uptake of both soluble and particulate antigens. Induction of indoleamine-2,3-dioxygenase (IDO) and TGF-{beta}3 has been implicated in the generation of regulatory T cells following AhR activation. TCDD increased IDO1, IDO2 and TGF-{beta}3 mRNA levels in BMDCs as compared to vehicle. Despite the induction of regulatory mediators, TCDD-treated BMDCs failed to suppress antigen-specific T cell activation. Thus, AhR activation can directly alter the differentiation and innate functions of inflammatory DCs without affecting their ability to successfully interact with T cells.

  20. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. PMID:25797602

  1. Effects of scorched food leachates with or without activated charcoal pretreatment on AhR activation in cultured cells.

    PubMed

    Takahashi, Satoshi; Morita, Koji; Kinoshita, Makoto; Fujimori, Shin; Ishikawa, Toshio

    2015-12-01

    Aryl hydrocarbon receptor (AhR) is a transcription factor activated by xenobiotics, including dioxins and polycyclic aromatic hydrocarbons (PAHs). Although AhR is also activated by some dietary constituents, it has not been completely clarified in what circumstances AhR ligands are ingested in our daily life. Because PAHs are formed by the incomplete combustion of organic materials, we hypothesized that scorched foods might contain and leach out AhR ligands sufficient to stimulate AhR in vitro. To test this hypothesis, scorched foods (bread, cheese, etc.) were mixed vigorously with water, and the supernatants were retrieved as samples. The samples were added to HepG2 cells stably expressing an AhR-responsive reporter gene. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was analyzed by RT-PCR in different cell lines treated with the samples. We further tested whether pretreatment of the samples with activated charcoal would alter their AhR-stimulating activity. All the supernatant samples tested induced AhR-dependent reporter gene activity and CYP1A1 mRNA expression. In some samples, these inductions were inhibited by pretreatment with activated charcoal. Our findings indicate that scorched food leachates stimulate AhR in cultured cells and that activated charcoal adsorbs the AhR-stimulating substances in some leachates. Thus, people who habitually eat scorched foods are exposed to AhR ligands on a regular basis. Further studies are needed to elucidate whether burnt foods actually exert biological effects on our health.

  2. Effects of scorched food leachates with or without activated charcoal pretreatment on AhR activation in cultured cells.

    PubMed

    Takahashi, Satoshi; Morita, Koji; Kinoshita, Makoto; Fujimori, Shin; Ishikawa, Toshio

    2015-12-01

    Aryl hydrocarbon receptor (AhR) is a transcription factor activated by xenobiotics, including dioxins and polycyclic aromatic hydrocarbons (PAHs). Although AhR is also activated by some dietary constituents, it has not been completely clarified in what circumstances AhR ligands are ingested in our daily life. Because PAHs are formed by the incomplete combustion of organic materials, we hypothesized that scorched foods might contain and leach out AhR ligands sufficient to stimulate AhR in vitro. To test this hypothesis, scorched foods (bread, cheese, etc.) were mixed vigorously with water, and the supernatants were retrieved as samples. The samples were added to HepG2 cells stably expressing an AhR-responsive reporter gene. Also, expression of CYP1A1, an endogenous AhR-responsive gene, was analyzed by RT-PCR in different cell lines treated with the samples. We further tested whether pretreatment of the samples with activated charcoal would alter their AhR-stimulating activity. All the supernatant samples tested induced AhR-dependent reporter gene activity and CYP1A1 mRNA expression. In some samples, these inductions were inhibited by pretreatment with activated charcoal. Our findings indicate that scorched food leachates stimulate AhR in cultured cells and that activated charcoal adsorbs the AhR-stimulating substances in some leachates. Thus, people who habitually eat scorched foods are exposed to AhR ligands on a regular basis. Further studies are needed to elucidate whether burnt foods actually exert biological effects on our health. PMID:26558458

  3. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1.

    PubMed

    Moyer, Benjamin J; Rojas, Itzel Y; Kerley-Hamilton, Joanna S; Hazlett, Haley F; Nemani, Krishnamurthy V; Trask, Heidi W; West, Rachel J; Lupien, Leslie E; Collins, Alan J; Ringelberg, Carol S; Gimi, Barjor; Kinlaw, William B; Tomlinson, Craig R

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity

  4. The immune phenotype of AhR null mouse mutants: not a simple mirror of xenobiotic receptor over-activation.

    PubMed

    Esser, Charlotte

    2009-02-15

    Intrinsic and induced cell differentiation and the cellular response to endogenous and exogenous signals are hallmarks of the immune system. Specific and common signalling cascades ensure a highly flexible and adapted response. Increasing evidence suggests that gene modulation by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is an important part of these processes. For decades the AhR has been studied mainly for its toxic effects after artificial activation by man-made chemical pollutants such as dioxins. These studies gave important, albeit to some extent skewed, evidence for a mechanistic link between the AhR and the immune system. AhR null mutants and other mutants of the AhR signalling pathway have been generated and used to analyse the physiological function of the AhR, including for the developing and antigen-responding immune system. In this review I look at the natural immunological function(s) of the AhR.

  5. AhR activation underlies the CYP1A autoinduction by A-998679 in rats

    PubMed Central

    Liguori, Michael J.; Lee, Chih-Hung; Liu, Hong; Ciurlionis, Rita; Ditewig, Amy C.; Doktor, Stella; Andracki, Mark E.; Gagne, Gerard D.; Waring, Jeffrey F.; Marsh, Kennan C.; Gopalakrishnan, Murali; Blomme, Eric A. G.; Yang, Yi

    2012-01-01

    Xenobiotic-mediated induction of cytochrome P450 (CYP) drug metabolizing enzymes (DMEs) is frequently encountered in drug discovery and can influence disposition, pharmacokinetic, and toxicity profiles. The CYP1A subfamily of DMEs plays a central role in the biotransformation of several drugs and environmental chemicals. Autoinduction of drugs through CYP3A enzymes is a common mechanism for their enhanced clearance. However, autoinduction via CYP1A is encountered less frequently. In this report, an experimental compound, A-998679 [3-(5-pyridin-3-yl-1,2,4-oxadiazol-3-yl) benzonitrile], was shown to enhance its own clearance via induction of Cyp1a1 and Cyp1a2. Rats were dosed for 5 days with 30, 100, and 200 mg/kg/day A-998679. During the dosing period, the compound's plasma AUC decreased at 30 mg/kg (95%) and 100 mg/kg (80%). Gene expression analysis and immunohistochemistry of the livers showed a large increase in the mRNA and protein levels of Cyp1a, which was involved in the biotransformation of A-998679. Induction of CYP1A was confirmed in primary rat, human, and dog hepatocytes. The compound also weakly inhibited CYP1A2 in human liver microsomes. A-998679 activated the aryl hydrocarbon receptor (AhR) in a luciferase gene reporter assay in HepG2 cells, upregulated expression of genes associated with AhR activation in rat liver and enhanced nuclear migration of AhR in HepG2 cells. Collectively these results demonstrate that A-998679 is an AhR activator that induces Cyp1a1 and Cyp1a2 expression, resulting in an autoinduction phenomenon. The unique properties of A-998679, along with its novel structure distinct from classical polycyclic aromatic hydrocarbons (PAHs), may warrant its further evaluation as a tool compound for use in studies involving AhR biology and CYP1A-related mechanisms of drug metabolism and toxicity. PMID:23112805

  6. Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus mykiss) hepatocytes using metabolic flux analysis

    SciTech Connect

    Nault, Rance; Abdul-Fattah, Hiba; Mironov, Gleb G.; Berezovski, Maxim V.; Moon, Thomas W.

    2013-08-15

    Exposure to environmental contaminants such as activators of the aryl hydrocarbon receptor (AhR) leads to the induction of defense and detoxification mechanisms. While these mechanisms allow organisms to metabolize and excrete at least some of these environmental contaminants, it has been proposed that these mechanisms lead to significant energetic challenges. This study tests the hypothesis that activation of the AhR by the model agonist β-naphthoflavone (βNF) results in increased energetic costs in rainbow trout (Oncorhynchus mykiss) hepatocytes. To address this hypothesis, we employed traditional biochemical approaches to examine energy allocation and metabolism including the adenylate energy charge (AEC), protein synthesis rates, Na{sup +}/K{sup +}-ATPase activity, and enzyme activities. Moreover, we have used for the first time in a fish cell preparation, metabolic flux analysis (MFA) an in silico approach for the estimation of intracellular metabolic fluxes. Exposure of trout hepatocytes to 1 μM βNF for 48 h did not alter hepatocyte AEC, protein synthesis, or Na{sup +}/K{sup +}-ATPase activity but did lead to sparing of glycogen reserves and changes in activities of alanine aminotransferase and citrate synthase suggesting altered metabolism. Conversely, MFA did not identify altered metabolic fluxes, although we do show that the dynamic metabolism of isolated trout hepatocytes poses a significant challenge for this type of approach which should be considered in future studies. - Highlights: • Energetic costs of AhR activation by βNF was examined in rainbow trout hepatocytes. • Metabolic flux analysis was performed on a fish cell preparation for the first time. • Exposure to βNF led to sparing of glycogen reserves and altered enzyme activities. • Adenylate energy charge was maintained despite temporal changes in metabolism.

  7. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  8. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line.

    PubMed

    Zaragoza-Ojeda, Montserrat; Eguía-Aguilar, Pilar; Perezpeña-Díazconti, Mario; Arenas-Huertero, Francisco

    2016-08-10

    Polycyclic aromatic hydrocarbons (PAH) are produced by incomplete combustion of organic material. In the Mexico City atmosphere, the most abundant PAH is benzo[ghi]perylene (BghiP), a gasoline combustion marker. At present, there are no reports of the effects of BghiP on human bronchial cells, so the aim of the study was to evaluate the effects in vitro of BghiP on the NL-20 cell line. Results showed that BghiP induced the formation of small vesicles throughout the cytoplasm, with absence of nuclear fragmentation. At 48h exposition, damage in cell membrane increased significantly at 1.24μg/mL of BghiP (p<0.05). Immunocytochemistry revealed that BghiP provokes nuclear translocation of AhR receptor, which indicates that this compound can induce transcription of genes via receptor binding (AhR pathway activation). BghiP induced a two-fold increase (p<0.05) in the expression of AhR and CYP4B1 (a lung-specific pathway effector). In the presence of the receptor antagonist CH-223191, the loss of viability, the nuclear translocation and the overexpression of genes decreased, though this did not prevent the formation of vesicles. BghiP induced oxidative stress and in presence of the receptor antagonist this increased significantly. In conclusion, BghiP can activate the overexpression of AhR and CYP4B1, and the effects are abated by the AhR receptor antagonist. This is the first report to prove that BghiP utilizes the AhR pathway to exert its toxic effects on the NL-20 human bronchial cell line . PMID:27234499

  9. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  10. Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor

    PubMed Central

    Wincent, Emma; Bengtsson, Johanna; Bardbori, Afshin Mohammadi; Alsberg, Tomas; Luecke, Sandra; Rannug, Ulf; Rannug, Agneta

    2012-01-01

    Altered systemic levels of 6-formylindolo[3,2-b]carbazole (FICZ), an enigmatic endogenous ligand for the aryl hydrocarbon receptor (AHR), may explain adverse physiological responses evoked by small natural and anthropogenic molecules as well as by oxidative stress and light. We demonstrate here that several different chemical compounds can inhibit the metabolism of FICZ, thereby disrupting the autoregulatory feedback control of cytochrome P4501 systems and other proteins whose expression is regulated by AHR. FICZ is both the most tightly bound endogenous agonist for the AHR and an ideal substrate for cytochrome CYP1A1/1A2 and 1B1, thereby also participating in an autoregulatory loop that keeps its own steady-state concentration low. At very low concentrations FICZ influences circadian rhythms, responses to UV light, homeostasis associated with pro- and anti-inflammatory processes, and genomic stability. Here, we demonstrate that, if its metabolic clearance is compromised, femtomolar background levels of this compound in cell-culture medium are sufficient to up-regulate CYP1A1 mRNA and enzyme activity. The oxidants UVB irradiation and hydrogen peroxide and the model AHR antagonist 3′-methoxy-4′-nitroflavone all inhibited induction of CYP1A1 enzyme activity by FICZ or 2,3,7,8-tetrachlorodibenzo-p-dioxin, thereby subsequently elevating intracellular levels of FICZ and activating AHR. Taken together, these findings support an indirect mechanism of AHR activation, indicating that AHR activation by molecules with low affinity actually may reflect inhibition of FICZ metabolism and raising questions about the reported promiscuity of the AHR. Accordingly, we propose that prolonged induction of AHR activity through inhibition of CYP1 disturbs feedback regulation of FICZ levels, with potential detrimental consequences. PMID:22392998

  11. A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo.

    PubMed

    Henry, E C; Bemis, J C; Henry, O; Kende, A S; Gasiewicz, T A

    2006-06-01

    The aryl hydrocarbon receptor (AhR) is best known as a mediator of toxicity of a diverse family of xenobiotic chemicals such as dioxins and PCBs. However, many naturally occurring compounds also activate AhR. One such compound, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), was isolated from tissue and found to be potent in preliminary tests [J. Song, M. Clagett-Dame, R.E. Peterson, M.E. Hahn, W.M. Westler, R.R. Sicinski, H.F. DeLuca, Proc. Natl. Acad. Sci. USA 99 (2002) 14694-14699]. We have synthesized ITE and [(3)H]ITE and further evaluated its AhR activity in several in vitro and in vivo assays in comparison with the toxic ligand, TCDD. AhR in Hepa1c1c7 cell cytosol bound [(3)H]ITE with high affinity and the AhR.ITE complex formed in vitro bound dioxin response element (DRE) oligonucleotide as potently as TCDD.AhR. In cells treated with ITE, nuclear translocation of AhR, and induction of CYP1A1 protein and of a DRE-dependent luciferase reporter gene were observed. ITE administered to pregnant DRE-LacZ transgenic mice activated fetal AhR, observed as X-gal staining in the same sites as in TCDD-treated mice. However, unlike TCDD, ITE did not induce cleft palate or hydronephrosis. TCDD but not ITE induced thymic atrophy in young adult mice, but both ITE and TCDD caused similar loss of cells and alterations of cell profiles in cultured fetal thymi. These data demonstrate that ITE is a potent AhR agonist in cell extracts, cultured cells, and intact animals, but does not cause the toxicity associated with the more stable xenobiotic ligand, TCDD.

  12. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction

    PubMed Central

    Vacca, Margherita; Nardelli, Claudia; Castegna, Alessandra; Arnesano, Fabio; Carella, Nicola; Depalo, Raffaella

    2016-01-01

    Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb. PMID:27008165

  13. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast

    PubMed Central

    Mexia, Nikitia; Gaitanis, George; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S.; Magiatis, Prokopios

    2015-01-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on L-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assays in recombinant cell lines derived from four different species, although significant species differences in relative potency was observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. Malassezia furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.1 PMID:25721496

  14. AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse

    PubMed Central

    Kimura, Eiki; Ding, Yunjie; Tohyama, Chiharu

    2016-01-01

    Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals. PMID:27197834

  15. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling.

    PubMed

    Gao, Zhan; Bu, Yongjun; Liu, Xiaozhuan; Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling; Li, Qiaoyun; Fu, Jianhong; Yu, Zengli

    2016-05-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. PMID:26971374

  16. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on the aryl hydrocarbon receptor agonistic activity of hydroxylated polychlorinated biphenyls.

    PubMed

    Cao, Fu; Li, Xiaolin; Ye, Li; Xie, Yuwei; Wang, Xiaoxiang; Shi, Wei; Qian, Xiangping; Zhu, Yongliang; Yu, Hongxia

    2013-09-01

    The binding interactions between hydroxylated polychlorinated biphenyls (HO-PCBs) and the aryl hydrocarbon receptor (AhR) are suspected of causing toxic effects. To understand the binding mode between HO-PCBs and AhR, and to explore the structural characteristics that influence the AhR agonistic activities of HO-PCBs, the combination of molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics (MD) simulations was performed. Using molecular docking, the HO-PCBs were docked into the binding pocket of AhR, which was generated by homology modeling. Comparative molecular similarity index analysis (CoMSIA) models were subsequently developed from three different alignment rules. The optimum 3D-QSAR model showed good predictive ability (q(2)=0.583, R(2)=0.913) and good mechanism interpretability. The statistical reliability of the CoMSIA model was also validated. In addition, molecular docking and MD simulations were applied to explore the binding modes between the ligands and AhR. The results obtained from this study may lead to a better understanding of the interaction mechanism between HO-PCBs and AhR.

  17. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain

    PubMed Central

    Perkins, Arden; Phillips, Jessica L.; Kerkvliet, Nancy I.; Tanguay, Robert L.; Perdew, Gary H.; Kolluri, Siva K.; Bisson, William H.

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351). As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS) to search for novel ligands. Here, we have developed an “agonist-optimized” homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307–329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand. PMID:25329374

  18. Synergistic induction of AHR regulated genes in developmental toxicity from co-exposure to two model PAHs in zebrafish

    PubMed Central

    Timme-Laragy, Alicia. R.; Cockman, Crystal. J.; Matson, Cole. W.; Di Giulio, Richard. T.

    2007-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants created by the incomplete combustion of carbon, and are increasing in the environment largely due to the burning of fossil fuels. PAHs occur as complex mixtures, and some combinations have been shown to cause synergistic developmental toxicity in fish embryos, characterized by pericardial edema and craniofacial malformations. Previous studies have indicated that in the zebrafish model, this toxicity is mediated by the aryl hydrocarbon receptor 2 (AHR2), and enhanced by inhibition of CYP1A activity. In this study, we further examined this interaction of the model PAH and AHR agonist β-naphthoflavone (BNF) with and without the AHR partial agonist/antagonist and CYP1A inhibitor α-naphthoflavone (ANF) to determine 1) whether ANF was acting as an AHR antagonist, 2) what alterations BNF and ANF both alone and in combination had on mRNA expression of the AHR regulated genes cytochrome P450 (cyp) 1a, 1b1, and 1c1, and the AHR repressor (ahrr2) prior to vs. during deformity onset, and 3) compare CYP1A enzyme activity with mRNA induction. Zebrafish embryos were exposed from 24–48 or 24–96 hpf to BNF, 1–100 μg/L, ANF, 1–150 μg/L, a BNF+ANF co-exposure (1 μg/L + 100 μg/L), or a DMSO solvent control. RNA was extracted and examined by quantitative real time PCR. Both BNF and ANF each individually resulted in a dose dependent increase CYP1A, CYP1B1, CYP1C1, and AHRR2 mRNA, confirming their activities as AHR agonists. In the BNF+ANF co-exposures prior to deformity onset, expression of these genes was synergistic, and expression levels of the AHR regulated genes resembled the higher doses of BNF alone. Gene induction during deformities was also significantly increased in the co-exposure, but to a lesser magnitude than prior to deformity onset. EROD measurements of CYP1A activity showed ANF inhibited activity induction by BNF in the co-exposure group; this finding is not predicted by mRNA expression, which is

  19. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    PubMed

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety. PMID:27250800

  20. Activation of estrogen receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist, 3,3',4,4',5-Pentachlorobiphenyl (PCB126) in salmon in vitro system

    SciTech Connect

    Mortensen, Anne Skjetne; Arukwe, Augustine

    2008-03-01

    Available toxicological evidence indicates that environmental contaminants with strong affinity to the aryl hydrocarbon receptor (AhR) have anti-estrogenic properties in both mammalian and non-mammalian in vivo and in vitro studies. The primary objective of the present study was to investigate the interactions between the AhR and estrogen receptor (ER) in salmon in vitro system. Two separate experiments were performed and gene expression patterns were analyzed using real-time PCR, while protein analysis was done by immunoblotting. Firstly, salmon primary hepatocytes were exposed to the dioxin-like PCB126 at 1, 10 and 50 pM and ER agonist nonylphenol (NP) at 5 and 10 {mu}M, singly or in combination. Our data showed increased levels of ER-mediated gene expression (vitellogenin: Vtg, zona radiata protein: Zr-protein, ER{alpha}, ER{beta} and vigilin) as well as increased cellular ER{alpha} protein levels after treatment with NP and PCB126, singly or in combination. PCB126 treatment alone produced, as expected, increased transcription of AhR nuclear translocator (Arnt), CYP1A1 and AhR repressor (AhRR) mRNA, and these responses were reduced in the presence of NP concentrations. PCB126 exposure alone did not produce significant effect on AhR2{alpha} mRNA but increased (at 1 and 50 pM) and decreased (at 10 pM) AhR2{beta} mRNA below control level. For AhR2{delta} and AhR2{gamma} isotypes, PCB126 (at 1 pM) produced significant decreases (total inhibition for AhR2{gamma}) of mRNA levels but was indifferent at 10 and 50 pM, compared to control. NP exposure alone produced concentration-dependent significant decrease of AhR2{beta} mRNA. In contrast, while 5 {mu}M NP produced an indifferent effect on AhR2{delta} and AhR2{gamma}, 10 {mu}M NP produced significant decrease (total inhibition for AhR2{gamma}) and the presence of NP produced apparent PCB126 concentration-specific modulation of all AhR isotypes. A second experiment was performed to evaluate the involvement of ER

  1. In vitro and in silico evaluation of transactivation potencies of avian AHR1 and AHR2 by endogenous ligands: Implications for the physiological role of avian AHR2.

    PubMed

    Kim, In-Sung; Hwang, Ji-Hee; Hirano, Masashi; Iwata, Hisato; Kim, Eun-Young

    2016-09-01

    Aryl hydrocarbon receptor (AHR) is well conserved from invertebrates to vertebrates, and it mediates the toxic effects of exogenous ligands, including dioxins. Recent studies reported that AHRs activated by endogenous ligands play critical roles in mammalian physiological homeostasis. Avian species possess at least two AHR isoforms (AHR1 and AHR2), which exhibit species- and isoform-specific transactivation potencies to exogenous ligands, whereas mammals possess a single AHR. To delineate the profiles and roles of endogenous ligands for avian AHR isoforms, we investigated in vitro transactivation potencies of avian AHRs (AHR1 and AHR2 from the jungle crow, Corvus macrorhynchos; common cormorant, Phalacrocorax carbo; and black-footed albatross, Phoebastria nigripes) treated with the endogenous tryptophan metabolites 6-formylindolo [3,2-b] carbazole (FICZ), l-kynurenine (l-Kyn), kynurenic acid (KYNA), and indoxyl sulfate (IS). Furthermore, we analyzed the binding mode of these ligands to each avian AHR isoform by in silico docking simulations. The EC50 of FICZ (0.009-0.032nM) was similar regardless of the species or isoform of AHR. The estimated in silico binding mode of FICZ to AHRs was well conserved in both isoforms. The transactivation potencies of avian AHRs to other tryptophan metabolites were 10(5)-10(7) fold lower than those for FICZ, and EC50 values varied in a species- and isoform-specific manner. This was consistent with poor conservation of the binding mode of l-Kyn, KYNA, and IS predicted in in silico docking simulations. Our results suggest that in avian species, FICZ is the most potent endogenous AHR ligand, and that AHR1 and AHR2 are physiologically functional. PMID:27060260

  2. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    SciTech Connect

    Cheng, Ya-Hsin; Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan; Hung, Chein-Hui; Chang, Nai Wen; Lin, Chingju

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  3. The AhR is involved in the regulation of LoVo cell proliferation through cell cycle-associated proteins.

    PubMed

    Yin, Jiuheng; Sheng, Baifa; Han, Bin; Pu, Aimin; Yang, Kunqiu; Li, Ping; Wang, Qimeng; Xiao, Weidong; Yang, Hua

    2016-05-01

    Some ingredients in foods can activate the aryl hydrocarbon receptor (AhR) and arrest cell proliferation. In this study, we hypothesized that 6-formylindolo [3, 2-b] carbazole (FICZ) arrests the cell cycle in LoVo cells (a colon cancer line) through the AhR. The AhR agonist FICZ and the AhR antagonist CH223191 were used to treat LoVo cells. Real-time PCR and Western blot analyses were performed to detect the expression of the AhR, CYP1A1, CDK4, cyclinD1, cyclin E, CDK2, P27, and pRb. The distribution and activation of the AhR were detected with immunofluorescence. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometric analysis were performed to measure cell viability, cell cycle stage, and apoptosis. Our results show that FICZ inhibited LoVo cell proliferation by inducing G1 cell cycle arrest but had no effect on epithelial apoptosis. Further analysis found that FICZ downregulated cyclinD1 and upregulated p27 expression to arrest Rb phosphorylation. The downregulation of cyclinD1 and upregulation of p27 were abolished by co-treatment with CH223191. We conclude that the AhR, when activated by FICZ (an endogenous AhR ligand), can arrest the cell cycle and block LoVo cell proliferation.

  4. Measured and predicted affinities of binding and relative potencies to activate the AhR of PAHs and their alkylated analogues.

    PubMed

    Lee, Sangwoo; Shin, Woong-Hee; Hong, Seongjin; Kang, Habyeong; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Seok, Chaok; Giesy, John P; Choi, Kyungho

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAHs) and their alkylated forms are important components of crude oil. Both groups of PAHs have been reported to cause dioxin-like responses, mediated by aryl hydrocarbon receptor (AhR). Thus, characterization of binding affinity to the AhR of unsubstituted or alkylated PAHs is important to understand the toxicological consequences of oil contamination on ecosystems. We investigated the potencies of major PAHs of crude oil, e.g., chrysene, phenanthrene and dibenzothiophene, and their alkylated forms (n=17) to upregulate expression of AhR-mediated processes by use of the H4IIE-luc transactivation bioassay. In addition, molecular descriptors of different AhR activation potencies among PAHs were investigated by use of computational molecular docking models. Based on responses of the H4IIE-luc in vitro assay, it was shown that potencies of PAHs were determined by alkylation in addition to the number and conformation of rings. Potencies of AhR-mediated processes were generally greater when a chrysene group was substituted, especially in 1-methyl-chrysene. Significant negative correlations were observed between the in vitro dioxin-like potency measured in H4IIE-luc cells and the binding distance estimated from the in silico modeling. The difference in relative potency for AhR activation observed among PAHs and their alkylated forms could be explained by differences among binding distances in the ligand binding domain of the AhR caused by alkylation. The docking model developed in the present study may have utility in predicting risks of environmental contaminants of which toxicities are mediated by AhR binding.

  5. Water exposure assessment of aryl hydrocarbon receptor agonists in Three Gorges Reservoir, China using SPMD-based virtual organisms.

    PubMed

    Wang, Jingxian; Bernhöft, Silke; Pfister, Gerd; Schramm, Karl-Werner

    2014-10-15

    SPMD-based virtual organisms (VOs) were deployed at five to eight sites in the Three Gorges Reservoir (TGR), China for five periods in 2008, 2009 and 2011. The water exposure of aryl hydrocarbon receptor (AhR) agonists was assessed by the VOs. The chosen bioassay response for the extracts of the VOs, the induction of 7-ethoxyresorufin-O-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The results show that the extracts from the VOs could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) accounted for <11% of the observed AhR responses (TEQbio). Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent in VOs from TGR. High TEQbio value in diluted extract and low TEQbio in concentrated extract of the same sample was observed suggesting potential non-additive effects in the mixture. The levels of AhR agonists in VOs from upstream TGR were in general higher than those from downstream reservoir, indicating urbanization effect on AhR agonist pollution. The temporal variation showed that levels of AhR agonists in 2009 and 2011 were higher than those in 2008, and the potential non-additive effects in the area close to the dam were also obviously higher in 2009 and 2011 than in 2008, indicating big changes in the composition of pollutants in the area after water level reached a maximum of 175 m. Although the aqueous concentration of AhR agonists of 0.8-4.8 pg TCDDL(-1) in TGR was not alarming, the tendency of accumulating high concentration of AhR agonists in VO lipid and existence of possible synergism or antagonism in the water may exhibit a potential hazard to local biota being exposed to AhR agonists.

  6. Water exposure assessment of aryl hydrocarbon receptor agonists in Three Gorges Reservoir, China using SPMD-based virtual organisms.

    PubMed

    Wang, Jingxian; Bernhöft, Silke; Pfister, Gerd; Schramm, Karl-Werner

    2014-10-15

    SPMD-based virtual organisms (VOs) were deployed at five to eight sites in the Three Gorges Reservoir (TGR), China for five periods in 2008, 2009 and 2011. The water exposure of aryl hydrocarbon receptor (AhR) agonists was assessed by the VOs. The chosen bioassay response for the extracts of the VOs, the induction of 7-ethoxyresorufin-O-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The results show that the extracts from the VOs could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) accounted for <11% of the observed AhR responses (TEQbio). Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent in VOs from TGR. High TEQbio value in diluted extract and low TEQbio in concentrated extract of the same sample was observed suggesting potential non-additive effects in the mixture. The levels of AhR agonists in VOs from upstream TGR were in general higher than those from downstream reservoir, indicating urbanization effect on AhR agonist pollution. The temporal variation showed that levels of AhR agonists in 2009 and 2011 were higher than those in 2008, and the potential non-additive effects in the area close to the dam were also obviously higher in 2009 and 2011 than in 2008, indicating big changes in the composition of pollutants in the area after water level reached a maximum of 175 m. Although the aqueous concentration of AhR agonists of 0.8-4.8 pg TCDDL(-1) in TGR was not alarming, the tendency of accumulating high concentration of AhR agonists in VO lipid and existence of possible synergism or antagonism in the water may exhibit a potential hazard to local biota being exposed to AhR agonists. PMID:25058931

  7. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. PMID:27180721

  8. Effects of Developmental Activation of the AhR on CD4+ T-Cell Responses to Influenza Virus Infection in Adult Mice

    PubMed Central

    Boule, Lisbeth A.; Winans, Bethany

    2014-01-01

    Background: Epidemiological and animal studies indicate that maternal exposure to pollutants that bind the aryl hydrocarbon receptor (AhR) correlates with poorer ability to combat respiratory infection and lower antibody levels in the offspring. These observations point to an impact on CD4+ T cells. Yet, the consequence of developmental exposure to AhR ligands on the activation and differentiation of CD4+ T cells has not been directly examined. Objectives: Our goal was to determine whether maternal exposure to an AhR ligand directly alters CD4+ T cell differentiation and function later in life. Methods: C57BL/6 mice were exposed to a prototypical AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in utero and via suckling. We then measured CD4+ T-cell activation and differentiation into distinct effector populations in adult offspring that were infected with influenza A virus (IAV). Reciprocal adoptive transfers were used to define whether modifications in CD4+ T-cell responses resulted from direct effects of developmental TCDD exposure on CD4+ T cells. Results: Developmental exposure skewed CD4+ T-cell responses to IAV infection. We observed fewer virus-specific, activated CD4+ T cells and a reduced frequency of conventional CD4+ effector-cell subsets. However, there was an increase in regulatory CD4+ T cells. Direct effects of AhR activation on CD4+ T cells resulted in impaired differentiation into conventional effector subsets; this defect was transferred to mice that had not been developmentally exposed to TCDD. Conclusions: Maternal exposure to TCDD resulted in durable changes in the responsive capacity and differentiation of CD4+ T cells in adult C57BL/6 mice. Citation: Boule LA, Winans B, Lawrence BP. 2014. Effects of developmental activation of the AhR on CD4+ T-cell responses to influenza virus infection in adult mice. Environ Health Perspect 122:1201–1208; http://dx.doi.org/10.1289/ehp.1408110 PMID:25051576

  9. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  10. Agonistic effect of selected isoflavones on arylhydrocarbon receptor in a novel AZ-AhR transgenic gene reporter human cell line.

    PubMed

    Bialesova, Lucia; Novotna, Aneta; Macejova, Dana; Brtko, Julius; Dvorak, Zdenek

    2015-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. Structurally diverse compounds bind to AhR and act as AhR agonists. Well characterised family of natural AhR ligands are isoflavones, which are compounds found predominantly in soy beans or red clover. In this study we have examined agonistic effect of selected isoflavones (genistein, daidzein, biochanin A, formononetin and equol) on AhR in the novel transgenic gene reporter human cell line AZ-AhR, a stably transfected AhR-responsive cell line allowing rapid and sensitive assessment of AhR transcriptional activity. We demonstrated that biochanin A, formononetin and genistein at concentration 10(-4) mol/l exerted agonistic effects on AhR with fold activation of 309- fold, 108-fold and 27-fold, which is about 84.8%, 29.6% and 7.4%, respectively, of the value attained by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Daidzein and equol did not show any significant effects on AhR. PMID:25926549

  11. AHR-11797: a novel benzodiazepine antagonist

    SciTech Connect

    Johnson, D.N.; Kilpatrick, B.F.; Hannaman, P.K.

    1986-03-01

    AHR-11797(5,6-dihydro-6-methyl-1-phenyl-/sup 3/H-pyrrolo(3,2,1-ij)quinazolin-3-one) displaced /sup 3/H-flunitrazepam (IC/sub 50/ = 82 nM) and /sup 3/H-Ro 15-1877 (IC/sub 50/ = 104 nM) from rat brain synaptosomes. AHR-11797 did not protect mice from seizures induced by maximal electroshock or subcutaneous Metrazol (scMET), nor did it induce seizures in doses up to the lethal dose. However, at 31.6 mg/kg, IP, it significantly increased the anticonvulsant ED/sub 50/ of chlordiazepoxide (CDPX) from 1.9 to 31.6 mg/kg, IP. With 56.7 mg/kg, IP, of AHR-11797, CDPX was inactive in doses up to 100 mg/kg, IP. AHR-11797 did not significantly increase punished responding in the Geller and Seifter conflict procedure, but it did attenuate the effects of diazepam. Although the compound is without anticonvulsant or anxiolytic activity, it did have muscle relaxant properties. AHR-11797 blocked morphine-induced Straub tail in mice (ED/sub 50/ = 31 mg/kg, IP) and it selectively suppressed the polysnaptic linguomandibular reflex in barbiturate-anesthetized cats. The apparent muscle relaxant activity of AHR-11797 suggests that different receptor sites are involved for muscle relaxant vs. anxiolytic/anticonvulsant activities of the benzodiazepines.

  12. Exposure to Diesel Exhaust Particle Extracts (DEPe) Impairs Some Polarization Markers and Functions of Human Macrophages through Activation of AhR and Nrf2

    PubMed Central

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-01-01

    Macrophages (MΦ), well-known to play an important role in immune response, also respond to environmental toxic chemicals such as diesel exhaust particles (DEP). Potential effects of DEPs towards MΦ polarization, a key hall-mark of MΦ physiology, remain however poorly documented. This study was therefore designed to evaluate the effects of a reference DEP extract (DEPe) on human MΦ polarization. Human blood monocytes-derived MΦ were incubated with IFNγ+LPS or IL-4 to obtain M1 and M2 subtypes, respectively; a 24 h exposure of polarizing MΦ to 10 μg/ml DEPe was found to impair expression of some macrophagic M1 and M2 markers, without however overall inhibition of M1 and M2 polarization processes. Notably, DEPe treatment increased the secretion of the M1 marker IL-8 and the M2 marker IL-10 in both MΦ subtypes, whereas it reduced lipopolysaccharide-induced IL-6 and IL-12p40 secretion in M1 MΦ. In M2 MΦ, DEPe exposure led to a reduction of CD200R expression and of CCL17, CCL18 and CCL22 secretion, associated with a lower chemotaxis of CCR4-positive cells. DEPe activated the Nrf2 and AhR pathways and induced expression of their reference target genes such as Hmox-1 and cytochrome P-4501B1 in M1 and M2 MΦ. Nrf2 or AhR silencing through RNA interference prevented DEPe-related down-regulation of IL-6. AhR silencing also inhibited the down-secretion of IL-12p40 and CCL18 in M1- and M2-DEPe-exposed MΦ, respectively. DEPs are therefore likely to alter expression of some M1 and M2 markers in an AhR- and Nrf2-dependent manner; such regulations may contribute to deleterious immune effects of atmospheric DEP. PMID:25710172

  13. Atropine-resistant effects of the muscarinic agonists McN-A-343 and AHR 602 on cardiac performance and the release of noradrenaline from sympathetic nerves of the perfused rabbit heart

    PubMed Central

    Fozard, J.R.; Muscholl, E.

    1974-01-01

    1 The effects of 4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium chloride (McN-A-343) and N-benzyl-3-pyrrolidyl acetate methobromide (AHR 602) on cardiac performance and noradrenaline release from terminal sympathetic fibres were measured in isolated perfused hearts of rabbits. 2 In the presence of sufficient atropine to block muscarinic receptors, high concentrations of McN-A-343 and AHR 602 caused no cardiac stimulation and there was no increase in the resting output of noradrenaline into the perfusates. 3 McN-A-343 and AHR 602 increased both the mechanical responses and the transmitter overflow evoked by electrical stimulation of the sympathetic nerves (SNS) but inhibited both parameters during perfusion with 1,1-dimethyl-4-phenylpiperazinium (DMPP). The effects were atropine-resistant and qualitatively similar to those seen with cocaine. Hexamethonium inhibited DMPP, but affected neither SNS per se nor the facilitatory effects of McN-A-343 and AHR 602 on SNS. 4 McN-A-343, cocaine and desipramine (but not AHR 602 or hexamethonium) blocked the net cardiac noradrenaline uptake and increased the positive chronotropic effect of noradrenaline. 5 Prior perfusion with concentrations of cocaine and desipramine sufficient to block uptake reduced or abolished the facilitatory effects of both McN-A-343 and AHR 602 on SNS. 6 Cocaine, McN-A-343 and AHR 602 displayed local anaesthetic properties on the guinea-pig wheal and frog nerve plexus tests, and their relative potencies in this respect were similar to those for inhibition of DMPP-evoked transmitter overflow. Hexamethonium did not produce local anaesthesia. 7 The results indicate that the facilitated release of noradrenaline after SNS and the inhibition of release after DMPP produced by McN-A-343 and AHR 602 are the result of their combined local anaesthetic action and inhibition of amine uptake. PMID:4447857

  14. Ultraviolet light converts propranolol, a nonselective β-blocker and potential lupus-inducing drug, into a proinflammatory AhR ligand.

    PubMed

    Dorgham, Karim; Amoura, Zahir; Parizot, Christophe; Arnaud, Laurent; Frances, Camille; Pionneau, Cédric; Devilliers, Hervé; Pinto, Sandra; Zoorob, Rima; Miyara, Makoto; Larsen, Martin; Yssel, Hans; Gorochov, Guy; Mathian, Alexis

    2015-11-01

    UV light and some medications are known to trigger lupus erythematosus (LE). A common mechanism underlying the immunopathologic effect, resulting from exposure to these two seemingly unrelated factors, remains unknown. The aryl hydrocarbon receptor (AhR) plays a key role in the regulation of IL-22 production in humans and can be activated by both xenobiotics and naturally occurring photoproducts. A significant expansion of Th17 and Th22 cells was observed in the peripheral blood of active systemic LE (SLE) patients, compared to inactive patients and controls. We also show that propranolol, a potential lupus-inducing drug, induced stronger AhR activation in PBMCs of SLE patients than in those of controls. AhR agonist activity of propranolol was enhanced by UV light exposure. MS analysis of irradiated propranolol revealed the generation of a proinflammatory photoproduct. This compound behaves like the prototypic AhR ligand 6-formylindolo[3,2-b]carbazole, a cutaneous UV light-induced tryptophan metabolite, both promoting IL-22, IL-8, and CCL2 secretion by T-cells and macrophages. Finally, LE patients exhibit signs of cutaneous AhR activation that correlate with lesional expression of the same proinflammatory cytokines, suggesting a role for photometabolites in the induction of skin inflammation. The AhR might therefore represent a target for therapeutic intervention in LE. PMID:26354876

  15. Ultraviolet light converts propranolol, a nonselective β-blocker and potential lupus-inducing drug, into a proinflammatory AhR ligand.

    PubMed

    Dorgham, Karim; Amoura, Zahir; Parizot, Christophe; Arnaud, Laurent; Frances, Camille; Pionneau, Cédric; Devilliers, Hervé; Pinto, Sandra; Zoorob, Rima; Miyara, Makoto; Larsen, Martin; Yssel, Hans; Gorochov, Guy; Mathian, Alexis

    2015-11-01

    UV light and some medications are known to trigger lupus erythematosus (LE). A common mechanism underlying the immunopathologic effect, resulting from exposure to these two seemingly unrelated factors, remains unknown. The aryl hydrocarbon receptor (AhR) plays a key role in the regulation of IL-22 production in humans and can be activated by both xenobiotics and naturally occurring photoproducts. A significant expansion of Th17 and Th22 cells was observed in the peripheral blood of active systemic LE (SLE) patients, compared to inactive patients and controls. We also show that propranolol, a potential lupus-inducing drug, induced stronger AhR activation in PBMCs of SLE patients than in those of controls. AhR agonist activity of propranolol was enhanced by UV light exposure. MS analysis of irradiated propranolol revealed the generation of a proinflammatory photoproduct. This compound behaves like the prototypic AhR ligand 6-formylindolo[3,2-b]carbazole, a cutaneous UV light-induced tryptophan metabolite, both promoting IL-22, IL-8, and CCL2 secretion by T-cells and macrophages. Finally, LE patients exhibit signs of cutaneous AhR activation that correlate with lesional expression of the same proinflammatory cytokines, suggesting a role for photometabolites in the induction of skin inflammation. The AhR might therefore represent a target for therapeutic intervention in LE.

  16. ITE and TCDD differentially regulate the vascular remodeling of rat placenta via the activation of AhR.

    PubMed

    Wu, Yanming; Chen, Xiao; Zhou, Qian; He, Qizhi; Kang, Jiuhong; Zheng, Jing; Wang, Kai; Duan, Tao

    2014-01-01

    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in

  17. Synthesis and immunostimulatory activity of substituted TLR7 agonists.

    PubMed

    Akinbobuyi, Babatope; Wang, Lei; Upchurch, Katherine C; Byrd, Matthew R; Chang, Charles A; Quintana, Jeremy M; Petersen, Rachel E; Seifert, Zacharie J; Boquin, José R; Oh, SangKon; Kane, Robert R

    2016-09-01

    Fifteen new substituted adenines were synthesized as potential TLR7 agonists. These compounds, along with 9 previously reported compounds, were analyzed for TLR7 activity and for the selective stimulation of B cell proliferation. Several functionalized derivatives exhibit significant activity, suggesting their potential for use as vaccine adjuvants. PMID:27476423

  18. Synthesis and immunostimulatory activity of substituted TLR7 agonists.

    PubMed

    Akinbobuyi, Babatope; Wang, Lei; Upchurch, Katherine C; Byrd, Matthew R; Chang, Charles A; Quintana, Jeremy M; Petersen, Rachel E; Seifert, Zacharie J; Boquin, José R; Oh, SangKon; Kane, Robert R

    2016-09-01

    Fifteen new substituted adenines were synthesized as potential TLR7 agonists. These compounds, along with 9 previously reported compounds, were analyzed for TLR7 activity and for the selective stimulation of B cell proliferation. Several functionalized derivatives exhibit significant activity, suggesting their potential for use as vaccine adjuvants.

  19. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  20. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  1. Embryonic cardiotoxicity of weak aryl hydrocarbon receptor agonists and CYP1A inhibitor fluoranthene in the Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Brown, D R; Clark, B W; Garner, L V T; Di Giulio, R T

    2016-10-01

    High affinity aryl hydrocarbon receptor (AHR) ligands, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, for example benzo[a]pyrene and β-naphthoflavone, are capable of causing similar cardiotoxic effects, particularly when coupled with cytochrome P450 1A (CYP1A) inhibitors (e.g., fluoranthene (FL). Additionally, some weaker AHR agonists (carbaryl, 2-methylindole, 3-methylindole, and phenanthrene) are known to also cause cardiotoxicity in zebrafish (Danio rerio) embryos when coupled with FL; however, the cardiotoxic effects were not mediated specifically by AHR stimulation. This study was performed to determine if binary exposure to weak AHR agonists and FL were also capable of causing cardiotoxicity in Atlantic killifish Fundulus heteroclitus embryos. Binary exposures were performed in both naïve and PAH-adapted killifish embryos to examine resistance to weak agonists and FL binary exposures. Weak agonists used in this study included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. Carbaryl, indigo, and indirubin induced the highest CYP1 activity levels in naïve killifish embryos, but no significant CYP1 induction was observed in the PAH-adapted killifish. Embryos were coexposed to subteratogenic levels of each agonist and 500μg/L FL to assess if binary administration could cause cardiotoxicity. Indigo and indirubin coupled with FL caused cardiac teratogenesis in naïve killifish, but coexposures did not produce cardiac chamber abnormalities in the PAH-adapted population. Knockdown of AHR2 in naïve killifish embryos did not prevent cardiac teratogenesis. The data suggest a unique mechanism of cardiotoxicity that is not driven by AHR2 activation. PMID:27211013

  2. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  3. Biological effects of 6-formylindolo[3,2-b]carbazole (FICZ) in vivo are enhanced by loss of CYP1A function in an Ahr2-dependent manner.

    PubMed

    Wincent, Emma; Kubota, Akira; Timme-Laragy, Alicia; Jönsson, Maria E; Hahn, Mark E; Stegeman, John J

    2016-06-15

    6-Formylindolo[3,2-b]carbazole (FICZ) is a potent aryl hydrocarbon receptor (AHR) agonist that is efficiently metabolized by AHR-regulated cytochrome P4501 enzymes. FICZ is a proposed physiological AHR ligand that induces its own degradation as part of a regulatory negative feedback loop. In vitro studies in cells show that CYP1 inhibition in the presence of FICZ results in enhanced AHR activation, suggesting that FICZ accumulates in the cell when its metabolism is blocked. We used zebrafish (Danio rerio) embryos to investigate the in vivo effects of FICZ when CYP1A is knocked down or inhibited. Embryos were injected with morpholino antisense oligonucleotides targeting CYP1A (CYP1A-MO), Ahr2, or a combination of both. FICZ exposure of non-injected embryos or embryos injected with control morpholino had little effect. In CYP1A-MO-injected embryos, however, FICZ dramatically increased mortality, incidence and severity of pericardial edema and circulation failure, reduced hatching frequency, blocked swim bladder inflation, and strongly potentiated expression of Ahr2-regulated genes. These effects were substantially reduced in embryos with a combined knockdown of Ahr2 and CYP1A, indicating that the toxicity was mediated at least partly by Ahr2. Co-exposure to the CYP1 inhibitor alpha-naphthoflavone (αNF) and FICZ had similar effects as the combination of CYP1A-MO and FICZ. HPLC analysis of FICZ-exposed embryos showed increased levels of FICZ after concomitant CYP1A-MO injection or αNF co-exposure. Together, these results show that a functioning CYP1/AHR feedback loop is crucial for regulation of AHR signaling by a potential physiological ligand in vivo and further highlights the role of CYP1 enzymes in regulating biological effects of FICZ.

  4. Behavioral Rhythmicity of Mice Lacking AhR and Attenuation of Light-induced Phase Shift by 2,3,7,8-Tetracholordibenzo-p-dioxin

    PubMed Central

    Mukai, Motoko; Lin, Tien-Min; Peterson, Richard E.; Cooke, Paul S.; Tischkau, Shelley A.

    2008-01-01

    Transcription factors belonging to the Per/Arnt/Sim (PAS) domain family are highly conserved and many are involved in circadian rhythm regulation. One member of this family, aryl hydrocarbon receptor (AhR), is an orphan receptor whose physiological role is unknown. Recent findings have led to the hypothesis that AhR has a role in circadian rhythm, which is the focus of the present investigation. First, time-of-day dependent mRNA expression of AhR and its signaling target, cytochrome p4501A1 (Cyp1a1) was determined in C57BL/6J mice by quantitative RT-PCR. Circadian expression of AhR and Cyp1a1 was observed both in the suprachiasmatic nucleus (SCN) and liver. Next, the circadian phenotype of mice lacking AhR (AhRKO) was investigated using behavioral monitoring. Intact AhRKO mice had robust circadian rhythmicity with a similar tau under constant conditions compared to wild-type mice, but a significant difference in tau was observed between genotypes in ovariectomized female mice. Time to re-entrainment following 6-h advances or delays of the light/dark cycle was not significantly different between genotypes. However, mice exposed to the AhR agonist 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD, 1 μg/kg BW) displayed decreased phase shifts in response to light and had altered expression of Per1 and Bmal1. These results suggest that chronic activation of AhR may affect the ability of the circadian timekeeping system to adjust to alterations in environmental lighting by affecting canonical clock genes. Further studies are necessary to decipher the mechanism of how AhR agonists could disrupt light-induced phase shifts. If AhR does have a role in circadian rhythm, it may share redundant roles with other PAS domain proteins and/or the role of AhR may not be exhibited in the behavioral activity rhythm, but could be important elsewhere in the peripheral circadian system. PMID:18487412

  5. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    SciTech Connect

    Manning, Gillian E.; Mundy, Lukas J.; Crump, Doug; Jones, Stephanie P.; Chiu, Suzanne; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, in combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity than CYP

  6. AHR signaling in prostate growth, morphogenesis, and disease

    PubMed Central

    Vezina, Chad M.; Lin, Tien-Min; Peterson, Richard E.

    2010-01-01

    Most evidence of aryl hydrocarbon receptor (AHR) signaling in prostate growth, morphogenesis, and disease stems from research using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to pharmacologically activate the AHR at various stages of development. This review discusses effects of TCDD on prostate morphogenesis and highlights interactions between AHR and other signaling pathways during normal and aberrant prostate growth. Although AHR signaling modulates estrogen and androgen signaling in other tissues, crosstalk between these steroid hormone receptors and AHR signaling cannot account for actions of TCDD on prostate morphogenesis. Instead, the AHR appears to act within a cooperative framework of developmental signals to regulate timing and patterning of prostate growth. Inappropriate activation of AHR signaling as a result of early life TCDD exposure disrupts the balance of these signals, impairs prostate morphogenesis, and has an imprinting effect on the developing prostate that predisposes to prostate disease in adulthood. Mechanisms of AHR signaling in prostate growth and disease are only beginning to be unraveled and recent studies have revealed its interactions with WNT5A, retinoic acid, fibroblast growth factor 10, and vascular endothelial growth factor signaling pathways. PMID:18977204

  7. Activation of endplate nicotinic acetylcholine receptors by agonists.

    PubMed

    Auerbach, Anthony

    2015-10-15

    The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly

  8. Naturally-Occurring Marine Brominated Indoles are Aryl Hydrocarbon Receptor Ligands/Agonists

    PubMed Central

    DeGroot, Danica E.; Franks, Diana G.; Higa, Tatsuo; Tanaka, Junichi; Hahn, Mark E.; Denison, Michael S.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally-occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as “brominated indoles”) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [3H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these marine-derived brominated indoles are members of a new class of naturally-occurring AhR agonists. PMID:26001051

  9. Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity

    PubMed Central

    2013-01-01

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [35S]GTPγS assay are predictive of the in vivo profile. PMID:23438330

  10. Orvinols with mixed kappa/mu opioid receptor agonist activity.

    PubMed

    Greedy, Benjamin M; Bradbury, Faye; Thomas, Mark P; Grivas, Konstantinos; Cami-Kobeci, Gerta; Archambeau, Ashley; Bosse, Kelly; Clark, Mary J; Aceto, Mario; Lewis, John W; Traynor, John R; Husbands, Stephen M

    2013-04-25

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [(35)S]GTPγS assay are predictive of the in vivo profile.

  11. Aryl hydrocarbon receptor (AhR) activation during pregnancy, and in adult nulliparous mice, delays the subsequent development of DMBA-induced mammary tumors

    PubMed Central

    Wang, Tao; Gavin, Heather M.; Arlt, Volker M.; Lawrence, B. Paige; Fenton, Suzanne E.; Medina, Daniel; Vorderstrasse, Beth A.

    2010-01-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), the prototypic ligand for the aryl hydrocarbon receptor (AhR), promotes tumor formation in some model systems. However with regard to breast cancer, epidemiological and animal studies are inconclusive as to whether exposure increases tumor incidence or may instead be protective. We have previously reported that mice exposed to TCDD during pregnancy have impaired differentiation of mammary tissue, including decreased branching and poor development of lobuloalveolar structures. Because normal pregnancy-induced mammary differentiation may protect against subsequent neoplastic transformation, we hypothesized that TCDD-treated mice would be more susceptible to chemical carcinogenesis after parturition. To test this, mice were treated with TCDD or vehicle during pregnancy. Four weeks later, DMBA (7,12-dimethylbenz[a]anthracene) was administered to induce mammary tumor formation. Contrary to our hypothesis, TCDD-exposed parous mice showed a four-week delay in tumor formation relative to controls, and had a lower tumor incidence throughout the 27-week time course. The same results were obtained in nulliparous mice given TCDD and DMBA on the same schedule. We next addressed whether the delayed tumor incidence was a reflection of decreased tumor initiation, by testing the formation of DMBA-DNA adducts and preneoplastic lesions, induction of cytochrome P450s, and cell proliferation. None of these markers of tumor initiation differed between vehicle- and TCDD-treated animals. The expression of CXCL12 and CXCR4 was also measured to address their possible role in tumorigenesis. Taken together, our results suggest that AhR activation by TCDD slows the promotion of preneoplastic lesions to overt mammary tumors. PMID:20521247

  12. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline.

    PubMed

    Haenisch, Britta; Walstab, Jutta; Herberhold, Stephan; Bootz, Friedrich; Tschaikin, Marion; Ramseger, René; Bönisch, Heinz

    2010-12-01

    Oxymetazoline and xylometazoline are both used as nasal mucosa decongesting α-adrenoceptor agonists during a common cold. However, it is largely unknown which of the six α-adrenoceptor subtypes are actually present in human nasal mucosa, which are activated by the two alpha-adrenoceptor agonists and to what extent. Therefore, mRNA expression in human nasal mucosa of the six α-adrenoceptor subtypes was studied. Furthermore, the affinity and potency of the imidazolines oxymetazoline and xylometazoline at these α-adrenoceptor subtypes were examined in transfected HEK293 cells. The rank order of mRNA levels of α-adrenoceptor subtypes in human nasal mucosa was: α(2A) > α(1A) ≥ α(2B) > α(1D) ≥ α(2C) > α(1B) . Oxymetazoline and xylometazoline exhibited in radioligand competition studies higher affinities than the catecholamines adrenaline and noradrenaline at most α-adrenoceptor subtypes. Compared to xylometazoline, oxymetazoline exhibited a significantly higher affinity at α(1A) - but a lower affinity at α(2B) -adrenoceptors. In functional studies in which adrenoceptor-mediated Ca(2+) signals were measured, both, oxymetazoline and xylometazoline behaved at α(2B) -adrenoceptors as full agonists but oxymetazoline was significantly more potent than xylometazoline. Furthermore, oxymetazoline was also a partial agonist at α(1A) -adrenoceptors; however, its potency was relatively low and it was much lower than its affinity. The higher potency at α(2B) -adrenoceptors, i.e. at receptors highly expressed at the mRNA level in human nasal mucosa, could eventually explain why in nasal decongestants oxymetazoline can be used in lower concentrations than xylometazoline.

  13. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline.

    PubMed

    Haenisch, Britta; Walstab, Jutta; Herberhold, Stephan; Bootz, Friedrich; Tschaikin, Marion; Ramseger, René; Bönisch, Heinz

    2010-12-01

    Oxymetazoline and xylometazoline are both used as nasal mucosa decongesting α-adrenoceptor agonists during a common cold. However, it is largely unknown which of the six α-adrenoceptor subtypes are actually present in human nasal mucosa, which are activated by the two alpha-adrenoceptor agonists and to what extent. Therefore, mRNA expression in human nasal mucosa of the six α-adrenoceptor subtypes was studied. Furthermore, the affinity and potency of the imidazolines oxymetazoline and xylometazoline at these α-adrenoceptor subtypes were examined in transfected HEK293 cells. The rank order of mRNA levels of α-adrenoceptor subtypes in human nasal mucosa was: α(2A) > α(1A) ≥ α(2B) > α(1D) ≥ α(2C) > α(1B) . Oxymetazoline and xylometazoline exhibited in radioligand competition studies higher affinities than the catecholamines adrenaline and noradrenaline at most α-adrenoceptor subtypes. Compared to xylometazoline, oxymetazoline exhibited a significantly higher affinity at α(1A) - but a lower affinity at α(2B) -adrenoceptors. In functional studies in which adrenoceptor-mediated Ca(2+) signals were measured, both, oxymetazoline and xylometazoline behaved at α(2B) -adrenoceptors as full agonists but oxymetazoline was significantly more potent than xylometazoline. Furthermore, oxymetazoline was also a partial agonist at α(1A) -adrenoceptors; however, its potency was relatively low and it was much lower than its affinity. The higher potency at α(2B) -adrenoceptors, i.e. at receptors highly expressed at the mRNA level in human nasal mucosa, could eventually explain why in nasal decongestants oxymetazoline can be used in lower concentrations than xylometazoline. PMID:20030735

  14. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  15. AhR activation by 6-formylindolo[3,2-b]carbazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibit the development of mouse intestinal epithelial cells.

    PubMed

    Park, Joo-Hung; Choi, Ah-Jeong; Kim, Soo-Ji; Cheong, Seon-Woo; Jeong, So-Yeon

    2016-04-01

    The intestinal epithelium plays a central role in immune homeostasis in the intestine. AhR, a ligand-activated transcription factor, plays an important role in diverse physiological processes. The intestines are exposed to various exogenous and endogenous AhR ligands. Thus, AhR may regulate the intestinal homeostasis, directly acting on the development of intestinal epithelial cells (IEC). In this study, we demonstrated that 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited the in vitro development of mouse intestinal organoids. The number of Paneth cells in the small intestine and the depth of crypts of the small and large intestines were reduced in mice administrated with FICZ. Immunohistochemical and flow cytometric assays revealed that AhR was highly expressed in Lgr5(+) stem cells. FICZ inhibited Wnt signaling lowering the level of β-catenin protein. Gene expression analyses demonstrated that FICZ increased expression of Lgr5, Math1, BMP4, and Indian Hedgehog while inhibiting that of Lgr4. PMID:26950395

  16. FXR agonist activity of conformationally constrained analogs of GW 4064

    SciTech Connect

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Navas, III, Frank; Parks, Derek J.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2010-09-27

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  17. FXR agonist activity of conformationally constrained analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  18. AHR-related activities in a creosote-adapted population of adult atlantic killifish, Fundulus heteroclitus, two decades post-EPA superfund status at the Atlantic Wood Site, Portsmouth, VA USA.

    PubMed

    Wojdylo, Josephine V; Vogelbein, Wolfgang; Bain, Lisa J; Rice, Charles D

    2016-08-01

    Atlantic killifish, Fundulus heteroclitus, are adapted to creosote-based PAHs at the US EPA Superfund site known as Atlantic Wood (AW) on the southern branch of the Elizabeth River, VA USA. Subsequent to the discovery of the AW population in the early 1990s, these fish were shown to be recalcitrant to CYP1A induction by PAHs under experimental conditions, and even to the time of this study, killifish embryos collected from the AW site are resistant to developmental deformities typically associated with exposure to PAHs in reference fish. Historically, however, 90 +% of the adult killifish at this site have proliferative hepatic lesions including cancer of varying severity. Several PAHs at this site are known to be ligands for the aryl hydrocarbon receptor (AHR). In this study, AHR-related activities in AW fish collected between 2011 and 2013 were re-examined nearly 2 decades after first discovery. This study shows that CYP1A mRNA expression is three-fold higher in intestines of AW killifish compared to a reference population. Using immunohistochemistry, CYP1A staining in intestines was uniformly positive compared to negative staining in reference fish. Livers of AW killifish were examined by IHC to show that CYP1A and AHR2 protein expression reflect lesions-specific patterns, probably representing differences in intrinsic cellular physiology of the spectrum of proliferative lesions comprising the hepatocarcinogenic process. We also found that COX2 mRNA expression levels were higher in AW fish livers compared to those in the reference population, suggesting a state of chronic inflammation. Overall, these findings suggest that adult AW fish are responsive to AHR signaling, and do express CYP1A and AHR2 proteins in intestines at a level above what was observed in the reference population. PMID:27262937

  19. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo.

    PubMed

    Wang, Xiaowen; Li, Kai; Liu, Ling; Shi, Qiong; Song, Pu; Jian, Zhe; Guo, Sen; Wang, Gang; Li, Chunying; Gao, Tianwen

    2015-09-15

    Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR -129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that -129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with -129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than -129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo.

  20. AHR promoter variant modulates its transcription and downstream effectors by allele-specific AHR-SP1 interaction functioning as a genetic marker for vitiligo

    PubMed Central

    Wang, Xiaowen; Li, Kai; Liu, Ling; Shi, Qiong; Song, Pu; Jian, Zhe; Guo, Sen; Wang, Gang; Li, Chunying; Gao, Tianwen

    2015-01-01

    Vitiligo is an acquired depigmentation disorder largely caused by defective melanocyte- or autoimmunity-induced melanocyte destruction. The aryl hydrocarbon receptor (AHR) is essential for melanocyte homeostasis and immune process, and abnormal AHR was observed in vitiligo. We previously identified the T allele of AHR −129C > T variant as a protective factor against vitiligo. However, biological characterization underlying such effects is not fully certain, further validation by mechanistic research is warranted and was conducted in the present study. We showed that −129T allele promoted AHR transcriptional activity through facilitating its interaction with SP1 transcription factor (SP1) compared with −129C allele. We subsequently found reduced peripheral AHR and SP1 transcript expressions in vitiligo and a negative correlation of AHR level with disease duration. We also investigated AHR-related cytokines and observed increased serum TNF-α concentration and diminished serum levels of IL-10 and TGF-β1 in vitiligo. Further genetic analysis showed that -129T carriers possessed higher levels of AHR and IL-10 than −129C carriers. Therefore, our study indicates that the modulation of AHR transcription by a promoter variant has a profound influence on vitiligo, not only advancing our understanding on AHR function but also providing novel insight into the pathogenesis of degenerative or autoimmune diseases including vitiligo. PMID:26370050

  1. Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation.

    PubMed

    Vogel, Reiner; Lüdeke, Steffen; Siebert, Friedrich; Sakmar, Thomas P; Hirshfeld, Amiram; Sheves, Mordechai

    2006-02-14

    Using Fourier transform infrared (FTIR) difference spectroscopy, we have studied the impact of sites and extent of methylation of the retinal polyene with respect to position and thermodynamic parameters of the conformational equilibrium between the Meta I and Meta II photoproducts of rhodopsin. Deletion of methyl groups to form 9-demethyl and 13-demethyl analogues, as well as addition of a methyl group at C10 or C12, shifted the Meta I/Meta II equilibrium toward Meta I, such that the retinal analogues behaved like partial agonists. This equilibrium shift resulted from an apparent reduction of the entropy gain of the transition of up to 65%, which was only partially offset by a concomitant reduction of the enthalpy increase. The analogues produced Meta II photoproducts with relatively small alterations, while their Meta I states were significantly altered, which accounted for the aberrant transitions to Meta II. Addition of a methyl group at C14 influenced the thermodynamic parameters but had little impact on the position of the Meta I/Meta II equilibrium. Neutralization of the residue 134 in the E134Q opsin mutant increased the Meta II content of the 13-demethyl analogue, but not of the 9-demethyl analogue, indicating a severe impairment of the allosteric coupling between the conserved cytoplasmic ERY motif involved in proton uptake and the Schiff base/Glu 113 microdomain in the 9-demethyl analogue. The 9-methyl group appears therefore essential for the correct positioning of retinal to link protonation of the cytoplasmic motif with protonation of Glu 113 during receptor activation.

  2. Theory of partial agonist activity of steroid hormones

    PubMed Central

    Chow, Carson C.; Ong, Karen M.; Kagan, Benjamin; Simons, S. Stoney

    2015-01-01

    The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site, relative to a concentration limited step (CLS), which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally, the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus, this theory now makes it possible to predict how different cofactors modulate antisteroid PAA, which should be invaluable in developing more selective antagonists. PMID:25984562

  3. Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus

    PubMed Central

    Wassenberg, Deena M.; Di Giulio, Richard T.

    2004-01-01

    Widespread contamination of aquatic systems with polycyclic aromatic hydrocarbons (PAHs) has led to concern about effects of PAHs on aquatic life. Some PAHs have been shown to cause deformities in early life stages of fish that resemble those elicited by planar halogenated aromatic hydrocarbons (pHAHs) that are agonists for the aryl hydrocarbon receptor (AHR). Previous studies have suggested that activity of cytochrome P4501A, a member of the AHR gene battery, is important to the toxicity of pHAHs, and inhibition of CYP1A can reduce the early-life-stage toxicity of pHAHs. In light of the effects of CYP1A inhibition on pHAH-derived toxicity, we explored the impact of both model and environmentally relevant CYP1A inhibitors on PAH-derived embryotoxicity. We exposed Fundulus heteroclitus embryos to two PAH-type AHR agonists, β-naphthoflavone and benzo(a)pyrene, and one pHAH-type AHR agonist, 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), alone and in combination with several CYP1A inhibitors. In agreement with previous studies, coexposure of embryos to PCB-126 with the AHR antagonist and CYP1A inhibitor α-naphthoflavone decreased frequency and severity of deformities compared with embryos exposed to PCB-126 alone. In contrast, embryos coexposed to the PAHs with each of the CYP1A inhibitors tested were deformed with increased severity and frequency compared with embryos dosed with PAH alone. The mechanism by which inhibition of CYP1A increased embryotoxicity of the PAHs tested is not understood, but these results may be helpful in elucidating mechanisms by which PAHs are embryotoxic. Additionally, these results call into question additive models of PAH embryotoxicity for environmental PAH mixtures that contain both AHR agonists and CYP1A inhibitors. PMID:15579409

  4. Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism

    PubMed Central

    Delaney, Michael Keegan; Liu, Junling; Kim, Kyungho; Shen, Bo; Stojanovic-Terpo, Aleksandra; Zheng, Yi; Cho, Jaehyung

    2014-01-01

    Activated platelets facilitate blood coagulation by exposing phosphatidylserine (PS) and releasing microvesicles (MVs). However, the potent physiological agonists thrombin and collagen poorly induce PS exposure when a single agonist is used. To obtain a greater procoagulant response, thrombin is commonly used in combination with glycoprotein VI agonists. However, even under these conditions, only a percentage of platelets express procoagulant activity. To date, it remains unclear why platelets poorly expose PS even when stimulated with multiple agonists and what the signaling pathways are of soluble agonist-induced platelet procoagulant activity. Here we show that physiological levels of shear present in blood significantly enhance agonist-induced platelet PS exposure and MV release, enabling low doses of a single agonist to induce full-scale platelet procoagulant activity. PS exposed on the platelet surface was immediately released as MVs, revealing a tight coupling between the 2 processes under shear. Using platelet-specific Rac1−/− mice, we discovered that Rac1 plays a common role in mediating the low-dose agonist-induced procoagulant response independent of platelet aggregation, secretion, and the apoptosis pathway. Platelet-specific Rac1 function was not only important for coagulation in vitro but also for fibrin accumulation in vivo following laser-induced arteriolar injury. PMID:25079357

  5. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease

    PubMed Central

    Lee, Hyun Jung; Yeon, Jong Eun; Ko, Eun Jung; Yoon, Eileen L; Suh, Sang Jun; Kang, Keunhee; Kim, Hae Rim; Kang, Seoung Hee; Yoo, Yang Jae; Je, Jihye; Lee, Beom Jae; Kim, Ji Hoon; Seo, Yeon Seok; Yim, Hyung Joon; Byun, Kwan Soo

    2015-01-01

    AIM: To evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in nonalcoholic fatty liver disease (NAFLD) models. METHODS: Male C57BL/6J mice were classified according to control or high fat diet (HFD) with or without PPAR-δ agonist (GW) over period of 12 wk [control, HFD, HFD + lipopolysaccharide (LPS), HFD + LPS + GW group]. HepG2 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of GW. RESULTS: HFD caused glucose intolerance and hepatic steatosis. In mice fed an HFD with LPS, caspase-1 and interleukin (IL)-1β in the liver were significantly increased. Treatment with GW ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In HepG2 cells, PA and LPS treatment markedly increased mRNA of several nucleotide-binding and oligomerization domain-like receptor family members (NLRP3, NLRP6, and NLRP10), caspase-1 and IL-1β. PA and LPS also exaggerated reactive oxygen species production. All of the above effects of PA and LPS were reduced by GW. GW also enhanced the phosphorylation of AMPK-α. CONCLUSION: PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation. Targeting the inflammasome by the PPAR-δ agonist may have therapeutic implication for NAFLD. PMID:26668503

  6. Cell type and gene-specific activity of the retinoid inverse agonist AGN 193109: divergent effects from agonist at retinoic acid receptor gamma in human keratinocytes.

    PubMed

    Thacher, S M; Nagpal, S; Klein, E S; Arefieg, T; Krasinski, G; DiSepio, D; Agarwal, C; Johnson, A; Eckert, R L; Chandraratna, R A

    1999-04-01

    Retinoids are important regulators of epithelial differentiation. AGN 193109 is a high-affinity antagonist and inverse agonist for the nuclear retinoic acid receptors (RARs). Paradoxically, both AGN 193109 and retinoid agonists inhibit the expression of the differentiation marker MRP-8 in normal human keratinocytes (NHKs). TTNPB, an RAR agonist, and AGN 193109 mutually antagonize MRP-8 inhibition at both mRNA and protein levels. We find that this antagonism, which is greatest at an AGN 193109:TTNPB ratio of about 10:1, is absent when either compound is in significant excess. The potent RARalpha-specific agonist, AGN 193836, has no effect on MRP-8 regulation. These data indicate that inverse agonists and agonists suppress MRP-8 in NHKs through RARgamma using distinct and mutually inhibitory mechanisms. The activity of AGN 193109 on MRP-8 is cell type specific. In differentiating ECE16-1 cervical cells, TTNPB inhibits while AGN 193109 induces MRP-8 mRNA levels. The effect of AGN 193109 on genes inhibited by retinoid agonists in NHKs is also selective; expression of the differentiation markers transglutaminase 1 and keratin 6 is not down-regulated by AGN 193109 whereas stromelysin-1 expression is suppressed. These results show a complex gene and cell context-specific interplay between agonist and inverse agonist for the regulation of gene expression.

  7. AHR-5850: a potent anti-inflammatory compound.

    PubMed

    Sancilio, L F; Reese, D L; Cheung, S; Alphin, R S

    1977-03-01

    AHR-5850 is a non-steroidal anti-inflammatory compound possessing antipyretic and analgesic properties. AHR-5850 was 16.4 and 22.8 times more potent than phenylbutazone in suppressing acute (Evans blue-carrageenan pleural effusion) and chronic (adjuvant-induced arthritis) inflammation, respectively. The analgesic activity of AHR 5850 was 43 times that of acetylsalicylic acid in the Randall-Selitto assay, and 156 and 56.3 times more potent than phenylbutazone in the acetylcholine-induced abdominal constriction in mice and in the bradykinin-induced nociceptive response in dogs, respectively. Single-dose studies showed that AHR-5850 produced less gastric irritation than acetylsalicylic acid when applied topically to the exposed gastric mucosa of cats or when administered orally to rats and dogs. Upon subchronic oral administration to rats, the therapeutic ratio of AHR-5850 was twice that of phenylbutazone. This was based on the ratio of its potency relative to phenylbutazone in producing intestinal lesions to its anti-inflammatory potency relative to phenylbutazone in the adjuvant-induced arthritis.

  8. AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio)

    SciTech Connect

    Van Tiem, Lindsey A.; Di Giulio, Richard T.

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants often present in aquatic systems as complex mixtures. Embryonic fish are sensitive to the developmental toxicity of some PAHs, but the exact mechanisms involved in this toxicity are still unknown. This study explored the role of the aryl hydrocarbon receptor (AHR) in the oxidative stress response of zebrafish to the embryotoxicity of select PAHs. Embryos were exposed to two PAHs, benzo[k]fluoranthene (BkF; a strong AHR agonist) and fluoranthene (FL; a cytochrome P4501A (CYP1A) inhibitor), alone and in combination. CYP1A, CYP1B1, CYP1C1, and redox-responsive genes glutathione s-transferase pi 2 (GSTp2), glutathione peroxidase 1 (GPx1), the glutamate-cysteine ligase catalytic subunit (GCLc), MnSOD and CuZnSOD mRNA expression was examined. CYP1 activity was measured via an in vivo ethoxyresorufin-O-deethlyase (EROD) activity assay, and the area of the pericardium was measured as an index of cardiotoxicity. BkF or FL alone caused no deformities whereas BkF + FL resulted in extreme pericardial effusion. BkF induced CYP activity above controls and co-exposure with FL inhibited this activity. BkF induced expression of all three CYPs, GSTp2, and GCLc. BkF + FL caused greater than additive induction of the three CYPs, GSTp2, GPx1, and GCLc but had no effect on MnSOD or CuZnSOD. AHR2 knockdown protected against the cardiac deformities caused by BkF + FL and significantly inhibited the induction of the CYPs, GSTp2, GPx1, and GCLc after BkF + FL compared to non-injected controls. These results further show the protective role of AHR2 knockdown against cardiotoxic PAHs and the role of AHR2 as a mediator of redox-responsive gene induction. - Research Highlights: > Co-exposure of the PAHs BkF and FL causes cardiotoxicity in zebrafish. > BkF and FL co-exposure upregulates certain XRE- and ARE-associated genes. > AHR2 knockdown prevents the deformities caused by BkF and FL co-exposure. > AHR2

  9. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  10. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders

    PubMed Central

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3+ regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  11. Aryl-hydrocarbon receptor activity modulates prolactin expression in the pituitary.

    PubMed

    Moran, Tyler B; Brannick, Katherine E; Raetzman, Lori T

    2012-11-15

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotrope and lactotrope adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somatolactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction in pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggest that environmental dioxins can exert endocrine disrupting effects at the pituitary.

  12. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes.

    PubMed

    Rasmussen, Martin Krøyer; Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  13. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes

    PubMed Central

    Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  14. Magnesium ions and opioid agonist activity in streptozotocin-induced hyperalgesia.

    PubMed

    Bujalska, Magdalena; Malinowska, Ewelina; Makulska-Nowak, Helena; Gumułka, Stanisław Witold

    2008-01-01

    Streptozotocin-induced hyperglycemia accompanied by a chronic decrease in the nociceptive threshold is considered a useful model of experimental hyperalgesia. We examined (1) the effect of the opioid receptor agonists and (2) the effect of the magnesium ions (Mg(2+)) on the antinociceptive action of opioid agonists in a diabetic neuropathic pain model. When administered alone, opioid agonists like morphine (5 mg/kg i.p.) and fentanyl (0.0625 mg/kg i.p.), as well as the partial agonist buprenorphine (0.075 mg/kg) had only little effect on streptozotocin-induced hyperalgesia. However, pretreatment with Mg(2+) at a dose of 40 mg magnesium sulfate/kg i.p. markedly enhanced the analgesic activity of all three investigated opioids. Practical aspects of co-administration of magnesium and opioids in diabetic neuropathy are discussed. PMID:18701828

  15. Common Commercial and Consumer Products Contain Activators of the Aryl Hydrocarbon (Dioxin) Receptor

    PubMed Central

    Zhao, Bin; Bohonowych, Jessica E. S.; Timme-Laragy, Alicia; Jung, Dawoon; Affatato, Alessandra A.; Rice, Robert H.; Di Giulio, Richard T.; Denison, Michael S.

    2013-01-01

    Activation of the Ah receptor (AhR) by halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products. PMID:23441220

  16. Trypanosoma cruzi trans-sialidase initiates an ROR-γt–AHR-independent program leading to IL-17 production by activated B cells

    PubMed Central

    Bermejo, Daniela A; Jackson, Shaun W; Gorosito-Serran, Melisa; Acosta-Rodriguez, Eva V; Amezcua-Vesely, Maria C; Sather, Blythe D; Singh, Akhilesh K.; Khim, Socheath; Mucci, Juan; Liggitt, Denny; Campetella, Oscar; Oukka, Mohamed; Gruppi, Adriana; Rawlings, David J

    2013-01-01

    We identified B cells as a major source for rapid, innate-like interleukin 17 (IL-17) production in vivo in response to Trypanosoma cruzi infection. IL-17+ B cells exhibited a plasmablast phenotype, outnumbered TH17 cells and were required for optimal response to this pathogen. Using both murine and human primary B cells, we demonstrate that exposure to parasite-derived trans-sialidase in vitro was sufficient to trigger modification of the cell surface mucin, CD45, leading to Btk-dependent signaling and IL-17A or IL-17F production via an ROR-γt and AHR-independent transcriptional program. Our combined data suggest that generation of IL-17+ B cells may be an unappreciated feature of innate immune responses required for pathogen control or IL-17-mediated autoimmunity. PMID:23563688

  17. Microarray analysis of the AHR system: Tissue-specific flexibility in signal and target genes

    SciTech Connect

    Frericks, Markus; Meissner, Marc; Esser, Charlotte . E-mail: chesser@uni-duesseldorf.de

    2007-05-01

    Data mining published microarray experiments require that expression profiles are directly comparable. We performed linear global normalization on the data of 1967 Affymetrix U74av2 microarrays, i.e. the transcriptomes of > 100 murine tissues or cell types. The mathematical transformation effectively nullifies inter-experimental or inter-laboratory differences between microarrays. The correctness of expression values was validated by quantitative RT-PCR. Using the database we analyze components of the aryl hydrocarbon receptor (AHR) signaling pathway in various tissues. We identified lineage and differentiation specific variant expression of AHR, ARNT, and HIF1{alpha} in the T-cell lineage and high expression of CYP1A1 in immature B cells and dendritic cells. Performing co-expression analysis we found unorthodox expression of the AHR in the absence of ARNT, particularly in stem cell populations, and can reject the hypothesis that ARNT2 takes over and is highly expressed when ARNT expression is low or absent. Furthermore the AHR shows no co-expression with any other transcript present on the chip. Analysis of differential gene expression under 308 conditions revealed 53 conditions under which the AHR is regulated, numerous conditions under which an intrinsic AHR action is modified as well as conditions activating the AHR even in the absence of known AHR ligands. Thus meta-analysis of published expression profiles is a powerful tool to gain novel insights into known and unknown systems.

  18. Crystal structure of constitutively active rhodopsin: How an agonist can activate its GPCR

    PubMed Central

    Standfuss, Jörg; Edwards, Patricia C.; D’Antona, Aaron; Fransen, Maikel; Xie, Guifu; Oprian, Daniel D.; Schertler, Gebhard F. X.

    2013-01-01

    G protein-coupled receptors (GPCRs) comprise the largest family of membrane proteins in the human genome and mediate cellular responses to an extensive array of hormones, neurotransmitters, and sensory stimuli. While some crystal structures have been determined for GPCRs, most are for modified forms, showing little basal activity, and are bound to inverse agonists or antagonists1. Consequently, these structures correspond to receptors in their inactive states. The visual pigment rhodopsin is the only GPCR for which structures exist that are thought to be in the active state2,3. However, these structures are for the apoprotein or opsin form that does not contain the agonist all-trans retinal. We present here a crystal structure for the constitutively active rhodopsin mutant E113Q4-6 in complex with a peptide derived from the C-terminus of the G protein transducin (the GαCT peptide). Importantly, the protein appears to be in an active conformation, and retinal is retained in the binding pocket after photoactivation. Comparison with the structure of ground state rhodopsin7 suggests how translocation of the retinal β-ionone ring leads to a rotational tilt of transmembrane helix 6 (TM6), the critical conformational change upon activation8. A key feature of this conformational change is a reorganization of water mediated hydrogen-bonding networks between the retinal-binding pocket and three of the most conserved GPCR sequence motifs. For the first time we thus show how an agonist ligand can activate its GPCR. PMID:21389983

  19. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis.

    PubMed

    Takamura, Takeyuki; Harama, Daisuke; Fukumoto, Suguru; Nakamura, Yuki; Shimokawa, Naomi; Ishimaru, Kayoko; Ikegami, Shuji; Makino, Seiya; Kitamura, Masanori; Nakao, Atsuhito

    2011-10-01

    Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis.

  20. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NF{kappa}B and AhR and EGFR-ERK pathway

    SciTech Connect

    Potapovich, Alla I.; Lulli, Daniela; Fidanza, Paolo; Kostyuk, Vladimir A.; De Luca, Chiara; Pastore, Saveria; Korkina, Liudmila G.

    2011-09-01

    Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure, the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights

  1. AHR2-Mediated Transcriptomic Responses Underlying the Synergistic Cardiac Developmental Toxicity of PAHs

    PubMed Central

    Jayasundara, Nishad; Van Tiem Garner, Lindsey; Meyer, Joel N.; Erwin, Kyle N.; Di Giulio, Richard T.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) induce developmental defects including cardiac deformities in fish. The aryl hydrocarbon receptor (AHR) mediates the toxicity of some PAHs. Exposure to a simple PAH mixture during embryo development consisting of an AHR agonist (benzo(a)pyrene-BaP) with fluoranthene (FL), an inhibitor of cytochrome p450 1(CYP1)—a gene induced by AHR activation—results in cardiac deformities. Exposure to BaP or FL alone at similar concentrations alters heart rates, but does not induce morphological deformities. Furthermore, AHR2 knockdown prevents the toxicity of BaP + FL mixture. Here, we used a zebrafish microarray analysis to identify heart-specific transcriptomic changes during early development that might underlie cardiotoxicity of BaP + FL. We used AHR2 morphant embryos to determine the role of this receptor in mediating toxicity. Control and knockdown embryos at 36 h post-fertilization were exposed to DMSO, 100 μg/l BaP, 500 μg/l FL, or 100 μg/l BaP + 500 μg/l FL, and heart tissues for RNA were extracted at 2, 6, 12, and 18 h-post-exposure (hpe), prior to the appearance of cardiac deformities. Data show AHR2-dependent BaP + FL effects on expression of genes involved in protein biosynthesis and neuronal development in addition to signaling molecules and their associated molecular pathways. Ca2+-cycling and muscle contraction genes were the most significantly differentially expressed category of transcripts when comparing BaP + FL-treated AHR2 morphant and control embryos. These differences were most prominent at 2 and 6 hpe. Therefore, we postulate that BaP + FL may affect cellular Ca2+ levels and subsequently cardiac muscle function, potentially underlying BaP + FL cardiotoxicity. PMID:25412620

  2. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver.

    PubMed

    Zhu, Yun-Xia; Zhang, Ming-Liang; Zhong, Yuan; Wang, Chen; Jia, Wei-Ping

    2016-01-01

    Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis.

  3. Agonists-induced platelet activation varies considerably in healthy male individuals: studies by flow cytometry.

    PubMed

    Panzer, Simon; Höcker, Lisa; Koren, Daniela

    2006-02-01

    Flow cytometric evaluation of platelet function extends our understanding of platelets' role in various clinical conditions associated with either bleeding disorders, thrombosis, or monitoring of antiplatelet therapy. The use of suboptimal concentrations of various agonists may allow assessing the "activatability" of platelets. We determined platelet responsiveness to thrombin-receptor-activating peptide-6, arachidonic acid, adenosine 5c-diphosphate (ADP), epinephrine, collagen, and ristocetin at suboptimal concentrations by determination of P-selectin expression and binding of PAC-1 in 26 healthy male individuals. The response varied considerably from one individual to the next. However, within individuals, responses to all agonists except collagen correlated strongly (p<0.05), suggesting a global variability of platelet responses. Moreover, P-selectin expression and PAC-1 binding were strongly correlated (p<0.05). Interestingly, with epinephrine, PAC-1 positive events outnumbered P-selectin positive events, while this was not seen with the other agonists. Thus, epinephrine may specifically affect the conformational switch mechanism and receptor clustering. Our data indicate that the in vitro response to suboptimal concentrations of agonists varies, but individuals with selective platelet defects may still be identified based on data obtained with the various agonists. PMID:16283308

  4. Potent complement C3a receptor agonists derived from oxazole amino acids: Structure-activity relationships.

    PubMed

    Singh, Ranee; Reed, Anthony N; Chu, Peifei; Scully, Conor C G; Yau, Mei-Kwan; Suen, Jacky Y; Durek, Thomas; Reid, Robert C; Fairlie, David P

    2015-12-01

    Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed.

  5. Alternative in vitro approach for assessing AHR-mediated CYP1A induction by dioxins in wild cormorant (Phalacrocorax carbo) population.

    PubMed

    Thuruthippallil, Leena Mol; Kubota, Akira; Kim, Eun-Young; Iwata, Hisato

    2013-06-18

    Our line of papers revealed that the common (great) cormorant (Phalacrocorax carbo) possesses two isoforms of the aryl hydrocarbon receptor (ccAHR1 and ccAHR2). This paper addresses in vitro tests of the ccAHR signaling pathways to solve two questions: (1) whether there are functional differences in the two ccAHR isoforms, and (2) whether a molecular perturbation, cytochrome P450 1A (ccCYP1A) induction, in the population-level can be predicted from the in vitro tests. The transactivation potencies mediated by ccAHR1 and ccAHR2 were measured in COS-7 cells treated with 15 selected dioxins and related compounds (DRCs), where ccAHR1 or ccAHR2 expression plasmid and ccCYP1A5 promoter/enhancer-linked luciferase reporter plasmid were transfected. For congeners that exhibited dose-dependent luciferase activities, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) relative potencies (REPs) and induction equivalency factors (IEFs) were estimated. ccAHR1-IEF profile was similar to WHO avian TCDD toxic equivalency factor (TEF) profile except for dioxin-like polychlorinated biphenyls that showed lower IEFs in ccAHR1-driven reporter assay. ccAHR2-IEF profile was different from WHO TEFs and ccAHR1-IEFs. Notably, 2,3,4,7,8-PeCDF was more potent than TCDD for ccAHR2-mediated response. Using ccAHR1- and ccAHR2-IEFs and hepatic DRC concentrations in the Lake Biwa cormorant population, total TCDD induction equivalents (IEQs) were calculated for each ccAHR-mediated response. Nonlinear regression analyses provided significant sigmoidal relationships of ccAHR1- and ccAHR2-derived IEQs with hepatic ccCYP1A5 mRNA levels, supporting the results of in vitro ccAHR-mediated TCDD dose-response curves. Collectively, our in vitro AHR reporter assay potentially could be an alternative to molecular epidemiology of the species of concern regarding CYP1A induction by AHR ligands. PMID:23676118

  6. NICOTINE EFFECTS ON THE ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    EPA Science Inventory

    Considerable research has shown long-lasting effects of early exposure in experimental animals to nicotine. Anatoxin-a is produced by cyanobacteria and has been shown to be a potent nicotinic agonist. This experiment evaluated the motor activity of adult mice, and their respons...

  7. Dioxin-Dependent and Dioxin-Independent Gene Batteries: Comparison of Liver and Kidney in AHR-Null Mice

    PubMed Central

    Boutros, Paul C.; Bielefeld, Kirsten A.; Pohjanvirta, Raimo; Harper, Patricia A.

    2009-01-01

    The aryl hydrocarbon receptor (AHR) is a widely expressed ligand-dependent transcription factor that mediates cellular responses to dioxins and other planar aromatic hydrocarbons. Ahr-null mice are refractory to the toxic effects of dioxin exposure. Although some mechanistic aspects of AHR activity are well understood, the tissue specificity of AHR effects remains unclear, both during development and following administration of exogenous ligands. To address the latter issue, we defined and compared transcriptional responses to dioxin exposure in the liver and kidney of wild-type and Ahr-null adult C57BL/6J mice treated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin or corn-oil vehicle. In both tissues, essentially all effects of dioxin on hepatic mRNA levels were mediated by the AHR. Although 297 genes were altered by dioxin exposure in the liver, only 17 were changed in the kidney, including a number of well-established AHR target genes. Ahr genotype had a large effect in both tissues, profoundly remodeling both the renal and hepatic transcriptomes. Surprisingly, a large number of genes were affected by Ahr genotype in both tissues, suggesting the presence of a basal AHR gene battery. Alterations of the renal transcriptome in Ahr-null animals were associated with perturbation of specific functional pathways and enrichment of specific DNA motifs. Our results demonstrate the importance of intertissue comparisons, highlight the basal role of the AHR in liver and kidney, and support a role in development or normal physiology. PMID:19759094

  8. Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors.

    PubMed

    Mortensen, Martin; Ebert, Bjarke; Wafford, Keith; Smart, Trevor G

    2010-04-15

    The activation characteristics of synaptic and extrasynaptic GABA(A) receptors are important for shaping the profile of phasic and tonic inhibition in the central nervous system, which will critically impact on the activity of neuronal networks. Here, we study in isolation the activity of three agonists, GABA, muscimol and 4,5,6,7-tetrahydoisoxazolo[5,4-c]pyridin-3(2H)-one (THIP), to further understand the activation profiles of alpha 1 beta 3 gamma 2, alpha 4 beta 3 gamma 2 and alpha 4 beta 3 delta receptors that typify synaptic- and extrasynaptic-type receptors expressed in the hippocampus and thalamus. The agonists display an order of potency that is invariant between the three receptors, which is reliant mostly on the agonist dissociation constant. At delta subunit-containing extrasynaptic-type GABA(A) receptors, both THIP and muscimol additionally exhibited, to different degrees, superagonist behaviour. By comparing whole-cell and single channel currents induced by the agonists, we provide a molecular explanation for their different activation profiles. For THIP at high concentrations, the unusual superagonist behaviour on alpha 4 beta 3 delta receptors is a consequence of its ability to increase the duration of longer channel openings and their frequency, resulting in longer burst durations. By contrast, for muscimol, moderate superagonist behaviour was caused by reduced desensitisation of the extrasynaptic-type receptors. The ability to specifically increase the efficacy of receptor activation, by selected exogenous agonists over that obtained with the natural transmitter, may prove to be of therapeutic benefit under circumstances when synaptic inhibition is compromised or dysfunctional.

  9. Effects of adenosine receptor agonists on efferent renal nerve activity in anesthetized rats.

    PubMed

    Genovesi, S; Pieruzzi, F; Camisasca, P; Ragonesi, G; Protasoni, G; Golin, R; Zanchetti, A; Stella, A

    2000-02-01

    The aim of this study was to investigate the effects of A1 and A2 adenosine-receptor activation on the sympathetic nervous system. The effects on efferent renal nerve activity of selective A1 (CCPA; 2-chloro-N-6-cyclopentyladenosine) and A2 (2HE-NECA; 2-hexynyl-5'-N-ethylcarboxamidoadenosine) adenosine-receptor agonists were studied in anesthetized rats either with intact baroreflexes (intact rats) or with bilateral sinoaortic denervation and vagotomy (denervated rats). After a control period of 5 min, A1 or A2 agonist or vehicle were intravenously infused for 8 min in separate groups of intact or denervated rats, in which arterial pressure and heart rate were continuously recorded. CCPA (5.0 microg/kg/min) and 2HE-NECA (0.7 microg/kg/min) were selected to obtain comparable blood pressure changes over the period of observation. Arterial pressure significantly and equally decreased during the A1 (-41 +/- 8%), and A2 (-35 +/- 5%) agonist administration. Heart rate significantly decreased during A1 agonist infusion, but it did not change during A2 agonist administration. Bilateral sinoaortic denervation and vagotomy did not modify the hemodynamic responses to both drugs. The A1 and A2 administration caused a large and significant increase in efferent renal nerve activity (+66 +/- 22% and +76 +/- 15%, respectively), and this effect was entirely abolished in denervated rats. A linear relation with a significant negative slope between changes in arterial pressure and changes in neural discharge was observed for each treatment. The comparison of the regression slopes showed that the reflex increase of efferent sympathetic activity caused by the administration of both agonists was significantly smaller than the increment induced by equipotent hypotensive dose of sodium nitroprusside (10 microg/kg). These data show that the selective activation of A1 and A2 receptors elicits a reflex increase in efferent renal nerve activity. This neural activation is smaller as compared

  10. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts.

    PubMed

    Henry, Ellen C; Welle, Stephen L; Gasiewicz, Thomas A

    2010-03-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.

  11. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review.

    PubMed

    Wang, Limei; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Blunder, Martina; Liu, Xin; Malainer, Clemens; Blazevic, Tina; Schwaiger, Stefan; Rollinger, Judith M; Heiss, Elke H; Schuster, Daniela; Kopp, Brigitte; Bauer, Rudolf; Stuppner, Hermann; Dirsch, Verena M; Atanasov, Atanas G

    2014-11-01

    Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements.

  12. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review

    PubMed Central

    Wang, Limei; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Blunder, Martina; Liu, Xin; Malainer, Clemens; Blazevic, Tina; Schwaiger, Stefan; Rollinger, Judith M.; Heiss, Elke H.; Schuster, Daniela; Kopp, Brigitte; Bauer, Rudolf; Stuppner, Hermann; Dirsch, Verena M.; Atanasov, Atanas G.

    2014-01-01

    Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements. PMID:25083916

  13. Agonist induced constitutive receptor activation as a novel regulatory mechanism. Mu receptor regulation.

    PubMed

    Sadée, W; Wang, Z

    1995-01-01

    We propose the hypothesis that certain G protein coupled receptors can become constitutively activated during agonist stimulation so that the receptor remains active even after the agonist is removed. This new paradigm of receptor regulation may account for some long term effects of neurotransmitters and hormones. We have tested the hypothesis that constitutive mu receptor activation represents a crucial step driving narcotic tolerance and dependence. Our results indeed support the conversion of mu to a constitutively active state, mu*, observed in neuroblastoma SK-N-SH and SH-SY5Y tissue culture, in U293 cells transfected with the mu receptor gene, and in vivo. Constitutive mu activation may result from receptor phosphorylation to yield mu*, and further, in vivo studies indicate that formation of mu* could account for narcotic tolerance and dependence.

  14. Agonist-Mediated Activation of STING Induces Apoptosis in Malignant B Cells.

    PubMed

    Tang, Chih-Hang Anthony; Zundell, Joseph A; Ranatunga, Sujeewa; Lin, Cindy; Nefedova, Yulia; Del Valle, Juan R; Hu, Chih-Chi Andrew

    2016-04-15

    Endoplasmic reticulum (ER) stress responses through the IRE-1/XBP-1 pathway are required for the function of STING (TMEM173), an ER-resident transmembrane protein critical for cytoplasmic DNA sensing, IFN production, and cancer control. Here we show that the IRE-1/XBP-1 pathway functions downstream of STING and that STING agonists selectively trigger mitochondria-mediated apoptosis in normal and malignant B cells. Upon stimulation, STING was degraded less efficiently in B cells, implying that prolonged activation of STING can lead to apoptosis. Transient activation of the IRE-1/XBP-1 pathway partially protected agonist-stimulated malignant B cells from undergoing apoptosis. In Eμ-TCL1 mice with chronic lymphocytic leukemia, injection of the STING agonist 3'3'-cGAMP induced apoptosis and tumor regression. Similarly efficacious effects were elicited by 3'3'-cGAMP injection in syngeneic or immunodeficient mice grafted with multiple myeloma. Thus, in addition to their established ability to boost antitumoral immune responses, STING agonists can also directly eradicate malignant B cells. Cancer Res; 76(8); 2137-52. ©2016 AACR. PMID:26951929

  15. Selective ligand behaviors provide new insights into agonist activation of nicotinic acetylcholine receptors.

    PubMed

    Marotta, Christopher B; Rreza, Iva; Lester, Henry A; Dougherty, Dennis A

    2014-05-16

    Nicotinic acetylcholine receptors are a diverse set of ion channels that are essential to everyday brain function. Contemporary research studies selective activation of individual subtypes of receptors, with the hope of increasing our understanding of behavioral responses and neurodegenerative diseases. Here, we aim to expand current binding models to help explain the specificity seen among three activators of α4β2 receptors: sazetidine-A, cytisine, and NS9283. Through mutational analysis, we can interchange the activation profiles of the stoichiometry-selective compounds sazetidine-A and cytisine. In addition, mutations render NS9283--currently identified as a positive allosteric modulator--into an agonist. These results lead to two conclusions: (1) occupation at each primary face of an α subunit is needed to activate the channel and (2) the complementary face of the adjacent subunit dictates the binding ability of the agonist.

  16. Novel Oxazolidinone-Based Peroxisome Proliferator Activated Receptor Agonists: Molecular Modeling, Synthesis, and Biological Evaluation.

    PubMed

    Fresno, N; Macías-González, M; Torres-Zaguirre, A; Romero-Cuevas, M; Sanz-Camacho, P; Elguero, J; Pavón, F J; Rodríguez de Fonseca, F; Goya, P; Pérez-Fernández, R

    2015-08-27

    A series of new peroxisome proliferator activated receptors (PPARs) chiral ligands have been designed following the accepted three-module structure comprising a polar head, linker, and hydrophobic tail. The majority of the ligands incorporate the oxazolidinone moiety as a novel polar head, and the nature of the hydrophobic tail has also been varied. Docking studies using the crystal structure of an agonist bound to the ligand binding domain of the PPARα receptor have been performed as a tool for their design. Suitable synthetic procedures have been developed, and compounds with different stereochemistries have been prepared. Evaluation of basal and ligand-induced activity proved that several compounds showed agonist activity at the PPARα receptor, thus validating the oxazolidinone template for PPAR activity. In addition, two compounds, 2 and 4, showed dual PPARα/PPARγ agonism and interesting food intake reduction in rats.

  17. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-05-29

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets.

  18. Platelet apoptosis and agonist-mediated activation in myelodysplastic syndromes.

    PubMed

    Martín, M; de Paz, R; Jiménez-Yuste, V; Fernández Bello, I; García Arias Salgado, E; Alvarez, M T; Butta, N V

    2013-05-01

    Patients with myelodysplastic syndromes (MDS) have a defect in the differentiation of bone marrow multipotent progenitor cells. Thrombocytopenia in MDS patients may be due to premature megakaryocyte death, but platelet apoptotic mechanisms may also occur. This study aimed to study function and apoptotic state of platelets from MDS patients with different platelet count. Reticulated platelets, platelet activation, activated caspases and annexin-V binding were evaluated by flow cytometry. Pro-apoptotic Bax and Bak proteins were determined by western blots and plasma thrombopoietin by ELISA. Microparticle-associated procoagulant activity and thrombin generation capacity of plasma were determined by an activity kit and calibrated automated thrombography, respectively. High plasma thrombopoietin levels and low immature circulating platelet count showed a pattern of hypoplastic thrombocytopenia in MDS patients. Platelets from MDS patients showed reduced activation capacity and more apoptosis signs than controls. Patients with the lowest platelet count showed less platelet activation and the highest extent of platelet apoptosis. On this basis, patients with thrombocytopenia should suffer more haemorrhagic episodes than is actually observed. Consequently, we tested whether there were some compensatory mechanisms to counteract their expected bleeding tendency. Microparticle-associated procoagulant activity was enhanced in MDS patients with thrombocytopenia, whereas their plasma thrombin generation capacity was similar to control group. This research shows a hypoplastic thrombocytopenia that platelets from MDS patients possess an impaired ability to be stimulated and more apoptosis markers than those from healthy controls, indicating that MDS is a stem cell disorder, and then, both number and function of progeny cells, might be affected. PMID:23407717

  19. Identification of ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China.

    PubMed

    Shen, Chaofeng; Huang, Shengbiao; Wang, Zijian; Qiao, Min; Tang, Xianjin; Yu, Chunna; Shi, Dezhi; Zhu, Youfeng; Shi, Jiyan; Chen, Xincai; Setty, Karen; Chen, Yingxu

    2008-01-01

    In recent years, increasing concern has surrounded the consequences of improper electric and electronic waste (e-waste) disposal. In order to mitigate or remediate the potentially severe toxic effects of e-waste recycling on the environment, organisms, and humans, many contaminated sites must first be well-characterized. In this study, soil samples were taken from Taizhou city, one of the largest e-waste disposal centers in China, which was involved in recycling for nearly 30 years. The extracts of the samples were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-O-deethylase (EROD) induction in the rat hepatoma cell line H4IIE. Some of the target AhR agonists, including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs), were instrumentally analyzed as well. The cause-effect relationship and dose-response relationship between the chemical concentrations of AhR agonists and observed EROD activity were examined. The results showed that soil extracts could induce AhR activity significantly, and the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQcal) were perfectly correlated to bioassay-derived TCDD equivalents (TEQbio; R = 0.96, P < 0.001), which indicated that the known AhR agonists could account for the observed responses. Among different contributors, PCBs accounted for 87.2-98.2% and PCDD/Fs contributed 1.7-11.6% of TEQcal, while the contribution of PAHs could almost be neglected. Under these conditions, a quantitative dose-effect relationship between TEQ(PCB) and EROD activity could be evaluated, suggesting that the observed AhR effect was mainly caused by PCBs. Further source identification by congener profiles analysis showed that the crude dismantling of electric power devices and open burning of electric wires and printed circuit boards may be the main sources of these dioxin-like compounds. This study suggests that

  20. Aryl‐hydrocarbon receptor activity modulates prolactin expression in the pituitary

    SciTech Connect

    Moran, Tyler B.; Brannick, Katherine E.; Raetzman, Lori T.

    2012-11-15

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotrope and lactotrope adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somatolactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction in pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggest that environmental dioxins can exert endocrine disrupting effects at the pituitary. -- Highlights: ► AhR signaling suppresses Prl mRNA expression. ► AhR signaling does not influence pituitary proliferation in culture. ► AhR is necessary for Prl, Lhb and Fshb expression at postnatal day 3.

  1. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists.

    PubMed

    Pless, Stephan A; Dibas, Mohammed I; Lester, Henry A; Lynch, Joseph W

    2007-12-01

    Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric alpha1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by approximately 20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists. PMID:17911099

  2. Zinc is a transmembrane agonist that induces platelet activation in a tyrosine phosphorylation-dependent manner.

    PubMed

    Watson, Ben R; White, Nathan A; Taylor, Kirk A; Howes, Joanna-Marie; Malcor, Jean-Daniel M; Bihan, Dominique; Sage, Stewart O; Farndale, Richard W; Pugh, Nicholas

    2016-01-01

    Following platelet adhesion and primary activation at sites of vascular injury, secondary platelet activation is induced by soluble platelet agonists, such as ADP, ATP, thrombin and thromboxane. Zinc ions are also released from platelets and damaged cells and have been shown to act as a platelet agonist. However, the mechanism of zinc-induced platelet activation is not well understood. Here we show that exogenous zinc gains access to the platelet cytosol and induces full platelet aggregation that is dependent on platelet protein tyrosine phosphorylation, PKC and integrin αIIbβ3 activity and is mediated by granule release and secondary signalling. ZnSO4 increased the binding affinity of GpVI, but not integrin α2β1. Low concentrations of ZnSO4 potentiated platelet aggregation by collagen-related peptide (CRP-XL), thrombin and adrenaline. Chelation of intracellular zinc reduced platelet aggregation induced by a number of different agonists, inhibited zinc-induced tyrosine phosphorylation and inhibited platelet activation in whole blood under physiologically relevant flow conditions. Our data are consistent with a transmembrane signalling role for zinc in platelet activation during thrombus formation.

  3. Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity?

    PubMed

    Bart, Gavin; Schluger, James H; Borg, Lisa; Ho, Ann; Bidlack, Jean M; Kreek, Mary Jeanne

    2005-12-01

    In humans, mu- and kappa-opioid receptor agonists lower tuberoinfundibular dopamine, which tonically inhibits prolactin release. Serum prolactin is, therefore, a useful biomarker for tuberoinfundibular dopamine. The current study evaluated the unexpected finding that the relative mu- and kappa-opioid receptor selective antagonist nalmefene increases serum prolactin, indicating possible kappa-opioid receptor agonist activity. In all, 33 healthy human volunteers (14 female) with no history of psychiatric or substance use disorders received placebo, nalmefene 3 mg, and nalmefene 10 mg in a double-blind manner. Drugs were administered between 0900 and 1000 on separate days via 2-min intravenous infusion. Serial blood specimens were analyzed for serum levels of prolactin. Additional in vitro studies of nalmefene binding to cloned human kappa-opioid receptors transfected into Chinese hamster ovary cells were performed. Compared to placebo, both doses of nalmefene caused significant elevations in serum prolactin (p<0.002 for nalmefene 3 mg and p<0.0005 for nalmefene 10 mg). There was no difference in prolactin response between the 3 and 10 mg doses. Binding assays confirmed nalmefene's affinity at kappa-opioid receptors and antagonism of mu-opioid receptors. [(35)S]GTPgammaS binding studies demonstrated that nalmefene is a full antagonist at mu-opioid receptors and has partial agonist properties at kappa-opioid receptors. Elevations in serum prolactin following nalmefene are consistent with this partial agonist effect at kappa-opioid receptors. As kappa-opioid receptor activation can lower dopamine in brain regions important to the persistence of alcohol and cocaine dependence, the partial kappa agonist effect of nalmefene may enhance its therapeutic efficacy in selected addictive diseases.

  4. Agonist-induced activation of rat mesenteric resistance vessels: comparison between noradrenaline and vasopressin

    SciTech Connect

    Cauvin, C.; Weir, S.W.; Wallnoefer, A.R.; Rueegg, U.P.

    1988-01-01

    The effects of noradrenaline (NA, 10(-5) M) and (arginine8)vasopressin (AVP, 10(-7) M) on tension in Ca2+-free medium and on membrane potential, and the inhibition of NA- and AVP-induced contractions by isradipine, have been compared in mesenteric resistance vessels (MRVs) from Wistar-Kyoto (WKY) rats. The release of intracellular Ca2+ by AVP contributed significantly less to its tension development than does that by NA. Nonetheless, the concentration-response curves for inhibition by isradipine of NA- and AVP-induced tonic tension were nearly identical. Similarly, these two agonists produced the same degree of membrane depolarization. In addition, both agonists were able to stimulate large contractions in vessels previously depolarized by 80 mM K+. AVP also stimulated /sup 45/Ca influx into rat cultured aortic smooth muscle cells. In contrast to the stimulation of /sup 45/Ca influx by KCl depolarization, the agonist-stimulated /sup 45/Ca influx was insensitive to inhibition by organic Ca2+ antagonists. It is concluded that Ca2+ entry through receptor-operated Ca2+-permeable channels (ROCs) may contribute to agonist-induced activation of rat aortic and MRV smooth muscle.

  5. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: a link to chemokines?

    PubMed Central

    Freitag, Caroline M.; Miller, Richard J.

    2014-01-01

    Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain) is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others) have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between the pain ameliorating effects of PPAR agonists and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide (PEA), shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain. PMID:25191225

  6. A peroxisome proliferator-activated receptor-gamma agonist and other constituents from Chromolaena odorata.

    PubMed

    Dat, Nguyen Tien; Lee, Kyeong; Hong, Young-Soo; Kim, Young Ho; Minh, Chau Van; Lee, Jung Joon

    2009-06-01

    Peroxisome proliferator-activated receptors (PPARs) are key regulators of lipid and glucose metabolism and have become important therapeutic targets for various diseases. The phytochemical investigation of the chloroform-soluble extract of Chromolaena odorata led to the isolation of a PPAR-gamma agonist, (9 S,13 R)-12-oxo-phytodienoic acid (1), together with 12 other compounds. The structures of chromomoric acid G (2), a new dehydrogenated derivative of 1, and chromolanone (3) were elucidated based on spectroscopic methods. Compound 1 showed a significant effect on PPAR-gamma activation in comparison with rosiglitazone. However, compound 2 was inactive, suggesting that the dehydrogenation of the prostaglandin-like structure in 1 abrogates its PPAR-gamma agonistic activity.

  7. Synthesis, activity, and docking study of phenylthiazole acids as potential agonists of PPARγ

    PubMed Central

    Ma, Liang; Wang, Taijin; Shi, Min; Ye, Haoyu

    2016-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-mediated transcription factor playing key roles in glucose and lipid homeostasis, and PPARγ ligands possess therapeutic potential in these as well as other areas. In this study, a series of phenylthiazole acids have been synthesized and evaluated for agonistic activity by a convenient fluorescence polarization-based PPARγ ligand screening assay. Compound 4t, as a potential PPARγ agonist with half maximal effective concentration (EC50) 0.75±0.20 μM, exhibited in vitro potency comparable with a 0.83±0.14 μM of the positive control rosiglitazone. Molecular docking and molecular dynamics simulations indicated that phenylthiazole acid 4t interacted with the amino acid residues of the active site of the PPARγ complex in a stable manner, consistent with the result of the in vitro ligand assay. PMID:27313447

  8. RXR partial agonist produced by side chain repositioning of alkoxy RXR full agonist retains antitype 2 diabetes activity without the adverse effects.

    PubMed

    Kawata, Kohei; Morishita, Ken-ichi; Nakayama, Mariko; Yamada, Shoya; Kobayashi, Toshiki; Furusawa, Yuki; Arimoto-Kobayashi, Sakae; Oohashi, Toshitaka; Makishima, Makoto; Naitou, Hirotaka; Ishitsubo, Erika; Tokiwa, Hiroaki; Tai, Akihiro; Kakuta, Hiroki

    2015-01-22

    We previously reported RXR partial agonist CBt-PMN (1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid: 5, EC50 = 143 nM, Emax = 75%), which showed a potent glucose-lowering effect without causing serious adverse effects. However, it remains important to elucidate the structural requirements for RXR efficacy and the glucose-lowering effect because RXR-permissive heterodimers such as PPAR/RXR or LXR/RXR are reported to be activated differently depending upon the chemical structure of RXR agonists. In this work, we show that an RXR partial agonist, NEt-4IB (6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: 8b, EC50 = 169 nM, Emax = 55%), can be obtained simply by repositioning the side chains (interchanging the isobutoxy and isopropoxy groups) at the hydrophobic moiety of the RXR full agonist NEt-3IB (6-[ethyl-(3-isobutoxy-4-isopropylphenyl)amino]pyridine-3-carboxylic acid: 7b, EC50 = 19 nM). NEt-4IB (8b) showed antitype 2 diabetes activity without the above side effects upon repeated oral administration to mice at 10 mg/kg/day, similarly to 5. PMID:25486327

  9. Non-dioxin-like AhR ligands in a mouse peanut allergy model.

    PubMed

    Schulz, Veronica J; Smit, Joost J; Huijgen, Veerle; Bol-Schoenmakers, Marianne; van Roest, Manon; Kruijssen, Laura J W; Fiechter, Daniëlle; Hassing, Ine; Bleumink, Rob; Safe, Stephen; van Duursen, Majorie B M; van den Berg, Martin; Pieters, Raymond H H

    2012-07-01

    Recently, we have shown that AhR activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses sensitization to peanut at least in part by inducing a functional shift toward CD4(+)CD25(+)Foxp3(+) T cells. Next to TCDD, numerous other AhR ligands have been described. In this study, we investigated the effect of three structurally different non-dioxin-like AhR ligands, e.g., 6-formylindolo[3,2-b]carbazole (FICZ), β-naphthoflavone (β-NF), and 6-methyl-1,3,8-trichlorodibenzofuran (6-MCDF), on peanut sensitization. Female C57BL/6 mice were sensitized by administering peanut extract (PE) by gavage in the presence of cholera toxin. Before and during peanut sensitization, mice were treated with FICZ, β-NF, or 6-MCDF. AhR gene transcription in duodenum and liver was investigated on day 5, even as the effect of these AhR ligands on CD4(+)CD25(+)Foxp3(+) T(reg) cells in spleen and mesenteric lymph nodes (MLNs). Mice treated with TCDD were included as a positive control. Furthermore, the murine reporter cell line H1G1.1c3 (CAFLUX) was used to investigate the possible role of metabolism of TCDD, FICZ, β-NF, and 6-MCDF on AhR activation in vitro. TCDD, but not FICZ, β-NF, and 6-MCDF, suppressed sensitization to peanut (measured by PE-specific IgE, IgG1, IgG2a and PE-induced interleukin (IL)-5, IL-10, IL-13, IL-17a, IL-22, and interferon-γ). In addition, FICZ, β-NF, and 6-MCDF treatments less effectively induced AhR gene transcription (measured by gene expression of AhR, AhRR, CYP1A1, CYP1A2, CYP1B1) compared with TCDD-treated mice. Furthermore, FICZ, β-NF and 6-MCDF did not increase the percentage of CD4(+)CD25(+)Foxp3(+) T(reg) cells in spleen and mesenteric lymph nodes compared with PE-sensitized mice, in contrast to TCDD. Inhibition of metabolism in vitro increased AhR activation. Together, these data shows that TCDD, but not FICZ, β-NF, and 6-MCDF suppresses sensitization to peanut. Differences in metabolism, AhR binding and subsequent gene transcription might

  10. Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity.

    PubMed

    Gupta, Achla; Gomes, Ivone; Bobeck, Erin N; Fakira, Amanda K; Massaro, Nicholas P; Sharma, Indrajeet; Cavé, Adrien; Hamm, Heidi E; Parello, Joseph; Devi, Lakshmi A

    2016-05-24

    Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non-histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects. PMID:27162327

  11. Temporal modulations of agonist and antagonist muscle activities accompanying improved performance of ballistic movements.

    PubMed

    Liang, Nan; Yamashita, Takamasa; Ni, Zhen; Takahashi, Makoto; Murakami, Tsuneji; Yahagi, Susumu; Kasai, Tatsuya

    2008-02-01

    Although many studies have examined performance improvements of ballistic movement through practice, it is still unclear how performance advances while maintaining maximum velocity, and how the accompanying triphasic electromyographic (EMG) activity is modified. The present study focused on the changes in triphasic EMG activity, i.e., the first agonist burst (AG1), the second agonist burst (AG2), and the antagonist burst (ANT), that accompanied decreases in movement time and error. Twelve healthy volunteers performed 100 ballistic wrist flexion movements in ten 10-trial sessions under the instruction to "maintain maximum velocity throughout the experiment and to stop the limb at the target as fast and accurately as possible". Kinematic parameters (position and velocity) and triphasic EMG activities from the agonist (flexor carpi radialis) and antagonist (extensor carpi radialis) muscles were recorded. Comparison of the results obtained from the first and the last 10 trials, revealed that movement time, movement error, and variability of amplitudes reduced with practice, and that maximum velocity and time to maximum velocity remained constant. EMG activities showed that AG1 and AG2 durations were reduced, whereas ANT duration did not change. Additionally, ANT and AG2 latencies were reduced. Integrated EMG of AG1 was significantly reduced as well. Analysis of the alpha angle (an index of the rate of recruitment of the motoneurons) showed that there was no change in either AG1 or AG2. Correlation analysis of alpha angles between these two bursts further revealed that the close relationship of AG1 and AG2 was kept constant through practice. These findings led to the conclusion that performance improvement in ballistic movement is mainly due to the temporal modulations of agonist and antagonist muscle activities when maximum velocity is kept constant. Presumably, a specific strategy is consistently applied during practice.

  12. Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1

    PubMed Central

    Czikora, Á; Lizanecz, E; Bakó, P; Rutkai, I; Ruzsnavszky, F; Magyar, J; Pórszász, R; Kark, T; Facskó, A; Papp, Z; Édes, I; Tóth, A

    2012-01-01

    BACKGROUND AND PURPOSE The transient receptor potential vanilloid 1 (TRPV1) plays a role in the activation of sensory neurons by various painful stimuli and is a therapeutic target. However, functional TRPV1 that affect microvascular diameter are also expressed in peripheral arteries and we attempted to characterize this receptor. EXPERIMENTAL APPROACH Sensory TRPV1 activation was measured in rats by use of an eye wiping assay. Arteriolar TRPV1-mediated smooth muscle specific responses (arteriolar diameter, changes in intracellular Ca2+) were determined in isolated, pressurized skeletal muscle arterioles obtained from the rat and wild-type or TRPV1−/− mice and in canine isolated smooth muscle cells. The vascular pharmacology of the TRPV1 agonists (potency, efficacy, kinetics of action and receptor desensitization) was determined in rat isolated skeletal muscle arteries. KEY RESULTS Capsaicin evoked a constrictor response in isolated arteries similar to that mediated by noradrenaline, this was absent in arteries from TRPV1 knockout mice and competitively inhibited by TRPV1 antagonist AMG9810. Capsaicin increased intracellular Ca2+ in the arteriolar wall and in isolated smooth muscle cells. The TRPV1 agonists evoked similar vascular constrictions (MSK-195 and JYL-79) or were without effect (resiniferatoxin and JYL-273), although all increased the number of responses (sensory activation) in the eye wiping assay. Maximal doses of all agonists induced complete desensitization (tachyphylaxis) of arteriolar TRPV1 (with the exception of capsaicin). Responses to the partial agonist JYL-1511 suggested 10% TRPV1 activation is sufficient to evoke vascular tachyphylaxis without sensory activation. CONCLUSIONS AND IMPLICATIONS Arteriolar TRPV1 have different pharmacological properties from those located on sensory neurons in the rat. PMID:21883148

  13. Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia

    PubMed Central

    He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

    2012-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPARγ agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-β-glucopyranoside (5) exhibited potent agonistic activities for PPARα, PPARγ and LXR with EC50 values of 0.62, 3.0 and 1.8 μ M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPARα, PPARγ and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a β-glucopyranoside moiety at C-6. PMID:22353334

  14. Isoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses

    PubMed Central

    Wang, Myra L.; Proll, Sean C.; Loo, Yueh-Ming; Katze, Michael G.; Gale, Michael; Iadonato, Shawn P.

    2012-01-01

    There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. The isoflavone compounds activated the ISG54 promoter, mediated nuclear translocation of IRF-3, and displayed highly potent activity against hepatitis C virus (HCV) and influenza virus. Additionally, these agonists efficiently activated IRF-3 in the presence of the HCV protease NS3-4A, which is known to blunt the host immune response. Furthermore, genomic studies showed that discrete innate immune pathways centered on IRF signaling were regulated following agonist treatment without causing global changes in host gene expression. Following treatment, the expression of only 64 cellular genes was significantly induced. This report provides the first evidence that innate immune pathways dependent on IRF-3 can be successfully targeted by small-molecule drugs for the development of novel broad-spectrum antiviral compounds. PMID:22532686

  15. Activation of Human Brown Adipose Tissue by a β3-Adrenergic Receptor Agonist

    PubMed Central

    Cypess, Aaron M.; Weiner, Lauren S.; Roberts-Toler, Carla; Elía, Elisa Franquet; Kessler, Skyler H.; Kahn, Peter A.; English, Jeffrey; Chatman, Kelly; Trauger, Sunia A.; Doria, Alessandro; Kolodny, Gerald M.

    2015-01-01

    SUMMARY Increasing energy expenditure through activation of endogenous brown adipose tissue (BAT) is a potential approach to treat obesity and diabetes. The class of β3-adrenergic receptor (AR) agonists stimulates rodent BAT, but this activity has never been demonstrated in humans. Here we determined the ability of 200 mg oral mirabegron (Myrbetriq, Astellas Pharma, Inc.), a β3-AR agonist currently approved to treat overactive bladder, to stimulate BAT as compared to placebo. Mirabegron led to higher BAT metabolic activity as measured via 18F-fluorodeoxyglucose (18F-FDG) using positron emission tomography (PET) combined with computed tomography (CT) in all twelve healthy male subjects (p = 0.001), and it increased resting metabolic rate (RMR) by 203 ± 40 kcal/day (+13%; p = 0.001). BAT metabolic activity was also a significant predictor of the changes in RMR (p = 0.006). Therefore, a β3-AR agonist can stimulate human BAT thermogenesis and may be a promising treatment for metabolic disease. PMID:25565203

  16. Less precise motor control leads to increased agonist-antagonist muscle activation during stick balancing.

    PubMed

    Reeves, N Peter; Popovich, John M; Vijayanagar, Vilok; Pathak, Pramod K

    2016-06-01

    Human motor control has constraints in terms of its responsiveness, which limit its ability to successfully perform tasks. In a previous study, it was shown that the ability to balance an upright stick became progressively more challenging as the natural frequency (angular velocity without control) of the stick increased. Furthermore, forearm and trunk agonist and antagonist muscle activation increased as the natural frequency of the stick increased, providing evidence that the central nervous system produces agonist-antagonist muscle activation to match task dynamics. In the present study, visual feedback of the stick position was influenced by changing where subject focused on the stick during stick balancing. It was hypothesized that a lower focal height would degrade motor control (more uncertainty in tracking stick position), thus making balancing more challenging. The probability of successfully balancing the stick at four different focal heights was determined along with the average angular velocity of the stick. Electromyographic signals from forearm and trunk muscles were also recorded. As expected, the probability of successfully balancing the stick decreased and the average angular velocity of the stick increased as subjects focused lower on the stick. In addition, changes in the level of agonist and antagonist muscle activation in the forearm and trunk was linearly related to changes in the angular velocity of the stick during balancing. One possible explanation for this is that the central nervous system increases muscle activation to account for less precise motor control, possibly to improve the responsiveness of human motor control. PMID:27010497

  17. Less precise motor control leads to increased agonist-antagonist muscle activation during stick balancing.

    PubMed

    Reeves, N Peter; Popovich, John M; Vijayanagar, Vilok; Pathak, Pramod K

    2016-06-01

    Human motor control has constraints in terms of its responsiveness, which limit its ability to successfully perform tasks. In a previous study, it was shown that the ability to balance an upright stick became progressively more challenging as the natural frequency (angular velocity without control) of the stick increased. Furthermore, forearm and trunk agonist and antagonist muscle activation increased as the natural frequency of the stick increased, providing evidence that the central nervous system produces agonist-antagonist muscle activation to match task dynamics. In the present study, visual feedback of the stick position was influenced by changing where subject focused on the stick during stick balancing. It was hypothesized that a lower focal height would degrade motor control (more uncertainty in tracking stick position), thus making balancing more challenging. The probability of successfully balancing the stick at four different focal heights was determined along with the average angular velocity of the stick. Electromyographic signals from forearm and trunk muscles were also recorded. As expected, the probability of successfully balancing the stick decreased and the average angular velocity of the stick increased as subjects focused lower on the stick. In addition, changes in the level of agonist and antagonist muscle activation in the forearm and trunk was linearly related to changes in the angular velocity of the stick during balancing. One possible explanation for this is that the central nervous system increases muscle activation to account for less precise motor control, possibly to improve the responsiveness of human motor control.

  18. The discovery of novel isoflavone pan peroxisome proliferator-activated receptor agonists.

    PubMed

    Matin, Azadeh; Doddareddy, Munikumar Reddy; Gavande, Navnath; Nammi, Srinivas; Groundwater, Paul W; Roubin, Rebecca H; Hibbs, David E

    2013-02-01

    Twenty three dual PPARα and γ molecules of natural product origin, previously reported by our group, were further investigated for pan PPAR transactivation against PPARδ. The in vitro cell toxicity profile, as well as, in silico study of the most active molecules within this new class of pan PPAR agonists are also described. 3',5' Dimethoxy-7 hydroxyisoflavone 6, Ψ-baptigenin 7, 4' fluoro-7 hydroxyisoflavone 8, and 3' methoxy-7 hydroxyisoflavone 9 were identified as the most potent molecules studied within the set compared to the commercially available pan PPAR agonist, bezafibrate 1. These novel active molecules may thus be useful as future leads in PPAR-related disorders, including type II diabetes mellitus and metabolic syndrome. PMID:23265844

  19. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.

    PubMed

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-09-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, p<0.05), suggesting that this treatment might be effective in vivo Furthermore, plasma that was collected after oral salbutamol treatment induced CFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration. PMID:27471203

  20. GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion.

    PubMed

    Chepurny, Oleg G; Holz, George G; Roe, Michael W; Leech, Colin A

    2016-06-01

    GPR119 is a G protein-coupled receptor expressed on intestinal L cells that synthesize and secrete the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). GPR119 agonists stimulate the release of GLP-1 from L cells, and for this reason there is interest in their potential use as a new treatment for type 2 diabetes mellitus. AS1269574 is one such GPR119 agonist, and it is the prototype of a series of 2,4,6 trisubstituted pyrimidines that exert positive glucoregulatory actions in mice. Here we report the unexpected finding that AS1269574 stimulates GLP-1 release from the STC-1 intestinal cell line by directly promoting Ca(2+) influx through transient receptor potential ankyrin 1 (TRPA1) cation channels. These GPR119-independent actions of AS1269574 are inhibited by TRPA1 channel blockers (AP-18, A967079, HC030031) and are not secondary to intracellular Ca(2+) release or cAMP production. Patch clamp studies reveal that AS1269574 activates an outwardly rectifying membrane current with properties expected of TRPA1 channels. However, the TRPA1 channel-mediated action of AS1269574 to increase intracellular free calcium concentration is not replicated by GPR119 agonists (AR231453, oleoylethanolamide) unrelated in structure to AS1269574. Using human embryonic kidney-293 cells expressing recombinant rat TRPA1 channels but not GPR119, direct TRPA1 channel activating properties of AS1269574 are validated. Because we find that AS1269574 also acts in a conventional GPR119-mediated manner to stimulate proglucagon gene promoter activity in the GLUTag intestinal L cell line, new findings reported here reveal the surprising capacity of AS1269574 to act as a dual agonist at two molecular targets (GPR119/TRPA1) important to the control of L-cell function and type 2 diabetes mellitus drug discovery research. PMID:27082897

  1. Antitussive activity of sigma-1 receptor agonists in the guinea-pig.

    PubMed

    Brown, Claire; Fezoui, Malika; Selig, William M; Schwartz, Carl E; Ellis, James L

    2004-01-01

    1. Current antitussive medications have limited efficacy and often contain the opiate-like agent dextromethorphan (DEX). The mechanism whereby DEX inhibits cough is ill defined. DEX displays affinity at both NMDA and sigma receptors, suggesting that the antitussive activity may involve central or peripheral activity at either of these receptors. This study examined and compared the antitussive activity of DEX and various putative sigma receptor agonists in the guinea-pig citric-acid cough model. 2. Intraperitoneal (i.p.) administration of DEX (30 mg kg(-1)) and the sigma-1 agonists SKF-10,047 (1-5 mg kg(-1)), Pre-084 (5 mg kg(-1)), and carbetapentane (1-5 mg kg(-1)) inhibited citric-acid-induced cough in guinea-pigs. Intraperitoneal administration of a sigma-1 antagonist, BD 1047 (1-5 mg kg(-1)), reversed the inhibition of cough elicited by SKF-10,047. In addition, two structurally dissimilar sigma agonists SKF-10,047 (1 mg ml(-1)) and Pre-084 (1 mg ml(-1)) inhibited cough when administered by aerosol. 3. Aerosolized BD 1047 (1 mg ml(-1), 30 min) prevented the antitussive action of SKF-10,047 (5 mg kg(-1)) or DEX (30 mg kg(-1)) given by i.p. administration and, likewise, i.p. administration of BD 1047 (5 mg kg(-1)) prevented the antitussive action of SKF-10,047 given by aerosol (1 mg ml(-1)). 4. These results therefore support the argument that antitussive effects of DEX may be mediated via sigma receptors, since both systemic and aerosol administration of sigma-1 receptor agonists inhibit citric-acid-induced cough in guinea-pigs. While significant systemic exposure is possible with aerosol administration, the very low doses administered (estimated <0.3 mg kg(-1)) suggest that there may be a peripheral component to the antitussive effect.

  2. Design, Synthesis, and Functional Activity of Labeled CD1d Glycolipid Agonists

    PubMed Central

    2013-01-01

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR−α-GalCer–CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR–glycolipid–CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for

  3. Characterization of the Antiallergic Drugs 3-[2-(2-Phenylethyl) benzoimidazole-4-yl]-3-hydroxypropanoic Acid and Ethyl 3-Hydroxy-3-[2-(2-phenylethyl)benzoimidazol-4-yl]propanoate as Full Aryl Hydrocarbon Receptor Agonists

    PubMed Central

    Morales, José Luis; Krzeminski, Jacek; Amin, Shantu; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates most of the toxic effects of numerous chlorinated (e.g., TCDD) and nonchlorinated polycyclic aromatic compounds (e.g., benzo[a]pyrene). Studies in AhR null mice suggested that this receptor may also play a role in the modulation of immune responses. Recently, two drugs, namely, M50354 and M50367 (ethyl ester derivative of M50354), were described as AhR ligands with high efficacy toward reducing atopic allergic symptoms in an AhR-dependent manner by skewing T helper cell differentiation toward a TH1 phenotype [Negishi et al. (2005) J. Immunol. 175 (11), 7348–7356]. Surprisingly, these drugs were shown to have minimal activity toward inducing classical dioxin responsive element-driven AhR-mediated CYP1A1 transcription. We synthesized and reevaluated the ability of these drugs to regulate AhR activity. In contrast to previously published data, both M50354 and M50367 were found to be potent inducers of several AhR target genes, namely, CYP1A1, CYP1B1, and UGT1A2. M50367 was a more effective agonist than M50354, perhaps accounting for its higher bioavailability in vivo. However, M50354 was capable of displacing an AhR-specific radioligand more effectively than M50367. This is consistent with M50354 being the active metabolite of M50367. In conclusion, two selective inhibitors of TH2 differentiation are full AhR agonists. PMID:18179178

  4. Highly Selective Salicylketoxime-Based Estrogen Receptor β Agonists Display Antiproliferative Activities in a Glioma Model

    PubMed Central

    2016-01-01

    Estrogen receptor β (ERβ) selective agonists are considered potential therapeutic agents for a variety of pathological conditions, including several types of cancer. Their development is particularly challenging, since differences in the ligand binding cavities of the two ER subtypes α and β are minimal. We have carried out a rational design of new salicylketoxime derivatives which display unprecedentedly high levels of ERβ selectivity for this class of compounds, both in binding affinity and in cell-based functional assays. An endogenous gene expression assay was used to further characterize the pharmacological action of these compounds. Finally, these ERβ-selective agonists were found to inhibit proliferation of a glioma cell line in vitro. Most importantly, one of these compounds also proved to be active in an in vivo xenograft model of human glioma, thus demonstrating the high potential of this type of compounds against this devastating disease. PMID:25559213

  5. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea.

    PubMed

    Sato, Hiroyuki; Genet, Cédric; Strehle, Axelle; Thomas, Charles; Lobstein, Annelise; Wagner, Alain; Mioskowski, Charles; Auwerx, Johan; Saladin, Régis

    2007-11-01

    Olive tree (Olea europeaea) leaves are well known for their effect on metabolism in particular as a traditional anti-diabetic and anti-hypertensive herbal drug. These properties are until now only attributed to oleuropein, the major secoiridoid of olive leaves. Here we describe the isolation and the identification of another constituent implicated in the anti-diabetic effect of this plant, i.e. oleanolic acid. We show that this triterpene is an agonist for TGR5, a member of G-protein coupled receptor activated by bile acids and which mediates some of their various cellular and physiological effect. Oleanolic acid lowers serum glucose and insulin levels in mice fed with a high fat diet and it enhances glucose tolerance. Our data suggest that both oleuropein and oleanolic acid are involved in the anti-diabetic effect of olive leaves and further emphasize the potential role of TGR5 agonists to improve metabolic disorders.

  6. Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the 'future' in dermatology therapeutics?

    PubMed

    Gupta, Mrinal; Mahajan, Vikram K; Mehta, Karaninder S; Chauhan, Pushpinder S; Rawat, Ritu

    2015-11-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors and comprise three different isoforms namely PPARα, PPARγ, and PPARβ/δ with PPARβ/δ being the predominant subtype in human keratinocytes. After binding with specific ligands, PPARs regulate gene expression, cell growth and differentiation, apoptosis, inflammatory responses, and tumorogenesis. PPARs also modulate a wide variety of skin functions including keratinocyte proliferation, epidermal barrier formation, wound healing, melanocyte proliferation, and sebum production. Recent studies have shown the importance of PPARs in the pathogenesis of many dermatological disorders. Clinical trials have suggested possible role of PPAR agonists in the management of various dermatoses ranging from acne vulgaris, psoriasis, hirsutism, and lipodystrophy to cutaneous malignancies including melanoma. This article is intended to be a primer for dermatologists in their understanding of clinical relevance of PPARs and PPAR agonists in dermatology therapeutics.

  7. Intrinsic relative activities of κ opioid agonists in activating Gα proteins and internalizing receptor: Differences between human and mouse receptors.

    PubMed

    DiMattio, Kelly M; Ehlert, Frederick J; Liu-Chen, Lee-Yuan

    2015-08-15

    Several investigators recently identified biased κ opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [(35)S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi-G) and receptor internalization (RAi-I) and the degree of functional selectivity between the two [Log RAi-G - logRAi-I, RAi-G/RAi-I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1-17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed.

  8. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  9. Peroxisome proliferator-activated receptor gamma agonists as insulin sensitizers: from the discovery to recent progress.

    PubMed

    Cho, Nobuo; Momose, Yu

    2008-01-01

    An epidemic of metabolic diseases including type 2 diabetes and obesity is undermining the health of people living in industrialized societies. There is an urgent need to develop innovative therapeutics. The peroxisome proliferator-activated receptor gamma (PPARgamma) is one of the ligand-activated transcription factors in the nuclear hormone receptor superfamily and a pivotal regulator of glucose and lipid homeostasis. The discovery of PPARgamma as a target of multimodal insulin sensitizers, represented by thiazolidinediones (TZDs), has attracted remarkable scientific interest and had a great impact on the pharmaceutical industry. With the clinical success of the PPARgamma agonists, pioglitazone (Actos) and rosiglitazone (Avandia), development of novel and potent insulin-sensitizing agents with diverse clinical profiles has been accelerated. Currently, a number of PPARgamma agonists from different chemical classes and with varying pharmacological profiles are being developed. Despite quite a few obstacles to the development of PPAR-related drugs, PPARgamma-targeted agents still hold promise. There are new concepts and encouraging evidence emerging that suggest this class can yield improved anti-diabetic agents. This review covers the discovery of TZDs, provides an overview of PPARgamma including the significance of PPARgamma as a drug target, describes the current status of a wide variety of novel PPARgamma ligands including PPAR dual and pan agonists and selective PPARgamma modulators (SPPARgammaMs), and highlights new approaches for identifying agents targeting PPARgamma in the treatment of type 2 diabetes. PMID:19075761

  10. Molecular Recognition of Agonist and Antagonist for Peroxisome Proliferator-Activated Receptor-α Studied by Molecular Dynamics Simulations

    PubMed Central

    Liu, Mengyuan; Wang, Lushan; Zhao, Xian; Sun, Xun

    2014-01-01

    Peroxisome proliferator activated receptor-α (PPAR-α) is a ligand-activated transcription factor which plays important roles in lipid and glucose metabolism. The aim of this work is to find residues which selectively recognize PPAR-α agonists and antagonists. To achieve this aim, PPAR-α/13M and PPAR-α/471 complexes were subjected to perform molecular dynamics simulations. This research suggests that several key residues only participate in agonist recognition, while some other key residues only contribute to antagonist recognition. It is hoped that such work is useful for medicinal chemists to design novel PPAR-α agonists and antagonists. PMID:24837836

  11. Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor.

    PubMed

    Steffens, Marc; Zentner, Josef; Honegger, Jürgen; Feuerstein, Thomas J

    2005-01-01

    We investigated the affinity of putative endocannabinoids (2-arachidonylglycerol, 2-AG; noladin ether, virodhamine) for the human neocortical CB1 receptor. Functional activity of these compounds (including anandamide, AEA) was determined by examining basal and forskolin-stimulated cAMP formation. Assays were performed with synaptosomes, prepared from fresh human neocortical tissue. Receptor affinity was assessed from competition binding experiments with the CB1/2 agonist [3H]-CP55.940 in absence or presence of a protease inhibitor to assess enzymatic stability. Noladin ether and virodhamine inhibited [3H]-CP55.940 binding (Ki: 98, 1740 nM, respectively). Protease inhibition decreased the Ki value of virodhamine (Ki: 912 nM), but left that of noladin ether unchanged. 2-AG almost lacked affinity (Ki lymphoblasic )10 microM). Basal cAMP formation was unaffected by AEA and noladin ether, but strongly enhanced by 2-AG and virodhamine. Forskolin-stimulated cAMP formation was inhibited by AEA and noladin ether (IC50: 69, 427 nM, respectively) to the same extent as by CP55.940 (Imax each approximately 30%). Inhibitions by AEA or noladin ether were blocked by the CB1 receptor antagonist AM251. Virodhamine increased forskolin-stimulated cAMP formation, also in presence of AM251, by approximately 20%. 2-AG had no effect; in presence of AM251, however, 10 microM 2-AG stimulated cAMP formation by approximately 15%. Our results suggest, that AEA and noladin ether are full CB1 receptor agonists in human neocortex, whereas virodhamine may act as a CB1 receptor antagonist/inverse agonist. Particularly the (patho)physiological role of 2-AG should be further investigated, since its CB1 receptor affinity and agonist activity especially in humans might be lower than generally assumed. PMID:15588725

  12. Estrogen or estrogen receptor agonist inhibits lipopolysaccharide induced microglial activation and death.

    PubMed

    Smith, Joshua A; Das, Arabinda; Butler, Jonathan T; Ray, Swapan K; Banik, Naren L

    2011-09-01

    Inflammation is an important pathogenic mechanism in many neurodegenerative disorders. Activated microglia play a pivotal role in releasing pro-inflammatory factors including interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) for inducing inflammation. While microglia mediated inflammation is essential in maintaining CNS homeostasis, chronic inflammation results in activation of proteases for cell death. Here, we examined the effect of PPT (estrogen receptor α agonist), DPN (estrogen receptor β agonist), and estrogen on rat primary microglia following exposure to lipopolysaccharide (LPS). Exposure of microglia to LPS (200 ng/ml) for 24 h induced cell death. After LPS toxicity for 15 min, microglia were treated with 25 nM PPT, 25 nM DPN, or 100 nM estrogen that prevented cell death by attenuating the release of IL-1α, IL-1β, TNF-α, and COX-2. Treatment of cells with 100 nM fulvestrant (estrogen receptor antagonist) prior to addition of PPT, DPN, or estrogen significantly decreased their ability to prevent cell death, indicating involvement of estrogen receptor (ER) in providing PPT, DPN, or estrogen mediated cytoprotection. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses showed alterations in mRNA expression of Bax, Bcl-2, calpain, and calpastatin during apoptosis. We also examined mRNA expression of ERβ and ERα following exposure of microglia to LPS and subsequent treatment with PPT, DPN, or estrogen. We found that estrogen or estrogen receptor agonists upregulated expression of ERs. Overall, results indicate that estrogen receptor agonist or estrogen uses a receptor mediated pathway to protect microglia from LPS toxicity.

  13. Indol-1-yl acetic acids as peroxisome proliferator-activated receptor agonists: design, synthesis, structural biology, and molecular docking studies.

    PubMed

    Mahindroo, Neeraj; Wang, Chiung-Chiu; Liao, Chun-Chen; Huang, Chien-Fu; Lu, I-Lin; Lien, Tzu-Wen; Peng, Yi-Huei; Huang, Wei-Jan; Lin, Ying-Ting; Hsu, Ming-Chen; Lin, Chia-Hui; Tsai, Chia-Hua; Hsu, John T-A; Chen, Xin; Lyu, Ping-Chiang; Chao, Yu-Sheng; Wu, Su-Ying; Hsieh, Hsing-Pang

    2006-02-01

    A series of novel indole-based PPAR agonists is described leading to discovery of 10k, a highly potent PPAR pan-agonist. The structural biology and molecular docking studies revealed that the distances between the acidic group and the linker, when a ligand was complexed with PPARgamma protein, were important for the potent activity. The hydrophobic tail part of 10k makes intensive hydrophobic interaction with the PPARgamma protein resulting in potent activity. PMID:16451087

  14. Partial Agonist and Antagonist Activities of a Mutant Scorpion β-Toxin on Sodium Channels*

    PubMed Central

    Karbat, Izhar; Ilan, Nitza; Zhang, Joel Z.; Cohen, Lior; Kahn, Roy; Benveniste, Morris; Scheuer, Todd; Catterall, William A.; Gordon, Dalia; Gurevitz, Michael

    2010-01-01

    Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu15 in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4E15R is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4E15R revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4E15R is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4E15R are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4E15R can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin

  15. Physicochemically and pharmacokinetically stable nonapeptide KISS1 receptor agonists with highly potent testosterone-suppressive activity.

    PubMed

    Asami, Taiji; Nishizawa, Naoki; Matsui, Hisanori; Takatsu, Yoshihiro; Suzuki, Atsuko; Kiba, Atsushi; Terada, Michiko; Nishibori, Kimiko; Nakayama, Masaharu; Ban, Junko; Matsumoto, Shin-ichi; Tarui, Naoki; Ikeda, Yukihiro; Yamaguchi, Masashi; Kusaka, Masami; Ohtaki, Tetsuya; Kitada, Chieko

    2014-07-24

    Modifications of metastin(45-54) produced peptide analogues with higher metabolic stability than metastin(45-54). N-terminally truncated nonapeptide 4 ([D-Tyr46,D-Pya(4)47,azaGly51,Arg(Me)53]metastin(46-54)) is a representative compound with both potent agonistic activity and metabolic stability. Although 4 had more potent testosterone-suppressant activity than metastin, it possessed physicochemical instability at pH 7 and insufficient in vivo activity. Instability at pH 7 was dependent upon Asn48 and Ser49; substitution of Ser49 with Thr49 reduced this instability and maintained KISS1 receptor agonistic activity. Furthermore, [D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54) (14) showed 2-fold greater [Ca2+]i-mobilizing activity than metastin(45-54) and an apparent increase in physicochemical stability. N-terminal acetylation of 14 resulted in the most potent analogue, 22 (Ac-[D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54)). With continuous administration, 22 possessed 10-50-fold more potent testosterone-suppressive activity in rats than 4. These results suggested that a controlled release of short-length KISS1 receptor agonists can suppress the hypothalamic-pituitary-gonadal axis and reduce testosterone levels. Compound 22 was selected for further preclinical evaluation for hormone-dependent diseases.

  16. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization

    PubMed Central

    Lindsey, Stephan; T. Papoutsakis, Eleftherios

    2012-01-01

    Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. PMID:21226706

  17. A 7-phenyl substituted triazolopyridazine has inverse agonist activity at the benzodiazepine receptor site.

    PubMed Central

    Biziere, K.; Bourguignon, J. J.; Chambon, J. P.; Heaulme, M.; Perio, A.; Tebib, S.; Wermuth, C. G.

    1987-01-01

    To investigate further the structural requirements for benzodiazepine (BZD) receptor ligands, we synthesized SR 95195, [7-phenyl-3-methyl-1,2,4-triazolo-(4,3-b) pyridazine], a positional isomer of the 6-phenyl-triazolo-pyridazines, which were the first non-BZD derivatives to exhibit high affinity for the BZD receptor and BZD-like activity in vivo. In vitro, SR 95195 displaced specifically bound [3H]-flunitrazepam from rat cerebellar and hippocampal membranes with respective IC50 values of 4 and 8 microM. In vivo, SR 95195 lacked BZD-like activity. At high doses SR 95195 induced clonic seizures in mice (threshold convulsant dose: 150 mg kg-1; CD50: 160 mg kg-1 i.p.) which were antagonized by Ro 15-1788. At non-convulsant doses (25 mg kg-1 i.p. and 100 mg kg-1 i.p.) SR 95195 significantly decreased punished responding in an operant conflict procedure in the rat, suggesting SR 95195 has intrinsic anxiogenic activity. SR 95195, in mice, reversed the anticonvulsant and myorelaxant actions of diazepam 3 mg kg-1, orally (respective ED50 values: 45 mg kg-1 i.p. and 44 mg kg-1 i.p.). In an operant-conflict test in rats, SR 95195 at non-anxiogenic doses, antagonized the disinhibitory action of diazepam 4 mg kg-1, i.p. (ED50: 8.6 mg kg-1, i.p.), but not that of pentobarbitone 15 mg kg-1, i.p. It is concluded that SR 95195 has the pharmacological profile of an inverse BZD agonist and that displacing the phenyl from the 6- to the 7-position in the triazolopyridazine series causes a shift from agonist to inverse agonist type activity at the BZD receptor site. PMID:3028557

  18. Structure–Activity Relationships for Side Chain Oxysterol Agonists of the Hedgehog Signaling Pathway

    PubMed Central

    2012-01-01

    Oxysterols (OHCs) are byproducts of cholesterol oxidation that are known to activate the Hedeghog (Hh) signaling pathway. While OHCs that incorporate hydroxyl groups throughout the scaffold are known, those that act as agonists of Hh signaling primarily contain a single hydroxyl on the alkyl side chain. We sought to further explore how side chain hydroxylation patterns affect oxysterol-mediated Hh activation, by performing a structure–activity relationship study on a series of synthetic OHCs. The most active analogue, 23(R)-OHC (35), demonstrated potent activation of Hh signaling in two Hh-dependent cell lines (EC50 values 0.54–0.65 μM). In addition, OHC 35 was approximately 3-fold selective for the Hh pathway as compared to the liver X receptor, a nuclear receptor that is also activated by endogenous OHCs. Finally, 35 induced osteogenic differentiation and osteoblast formation in cultured cells, indicating functional agonism of the Hh pathway. PMID:24900386

  19. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  20. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Cureri, Peter A. (Technical Monitor)

    2002-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of cAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of cAMP by either epinephrine or isoproterenol.

  1. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination.

  2. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination. PMID:25595101

  3. Docking and molecular dynamics simulations of peroxisome proliferator activated receptors interacting with pan agonist sodelglitazar.

    PubMed

    Liu, Xu-Yuan; Wang, Run-Ling; Xu, Wei-Ren; Tang, Li-Da; Wang, Shu-Qing; Chou, Kuo-Chen

    2011-10-01

    PPAR (peroxisome proliferator-activated receptor) pan agonists play a critical role in treating metabolic diseases, especially the Type-2 diabetes mellitus (T2DM). GlaxoSmithKline's sodelglitazar (GW677954) is one of the potent PPAR pan agonists, which is currently being investigated in Phase II clinical trials for the treatment of T2DM and its complications. The present study was aimed at investigation into the effect of sodelglitazar at the binding pockets of PPARs. The Schrodinger Suite program (2009) was used for the molecular docking, while the GROMACS program used for the molecular dynamics (MD) simulations. The results thus obtained showed that sodelglitazar being docked well in the active site of PPARs. It was revealed by the MD simulations that the structures of the receptors remained quite stable during the simulations and that the important AF-2 helix showed less flexibility after binding with sodelglitazar. Also, it was observed that sodelglitazar could periodically form hydrogen bonds with the AF-2 helix of PPARs to stabilize the AF-2 helix in an active conformation. Our findings have confirmed that GlaxoSmithKline's sodelglitazar can activate the PPARs, which is quite consistent with the previous biological studies. PMID:21592078

  4. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity

    PubMed Central

    2012-01-01

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure–activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, Ki = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain. PMID:24900459

  5. Structural identification of Diindole agonists of the aryl hydrocarbon receptor derived from degradation of indole-3-pyruvic acid.

    PubMed

    Chowdhury, Goutam; Dostalek, Miroslav; Hsu, Erin L; Nguyen, Linh P; Stec, Donald F; Bradfield, Christopher A; Guengerich, F Peter

    2009-12-01

    Aerobic incubation of the tryptophan transamination/oxidation product indole-3-pyruvic acid (I3P) at pH 7.4 and 37 degrees C yielded products with activity as Ah receptor (AHR) agonists. The extracts were fractionated using HPLC and screened for AHR agonist activity. Two compounds were identified as agonists: 1,3-di(1H-indol-3-yl)propan-2-one (1) and 1-(1H-indol-3-yl)-3-(3H-indol-3-ylidene) propan-2-one (2), with the potency of 2 being 100-fold > 1 [ Nguyen et al. ( 2009 ) Chem. Res. Toxicol. , DOI: 10.1021/tx900043s . ]. Both 1 and 2 showed UV spectra indicative of indole. The molecular formulas were established by high-resolution mass spectrometry (HRMS), and the structures were determined by a combination of NMR methods, including (1)H, natural abundance (13)C, and two-dimensional methods. An intermediate in the oxidation of I3P to 1 is 3-hydroxy-2,4-di(1H-indol-3-yl)butanal (HRMS established the presence of a compound with the formula C(20)H(19)N(2)O(2)). Compound 1 was converted to 2 in air or (faster) with mild oxidants, and 2 could be further oxidized to 1,3-di(3H-indol-3-ylidene)propan-2-one. Determination of the structures allowed estimation of the molar Ah receptor agonist activity of these natural products, similar in potency to known classical AHR inducers. PMID:19860413

  6. The pain receptor TRPV1 displays agonist-dependent activation stoichiometry.

    PubMed

    Hazan, Adina; Kumar, Rakesh; Matzner, Henry; Priel, Avi

    2015-07-21

    The receptor channel TRPV1 (Transient Receptor Potential Vanilloid 1) is expressed by primary afferent sensory neurons of the pain pathway, where it functions as a sensor of noxious heat and various chemicals, including eicosanoids, capsaicin, protons and peptide toxins. Comprised of four identical subunits that organize into a non-selective cationic permeable channel, this receptor has a variety of binding sites responsible for detecting their respective agonists. Although its physiological role as a chemosensor has been described in detail, the stoichiometry of TRPV1 activation by its different ligands remains unknown. Here, we combined the use of concatemeric constructs harboring mutated binding sites with patch-clamp recordings in order to determine the stoichiometry for TRPV1 activation through the vanilloid binding site and the outer-pore domain by capsaicin and protons, respectively. We show that, while a single capsaicin-bound subunit was sufficient to achieve a maximal open-channel lifetime, all four proton-binding sites were required. Thus, our results demonstrate a distinct stoichiometry of TRPV1 activation through two of its different agonist-binding domains.

  7. Synthesis and structure-activity relationships of novel indazolyl glucocorticoid receptor partial agonists.

    PubMed

    Gilmore, John L; Sheppeck, James E; Wang, Jim; Dhar, T G Murali; Cavallaro, Cullen; Doweyko, Arthur M; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Nadler, Steven G; Dodd, John H; Somerville, John E; Barrish, Joel C

    2013-10-01

    SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors. PMID:23916594

  8. Letter: Iatrogenic lipomatosis: a rare manifestation of treatment with a peroxisome proliferator-activated receptor gamma agonist.

    PubMed

    Femia, Alisa; Klein, Peter A

    2010-04-15

    Lipomas are common benign neoplasms of adipose tissue. Lipomatosis, the progressive appearance of multiple lipomas, is most often associated with specific congenital, familial, or idiopathic syndromes. In one reported case, the development of multiple lipomas occurred as a result of treatment with rosiglitazone, a peroxisome proliferator-activated receptor (PPAR) gamma agonist. We report a second case of lipomatosis occurring as a result of treatment with a PPAR gamma agonist. This case occurred in a 77-year-old woman who developed multiple lipomas two years after beginning treatment with pioglitazone, a PPAR gamma agonist. Histopathologic examination confirmed these lesions to be lipomas. Within four weeks of discontinuation of pioglitazone, regression of the lipomas began. We describe a case of PPAR agonist-induced lipoma formation, review relevant literature, and provide a molecular mechanism for this side effect.

  9. DDE and PCB 153 independently induce aryl hydrocarbon receptor (AhR) expression in peripheral blood mononuclear cells.

    PubMed

    Gaspar-Ramírez, Octavio; Pérez-Vázquez, Francisco J; Salgado-Bustamante, Mariana; González-Amaro, Roberto; Hernandez-Castro, Berenice; Pérez-Maldonado, Ivan N

    2015-01-01

    Recent studies have demonstrated that compounds inducing pro-inflammatory cytokines enhance AhR expression. The aim of this study was 2-fold: (1) to determine if two pro-inflammatory compounds, dichlorodiphenyldichloroethylene (DDE) and 2,2',4,4',5,5'-hexa-chlorobiphenyl (PCB 153), independently affect AhR gene expression in peripheral blood mononuclear cells (PBMC); and (2) if affected, to determine whether the mechanism involved was due to AhR activation or to a pro-inflammatory effect of the chemicals. PBMC isolated from healthy individuals were incubated in the presence of DDE (10 µg/ml) and PCB 153 (20 ng/ml) over time and AhR and CYP1A1 expression was assessed with a real-time PCR technique. The results indicated there was over-expression of the AhR mRNA in PBMC when the cells were treated with DDE and PCB 153. No changes in expression levels of CYP1A1 mRNA were found. Importantly, when the cells were exposed to DDE and PCB 153 in the presence of an antagonist of tumor necrosis factor (TNF)-α, the over-expression of AhR was abolished; as expected, the expression of CYP1A1 was unaffected. In conclusion, these studies demonstrated for the first time an increment of AhR expression "in vitro" in PBMC treated with two pro-inflammatory environmental pollutants, DDE and PCB153. Moreover, the over-expression of AhR was dependent of TNFα induced by DDE and PCB 153 and was independent of AhR activation.

  10. TLR9 activation of Stat3 constrains its agonist-based immunotherapy

    PubMed Central

    Kortylewski, Marcin; Kujawski, Maciej; Herrmann, Andreas; Yang, Chunmei; Wang, Lin; Liu, Yong; Salcedo, Rosalba; Yu, Hua

    2009-01-01

    Although toll-like receptor (TLR) agonists, such as CpG, are used as immunotherapeutic agents in clinical trials for cancer and infectious diseases, their effects are limited and the underlying mechanism(s) that restrains CpG efficacy remains obscure. Here we demonstrate that signal transducer and activator of transcription 3 (Stat3) plays a key role in downmodulating CpG’s immunostimulatory effects. In the absence of IL-6 and IL-10 induction, CpG directly activates Stat3 within minutes through TLR9. Ablating Stat3 in hematopoietic cells results in rapid activation of innate immunity by CpG, with enhanced production of interferon-γ, tumor necrosis factor-α, interleukin-12, and activation of macrophages, neutrophils and natural killer cells marked with Stat1 activation. Innate immune responses induced by CpG in mice with a Stat3-ablated hematopoietic system cause potent antitumor effects, leading to eradication of large (> 1 cm) B16 melanoma tumors within 72h. Moreover, ablating Stat3 in myeloid cells increases CpG-induced dendritic cell maturation, T cell activation, generation of tumor antigen-specific T cells and long-lasting antitumor immunity. A critical role of Stat3 in mediating immunosuppression by certain cytokines and growth factors in the tumor microenvironment has been recently documented. By demonstrating direct and rapid activation of Stat3 by TLR agonists, we identify a second level of Stat3-mediated immunosuppression. Our results further suggest that targeting Stat3 can drastically improve CpG-based immunotherapeutic approaches. PMID:19258507

  11. A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation

    PubMed Central

    Heeke, Darren S.; Rao, Eileen; Maynard, Sean K.; Hornigold, David; McCrae, Christopher; Fraser, Neil; Tovchigrechko, Andrey; Yu, Li; Williams, Nicola; King, Sarah; Cooper, Martin E.; Hajjar, Adeline M.; Woo, Jennifer C.

    2016-01-01

    The best-characterized Toll-like receptor 4 (TLR4) ligands are lipopolysaccharide (LPS) and its chemically modified and detoxified variant, monophosphoryl lipid A (MPL). Although both molecules are active for human TLR4, they demonstrate a potency preference for mouse TLR4 based on data from transfected cell lines and primary cells of both species. After a high throughput screening process of small molecule libraries, we have discovered a new class of TLR4 agonist with a species preference profile differing from MPL. Products of the 4-component Ugi synthesis reaction were demonstrated to potently trigger human TLR4-transfected HEK cells but not mouse TLR4, although inclusion of the human MD2 with mTLR4 was able to partially recover activity. Co-expression of CD14 was not required for optimal activity of Ugi compounds on transfected cells, as it is for LPS. The species preference profile for the panel of Ugi compounds was found to be strongly active for human and cynomolgus monkey primary cells, with reduced but still substantial activity for most Ugi compounds on guinea pig cells. Mouse, rat, rabbit, ferret, and cotton rat cells displayed little or no activity when exposed to Ugi compounds. However, engineering the human versions of TLR4 and MD2 to be expressed in mTLR4/MD2 deficient mice allowed for robust activity by Ugi compounds both in vitro and in vivo. These findings extend the range of compounds available for development as agonists of TLR4 and identify novel molecules which reverse the TLR4 triggering preference of MPL for mouse TLR4 over human TLR4. Such compounds may be amenable to formulation as more potent human-specific TLR4L-based adjuvants than typical MPL-based adjuvants. PMID:27736941

  12. Berberine is a potent agonist of peroxisome proliferator activated receptor alpha.

    PubMed

    Yu, Huarong; Li, Changqing; Yang, Junqing; Zhang, Tao; Zhou, Qixin

    2016-01-01

    Although berberine has hypolipidemic effects with a high affinity to nuclear proteins, the underlying molecular mechanism for this effect remains unclear. Here, we determine whether berberine is an agonist of peroxisome proliferator-activated receptor alpha (PPARalpha), with a lipid-lowering effect. The cell-based reporter gene analysis showed that berberine selectively activates PPARalpha (EC50 =0.58 mM, Emax =102.4). The radioligand binding assay shows that berberine binds directly to the ligand-binding domain of PPARalpha (Ki=0.73 mM) with similar affinity to fenofibrate. The mRNA and protein levels of CPT-Ialpha gene from HepG2 cells and hyperlipidemic rat liver are remarkably up-regulated by berberine, and this effect can be blocked by MK886, a non-competitive antagonist of PPARalpha. A comparison assay in which berberine and fenofibrate were used to treat hyperlipidaemic rats for three months shows that these drugs produce similar lipid-lowering effects, except that berberine increases high-density lipoprotein cholesterol more effectively than fenofibrate. These findings provide the first evidence that berberine is a potent agonist of PPARalpha and seems to be superior to fenofibrate for treating hyperlipidemia. PMID:27100490

  13. The murine neutrophil NLRP3 inflammasome is activated by soluble but not particulate or crystalline agonists.

    PubMed

    Chen, Kaiwen W; Bezbradica, Jelena S; Groß, Christina J; Wall, Adam A; Sweet, Matthew J; Stow, Jennifer L; Schroder, Kate

    2016-04-01

    Neutrophils express pattern recognition receptors (PRRs) and regulate immune responses via PRR-dependent cytokine production. An emerging theme is that neutrophil PRRs often exhibit cell type-specific adaptations in their signalling pathways. This prompted us to examine inflammasome signalling by the PRR NLRP3 in murine neutrophils, in comparison to well-established NLRP3 signalling pathways in macrophages. Here, we demonstrate that while murine neutrophils can indeed signal via the NLRP3 inflammasome, neutrophil NLRP3 selectively responds to soluble agonists but not to the particulate/crystalline agonists that trigger NLRP3 activation in macrophages via phagolysosomal rupture. In keeping with this, alum did not trigger IL-1β production from human PMN, and the lysosomotropic peptide Leu-Leu-OMe stimulated only weak NLRP3-dependent IL-1β production from murine neutrophils, suggesting that lysosomal rupture is not a strong stimulus for NLRP3 activation in neutrophils. We validated our in vitro findings for poor neutrophil NLRP3 responses to particles in vivo, where we demonstrated that neutrophils do not significantly contribute to alum-induced IL-1β production in mice. In all, our studies highlight that myeloid cell identity and the nature of the danger signal can strongly influence signalling by a single PRR, thus shaping the nature of the resultant immune response. PMID:27062120

  14. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice

    PubMed Central

    Vang, Derek; Paul, Jinny A.; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T.; Gupta, Kalpna

    2015-01-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  15. Preparation, characterization and molecular modeling of PEGylated human growth hormone with agonist activity.

    PubMed

    Khameneh, Bahman; Jaafari, Mahmoud Reza; Hassanzadeh-Khayyat, Mohammad; Varasteh, AbdolReza; Chamani, JamshidKhan; Iranshahi, Mehrdad; Mohammadpanah, Hamid; Abnous, Khalil; Saberi, Mohammad Reza

    2015-09-01

    In this study, site-specific PEGylated human growth hormone (hGH) was prepared by microbial transglutaminase, modeled and characterized. To this end, the effects of different reaction parameters including reaction media, PEG:protein ratios, reaction time and pH value were investigated. PEG-hGH was purified by size exclusion chromatography method and analyzed by SDS-PAGE, BCA, peptide mapping, ESI and MALDI-TOF-TOF mass spectroscopy methods. Biophysical and biological properties of PEG-hGH were evaluated. Molecular simulation was utilized to provide molecular insight into the protein-receptor interaction. The optimum conditions that were obtained for PEGylation were phosphate buffer with pH of 7.4, 48 h of stirring and PEG:protein ratio of 40:1. By this method, mono-PEG-hGH with high reaction yield was obtained and PEGylation site was at Gln-40 residue. The circular dichroism and fluorescence spectrum indicated that PEGylation did not change the secondary structure while tertiary structure was altered. Upon enzymatic PEGylation, agonistic activity of hGH was preserved; however, Somavert(®), which is prepared by chemical PEGylation, is an antagonist form of protein. These data were confirmed by the total energy of affinity obtained by computational protein-receptor interaction. In conclusion, PEGylation of hGH was led to prepare a novel form of hormone with an agonist activity which merits further investigations. PMID:26116386

  16. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice.

    PubMed

    Vang, Derek; Paul, Jinny A; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T; Gupta, Kalpna

    2015-12-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia.

  17. KR-62980: a novel peroxisome proliferator-activated receptor gamma agonist with weak adipogenic effects.

    PubMed

    Kim, Kwang Rok; Lee, Jeong Hyung; Kim, Seung Jun; Rhee, Sang Dal; Jung, Won Hoon; Yang, Sung-Don; Kim, Sung Soo; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2006-08-14

    The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is the target for the anti-diabetic drugs including thiazolidinediones. We report here the identification and characterization of a novel PPARgamma agonist KR-62980. KR-62980 acted as a selective PPARgamma agonist in transactivation assay with an EC50 of 15 nM. In fully differentiated 3T3-L1 adipocytes, KR-62980 induced [3H]-deoxyglucose uptake in a concentration-dependent manner in the presence of insulin. KR-62980 was weakly adipogenic with little induction of aP2 mRNA, and was able to antagonize the adipogenic effects of rosiglitazone in C3H10T1/2 cells. In vivo pharmacokinetic profile of KR-62980 revealed that the compound exhibited good oral bioavailability of 65% with a terminal elimination half-life of 2.5 h in the rat. Treatment of high fat diet-induced C57BL/6J mice with KR-62980 for 14 days reduced plasma glucose levels with little side effects with regard to weight gain, cardiac hypertrophy and hepatotoxicity. These results suggest that KR-62980 acts as a selective PPARgamma modulator with anti-hyperglycemic activity, and that the mechanism of actions of KR-62980 appears to be different from that of rosiglitazone with improved side effect profiles.

  18. Effects of Peroxisome Proliferator-Activated Receptor-δ Agonist on Cardiac Healing after Myocardial Infarction.

    PubMed

    Park, Jeong Rang; Ahn, Jong Hwa; Jung, Myeong Hee; Koh, Jin-Sin; Park, Yongwhi; Hwang, Seok-Jae; Jeong, Young-Hoon; Kwak, Choong Hwan; Lee, Young Soo; Seo, Han Geuk; Kim, Jin Hyun; Hwang, Jin-Yong

    2016-01-01

    Peroxisome proliferator-activated receptor-delta (PPAR-δ)-dependent signaling is associated with rapid wound healing in the skin. Here, we investigated the therapeutic effects of PPAR-δ-agonist treatment on cardiac healing in post-myocardial infarction (MI) rats. Animals were assigned to the following groups: sham-operated control group, left anterior descending coronary artery ligation (MI) group, or MI with administration of the PPAR-δ agonist GW610742 group. GW610742 (1 mg/kg) was administrated intraperitoneally after the operation and repeated every 3 days. Echocardiographic data showed no differences between the two groups in terms of cardiac function and remodeling until 4 weeks. However, the degrees of angiogenesis and fibrosis after MI were significantly higher in the GW610742-treated rats than in the untreated MI rats at 1 week following MI, which changes were not different at 2 weeks after MI. Naturally, PPAR-δ expression in infarcted myocardium was highest increased in 3 day after MI and then disappeared in 14 day after MI. GW610742 increased myofibroblast differentiation and transforming growth factor-beta 2 expression in the infarct zone at 7 days after MI. GW610742 also increased bone marrow-derived mesenchymal stem cell (MSC) recruitment in whole myocardium, and increased serum platelet-derived growth factor B, stromal-derived factor-1 alpha, and matrix metallopeptidase 9 levels at day 3 after MI. PPAR-δ agonists treatment have the temporal effect on early fibrosis of infarcted myocardium, which might not sustain the functional and structural beneficial effect. PMID:26862756

  19. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists.

    PubMed

    Liberato, Marcelo Vizoná; Nascimento, Alessandro S; Ayers, Steven D; Lin, Jean Z; Cvoro, Aleksandra; Silveira, Rodrigo L; Martínez, Leandro; Souza, Paulo C T; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A R; Skaf, Munir S; Webb, Paul; Polikarpov, Igor

    2012-01-01

    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.

  20. The circadian clock circuitry and the AHR signaling pathway in physiology and pathology.

    PubMed

    Anderson, George; Beischlag, Timothy V; Vinciguerra, Manlio; Mazzoccoli, Gianluigi

    2013-05-15

    Life forms populating the Earth must face environmental challenges to assure individual and species survival. The strategies predisposed to maintain organismal homeostasis and grant selective advantage rely on anticipatory phenomena facing periodic modifications, and compensatory phenomena facing unpredictable changes. Biological processes bringing about these responses are respectively driven by the circadian timing system, a complex of biological oscillators entrained to the environmental light/dark cycle, and by regulatory and metabolic networks that precisely direct the body's adjustments to variations of external conditions and internal milieu. A critical role in organismal homeostatic functions is played by the aryl hydrocarbon receptor (AHR) complex, which senses environmental and endogenous compounds, influences metabolic responses controlling phase I/II gene expression, and modulates vital phenomena such as development, inflammation and adaptive immunity. A physiological cross-talk between circadian and AHR signaling pathways has been evidenced. The alteration of AHR signaling pathway deriving from genetic damage with polymorphisms or mutations, or produced by exogenous or endogenous AHR activation, and chronodisruption caused by mismatch between the body's internal clock and geophysical time/social schedules, are capable of triggering pathological mechanisms involved in metabolic, immune-related and neoplastic diseases. On the other hand, the molecular components of the circadian clock circuitry and AHR signaling pathway may represent useful tools for preventive interventions and valuable targets of therapeutic approaches.

  1. Peroxisome proliferator-activated receptor gamma agonists in the prevention and treatment of murine systemic lupus erythematosus

    PubMed Central

    Aprahamian, Tamar R; Bonegio, Ramon G; Weitzner, Zachary; Gharakhanian, Raffi; Rifkin, Ian R

    2014-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to have many immunomodulatory effects. We have previously shown that the PPARγ agonist rosiglitazone is beneficial when used early in prevention of disease in murine models of systemic lupus erythematosus (SLE) and SLE-related atherosclerosis. In this report, we demonstrate that another PPARγ agonist, pioglitazone is also beneficial as a treatment for early murine lupus, indicating that this is a class effect and not agent-specific. We further attempt to define the ability of PPARγ agonists to ameliorate established or severe autoimmune disease using two mouse models: the MRL.lpr SLE model and the gld.apoE−/− model of accelerated atherosclerosis and SLE. We demonstrate that, in contrast to the marked amelioration of disease seen when PPARγ agonist treatment was started before disease onset, treatment with rosiglitazone after disease onset in MRL.lpr or gld.apoE−/− mice had minimal beneficial effect on the development of the autoimmune phenotype; however, rosiglitazone treatment remained highly effective at reducing lupus-associated atherosclerosis in gld.apoE−/− mice after disease onset or when mice were maintained on a high cholesterol Western diet. These results suggest that beneficial effects of PPARγ agonists on the development of autoimmunity might be limited to the early stages of disease, but that atherosclerosis, a major cause of death in SLE patients, may be ameliorated even in established or severe disease. PMID:24456224

  2. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist.

    PubMed

    Burdelya, Lyudmila G; Brackett, Craig M; Kojouharov, Bojidar; Gitlin, Ilya I; Leonova, Katerina I; Gleiberman, Anatoli S; Aygun-Sunar, Semra; Veith, Jean; Johnson, Christopher; Haderski, Gary J; Stanhope-Baker, Patricia; Allamaneni, Shyam; Skitzki, Joseph; Zeng, Ming; Martsen, Elena; Medvedev, Alexander; Scheblyakov, Dmitry; Artemicheva, Nataliya M; Logunov, Denis Y; Gintsburg, Alexander L; Naroditsky, Boris S; Makarov, Sergei S; Gudkov, Andrei V

    2013-05-14

    Vertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative. This identified the liver and gastrointestinal tract as primary CBLB502 target organs. In particular, liver hepatocytes were the main cell type directly and specifically responding to systemic administration of CBLB502 but not to that of the TLR4 agonist LPS. To assess CBLB502 impact on other pathways, we created multireporter mice with hepatocytes transduced in vivo with reporters for 46 inducible transcription factor families and found that along with NF-κB, CBLB502 strongly activated STAT3-, phenobarbital-responsive enhancer module (PREM), and activator protein 1 (AP-1-) -driven pathways. Livers of CBLB502-treated mice displayed induction of numerous immunomodulatory factors and massive recruitment of various types of immune cells. This led to inhibition of growth of liver metastases of multiple tumors regardless of their TLR5 status. The changed liver microenvironment was not, however, hepatotoxic, because CBLB502 induced resistance to Fas-mediated apoptosis in normal liver cells. Temporary occlusion of liver blood circulation prevented CBLB502 from protecting hematopoietic progenitors in lethally irradiated mice, indicating involvement of a factor secreted by responding liver cells. These results define the liver as the key mediator of TLR5-dependent effects in vivo and suggest clinical applications for TLR5 agonists as hepatoprotective and antimetastatic agents.

  3. The Implication of the First Agonist Bound Activated GPCR X-ray Structure on GPCR in Silico Modeling.

    PubMed

    Tautermann, Christofer S; Pautsch, Alexander

    2011-06-01

    The very recently published first X-ray structure of the β2 adrenergic receptor in its active state hosting a small molecule (PDB ID: 3P0G) reveals a lot of information about the G-protein-coupled receptor (GPCR) activation process from a structural point of view. When compared to the inactive state crystal structure of β2, large differences are seen in the GPCR helical structure at the cytoplasmatic side, whereas very subtle changes occur at the ligand binding site. The observation that there are hardly any differences in the binding site of agonists and inverse agonists implies that in silico predictions of the efficacy of ligands will be very hard. This is illustrated by the example of an already published binding mode of a β2 agonist, which has been modeled into the inactive state X-ray structure of the β2 receptor. When comparing the modeled structure to the new activated X-ray structure, quantitative agreement of the binding mode is found, implying that the subtle changes between agonist binding to the activated state and inverse agonist binding to the inactive state can currently not be captured by standard in silico modeling methods.

  4. Monoclonal antibodies to purified muscarinic receptor display agonist-like activity.

    PubMed Central

    Leiber, D; Harbon, S; Guillet, J G; André, C; Strosberg, A D

    1984-01-01

    Monoclonal antibody M-35, which immunoprecipitates native calf brain acetylcholine muscarinic receptor, mimics agonist stimulation of the intact guinea pig myometrium: the antibody, just like carbamoylcholine hydrochloride, causes a rise in intracellular cyclic GMP content, an inhibition of cyclic AMP accumulation due to prostacyclin, and induces uterine contractions. Another antibody, M-23, which reacts with the denatured muscarinic receptor, is devoid of agonist-like activity at the cyclic nucleotide level but is still able to induce contractions of both rat and guinea pig myometrium. The cyclic nucleotide changes caused by both carbamoylcholine and antibody M-35 are inhibited by atropine; this antagonist, which blocks carbamoylcholine-mediated contractions, fails however, to prevent contractions induced by antibodies M-35 and M-23. These results suggest that the information necessary to transmit muscarinic signals is entirely contained in the receptor and that ligands only act to trigger the biological response. The data also imply that the muscarinic receptors of the myometrium are coupled to multiple effector systems. PMID:6087318

  5. Bacterially expressed murine CSF-1 possesses agonistic activity in its monomeric form.

    PubMed

    Krautwald, S; Baccarini, M

    1993-04-30

    CSF-1 is a dimeric peptide growth factor, stabilized by disulfide bonds. We expressed mouse CSF-1 in bacteria as a fusion protein either with glutathione S-transferase (GST) or with a six histidine tag (His-tag). Large amounts of recombinant material were obtained and purified by a single affinity chromatography step. Purified CSF-1-His-tag monomers efficiently dimerized in vitro, but the presence of variable amounts of GST-moiety in CSF-1 preparations obtained by thrombin cleavage of GST-fusion proteins (thrombin-released CSF-1) interfered with dimerization. However, the thrombin-released CSF-1 monomers possessed agonistic activity, being capable of stimulating tyrosine phosphorylation of the CSF-1 receptor and of an array of cellular proteins in living macrophages and of supporting their growth. These results show that CSF-1 dimerization is not essential for receptor activation in vivo. PMID:8484779

  6. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1.

    PubMed

    McLaughlin, Joseph N; Shen, Lixin; Holinstat, Michael; Brooks, Joshua D; Dibenedetto, Emmanuele; Hamm, Heidi E

    2005-07-01

    Thrombin activates protease-activated receptor-1 (PAR-1) by cleavage of the amino terminus to unmask a tethered ligand. Although peptide analogs can activate PAR-1, we show that the functional responses mediated via PAR-1 differ between the agonists. Thrombin caused endothelial monolayer permeability and mobilized intracellular calcium with EC(50) values of 0.1 and 1.7 nm, respectively. The opposite order of activation was observed for agonist peptide (SFLLRN-CONH(2) or TFLLRNKPDK) activation. The addition of inactivated thrombin did not affect agonist peptide signaling, suggesting that the differences in activation mechanisms are intramolecular in origin. Although activation of PAR-1 or PAR-2 by agonist peptides induced calcium mobilization, only PAR-1 activation affected barrier function. Induced barrier permeability is likely to be Galpha(12/13)-mediated as chelation of Galpha(q)-mediated intracellular calcium with BAPTA-AM, pertussis toxin inhibition of Galpha(i/o), or GM6001 inhibition of matrix metalloproteinase had no effect, whereas Y-27632 inhibition of the Galpha(12/13)-mediated Rho kinase abrogated the response. Similarly, calcium mobilization is Galpha(q)-mediated and independent of Galpha(i/o) and Galpha(12/13) because pertussis toxin Y-27632 and had no effect, whereas U-73122 inhibition of phospholipase C-beta blocked the response. It is therefore likely that changes in permeability reflect Galpha(12/13) activation, and changes in calcium reflect Galpha(q) activation, implying that the pharmacological differences between agonists are likely caused by the ability of the receptor to activate Galpha(12/13) or Galpha(q). This functional selectivity was characterized quantitatively by a mathematical model describing each step leading to Rho activation and/or calcium mobilization. This model provides an estimate that peptide activation alters receptor/G protein binding to favor Galpha(q) activation over Galpha(12/13) by approximately 800-fold. PMID:15878870

  7. Subpallial and hypothalamic areas activated following sexual and agonistic encounters in male chickens.

    PubMed

    Xie, Jingjing; Kuenzel, Wayne J; Anthony, Nicholas B; Jurkevich, Alexander

    2010-10-01

    Male sexual and agonistic behaviors are controlled by the common social behavior network, involving subpallial and hypothalamic brain areas. In order to understand how this common network generates different behavioral outcomes, induction of FOS protein was used to examine the patterns of neuronal activation in adult male chickens following interaction with a female or a male. Males were subjected to one of the following treatments: handling control, non-contact interaction with a female, contact interaction with a live female, a taxidermy female model or another male. The number of FOS-immunoreactive (FOS-ir) cells, and the area and immunostaining density of individual cells were quantified in the medial preoptic nucleus (POM), medial extended amygdala (nucleus taeniae of the amygdala, TnA, and dorsolateral and ventromedial subdivisions of the medial portion of the bed nucleus of stria terminalis, BSTM1 and BSTM2, respectively), lateral septum (SL), hypothalamic paraventricular nucleus (PVN), bed nucleus of the pallial commissure (NCPa) and ventrolateral thalamic nucleus (VLT). An increase in FOS-ir cells following appetitive sexual behavior was found in BSTM2 and NCPa. Copulation augmented FOS-ir in POM, SL, VLT, and PVN. Intermale interactions increased FOS-ir in all examined brain regions except the TnA and BSTM. Within the SL, copulatory and agonistic behavior activated spatially segregated cell groups. In the PVN, different social behaviors induced significant changes in the distribution of FOS-ir cell sizes suggesting activation of heterogeneous subpopulations of cells. Collectively, behavioral outcomes of male-female and male-male interactions are associated with a combination of common and site-specific patterns of neural activation.

  8. Suppression of Rat Oral Carcinogenesis by Agonists of Peroxisome Proliferator Activated Receptor γ

    PubMed Central

    McCormick, David L.; Horn, Thomas L.; Johnson, William D.; Peng, Xinjian; Lubet, Ronald A.; Steele, Vernon E.

    2015-01-01

    Peroxisome-proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor that regulates cell proliferation, differentiation, and apoptosis. In vivo studies were performed to evaluate the activities of two thiazolidinedione PPARγ agonists, rosiglitazone and pioglitazone, as inhibitors of oral carcinogenesis in rats. Oral squamous cell carcinomas (OSCC) were induced in male F344 rats by 4-nitroquinoline-1-oxide (NQO; 20 ppm in the drinking water for 10 weeks). In each study, groups of 30 NQO-treated rats were exposed to a PPARγ agonist beginning at week 10 (one day after completion of NQO administration) or at week 17 (7 weeks post-NQO); chemopreventive agent exposure was continued until study termination at week 22 (rosiglitazone study) or week 24 (pioglitazone study). Administration of rosiglitazone (800 mg/kg diet) beginning at week 10 increased survival, reduced oral cancer incidence, and reduced oral cancer invasion score in comparison to dietary controls; however, chemopreventive activity was largely lost when rosiglitazone administration was delayed until week 17. Administration of pioglitazone (500 mg/kg diet beginning at week 10 or 1000 mg/kg diet beginning at week 17) induced significant reductions in oral cancer incidence without significant effects on OSCC invasion scores. Transcript levels of PPARγ and its three transcriptional variants (PPARγv1, PPARγv2, and PPARγv3) were not significantly different in OSCC versus age- and site-matched phenotypically normal oral tissues from rats treated with NQO. These data suggest that PPARγ provides a useful molecular target for oral cancer chemoprevention, and that overexpression of PPARγ at the transcriptional level in neoplastic lesions is not essential for chemopreventive efficacy. PMID:26516762

  9. Fermented Ginseng Contains an Agonist of Peroxisome Proliferator Activated Receptors α and γ.

    PubMed

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Nakano, Fusako; Kashiwada, Yoshiki

    2016-09-01

    Peroxisome proliferator activated receptor (PPAR) is a nuclear receptor that is one of the transcription factors regulating lipid and glucose metabolism. Fermented ginseng (FG) is a ginseng fermented by Lactobacillus paracasei A221 containing minor ginsenosides and metabolites of fermentation. DNA microarray analysis of rat liver treated with FG indicated that FG affects on lipid metabolism are mediated by PPAR-α. To identify a PPAR-α agonist in FG, PPAR-α transcription reporter assay-guided fractionation was performed. The fraction obtained from the MeOH extract of FG, which showed potent transcription activity of PPAR-α, was fractionated by silica gel column chromatography into 16 subfractions, and further separation and crystallization gave compound 1 together with four known constituents of ginseng, including 20(R)- and 20(S)-protopanaxadiol, and 20(R)- and 20(S)-ginsenoside Rh1. The structure of compound 1 was identified as 10-hydroxy-octadecanoic acid by (1)H- and (13)C-NMR spectra and by EI-MS analysis of the methyl ester of 1. Compound 1 demonstrated much higher transcription activity of PPAR-α than the other isolated compounds. In addition, compound 1 also showed 5.5-fold higher transcription activity of PPAR-γ than vehicle at the dose of 20 μg/mL. In the present study, we identified 10-hydroxy-octadecanoic acid as a dual PPAR-α/γ agonist in FG. Our study suggested that metabolites of fermentation, in addition to ginsenosides, contribute to the health benefits of FG. PMID:27627700

  10. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    SciTech Connect

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.

  11. [Pathophysiological relevance of peroxisome proliferators activated receptors (PPAR) to joint diseases - the pro and con of agonists].

    PubMed

    Jouzeau, Jean-Yves; Moulin, David; Koufany, Meriem; Sebillaud, Sylvie; Bianchi, Arnaud; Netter, Patrick

    2008-01-01

    Peroxisome proliferators activated receptors (PPAR) are ligand-inducible nuclear transacting factors comprising three subtypes, PPARalpha, PPARbeta/delta and PPARgamma, which play a key role in lipids and glucose homeostasis. All PPAR subtypes have been identified in joint or inflammatory cells and their activation resulted in a transcriptional repression of pro-inflammatory cytokines (IL-1, TNFalpha), early inflammatory genes (NOS(2), COX-2, mPGES-1) or matrix metalloproteases (MMP-1, MMP-13), at least for the gamma subtype. PPAR full agonists were also shown to stimulate IL-1 receptor antagonist (IL-1Ra) production by cytokine-stimulated articular cells in a subtype-dependent manner. These anti-inflammatory and anti-catabolic properties were confirmed in animal models of joint diseases where PPAR agonists reduced synovial inflammation while preventing cartilage destruction or inflammatory bone loss, although many effects required much higher doses than needed to restore insulin sensitivity or to lower circulating lipid levels. However, these promising effects of PPAR full agonists were hampered by their ability to reduce the growth factor-dependent synthesis of extracellular matrix components or to induce chondrocyte apoptosis, by the possible contribution of immunosuppressive properties to their anti-arthritic effects, by the increased adipocyte differentiation secondary to prolonged stimulation of PPARgamma, and by a variable contribution of PPAR subtypes depending on the system. Clinical data are scarce in rheumatoid arthritis (RA) patients whereas thousands of patients worldwilde, treated with PPAR agonists for type 2 diabetes or dyslipidemia, are paradoxically prone to suffer from osteoarthritis (OA). Whereas high dosage of full agonists may expose RA patients to cardiovascular adverse effects, the proof of concept that PPAR agonists have therapeutical relevance to OA may benefit from an epidemiological follow-up of joint lesions in diabetic or

  12. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    SciTech Connect

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao; Han, Xiang Hua; Lee, Dong-Ho; Lee, Hak-Ju; Hwang, Bang Yeon; Lee, Sung-Joon

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  13. Inhibition of constitutive aryl hydrocarbon receptor (AhR) signaling attenuates androgen independent signaling and growth in (C4-2) prostate cancer cells

    PubMed Central

    Tran, Cindy; Richmond, Oliver; Aaron, LaTayia; Powell, Joann B.

    2013-01-01

    The aryl hydrocarbon receptor is a member of the basic-helix-loop-helix family of transcription factors. AhR mediates the biochemical and toxic effects of a number of polyaromatic hydrocarbons such as 2,3,7,8,-tetrachloro-dibenzo-p-dioxin (TCDD). AhR is widely known for regulating the transcription of drug metabolizing enzymes involved in the xenobiotic metabolism of carcinogens and therapeutic agents, such as cytochrome P450-1B1 (CYP1B1). Additionally, AhR has also been reported to interact with multiple signaling pathways during prostate development. Here we investigate the effect of sustained AhR signaling on androgen receptor function in prostate cancer cells. Immunoblot analysis shows that AhR expression is increased in androgen independent (C4-2) prostate cancer cells when compared to androgen sensitive (LNCaP) cells. RT-PCR studies revealed constitutive AhR signaling in C4-2 cells without the ligand induced activation required in LNCaP cells. A reduction of AhR activity by short RNA mediated silencing in C4-2 cells reduced expression of both AhR and androgen responsive genes. The decrease in androgen responsive genes correlates to a decrease in phosphorylated androgen receptor and androgen receptor expression in the nucleus. Furthermore, the forced decrease in AhR expression resulted in a 50% decline in the growth rate of C4-2 cells. These data indicates that AhR is required to maintain hormone independent signaling and growth by the androgen receptor in C4-2 cells. Collectively, these data provide evidence of a direct role for AhR in androgen independent signaling and provides insight into the molecular mechanisms responsible for sustained androgen receptor signaling in hormone refractory prostate cancer. PMID:23266674

  14. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist

    PubMed Central

    Stoveken, Hannah M.; Hajduczok, Alexander G.; Xu, Lei; Tall, Gregory G.

    2015-01-01

    The large class of adhesion G protein-coupled receptors (aGPCRs) bind extracellular matrix or neighboring cell-surface ligands to regulate organ and tissue development through an unknown activation mechanism. We examined aGPCR activation using two prototypical aGPCRs, GPR56 and GPR110. Active dissociation of the noncovalently bound GPR56 or GPR110 extracellular domains (ECDs) from the respective seven-transmembrane (7TM) domains relieved an inhibitory influence and permitted both receptors to activate defined G protein subtypes. After ECD displacement, the newly revealed short N-terminal stalk regions of the 7TM domains were found to be essential for G protein activation. Synthetic peptides comprising these stalks potently activated GPR56 or GPR110 in vitro or in cells, demonstrating that the stalks comprise a tethered agonist that was encrypted within the ECD. Establishment of an aGPCR activation mechanism provides a rational platform for the development of aGPCR synthetic modulators that could find clinical utility toward aGPCR-directed disease. PMID:25918380

  15. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    PubMed Central

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-01-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress. PMID:27713569

  16. Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver

    NASA Astrophysics Data System (ADS)

    Amenya, Hesbon Z.; Tohyama, Chiharu; Ohsako, Seiichiroh

    2016-10-01

    The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.

  17. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation

    SciTech Connect

    Soisson, Stephen M.; Parthasarathy, Gopalakrishnan; Adams, Alan D.; Sahoo, Soumya; Sitlani, Ayesha; Sparrow, Carl; Cui, Jisong; Becker, Joseph W.

    2008-07-08

    The farnesoid X receptor (FXR), a member of the nuclear hormone receptor family, plays important roles in the regulation of bile acid and cholesterol homeostasis, glucose metabolism, and insulin sensitivity. There is intense interest in understanding the mechanisms of FXR regulation and in developing pharmaceutically suitable synthetic FXR ligands that might be used to treat metabolic syndrome. We report here the identification of a potent FXR agonist (MFA-1) and the elucidation of the structure of this ligand in ternary complex with the human receptor and a coactivator peptide fragment using x-ray crystallography at 1.9-{angstrom} resolution. The steroid ring system of MFA-1 binds with its D ring-facing helix 12 (AF-2) in a manner reminiscent of hormone binding to classical steroid hormone receptors and the reverse of the pose adopted by naturally occurring bile acids when bound to FXR. This binding mode appears to be driven by the presence of a carboxylate on MFA-1 that is situated to make a salt-bridge interaction with an arginine residue in the FXR-binding pocket that is normally used to neutralize bound bile acids. Receptor activation by MFA-1 differs from that by bile acids in that it relies on direct interactions between the ligand and residues in helices 11 and 12 and only indirectly involves a protonated histidine that is part of the activation trigger. The structure of the FXR:MFA-1 complex differs significantly from that of the complex with a structurally distinct agonist, fexaramine, highlighting the inherent plasticity of the receptor.

  18. Inhibition of AHR transcription by NF1C is affected by a single-nucleotide polymorphism, and is involved in suppression of human uterine endometrial cancer.

    PubMed

    Li, D; Takao, T; Tsunematsu, R; Morokuma, S; Fukushima, K; Kobayashi, H; Saito, T; Furue, M; Wake, N; Asanoma, K

    2013-10-10

    Involvement of the aryl hydrocarbon receptor (AHR) in carcinogenesis has been suggested in many studies. Upregulation of AHR has been reported in some cancer species, and an association between single-nucleotide polymorphisms (SNPs) of AHR and cancer risk or cancer development has also been reported. This evidence suggests the involvement of some specific SNPs in AHR transcriptional regulation in the process of carcinogenesis or cancer development, but there have been no studies to elucidate the mechanism involved. In this study, we identified the transcription factor Nuclear Factor 1-C (NF1C) as a candidate to regulate AHR transcription in a polymorphism-dependent manner. SNP rs10249788 was included in a consensus binding site for NF1C. Our results suggested that NF1C preferred the C allele to the T allele at rs10249788 for binding. Forced expression of NF1C suppressed the activity of the AHR promoter with C at rs10249788 stronger than that with T. Moreover, expression analysis of human uterine endometrial cancer (HEC) specimens showed greater upregulation of AHR and downregulation of NF1C than those of normal endometrium specimens. Sequence analysis showed HEC patients at advanced stages tended to possess T/T alleles more frequently than healthy women. We also demonstrated that NF1C suppressed proliferation, motility and invasion of HEC cells. This function was at least partially mediated by AHR. This study is the first to report that a polymorphism on the AHR regulatory region affected transcriptional regulation of the AHR gene in vitro. Because NF1C is a tumor suppressor, our new insights into AHR deregulation and its polymorphisms could reveal novel mechanisms of genetic susceptibility to cancer.

  19. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS

    PubMed Central

    Wang, Ying; Su, Lijing; Morin, Matthew D.; Jones, Brian T.; Whitby, Landon R.; Surakattula, Murali M. R. P.; Huang, Hua; Shi, Hexin; Choi, Jin Huk; Wang, Kuan-wen; Moresco, Eva Marie Y.; Berger, Michael; Zhan, Xiaoming; Zhang, Hong; Boger, Dale L.; Beutler, Bruce

    2016-01-01

    Structurally disparate molecules reportedly engage and activate Toll-like receptor (TLR) 4 and other TLRs, yet the interactions that mediate binding and activation by dissimilar ligands remain unknown. We describe Neoseptins, chemically synthesized peptidomimetics that bear no structural similarity to the established TLR4 ligand, lipopolysaccharide (LPS), but productively engage the mouse TLR4 (mTLR4)/myeloid differentiation factor 2 (MD-2) complex. Neoseptin-3 activates mTLR4/MD-2 independently of CD14 and triggers canonical myeloid differentiation primary response gene 88 (MyD88)- and Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing IFN-beta (TRIF)-dependent signaling. The crystal structure mTLR4/MD-2/Neoseptin-3 at 2.57-Å resolution reveals that Neoseptin-3 binds as an asymmetrical dimer within the hydrophobic pocket of MD-2, inducing an active receptor complex similar to that induced by lipid A. However, Neoseptin-3 and lipid A form dissimilar molecular contacts to achieve receptor activation; hence strong TLR4/MD-2 agonists need not mimic LPS. PMID:26831104

  20. Identification of PPARgamma Partial Agonists of Natural Origin (II): In Silico Prediction in Natural Extracts with Known Antidiabetic Activity

    PubMed Central

    Guasch, Laura; Sala, Esther; Mulero, Miquel; Valls, Cristina; Salvadó, Maria Josepa; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2013-01-01

    Background Natural extracts have played an important role in the prevention and treatment of diseases and are important sources for drug discovery. However, to be effectively used in these processes, natural extracts must be characterized through the identification of their active compounds and their modes of action. Methodology/Principal Findings From an initial set of 29,779 natural products that are annotated with their natural source and using a previously developed virtual screening procedure (carefully validated experimentally), we have predicted as potential peroxisome proliferators-activated receptor gamma (PPARγ) partial agonists 12 molecules from 11 extracts known to have antidiabetic activity. Six of these molecules are similar to molecules with described antidiabetic activity but whose mechanism of action is unknown. Therefore, it is plausible that these 12 molecules could be the bioactive molecules responsible, at least in part, for the antidiabetic activity of the extracts containing them. In addition, we have also identified as potential PPARγ partial agonists 10 molecules from 16 plants with undescribed antidiabetic activity but that are related (i.e., they are from the same genus) to plants with known antidiabetic properties. None of the 22 molecules that we predict as PPARγ partial agonists show chemical similarity with a group of 211 known PPARγ partial agonists obtained from the literature. Conclusions/Significance Our results provide a new hypothesis about the active molecules of natural extracts with antidiabetic properties and their mode of action. We also suggest plants with undescribed antidiabetic activity that may contain PPARγ partial agonists. These plants represent a new source of potential antidiabetic extracts. Consequently, our work opens the door to the discovery of new antidiabetic extracts and molecules that can be of use, for instance, in the design of new antidiabetic drugs or functional foods focused towards the

  1. Sinomenine induces the generation of intestinal Treg cells and attenuates arthritis via activation of aryl hydrocarbon receptor.

    PubMed

    Tong, Bei; Yuan, Xusheng; Dou, Yannong; Wu, Xin; Wang, Yuhui; Xia, Yufeng; Dai, Yue

    2016-10-01

    Sinomenine (SIN), an anti-arthritis drug, has previously been proven to exert immunomodulatory activity in rats by inducing intestinal regulatory T-cells (Treg cells). Here, we assessed the effect of SIN on the generation and function of Treg cells in autoimmune arthritis, and the underlying mechanisms in view of aryl hydrocarbon receptor (AhR). The proportions of Treg cells and IL-17-producing T-cells (Th17 cells) differentiated from naive T-cells were analyzed by flow cytometric analysis. The AhR agonistic effect of SIN was tested by analyzing the activation of downstream signaling pathways and target genes. The dependence of intestinal Treg cell induction and arthritis alleviation by SIN on AhR activation was confirmed in a mouse collagen-induced arthritis (CIA) model. SIN promoted the differentiation and function of intestinal Treg cells in vitro. It induced the expression and activity of AhR target gene, promoted AhR/Hsp90 dissociation and AhR nuclear translocation, induced XRE reporter activity, and facilitated AhR/XRE binding in vitro, displaying the potential to be an agonist of AhR. In CIA mice, SIN induced the generation of intestinal Treg cells, and facilitated the immunosuppressive function of these Treg cells as shown by an adoptive transfer test. In addition, the induction of intestinal Treg cells and the anti-arthritic effect of SIN in CIA mice could be largely diminished by the AhR antagonist resveratrol. SIN attenuates arthritis by promoting the generation and function of Treg cells in an AhR-dependent manner. PMID:27617398

  2. Enhancement of the inducible NO synthase activation by retinoic acid is mimicked by RARalpha agonist in vivo.

    PubMed

    Seguin-Devaux, Carole; Devaux, Yvan; Latger-Cannard, Véronique; Grosjean, Sandrine; Rochette-Egly, Cécile; Zannad, Faiez; Meistelman, Claude; Mertes, Paul-Michel; Longrois, Dan

    2002-09-01

    We have previously shown that all-trans retinoic acid (atRA), the active metabolite of vitamin A, enhances the activation of the inducible nitric oxide synthase (NOS II) pathway, a component of innate immunity, in rats in vivo. We investigated the relative contribution of retinoic acid receptor-alpha (RARalpha) and retinoid X receptors (RXRs) to NOS II activation triggered by LPS. Five-day supplementation with 10 mg/kg of either atRA or the RARalpha selective agonist Ro-40-6055, but not with 10 mg/kg of the pan-RXR agonist Ro-25-7386, enhanced the LPS-induced NOS II mRNA, protein expression in liver, and plasma nitrite/nitrate concentration. Both atRA and the RARalpha agonist (but not the RXR agonist) increased the number of peripheral T helper lymphocytes and plasma interferon-gamma concentration. Synergism between retinoids and LPS on NOS II activation within an organ coincided with synergism on interferon regulatory factor-1 mRNA expression but not with the level of expression of the RARalpha protein. These results suggest that, in vivo, atRA activates NOS II through RARalpha and contributes to characterizing the complex effect of retinoids on the host inflammatory/immune response.

  3. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists.

    PubMed

    Maksay, Gábor; Simonyi, Miklós; Bikádi, Zsolt

    2004-10-01

    The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5 degrees was performed between -10 degrees and 15 degrees to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10 degrees rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-pi interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via pi-cation-pi interactions of its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.

  4. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by xmeta, an allosteric partial agonist antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  5. Characterization of a new peptide agonist of the protease-activated receptor-1.

    PubMed

    Mao, Yingying; Jin, Jianguo; Kunapuli, Satya P

    2008-01-15

    A new peptide (TFRRRLSRATR), derived from the c-terminal of human platelet P2Y(1) receptor, was synthesized and its biological function was evaluated. This peptide activated platelets in a concentration-dependent manner, causing shape change, aggregation, secretion and calcium mobilization. Of the several receptor antagonists tested, only BMS200261, a protease activated receptor 1 (PAR-1) specific antagonist, totally abolished the peptide-induced platelet aggregation, secretion and calcium mobilization. The TFRRR-peptide-pretreated washed platelets failed to aggregate in response to SFLLRN (10 microM) but not to AYPGKF (500 microM). In addition, in mouse platelets, peptide concentrations up to 600 microM failed to cause platelet activation, indicating that the TFRRR-peptide activated platelets through the PAR-1 receptor, rather than through the PAR-4 receptor. The shape change induced by 10 microM peptide was totally abolished by Y-27632, an inhibitor of p160(ROCK) which is a downstream mediator of G12/13 pathways. The TFRRR-peptide, YFLLRNP, and the physiological agonist thrombin selectively activated G12/13 pathways at low concentrations and began to activate both Gq and G12/13 pathways with increasing concentrations. Similar to SFLLRN, the TFRRR-peptide caused phosphorylation of Akt and Erk in a P2Y(12) receptor-dependent manner, and p-38 MAP kinase activation in a P2Y(12)-independent manner. The effects of this peptide are elicited by the first six amino acids (TFRRRL) whereas the remaining peptide (LSRATR), TFERRN, or TFEERN had no effects on platelets. We conclude that TFRRRL activates human platelets through PAR-1 receptors. PMID:17950254

  6. Structure-activity relationship study around guanabenz identifies two derivatives retaining antiprion activity but having lost α2-adrenergic receptor agonistic activity.

    PubMed

    Nguyen, Phu Hai; Hammoud, Hassan; Halliez, Sophie; Pang, Yanhong; Evrard, Justine; Schmitt, Martine; Oumata, Nassima; Bourguignon, Jean-Jacques; Sanyal, Suparna; Beringue, Vincent; Blondel, Marc; Bihel, Frédéric; Voisset, Cécile

    2014-10-15

    Guanabenz (GA) is an orally active α2-adrenergic agonist that has been used for many years for the treatment of hypertension. We recently described that GA is also active against both yeast and mammalian prions in an α2-adrenergic receptor-independent manner. These data suggest that this side-activity of GA could be explored for the treatment of prion-based diseases and other amyloid-based disorders. In this perspective, the potent antihypertensive activity of GA happens to be an annoying side-effect that could limit its use. In order to get rid of GA agonist activity at α2-adrenergic receptors, we performed a structure-activity relationship study around GA based on changes of the chlorine positions on the benzene moiety and then on the modifications of the guanidine group. Hence, we identified the two derivatives 6 and 7 that still possess a potent antiprion activity but were totally devoid of any agonist activity at α2-adrenergic receptors. Similarly to GA, 6 and 7 were also able to inhibit the protein folding activity of the ribosome (PFAR) which has been suggested to be involved in prion appearance/maintenance. Therefore, these two GA derivatives are worth being considered as drug candidates. PMID:25244284

  7. Functionality of aryl hydrocarbon receptors (AhR1 and AhR2) of white sturgeon (Acipenser transmontanus) and implications for the risk assessment of dioxin-like compounds.

    PubMed

    Doering, Jon A; Farmahin, Reza; Wiseman, Steve; Kennedy, Sean W; Giesy, John P; Hecker, Markus

    2014-07-15

    Worldwide, populations of sturgeons are endangered, and it is hypothesized that anthropogenic chemicals, including dioxin-like compounds (DLCs), might be contributing to the observed declines in populations. DLCs elicit their toxic action through activation of the aryl hydrocarbon receptor (AhR), which is believed to regulate most, if not all, adverse effects associated with exposure to these chemicals. Currently, risk assessment of DLCs in fishes uses toxic equivalency factors (TEFs) developed for the World Health Organization (WHO) that are based on studies of embryo-lethality with salmonids. However, there is a lack of knowledge of the sensitivity of sturgeons to DLCs, and it is uncertain whether TEFs developed by the WHO are protective of these fishes. Sturgeons are evolutionarily distinct from salmonids, and the AhRs of sturgeons differ from those of salmonids. Therefore, this study investigated the sensitivity of white sturgeon (Acipenser transmontanus) to DLCs in vitro via the use of luciferase reporter gene assays using COS-7 cells transfected with AhR1 or AhR2 of white sturgeon. Specifically, activation and relative potencies (RePs) of 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachloro-dibenzofuran, 2,3,7,8-tetrachloro-dibenzofuran, 3,3',4,4',5-pentachlorobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, and 2,3,3',4,4'-pentachlorobiphenyl were determined for each AhR. It was demonstrated that white sturgeon expresses AhR1s and AhR2s that are both activated by DLCs with EC50 values for 2,3,7,8-TCDD that are lower than those of any other AhR of vertebrates tested to date. Both AhRs of white sturgeon had RePs for polychlorinated dibenzofurans more similar to TEFs for birds, while RePs for polychlorinated biphenyls were most similar to TEFs for fishes. Measured concentrations of select DLCs in tissues of white sturgeon from British Columbia, Canada, were used to calculate toxic equivalents (TEQs) by use of TEFs for fishes used by the WHO and TCDD

  8. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-HT agonists in spinal rats

    PubMed Central

    Duru, Paul O.; Tillakaratne, Niranjala J.K.; Kim, Jung A.; Zhong, Hui; Stauber, Stacey M.; Pham, Trinh T.; Xiao, Mei S.; Edgerton, V. Reggie; Roy, Roland R.

    2015-01-01

    The neural networks that generate stepping in complete spinal adult rats remain poorly defined. To address this problem we used c-fos (an activity-dependent marker) to identify active interneurons and motoneurons in the lumbar spinal cord of adult spinal rats during a 30-minute bout of bipedal stepping. Spinal rats were either step trained (30 min/day, 3 days/week for 7.5 weeks) or not step-trained. Stepping was enabled by epidural stimulation and the administration of the serotonergic agonists quipazine and 8-OHDPAT. A third group of spinal rats served as untreated (no stimulation, drugs, or stepping) controls. The number of activated cholinergic central canal cluster cells and partition neurons was higher in both step-trained and non-trained than untreated rats, and higher in non-trained than step-trained rats. The latter finding suggests that daily treatment with epidural stimulation plus serotonergic agonist treatment without step training enhanced the excitability of a broader cholinergic interneuronal population than step training. The number of activated interneurons in laminae II-VI of lumbar cross sections was higher in both step-trained and non-trained than untreated rats, and highest in step-trained rats. This finding suggests that this population of interneurons was responsive to epidural stimulation plus serotonergic treatment and that load-bearing induced when stepping had an additive effect. The number of activated motoneurons of all size categories was higher in the step-trained than the other two groups, reflecting a strong effect of loading on motoneuron recruitment. In general, these results indicate that the spinal networks for locomotion are similar with and without brain input. PMID:25789848

  9. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody.

    PubMed

    Gu, Luo; Ruff, Laura E; Qin, Zhengtao; Corr, Maripat; Hedrick, Stephen M; Sailor, Michael J

    2012-08-01

    One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as self-malignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30-40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs.

  10. Phosphatidylinositol turnover (PI) during synaptic activation results from the release of a stimulatory and in inhibitory agonist

    SciTech Connect

    Bencherif, M.; Rubio, R.; Berne, R.M.

    1986-03-05

    PI has been implicated in the process of synaptic transmission and is increased by agonists. It has been suggested that PI is involved in cellular Ca/sup + +/ mobilization and the process represents a series of hydrolytic reactions with inositol as the final product. Hence, the rate of release of /sup 3/H-inositol (/sup 3/H-Ins) from prelabelled inositol phospholipids can be used as an index of PI. In the /sup 3/H-inositol prelabelled frog sympathetic ganglia, they studied the effect of synaptic activity on PI. PI did not change during orthodromic stimulation (20 Hz, 5 min). However, upon cessation of the stimulation, PI increased rapidly and remained elevated for at least 30 min. This increase in PI was reduced by suffusing the ganglia with either acetylcholine or adenosine. In the presence of atropine (5 ..mu..M), orthodromic stimulation increased PI. They hypothesized that synaptic activation releases a long-lasting stimulatory agonist and a short-lived inhibitory (Ach/adenosine) agonist(s) affecting PI. To test this idea, 2 sympathetic ganglia were used. One was prelabelled with /sup 3/H-inositol and the other was not. The two ganglia were placed together in a 5 ..mu..l drop of Ringers solution containing atropine. Orthodromic stimuli were applied to the non-labelled ganglion and elicited release of /sup 3/H-Ins from the non-stimulated ganglion.

  11. Human Toll-like receptor 8-selective agonistic activities in 1-alkyl-1H-benzimidazol-2-amines.

    PubMed

    Beesu, Mallesh; Malladi, Subbalakshmi S; Fox, Lauren M; Jones, Cassandra D; Dixit, Anshuman; David, Sunil A

    2014-09-11

    Toll-like receptor (TLR)-8 agonists strongly induce the production of T helper 1-polarizing cytokines and may therefore serve as promising candidate vaccine adjuvants, especially for the very young and the elderly. Earlier structure-based ligand design led to the identification of 3-pentyl-quinoline-2-amine as a novel, human TLR8-specific agonist. Comprehensive structure-activity relationships in ring-contracted 1-alkyl-1H-benzimidazol-2-amines were undertaken, and the best-in-class compound, 4-methyl-1-pentyl-1H-benzo[d]imidazol-2-amine, was found to be a pure TLR8 agonist, evoking strong proinflammatory cytokine and Type II interferon responses in human PBMCs, with no attendant CD69 upregulation in natural lymphocytic subsets. The 1-alkyl-1H-benzimidazol-2-amines represent a novel, alternate chemotype with pure TLR8-agonistic activities and will likely prove useful not only in understanding TLR8 signaling but also perhaps as a candidate vaccine adjuvant. PMID:25102141

  12. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  13. γ-Mangostin from Garcinia mangostana pericarps as a dual agonist that activates Both PPARα and PPARδ.

    PubMed

    Matsuura, Nobuyasu; Gamo, Kanae; Miyachi, Hiroyuki; Iinuma, Munekazu; Kawada, Teruo; Takahashi, Nobuyuki; Akao, Yukihiro; Tosa, Hideki

    2013-01-01

    We tested the peroxisome proliferator-activated receptor (PPAR)δ agonistic activity of a Garcinia mangostana pericarp extract to develop a treatment for the metabolic syndrome, and demonstrated γ-mangostin to be an active compound on the basis of a luciferase reporter gene assay. γ-Mangostin induced the expression of the uncoupling protein-3 (UCP-3) gene which is related to energy expenditure and fat metabolism in L6 cells. We showed that γ-mangostin is a dual agonist that activates both PPARδ and PPARα. γ-Mangostin also induced the expression of acyl-CoA synthase and carnitine palmitoyl-transferase 1A genes in HepG2 cells. These results suggest the potential of γ-mangostin as a preventive agent of the metabolic syndrome.

  14. A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-11-01

    Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-γ (PPARγ) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPARγ agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to d-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPARγ-agonist activity were confirmed by Nrf2 and PPARγ reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. PMID:23954466

  15. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  16. Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-α

    PubMed Central

    Mascanfroni, Ivan D.; Takenaka, Maisa C.; Yeste, Ada; Patel, Bonny; Wu, Yan; Kenison, Jessica E.; Siddiqui, Shafiuddin; Basso, Alexandre S.; Otterbein, Leo E.; Pardoll, Drew M.; Pan, Fan; Priel, Avner; Clish, Clary B.; Robson, Simon C.; Quintana, Francisco J.

    2015-01-01

    Our understanding of the pathways that regulate lymphocyte metabolism, as well as the effects of metabolism and its products on the immune response, is still limited. We report that a metabolic program controlled by the transcription factors hypoxia inducible factor-1α (HIF1-α) and aryl hydrocarbon receptor (AHR) supports the differentiation of type 1 regulatory (Tr1) cells. HIF1-α controls the early metabolic reprograming of Tr1 cells. At later time points, AHR promotes HIF1-α degradation and takes control of Tr1 cell metabolism. Extracellular adenosine triphosphate (eATP) and hypoxia, linked to inflammation, trigger AHR inactivation by HIF1-α and inhibit Tr1 cell differentiation. Conversely, CD39 promotes Tr1 cell differentiation by depleting eATP. CD39 also contributes to Tr1 suppressive activity by generating adenosine in cooperation with CD73 expressed by responder T cells and antigen presenting cells. These results suggest that HIF1-α and AHR integrate immunological, metabolic and environmental signals to regulate the immune response. PMID:26005855

  17. Autoradiographic localization of aromatic hydrocarbon receptor (AHR) in rhesus monkey ovary.

    PubMed

    Baldridge, Monika G; Hutz, Reinhold J

    2007-06-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic congener of a large class of manmade pollutants that persist in the environment. TCDD exerts its toxic effects, in part, by binding to its receptor known as the aromatic hydrocarbon receptor (AHR). TCDD is estrogen modulatory and in some systems its receptor associates directly with estrogen receptors via co-activator molecules. TCDD inhibits steroid synthesis in human ovarian granulosa cells and AHR is found in these cells. We have previously shown that AHR is found in whole rhesus monkey ovary, but have yet to establish its location. In the present study, we set out to show that radiolabeled TCDD binds to monkey ovarian follicles and that this binding is receptor mediated. Ovaries from Macaca mulatta were sectioned on a cryostat at 10 micro m; and sections were incubated with either control vehicle, (3)H-TCDD, or (3)H-TCDD plus alpha-naphthoflavone (ANF), a known receptor-blocking agent. Here, we show for the first time specific binding of TCDD to the granulosa cells of antral follicles and other regions of the rhesus monkey ovary. Our data indicate a 60-fold increase in binding with (3)H-TCDD over that of control, and that this binding is reduced to the levels seen in controls with the addition of the competitive antagonist ANF. These findings support the hypothesis that TCDD directly affects primate ovarian function via the AHR.

  18. Intersection of AHR and Wnt Signaling in Development, Health, and Disease

    PubMed Central

    Schneider, Andrew J.; Branam, Amanda M.; Peterson, Richard E.

    2014-01-01

    The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development. PMID:25286307

  19. A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia

    SciTech Connect

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-11-01

    Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-γ (PPARγ) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPARγ agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to D-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPARγ-agonist activity were confirmed by Nrf2 and PPARγ reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. - Highlights: • Monascin acts as a PPARgamma agonist. • Monascin activates Nrf2 and AMPK. • Monascin promotes MG metabolism into D-lactic acid. • Monascin attenuates inflammation and diabetes in vivo.

  20. The PPARalpha Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    SciTech Connect

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-11-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) alpha agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARalpha knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of {sup 137}Cs gamma-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARalpha-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARalpha ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  1. TLR3 agonist and Sorafenib combinatorial therapy promotes immune activation and controls hepatocellular carcinoma progression.

    PubMed

    Ho, Victor; Lim, Tong Seng; Lee, Justin; Steinberg, Jeffrey; Szmyd, Radoslaw; Tham, Muly; Yaligar, Jadegoud; Kaldis, Philipp; Abastado, Jean-Pierre; Chew, Valerie

    2015-09-29

    Hepatocellular carcinoma (HCC) is associated with high mortality and the current therapy for advanced HCC, Sorafenib, offers limited survival benefits. Here we assessed whether combining the TLR3 agonist: lysine-stabilized polyinosinic-polycytidylic-acid (poly-ICLC) with Sorafenib could enhance tumor control in HCC. Combinatorial therapy with poly-ICLC and Sorafenib increased apoptosis and reduced proliferation of HCC cell lines in vitro, in association with impaired phosphorylation of AKT, MEK and ERK. In vivo, the combinatorial treatment enhanced control of tumor growth in two mouse models: one transplanted with Hepa 1-6 cells, and the other with liver tumors induced using the Sleeping beauty transposon. Tumor cell apoptosis and host immune responses in the tumor microenvironment were enhanced. Particularly, the activation of local NK cells, T cells, macrophages and dendritic cells was enhanced. Decreased expression of the inhibitory signaling molecules PD-1 and PD-L1 was observed in tumor-infiltrating CD8+ T cells and tumor cells, respectively. Tumor infiltration by monocytic-myeloid derived suppressor cells (Mo-MDSC) was also reduced indicating the reversion of the immunosuppressive tumor microenvironment. Our data demonstrated that the combinatorial therapy with poly-ICLC and Sorafenib enhances tumor control and local immune response hence providing a rationale for future clinical studies.

  2. TLR3 agonist and Sorafenib combinatorial therapy promotes immune activation and controls hepatocellular carcinoma progression.

    PubMed

    Ho, Victor; Lim, Tong Seng; Lee, Justin; Steinberg, Jeffrey; Szmyd, Radoslaw; Tham, Muly; Yaligar, Jadegoud; Kaldis, Philipp; Abastado, Jean-Pierre; Chew, Valerie

    2015-09-29

    Hepatocellular carcinoma (HCC) is associated with high mortality and the current therapy for advanced HCC, Sorafenib, offers limited survival benefits. Here we assessed whether combining the TLR3 agonist: lysine-stabilized polyinosinic-polycytidylic-acid (poly-ICLC) with Sorafenib could enhance tumor control in HCC. Combinatorial therapy with poly-ICLC and Sorafenib increased apoptosis and reduced proliferation of HCC cell lines in vitro, in association with impaired phosphorylation of AKT, MEK and ERK. In vivo, the combinatorial treatment enhanced control of tumor growth in two mouse models: one transplanted with Hepa 1-6 cells, and the other with liver tumors induced using the Sleeping beauty transposon. Tumor cell apoptosis and host immune responses in the tumor microenvironment were enhanced. Particularly, the activation of local NK cells, T cells, macrophages and dendritic cells was enhanced. Decreased expression of the inhibitory signaling molecules PD-1 and PD-L1 was observed in tumor-infiltrating CD8+ T cells and tumor cells, respectively. Tumor infiltration by monocytic-myeloid derived suppressor cells (Mo-MDSC) was also reduced indicating the reversion of the immunosuppressive tumor microenvironment. Our data demonstrated that the combinatorial therapy with poly-ICLC and Sorafenib enhances tumor control and local immune response hence providing a rationale for future clinical studies. PMID:26287667

  3. Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study

    PubMed Central

    Becker, G.; Bolbos, R.; Costes, N.; Redouté, J.; Newman-Tancredi, A.; Zimmer, L.

    2016-01-01

    Serotonin 1A (5-HT1A) receptors are involved in several physiological and pathological processes and constitute therefore an important therapeutic target. The recent pharmacological concept of biased agonism asserts that highly selective agonists can preferentially direct receptor signaling to specific intracellular responses, opening the possibility of drugs targeting a receptor subtype in specific brain regions. The present study brings additional support to this concept thanks to functional magnetic resonance imaging (7 Tesla-fMRI) in anaesthetized rats. Three 5-HT1A receptor agonists (8-OH-DPAT, F13714 and F15599) and one 5-HT1A receptor antagonist (MPPF) were compared in terms of influence on the brain blood oxygen level-dependent (BOLD) signal. Our study revealed for the first time contrasting BOLD signal patterns of biased agonists in comparison to a classical agonist and a silent antagonist. By providing functional information on the influence of pharmacological activation of 5-HT1A receptors in specific brain regions, this neuroimaging approach, translatable to the clinic, promises to be useful in exploring the new concept of biased agonism in neuropsychopharmacology. PMID:27211078

  4. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist

    PubMed Central

    Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P.; Newman, Amy Hauck

    2016-01-01

    The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays. PMID:26843180

  5. Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development

    PubMed Central

    Smith, Brenden W.; Stanford, Elizabeth A.; Sherr, David H.; Murphy, George J.

    2016-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages, we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs) to incorporate a reporter cassette at the transcription start site of one of its canonical targets, cytochrome P450 1A1 (CYP1A1). This cell line faithfully reports on CYP1A1 expression, with luciferase levels as its functional readout, when treated with an endogenous AHR ligand (FICZ) at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands, and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed, this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR. PMID:27148368

  6. Beta 1- and beta 2-adrenoceptor antagonist activities of ICI-215001, a putative beta 3-adrenoceptor agonist.

    PubMed Central

    Tesfamariam, B.; Allen, G. T.

    1994-01-01

    1. The present study was undertaken to characterize the beta 3-adrenoceptor agonist activity of ICI-215001 and to determine whether it exhibits additional activities on beta 1- and beta 2-adrenoceptors in isolated spontaneously beating atrium, trachea and ileum of guinea-pig. 2. In guinea-pig atrium, isoprenaline, a non-selective beta-adrenoceptor agonist, caused concentration-dependent, positive chronotropic effects that were inhibited by atenolol, a selective beta 1-antagonist. ICI-215001 also competitively antagonized the increase in heart rate caused by isoprenaline. 3. ICI-215001 exhibited low intrinsic activity at increasing the beating rate of atrium and no activity on resting or induced tone of tracheal strips. 4. In strips of guinea-pig trachea, contracted submaximally with carbachol, isoprenaline, caused concentration-dependent relaxations. Both ICI-118551, a selective beta 2-adrenoceptor antagonist, and ICI-215001 competitively inhibited the relaxations caused by isoprenaline. 5. In isolated strips of guinea-pig ileum longitudinal smooth muscle contracted with histamine, isoprenaline and ICI-215001 caused relaxations which were inhibited by alprenolol, a beta-adrenoceptor antagonist with modest affinity for beta 3-adrenoceptors, but were resistant to ICI-118551 and atenolol. 6. These results indicate that ICI-215001 exhibits beta 3-adrenoceptor agonist activity as demonstrated by relaxations mediated via atypical beta-adrenoceptors in the longitudinal smooth muscle of guinea-pig ileum. Further, the studies demonstrate that ICI-215001 can act as an antagonist at beta 1- and beta 2-adrenoceptors in situations where its intrinsic agonist activity is low. PMID:7913381

  7. Design and synthesis of benzoxazole containing indole analogs as peroxisome proliferator-activated receptor-γ/δ dual agonists.

    PubMed

    Gim, Hyo Jin; Cheon, Ye-Jin; Ryu, Jae-Ha; Jeon, Raok

    2011-05-15

    A series of benzoxazole or benzothiazole containing indole analogs, 6-alkoxyindole-2-carboxylic acids and 5-alkoxy-3-indolylacetic acids, were synthesized as novel candidates of PPARγ/δ dual agonists and their ligand activities for PPAR subtypes (α, γ, and δ) were investigated. In transient transactivation assay, several compounds activated PPARγ and δ with little activity of PPARα. Putative binding mode of the compounds 1a and 2a in the active site of PPARγ was similar with that of rosiglitazone and the molecular modeling provides molecular insight to the observed activity.

  8. A novel peroxisome proliferator-activated receptor alpha/gamma agonist, BPR1H0101, inhibits topoisomerase II catalytic activity in human cancer cells.

    PubMed

    Kao, Yu-Hsun; Hsieh, Hsing-Pang; Chitlimalla, Santhosh Kumar; Pan, Wen-Yu; Kuo, Ching-Chuan; Tsai, Yuan-Chin; Lin, Wen-Hsing; Chuang, Shuang-En; Chang, Jang-Yang

    2008-02-01

    Peroxisome proliferator-activated receptor (PPAR) gamma agonists are used clinically for treating diabetes mellitus and cancer. 2-Methyl-2[(1-{3-phenyl-7-propylbenzol[d]isoxazol-6-yl}oxy)propyl]-1H-4-indolyl) oxy]propanoic acid (BPR1H0101) is a novel synthetic indole-based compound, discovered through research to identify new PPARgamma agonists, and it acts as a dual agonist for PPARgamma and PPARalpha. Isobologram analysis demonstrated that BPR1H0101 is capable of antagonistic interaction with the topoisomerase (topo) II poison, VP16. A study of its mechanism showed that BPR1H0101 could inhibit the catalytic activity of topo II in vitro, but did not produce detectable topo II-mediated DNA strand breaks in human oral cancer KB cells. Furthermore, BPR1H0101 could inhibit VP16-induced topo II-mediated DNA cleavage and ataxia-telangiectasia-mutated phosphorylation in KB cells. The results suggest that BPR1H0101 can interfere with the topo II reaction by inhibiting catalytic activity before the formation of the intermediate cleavable complex; consequently, it can impede VP16-induced topo II-mediated DNA cleavage and cell death. This is the first identified PPARalpha/gamma agonist that can serve as a topo II catalytic inhibitor, to interfere with VP16-induced cell death. The result might have relevance to the clinical use of the PPARalpha/gamma agonist in combination chemotherapy. PMID:18176111

  9. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos.

    PubMed

    Massarsky, Andrey; Bone, Audrey J; Dong, Wu; Hinton, David E; Prasad, G L; Di Giulio, Richard T

    2016-10-15

    The zebrafish embryo has been proposed as a 'bridge model' to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6h post fertilization (hpf) until 96hpf to TPM0.5 and TPM1.0 (corresponding to 0.5 and 1.0μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity.

  10. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos.

    PubMed

    Massarsky, Andrey; Bone, Audrey J; Dong, Wu; Hinton, David E; Prasad, G L; Di Giulio, Richard T

    2016-10-15

    The zebrafish embryo has been proposed as a 'bridge model' to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6h post fertilization (hpf) until 96hpf to TPM0.5 and TPM1.0 (corresponding to 0.5 and 1.0μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity. PMID:27576004

  11. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR.

    PubMed

    Litzenburger, Ulrike M; Opitz, Christiane A; Sahm, Felix; Rauschenbach, Katharina J; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-02-28

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR-IL-6-STAT3 signaling loop. Inhibition of the AHR-IL-6-STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients.

  12. Polyacetylenes from Notopterygium incisum–New Selective Partial Agonists of Peroxisome Proliferator-Activated Receptor-Gamma

    PubMed Central

    Liu, Xin; Noha, Stefan M.; Malainer, Clemens; Kramer, Matthias P.; Cocic, Amina; Kunert, Olaf; Schinkovitz, Andreas; Heiss, Elke H.; Schuster, Daniela

    2013-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM) in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM). Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements. PMID:23630612

  13. Cerebral radioprotection by pentobarbital: Dose-response characteristics and association with GABA agonist activity

    SciTech Connect

    Olson, J.J.; Friedman, R.; Orr, K.; Delaney, T.; Oldfield, E.H. )

    1990-05-01

    Pentobarbital reduces cerebral radiation toxicity; however, the mechanism of this phenomenon remains unknown. As an anesthetic and depressant of cerebral metabolism, pentobarbital induces its effects on the central nervous system by stimulating the binding of gamma-aminobutyric acid (GABA) to its receptor and by inhibiting postsynaptic excitatory amino acid activity. The purpose of this study is to investigate the role of these actions as well as other aspects of the radioprotective activity of pentobarbital. Fischer 344 rats were separated into multiple groups and underwent two dose-response evaluations. In one set of experiments to examine the relationship of radioprotection to pentobarbital dose, a range of pentobarbital doses (0 to 75 mg/kg) were given intraperitoneally prior to a constant-level radiation dose (70 Gy). In a second series of experiments to determine the dose-response relationship of radiation protection to radiation dose, a range of radiation doses (10 to 90 Gy) were given with a single pentobarbital dose. Further groups of animals were used to evaluate the importance of the timing of pentobarbital administration, the function of the (+) and (-) isomers of pentobarbital, and the role of an alternative GABA agonist (diazepam). In addition, the potential protective effects of alternative methods of anesthesia (ketamine) and induction of cerebral hypometabolism (hypothermia) were examined. Enhancement of survival time from acute radiation injury due to high-dose single-fraction whole-brain irradiation was maximal with 60 mg/kg of pentobarbital, and occurred over the range of all doses examined between 30 to 90 Gy. Protection was seen only in animals that received the pentobarbital before irradiation. Administration of other compounds that enhance GABA binding (Saffan and diazepam) also significantly enhanced survival time.

  14. Dectin-1 agonist selectively induces IgG1 class switching by LPS-activated mouse B cells.

    PubMed

    Seo, Beom-Seok; Park, Ha-Yan; Yoon, Hee-Kyung; Yoo, Yung-Choon; Lee, Junglim; Park, Seok-Rae

    2016-10-01

    Heat-killed Saccharomyces cerevisiae (HKSC) is an agonist for Dectin-1, a major fungal cell wall β-glucan receptor. We previously reported that HKSC selectively enhances IgG1 production by LPS-activated mouse B cells. To determine if this IgG1 selectivity is caused by selective IgG1 class switching, we performed RT-PCRs for measuring germline transcripts (GLTs), flow cytometric analyses for detecting Ig-expressing cells, and ELISPOT assays for measuring the number of Ig-secreting cells in HKSC/LPS-stimulated mouse B cell cultures. HKSC selectively enhanced expression of GLTγ1, the number of IgG1-expressing cells, and the number of IgG1-secreting B cells in the presence of LPS stimulation. In addition, HKSC induced the expression of CD69, an activation marker for B lymphocytes, and the expression of surface Dectin-1. Two Dectin-1 antagonists, laminarin and a neutralizing Dectin-1 antibody, selectively diminished HKSC-reinforced IgG1 production by LPS-stimulated B cells. Furthermore, depleted zymosan (dzn), a Dectin-1 agonist with increased selectivity, also selectively enhanced GLTγ1 transcription. The Dectin-1 antagonists blocked dzn-induced IgG1 production by LPS-activated B cells. Collectively, these results suggest that Dectin-1 agonists selectively induce IgG1 class switching by direct stimulation of Dectin-1 on LPS-activated B cells resulting in selective production of IgG1. PMID:27568820

  15. Peroxisome proliferator-activated receptorα agonists differentially regulate inhibitor of DNA binding expression in rodents and human cells.

    PubMed

    González, María Del Carmen; Corton, J Christopher; Acero, Nuria; Muñoz-Mingarro, Dolores; Quirós, Yolanda; Alvarez-Millán, Juan José; Herrera, Emilio; Bocos, Carlos

    2012-01-01

    Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.

  16. Peroxisome Proliferator-Activated Receptorα Agonists Differentially Regulate Inhibitor of DNA Binding Expression in Rodents and Human Cells

    PubMed Central

    González, María del Carmen; Corton, J. Christopher; Acero, Nuria; Muñoz-Mingarro, Dolores; Quirós, Yolanda; Álvarez-Millán, Juan José; Herrera, Emilio; Bocos, Carlos

    2012-01-01

    Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans. PMID:22701468

  17. Dectin-1 agonist selectively induces IgG1 class switching by LPS-activated mouse B cells.

    PubMed

    Seo, Beom-Seok; Park, Ha-Yan; Yoon, Hee-Kyung; Yoo, Yung-Choon; Lee, Junglim; Park, Seok-Rae

    2016-10-01

    Heat-killed Saccharomyces cerevisiae (HKSC) is an agonist for Dectin-1, a major fungal cell wall β-glucan receptor. We previously reported that HKSC selectively enhances IgG1 production by LPS-activated mouse B cells. To determine if this IgG1 selectivity is caused by selective IgG1 class switching, we performed RT-PCRs for measuring germline transcripts (GLTs), flow cytometric analyses for detecting Ig-expressing cells, and ELISPOT assays for measuring the number of Ig-secreting cells in HKSC/LPS-stimulated mouse B cell cultures. HKSC selectively enhanced expression of GLTγ1, the number of IgG1-expressing cells, and the number of IgG1-secreting B cells in the presence of LPS stimulation. In addition, HKSC induced the expression of CD69, an activation marker for B lymphocytes, and the expression of surface Dectin-1. Two Dectin-1 antagonists, laminarin and a neutralizing Dectin-1 antibody, selectively diminished HKSC-reinforced IgG1 production by LPS-stimulated B cells. Furthermore, depleted zymosan (dzn), a Dectin-1 agonist with increased selectivity, also selectively enhanced GLTγ1 transcription. The Dectin-1 antagonists blocked dzn-induced IgG1 production by LPS-activated B cells. Collectively, these results suggest that Dectin-1 agonists selectively induce IgG1 class switching by direct stimulation of Dectin-1 on LPS-activated B cells resulting in selective production of IgG1.

  18. Induction of cytochrome P4501A1 by aryl hydrocarbon receptor agonists in porcine aorta endothelial cells in culture and cytochrome P4501A1 activity in intact cells.

    PubMed

    Stegeman, J J; Hahn, M E; Weisbrod, R; Woodin, B R; Joy, J S; Najibi, S; Cohen, R A

    1995-02-01

    Endothelium is a single-cell layer lining blood vessels and constituting capillaries and could be a primary site of chemical effects in the cardiovasculature and systemically. Cytochrome P4501A1 (CYP1A1) is strongly inducible in vertebrate endothelium in vivo by aryl hydrocarbon receptor (AhR) agonists [Mol. Pharmacol. 36:723-729 (1989); Mol. Pharmacol. 41:1039-1046 (1992)]. We investigated CYP1A expression and activity in porcine aorta endothelial cells (PAEC) exposed in culture to the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4'-tetrachlorobiphenyl (TCB), benzo[a]pyrene (BP), or beta-naphthoflavone (BNF). Immunoblotting with monoclonal anti-CYP1A1 and polyclonal anti-CYP1A1 and anti-CYP1A2 antibodies showed that CYP1A1 was induced in cultures exposed to TCDD, TCB, BP, or BNF but was not detectable in untreated or dimethylsulfoxide-exposed cultures. CYP1A1 was strongly induced at intermediate concentrations (0.1 microM or 1.0 microM) of TCB, BP, or BNF, but induction was suppressed by higher concentrations, a response not due to general toxicity; cell viability (trypan blue exclusion) was > 97% with BNF or TCB at up to 10 microM. CYP1A1 induction by TCDD was maximal at 0.3-1.0 nM. ED50 values for induction of CYP1A1 by TCDD, TCB, and BP were 0.016 nM, 3-10 nM, and 180 nM, respectively. Immunohistochemical analysis confirmed CYP1A1 induction in PAEC but also showed that only some cells in the cultures were induced. Subcellular fractionation, marker enzyme analysis, and immunoblot analysis showed that PAEC had a typical complement of microsomal electron-transport components. NADPH-cytochrome P450 reductase showed comparable rates (approximately 40 nmol/min/mg) in induced and control cultures. Cultures maximally induced by 0.1 microM TCB had microsomal CYP1A1 [ethoxyresorufin-O-deethylase (EROD)] activity averaging 25 pmol/min/mg. Addition of purified rat reductase to PAEC microsomes increased the EROD rates 3-fold. EROD rates measured in intact

  19. Effects of Developmental Activation of the Aryl Hydrocarbon Receptor by 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Long-term Self-renewal of Murine Hematopoietic Stem Cells

    PubMed Central

    Laiosa, Michael D.; Tate, Everett R.; Ahrenhoerster, Lori S.; Chen, Yuhong; Wang, Demin

    2015-01-01

    Background: Human epidemiological and animal studies suggest that developmental exposure to contaminants that activate the aryl hydrocarbon receptor (AHR) lead to suppression of immune system function throughout life. The persistence of immune deficiency throughout life suggests that the cellular target of AHR activation is a fetal hematopoietic progenitor or stem cell. Objectives: The aim of this study was to identify the effects of transplacental exposure to an AHR agonist on long-term self-renewal of fetal hematopoietic stem cells. Methods: Pregnant C57BL/6 or AHR+/– mice were exposed to the AHR agonist, 2,3,7,8-tetra-​chlorodibenzo-p-dioxin (TCDD). On day 14 of gestation, hematopoietic progenitors from wild-type or AHR-deficient fetuses were placed into in vitro T-lymphocyte differentiation cultures to identify the effects of transplacental TCDD on AHR activation in the fetus. We next analyzed the fetal hematopoietic progenitor cells for changes in reactive oxygen species (ROS). Finally, hematopoietic progenitors from fetuses exposed transplacentally to TCDD were mixed 1:1 with cells from congenic controls and used to reconstitute lethally irradiated recipients for analysis of long-term self-renewal potential. Results: Our findings suggested that the effects of TCDD on the developing hematopoietic system were mediated by direct AHR activation in the fetus. Furthermore, developmental AHR activation by TCDD increased ROS in the fetal hematopoietic stem cells, and the elevated ROS was associated with a reduced capacity of the TCDD-exposed fetal cells to compete with control cells in a mixed competitive irradiation/reconstitution assay. Conclusions: Our findings indicate that AHR activation by TCDD in the fetus during pregnancy leads to impairment of long-term self-renewal of hematopoietic stem cells. Citation: Laiosa MD, Tate ER, Ahrenhoerster LS, Chen Y, Wang D. 2016. Effects of developmental activation of the aryl hydrocarbon receptor by 2

  20. PPAR modulators and PPAR pan agonists for metabolic diseases: the next generation of drugs targeting peroxisome proliferator-activated receptors?

    PubMed

    Feldman, P L; Lambert, M H; Henke, B R

    2008-01-01

    The Peroxisome Proliferator-Activated Receptors-PPAR alpha, PPAR gamma, and PPAR delta--are members of the nuclear receptor gene family that have emerged as therapeutic targets for the development of drugs to treat human metabolic diseases. The discovery of high affinity, subtype-selective agonists for each of the three PPAR subtypes has allowed elucidation of the pharmacology of these receptors and development of first-generation therapeutic agents for the treatment of diabetes and dyslipidemia. However, despite proven therapeutic benefits of selective PPAR agonists, safety concerns and dose-limiting side effects have been observed, and a number of late-stage development failures have been reported. Scientists have continued to explore ligand-based activation of PPARs in hopes of developing safer and more effective drugs. This review highlights recent efforts on two newer approaches, the simultaneous activation of all three PPAR receptors with a single ligand (PPAR pan agonists) and the selective modulation of a single PPAR receptor in a cell or tissue specific manner (selective PPAR modulator or SPPARM) in order to induce a subset of target genes and affect a restricted number of metabolic pathways. PMID:18537685

  1. Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABAA receptors supports an allosteric model of modulation

    PubMed Central

    Downing, Scott S; Lee, Yan T; Farb, David H; Gibbs, Terrell T

    2005-01-01

    Benzodiazepines (BZDs) have been used extensively for more than 40 years because of their high therapeutic index and low toxicity. Although BZDs are understood to act primarily as allosteric modulators of GABAA receptors, the mechanism of modulation is not well understood. The applicability of an allosteric model with two binding sites for γ-aminobutyric acid (GABA) and one for a BZD-like modulator was investigated. This model predicts that BZDs should enhance the efficacy of partial agonists. Consistent with this prediction, diazepam increased the efficacy of the GABAA receptor partial agonist kojic amine in chick spinal cord neurons. To further test the validity of the model, the effects of diazepam, flurazepam, and zolpidem were examined using wild-type and spontaneously active mutant α1(L263S)β3γ2 GABAA receptors expressed in HEK-293 cells. In agreement with the predictions of the allosteric model, all three modulators acted as direct agonists for the spontaneously active receptors. The results indicate that BZD-like modulators enhance the amplitude of the GABA response by stabilizing the open channel active state relative to the inactive state by less than 1 kcal, which is similar to the energy of stabilization conferred by a single hydrogen bond. PMID:15912137

  2. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  3. Simulator for SUPO, a Benchmark Aqueous Homogeneous Reactor (AHR)

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-10-14

    A simulator has been developed for SUPO (Super Power) an aqueous homogeneous reactor (AHR) that operated at Los Alamos National Laboratory (LANL) from 1951 to 1974. During that period SUPO accumulated approximately 600,000 kWh of operation. It is considered the benchmark for steady-state operation of an AHR. The SUPO simulator was developed using the process that resulted in a simulator for an accelerator-driven subcritical system, which has been previously reported.

  4. Evidence for New Light-Independent Pathways for Generation of the Endogenous Aryl Hydrocarbon Receptor Agonist FICZ.

    PubMed

    Smirnova, Anna; Wincent, Emma; Vikström Bergander, Linda; Alsberg, Tomas; Bergman, Jan; Rannug, Agneta; Rannug, Ulf

    2016-01-19

    Activation of the aryl hydrocarbon receptor (AhR), a conserved transcription factor best known as a target for highly toxic halogenated substances such as dioxin, under normal xenobiotic-free conditions is of considerable scientific interest. We have demonstrated previously that a photoproduct of tryptophan, 6-formylindolo[3,2-b]carbazole (FICZ), fulfills the criteria for an endogenous ligand for this receptor and proposed that this compound is the enigmatic mediator of the physiological functions of AhR. Here, we describe novel light-independent pathways by which FICZ can be formed. The oxidant H2O2 was shown to convert tryptophan to FICZ on its own in the absence of light. The enzymatic deamination of tryptamine yielded indole-3-acetaldehyde (I3A), which then rearranged to FICZ and its oxidation product, indolo[3,2-b]carbazole-6-carboxylic acid (CICZ). Indole-3-pyruvate (I3P) also produced I3A, FICZ, and CICZ. Malassezia yeast species, which constitute a part of the normal skin microbiota, produce a number of AhR activators from tryptophan. We identified both FICZ and CICZ among those products. Formation of FICZ from tryptophan or I3P produces a complex mixture of indole derivatives, some of which are CYP1A1 inhibitors. These can hinder the cellular clearance of FICZ and thereby increase its power as an AhR agonist. We present a general molecular mechanism involving dehydrogenations and oxidative coupling for the formation of FICZ in which I3A is the important precursor. In conclusion, our results suggest that FICZ is likely to be formed systemically. PMID:26686552

  5. Selective peroxisome proliferator-activated receptorα modulators (SPPARMα): The next generation of peroxisome proliferator-activated receptor α-agonists

    PubMed Central

    2013-01-01

    Dyslipidemia is a major risk factor for cardiovascular (CV) disease – the primary cause of death, worldwide. Although reducing levels of low-density lipoprotein-cholesterol can significantly reduce CV risk, a high level of residual risk persists, especially in people with obesity-related conditions, such as metabolic syndrome and type 2 diabetes mellitus. Peroxisome proliferator-activated receptor alpha- (PPARα-) agonists (e.g. fibrates), play a central role in the reduction of macro- and microvascular risk in these patients. However, the currently available fibrates are weak (PPARα-agonists) with limited efficacy due to dose-related adverse effects. To address this problem, a new generation of highly potent and selective PPARα-modulators (SPPARMα) is being developed that separate the benefits of the PPARα-agonists from their unwanted side effects. Among these, aleglitazar (a dual PPARα/γ agonist) and GFT505 (a dual PPAR α/δ agonist) have recently entered late-phase development. Although both compounds are more potent PPARα-activators than fenofibrate in vitro, only aleglitezar is more effective in lowering triglycerides and raising high-density lipoprotein-cholesterol (HDL-C) in humans. However, it is also associated with a potential risk of adverse effects. More recently, a highly potent, specific PPARα-agonist (K-877) has emerged with SPPARMα characteristics. Compared to fenofibrate, K-877 has more potent PPARα-activating efficacy in vitro, greater effects on triglycerides- and HDL-C levels in humans, and a reduced risk of adverse effects. If successful, K-877 has the potential to supersede the fibrates as the treatment of choice for patients with residual CV risk associated with metabolic syndrome and type 2 diabetes. PMID:23721199

  6. Design, synthesis and biological activity of phenoxyacetic acid derivatives as novel free fatty acid receptor 1 agonists.

    PubMed

    Li, Zheng; Wang, Xuekun; Xu, Xue; Yang, Jianyong; Xia, Wenting; Zhou, Xianhao; Huang, Wenlong; Qian, Hai

    2015-11-15

    The free fatty acid receptor 1 (FFA1) is a novel antidiabetic target for the treatment of type 2 diabetes based on particular mechanism in amplifying glucose-stimulated insulin secretion. We have previously identified a series of phenoxyacetic acid derivatives. Herein, we describe the further chemical modification of this series directed by ligand efficiency and ligand lipophilicity efficiency. All of these efforts lead to the discovery of the promising candidate 16, an excellent FFA1 agonist with robust agonistic activity (43.6 nM), desired LE and LLE values. Moreover, compound 16 revealed a great potential for improving the hyperglycemia levels in both normal and type 2 diabetic mice without the risk of hypoglycemia even at the high dose of 40 mg/kg. PMID:26482570

  7. Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation

    PubMed Central

    Mosquna, Assaf; Peterson, Francis C.; Park, Sang-Youl; Lozano-Juste, Jorge; Volkman, Brian F.; Cutler, Sean R.

    2011-01-01

    Pyrabactin resistance (PYR) 1 and its relatives belong to a family of soluble abscisic acid (ABA) receptors that inhibit type 2C protein phosphatases (PP2C) when in their agonist-stabilized conformation. Given their switch-like properties, we envisioned that mutations that stabilize their agonist-bound conformation could be used to activate signaling in vivo. To identify such mutations, we subjected PYR1 to site-saturation mutagenesis at 39 highly conserved residues that participate in ABA or PP2C contacts. All 741 possible single amino acid substitutions at these sites were tested to identify variants that increase basal PYR1-PP2C interactions, which uncovered activating mutations in 10 residues that preferentially cluster in PYR1's gate loop and C-terminal helix. The mutations cause measurable but incomplete receptor activation in vitro; however, specific triple and quadruple mutant combinations were constructed that promote an agonist-bound conformation, as measured by heteronuclear single quantum coherence NMR, and lead to full receptor activation. Moreover, these mutations retain functionality when introduced into divergent family members, and can therefore be used to dissect individual receptor function in vivo, which has been problematic because of redundancy and family size. Expression of activated PYL2 in Arabidopsis seeds activates ABA signaling by a number of measures: modulation of ABA-regulated gene expression, induction of hyperdormancy, and suppression of ABA deficiency phenotypes in the aba2-1 mutant. Our results set the stage for systematic gain-of-function studies of PYR1 and related ABA receptors and reveal that, despite the large number of receptors, activation of a single receptor is sufficient to activate signaling in planta. PMID:22139369

  8. The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling

    PubMed Central

    Tkachenko, Anna; Henkler, Frank; Brinkmann, Joep; Sowada, Juliane; Genkinger, Doris; Kern, Christian; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The aryl hydrocarbon receptor (AHR) shuttles continuously between cytoplasm and nucleus, unless ligand-binding triggers association with the AHR nuclear translocator (ARNT) and subsequent binding to cognate DNA motifs. We have now identified Val 647 as mandatory residue for export from the nucleus and AHR-function. This residue prevents inactivation of the receptor as a consequence of nuclear sequestration via constitutive import. Concomitantly mutants lacking this residue are exclusively localised in the nucleus. Although ligands accelerate nuclear import transiently, stable nuclear transition depends on a motif adjacent to Val 647 that comprises residues 650–661. Together, this defined region within the Q-rich domain regulates intracellular trafficking of the AHR in context of both nucleocytoplasmic shuttling and receptor activation. Nuclear export therefore depends on the previously characterised N-terminal NES and the newly identified motif that includes V647. Nucleocytoplasmic distribution of full-length human AHR is further affected by a section of the PST domain that shows sequence similarities with nuclear export signals. In concert, these motifs maintain a predominant cytoplasmic compartmentalisation, receptive for ligand binding. PMID:27535013

  9. The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling.

    PubMed

    Tkachenko, Anna; Henkler, Frank; Brinkmann, Joep; Sowada, Juliane; Genkinger, Doris; Kern, Christian; Tralau, Tewes; Luch, Andreas

    2016-01-01

    The aryl hydrocarbon receptor (AHR) shuttles continuously between cytoplasm and nucleus, unless ligand-binding triggers association with the AHR nuclear translocator (ARNT) and subsequent binding to cognate DNA motifs. We have now identified Val 647 as mandatory residue for export from the nucleus and AHR-function. This residue prevents inactivation of the receptor as a consequence of nuclear sequestration via constitutive import. Concomitantly mutants lacking this residue are exclusively localised in the nucleus. Although ligands accelerate nuclear import transiently, stable nuclear transition depends on a motif adjacent to Val 647 that comprises residues 650-661. Together, this defined region within the Q-rich domain regulates intracellular trafficking of the AHR in context of both nucleocytoplasmic shuttling and receptor activation. Nuclear export therefore depends on the previously characterised N-terminal NES and the newly identified motif that includes V647. Nucleocytoplasmic distribution of full-length human AHR is further affected by a section of the PST domain that shows sequence similarities with nuclear export signals. In concert, these motifs maintain a predominant cytoplasmic compartmentalisation, receptive for ligand binding. PMID:27535013

  10. The effect of 5-HT1A receptor agonists on locomotor activity in the guinea-pig.

    PubMed Central

    Evenden, J. L.

    1994-01-01

    1. The present study examined the effects of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), flesinoxan, ipsapirone and buspirone, all agonists at the 5-HT1A receptor, on the locomotor activity of guinea-pigs. The effects of these drugs were contrasted with those of the non-selective 5-HT agonist, 5-methoxy-N,N-dimethyl tryptamine (5-MeO-DMT) and the dopamine D2 antagonist, raclopride. 2. 8-OH-DPAT, flesinoxan and 5-MeO-DMT markedly increased the locomotor activity of naive, unhabituated guinea-pigs in a dose-dependent manner. Buspirone also did so, although to a lesser extent and for a shorter time. The doses at which this effect was seen were higher than those normally employed in rats. Ipsapirone and raclopride had no significant effects on locomotor activity. 3. The locomotor activity increasing effect of 1.0 mg kg-1 8-OH-DPAT was blocked by the selective 5-HT1A antagonist (S)-UH-301 (3.0 and 10.0 mg kg-1), but not by (-)-alprenolol (15.0 mg kg-1). Ipsapirone (30.0 mg kg-1) and raclopride (3.0 mg kg-1) antagonized 8-OH-DPAT-induced locomotor activity but only to a small extent. The 5-HT reuptake inhibitor, zimelidine (10.0 mg kg-1) had no effect. 4. The effect of the 5-HT1A agonists in the guinea-pig contrasts with the effects of 8-OH-DPAT on the locomotor activity of unhabituated rats and mice tested in the same apparatus, but are similar to the effects of 8-OH-DPAT on habituated rats, which show a low baseline of activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921613

  11. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    PubMed

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  12. Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists

    PubMed Central

    Chiang, Cindy; Beljanski, Vladimir; Yin, Kevin; Olagnier, David; Ben Yebdri, Fethia; Steel, Courtney; Goulet, Marie-Line; DeFilippis, Victor R.; Streblow, Daniel N.; Haddad, Elias K.; Trautmann, Lydie; Ross, Ted; Lin, Rongtuan

    2015-01-01

    ABSTRACT The cytosolic RIG-I (retinoic acid-inducible gene I) receptor plays a pivotal role in the initiation of the immune response against RNA virus infection by recognizing short 5′-triphosphate (5′ppp)-containing viral RNA and activating the host antiviral innate response. In the present study, we generated novel 5′ppp RIG-I agonists of varieous lengths, structures, and sequences and evaluated the generation of the antiviral and inflammatory responses in human epithelial A549 cells, human innate immune primary cells, and murine models of influenza and chikungunya viral pathogenesis. A 99-nucleotide, uridine-rich hairpin 5′pppRNA termed M8 stimulated an extensive and robust interferon response compared to other modified 5′pppRNA structures, RIG-I aptamers, or poly(I·C). Interestingly, manipulation of the primary RNA sequence alone was sufficient to modulate antiviral activity and inflammatory response, in a manner dependent exclusively on RIG-I and independent of MDA5 and TLR3. Both prophylactic and therapeutic administration of M8 effectively inhibited influenza virus and dengue virus replication in vitro. Furthermore, multiple strains of influenza virus that were resistant to oseltamivir, an FDA-approved therapeutic treatment for influenza, were highly sensitive to inhibition by M8. Finally, prophylactic M8 treatment in vivo prolonged survival and reduced lung viral titers of mice challenged with influenza virus, as well as reducing chikungunya virus-associated foot swelling and viral load. Altogether, these results demonstrate that 5′pppRNA can be rationally designed to achieve a maximal RIG-I-mediated protective antiviral response against human-pathogenic RNA viruses. IMPORTANCE The development of novel therapeutics to treat human-pathogenic RNA viral infections is an important goal to reduce spread of infection and to improve human health and safety. This study investigated the design of an RNA agonist with enhanced antiviral and inflammatory

  13. Procognitive and neuroprotective activity of a novel alpha7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders.

    PubMed

    Roncarati, Renza; Scali, Carla; Comery, Thomas A; Grauer, Steven M; Aschmi, Suzan; Bothmann, Hendrick; Jow, Brian; Kowal, Dianne; Gianfriddo, Marco; Kelley, Cody; Zanelli, Ugo; Ghiron, Chiara; Haydar, Simon; Dunlop, John; Terstappen, Georg C

    2009-05-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is a promising target for treatment of cognitive dysfunction associated with Alzheimer's disease and schizophrenia. Here, we report the pharmacological properties of 5-morpholin-4-yl-pentanoic acid (4-pyridin-3-yl-phenyl)-amide [SEN12333 (WAY-317538)], a novel selective agonist of alpha7 nAChR. SEN12333 shows high affinity for the rat alpha7 receptor expressed in GH4C1 cells (K(i) = 260 nM) and acts as full agonist in functional Ca(2+) flux studies (EC(50) = 1.6 microM). In whole-cell patch-clamp recordings, SEN12333 activated peak currents and maximal total charges similar to acetylcholine (EC(50) = 12 microM). The compound did not show agonist activity at other nicotinic receptors tested and acted as a weak antagonist at alpha3-containing receptors. SEN12333 treatment (3 mg/kg i.p.) improved episodic memory in a novel object recognition task in rats in conditions of spontaneous forgetting as well as cognitive disruptions induced via glutamatergic [5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate); MK-801] or cholinergic (scopolamine) mechanisms. This improvement was blocked by the alpha7-selective antagonist methyllycaconitine, indicating that it is mediated by alpha7 activation. SEN12333 also prevented a scopolamine-induced deficit in a passive avoidance task. In models targeting other cognitive domains, including attention and perceptual processing, SEN12333 normalized the apomorphine-induced deficit of prepulse inhibition. Neuroprotection of SEN12333 was demonstrated in quisqualate-lesioned animals in which treatment with SEN12333 (3 mg/kg/day i.p.) resulted in a significant protection of choline acetyltransferase-positive neurons in the lesioned hemisphere. Cumulatively, our results demonstrate that the novel alpha7 nAChR agonist SEN12333 has procognitive and neuroprotective properties, further demonstrating utility of alpha7 agonists for treatment of neurodegenerative and cognitive disorders.

  14. Amyloid-β Pathology and APOE Genotype Modulate Retinoid X Receptor Agonist Activity in Vivo*

    PubMed Central

    Tai, Leon M.; Koster, Kevin P.; Luo, Jia; Lee, Sue H.; Wang, Yue-ting; Collins, Nicole C.; Ben Aissa, Manel; Thatcher, Gregory R. J.; LaDu, Mary Jo

    2014-01-01

    Previous data demonstrate that bexarotene (Bex), retinoid X receptor (RXR) agonist, reduces soluble and insoluble amyloid-β (Aβ) in Alzheimer disease (AD)-transgenic mice either by increasing the levels of mouse apolipoprotein E (apoE) or increasing ABCA1/ABCG1-induced apoE lipoprotein association/lipidation. However, although the mechanism of action of RXR agonists remains unclear, a major concern for their use is human (h)-APOE4, the greatest AD genetic risk factor. If APOE4 imparts a toxic gain-of-function, then increasing apoE4 may increase soluble Aβ, likely the proximal AD neurotoxin. If the APOE4 loss-of-function is lipidation of apoE4, then induction of ABCA1/ABCG1 may be beneficial. In novel EFAD-Tg mice (overexpressing h-Aβ42 with h-APOE), levels of soluble Aβ (Aβ42 and oligomeric Aβ) are highest in E4FAD hippocampus (HP) > E3FAD-HP > E4FAD cortex (CX) > E3FAD-CX, whereas levels of lipoprotein-associated/lipidated apoE have the opposite pattern (6 months). In E4FAD-HP, short-term RXR agonist treatment (Bex or LG100268; 5.75–6 months) increased ABCA1, apoE4 lipoprotein-association/lipidation, and apoE4/Aβ complex, decreased soluble Aβ, and increased PSD95. In addition, hydrogel delivery, which mimics low sustained release, was equally effective as gavage for Bex and LG100268. RXR agonists induced no beneficial effects in the E4FAD-HP in a prevention protocol (5–6 months) and actually increased soluble Aβ levels in E3FAD-CX and E4FAD-CX with the short-term protocol, possibly the result of systemic hepatomegaly. Thus, RXR agonists address the loss-of-function associated with APOE4 and exacerbated by Aβ pathology, i.e. low levels of apoE4 lipoprotein association/lipidation. Further studies are vital to address whether RXR agonists are an APOE4-specific AD therapeutic and the systemic side effects that limit translational application. PMID:25217640

  15. Characterization of estrogenic receptor agonists and evaluation of estrogenic activity in the sediments of Liaohe River protected areas.

    PubMed

    Ke, Xin; Wang, Chunyong; Zhang, Haijun; Zhang, Yun; Gui, Shaofeng

    2015-11-15

    Estrogenic activity of 12 sediment samples from Liaohe River protected areas was evaluated by the recombinant yeast bioassays. The bioassay-derived 17β-estradiol equivalents of crude extracts (Bio-EEQcrudes) were between 52.2 and 207.6pg/g dry weight. The most concerned estrogenic receptor (ER) agonists including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), 4-nonylphenols (4-NP), bisphenol A (BPA), and organochlorine pesticides (OCPs) were determined. The concentrations of E1, E2, E3, EE2, BPA, andΣ10OCPs ranged up to 203.3pg/g, 185.8pg/g, 237.7pg/g, 188.5pg/g, 51.0ng/g, and 3.6ng/g, respectively. Taken together with polarity-based fractionation, in vitro bioassay and chemical analysis, it indicated that E1, E2, and EE2 were the predominant ER agonists and were mainly from the discharge of domestic wastewater and breeding wastewater. Meanwhile, this study showed that the establishment of protected areas had not obviously reduced the ecological risk caused by ER agonists in Liaohe River protected areas sediments. PMID:26388445

  16. The peroxisome-proliferator activated receptor-γ agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus.

    PubMed

    Zhao, Wenpu; Berthier, Celine C; Lewis, Emily E; McCune, W Joseph; Kretzler, Matthias; Kaplan, Mariana J

    2013-10-01

    PPAR-γ agonists can suppress autoimmune responses and renal inflammation in murine lupus but the mechanisms implicated in this process remain unclear. We tested the effect of the PPAR-γ agonist pioglitazone in human lupus and control PBMCs with regard to gene regulation and various functional assays. By Affymetrix microarray analysis, several T cell-related pathways were significantly highlighted in pathway analysis in lupus PBMCs. Transcriptional network analysis showed IFN-γ as an important regulatory node, with pioglitazone treatment inducing transcriptional repression of various genes implicated in T cell responses. Confirmation of these suppressive effects was observed specifically in purified CD4+ T cells. Pioglitazone downregulated lupus CD4+ T cell effector proliferation and activation, while it significantly increased proliferation and function of lupus T regulatory cells. We conclude that PPAR-γ agonists selectively modulate CD4+ T cell function in SLE supporting the concept that pioglitazone and related,-agents should be explored as potential therapies in this disease.

  17. Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment.

    PubMed

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N; Allen, John A; Rogan, Sarah C; Hanson, Bonnie J; Revankar, Chetana; Robers, Matt; Doucette, Chris; Roth, Bryan L

    2009-10-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine(2B) (5-HT(2B)) receptor agonists. We have shown that activation of 5-HT(2B) receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT(2B) receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT(2B) receptor agonists (hits); 14 of these had previously been identified as 5-HT(2B) receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then "functionally profiled" (i.e., assayed in parallel for 5-HT(2B) receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC(50) data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT(2B) receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease. PMID:19570945

  18. PPAR{gamma} agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    SciTech Connect

    Lee, Seong-Ryong; Kim, Hahn-Young; Hong, Jung-Suk; Baek, Won-Ki; Park, Jong-Wook

    2009-02-27

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation with pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.

  19. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns.

    PubMed

    Bianchi, Matt T; Macdonald, Robert L

    2003-11-26

    Although GABA activates synaptic (alphabetagamma) GABA(A) receptors with high efficacy, partial agonist activation of alphabetagamma isoforms and GABA activation of the primary extrasynaptic (alphabetadelta) GABA(A) receptors are limited to low-efficacy activity, characterized by minimal desensitization and brief openings. The unusual sensitivity of alphabetadelta receptor channels to neurosteroid modulation prompted investigation of whether this high sensitivity was dependent on the delta subunit or the low-efficacy channel function that it confers. We show that the isoform specificity (alphabetadelta > alphabetagamma) of neurosteroid modulation could be reversed by conditions that reversed isoform-specific activity modes, including the use of beta-alanine to achieve increased efficacy with alphabetadelta receptors and taurine to render alphabetagamma receptors low efficacy. We suggest that neurosteroids preferentially enhance low-efficacy GABA(A) receptor activity independent of subunit composition. Allosteric conversion of partial to full agonism may be a general mechanism for reversibly scaling the efficacy of GABA(A) receptors to endogenous partial agonists.

  20. Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity

    PubMed Central

    Lee, Kyoung-Jin; Lim, Dongyoung; Yoo, Yeon Ho; Park, Eun-Ji; Lee, Sun-Hee; Yadav, Birendra Kumar; Lee, Yong-Ki; Park, Jeong Hyun; Kim, Daejoong; Park, Kyeong Han; Hahn, Jang-Hee

    2016-01-01

    The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory PILRα and activating PILRβ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit β1 integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of β1 integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of β1 integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99. PMID:27306643

  1. Definition of two agonist types at the mammalian cold-activated channel TRPM8.

    PubMed

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. PMID:27449282

  2. Structure-activity relationship studies on cholecystokinin: Analogues with partial agonist activity

    SciTech Connect

    Galas, M.C.; Lignon, M.F.; Rodriguez, M.; Mendre, C.; Fulcrand, P.; Laur, J.; Martinez, J. )

    1988-02-01

    In the present study, hepta- and octapeptide analogues of the C-terminal part of cholecystokinin, modified on the C-terminal phenylalanine residue, were synthesized. CCK analogues were prepared in which the peptide bond between aspartic acid and phenylalanine had or had not been modified and were lacking the C-terminal primary amide function. These CCK derivatives were able to cause full stimulation of amylase release from rat pancreatic acini but without a decrease in amylase release at supramaximal concentrations. There was a close relationship between the abilities of these derivatives to stimulate amylase release and their abilities to inhibit binding of {sup 125}I-BH-CCK-9 to CCK receptors on rat and guinea pig pancreatic acini. These CCK analogues were also able to recognize the guinea pig brain CCK receptors, some of them being particularly potent. The findings indicate that the aromatic ring of phenylalanine is important for the binding to brain and pancreatic CCK receptors, whereas the C-terminal primary amide function is not essential for the binding to pancreatic CCK receptors but is crucial for biological activity of rat pancreatic acini.

  3. Cell type-dependent agonist/antagonist activities of polybrominated diphenyl ethers.

    PubMed

    Nakamura, N; Matsubara, K; Sanoh, S; Ohta, S; Uramaru, N; Kitamura, S; Yamaguchi, M; Sugihara, K; Fujimoto, N

    2013-11-25

    There have been many concerns expressed regarding the possible adverse effects of thyroid hormone-disrupting chemicals including polychlorinated biphenyls and polybrominated diphenyl ethers (PBDEs), since thyroid hormones play crucial roles in normal vertebrate development. A vast amount of PBDEs have been used as flame retardants for the last two decades and our environment has been contaminated with them. Some PBDEs, especially hydroxylated PBDEs, reportedly show an affinity to the thyroid hormone receptor (TR) and act as thyroid hormone agonists, but in other studies they were reported to inhibit the actions of thyroid hormones. Therefore, in the present study, we investigated the binding affinities of PBDEs and their metabolites to TR and their ability to induce thyroid hormone-responsive transcription using luciferase reporter gene assays in two different cell lines, a pituitary cell line, MtT/E-2, and Chinese hamster ovary (CHO) cells. The binding assay showed that many of the examined PBDEs have significant affinity to TR. Interestingly, some of these PBDEs, such as 4'-OH-BDE-17 and 2'-OH-BDE-28, acted as agonists in the reporter gene assay in MtT/E-2 cells, while they acted as antagonists in CHO cells. Our results demonstrated that whether PBDEs and their metabolites are TR agonists or antagonists depends on the cell type used in the assay, which may suggest that the thyroid hormone-disrupting actions of PBDEs differ among target tissues or species. PMID:24076165

  4. Chemical synthesis, docking studies and biological effects of a pan peroxisome proliferator-activated receptor agonist and cyclooxygenase inhibitor.

    PubMed

    Santin, José Roberto; Uchôa, Flávia D T; Lima, Maria do Carmo A; Rabello, Marcelo M; Machado, Isabel Daufenback; Hernandes, Marcelo Z; Amato, Angelica A; Milton, Flora Aparecida; Webb, Paul; Neves, Francisco de Assis Rocha; Galdino, Suely L; Pitta, Ivan Rocha; Farsky, Sandra H P

    2013-03-12

    The compound (5Z)-5-[(5-bromo-1H-indol-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione (LYSO-7) was synthesised in order to obtain a new type of anti-inflammatory drug, designed with hybrid features to inhibit cyclooxygenase (COX) and also to activate peroxisome proliferator-activated receptor (PPAR). Results obtained from docking (in silico) studies corroborated with experimental data, showing the potential affinity between the studied ligand and targets. The specificity of LYSO-7 for COX-enzymes was detected by the inhibition of COX-1 and COX-2 activities by 30% and 20%, respectively. In transactivation reporter gene assays LYSO-07 showed a pan partial agonist effect on the three PPAR subtypes (PPARγ, PPARα and PPARβ/δ). The agonist action on PPARγ was also observed by a pharmacological approach, as the reduction in the Escherichia coli lipopolysaccharide (LPS)-induced interleukin 1 beta (IL-1β) secretion and nitric oxide (NO) production by mouse neutrophils was blocked by GW9962, a specific PPARγ antagonist. Additionally, the in vivo effect was measured by reduced carrageenan-induced neutrophil influx into the subcutaneous tissue of mice. Taken together, these data show that LYSO-7 displays a potent in vivo anti-inflammatory effect during the innate acute response, which is dependent on its associated COX inhibitory activities and PPAR activation. PMID:23305993

  5. Biological evaluation and structural insights for design of subtype-selective peroxisome proliferator activated receptor-α (PPAR-α) agonists.

    PubMed

    Gangwal, Rahul P; Damre, Mangesh V; Das, Nihar R; Sharma, Shyam S; Sangamwar, Abhay T

    2015-01-15

    Peroxisome proliferator activated receptors-α (PPAR-α) control the expression of several genes involved in diseases like diabetes, hyperlipidaemia, and inflammatory disorders. Herein, we report the biological evaluation of recently identified hits from pharmacophore based virtual screening. The most potent hits, ZINC17167211, ZINC06472206 and ZINC08438472 showed EC50 values of 0.16, 1.1 and 12.1nM in PPAR-α agonist assay, respectively. Further, comparative docking and molecular dynamics analysis of selective PPAR-α agonists revealed that Thr279, Ala333, Lys358 and Met325 residues play an important role in the selective PPAR-α agonistic activity. The insights from docking and molecular dynamic studies will serve as a guideline for the development of potent and selective PPAR-α agonists.

  6. Design, synthesis and structure-activity relationship studies of novel phenoxyacetamide-based free fatty acid receptor 1 agonists for the treatment of type 2 diabetes.

    PubMed

    Li, Zheng; Wang, Xuekun; Xu, Xue; Yang, Jianyong; Qiu, Qianqian; Qiang, Hao; Huang, Wenlong; Qian, Hai

    2015-10-15

    The free fatty acid receptor 1 (FFA1) has attracted extensive attention as a novel antidiabetic target in the last decade. Several FFA1 agonists reported in the literature have been suffered from relatively high molecular weight and lipophilicity. We have previously reported the FFA1 agonist 1. Based on the common amide structural characteristic of SAR1 and NIH screened compound, we here describe the continued structure-activity exploration to decrease the molecular weight and lipophilicity of the compound 1 series by converting various amide linkers. All of these efforts lead to the discovery of the preferable lead compound 18, a compound with considerable agonistic activity, high LE and LLE values, lower lipophilicity than previously reported agonists, and appreciable efficacy on glucose tolerance in both normal and type 2 diabetic mice. PMID:26420383

  7. TCDD dysregulation of 13 AHR-target genes in rat liver

    SciTech Connect

    Watson, John D.; Prokopec, Stephenie D.; Smith, Ashley B.; Okey, Allan B.; Pohjanvirta, Raimo; Boutros, Paul C.

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules

  8. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  9. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination

    SciTech Connect

    Sun, Yan; Zheng, Bin; Zhang, Xin-hua; He, Ming; Guo, Zong-wei; Wen, Jin-kun

    2014-01-10

    Highlights: •PPAR-γ increases KLF4 protein level but does not influence KLF4 gene transcription. •The increase of KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. •Pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. -- Abstract: Peroxisome proliferator activated receptor γ (PPAR-γ) plays important roles in cell cycle regulation, differentiation and apoptosis. Krüppel-like factor 4 (KLF4) modulates vascular smooth muscle cell (VSMC) phenotype. Both KLF4 and PPAR-γ are involved in VSMC proliferation and differentiation. However, the actual relationship between KLF4 and PPAR-γ in VSMCs is not clear. In this study, we found that PPAR-γ agonist pioglitazone increases KLF4 protein levels but does not influence KLF4 gene transcription. PPAR-γ overexpression increases, while PPAR-γ knockdown reduces KLF4 expression, suggesting that the increase in KLF4 protein levels induced by pioglitazone is PPAR-γ-dependent. Further study showed that pioglitazone enhances KLF4 protein stability through reducing KLF4 ubiquitination. Furthermore, we demonstrated that stabilization of KLF4 by pioglitazone was related to the activation of Akt signaling pathway. Taken together, we revealed that PPAR-γ agonist pioglitazone stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination, providing further insights into PPAR-γ and KLF4 in regulating each other’s expression in VSMCs.

  10. Identification of novel estrogen receptor (ER) agonists that have additional and complementary anti-cancer activities via ER-independent mechanism.

    PubMed

    Kim, Taelim; Kim, Hye-In; An, Ji-Young; Lee, Jun; Lee, Na-Rae; Heo, Jinyuk; Kim, Ji-Eun; Yu, Jihyun; Lee, Yong Sup; Inn, Kyung-Soo; Kim, Nam-Jung

    2016-04-01

    In this study, a series of bis(4-hydroxy)benzophenone oxime ether derivatives such as 12c, 12e and 12h were identified as novel estrogen receptor (ER) agonists that have additional and complementary anti-proliferative activities via ER-independent mechanism in cancer cells. These compounds are expected to overcome the therapeutic limitation of existing ER agonists such as estradiol and tamoxifen, which have been known to induce the proliferation of cancer cells. PMID:26905830

  11. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    SciTech Connect

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K. . E-mail: mkwalker@unm.edu

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.

  12. A novel AhR ligand, 2AI, protects the retina from environmental stress

    PubMed Central

    Gutierrez, Mark A.; Davis, Sonnet S.; Rosko, Andrew; Nguyen, Steven M.; Mitchell, Kylie P.; Mateen, Samiha; Neves, Joana; Garcia, Thelma Y.; Mooney, Shaun; Perdew, Gary H.; Hubbard, Troy D.; Lamba, Deepak A.; Ramanathan, Arvind

    2016-01-01

    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2′-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice. PMID:27364765

  13. An Orally Active Allosteric GLP-1 Receptor Agonist Is Neuroprotective in Cellular and Rodent Models of Stroke

    PubMed Central

    Qu, Di; Wang, Ling; Wang, Xinshang; Li, Xubo; Zhou, Shimeng; Zhou, Ying; Wang, Ning; Meng, Jingru; Ma, Xue

    2016-01-01

    Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R) agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB) is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD). The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO) surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia. PMID:26863436

  14. CBLB502, an agonist of Toll-like receptor 5, has antioxidant and scavenging free radicals activities in vitro.

    PubMed

    Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang

    2016-01-01

    The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals.

  15. Characterisation of chlorinated, brominated and mixed halogenated dioxins, furans and biphenyls as potent and as partial agonists of the Aryl hydrocarbon receptor.

    PubMed

    Wall, Richard J; Fernandes, Alwyn; Rose, Martin; Bell, David R; Mellor, Ian R

    2015-03-01

    The Aryl hydrocarbon receptor (AhR) binds a variety of chlorinated and brominated dioxins, furans and biphenyls. Mixed halogenated variants have been recently identified in food at significant levels but full characterisation requires potency data in order to gauge their impact on risk assessment. Rat H4IIE and human MCF-7 cells were treated with various mixed halogenated ligands. Antagonist properties were measured by treating cells with various concentrations of TCDD in the presence of EC25 of the putative antagonist. Measurement of CYP1A1 RNA was used to quantify the potency of agonism and antagonism. The PXDDs were found to be slightly less potent than the corresponding fully chlorinated congeners with the exception of 2-B,3,7,8-TriCDD which was 2-fold more potent than TCDD. PXDFs and non-ortho-PXBs were found to be more potent than their chlorinated congeners whilst several mono-ortho-substituted PXBs were shown to have partial agonistic properties. REPs were produced for a range of mixed halogenated AhR-activating ligands providing a more accurate estimation of potency for risk assessment. Several environmentally abundant biphenyls were shown to be antagonists and reduce the ability of TCDD to induce CYP1A1. The demonstration of antagonism for AhR ligands represents a challenge for existing REP risk assessment schemes for AhR ligands.

  16. Definition of two agonist types at the mammalian cold-activated channel TRPM8

    PubMed Central

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. DOI: http://dx.doi.org/10.7554/eLife.17240.001 PMID:27449282

  17. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  18. [Dmt(1)]DALDA analogues with enhanced μ opioid agonist potency and with a mixed μ/κ opioid activity profile.

    PubMed

    Bai, Longxiang; Li, Ziyuan; Chen, Jiajia; Chung, Nga N; Wilkes, Brian C; Li, Tingyou; Schiller, Peter W

    2014-04-01

    Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent μ opioid agonist peptide with mitochondria-targeted antioxidant activity, were prepared by replacing Phe(3) with various 2',6'-dialkylated Phe analogues, including 2',6'-dimethylphenylalanine (Dmp), 2',4',6'-trimethylphenylalanine (Tmp), 2'-isopropyl-6'-methylphenylalanine (Imp) and 2'-ethyl-6'-methylphenylalanine (Emp), or with the bulky amino acids 3'-(1-naphthyl)alanine (1-Nal), 3'-(2-naphthyl)alanine (2-Nal) or Trp. Several compounds showed significantly increased μ agonist potency, retained μ receptor selectivity and are of interest as drug candidates for neuropathic pain treatment. Surprisingly, the Dmp(3)-, Imp(3)-, Emp(3)- and 1-Nal(3)-containing analogues showed much increased κ receptor binding affinity and had mixed μ/κ properties. In these cases, molecular dynamics studies indicated conformational preorganization of the unbound peptide ligands due to rotational restriction around the C(β)C(γ) bond of the Xxx(3) residue, in correlation with the observed κ receptor binding enhancement. Compounds with a mixed μ/κ opioid activity profile are known to have therapeutic potential for treatment of cocaine abuse.

  19. Human Toll-like Receptor (TLR) 8-Specific Agonistic Activity in Substituted Pyrimidine-2,4-diamines.

    PubMed

    Beesu, Mallesh; Salyer, Alex C D; Trautman, Kathryn L; Hill, Justin K; David, Sunil A

    2016-09-01

    Activation of human toll-like receptor-8 (TLR8) evokes a distinct cytokine profile favoring the generation of Type 1 helper T cells. A multiplexed high-throughput screen had led to the identification of N(4)-butyl-5-iodo-6-methylpyrimidine-2,4-diamine as a pure TLR8 agonist, and a detailed structure-activity relationship study of this chemotype was undertaken. A butyl substituent at N(4) was optimal, and replacement of the 5-iodo group with chloro, bromo, or fluoro groups led to losses in potency, as did the introduction of aromatic bulk. Drawing from our previous structure-based design, several 5-alkylamino derivatives were evaluated. Significant enhancement of potency was achieved in 5-(4-aminobutyl)-N(4)-butyl-6-methylpyrimidine-2,4-diamine. This compound potently induced Th1-biasing IFN-γ and IL-12 in human blood, but lower levels of the proinflammatory cytokines IL-1β, IL-6, and IL-8. These results suggest that the inflammatory and reactogenic propensities of this compound could be considerably more favorable than other TLR8 agonists under evaluation. PMID:27513008

  20. Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma.

    PubMed

    Pferschy-Wenzig, Eva-Maria; Atanasov, Atanas G; Malainer, Clemens; Noha, Stefan M; Kunert, Olaf; Schuster, Daniela; Heiss, Elke H; Oberlies, Nicholas H; Wagner, Hildebert; Bauer, Rudolf; Dirsch, Verena M

    2014-04-25

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism. Agonists of this nuclear receptor are used in the treatment of type 2 diabetes and are also studied as a potential treatment of other metabolic diseases, including nonalcoholic fatty liver disease. Silymarin, a concentrated phenolic mixture from milk thistle (Silybum marianum) seeds, is used widely as a supportive agent in the treatment of a variety of liver diseases. In this study, the PPARγ activation potential of silymarin and its main constituents was investigated. Isosilybin A (3) caused transactivation of a PPARγ-dependent luciferase reporter in a concentration-dependent manner. This effect could be reversed upon co-treatment with the PPARγ antagonist T0070907. In silico docking studies suggested a binding mode for 3 distinct from that of the inactive silymarin constituents, with one additional hydrogen bond to Ser342 in the entrance region of the ligand-binding domain of the receptor. Hence, isosilybin A (3) has been identified as the first flavonolignan PPARγ agonist, suggesting its further investigation as a modulator of this nuclear receptor.

  1. Activation mechanism of AMPA receptors illuminated by complexes with cone snail toxin, allosteric potentiator and orthosteric agonists

    PubMed Central

    Chen, Lei; Dürr, Katharina L.; Gouaux, Eric

    2014-01-01

    AMPA-sensitive glutamate receptors are crucial to the structural and dynamical properties of the brain, to the development and function of the central nervous system and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. Here we determine multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator and orthosteric agonists at 3.8 – 4.1 Å resolution. We show how the toxin acts like a ‘straight jacket’ on the ligand-binding domain (LBD) “gating ring”, restraining the domains via both intra and interdimer cross links such that agonist-induced closure of the LBD “clamshells” is transduced into an iris-like expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in ‘pulling’ forces on the M3 helices that, in turn, are coupled to ion channel gating. PMID:25103405

  2. In Silico Design for Adenosine Monophosphate-Activated Protein Kinase Agonist from Traditional Chinese Medicine for Treatment of Metabolic Syndromes

    PubMed Central

    Tang, Hsin-Chieh

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) acts as a master mediator of metabolic homeostasis. It is considered as a significant millstone to treat metabolic syndromes including obesity, diabetes, and fatty liver. It can sense cellular energy or nutrient status by switching on the catabolic pathways. Investigation of AMPK has new findings recently. AMPK can inhibit cell growth by the way of autophagy. Thus AMPK has become a hot target for small molecular drug design of tumor inhibition. Activation of AMPK must undergo certain extent change of the structure. Through the methods of structure-based virtual screening and molecular dynamics simulation, we attempted to find out appropriate small compounds from the world's largest TCM Database@Taiwan that had the ability to activate the function of AMPK. Finally, we found that two TCM compounds, eugenyl_beta-D-glucopyranoside and 6-O-cinnamoyl-D-glucopyranose, had the qualification to be AMPK agonist. PMID:24899913

  3. Evaluation of effectiveness of chemical and physical sewage treatment technologies for removal of retinoic acid receptor agonistic activity detected in sewage effluent.

    PubMed

    Inoue, D; Matsui, H; Sei, K; Hu, J; Yang, M; Aragane, J; Hirotsuji, J; Ike, M

    2009-01-01

    Retinoic acid receptor (RAR) is a nuclear receptor involved in vertebrate morphogenesis, growth, cellular differentiation, and tissue homeostasis. Excess expression of the retinoid signaling can cause various developmental toxicities in animals and humans. We previously found that influents from sewage treatment plants (STPs) in Japan had a RAR agonistic activity and the activity cannot be removed completely by conventional biological treatments. In this study, we assessed the performance of chemical and physical sewage treatment technologies-ozonation, ultraviolet treatment, chlorination, coagulation using polyaluminium chloride (PAC) and ferric sulfate, and filtration with ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes-in removal of RAR agonistic activity of STP effluent. All water treatment experiments were conducted in laboratory-scale reactors. The RAR agonistic activity of samples was measured using a yeast two-hybrid assay. Results showed that the effectiveness of tested technologies on the removal of RAR agonistic activity can be ranked as RO or NF > chlorination > ozonation > MF > UV > coagulation with ferric sulfate>coagulation with PAC. Furthermore, the effectiveness of chlorination might rank lower because excess reaction might bring a side effect by producing some RAR agonistic by-product(s).

  4. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist inhibits collagen synthesis in human hypertrophic scar fibroblasts by targeting Smad3 via miR-145

    SciTech Connect

    Zhu, Hua-Yu; Li, Chao; Zheng, Zhao; Zhou, Qin; Guan, Hao; Su, Lin-Lin; Han, Jun-Tao; Zhu, Xiong-Xiang; Wang, Shu-yue; Li, Jun Hu, Da-Hai

    2015-03-27

    The transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) functions to regulate cell differentiation and lipid metabolism. Recently, its agonist has been documented to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanisms and gene interactions in hypertrophic scar fibroblasts (HSFBs) in vitro. HSFBs were cultured and treated with or without PPAR-γ agonist or antagonist for gene expression. Bioinformatical analysis predicted that miR-145 could target Smad3 expression. Luciferase assay was used to confirm such an interaction. The data showed that PPAR-γ agonist troglitazone suppressed expression of Smad3 and Col1 in HSFBs. PPAR-γ agonist induced miR-145 at the gene transcriptional level, which in turn inhibited Smad3 expression and Col1 level in HSFBs. Furthermore, ELISA data showed that Col1 level in HSFBs was controlled by a feedback regulation mechanism involved in PPAR-γ agonist and antagonist-regulated expression of miR-145 and Smad3 in HSFBs. These findings indicate that PPAR-γ-miR-145-Smad3 axis plays a role in regulation of collagen synthesis in HSFBs. - Highlights: • PPAR-γ agonist inhibits collagen synthesis in HSFBs. • Smad3 and type I collagen expression are decreased by PPAR-γ agonist. • miR-145 expression is increased by PPAR-γ agonist in HSFBs. • Increased miR-145 inhibits collagen synthesis by targeting Smad3. • miR-145 regulates collagen synthesis.

  5. Antiandrogenic activity of extracts of diesel exhaust particles emitted from diesel-engine truck under different engine loads and speeds.

    PubMed

    Okamura, Kazumasa; Kizu, Ryoichi; Toriba, Akira; Murahashi, Tsuyoshi; Mizokami, Atsushi; Burnstein, Kerry L; Klinge, Carolyn M; Hayakawa, Kazuichi

    2004-02-15

    To clarify the alteration of androgenic and antiandrogenic activities by diesel engine conditions, we collected diesel exhaust particles (DEP) samples emitted from a diesel-engine truck under different conditions of engine loads and vehicle speeds, and DEP extract (DEPE) samples were prepared from each. The androgenic and antiandrogenic activities of the DEPE samples were examined using a prostate specific antigen (PSA) promoter-luciferase reporter gene assay in PC3/AR human prostate cancer cells. While all DEPE samples did not exhibit androgenic effects, the antiandrogenic effects were enhanced by higher engine load but not by higher vehicle speed. In this study, significant correlations between antiandrogenic and aryl hydrocarbon receptor (AhR) agonistic activities were demonstrated in PC3/AR cells by 16 polycyclic aromatic compounds and beta-naphthoflavone. Yeast two-hybrid assay and cytochrome P450 (CYP) 1A1 promoter-luciferase reporter gene assay showed that the antiandrogenic constituents acting as androgen receptor (AR) antagonists and AhR agonists were increased by only the higher engine load. In conclusion, the antiandrogenic effects of DEPE samples were enhanced by a higher engine load which resulted in DEPC samples with elevated AhR agonistic and AR antagonistic activities.

  6. Involvement of Nitric Oxide on Calcium Mobilization and Arachidonic Acid Pathway Activation during Platelet Aggregation with different aggregating agonists

    PubMed Central

    Banerjee, Debipriya; Mazumder, Sahana; Kumar Sinha, Asru

    2016-01-01

    Platelet aggregation by different aggregating agonists is essential in the normal blood coagulation process, the excess of which caused acute coronary syndrome (ACS). In all cases, the activation of arachidonic acid by cycloxygenase was needed for the synthesis of thromboxane A2 (TXA2) but the mechanism of arachidonic acid release in platelets remains obscure. Studies were conducted to determine the role of nitric oxide (NO), if any, on the release of arachidonic acid in platelets. The cytosolic Ca2+ was visualized and quantitated by fluorescent spectroscopy by using QUIN-2. NO was measured by methemoglobin method. Arachidonic acid was determined by HPLC. TXA2 was measured as ThromboxaneB2 (TXB2) by ELISA. Treatment of platelets in platelet-rich plasma (PRP) with different aggregating agents resulted in the inhibition of nitric oxide synthase (NOS) which inhibited the production of NO synthesis and increased TXA2 synthesis. Furthermore, the treatment of washed PRP with different platelet aggregating agents resulted in the increase of [Ca2+] in nM ranges. In contrast, the pre-treatment of washed PRP with aspirin increased platelet NO level and inhibited the Ca2+ mobilization and TXA2 synthesis. These results indicated that the aggregation of platelets by different aggregating agonists was caused by the cytosolic Ca2+ mobilization due to the inhibition of NOS. PMID:27127451

  7. Agonist-Activated Bombyx Corazonin Receptor Is Internalized via an Arrestin-Dependent and Clathrin-Independent Pathway.

    PubMed

    Yang, Jingwen; Shen, Zhangfei; Jiang, Xue; Yang, Huipeng; Huang, Haishan; Jin, Lili; Chen, Yajie; Shi, Liangen; Zhou, Naiming

    2016-07-19

    Agonist-induced internalization plays a key role in the tight regulation of the extent and duration of G protein-coupled receptor signaling. Previously, we have shown that the Bombyx corazonin receptor (BmCrzR) activates both Gαq- and Gαs-dependent signaling cascades. However, the molecular mechanisms involved in the regulation of the internalization and desensitization of BmCrzR remain to be elucidated. Here, vectors for expressing BmCrzR fused with enhanced green fluorescent protein (EGFP) at the C-terminal end were used to further characterize BmCrzR internalization. We found that the BmCrzR heterologously expressed in HEK-293 and BmN cells was rapidly internalized from the plasma membrane into the cytoplasm in a concentration- and time-dependent manner via a β-arrestin (Kurtz)-dependent and clathrin-independent pathway in response to agonist challenge. While most of the internalized receptors were recycled to the cell surface via early endosomes, some others were transported to lysosomes for degradation. Assays using RNA interference revealed that both GRK2 and GRK5 were essentially involved in the regulation of BmCrzR phosphorylation and internalization. Further investigations indicated that the identified cluster of Ser/Thr residues ((411)TSS(413)) was responsible for GRK-mediated phosphorylation and internalization. This is the first detailed investigation of the internalization and trafficking of Bombyx corazonin receptors. PMID:27348044

  8. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    SciTech Connect

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  9. Nicotine enhances murine airway contractile responses to kinin receptor agonists via activation of JNK- and PDE4-related intracellular pathways

    PubMed Central

    2010-01-01

    Background Nicotine plays an important role in cigarette-smoke-associated airway disease. The present study was designed to examine if nicotine could induce airway hyperresponsiveness through kinin receptors, and if so, explore the underlying mechanisms involved. Methods Murine tracheal segments were cultured for 1, 2 or 4 days in serum-free DMEM medium in presence of nicotine (1 and 10 μM) or vehicle (DMSO). Contractile responses induced by kinin B1 receptor agonist, des-Arg9-bradykinin, and B2 receptor agonist, bradykinin, were monitored with myographs. The B1 and B2 receptor mRNA expressions were semi-quantified using real-time PCR and their corresponding protein expressions assessed with confocal-microscopy-based immunohistochemistry. Various pharmacological inhibitors were used for studying intracellular signaling pathways. Results Four days of organ culture with nicotine concentration-dependently increased kinin B1 and B2 receptor-mediated airway contractions, without altering the kinin receptor-mediated relaxations. No such increase was seen at day 1 or day 2. The airway contractile responses to 5-HT, acetylcholine and endothelin receptor agonists remained unaffected by nicotine. Two different neuronal nicotinic receptor antagonists MG624 and hexamethonium blocked the nicotine-induced effects. The enhanced contractile responses were accompanied by increased mRNA and protein expression for both kinin receptors, suggesting the involvement of transcriptional mechanisms. Confocal-microscopy-based immunohistochemistry showed that 4 days of nicotine treatment induced activation (phosphorylation) of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1 and 2 (ERK1/2) and p38. Inhibition of JNK with its specific inhibitor SP600125 abolished the nicotine-induced effects on kinin receptor-mediated contractions and reverted the enhanced receptor mRNA expression. Administration of phosphodiesterase inhibitors (YM976 and theophylline

  10. Structure-Activity study of retinoid agonists bearing substituted dicarba-closo-dodecaborane. Relation between retinoidal activity and conformation of two aromatic nuclei.

    PubMed

    Endo, Y; Iijima, T; Yaguchi, K; Kawachi, E; Inoue, N; Kagechika, H; Kubo, A; Itai, A

    2001-05-21

    We have investigated the structure activity relationships of the potent retinoid agonist, 4-[4-(2-propyl-1,2-dicarba-closo-dodecaboran-l-yl)phenylamino]benzoic acid (BR403), which we have previously reported. Substitution of a methyl group on the aromatic nucleus or a methyl group on the nitrogen atom, or replacement of the amino group with ether, methylene, carboxyl or 1,1-ethylene greatly decreased the activity. The relatively planar conformation at the phenyl-N-phenyl moiety seems to play a critical role in the appearance of the biological activity.

  11. KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a β2-adrenergic agonist enhances relaxation of rat airways.

    PubMed

    Brueggemann, Lioubov I; Haick, Jennifer M; Neuburg, Samantha; Tate, Shawn; Randhawa, Devjit; Cribbs, Leanne L; Byron, Kenneth L

    2014-03-15

    KCNQ (Kv7 family) potassium (K(+)) channels were recently found in airway smooth muscle cells (ASMCs) from rodent and human bronchioles. In the present study, we evaluated expression of KCNQ channels and their role in constriction/relaxation of rat airways. Real-time RT-PCR analysis revealed expression of KCNQ4 > KCNQ5 > KCNQ1 > KCNQ2 > KCNQ3, and patch-clamp electrophysiology detected KCNQ currents in rat ASMCs. In precision-cut lung slices, the KCNQ channel activator retigabine induced a concentration-dependent relaxation of small bronchioles preconstricted with methacholine (MeCh; EC50 = 3.6 ± 0.3 μM). Bronchoconstriction was also attenuated in the presence of two other structurally unrelated KCNQ channel activators: zinc pyrithione (ZnPyr; 1 μM; 22 ± 7%) and 2,5-dimethylcelecoxib (10 μM; 24 ± 8%). The same three KCNQ channel activators increased KCNQ currents in ASMCs by two- to threefold. The bronchorelaxant effects of retigabine and ZnPyr were prevented by inclusion of the KCNQ channel blocker XE991. A long-acting β2-adrenergic receptor agonist, formoterol (10 nM), did not increase KCNQ current amplitude in ASMCs, but formoterol (1-1,000 nM) did induce a time- and concentration-dependent relaxation of rat airways, with a notable desensitization during a 30-min treatment or with repetitive treatments. Coadministration of retigabine (10 μM) with formoterol produced a greater peak and sustained reduction of MeCh-induced bronchoconstriction and reduced the apparent desensitization observed with formoterol alone. Our findings support a role for KCNQ K(+) channels in the regulation of airway diameter. A combination of a β2-adrenergic receptor agonist with a KCNQ channel activator may improve bronchodilator therapy. PMID:24441871

  12. Characterization testing of a 40 Ahr bipolar nickel hydrogen battery

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Manzo, Michelle A.; Gahn, Randall F.

    1989-01-01

    In a continuing effort to develop NiH2 bipolar technology to a point where it can be used efficiently in space flight, testing of a second 40 Ahr, 10-cell bipolar battery has begun. This battery has undergone extensive characterization testing to determine the effects of such operating parameters as charge and discharge rates, temperature, and pressure. The fundamental design of this actively cooled bipolar battery is the same as the first battery. Most of the individual components, however, are from different manufacturers. Different testing procedures as well as certain unique battery characteristics make it difficult to directly compare the two sets of results. In general, the performance of this battery throughout characterization produced expected results. The main differences seen between the first and second batteries occurred during the high-rate discharge portion of the test matrix. The first battery also had poor high-rate discharge results, although better than those of the second battery. Minor changes were made to the battery frame design used for the first battery in an attempt to allow better gas access to the reaction sites for the second build and hopefully improve performance. The changes, however, did not improve the performance of the second battery and could have possibly contributed to the poorer performance that was observed. There are other component differences that could have contributed to the poorer performance of the second battery. The H2 electrode in the second battery was constructed with a Goretex backing which could have limited the high-rate current flow. The gas screen in the second battery had a larger mesh which again could have limited the high-rate current flow. Small scale 2 x 2 batteries are being tested to evaluate the effects of the component variations.

  13. Combined inhalation of beta2 -agonists improves swim ergometer sprint performance but not high-intensity swim performance.

    PubMed

    Kalsen, A; Hostrup, M; Bangsbo, J; Backer, V

    2014-10-01

    There is a high prevalence of asthma and airway hyperresponsiveness (AHR) in elite athletes, which leads to a major use of beta2 -agonists. In a randomized double-blinded crossover study, we investigated the effects of combined inhalation of beta2 -agonists (salbutamol, formoterol, and salmeterol), in permitted doses within the World Anti-Doping Agency 2013 prohibited list, in elite swimmers with (AHR, n = 13) or without (non-AHR, n = 17) AHR. Maximal voluntary isometric contraction of m. quadriceps (MVC), sprint performance on a swim ergometer and performance in an exhaustive swim test at 110% of VO2max were determined. Venous plasma interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured post-exercise. No improvement was observed in the exhaustive swim test, but swim ergometer sprint time was improved (P < 0.05) in both groups from 57 ± 1.7 to 56 ± 1.8 s in AHR and 58.3 ± 1 to 57.4 ± 1 s in non-AHR. MVC and post-exercise plasma IL-6 increased (P < 0.05) with beta2 -agonists in both groups, whereas IL-8 only increased in AHR. In summary, inhalation of beta2 -agonists, in permitted doses, did not improve swim performance in elite swimmers. However, swim ergometer sprint performance and MVC were increased, which should be considered when making future anti-doping regulations. PMID:23834392

  14. Combined inhalation of beta2 -agonists improves swim ergometer sprint performance but not high-intensity swim performance.

    PubMed

    Kalsen, A; Hostrup, M; Bangsbo, J; Backer, V

    2014-10-01

    There is a high prevalence of asthma and airway hyperresponsiveness (AHR) in elite athletes, which leads to a major use of beta2 -agonists. In a randomized double-blinded crossover study, we investigated the effects of combined inhalation of beta2 -agonists (salbutamol, formoterol, and salmeterol), in permitted doses within the World Anti-Doping Agency 2013 prohibited list, in elite swimmers with (AHR, n = 13) or without (non-AHR, n = 17) AHR. Maximal voluntary isometric contraction of m. quadriceps (MVC), sprint performance on a swim ergometer and performance in an exhaustive swim test at 110% of VO2max were determined. Venous plasma interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured post-exercise. No improvement was observed in the exhaustive swim test, but swim ergometer sprint time was improved (P < 0.05) in both groups from 57 ± 1.7 to 56 ± 1.8 s in AHR and 58.3 ± 1 to 57.4 ± 1 s in non-AHR. MVC and post-exercise plasma IL-6 increased (P < 0.05) with beta2 -agonists in both groups, whereas IL-8 only increased in AHR. In summary, inhalation of beta2 -agonists, in permitted doses, did not improve swim performance in elite swimmers. However, swim ergometer sprint performance and MVC were increased, which should be considered when making future anti-doping regulations.

  15. Activation of tongue-expressed GPR40 and GPR120 by non caloric agonists is not sufficient to drive preference in mice.

    PubMed

    Godinot, N; Yasumatsu, K; Barcos, M E; Pineau, N; Ledda, M; Viton, F; Ninomiya, Y; le Coutre, J; Damak, S

    2013-10-10

    There is mounting evidence that, in addition to texture and olfaction, taste plays a role in the detection of long chain fatty acids. Triglycerides, the main components of oils and dietary fat, are hydrolyzed in the mouth by a lingual lipase secreted from the von Ebner gland and the released free fatty acids are detected by the taste system. GPR40 and GPR120, two fatty acid responsive G-protein-coupled receptors (GPCRs), are expressed in taste bud cells, and knockout mice lacking either of those receptors have blunted taste nerve responses to and reduced preference for fatty acids. Here we investigated whether activation of those GPCRs is sufficient to elicit fat taste and preference. Five non-fatty acid agonists of GPR40 and two non-fatty acid agonists of GPR120 activated the glossopharyngeal nerve of wild-type mice but not of knockout mice lacking the cognate receptor. In human subjects, two-alternative forced choice (2-AFC) tests, triangle tests and sensory profiling showed that non fatty acid agonists of GPR40 dissolved in water are detected in sip and spit tests and elicit a taste similar to that of linoleic acid, whereas 2-AFC tests showed that two agonists of GPR120 in water are not perceived fattier than water alone. Wild-type mice did not show any preference for five agonists of GPR40, two agonists of GPR120 and mixtures of both agonists over water in two-bottle preference tests. Together these data indicate that GPR40 mediated taste perception is not sufficient to generate preference. PMID:23831422

  16. The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, does not require functional leptin receptor, serotonin, and hypothalamic POMC and CART activities in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2016-10-01

    The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, did not require functional leptin receptor, serotonin, and hypothalamic proopiomelanocortin and cocaine amphetamine regulated transcript activities in mice, although decrease in functional hypothalamic orexin activity might be involved in the acute anorexic effect of liraglutide. PMID:27585115

  17. Significant Correlation between TLR2 Agonist Activity and TNF-α Induction in J774.A1 Macrophage Cells by Different Medicinal Mushroom Products.

    PubMed

    Coy, Catherine; Standish, Leanna J; Bender, Geoff; Lu, Hailing

    2015-01-01

    In the US market, there is a variety of mushroom preparations available, even within the same species of mushroom. Nonetheless, little is known about whether species or the various extraction methods affect biological activity and potency of the immune modulatory activity of mushroom extracts. After discovering that protein-bound polysaccharide-K, a hot water extract from Trametes versicolor, was a potent Toll-like receptor (TLR)-2 agonist that stimulates both innate and adaptive immunity, this study was initiated to evaluate whether other medicinal mushroom products also have TLR2 agonist activity and immune-enhancing potential as measured by the induction of tumor necrosis factor (TNF)-α in J774.A1 murine macrophage cells. Furthermore, the products were divided by extraction method and species to determine whether these factors affect their immunomodulatory activity. The results showed that the majority (75%) of mushroom products tested had TLR2 agonist activity and that there was a significant correlation between TLR2 agonist activity and TNF-α induction potential in the mushroom products analyzed. In addition, the data demonstrated that hot water mushroom extracts are more potent than ground mushroom products in activating TLR2 and inducing TNF-α. These data provide evidence that extraction methods may affect the biological activity of mushroom products; thus, further studies are warranted to investigate the structural differences between various mushroom products.

  18. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer

    SciTech Connect

    Spink, Barbara C.; Bloom, Michael S.; Wu, Susan; Sell, Stewart; Schneider, Erasmus; Ding, Xinxin; Spink, David C.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC){sub n}, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC){sub 2} alleles were observed; however, in western gorilla, (GGGGC){sub n} alleles with n = 2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC){sub n} was n = 4 > 5 ≫ 2, 6. When frequencies of the (GGGGC){sub n} alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC){sub 2} was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC){sub n} short tandem repeats are inherited, and that the (GGGGC){sub 2} allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility. - Highlights: • The AHR proximal promoter contains a polymorphism, (GGGGC){sub n}, where n = 4 > 5 ≫ 2, 6 • Matched tumor and non-tumor DNA did not show (GGGGC){sub n} microsatellite instability • AHR promoter activity of a construct with (GGGGC){sub 2} was lower than that of (GGGGC){sub 4} • The frequency of (GGGGC){sub 2} in lung

  19. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA) and Agonists to Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Mattsson, Anna; Kärrman, Anna; Pinto, Rui; Brunström, Björn

    2015-01-01

    Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA), and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα) and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic profile resulting

  20. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA) and Agonists to Peroxisome Proliferator-Activated Receptors.

    PubMed

    Mattsson, Anna; Kärrman, Anna; Pinto, Rui; Brunström, Björn

    2015-01-01

    Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA), and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα) and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic profile resulting

  1. Α-amino-β-fluorocyclopropanecarboxylic acids as a new tool for drug development: synthesis of glutamic acid analogs and agonist activity towards metabotropic glutamate receptor 4.

    PubMed

    Lemonnier, Gérald; Lion, Cédric; Quirion, Jean-Charles; Pin, Jean-Philippe; Goudet, Cyril; Jubault, Philippe

    2012-08-01

    Herein we describe the diastereoselective synthesis of glutamic acid analogs and the evaluation of their agonist activity towards metabotropic glutamate receptor subtype 4 (mGluR4). These analogs are based on a monofluorinated cyclopropane core substituted with an α-aminoacid function. The potential of this new building block as a tool for the development of a novel class of drugs is demonstrated with racemic analog 11a that displayed the best agonist activity with an EC50 of 340 nM.

  2. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.

    PubMed

    Martinez-Villalpando, Ernesto C; Herr, Hugh

    2009-01-01

    We present a powered knee prosthesis with two series-elastic actuators positioned in parallel in an agonist-antagonist arrangement. To motivate the knee's design, we developed a prosthetic knee model that comprises a variable damper and two series-elastic clutch units that span the knee joint. Using human gait data to constrain the model's joint to move biologically, we varied model parameters using an optimization scheme that minimized the sum over time of the squared difference between the model's joint torque and biological knee values. We then used these optimized values to specify the mechanical and control design of the prosthesis for level-ground walking. We hypothesized that a variable-impedance control design could produce humanlike knee mechanics during steady-state level-ground walking. As a preliminary evaluation of this hypothesis, we compared the prosthetic knee mechanics of an amputee walking at a self-selected gait speed with those of a weight- and height-matched nonamputee. We found qualitative agreement between prosthetic and human knee mechanics. Because the knee's motors never perform positive work on the knee joint throughout the level-ground gait cycle, the knee's electrical power requirement is modest in walking (8 W), decreasing the size of the onboard battery required to power the prosthesis.

  3. The inverse agonist propranolol confers no corticosteroid-sparing activity in mild-to-moderate persistent asthma.

    PubMed

    Anderson, William J; Short, Philip M; Williamson, Peter A; Manoharan, Arvind; Lipworth, Brian J

    2014-12-01

    The murine asthma model shows that switching off airway β2 receptors with an inverse agonist may confer anti-inflammatory effects as well as corticosteroid-sparing activity. We have assessed for any corticosteroid-sparing effects of propranolol, an inverse agonist, added to low-dose inhaled corticosteroid (ICS) compared with higher dose ICS. A randomized double-blind placebo-controlled cross-over trial in mild-to-moderate persistent asthmatic patients was performed. After a run-in (2 weeks) on hydrofluoroalkane-beclometasone dipropionate (HFA-BDP) at 100 μg/day (HFA-BDP100), patients received randomized treatments (4 weeks) with propranolol at 80 mg/day plus HFA-BDP at 100 μg/day compared with placebo plus HFA-BDP at 400 μg/day (HFA-BDP400). Propranolol was up-titrated to 80 mg/day over the initial 2 weeks. Tiotropium was co-administered until 5 days before each histamine challenge (the primary outcome). Sixteen patients completed the study [mean age, 38 years; forced expiratory volume in 1 s (FEV1), 86.4%; histamine provocative concentration causing a 20% fall in FEV1 (PC20), 1.39 mg/ml; ICS dose, 406 μg/day]. Histamine PC20 was unchanged by adding propranolol to HFA-BDP100 compared with baseline (HFA-BDP100) {0.17 doubling dilution (dd) difference [95% confidence interval (CI): -0.58 to 0.92]}, but there was a significant improvement with HFA-BDP400 compared with both baseline [1.05 dd (95% CI: 0.43-1.66); P=0.02], and propranolol+HFA-BDP100 [0.88 dd (95% CI: 0.45-1.30); P=0.006]. Significant improvements were also observed with HFA-BDP400 for exhaled nitric oxide, blood eosinophils, serum eosinophilic cationic protein and asthma quality-of-life questionnaire symptoms compared with propranolol+HFA-BDP100. Salbutamol recovery post-challenge was partially blunted by propranolol (median prolongation 5 min; P=0.002). Domiciliary evening FEV1 also fell with propranolol+HFA-BDP100 [mean reduction from baseline 0.22 litres (95% CI: 0.10-0.34); P=0.012], whereas

  4. Agonists of proteinase-activated receptor-2 enhance IFN-gamma-inducible effects on human monocytes: role in influenza A infection.

    PubMed

    Feld, Micha; Shpacovitch, Victoria M; Ehrhardt, Christina; Kerkhoff, Claus; Hollenberg, Morley D; Vergnolle, Nathalie; Ludwig, Stephan; Steinhoff, Martin

    2008-05-15

    Proteinase-activated receptor-2 (PAR(2)) is expressed by different types of human leukocytes and involved in the development of inflammatory and infectious diseases. However, its precise role in the regulation of human monocyte and macrophage function during viral infection remains unclear. Also, the ability of PAR(2) agonists to enhance the effects induced by immune mediators during infection or inflammation is still poorly investigated. Therefore, we investigated the ability of a PAR(2) agonist to enhance IFN-gamma-induced suppression of influenza A virus replication in human monocytes. We found that this effect correlates with an increased abundance of IkappaBalpha after costimulation of cells with PAR(2) agonist and IFN-gamma. Remarkably, coapplication of PAR(2) agonist and IFN-gamma also enhances the effects of IFN-gamma on IFN-gamma-inducible protein 10 kDa release, and CD64 and alphaVbeta3 surface expression by human monocytes. Together, these findings indicate a potentially protective role of PAR(2) activation during the progression of influenza A virus infection. This effect could be associated with the ability of PAR(2) agonists to enhance IFN-gamma-induced protective effects on human monocytes.

  5. Active-State Model of a Dopamine D2 Receptor - Gαi Complex Stabilized by Aripiprazole-Type Partial Agonists

    PubMed Central

    Kling, Ralf C.; Tschammer, Nuska; Lanig, Harald; Clark, Timothy; Gmeiner, Peter

    2014-01-01

    Partial agonists exhibit a submaximal capacity to enhance the coupling of one receptor to an intracellular binding partner. Although a multitude of studies have reported different ligand-specific conformations for a given receptor, little is known about the mechanism by which different receptor conformations are connected to the capacity to activate the coupling to G-proteins. We have now performed molecular-dynamics simulations employing our recently described active-state homology model of the dopamine D2 receptor-Gαi protein-complex coupled to the partial agonists aripiprazole and FAUC350, in order to understand the structural determinants of partial agonism better. We have compared our findings with our model of the D2R-Gαi-complex in the presence of the full agonist dopamine. The two partial agonists are capable of inducing different conformations of important structural motifs, including the extracellular loop regions, the binding pocket and, in particular, intracellular G-protein-binding domains. As G-protein-coupling to certain intracellular epitopes of the receptor is considered the key step of allosterically triggered nucleotide-exchange, it is tempting to assume that impaired coupling between the receptor and the G-protein caused by distinct ligand-specific conformations is a major determinant of partial agonist efficacy. PMID:24932547

  6. Discovery of Tetrahydropyrazolopyridine as Sphingosine 1-Phosphate Receptor 3 (S1P3)-Sparing S1P1 Agonists Active at Low Oral Doses.

    PubMed

    Demont, Emmanuel H; Bailey, James M; Bit, Rino A; Brown, Jack A; Campbell, Colin A; Deeks, Nigel; Dowell, Simon J; Eldred, Colin; Gaskin, Pam; Gray, James R J; Haynes, Andrea; Hirst, David J; Holmes, Duncan S; Kumar, Umesh; Morse, Mary A; Osborne, Greg J; Renaux, Jessica F; Seal, Gail A L; Smethurst, Chris A; Taylor, Simon; Watson, Robert; Willis, Robert; Witherington, Jason

    2016-02-11

    FTY720 is the first oral small molecule approved for the treatment of people suffering from relapsing-remitting multiple sclerosis. It is a potent agonist of the S1P1 receptor, but its lack of selectivity against the S1P3 receptor has been linked to most of the cardiovascular side effects observed in the clinic. These findings have triggered intensive efforts toward the identification of a second generation of S1P3-sparing S1P1 agonists. We have recently disclosed a series of orally active tetrahydroisoquinoline (THIQ) compounds matching these criteria. In this paper we describe how we defined and implemented a strategy aiming at the discovery of selective structurally distinct follow-up agonists. This effort culminated with the identification of a series of orally active tetrahydropyrazolopyridines. PMID:26751273

  7. Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins.

    PubMed

    Rosethorne, Elizabeth M; Charlton, Steven J

    2011-04-01

    The G(i/o)-coupled histamine H(4) receptor is highly expressed in hemopoietic cells and is a promising new target for the treatment of chronic inflammatory diseases. 1-[(5-Chloro-1H-indol-2-yl)carbonyl]-4-methyl-piperazine (JNJ7777120) has been described as a selective antagonist at the H(4) receptor and is widely used to characterize the physiological role of the H(4) receptor. We have investigated the pharmacological properties of JNJ7777120 using two distinct downstream signaling measurements, G protein activation and β-arrestin recruitment. The H(4) receptor agonists histamine and clobenpropit, but not JNJ7777120, were able to induce [(35)S]GTPγS binding in membranes prepared from U2OS-H(4) cells. Thioperamide, a dual H(3)/H(4) receptor antagonist, and JNJ7777120 were both able to inhibit the [(35)S]GTPγS binding induced by clobenpropit. Agonists and antagonists specific for other members of the histamine receptor family had no effect in this assay format. Histamine and clobenpropit increased β-arrestin recruitment to the H(4) receptor in a concentration-dependent manner. This β-arrestin recruitment could be inhibited by preincubation with thioperamide. We were surprised to find that preincubation with the H(4)-selective antagonist JNJ7777120 potentiated rather than antagonized the response to a submaximal concentration of clobenpropit. JNJ7777120 treatment alone resulted in an increase in β-arrestin recruitment, which again could be inhibited by preincubation with thioperamide. Schild analysis demonstrated competitive antagonism between thioperamide and both clobenpropit and JNJ7777120. Histamine and clobenpropit had comparable potencies for both [(35)S]GTPγS binding and β-arrestin recruitment, suggesting little difference in the levels of receptor reserve between the two assays. In conclusion, we have demonstrated that JNJ7777120 recruits β-arrestin to the H(4) receptor, independent of G protein activation.

  8. The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle.

    PubMed

    Baweja, Harsimran S; Patel, Bhavini K; Neto, Osmar P; Christou, Evangelos A

    2011-12-01

    The purpose of this study was to compare force variability and the neural activation of the agonist muscle during constant isometric contractions at different force levels when the amplitude of respiration and visual feedback were varied. Twenty young adults (20-32 years, 10 men and 10 women) were instructed to accurately match a target force at 15% and 50% of their maximal voluntary contraction (MVC) with abduction of the index finger while controlling their respiration at different amplitudes (85%, 100% and 125% normal) in the presence and absence of visual feedback. Each trial lasted 22s and visual feedback was removed from 8-12 and 16-20s. Each subject performed three trials with each respiratory condition at each force level. Force variability was quantified as the standard deviation of the detrended force data. The neural activation of the first dorsal interosseus (FDI) was measured with bipolar surface electrodes placed distal to the innervation zone. Relative to normal respiration, force variability increased significantly only during high-amplitude respiration (∼63%). The increase in force variability from normal- to high-amplitude respiration was strongly associated with amplified force oscillations from 0 to 3 Hz (R(2) ranged from .68 to .84, p< .001). Furthermore, the increase in force variability was exacerbated in the presence of visual feedback at 50% MVC (vision vs. no-vision: .97 vs. .87N) and was strongly associated with amplified force oscillations from 0 to 1 Hz (R(2)= .82) and weakly associated with greater power from 12 to 30 Hz (R(2)= .24) in the EMG of the agonist muscle. Our findings demonstrate that high-amplitude respiration and visual feedback of force interact and amplify force variability in young adults during moderate levels of effort.

  9. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist.

    PubMed

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  10. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer.

    PubMed

    Spink, Barbara C; Bloom, Michael S; Wu, Susan; Sell, Stewart; Schneider, Erasmus; Ding, Xinxin; Spink, David C

    2015-01-01

    The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC)n, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC)2 alleles were observed; however, in western gorilla, (GGGGC)n alleles with n=2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC)n was n=4>5≫2, 6. When frequencies of the (GGGGC)n alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC)2 was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC)n short tandem repeats are inherited, and that the (GGGGC)2 allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility.

  11. Agonist activation of cytosolic Ca2+ in subfornical organ cells projecting to the supraoptic nucleus

    NASA Technical Reports Server (NTRS)

    Johnson, R. F.; Beltz, T. G.; Sharma, R. V.; Xu, Z.; Bhatty, R. A.; Johnson, A. K.

    2001-01-01

    The subfornical organ (SFO) is sensitive to both ANG II and ACh, and local application of these agents produces dipsogenic responses and vasopressin release. The present study examined the effects of cholinergic drugs, ANG II, and increased extracellular osmolarity on dissociated, cultured cells of the SFO that were retrogradely labeled from the supraoptic nucleus. The effects were measured as changes in cytosolic calcium in fura 2-loaded cells by using a calcium imaging system. Both ACh and carbachol increased intracellular ionic calcium concentration ([Ca2+]i). However, in contrast to the effects of muscarinic receptor agonists on SFO neurons, manipulation of the extracellular osmolality produced no effects, and application of ANG II produced only moderate effects on [Ca2+]i in a few retrogradely labeled cells. The cholinergic effects on [Ca2+]i could be blocked with the muscarinic receptor antagonist atropine and with the more selective muscarinic receptor antagonists pirenzepine and 4-diphenylacetoxy-N-methylpiperdine methiodide (4-DAMP). In addition, the calcium in the extracellular fluid was required for the cholinergic-induced increase in [Ca2+]i. These findings indicate that ACh acts to induce a functional cellular response in SFO neurons through action on a muscarinic receptor, probably of the M1 subtype and that the increase of [Ca2+]i, at least initially, requires the entry of extracellular Ca2+. Also, consistent with a functional role of M1 receptors in the SFO are the results of immunohistochemical preparations demonstrating M1 muscarinic receptor-like protein present within this forebrain circumventricular organ.

  12. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice.

    PubMed

    Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin

    2014-07-15

    DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.

  13. Peroxisome proliferator-activated receptor agonists (PPARs): a promising prospect in the treatment of psoriasis and psoriatic arthritis.

    PubMed

    Lima, Emerson de Andrade; Lima, Mariana Modesto Dantas de Andrade; Marques, Cláudia Diniz Lopes; Duarte, Angela Luzia Branco Pinto; Pita, Ivan da Rocha; Pita, Maira Galdino da Rocha

    2013-01-01

    Psoriasis is a polygenic, inflammatory and progressive disease, characterized by an abnormal differentiation and hyperproliferation of keratinocytes, associated with impaired immunologic activation and systemic disorders, while psoriatic arthritis is a chronic inflammatory articular disease. Pathophysiology of psoriasis comprises a dysfunction of the immune system cells with an interactive network between cells and cytokines supporting the initiation and perpetuation of disease and leading to inflammation of skin, enthesis and joints. Recent studies have shown an important role of systemic inflammation in the development of atherosclerosis. Corroborating these findings, patients with severe Psoriasis have marked incidence of psoriatic arthritis, cardiovascular diseases, hypertension, dyslipidemia, obesity and diabetes mellitus, showing an increased risk for acute myocardial infarction, which suggests that the condition is not restricted to the skin. Nuclear receptors are ligand-dependent transcription factors, whose activation affects genes that control vital processes. Among them the peroxisome proliferator-activated receptor is responsible for establishing the relationship between lipids, metabolic diseases and innate immunity. In the skin, peroxisome proliferator-activated receptors have an important effect in keratinocyte homeostasis, suggesting a role in diseases such as psoriasis. The peroxisome proliferator-activated receptors agonists represent a relevant source of research in the treatment of skin conditions, however more clinical studies are needed to define the potential response of these drugs in patients with psoriasis and psoriatic arthritis.

  14. The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets.

    PubMed

    Uchida, Shin-ichi; Soshiroda, Kazuhiro; Okita, Eri; Kawai-Uchida, Mika; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2015-01-15

    The adenosine A2A receptor antagonist, istradefylline, enhances anti-parkinsonian activity in patients with advanced Parkinson׳s disease (PD) already treated with combinations of L-DOPA and dopamine agonist drugs but who are still exhibiting prolonged 'OFF' periods. In contrast, the effects of istradefylline on motor function when administered in combination with low dose dopamine agonist therapy in early PD are unknown. We now investigate whether istradefylline administered with a threshold dose of either the non-ergot dopamine agonist, ropinirole or the ergot dopamine agonist, pergolide enhances anti-parkinsonian activity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset. Both ropinirole (0.01-0.1mg/kg p.o.) and pergolide (0.003-0.1mg/kg p.o.) administered alone produced dose dependent increases in locomotor activity, a reduction in motor disability. Threshold doses of ropinirole (0.025-0.075mg/kg p.o.) and pergolide (0.01-0.075mg/kg p.o.) were then selected that in individual animals caused a small but non-significant anti-parkinsonian effect. Administration of istradefylline (10mg/kg p.o.) alone resulted in a decrease in motor disability and increase in 'ON' time but dyskinesia was not observed. Combined administration of pergolide or ropinirole with istradefylline resulted in an increase in the reversal of motor disability and increase in 'ON' time compared to that produced by either treatment alone but dyskinesia was still not observed. These results show that istradefylline is effective in improving motor function when combined with low dose dopamine agonist treatment. In early PD, this may avoid dose escalation or allow a reduction in dopamine agonist dosage without a loss of efficacy and prevent dopaminergic side-effects from becoming treatment limiting. PMID:25499739

  15. Generation of highly selective VPAC2 receptor agonists by high throughput mutagenesis of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide.

    PubMed

    Yung, Stephanie L; Dela Cruz, Fernando; Hamren, Sarah; Zhu, Jian; Tsutsumi, Manami; Bloom, James W; Caudle, Margaret; Roczniak, Steve; Todd, Tracey; Lemoine, Lynn; MacDougall, Margit; Shanafelt, Armen B; Pan, Clark Q

    2003-03-21

    Pituitary adenylate cyclase-activating peptide (PACAP) has a specific receptor PAC1 and shares two receptors VPAC1 and VPAC2 with vasoactive intestinal peptide (VIP). VPAC2 activation enhances glucose-induced insulin release while VPAC1 activation elevates glucose output. To generate a large pool of VPAC2 selective agonists for the treatment of type 2 diabetes, structure-activity relationship studies were performed on PACAP, VIP, and a VPAC2 selective VIP analog. Chemical modifications on this analog that prevent recombinant expression were sequentially removed to show that a recombinant peptide would retain VPAC2 selectivity. An efficient recombinant expression system was then developed to produce and screen hundreds of mutant peptides. The 11 mutations found on the VIP analog were systematically replaced with VIP or PACAP sequences. Three of these mutations, V19A, L27K, and N28K, were sufficient to provide most of the VPAC2 selectivity. C-terminal extension with the KRY sequence from PACAP38 led to potent VPAC2 agonists with improved selectivity (100-1000-fold). Saturation mutagenesis at positions 19, 27, 29, and 30 of VIP and charge-scanning mutagenesis of PACAP27 generated additional VPAC2 selective agonists. We have generated the first set of recombinant VPAC2 selective agonists described, which exhibit activity profiles that suggest therapeutic utility in the treatment of diabetes.

  16. Peroxisome proliferator-activated receptor-{gamma} agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-07-05

    We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.

  17. Design, synthesis and Structure-activity relationship studies of new thiazole-based free fatty acid receptor 1 agonists for the treatment of type 2 diabetes.

    PubMed

    Li, Zheng; Qiu, Qianqian; Xu, Xue; Wang, Xuekun; Jiao, Lei; Su, Xin; Pan, Miaobo; Huang, Wenlong; Qian, Hai

    2016-05-01

    The free fatty acid receptor 1 (FFA1/GPR40) has attracted interest as a novel target for the treatment of type 2 diabetes. Several series of FFA1 agonists including TAK-875, the most advanced compound terminated in phase III studies due to concerns about liver toxicity, have been hampered by relatively high molecular weight and lipophilicity. Aiming to develop potent FFA1 agonists with low risk of liver toxicity by decreasing the lipophilicity, the middle phenyl of TAK-875 was replaced by 11 polar five-membered heteroaromatics. Subsequently, systematic exploration of SAR and application of molecular modeling, leads to the identification of compound 44, which was an excellent FFA1 agonist with robustly hypoglycemic effect both in normal and type 2 diabetic mice, low risks of hypoglycemia and liver toxicity even at the twice molar dose of TAK-875. Meanwhile, two important findings were noted. First, the methyl group in our thiazole series occupied a small hydrophobic subpocket which had no interactions with TAK-875. Furthermore, the agonistic activity revealed a good correlation with the dihedral angle between thiazole core and the terminal benzene ring. These results promote the understanding of ligand-binding pocket and might help to design more promising FFA1 agonists. PMID:26945112

  18. In vitro re-expression of the aryl hydrocarbon receptor (Ahr) in cultured Ahr-deficient mouse antral follicles partially restores the phenotype to that of cultured wild-type mouse follicles

    PubMed Central

    Ziv-Gal, A; Gao, L.; Karman, B.N.; Flaws, J.A.

    2014-01-01

    Background The aryl hydrocarbon receptor (AHR) mediates the toxic effects of various endocrine disrupting chemicals. In female mice, global deletion of the Ahr (AhrKO) results in slow growth of ovarian antral follicles. No studies, however, have examined whether injection of the Ahr restores the phenotypes of cultured AhrKO ovarian antral follicles to wild-type levels. Methods We developed a system to construct a recombinant adenovirus containing the Ahr to re-express the Ahr in AhrKO granulosa cells and whole antral follicles. We then compared follicle growth and levels of factors in the AHR signaling pathway (Ahr, Ahrr, Cyp1a1, and Cyp1b1) in wild-type, AhrKO, and Ahr re-expressed follicles. Further, we compared the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in wild-type, AhrKO, and Ahr re-expressed follicles. Results AdAhr injection into AhrKO follicles partially restored their growth pattern to wild-type levels. Further, Ahr re-expressed follicles had significantly higher levels of Ahr, Ahrr, Cyp1a1, and Cyp1b1 compared to wild-type follicles. Upon TCDD treatment, only Cyp1a1 levels were significantly higher in Ahr re-expressed follicles compared to the levels in wild-type follicles. Conclusion Our system of re-expression of the Ahr partially restores follicle growth and transcript levels of factors in the AHR signaling pathway to wild-type levels. PMID:25500125

  19. Differential effects of peroxisome proliferator-activated receptor agonists on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells.

    PubMed

    Yousefi, B; Samadi, N; Baradaran, B; Rameshknia, V; Shafiei-Irannejad, V; Majidinia, M; Targhaze, N; Zarghami, N

    2015-01-01

    P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) in tumor cells is still a main obstacle for the chemotherapeutic treatment of cancers. Therefore, identification of safe and effective MDR reversing compounds with minimal adverse side effects is an important approach in the cancer treatment. Studies show that peroxisome proliferator-activated receptor (PPARs) ligands can inhibit cell growth in many cancers. Here, we investigated the effect of different PPAR agonists include fenofibrate, troglitazone and aleglitazar on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. The effects of doxorubicin (DOX) following treatment with PPAR agonists on cell viability were evaluated using MTT assay and the reversal fold (RF) values. Rhodamine123 (Rh123) assays were used to determine P-gp functioning. P-gp mRNA/protein expression was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis after incubation with troglitazone and aleglitazar. Our results showed that troglitazone and aleglitazar significantly enhanced the cytotoxicity of DOX and decreased the RF values in K562/DOX cells, however, no such results were found for fenofibrate. Troglitazone and aleglitazar significantly down regulated P-gp expression in K562/DOX cells; in addition, the present study revealed that aleglitazar elevated intracellular accumulation of Rh123in K562/DOX cells as short-term effects, which also contribute to the reversal of MDR. These findings show that troglitazone and especially aleglitazar exhibited potent effects in the reversal of P-gp-mediated MDR, suggesting that these compounds may be effective for combination therapy strategies and circumventing MDR in K562/DOX cells to other conventional chemotherapeutic drugs. PMID:26718439

  20. Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins.

    PubMed

    Farmahin, Reza; Wu, Dongmei; Crump, Doug; Hervé, Jessica C; Jones, Stephanie P; Hahn, Mark E; Karchner, Sibel I; Giesy, John P; Bursian, Steven J; Zwiernik, Matthew J; Kennedy, Sean W

    2012-03-01

    There are large differences in sensitivity to the toxic and biochemical effects of dioxins and dioxin-like compounds (DLCs) among vertebrates. Previously, we demonstrated that the difference in sensitivity between domestic chicken (Gallus gallus domesticus) and common tern (Sterna hirundo) to aryl hydrocarbon receptor 1 (AHR1)-dependent changes in gene expression following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is based upon the identities of the amino acids at two sites within the ligand binding domain of AHR1 (chicken--highly sensitive; Ile324_Ser380 vs common tern--250-fold less sensitive than chicken; Val325_Ala381). Here, we tested the hypotheses that (i) the sensitivity of other avian species to TCDD, 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 2,3,7,8-tetrachlorodibenzofuran (TCDF) is also determined by the amino acids at sites that are equivalent to sites 324 and 380 in chicken, and (ii) Ile324_Ala380 and Val324_Ser380 genotypes confer intermediate sensitivity to DLCs in birds. We compared ligand-induced transactivation function of full-length AHR1s from chicken, common tern, ring-necked pheasant (Phasianus colchicus; Ile324_Ala380) and Japanese quail (Coturnix japonica; Val324_Ala380), and three Japanese quail AHR1 mutants. The results support our hypothesis that avian species can be grouped into three general classes of sensitivity to DLCs. Both AHR1 genotype and in vitro transactivation assays predict in vivo sensitivity. Contrary to the assumption that TCDD is the most potent DLC, PeCDF was more potent than TCDD at activating Japanese quail (13- to 26-fold) and common tern (23- to 30-fold) AHR1. Our results support and expand previous in vitro and in vivo work that demonstrated ligand-dependent species differences in AHR1 affinity. The findings and methods will be of use for DLC risk assessments.

  1. Discovery and Structure-Activity Relationships of the Neoseptins: A New Class of Toll-like Receptor-4 (TLR4) Agonists.

    PubMed

    Morin, Matthew D; Wang, Ying; Jones, Brian T; Su, Lijing; Surakattula, Murali M R P; Berger, Michael; Huang, Hua; Beutler, Elliot K; Zhang, Hong; Beutler, Bruce; Boger, Dale L

    2016-05-26

    Herein, we report studies leading to the discovery of the neoseptins and a comprehensive examination of the structure-activity relationships (SARs) of this new class of small-molecule mouse Toll-like receptor 4 (mTLR4) agonists. The compounds in this class, which emerged from screening an α-helix mimetic library, stimulate the immune response, act by a well-defined mechanism (mouse TLR4 agonist), are easy to produce and structurally manipulate, exhibit exquisite SARs, are nontoxic, and elicit improved and qualitatively different responses compared to lipopolysaccharide, even though they share the same receptor.

  2. Role of calcium-activated potassium channels in the regulation of basal and agonist-elevated tones in isolated conduit arteries. Short communication.

    PubMed

    Pataricza, J; Márton, Z; Hegedus, Z; Krassói, Irén; Kun, A; Varró, A; Papp, J Gy

    2004-01-01

    Functional role of calcium-activated potassium (KCa) channels on the basal and agonist-elevated arterial tones was investigated in isolated rabbit aorta, porcine and canine coronary arteries as well as in human internal mammary artery. The vascular tones enhanced by contractile agents were increased further by preincubation of these conduit blood vessels with selective (charybdotoxin or iberiotoxin) or nonselective (tetraethylammonium) inhibitors of KCa channels. The basal tone (without an agonist) was increased only in the canine coronary artery. The results indicate a feed-back regulatory role of KCa channels counteracting the vasospasm of conduit arteries. PMID:16438119

  3. Gating allosterism at a single class of etomidate sites on alpha1beta2gamma2L GABA A receptors accounts for both direct activation and agonist modulation.

    PubMed

    Rüsch, Dirk; Zhong, Huijun; Forman, Stuart A

    2004-05-14

    At clinical concentrations, the potent intravenous general anesthetic etomidate enhances gamma-aminobutyric acid, type A (GABA(A)) receptor activity elicited with low gamma-aminobutyric acid (GABA) concentrations, whereas much higher etomidate concentrations activate receptors in the absence of GABA. Therefore, GABA(A) receptors may possess two types of etomidate sites: high affinity GABA-modulating sites and low affinity channel-activating sites. However, GABA modulation and direct activation share stereoselectivity for the (R)(+)-etomidate isomer and display parallel dependence on GABA(A) beta subunit isoforms, suggesting that these two actions may be mediated by a single class of etomidate site(s) that exert one or more molecular effects. In this study, we assessed GABA modulation by etomidate using leftward shifts of electrophysiological GABA concentration responses in cells expressing human alpha1beta2gamma2L receptors. Etomidate at up to 100 microm reduced GABA EC(50) values by over 100-fold but without apparent saturation, indicating the absence of high affinity etomidate sites. In experiments using a partial agonist, P4S, etomidate both reduced EC(50) and increased maximal efficacy, demonstrating that etomidate shifts the GABA(A) receptor gating equilibrium toward open states. Results were quantitatively analyzed using equilibrium receptor gating models, wherein a postulated class of equivalent etomidate sites both directly activates receptors and enhances agonist gating. A Monod-Wyman-Changeux co-agonist mechanism with two equivalent etomidate sites that allosterically enhance GABA(A) receptor gating independently of agonist binding most simply accounts for direct activation and agonist modulation. This model also correctly predicts the actions of etomidate on GABA(A) receptors containing a point mutation that increases constitutive gating activity.

  4. 'Sum of activities' as dependent parameter: a new CoMFA-based approach for the design of pan PPAR agonists.

    PubMed

    Sundriyal, Sandeep; Bharatam, Prasad V

    2009-01-01

    A 'sum-model' (3D QSAR - CoMFA) has been developed to design PPAR(alpha/gamma/delta) (peroxisome proliferator activated receptor) pan agonists by using the sum of activities (EC(50)) of compounds against individual subtypes as a dependent parameter. In addition, the three subtype specific CoMFA models were also generated using the identical training set molecules (N=28). All four models were validated using the popular 'leave-one-out' (LOO) method and with a test set of 9 molecules. The generated models were found to be statistically significant with r(cv)(2)>0.5 and r(ncv)(2)>0.9 and the lower values of standard error of estimation (SEE) ranging from 0.097 to 0.160. From the contour map analyses the 'sum-model' was found to represent the three subtype specific models and also predicted the sum of activities of the training set molecules with reasonable accuracy. The new molecules were designed based on the 'sum-model' and were found to dock well in the PPARgamma active site. This approach may find wider applications in the research related to other classes of 'designed multiple ligands'. PMID:18448203

  5. Antitumor activities and on-target toxicities mediated by a TRAIL receptor agonist following cotreatment with panobinostat.

    PubMed

    Martin, Ben P; Frew, Ailsa J; Bots, Michael; Fox, Stephen; Long, Fenella; Takeda, Kazuyoshi; Yagita, Hideo; Atadja, Peter; Smyth, Mark J; Johnstone, Ricky W

    2011-06-01

    The recent development of novel targeted anticancer therapeutics such as histone deacetylase inhibitors (HDACi) and activators of the TRAIL pathway provide opportunities for the introduction of new treatment regimens in oncology. HDACi and recombinant TRAIL or agonistic anti-TRAIL receptor antibodies have been shown to induce synergistic tumor cell apoptosis and some therapeutic activity in vivo. Herein, we have used syngeneic preclinical models of human solid cancers to demonstrate that the HDACi panobinostat can sensitize tumor cells to apoptosis mediated by the anti-mouse TRAIL receptor antibody MD5-1. We demonstrate that the combination of panobinostat and MD5-1 can eradicate tumors grown subcutaneously and orthotopically in immunocompetent mice, while single agent treatment has minimal effect. However, escalation of the dose of panobinostat to enhance antitumor activity resulted in on-target MD5-1-mediated gastrointestinal toxicities that were fatal to the treated mice. Studies performed in mice with knockout of the TRAIL receptor showed that these mice could tolerate doses of the panobinostat/MD5-1 combination that were lethal in wild type mice resulting in superior tumor clearance. Given that clinical studies using HDACi and activators of the TRAIL pathway have been initiated, our preclinical data highlight the potential toxicities that could limit the use of such a treatment regimen. Our studies also demonstrate the power of using syngeneic in vivo tumor models as physiologically relevant preclinical systems to test the antitumor effects and identify potential side effects of novel anticancer regimens.

  6. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    SciTech Connect

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia R.; Woodin, Bruce; Stegeman, John J.

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox

  7. Differential pathway coupling efficiency of the activated insulin receptor drives signaling selectivity by XMetA, an allosteric partial agonist antibody

    Technology Transfer Automated Retrieval System (TEKTRAN)

    XMetA, an anti-insulin receptor (IR) monoclonal antibody, is an allosteric partial agonist of the IR. We have previously reported that XMetA activates the “metabolic-biased” Akt kinase signaling pathway while having little or no effect on the “mitogenic” MAPK signaling pathwayof ERK 1/2. To inves...

  8. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (INMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated INMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on INMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated INMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of INMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  9. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons.

    PubMed

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca(2+)-activated K(+) (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5'-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  10. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist

    SciTech Connect

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi; Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko; Neffati, Mohamed; Akita, Toru; Maejima, Kazuhiro; Masuda, Seiji; Kambe, Taiho; Mori, Naoki; Irie, Kazuhiro; Nagao, Masaya

    2013-10-18

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPARγ agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  11. A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo.

    PubMed

    Lewis, Nuruddeen D; Patnaude, Lori A; Pelletier, Josephine; Souza, Donald J; Lukas, Susan M; King, F James; Hill, Jonathan D; Stefanopoulos, Dimitria E; Ryan, Kelli; Desai, Sudha; Skow, Donna; Kauschke, Stefan G; Broermann, Andre; Kuzmich, Daniel; Harcken, Christian; Hickey, Eugene R; Modis, Louise K

    2014-01-01

    GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq), we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases.

  12. Effect of stilbene and chalcone scaffolds incorporation in clofibric acid on PPARα agonistic activity.

    PubMed

    Giampietro, Letizia; D'Angelo, Alessandra; Giancristofaro, Antonella; Ammazzalorso, Alessandra; De Filippis, Barbara; Di Matteo, Mauro; Fantacuzzi, Marialuigia; Linciano, Pasquale; Maccallini, Cristina; Amoroso, Rosa

    2014-01-01

    In an effort to develop safe and efficacious compounds for the treatment of metabolic disorders, new compounds based on a combination of clofibric acid, the active metabolite of clofibrate, and trans-stilbene, chalcone, and other lipophilic groups were synthesized. They were evaluated for PPARα transactivation activity; all branched derivatives showed an increase of the transcriptional activity of receptor compared to the linear ones. Noteworthy, stilbene and benzophenone branched derivatives activated the PPARα better than clofibric acid. PMID:23432317

  13. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  14. Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization.

    PubMed Central

    Ng, G Y; Trogadis, J; Stevens, J; Bouvier, M; O'Dowd, B F; George, S R

    1995-01-01

    The regulation of the dopamine D1 receptor was investigated by using c-myc epitope-tagged D1 receptors expressed in Sf9 (fall armyworm ovary) cells. Treatment of D1 receptors with 10 microM dopamine for 15 min led to a loss of the dopamine-detected high-affinity state of the receptor accompanying a 40% reduction in the ability of the receptor to mediate maximal dopamine stimulation of adenylyl cyclase activity. After 60 min of agonist exposure, 45 min after the occurrence of desensitization, 28% of the cell surface receptors were internalized into an intracellular light vesicular membrane fraction as determined by radioligand binding and supported by photoaffinity labeling, immunocytochemical staining, and immunoblot analysis. Pretreatment of cells with concanavalin A or sucrose completely blocked agonist-induced D1 receptor internalization without preventing agonist-induced desensitization, indicating a biochemical separation of these processes. Collectively, these findings indicate that the desensitization of D1 receptor-coupled adenylyl cyclase activity and D1 receptor internalization are temporarily and biochemically distinct mechanisms regulating D1 receptor function following agonist activation. Images Fig. 2 Fig. 3 PMID:7479745

  15. Effects of α1-adrenoceptor agonist phenylephrine on swelling-activated chloride currents in human atrial myocytes.

    PubMed

    Li, Yetao; Du, Xinling

    2015-02-01

    Swelling-activated chloride currents (ICl.swell) play an important role in cardiac electrophysiology and arrhythmogenesis. However, the regulation of these currents has not been clarified to date. In this research, we focused on the function of phenylephrine, an α1-adrenoceptor agonist, in the regulation of I(Cl.swell) in human atrial myocytes. We recorded I(Cl.swell) evoked by a hypotonic bath solution with the whole-cell patch-clamp technique. We found that I(Cl.swell) increased over time, and it was difficult to achieve absolute steady state. Phenylephrine potentiated I(Cl.swell) from -1.00 ± 0.51 pA/pF at -90 mV and 2.58 ± 1.17 pA/pF at +40 mV to -1.46 ± 0.70 and 3.84 ± 1.67 pA/pF, respectively (P < 0.05, n = 6), and the upward trend in ICl.swell was slowed after washout. This effect was concentration-dependent, and the α1-adrenoceptor antagonist prazosin shifted the dose-effect curve rightward. Addition of prazosin or the protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM) attenuated the effect of phenylephrine. The PKC activator phorbol 12,13-dibutyrate (PDBu) activated I(Cl.swell) from -1.69 ± 1.67 pA/pF at -90 mV and 5.58 ± 6.36 pA/pF at +40 mV to -2.41 ± 1.95 pA/pF and 7.05 ± 6.99 pA/pF, respectively (P < 0.01 at -90 mV and P < 0.05 at +40 mV; n = 6). In conclusion, the α1-adrenoceptor agonist phenylephrine augmented I(Cl.swell), a result that differs from previous reports in other animal species. The effect was attenuated by BIM and mimicked by PDBu, which indicates that phenylephrine might modulate I(Cl,swell) in a PKC-dependent manner.

  16. Clinical Effects of a Topically Applied Toll-like Receptor 9 Agonist in Active Moderate-to-Severe Ulcerative Colitis

    PubMed Central

    Atreya, Raja; Bloom, Stuart; Scaldaferri, Franco; Gerardi, Viviana; Admyre, Charlotte; Karlsson, Åsa; Knittel, Thomas; Kowalski, Jan; Lukas, Milan; Löfberg, Robert; Nancey, Stephane; Petryka, Robert; Rydzewska, Grazyna; Schnabel, Robert; Seidler, Ursula; Neurath, Markus F.

    2016-01-01

    Background and Aims: Toll-like receptors [TLRs] are potential drug targets for immunomodulation. We determined the safety and efficacy of the TLR-9 agonist DNA-based immunomodulatory sequence 0150 [DIMS0150] in ulcerative colitis [UC] patients refractory to standard therapy. Methods: In this randomized, double-blind, placebo-controlled trial, 131 patients with moderate-to-severe active UC were randomized to receive two single doses of the oligonucleotide DIMS0150 [30 mg] or placebo administered topically during lower GI endoscopy at baseline and Week 4. The primary endpoint was clinical remission, defined as Clinical Activity Index [CAI] ≤4, at Week 12. Secondary endpoints included mucosal healing and symptomatic remission of key patient-reported outcomes [absence of blood in stool and weekly stool frequency <35]. Results: There was no statistical significant difference between the groups in the induction of clinical remission at Week 12, with 44.4% in the DIMS0150 group vs. 46.5% in the placebo group. However, the proportion of patients who achieved symptomatic remission was 32.1% in the DIMS0150 group vs. 14.0% in the placebo group at Week 4 [p = 0.020], and 44.4% vs. 27.9% at Week 8 [p = 0.061]. More patients on DIMS0150 compared with those on placebo had mucosal healing [34.6% vs. 18.6%; p = 0.09] and histological improvement regarding the Geboes score [30.9% vs. 9.3%; p = 0.0073] at Week 4. Significantly more patients on DIMS0150 were in clinical remission with mucosal healing at Week 4: 21% vs. 4.7% in the placebo group [p = 0.02]. DIMS0150 was well tolerated, and no safety signals compared with placebo were evident. Conclusions: Therapy with the topically applied TLR-9 agonist DIMS0150 is a promising and well-tolerated novel therapeutic option for treatment-refractory, chronic active UC patients, warranting further clinical trials. PMID:27208386

  17. The relative contribution of affinity and efficacy to agonist activity: organ selectivity of noradrenaline and oxymetazoline with reference to the classification of drug receptors.

    PubMed

    Kenakin, T P

    1984-01-01

    Oxymetazoline demonstrated a pronounced organ selectivity, when compared to noradrenaline, by being a potent full agonist in rat anococcygeus muscle and a partial agonist in rat vas deferens. Responses of rat anococcygeus muscles to oxymetazoline were relatively more sensitive to antagonism by phenoxybenzamine (Pbz) an alkylating alpha-adrenoceptor antagonist. Therefore, although oxymetazoline was more potent than noradrenaline in this tissue, after Pbz (0.3 microM for 10 min), the responses to oxymetazoline were completely inhibited while those to noradrenaline were only partially inhibited. Schild analysis with phentolamine, corynanthine, prazosin and yohimbine indicated no alpha-adrenoceptor heterogeneity within the rat anococcygeus muscle or between this tissue and rat vas deferens. Measurement of agonist Kd values and Schild analysis of oxymetazoline antagonism of responses to noradrenaline (after alkylation) confirmed the homogeneity of alpha-adrenoceptors with respect to these two agonists. The above profiles of activity would be predicted if oxymetazoline had a higher affinity but lower efficacy than noradrenaline. Experimentally this was confirmed when it was found that oxymetazoline had 5 times the affinity but 0.2 to 0.3 times the efficacy of noradrenaline. These results serve as a caveat to the use of selective receptor desensitization and/or selective receptor alkylation (or protection from alkylation) as means of differentiating drug receptors. Theoretical modelling and these experimental results indicate that high affinity/low efficacy agonists are much more sensitive to receptor coupling. The implications for therapeutic selectivity could be important in that high affinity/low efficacy agonists theoretically have a much greater potential for organ selectivity.

  18. Isolated neuronal growth cones from developing rat forebrain possess adenylate cyclase activity which can be augmented by various receptor agonists.

    PubMed

    Lockerbie, R O; Hervé, D; Blanc, G; Tassin, J P; Glowinski, J

    1988-01-01

    Isolated neuronal growth cones from neonatal rat forebrain were found to contain a high specific activity of adenylate cyclase (61 pmol cyclic AMP/min/mg protein) compared to the pelleted starting homogenate (5 pmol cyclic AMP/min/mg protein). Forskolin at 10(-4) M increased adenylate cyclase activity in both the pelleted homogenate and growth cone fraction by 70 and 217 pmol cyclic AMP/min/mg protein, respectively, over basal levels. The incremental effect of forskolin was 3-fold greater in the growth cone fraction than in the pelleted homogenate. However, relative to basal levels in each of the two fractions, forskolin increased adenylate cyclase activity in the growth cone fraction by only approx. 5-fold compared to 15-fold in the pelleted homogenate. Dopamine (10(-4) M), vasoactive intestinal polypeptide (10(-6) M) and isoproterenol (10(-5) M) also augmented adenylate cyclase activity in the two fractions. In the growth cone fraction, dopamine and vasoactive intestinal polypeptide produced a stimulation over basal levels by approx. 20 pmol cyclic AMP/min/mg protein while isoproterenol produced a stimulation of approx. 10 pmol cAMP/min/mg protein. The incremental effects of these receptor agonists in the growth cone fraction are approx. 5-fold greater than in the pelleted homogenate. The dopamine-sensitive adenylate cyclase activity in the growth cone fraction could be blocked by the compound SCH23390, a selective D1 receptor antagonist. At saturating concentrations, all combinations of dopamine, vasoactive intestinal polypeptide and isoproterenol were found to be completely additive on adenylate cyclase activity in the growth cone fraction.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Peroxisome-proliferator-activated receptor-{gamma} agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-03-15

    The epithelial cells of the airways are the target cells for respiratory syncytial virus (RSV) infection and the site of the majority of the inflammation associated with the disease. Recently, peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear hormone receptor superfamily, has been shown to possess anti-inflammatory properties. Therefore, we investigated the role of PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone and troglitazone) on the synthesis of RSV-induced cytokine release from RSV-infected human lung epithelial cells (A549). We observed that all PPAR{gamma} ligands inhibited dose-dependently the release of TNF-{alpha}, GM-CSF, IL-1{alpha}, IL-6 and the chemokines CXCL8 (IL-8) and CCL5 (RANTES) from RSV-infected A549 cells. Concomitantly, the PPAR{gamma} ligands diminished the cellular amount of mRNA encoding for IL-6, CXCL8 and CCL5 and the RSV-induced binding activity of the transcription factors NF-{kappa}B (p65/p50) and AP-1 (c-fos), respectively. Our data presented herein suggest a potential application of PPAR{gamma} ligands in the anti-inflammatory treatment of RSV infection.

  20. Characterization of the weak estrogen receptor α agonistic activity of exemestane

    PubMed Central

    Masri, Selma; Lui, Ki; Phung, Sheryl; Ye, Jingjing; Zhou, Dujin; Wang, Xin; Chen, Shiuan

    2012-01-01

    Third generation aromatase inhibitors (AI) have shown good clinical efficacy in comparison to the anti-estrogen tamoxifen. The steroidal AI, exemestane (EXE) has previously been shown to act as an androgen, but this report demonstrates the estrogen-like activity of EXE. Based on genome-wide microarray analysis, high correlation was seen between EXE-Only (EXE O, hormone-free) and hormone-containing AI-resistant lines. In addition, the top regulated genes in the EXE O lines were mostly estrogen-responsive genes. This estrogen-like activity of EXE was further validated using estrogen receptor (ER) activity assays, where in comparison to 17β-estradiol (E2), EXE was able to induce ER activity, though at a higher concentration. Also, this EXE-mediated ER activity was blocked by the ER antagonist ICI as well as the ERα-specific antagonist methyl-piperidino-pyrazole (MPP). Similarly, EXE was able to induce proliferation of breast cancer cell lines, MCF-7 and MCF-7aro, as well as activate transcription of known estrogen-responsive genes, i.e., PGR, pS2 and AREG. These results suggest that EXE does have weak estrogen-like activity. PMID:18677558

  1. Treatment with PPARα Agonist Clofibrate Inhibits the Transcription and Activation of SREBPs and Reduces Triglyceride and Cholesterol Levels in Liver of Broiler Chickens

    PubMed Central

    Zhang, Lijun; Li, Chunyan; Wang, Fang; Zhou, Shenghua; Shangguan, Mingjun; Xue, Lina; Zhang, Bianying; Ding, Fuxiang; Hui, Dequan; Liang, Aihua; He, Dongchang

    2015-01-01

    PPARα agonist clofibrate reduces cholesterol and fatty acid concentrations in rodent liver by an inhibition of SREBP-dependent gene expression. In present study we investigated the regulation mechanisms of the triglyceride- and cholesterol-lowering effect of the PPARα agonist clofibrate in broiler chickens. We observed that PPARα agonist clofibrate decreases the mRNA and protein levels of LXRα and the mRNA and both precursor and nuclear protein levels of SREBP1 and SREBP2 as well as the mRNA levels of the SREBP1 (FASN and GPAM) and SREBP2 (HMGCR and LDLR) target genes in the liver of treated broiler chickens compared to control group, whereas the mRNA level of INSIG2, which inhibits SREBP activation, was increased in the liver of treated broiler chickens compared to control group. Taken together, the effects of PPARα agonist clofibrate on lipid metabolism in liver of broiler chickens involve inhibiting transcription and activation of SREBPs and SREBP-dependent lipogenic and cholesterologenic gene expression, thereby resulting in a reduction of the triglyceride and cholesterol levels in liver of broiler chickens. PMID:26693219

  2. E297G mutated bile salt export pump (BSEP) function enhancers derived from GW4064: structural development study and separation from farnesoid X receptor-agonistic activity.

    PubMed

    Misawa, Takashi; Hayashi, Hisamitsu; Makishima, Makoto; Sugiyama, Yuichi; Hashimoto, Yuichi

    2012-06-15

    Bile salt export pump (BSEP) is a member of the ATP-binding cassette transmembrane transporter family and mediates biliary excretion of bile acids from hepatocytes. Several BSEP mutants, including Glu297Gly (E297G) and Asp482Gly (D482G), cause progressive familial intrahepatic cholestasis type 2. We previously found that compounds based on GW4064, a representative farnesoid X receptor (FXR) agonist, enhanced E297G BSEP transport activity. Here, we conducted a structure-activity relationship analysis of GW4064 derivatives aimed at separating E297G BSEP-function-promoting activity and FXR-agonistic activity. Among newly synthesized reversed-amide derivatives of previously reported GW4064 analogs 2a-2f, we identified 7c as a selective BSEP function enhancer.

  3. Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: Effects on mitochondrial functions and differentiation.

    PubMed

    De Nuccio, C; Bernardo, A; Cruciani, C; De Simone, R; Visentin, S; Minghetti, L

    2015-09-01

    The activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) is known to exert anti-inflammatory and neuroprotective effects and PPAR-γ agonists are considered potential therapeutic agents in brain diseases including those affecting myelin. In demyelinating diseases such as multiple sclerosis (MS), inflammation is one of the causes of myelin and axonal damage. Oligodendrocyte (OL) differentiation is highly dependent on mitochondria, which are major targets of inflammatory insult. Here we show that PPAR-γ agonists protect OL progenitors against the maturational arrest induced by the inflammatory cytokine TNF-α by affecting mitochondrial functions. We demonstrate that the inhibition of OL differentiation by TNF-α is associated with i) increased mitochondrial superoxide production; ii) decreased mitochondrial membrane potential (mMP); and iii) decreased ADP-induced Ca(2+) oscillations, which we previously showed to be dependent on efficient mitochondria. The TNF-α effects were comparable to those of the mitochondrial toxin rotenone, further suggesting that TNF-α damage is mediated by mitochondrial function impairment. PPAR-γ agonists protected OL progenitors against the inhibitory activities of both TNF-α and rotenone on mMP, mitochondrial ROS production, Ca(2+) oscillations and OL differentiation. Finally, the PPAR-γ agonist pioglitazone increased the expression of PGC-1α (a mitochondrial biogenesis master regulator), UCP2 (a mitochondrial protein known to reduce ROS production), and cytochrome oxidase subunit COX1. These findings confirm the central role of mitochondria in OL differentiation and point to mitochondria as major targets of PPAR-γ agonist protection against TNF-α damage. PMID:26210873

  4. Structure-Activity Relationships in Toll-like Receptor-2 agonistic Diacylthioglycerol Lipopeptides

    PubMed Central

    Wu, Wenyan; Li, Rongti; Malladi, Subbalakshmi S.; Warshakoon, Hemamali J.; Kimbrell, Matthew R.; Amolins, Michael W.; Ukani, Rehman; Datta, Apurba; David, Sunil A.

    2010-01-01

    The N-termini of bacterial lipoproteins are acylated with a (S)-(2,3-bisacyloxypropyl)cysteinyl residue. Lipopeptides derived from lipoproteins activate innate immune responses by engaging Toll-like receptor 2 (TLR2), and are highly immunostimulatory and yet without apparent toxicity in animal models. The lipopeptides may therefore be useful as potential immunotherapeutic agents. Previous structure-activity relationships in such lipopeptides have largely been obtained using murine cells and it is now clear that significant species-specific differences exist between human and murine TLR responses. We have examined in detail the role of the highly conserved Cys residue as well as the geometry and stereochemistry of the Cys-Ser dipeptide unit. (R)-diacylthioglycerol analogues are maximally active in reporter gene assays using human TLR2. The Cys-Ser dipeptide unit represents the minimal part-structure, but its stereochemistry was found not to be a critical determinant of activity. The thioether bridge between the diacyl and dipeptide units is crucial, and replacement by an oxoether bridge results in a dramatic decrease in activity. PMID:20302301

  5. Shutoff and agonist-triggered internalization of protease-activated receptor 1 can be separated by mutation of putative phosphorylation sites in the cytoplasmic tail.

    PubMed

    Hammes, S R; Shapiro, M J; Coughlin, S R

    1999-07-20

    The thrombin receptor PAR1 becomes rapidly phosphorylated upon activation by either thrombin or exogenous SFLLRN agonist peptide. Substitution of alanine for all serine and threonine residues in the receptor's cytoplasmic carboxyl-terminal tail ablated phosphorylation and yielded a receptor defective in both shutoff and agonist-triggered internalization. These observations suggested that activation-dependent phosphorylation of PAR1's cytoplasmic tail is required for both shutoff and agonist-triggered internalization. To identify the phosphorylation site(s) that are necessary for these functions, we generated three mutant receptors in which alanine was substituted for serine and threonine residues in the amino-terminal, middle, and carboxyl-terminal thirds of PAR1's cytoplasmic tail. When stably expressed in fibroblasts, all three mutated receptors were rapidly phosphorylated in response to agonist, while a mutant in which all serines and threonines in the cytoplasmic tail were converted to alanines was not. This result suggests that phosphorylation can occur at multiple sites in PAR1's cytoplasmic tail. Alanine substitutions in the N-terminal and C-terminal portions of the tail had no effect on either receptor shutoff or agonist-triggered internalization. By contrast, alanine substitutions in the "middle" serine cluster between Ser(391) and Ser(406) yielded a receptor with considerably slower shutoff of signaling after thrombin activation than the wild type. Surprisingly, this same mutant was indistinguishable from the wild type in agonist-triggered internalization and degradation. Overexpression of G protein-coupled receptor kinase 2 (GRK2) and GRK3 "suppressed" the shutoff defect of the S --> A (391-406) mutant, consistent with this defect being due to altered receptor phosphorylation. These results suggest that specific phosphorylation sites are required for rapid receptor shutoff, but phosphorylation at multiple alternative sites is sufficient for agonist

  6. Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway

    PubMed Central

    Copik, Alicja. J.; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J.; Fitch, Bill; Raymond, John R.; Ford, Anthony P. D. W.; Button, Donald; Milla, Marcos E.

    2015-01-01

    The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK

  7. Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.

    ERIC Educational Resources Information Center

    Engelhorn, Richard

    1983-01-01

    Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)

  8. Biostable agonists that match or exceed activity of native insect kinins on recombinant arthropod GPCRs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multifunctional arthropod insect kinins share the evolutionarily conserved C-terminal pentapeptide motif Phe-X1-X2-Trp-Gly-NH2, where X1 = His, Asn, Ser, or Tyr and X2 = Ser, Pro, or Ala. Insect kinins regulate diuresis in many species of insects. Compounds with similar biological activity cou...

  9. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity.

    PubMed

    Thomas, Lawrence J; He, Li-Zhen; Marsh, Henry; Keler, Tibor

    2014-01-01

    CD27 is an important co-stimulatory receptor of T cells that can potentially be exploited for immunotherapy. We developed a human IgG1 antibody that targets human CD27, and demonstrated its immunostimulatory and antineoplastic activity in various preclinical models. Currently, the antibody (1F5, CDX-1127) is being tested in patients affected by advanced malignancies. PMID:24605266

  10. A human intervention study with foods containing natural Ah-receptor agonists does not significantly show AhR-mediated effects as measured in blood cells and urine.

    PubMed

    de Waard, Pim W J; Peijnenburg, Ad A C M; Baykus, Hakan; Aarts, Jac M M J G; Hoogenboom, Ron L A P; van Schooten, Frederik J; de Kok, Theo M C M

    2008-10-22

    Binding and activation of the aryl hydrocarbon receptor (AhR) is thought to be an essential step in the toxicity of the environmental pollutants dioxins and dioxin-like PCBs. However, also a number of natural compounds, referred to as NAhRAs (natural Ah-receptor agonists), which are present in, for example, fruits and vegetables, can bind and activate this receptor. To study their potential effects in humans, we first investigated the effect of the prototypical AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gene expression in ex vivo exposed freshly isolated human lymphocytes, and compared the resulting gene expression profile with those caused by the well-known NAhRA indolo[3,2-b]carbazole (ICZ), originating from cruciferous vegetables, and by a hexane extract of NAhRA-containing grapefruit juice (GJE). Only ICZ induced a gene expression profile similar to TCDD in the lymphocytes, and both significantly up-regulated CYP1B1 and TIPARP (TCDD-inducible poly (ADP-ribose) polymerase) mRNA. Next, we performed a human intervention study with NAhRA-containing cruciferous vegetables and grapefruit juice. The expression of the prototypical AhR-responsive genes CYP1A1, CYP1B1 and NQO1 in whole blood cells and in freshly isolated lymphocytes was not significantly affected. Also enzyme activities of CYP1A2, CYP2A6, N-acetyltransferase 2 (NAT2) and xanthine oxidase (XO), as judged by caffeine metabolites in urine, were unaffected, except for a small down-regulation of NAT2 activity by grapefruit juice. Examination of blood plasma with DR CALUX showed a 12% increased AhR agonist activity 3 and 24 h after consumption of cruciferous vegetables, but did not show a significant effect of grapefruit juice consumption. We conclude that intake of NAhRAs from food may result in minor AhR-related effects measurable in human blood and urine. PMID:18762178

  11. [Peptide-agonist of protease-activated receptor (PAR 1), similar to activated protein C, promotes proliferation in keratinocytes and wound healing of epithelial layer].

    PubMed

    Kiseleva, E V; Sidorova, M V; Gorbacheva, L R; Strukova, S M

    2014-01-01

    Activated protein C (APC) is serine protease hemostasis, independent of its anticoagulant activity, exhibits anti-inflammatory and anti-apoptotic properties that determine the possibility of the protective effects of APC in different diseases, including sepsis and chronic wound healing. APC, binding of endothelial protein C receptor (EPCR) and specifically cleaving PAR1 receptor and releasing peptide agonist PAR1 stabilizes not only endothelial cells, but also many others, including epidermal keratinocytes of the skin. We develop the hypothesis that the cytoprotective effect of APC on the cells, involved in wound healing, seem to imitate peptide - analogous of PAR1 "tethered ligand" that activate PAR1. In our work, we synthesized a peptide (AP9) - analogue of PAR1 tethered ligand, released by APC, and firstly showed that peptide AP9 (0.1-10 мM), like to APC (0.01-100 nM), stimulates the proliferative activity of human primary keratinocytes. Using a model of the formation of epithelial wounds in vitro we found that peptide AP9, as well as protease APC, accelerates wound healing. Using specific antibodies to the receptor PAR1 and EPCR was studied the receptor mechanism of AP9 action in wound healing compared with the action of APС. The necessity of both receptors - PAR1 and EPСR, for proliferative activity of agonists was revealed. Identified in our work imitation by peptide AP9 - PAR1 ligand, APC acts on keratinocytes suggests the possibility of using a peptide AP9 to stimulate tissue repair.

  12. The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis.

    PubMed

    Cheng, Huawei; Shang, Yuping; Jiang, Ling; Shi, Tian-lu; Wang, Lin

    2016-01-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disease and there is no effective therapy for it. Peroxisome proliferators activated receptor-gamma (PPAR-γ) agonists is a promising therapeutic approach for AD and has been widely studied recently, but no consensus was available up to now. To clarify this point, a meta-analysis was performed. We searched MEDLINE, EMBASE, Cochrane Central database, PUBMED, Springer Link database, SDOS database, CBM, CNKI and Wan fang database by December 2014. Standardized mean difference (SMD), relative risk (RR) and 95% confidence interval (CI) were calculated to assess the strength of the novel therapeutics for AD and mild-to-moderate AD. A total of nine studies comprising 1314 patients and 1311 controls were included in the final meta-analysis. We found the effect of PPAR-γ agonists on Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-cog) scores by using STATA software. There was no evidence for obvious publication bias in the overall meta-analysis. There is insufficient evidence of statistically incognition of AD and mild-to-moderate AD patients have been improved who were treated with PPAR-γ agonists in our research. However, PPAR-γ agonists may be a promising therapeutic approach in future, especially pioglitazone, with large-scale randomized controlled trials to confirm.

  13. Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation.

    PubMed

    Labrecque, J; Deschênes, J; McNicoll, N; De Léan, A

    2001-03-16

    The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular domain with a ligand binding site, a transmembrane-spanning domain, a kinase homology domain, and a guanylyl cyclase domain. In response to agonists (atrial natriuretic peptide (ANP) and brain natriuretic peptide), the kinase homology domain-mediated guanylate cyclase repression is removed, which allows the production of cyclic GMP. Previous work from our laboratory strongly indicated that agonists are exerting their effects through the induction of a juxtamembrane dimeric contact. However, a direct demonstration of this mechanism remains to be provided. As a tool, we are now using the properties of a new mutation, D435C. It introduces a cysteine at a position in NPR-A corresponding to a supplementary cysteine found in NPR-C6, another receptor of this family (a disulfide-linked dimer). Although this D435C mutation only leads to trace levels of NPR-A disulfide-linked dimer at basal state, covalent dimerization can be induced by a treatment with rat ANP or with other agonists. The NPR-A(D435C) mutant has not been subjected to significant structural alterations, since it shares with the wild type receptor a similar dose-response pattern of cellular guanylyl cyclase activation. However, a persistent activation accompanies NPR-A(D435C) dimer formation after the removal of the inducer agonist. On the other hand, a construction where the intracellular domain of NPR-A(D435C) has been truncated (DeltaKC(D435C)) displays a spontaneous and complete covalent dimerization. In addition, the elimination of the intracellular domain in wild type DeltaKC and DeltaKC(D435C) is associated with an increase of agonist binding affinity, this effect being more pronounced with the weak agonist pBNP. Also, a D435C secreted extracellular domain remains unlinked even after incubation with rat ANP. In summary, these results demonstrate, in a dynamic fashion, the agonistic induction of a dimeric contact in the

  14. Agonistic induction of a covalent dimer in a mutant of natriuretic peptide receptor-A documents a juxtamembrane interaction that accompanies receptor activation.

    PubMed

    Labrecque, J; Deschênes, J; McNicoll, N; De Léan, A

    2001-03-16

    The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular domain with a ligand binding site, a transmembrane-spanning domain, a kinase homology domain, and a guanylyl cyclase domain. In response to agonists (atrial natriuretic peptide (ANP) and brain natriuretic peptide), the kinase homology domain-mediated guanylate cyclase repression is removed, which allows the production of cyclic GMP. Previous work from our laboratory strongly indicated that agonists are exerting their effects through the induction of a juxtamembrane dimeric contact. However, a direct demonstration of this mechanism remains to be provided. As a tool, we are now using the properties of a new mutation, D435C. It introduces a cysteine at a position in NPR-A corresponding to a supplementary cysteine found in NPR-C6, another receptor of this family (a disulfide-linked dimer). Although this D435C mutation only leads to trace levels of NPR-A disulfide-linked dimer at basal state, covalent dimerization can be induced by a treatment with rat ANP or with other agonists. The NPR-A(D435C) mutant has not been subjected to significant structural alterations, since it shares with the wild type receptor a similar dose-response pattern of cellular guanylyl cyclase activation. However, a persistent activation accompanies NPR-A(D435C) dimer formation after the removal of the inducer agonist. On the other hand, a construction where the intracellular domain of NPR-A(D435C) has been truncated (DeltaKC(D435C)) displays a spontaneous and complete covalent dimerization. In addition, the elimination of the intracellular domain in wild type DeltaKC and DeltaKC(D435C) is associated with an increase of agonist binding affinity, this effect being more pronounced with the weak agonist pBNP. Also, a D435C secreted extracellular domain remains unlinked even after incubation with rat ANP. In summary, these results demonstrate, in a dynamic fashion, the agonistic induction of a dimeric contact in the

  15. TGF-β-activated Kinase 1 (Tak1) Mediates Agonist-induced Smad Activation and Linker Region Phosphorylation in Embryonic Craniofacial Neural Crest-derived Cells*

    PubMed Central

    Yumoto, Kenji; Thomas, Penny S.; Lane, Jamie; Matsuzaki, Kouichi; Inagaki, Maiko; Ninomiya-Tsuji, Jun; Scott, Gregory J.; Ray, Manas K.; Ishii, Mamoru; Maxson, Robert; Mishina, Yuji; Kaartinen, Vesa

    2013-01-01

    Although the importance of TGF-β superfamily signaling in craniofacial growth and patterning is well established, the precise details of its signaling mechanisms are still poorly understood. This is in part because of the concentration of studies on the role of the Smad-dependent (so-called “canonical”) signaling pathways relative to the Smad-independent ones in many biological processes. Here, we have addressed the role of TGF-β-activated kinase 1 (Tak1, Map3k7), one of the key mediators of Smad-independent (noncanonical) TGF-β superfamily signaling in craniofacial development, by deleting Tak1 specifically in the neural crest lineage. Tak1-deficient mutants display a round skull, hypoplastic maxilla and mandible, and cleft palate resulting from a failure of palatal shelves to appropriately elevate and fuse. Our studies show that in neural crest-derived craniofacial ecto-mesenchymal cells, Tak1 is not only required for TGF-β- and bone morphogenetic protein-induced p38 Mapk activation but also plays a role in agonist-induced C-terminal and linker region phosphorylation of the receptor-mediated R-Smads. Specifically, we demonstrate that the agonist-induced linker region phosphorylation of Smad2 at Thr-220, which has been shown to be critical for full transcriptional activity of Smad2, is dependent on Tak1 activity and that in palatal mesenchymal cells TGFβRI and Tak1 kinases mediate both overlapping and distinct TGF-β2-induced transcriptional responses. To summarize, our results suggest that in neural crest-derived ecto-mesenchymal cells, Tak1 provides a critical point of intersection in a complex dialogue between the canonical and noncanonical arms of TGF-β superfamily signaling required for normal craniofacial development. PMID:23546880

  16. Circumventing seizure activity in a series of G protein coupled receptor 119 (GPR119) agonists.

    PubMed

    Scott, James S; Bowker, Suzanne S; Brocklehurst, Katy J; Brown, Hayley S; Clarke, David S; Easter, Alison; Ertan, Anne; Goldberg, Kristin; Hudson, Julian A; Kavanagh, Stefan; Laber, David; Leach, Andrew G; MacFaul, Philip A; Martin, Elizabeth A; McKerrecher, Darren; Schofield, Paul; Svensson, Per H; Teague, Joanne

    2014-11-13

    Agonism of GPR119 is viewed as a potential therapeutic approach for the treatment of type II diabetes and other elements of metabolic syndrome. During progression of a previously disclosed candidate 1 through mice toxicity studies, we observed tonic-clonic convulsions in several mice at high doses. An in vitro hippocampal brain slice assay was used to assess the seizure liability of subsequent compounds, leading to the identification of an aryl sulfone as a replacement for the 3-cyano pyridyl group. Subsequent optimization to improve the overall profile, specifically with regard to hERG activity, led to alkyl sulfone 16. This compound did not cause tonic-clonic convulsions in mice, had a good pharmacokinetic profile, and displayed in vivo efficacy in murine models. Importantly, it was shown to be effective in wild-type (WT) but not GPR119 knockout (KO) animals, consistent with the pharmacology observed being due to agonism of GPR119.

  17. Amplified inhibition of stellate cell activation pathways by PPAR-γ, RAR and RXR agonists.

    PubMed

    Sharvit, Efrat; Abramovitch, Shirley; Reif, Shimon; Bruck, Rafael

    2013-01-01

    Peroxisome proliferator activator receptors (PPAR) ligands such as 15-Δ12,13-prostaglandin L(2) [PJ] and all trans retinoic acid (ATRA) have been shown to inhibit the development of liver fibrosis. The role of ligands of retinoic X receptor (RXR) and its ligand, 9-cis, is less clear. The purpose of this study was to investigate the effects of combined treatment of the three ligends, PJ, ATRA and 9-cis, on key events during liver fibrosis in rat primary hepatic stellate cells (HSCs). We found that the anti-proliferative effect of the combined treatment of PJ, ATRA and 9-cis on HSCs was additive. Further experiments revealed that this inhibition was due to cell cycle arrest at the G0/G1 phase as demonstrated by FACS analysis. In addition, the combined treatment reduced cyclin D1 expression and increased p21 and p27 protein levels. Furthermore, we found that the three ligands down regulated the phosphorylation of mTOR and p70(S6K). The activation of HSCs was also inhibited by the three ligands as shown by inhibition of vitamin A lipid droplets depletion from HSCs. Studies using real time PCR and western blot analysis showed marked inhibition of collagen Iα1 and αSMA by the combination of the three ligands. These findings suggest that the combined use of PJ, ATRA and 9-cis causes inhibition of cell proliferation by cell cycle arrest and down-regulation of fibrotic markers to a greater extent compared to each of the ligands alone. PMID:24098526

  18. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish.

    PubMed

    Jönsson, Maria E; Kubota, Akira; Timme-Laragy, Alicia R; Woodin, Bruce; Stegeman, John J

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR(2)) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC(50) values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2nM PCB126 approximately 30% of eleutheroembryos(3) failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells.

  19. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes.

    PubMed

    Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Wabitsch, Martin; Storelli, Carlo; Wright, Matthew; De Caterina, Raffaele

    2016-05-01

    Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism. PMID:26976796

  20. In vitro and in vivo characterization of A-796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models

    PubMed Central

    Yao, B B; Hsieh, G C; Frost, J M; Fan, Y; Garrison, T R; Daza, A V; Grayson, G K; Zhu, C Z; Pai, M; Chandran, P; Salyers, A K; Wensink, E J; Honore, P; Sullivan, J P; Dart, M J; Meyer, M D

    2007-01-01

    Background and purpose: Selective cannabinoid CB2 receptor agonists have demonstrated analgesic activity across multiple preclinical pain models. AM1241 is an indole derivative that exhibits high affinity and selectivity for the CB2 binding site and broad spectrum analgesic activity in rodent models, but is not an antagonist of CB2 in vitro functional assays. Additionally, its analgesic effects are μ-opioid receptor-dependent. Herein, we describe the in vitro and in vivo pharmacological properties of A-796260, a novel CB2 agonist. Experimental approach: A-796260 was characterized in radioligand binding and in vitro functional assays at rat and human CB1 and CB2 receptors. The behavioural profile of A-796260 was assessed in models of inflammatory, post-operative, neuropathic, and osteoarthritic (OA) pain, as well as its effects on motor activity. The receptor specificity was confirmed using selective CB1, CB2 and μ-opioid receptor antagonists. Key results: A-796260 exhibited high affinity and agonist efficacy at human and rat CB2 receptors, and was selective for the CB2 vs CB1 subtype. Efficacy in models of inflammatory, post-operative, neuropathic and OA pain was demonstrated, and these activities were selectively blocked by CB2, but not CB1 or μ-opioid receptor-selective antagonists. Efficacy was achieved at doses that had no significant effects on motor activity. Conclusions and implications: These results further confirm the therapeutic potential of CB2 receptor-selective agonists for the treatment of pain. In addition, they demonstrate that A-796260 may be a useful new pharmacological compound for further studying CB2 receptor pharmacology and for evaluating its role in the modulation of pain. PMID:17994110

  1. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

    PubMed

    Jensen, Dane D; Zhao, Peishen; Jimenez-Vargas, Nestor N; Lieu, TinaMarie; Gerges, Marina; Yeatman, Holly R; Canals, Meritxell; Vanner, Stephen J; Poole, Daniel P; Bunnett, Nigel W

    2016-05-20

    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases. PMID:27030010

  2. Peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats.

    PubMed

    Buckingham, R E; Al-Barazanji, K A; Toseland, C D; Slaughter, M; Connor, S C; West, A; Bond, B; Turner, N C; Clapham, J C

    1998-08-01

    Rosiglitazone (BRL 49653), a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist and potent insulin action-enhancing agent, was given in the diet (50 micromol/kg of diet) to male Zucker rats ages 6-7 weeks for 9 months (prevention group). In this treatment mode, rosiglitazone prolonged the time to onset of proteinuria from 3 to 6 months and markedly reduced the rate of its subsequent progression. Progression was also retarded when treatment was commenced (intervention group) after proteinuria had become established (4 months; ages 24-25 weeks). In either treatment mode, rosiglitazone normalized urinary N-acetyl-beta-D-glucosaminidase activity, a marker for renal proximal tubular damage, and ameliorated the rise in systolic blood pressure that occurred coincidentally with the development of proteinuria in Zucker fatty control rats. The renal protective action of rosiglitazone was verified morphologically. Thus in the prevention group there was an absence of the various indexes of chronic nephropathy that were prominent in the Zucker fatty control group, namely, glomerulosclerosis, dilated tubules containing proteinaceous casts, a loss of functional microvilli on the tubular epithelium, and varying degrees of chronic interstitial nephritis. An intermediate pathology was observed in the intervention group. Also, pancreatic islet hyperplasia, ultrastructural evidence of beta-cell work hypertrophy, and derangement of alpha-cell distribution within the islet were prominent features of Zucker fatty control rats, but these adaptive changes were ameliorated (intervention group) or prevented (prevention group) by rosiglitazone treatment. These data demonstrate that treatment of Zucker fatty rats with rosiglitazone produced substantial protection over a prolonged period against the development and progression of renal injury and the adaptive changes to pancreatic islet morphology caused by sustained hyperinsulinemia. PMID:9703335

  3. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma.

    PubMed

    Kamath, Arun T; Sheasby, Christopher E; Tough, David F

    2005-01-15

    Recognition of conserved features of infectious agents by innate pathogen receptors plays an important role in initiating the adaptive immune response. We have investigated early changes occurring among T cells after injection of TLR agonists into mice. Widespread, transient phenotypic activation of both naive and memory T cells was observed rapidly after injection of molecules acting through TLR3, -4, -7, and -9, but not TLR2. T cell activation was shown to be mediated by a combination of IFN-alphabeta, secreted by dendritic cells (DCs), and IFN-gamma, secreted by NK cells; notably, IFN-gamma-secreting NK cells expressed CD11c and copurified with DCs. Production of IFN-gamma by NK cells could be stimulated by DCs from TLR agonist-injected mice, and although soluble factors secreted by LPS-stimulated DCs were sufficient to induce IFN-gamma, maximal IFN-gamma production required both direct contact of NK cells with DCs and DC-secreted cytokines. In vitro, IFN-alphabeta, IL-18, and IL-12 all contributed to DC stimulation of NK cell IFN-gamma, whereas IFN-alphabeta was shown to be important for induction of T cell bystander activation and NK cell IFN-gamma production in vivo. The results delineate a pathway involving innate immune mediators through which TLR agonists trigger bystander activation of T cells. PMID:15634897

  4. Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration

    SciTech Connect

    Nadanaciva, Sashi; Dykens, James A.; Bernal, Autumn; Capaldi, Roderick A.; Will, Yvonne

    2007-09-15

    Mitochondrial impairment is increasingly implicated in the etiology of toxicity caused by some thiazolidinediones, fibrates, and statins. We examined the effects of members of these drug classes on respiration of isolated rat liver mitochondria using a phosphorescent oxygen sensitive probe and on the activity of individual oxidative phosphorylation (OXPHOS) complexes using a recently developed immunocapture technique. Of the six thiazolidinediones examined, ciglitazone, troglitazone, and darglitazone potently disrupted mitochondrial respiration. In accord with these data, ciglitazone and troglitazone were also potent inhibitors of Complexes II + III, IV, and V, while darglitazone predominantly inhibited Complex IV. Of the six statins evaluated, lovastatin, simvastatin, and cerivastatin impaired mitochondrial respiration the most, with simvastatin and lovastatin impairing multiple OXPHOS Complexes. Within the class of fibrates, gemfibrozil more potently impaired respiration than fenofibrate, clofibrate, or ciprofibrate. Gemfibrozil only modestly inhibited Complex I, fenofibrate inhibited Complexes I, II + III, and V, and clofibrate inhibited Complex V. Our findings with the two complementary methods indicate that (1) some members of each class impair mitochondrial respiration, whereas others have little or no effect, and (2) the rank order of mitochondrial impairment accords with clinical adverse events observed with these drugs. Since the statins are frequently co-prescribed with the fibrates or thiazolidinediones, various combinations of these three drug classes were also analyzed for their mitochondrial effects. In several cases, the combination additively uncoupled or inhibited respiration, suggesting that some combinations are more likely to yield clinically relevant drug-induced mitochondrial side effects than others.

  5. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs.

  6. Distinct properties of telmisartan on agonistic activities for peroxisome proliferator-activated receptor γ among clinically used angiotensin II receptor blockers: drug-target interaction analyses.

    PubMed

    Kakuta, Hirotoshi; Kurosaki, Eiji; Niimi, Tatsuya; Gato, Katsuhiko; Kawasaki, Yuko; Suwa, Akira; Honbou, Kazuya; Yamaguchi, Tomohiko; Okumura, Hiroyuki; Sanagi, Masanao; Tomura, Yuichi; Orita, Masaya; Yonemoto, Takako; Masuzaki, Hiroaki

    2014-04-01

    A proportion of angiotensin II type 1 receptor blockers (ARBs) improves glucose dyshomeostasis and insulin resistance in a clinical setting. Of these ARBs, telmisartan has the unique property of being a partial agonist for peroxisome proliferator-activated receptor γ (PPARγ). However, the detailed mechanism of how telmisartan acts on PPARγ and exerts its insulin-sensitizing effect is poorly understood. In this context, we investigated the agonistic activity of a variety of clinically available ARBs on PPARγ using isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) system. Based on physicochemical data, we then reevaluated the metabolically beneficial effects of telmisartan in cultured murine adipocytes. ITC and SPR assays demonstrated that telmisartan exhibited the highest affinity of the ARBs tested. Distribution coefficient and parallel artificial membrane permeability assays were used to assess lipophilicity and cell permeability, for which telmisartan exhibited the highest levels of both. We next examined the effect of each ARB on insulin-mediated glucose metabolism in 3T3-L1 preadipocytes. To investigate the impact on adipogenesis, 3T3-L1 preadipocytes were differentiated with each ARB in addition to standard inducers of differentiation for adipogenesis. Telmisartan dose-dependently facilitated adipogenesis and markedly augmented the mRNA expression of adipocyte fatty acid-binding protein (aP2), accompanied by an increase in the uptake of 2-deoxyglucose and protein expression of glucose transporter 4 (GLUT4). In contrast, other ARBs showed only marginal effects in these experiments. In accordance with its highest affinity of binding for PPARγ as well as the highest cell permeability, telmisartan superbly activates PPARγ among the ARBs tested, thereby providing a fresh avenue for treating hypertensive patients with metabolic derangement. PMID:24424487

  7. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway

    PubMed Central

    Clark, B. W.; Bone, A. J.; Di Giulio, R. T.

    2014-01-01

    Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3’,4,4’,5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable. PMID:24374617

  8. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    SciTech Connect

    Molina-Molina, José-Manuel; Amaya, Esperanza; Grimaldi, Marina; Sáenz, José-María; Real, Macarena; Fernández, Mariana F.; Balaguer, Patrick; Olea, Nicolás

    2013-10-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed.

  9. A novel class of endotoxin receptor agonists with simplified structure, toll-like receptor 4-dependent immunostimulatory action, and adjuvant activity.

    PubMed

    Hawkins, Lynn D; Ishizaka, Sally T; McGuinness, Pamela; Zhang, Huiming; Gavin, Wendy; DeCosta, Bruce; Meng, Zhaoyang; Yang, Hu; Mullarkey, Maureen; Young, Donna W; Yang, Hua; Rossignol, Daniel P; Nault, Anneliese; Rose, Jeffrey; Przetak, Melinda; Chow, Jesse C; Gusovsky, Fabian

    2002-02-01

    A series of novel, synthetic compounds containing lipids linked to a phosphate-containing acyclic backbone are shown to have similar biological properties to lipopolysaccharide (LPS). These compounds showed intrinsic agonistic properties when tested for their ability to stimulate tumor necrosis factor-alpha in human whole blood and interleukin-6 in U373 human glioblastoma cells without added LPS coreceptor CD14. The presence of the LPS antagonist E5564 completely blocked responses, suggesting that the novel compounds and LPS share a common mechanism of cell activation. Stereoselectivity of the molecules was observed in vitro; compounds with an R,R,R,R-configuration were strongly agonistic, whereas compounds with an R,S,S,R-configuration were much weaker in their activity on human whole blood and U373 cells. We also tested the effect of the compounds in cells transfected with the LPS receptor Toll-like receptor 4 (TLR4), with similar results, further supporting a shared mechanism with LPS. This was confirmed in vivo where the agonists failed to elicit cytokine responses in C3H/HeJ mice lacking TLR4 signaling. Because LPS-like molecules enhance immune responses, the compounds were mixed with tetanus toxoid and administered to mice in an immunization protocol to test for adjuvant activity. They enhanced the generation of specific antibodies against tetanus toxoid. Our results indicate that these unique compounds behave as agonists of TLR4, resulting in responses similar to those elicited by LPS. They display adjuvant activity in vivo and may be useful for the development of vaccine therapies.

  10. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation

    PubMed Central

    Wang, Jian-Da; Cao, Yu-Lan; Li, Qian; Yang, Ya-Ping; Jin, Mengmeng; Chen, Dong; Wang, Fen; Wang, Guang-Hui; Qin, Zheng-Hong; Hu, Li-Fang; Liu, Chun-Feng

    2015-01-01

    Autophagy dysfunction is implicated in the pathogenesis of Parkinson disease (PD). BECN1/Beclin 1 acts as a critical regulator of autophagy and other cellular processes; yet, little is known about the function and regulation of BECN1 in PD. In this study, we report that dopamine D2 and D3 receptor (DRD2 and DRD3) activation by pramipexole and quinpirole could enhance BECN1 transcription and promote autophagy activation in several cell lines, including PC12, MES23.5 and differentiated SH-SY5Y cells, and also in tyrosine hydroxylase positive primary midbrain neurons. Moreover, we identified a novel FOS (FBJ murine osteosarcoma viral oncogene homolog) binding sequence (5′-TGCCTCA-3′) in the rat and human Becn1/BECN1 promoter and uncovered an essential role of FOS binding in the enhancement of Becn1 transcription in PC12 cells in response to the dopamine agonist(s). In addition, we demonstrated a critical role of intracellular Ca2+ elevation, followed by the enhanced phosphorylation of CAMK4 (calcium/calmodulin-dependent protein kinase IV) and CREB (cAMP responsive element binding protein) in the increases of FOS expression and autophagy activity. More importantly, pramipexole treatment ameliorated the SNCA/α-synuclein accumulation in rotenone-treated PC12 cells that overexpress wild-type or A53T mutant SNCA by promoting autophagy flux. This effect was also demonstrated in the substantia nigra and the striatum of SNCAA53T transgenic mice. The inhibition of SNCA accumulation by pramipexole was attenuated by cotreatment with the DRD2 and DRD3 antagonists and Becn1 siRNAs. Thus, our findings suggest that DRD2 and DRD3 agonist(s) may induce autophagy activation via a BECN1-dependent pathway and have the potential to reduce SNCA accumulation in PD. PMID:26649942

  11. Activation of two sites by adenosine receptor agonists to cause relaxation in rat isolated mesenteric artery

    PubMed Central

    Prentice, D J; Payne, S L; Hourani, S M O

    1997-01-01

    /[A] curves for adenosine, CPA or R-PIA. However, in the presence of NBTI (1 μM), 8-SPT (100 μM) gave significant rightward shifts of E/[A] curves to adenosine.ZM 241385 (0.1–1 μM) produced significant rightward shifts of the high potency phase of NECA E/[A] curves (pA2=7.65±0.25 in the presence and 7.20±0.12 in the absence of endothelium), while curves to R-PIA were not significantly shifted by 1 μM ZM 241385. In the presence of NBTI E/[A] curves to adenosine were significantly rightward shifted by ZM 241385 (0.1 μM, pA2=7.50±0.16).In conclusion, the results suggest activation of A2B receptors located primarily on the smooth muscle by low concentrations of NECA and by adenosine under conditions of uptake blockade, and of another, as yet undefined site which may be intracellular, by higher concentrations of NECA, by CPA, R-PIA and adenosine under conditions where uptake is operational. PMID:9421303

  12. Gene cloning and expression analysis of AhR and CYP4 from Pinctada martensii after exposed to pyrene.

    PubMed

    Du, Junqiao; Liao, Chenghong; Zhou, Hailong; Diao, Xiaoping; Li, Yuhu; Zheng, Pengfei; Wang, Fuqiang

    2015-10-01

    Pyrene, a typical polycyclic aromatic hydrocarbon, is a common pollutant in the marine environment. Polycyclic aromatic hydrocarbons initiate cellular detoxification in an exposed organism via the activation of the aryl hydrocarbon receptor (AhR). Subsequent metabolism of these xenobiotics is mainly by the cytochrome P450 enzymes of the phase I detoxification system. Full-length complementary DNA sequences from the pearl oyster Pinctada martensii (pm) encoding AhR and cytochrome P4 were cloned. The P. martensii AhR complementary DNA sequence constitutes an open reading frame that encodes for 848 amino acids. Sequence analysis indicated PmAhR showed high similarity with its homologues of other bivalve species. The cytochrome P(CYP)4 complementary DNA sequence of P. martensii constitutes an open reading frame that encodes for 489 amino acids. Quantitative real-time analysis detected both PmAhR and PmCYP4 messenger RNA expressions in the mantle, gill, hepatapancreas and adductor muscle of P. martensii exposed to pyrene. The highest transcript-band intensities of PmAhR and PmCYP4 were observed in the gill. Temporal expression of PmAhR and PmCYP4 messenger RNAs induction was observed in gills and increased between 3 and 5 days post exposure; then returned to control level. These results suggest that messenger RNAs of PmAhR and PmCYP4 in pearl oysters might be useful parameters for monitoring marine environment pyrene pollution.

  13. Local release of pioglitazone (a peroxisome proliferator-activated receptor γ agonist) accelerates proliferation and remodeling phases of wound healing.

    PubMed

    Sakai, Shigeki; Sato, Keisuke; Tabata, Yasuhiko; Kishi, Kazuo

    2016-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily known for its anti-inflammatory and macrophage differentiation effects, as well as its ability to promote fat cell differentiation and reduce insulin resistance. Pioglitazone (Pio) is a PPARγ agonist used clinically as an anti-diabetic agent for improving insulin sensitivity in patients with diabetes. The objective of this study was to develop a drug delivery system (DDS) for the local release of Pio to promote wound healing. Pio of low aqueous solubility was water-solubilized by micelles formed from gelatin grafted with L-lactic acid oligomers, and incorporated into a biodegradable gelatin hydrogel. An 8-mm punch biopsy tool was used to prepare two skin wounds on either side of the midline of 8-week-old mice. Wounds were treated by the hydrogels with (Pio-hydrogel group) or without (control group) Pio, and the wound area were observed 1, 4, 7, and 14 days after treatment. In addition, a protein assay and immunohistological stain were performed to determine the effects of the Pio-hydrogel on inflammation and macrophage differentiation. The Pio-hydrogels promote wound healing. Moreover, Western blotting analysis demonstrated that treatment with Pio-hydrogels resulted in decreased levels of the cytokines MIP-2 and TGF-β, and increased levels of glucose-regulating adiponectin. It is concluded that Pio-incorporated hydrogels promote the proliferation and remodeling phases of wound healing, and may prove to be effective as wound dressings. PMID:26710090

  14. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation.

    PubMed

    Porcu, Giampiero; Serone, Eliseo; De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases. PMID:26658258

  15. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation

    PubMed Central

    De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases. PMID:26658258

  16. Clobetasol and Halcinonide Act as Smoothened Agonists to Promote Myelin Gene Expression and RxRγ Receptor Activation.

    PubMed

    Porcu, Giampiero; Serone, Eliseo; De Nardis, Velia; Di Giandomenico, Daniele; Lucisano, Giuseppe; Scardapane, Marco; Poma, Anna; Ragnini-Wilson, Antonella

    2015-01-01

    One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.

  17. Kinetic evidence that desensitized nAChR may promote transitions of active nAChR to desensitized states during sustained exposure to agonists in skeletal muscle.

    PubMed

    Manthey, Arthur A

    2006-06-01

    During prolonged exposure of postjunctional nicotinic acetylcholine receptors (nAChR) of skeletal muscle to acetylcholine (ACh), agonist-activated nAChR (nAChRa) gradually fall into a refractory "desensitized" state (nAChRd), which no longer supports the high-conductance channel openings characteristic of the initially active nAChRa. In the present study, the possibility was examined that nAChRd, rather than simply constituting a passive "trap" for nAChRa, may actively promote further conversions of nAChRa to nAChRd in a formally autocatalytic manner. Single-ion whole-cell voltage-clamp currents (Na+ and Li+ in separate trials) were measured using two KCl-filled capillary electrodes (5-10 MOmega) implanted at the postjunctional locus of single frog skeletal muscle fibers (Rana pipiens) equilibrated in 30 mM K+ bath media to eliminate mechanical responses. Various nAChR agonists (carbamylcholine, acetylcholine, suberyldicholine) at different concentrations were delivered focally by positive pressure microjet. It was found that the decline of postmaximal agonist-induced currents under these different conditions (driven by the growth of the subpool of nAChRd) consistently followed an autocatalytic logistic rule modified for population growth of fixed units in a planar array: [Formula: see text] (where y represents the remaining agonist-induced current at time t, A=initial maximum current, and n is a constant). Some further experimental features that might result from a self-promoting growth of nAChRd were also tested, namely, (1) the effect of increased nAChRa and (2) the effect of increased nAChRd. Increase in agonist concentration of the superfusate, by increasing the planar density of active nAChRa at the outset, should enhance the probability of autocatalytic interactions with emerging nAChRd, hence, the rate of decline of agonist-induced current, and this was a consistent finding under all conditions tested. Raising the initial level of desensitized nAChRd by

  18. Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity.

    PubMed

    Hassouna, Rim; Labarthe, Alexandra; Zizzari, Philippe; Videau, Catherine; Culler, Michael; Epelbaum, Jacques; Tolle, Virginie

    2013-01-01

    The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic

  19. Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity

    PubMed Central

    Hassouna, Rim; Labarthe, Alexandra; Zizzari, Philippe; Videau, Catherine; Culler, Michael; Epelbaum, Jacques; Tolle, Virginie

    2012-01-01

    The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic

  20. Aromatic hydrocarbons upregulate glyceraldehyde-3-phosphate dehydrogenase and induce changes in actin cytoskeleton. Role of the aryl hydrocarbon receptor (AhR).

    PubMed

    Reyes-Hernández, O D; Mejía-García, A; Sánchez-Ocampo, E M; Castro-Muñozledo, F; Hernández-Muñoz, R; Elizondo, G

    2009-12-21

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme involved in several cellular functions including glycolysis, membrane transport, microtubule assembly, DNA replication and repair, nuclear RNA export, apoptosis, and the detection of nitric oxide stress. Therefore, modifications in the regulatory ability and function of GAPDH may alter cellular homeostasis. We report here that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and beta-naphthoflavone, which are well-known ligands for the aryl hydrocarbon receptor (AhR), increase GAPDH mRNA levels in vivo and in vitro, respectively. These compounds fail to induce GAPDH transcription in an AhR-null mouse model, suggesting that the increase in GAPDH level is dependent upon AhR activation. To analyse the consequences of AhR ligands on GAPDH function, mice were treated with TCDD and the level of liver activity of GAPDH was determined. The results showed that TCDD treatment increased GAPDH activity. On the other hand, treatment of Hepa-1 cells with beta-naphthoflavone leads to an increase in microfilament density when compared to untreated cultures. Collectively, these results suggest that AhR ligands, such as polycyclic hydrocarbons, can modify GAPDH expression and, therefore, have the potential to alter the multiple functions of this enzyme.

  1. Pharmacological evidence of bradykinin regeneration from extended sequences that behave as peptidase-activated B2 receptor agonists.

    PubMed

    Charest-Morin, Xavier; Roy, Caroline; Fortin, Emile-Jacques; Bouthillier, Johanne; Marceau, François

    2014-01-01

    While bradykinin (BK) is known to be degraded by angiotensin converting enzyme (ACE), we have recently discovered that Met-Lys-BK-Ser-Ser is paradoxically activated by ACE. We designed and evaluated additional "prodrug" peptides extended around the BK sequence as potential ligands that could be locally activated by vascular or blood plasma peptidases. BK regeneration was estimated using the contractility of the human umbilical vein as model of vascular functions mediated by endogenous B2 receptors (B2Rs) and the endocytosis of the fusion protein B2R-green fluorescent protein (B2R-GFP) expressed in Human Embryonic Kidney 293 cells. Of three BK sequences extended by a C-terminal dipeptide, BK-His-Leu had the most desirable profile, exhibiting little direct affinity for the receptor but a significant one for ACE (as shown by competition of [(3)H]BK binding to B2R-GFP or of [(3)H]enalaprilat to recombinant ACE, respectively). The potency of the contractile effect of this analog on the vein was reduced 18-fold by the ACE inhibitor enalaprilat, pharmacologically evidencing BK regeneration in situ. BK-Arg, a potential substrate of arginine carboxypeptidases, had a low affinity for B2Rs and its potency as a contractile agent was reduced 15-fold by tissue treatment with an inhibitor of these enzymes, Plummer's inhibitor. B2R-GFP internalization in response to 100 nM of the extended peptides recapitulated these findings, as enalaprilat selectively inhibited the effect of BK-His-Leu and Plummer's inhibitor, that of BK-Arg. The two peptidase inhibitors did not affect BK-induced effects in either assay. The novel C-terminally extended BKs had no or very little affinity for the kinin B1 receptor (competition of [(3)H]Lys-des-Arg(9)-BK binding). The feasibility of peptidase-activated B2R agonists is illustrated by C-terminal extensions of the BK sequence.

  2. NICOTINE EFFECTS ON THE MOTOR ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    EPA Science Inventory

    Several studies in the literature have shown that exposure of mice and rats to nicotine early in development alters its effects when the rodents are subsequently challenged with nicotine. Anatoxin-a is a nicotinic agonist produced by several genera of cyanobacteria, and has caus...

  3. 2,5-Disubstituted pyrrolidine carboxylates as potent, orally active sphingosine-1-phosphate (S1P) receptor agonists.

    PubMed

    Colandrea, Vincent J; Legiec, Irene E; Huo, Pei; Yan, Lin; Hale, Jeffrey J; Mills, Sander G; Bergstrom, James; Card, Deborah; Chebret, Gary; Hajdu, Richard; Keohane, Carol Ann; Milligan, James A; Rosenbach, Mark J; Shei, Gan-Ju; Mandala, Suzanne M

    2006-06-01

    A series of 2,5-cis-disubstituted pyrrolidines were synthesized and evaluated as S1P receptor agonists. Compounds 15-21 were identified with good selectivity over S1P3 which lowered circulating lymphocytes after oral administration in mice.

  4. 75 FR 49550 - Fifth Meeting: RTCA Special Committee 219: Attitude and Heading Reference System (AHRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 219: Attitude and Heading Reference...: Notice of RTCA Special Committee 219: Attitude and Heading Reference System (AHRS). SUMMARY: The FAA is... Heading Reference System (AHRS). DATES: The meeting will be held September 14-16, 2010 from 9 a.m. to 5...

  5. OL3, a novel low-absorbed TGR5 agonist with reduced side effects, lowered blood glucose via dual actions on TGR5 activation and DPP-4 inhibition

    PubMed Central

    Ma, Shan-yao; Ning, Meng-meng; Zou, Qing-an; Feng, Ying; Ye, Yang-liang; Shen, Jian-hua; Leng, Ying

    2016-01-01

    Aim: TGR5 agonists stimulate intestinal glucagon-like peptide-1 (GLP-1) release, but systemic exposure causes unwanted side effects, such as gallbladder filling. In the present study, linagliptin, a DPP-4 inhibitor with a large molecular weight and polarity, and MN6, a previously described TGR5 agonist, were linked to produce OL3, a novel low-absorbed TGR5 agonist with reduced side-effects and dual function in lowering blood glucose by activation of TGR5 and inhibition of DPP-4. Methods: TGR5 activation was assayed in HEK293 cells stably expressing human or mouse TGR5 and a CRE-driven luciferase gene. DPP-4 inhibition was assessed based on the rate of hydrolysis of a surrogate substrate. GLP-1 secretion was measured in human enteroendocrine NCI-H716 cells. OL3 permeability was tested in Caco-2 cells. Acute glucose-lowering effects of OL3 were evaluated in ICR and diabetic ob/ob mice. Results: OL3 activated human and mouse TGR5 with an EC50 of 86.24 and 17.36 nmol/L, respectively, and stimulated GLP-1 secretion in human enteroendocrine NCI-H716 cells (3–30 μmol/L). OL3 inhibited human and mouse DPP-4 with IC50 values of 18.44 and 69.98 μmol/L, respectively. Low permeability of OL3 was observed in Caco-2 cells. In ICR mice treated orally with OL3 (150 mg/kg), the serum OL3 concentration was 101.10 ng/mL at 1 h, and decreased to 13.38 ng/mL at 5.5 h post dose, confirming the low absorption of OL3 in vivo. In ICR mice and ob/ob mice, oral administration of OL3 significantly lowered the blood glucose levels, which was a synergic effect of activating TGR5 that stimulated GLP-1 secretion in the intestine and inhibiting DPP-4 that cleaved GLP-1 in the plasma. In ICR mice, oral administration of OL3 did not cause gallbladder filling. Conclusion: OL3 is a low-absorbed TGR5 agonist that lowers blood glucose without inducing gallbladder filling. This study presents a new strategy in the development of potent TGR5 agonists in treating type 2 diabetes, which target to the

  6. Effects of artificial sweeteners on the AhR- and GR-dependent CYP1A1 expression in primary human hepatocytes and human cancer cells.

    PubMed

    Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek

    2013-12-01

    Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1.

  7. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  8. BU08073 a buprenorphine analogue with partial agonist activity at μ-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice

    PubMed Central

    Khroyan, T V; Wu, J; Polgar, W E; Cami-Kobeci, G; Fotaki, N; Husbands, S M; Toll, L

    2015-01-01

    BACKGROUND AND PURPOSE Buprenorphine is a potent analgesic with high affinity at μ, δ and κ and moderate affinity at nociceptin opioid (NOP) receptors. Nevertheless, NOP receptor activation modulates the in vivo activity of buprenorphine. Structure activity studies were conducted to design buprenorphine analogues with high affinity at each of these receptors and to characterize them in in vitro and in vivo assays. EXPERIMENTAL APPROACH Compounds were tested for binding affinity and functional activity using [35S]GTPγS binding at each receptor and a whole-cell fluorescent assay at μ receptors. BU08073 was evaluated for antinociceptive agonist and antagonist activity and for its effects on anxiety in mice. KEY RESULTS BU08073 bound with high affinity to all opioid receptors. It had virtually no efficacy at δ, κ and NOP receptors, whereas at μ receptors, BU08073 has similar efficacy as buprenorphine in both functional assays. Alone, BU08073 has anxiogenic activity and produces very little antinociception. However, BU08073 blocks morphine and U50,488-mediated antinociception. This blockade was not evident at 1 h post-treatment, but is present at 6 h and remains for up to 3–6 days. CONCLUSIONS AND IMPLICATIONS These studies provide structural requirements for synthesis of ‘universal’ opioid ligands. BU08073 had high affinity for all the opioid receptors, with moderate efficacy at μ receptors and reduced efficacy at NOP receptors, a profile suggesting potential analgesic activity. However, in vivo, BU08073 had long-lasting antagonist activity, indicating that its pharmacokinetics determined both the time course of its effects and what receptor-mediated effects were observed. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24903063

  9. Activation and inhibition of anaplastic lymphoma kinase receptor tyrosine kinase by monoclonal antibodies and absence of agonist activity of pleiotrophin.

    PubMed

    Moog-Lutz, Christel; Degoutin, Joffrey; Gouzi, Jean Y; Frobert, Yvelyne; Brunet-de Carvalho, Nicole; Bureau, Jocelyne; Créminon, Christophe; Vigny, Marc

    2005-07-15

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is transiently expressed in specific regions of the central and peripheral nervous systems, suggesting a role in its normal development and function. The nature of the cognate ligands of ALK in vertebrate is still a matter of debate. We produced a panel of monoclonal antibodies (mAbs) directed against the extracellular domain of the human receptor. Two major species of ALK (220 and 140 kDa) were identified in transfected cells, and the use of our mAbs established that the 140-kDa species results from a cleavage of the 220-kDa form. Two mAbs, in the nm range, induced the differentiation of PC12 cells transiently transfected with ALK. In human embryonic kidney 293 cells stably expressing ALK, these two mAbs strongly activated the receptor and subsequently the mitogen-activated protein kinase pathway. We further showed for the first time that activation of ALK also resulted in a specific activation of STAT3. In contrast, other mAbs presented the characteristics of blocking antibodies. Finally, in these cell systems, a mitogenic form of pleiotrophin, a proposed ligand of ALK, failed to activate this receptor. Thus, in the absence of clearly established ligand(s) in vertebrates, the availability of mAbs allowing the activation or the inhibition of the receptor will be essential for a better understanding of the biological roles of ALK.

  10. Detection and measurement of the agonistic activities of PCBs and mono-hydroxylated PCBs to the constitutive androstane receptor using a recombinant yeast assay.

    PubMed

    Kamata, Ryo; Shiraishi, Fujio; Kageyama, Shiho; Nakajima, Daisuke

    2015-10-01

    Polychlorinated biphenyls (PCBs) are thought to exert their toxicities mainly by binding to the aryl hydrocarbon receptor and by stimulating transcription of various genes, notably metabolizing enzymes including the cytochrome P450 (CYP) 1 family. However, PCBs and their metabolites could have potential to activate other nuclear receptors and subsequent events. We focused on the constitutive androstane receptor (CAR) inducing CYP2B and measured the agonistic activity of PCBs and mono-hydroxylated PCBs (OH-PCBs) to the CAR using yeast cells transduced with the human CAR and its response pathway. Twenty-nine of 34 tested PCBs and 72 of 91 OH-PCBs exhibited CAR agonistic effects. Of 41 OH-PCBs that had the same chlorination patterns as the tested PCBs, 9 had activities more than twice those of their non-hydroxylated analogs. In particular, 2',4',6'-trichlorobiphenyl-4-ol and 2,2',4',6'-tetrachlorobiphenyl-4-ol were 332- and 22-fold more potent than their analogs and were 15 times and 2.8 times, respectively, as active as a reference substance, 4-tert-octylphenol. The activities of 17 of the OH-PCBs were reduced to less than half those of their non-hydroxylated analogs. Four OH-PCBs derived from 3 active PCBs were inactive. However, a consistent relationship between hydroxyl substituent position and activity could not be discerned. Comprehensive evaluation of the toxic potential of PCBs and their hydroxylated metabolites and their concentrations in the environment are required.

  11. Anti-conflict effect of 5-HT1A agonists in rats: a new model for evaluating anxiolytic-like activity.

    PubMed

    Hascoët, M; Bourin, M; Todd, K G; Coüetoux du Tertre, A

    1994-01-01

    A new conflict procedure was developed to study the potential anti-punishment effects of 5-HT( 1A) agonists as compared to diazepam. In this paradigm, the opportunity existed for rats to choose during punished periods between immediate, punished reinforcement and delayed, non-punished reinforcement. The results confirm that, for non-sedative doses (1 mg/kg), diazepam increases the number of punished responses. Furthermore, the present paradigm seems sensitive for the detection of 5-HT(1A) activity. Buspirone, gepirone, ipsapirone, zalospirone and 8-OH-DPAT increased responding for immediate but punished reinforcement. 1-(2-pyrimidinyl)piperazine, the common metabolite of the azapirones, does not participate in their anti-conflict effect. NAN 190, a 5-HT(1A) antagonist, was shown to block the 5-HT(1A) agonists. The findings of the present study suggest that benzodiazepines and 5-HT( 1A) agonists reduce the capacity to tolerate delays in reward. Abnormality in serotonin systems may be associated with poor impulse control.

  12. Source of /sup 3/H-labeled inositol bis- and monophosphates in agonist-activated rat parotid acinar cells

    SciTech Connect

    Hughes, A.R.; Putney, J.W. Jr.

    1989-06-05

    The kinetics of (3H)inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of (3H)inositol monophosphates and (3H)inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the (3H)inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of (3H)inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of (3H)inositol phosphates.

  13. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation

    PubMed Central

    Corrada, Dario; Soshilov, Anatoly A.; Denison, Michael S.

    2016-01-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  14. Α-galactosylceramide analogs with weak agonist activity for human iNKT cells define new candidate anti-inflammatory agents.

    PubMed

    Bricard, Gabriel; Venkataswamy, Manjunatha M; Yu, Karl O A; Im, Jin S; Ndonye, Rachel M; Howell, Amy R; Veerapen, Natacha; Illarionov, Petr A; Besra, Gurdyal S; Li, Qian; Chang, Young-Tae; Porcelli, Steven A

    2010-12-17

    CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.

  15. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  16. INSIGHTS FROM AHR AND ARNT GENE KNOCKOUT STUDIES REGARDING RESPONSES TO TCDD AND REGULATION OF NORMAL EMBRYONIC DEVELOPMENT

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) and the AhR nuclear translocator (ARNT) are members of the Per-ARNT-Sim (PAS) family of proteins. The AhR binds members of the chemical family that includes dioxins, furans and coplanar polychlorinated biphenyls (PCBs). A ligand-AhR-ARNT comp...

  17. Evaluation of the number of agonist molecules needed to activate a ligand-gated channel from the current rising phase.

    PubMed Central

    Ratner, E; Tour, O; Parnas, H

    2000-01-01

    We propose a new method for calculating the number of agonist binding sites (n) in ligand-gated receptor channels from the initial phase of the current. This method is based on the fact that the relation between the current (I) and its first-time derivative (I') at the beginning of the current reflects the number of transitions that lead to channel opening. We show that, for constant agonist concentration, the above relationship at t --> 0 provides the number of steps leading to channel opening. When the agonist concentration is not constant but rather increases linearly with time, the corresponding value can be obtained using a slightly modified procedure. The analytical results were compared with computer simulations and a good match between the two was obtained. The theoretical procedure was then validated experimentally using the nicotinic receptor, because, for this receptor, the number of binding sites is well established. Indeed, the expected number of two binding sites was obtained. The method was then tested for the quisqualate-type glutamate receptor channel from the opener muscle of crayfish. The number of this receptor's binding sites is not fully resolved. Our results suggest that, for this glutamate receptor as well, two binding sites must be occupied to open the channel. PMID:10653786

  18. The dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 exerts anti-diabetic effects in db/db mice without peroxisome proliferator-activated receptor gamma-associated adverse cardiac effects.

    PubMed

    Hanf, Rémy; Millatt, Lesley J; Cariou, Bertrand; Noel, Benoit; Rigou, Géraldine; Delataille, Philippe; Daix, Valérie; Hum, Dean W; Staels, Bart

    2014-11-01

    We report here the efficacy and safety of GFT505, a novel liver-targeted peroxisome proliferator-activated receptor alpha/delta (PPARα/δ) agonist, in the db/db mouse model of diabetes. Mice were treated with vehicle, GFT505, PPARγ agonist rosiglitazone or dual-PPARα/γ agonist aleglitazar for up to 8 weeks. All compounds comparably reduced fasting glycaemia and HbA1c and improved insulin sensitivity. The glucose-lowering effect of GFT505 was associated with decreased hepatic gluconeogenesis, correlating with reduced expression of gluconeogenic genes. In contrast with the PPARγ-activating drugs, treatment with GFT505 did not affect heart weight and did not increase plasma adiponectin concentrations. This absence of cardiac effects of GFT505 was confirmed after 12 months of administration in cynomolgus monkeys, by the absence of echocardiographic and histological findings. Moreover, long-term GFT505 administration to monkeys induced no change in haematological parameters or in bone marrow differential cell counts. Compared to PPARγ-activating drugs, the dual-PPARα/δ agonist GFT505 therefore shows an improved benefit/risk ratio, treating multiple features of type 2 diabetes without inducing the cardiac side-effects associated with PPARγ activation.

  19. Ring-substituted histaprodifen analogues as partial agonists for histamine H(1) receptors: synthesis and structure-activity relationships.

    PubMed

    Elz, S; Kramer, K; Leschke, C; Schunack, W

    2000-01-01

    Thirteen racemic benzene ring-substituted analogues of histaprodifen (8a; 2-[2-(3,3-diphenylpropyl)-1H-imidazol-4-yl]ethanamine), a novel lead for potent and selective histamine H(1)-receptor agonists, have been prepared from substituted 4,4-diphenylbutyronitriles 5 via cyclization of the corresponding methyl butyrimidates 6 with 2-oxo-4-phthalimido-1-butyl acetate in liquid ammonia, followed by deprotection. Nitriles 5 were accessible by alkylation of either substituted diphenylmethanes with 3-bromopropionitrile or diethyl malonate with substituted 1-chloro-diphenylmethanes and subsequent standard reactions. The title compounds 8 displayed partial agonism on contractile H(1) receptors of the guinea-pig ileum (E(max) = 2-98% relative to histamine) and, compared with the endogenous agonist, were endowed with agonist potencies of 4-92%. The meta fluorinated (8c) and meta chlorinated (8f) analogues showed the highest relative potency in this series (95% confidence limits 85-99% and 78-102%), but did not exceed the value of the lead 8a (99-124%). Compound 8c (2-[2-[3-(3-fluorophenyl)-3-phenylpropyl]-1H-imidazol-4-yl]ethanamine ) was a partial agonist at contractile H(1) receptors of the guinea-pig aorta (relative potency 154% vs. 100% for histamine) and at relaxation-mediating endothelial H(1) receptors of the rat aorta (relative potency 556% vs. 100% for histamine) and matched with the functional behaviour of 8a. Agonism observed for each compound was sensitive to blockade by the selective H(1)-receptor antagonist mepyramine (pA(2) approximately 9 (guinea-pig) and pA(2) approximately 8 (rat aorta)). All histaprodifen analogues 8 stimulated neither histaminergic H(2)/H(3) nor cholinergic M(3) receptors. They displayed only low to moderate affinity for these sites (H(2): pD'(2) < 5; H(3)/M(3): pA(2) < 6). With regard to the substitution pattern on the benzene ring, there was no correlation between the histaprodifen series and the corresponding derivatives of another

  20. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors.

    PubMed

    Molina-Molina, José-Manuel; Amaya, Esperanza; Grimaldi, Marina; Sáenz, José-María; Real, Macarena; Fernández, Mariana F; Balaguer, Patrick; Olea, Nicolás

    2013-10-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA>BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA>TBBPA>BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes.

  1. Estrogen Receptor-β Agonist Diarylpropionitrile: Biological Activities of R- and S-Enantiomers on Behavior and Hormonal Response to Stress

    PubMed Central

    Weiser, Michael J.; Wu, T. John; Handa, Robert J.

    2009-01-01

    Estrogens have been shown to have positive and negative effects on anxiety and depressive-like behaviors, perhaps explained by the existence of two distinct estrogen receptor (ER) systems, ERα and ERβ. The ERβ agonist, diarylpropionitrile (DPN) has been shown to have anxiolytic properties in rats. DPN exists as a racemic mixture of two enantiomers, R-DPN and S-DPN. In this study, we compared R-DPN and S-DPN for their in vitro binding affinity, ability to activate transcription in vitro at an estrogen response element, and in vivo endocrine and behavioral responses. In vitro binding studies using recombinant rat ERβ revealed that S-DPN has a severalfold greater relative binding affinity for ERβ than does R-DPN. Furthermore, cotransfection of N-38 immortalized hypothalamic cells with an estrogen response element-luc reporter and ERβ revealed that S-DPN is a potent activator of transcription in vitro, whereas R-DPN is not. Subsequently, we examined anxiety-like behaviors using the open-field test and elevated plus maze or depressive-like behaviors, using the forced swim test. Ovariectomized young adult female Sprague Dawley rats treated with racemic DPN, S-DPN, and the ERβ agonist, WAY-200070, showed significantly decreased anxiety-like behaviors in both the open-field and elevated plus maze and significantly less depressive-like behaviors in the forced swim test compared with vehicle-, R-DPN-, or propylpyrazoletriol (ERα agonist)-treated animals. In concordance with the relative binding affinity and transcriptional potency, these results demonstrate that the S-enantiomer is the biologically active form of DPN. These studies also indicate that estrogen's positive effects on mood, including its anxiolytic and antidepressive actions, are due to its actions at ERβ. PMID:19074580

  2. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies.

    PubMed

    Sato, Hiroyuki; Macchiarulo, Antonio; Thomas, Charles; Gioiello, Antimo; Une, Mizuho; Hofmann, Alan F; Saladin, Régis; Schoonjans, Kristina; Pellicciari, Roberto; Auwerx, Johan

    2008-03-27

    TGR5, a metabotropic receptor that is G-protein-coupled to the induction of adenylate cyclase, has been recognized as the molecular link connecting bile acids to the control of energy and glucose homeostasis. With the aim of disclosing novel selective modulators of this receptor and at the same time clarifying the molecular basis of TGR5 activation, we report herein the biological screening of a collection of natural occurring bile acids, bile acid derivatives, and some steroid hormones, which has resulted in the discovery of new potent and selective TGR5 ligands. Biological results of the tested collection of compounds were used to extend the structure-activity relationships of TGR5 agonists and to develop a binary classification model of TGR5 activity. This model in particular could unveil some hidden properties shared by the molecular shape of bile acids and steroid hormones that are relevant to TGR5 activation and may hence be used to address the design of novel selective and potent TGR5 agonists.

  3. In silico investigation of agonist activity of a structurally diverse set of drugs to hPXR using HM-BSM and HM-PNN.

    PubMed

    Zhang, Yi-Ming; Chang, Mei-Jia; Yang, Xu-Shu; Han, Xiao

    2016-06-01

    The human pregnane X receptor (hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiate clinically relevant drug-drug interactions. In this article, in silico investigation was performed on a structurally diverse set of drugs to identify critical structural features greatly related to their agonist activity towards hPXR. Heuristic method (HM)-Best Subset Modeling (BSM) and HM-Polynomial Neural Networks (PNN) were utilized to develop the linear and non-linear quantitative structure-activity relationship models. The applicability domain (AD) of the models was assessed by Williams plot. Statistically reliable models with good predictive power and explain were achieved (for HM-BSM, r (2)=0.881, q LOO (2) =0.797, q EXT (2) =0.674; for HM-PNN, r (2)=0.882, q LOO (2) =0.856, q EXT (2) =0.655). The developed models indicated that molecular aromatic and electric property, molecular weight and complexity may govern agonist activity of a structurally diverse set of drugs to hPXR. PMID:27376821

  4. Exploration of structure-activity relationships at the two C-terminal residues of potent 11mer Glucagon-Like Peptide-1 receptor agonist peptides via parallel synthesis.

    PubMed

    Haque, Tasir S; Martinez, Rogelio L; Lee, Ving G; Riexinger, Douglas G; Lei, Ming; Feng, Ming; Koplowitz, Barry; Mapelli, Claudio; Cooper, Christopher B; Zhang, Ge; Huang, Christine; Ewing, William R; Krupinski, John

    2010-07-01

    We report the identification of potent agonists of the Glucagon-Like Peptide-1 receptor (GLP-1R) via evaluation of two positional scanning libraries and a two-dimensional focused library, synthesized in part on SynPhase Lanterns. These compounds are 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of biphenylalanine (Bip) at the two C-terminal positions. Typical activities of the most potent peptides in this class are in the picomolar range in an in vitro functional assay using human GLP-1 receptor.

  5. mGlu2 metabotropic glutamate receptors restrain inflammatory pain and mediate the analgesic activity of dual mGlu2/mGlu3 receptor agonists.

    PubMed

    Zammataro, Magda; Chiechio, Santina; Montana, Michael C; Traficante, Anna; Copani, Agata; Nicoletti, Ferdinando; Gereau, Robert W

    2011-01-01

    Group II metabotropic glutamate receptors (mGluRs) couple to the inhibitory G-protein Gi. The group II mGluRs include two subtypes, mGlu2 and mGlu3, and their pharmacological activation produces analgesic effects in inflammatory and neuropathic pain states. However, the specific contribution of each one of the two subtypes has not been clarified due to the lack of selective orthosteric ligands that can discriminate between mGlu2 and mGlu3 subtypes.In this study we used mGlu2 or mGlu3 knock-out mice to dissect the specific role for these two receptors in the endogenous control of inflammatory pain and their specific contribution to the analgesic activity of mixed mGlu2/3 receptor agonists.Our results showed that mGlu2⁻(/)⁻ mice display a significantly greater pain response compared to their wild type littermates. Interestingly the increased pain sensitivity in mGlu2⁻(/)⁻ mice occurred only in the second phase of the formalin test. No differences were observed in the first phase. In contrast, mGlu3⁻(/)⁻ mice did not significantly differ from their wild type littermates in either phase of the formalin test.When systemically injected, a single administration of the mGlu2/3 agonist, LY379268 (3 mg/kg, ip), showed a significant reduction of both phases in wild-type mice and in mGlu3⁻(/)⁻ but not in mGlu2⁻(/)⁻ mice. However tolerance to the analgesic effect of LY379268 (3 mg/kg, ip) in mGlu3⁻(/)⁻ mice developed following 5 consecutive days of injection.Taken together, these results demonstrate that: (i) mGlu2 receptors play a predominant role over mGlu3 receptors in the control of inflammatory pain in mice; (ii) the analgesic activity of mixed mGlu2/3 agonists is entirely mediated by the activation of the mGlu2 subtype and (iii) the development of tolerance to the analgesic effect of mGlu2/3 agonists develops despite the lack of mGlu3 receptors. PMID:21235748

  6. Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-γ agonists.

    PubMed

    Kane, Cynthia J M; Phelan, Kevin D; Han, Lihong; Smith, Renea R; Xie, Jin; Douglas, James C; Drew, Paul D

    2011-06-01

    Fetal alcohol spectrum disorders (FASD) result from ethanol exposure to the developing fetus and are the most common cause of mental retardation in the United States. These disorders are characterized by a variety of neurodevelopmental and neurodegenerative anomalies which result in significant lifetime disabilities. Thus, novel therapies are required to limit the devastating consequences of FASD. Neuropathology associated with FASD can occur throughout the central nervous system (CNS), but is particularly well characterized in the developing cerebellum. Rodent models of FASD have previously demonstrated that both Purkinje cells and granule cells, which are the two major types of neurons in the cerebellum, are highly susceptible to the toxic effects of ethanol. The current studies demonstrate that ethanol decreases the viability of cultured cerebellar granule cells and microglial cells. Interestingly, microglia have dual functionality in the CNS. They provide trophic and protective support to neurons. However, they may also become pathologically activated and produce inflammatory molecules toxic to parenchymal cells including neurons. The findings in this study demonstrate that the peroxisome proliferator-activated receptor-γ agonists 15-deoxy-Δ12,15 prostaglandin J2 and pioglitazone protect cultured granule cells and microglia from the toxic effects of ethanol. Furthermore, investigations using a newly developed mouse model of FASD and stereological cell counting methods in the cerebellum elucidate that ethanol administration to neonates is toxic to both Purkinje cell neurons as well as microglia, and that in vivo administration of PPAR-γ agonists protects these cells. In composite, these studies suggest that PPAR-γ agonists may be effective in limiting ethanol-induced toxicity to the developing CNS.

  7. Non-NMDA and NMDA receptor agonists induced excitation and their differential effect in activation of superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Ishizuka, Ken'Ichi; Oskutyte, Diana; Satoh, Yoshihide; Murakami, Toshiki

    2008-02-29

    We investigated the effects of the ionophoretic application of ionotropic non-NMDA receptor agonist (AMPA) and NMDA receptor agonist (NMDA) on extracellularly recorded and antidromically identified superior salivatory nucleus (SSN) neurons. A great majority (93%) of SSN neurons was induced to fire by ionophoretic application of AMPA, and they were classified into high firing rate (more than 6 spikes/s), and low firing rate (less than 3 spikes/s) neurons. No clear differences were found between high firing rate and low firing rate neurons according their fibre type and histological locations. Of the SSN neurons that excited by AMPA, 22% (4/18) and 50% (5/9) of the neurons also were induced to fire following ionophoretic application of the NMDA receptor agonist NMDA in different concentrations, 20 mM and 100 mM, respectively. In neurons that induced firing by AMPA and by NMDA, AMPA-evoked firings were induced by the lower intensities of applied current and had higher mean firing rates than NMDA-evoked firing. Neurons that were induced firing by AMPA and by NMDA had B fibre and C fibre axons as well as those that induced firing only by AMPA. Neurons that were fired only by AMPA were found in whole SSN area, whereas neurons that were induced firing by AMPA and by NMDA were mainly found in intermediate SSN area. In conclusion, activation of ionotoropic non-NMDA receptor has a greater excitatory effect on the SSN neurons than that of ionotropic of NMDA receptor. Our data support the view that non-NMDA receptor plays a major role, whereas NMDA receptor plays a minor role, in the activation of SSN neurons.

  8. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    PubMed

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders.

  9. Rat white adipocytes activate p85/p110 PI3K and induce PM GLUT4 in response to adrenoceptor agonists or aluminum fluoride.

    PubMed

    Ohsaka, Y; Nomura, Y

    2016-03-01

    Adipocyte responses to adrenergic and ß-adrenoceptor(-AR) (adrenoceptor) regulation are not sufficiently understood, and information helpful for elucidating the adrenoceptor-responsive machinery is insufficient. Here we show by using immunoprecipitated kinase analysis with a phosphatidylinositol 3-kinase (PI3K) p85 antibody that PI3K activation was induced by treatment with 10 or 100 µM norepinephrine (NE) for 15 min or with 10 mM aluminum fluoride (AF, a guanosine triphosphate (GTP)-binding (G) protein activator) for 20 min in white adipocytes (rat epididymal adipocytes) and that treatment with pertussis toxin (PTX, a G-protein inactivator) inhibited PI3K activation induced by the 20-min treatment with AF in the cells. In addition, western blot analysis revealed that glucose transporter 4 (GLUT4) level in the adipocyte plasma membrane (PM) fraction was increased by treatment with 10 µM NE, 100 µM dobutamine (DOB, a ß1-AR agonist), or 0.1 µM CL316243 (CL, a ß3-AR agonist) for 30 min or with 10 mM AF for 20 min. NE or AF treatment triggered 2-deoxyglucose (2-DG) uptake into adipocytes under the above conditions. Our results advance the understanding of responses to adrenoceptor regulation in white adipocytes and provide possible clues for clarifying the machinery involved in adrenergic and ß-AR responses in the cells. PMID:27030626

  10. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists

    PubMed Central

    Shey, Muki S.; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S.

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues. PMID:27171482

  11. Coordinated Activation of Toll-Like Receptor8 (TLR8) and NLRP3 by the TLR8 Agonist, VTX-2337, Ignites Tumoricidal Natural Killer Cell Activity

    PubMed Central

    Dietsch, Gregory N.; Lu, Hailing; Yang, Yi; Morishima, Chihiro; Chow, Laura Q.; Disis, Mary L.; Hershberg, Robert M.

    2016-01-01

    VTX-2337 (USAN: motolimod) is a selective toll-like receptor 8 (TLR8) agonist, which is in clinical development as an immunotherapy for multiple oncology indications, including squamous cell carcinoma of the head and neck (SCCHN). Activation of TLR8 enhances natural killer cell activation, increases antibody-dependent cell-mediated cytotoxicity, and induces Th1 polarizing cytokines. Here, we show that VTX-2337 stimulates the release of mature IL-1β and IL-18 from monocytic cells through coordinated actions on both TLR8 and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome complex. In vitro, VTX-2337 primed monocytic cells to produce pro-IL-1β, pro-IL-18, and caspase-1, and also activated the NLRP3 inflammasome, thereby mediating the release of mature IL-1β family cytokines. Inhibition of caspase-1 blocked VTX-2337-mediated NLRP3 inflammasome activation, but had little impact on production of other TLR8-induced mediators such as TNFα. IL-18 activated natural killer cells and complemented other stimulatory pathways, including FcγRIII and NKG2D, resulting in IFNγ production and expression of CD107a. NLRP3 activation in vivo was confirmed by a dose-related increase in plasma IL-1β and IL-18 levels in cynomolgus monkeys administered VTX-2337. These results are highly relevant to clinical studies of combination VTX-2337/cetuximab treatment. Cetuximab, a clinically approved, epidermal growth factor receptor-specific monoclonal antibody, activates NK cells through interactions with FcγRIII and facilitates ADCC of tumor cells. Our preliminary findings from a Phase I open-label, dose-escalation, trial that enrolled 13 patients with recurrent or metastatic SCCHN show that patient NK cells become more responsive to stimulation by NKG2D or FcγRIII following VTX-2337 treatment. Together, these results indicate that TLR8 stimulation and inflammasome activation by VTX-2337 can complement FcγRIII engagement and may augment clinical responses in SCCHN

  12. Subtle side-chain modifications of the hop phytoestrogen 8-prenylnaringenin result in distinct agonist/antagonist activity profiles for estrogen receptors alpha and beta.

    PubMed

    Roelens, Frederik; Heldring, Nina; Dhooge, Willem; Bengtsson, Martin; Comhaire, Frank; Gustafsson, Jan-Ake; Treuter, Eckardt; De Keukeleire, Denis

    2006-12-14

    In search of therapeutic agents for estrogen-related pathologies, phytoestrogens are being extensively explored. In contrast to naringenin, 8-prenylnaringenin is a potent hop-derived estrogenic compound, highlighting the importance of the prenyl group for hormonal activity. We investigated the effects of substituting the prenyl group at C(8) with alkyl chains of varying lengths and branching patterns on estrogen receptor (ER) subtype ERalpha- and ERbeta-binding affinities and transcriptional activities. In addition, features of the ligand-induced receptor conformations were explored using a set of specific ER-binding peptides. The new 8-alkylnaringenins were found to span an activity spectrum ranging from full agonism to partial agonism to antagonism. Most strikingly, 8-(2,2-dimethylpropyl)naringenin exhibited full agonist character on ERalpha, but pronounced antagonist character on ERbeta. Knowledge on how ER-subtype-selective activities can be designed provides valuable information for future drug or tool compound discovery.

  13. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    PubMed

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  14. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    PubMed

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  15. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    PubMed

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver.

  16. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    SciTech Connect

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  17. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    PubMed

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. PMID:24769090

  18. A novel 4 S [3H]beta-naphthoflavone-binding protein in liver cytosol of female Sprague-Dawley rats treated with aryl hydrocarbon receptor agonists.

    PubMed Central

    Brauze, D; Malejka-Giganti, D

    2000-01-01

    beta-Naphthoflavone (beta-NF) is a widely used inducer of phase-I and phase-II enzymes controlled by aryl hydrocarbon receptor (AhR). Studies of competitive binding with (3)H-labelled 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3-MC) and benzo[a]pyrene (B[a]P) have shown that beta-NF is a high-affinity ligand for AhR and also for polycyclic aromatic hydrocarbon (PAH)-binding protein, both soluble proteins of rat liver in 8 S and 4 S fractions, respectively, of sucrose gradients. This study examined binding of [(3)H]beta-NF to liver cytosolic proteins of female Sprague-Dawley rats. Treatment of rats with beta-NF, 3-MC, TCDD or alpha-naphthoflavone (alpha-NF) increased the specific [(3)H]beta-NF binding to liver cytosol up to 125-fold that of vehicle (corn oil)-treated rats (<100 fmol/mg of protein). Sucrose gradients revealed a large 4 S and a small 8 S peak of radioactivity from [(3)H]beta-NF binding to cytosols of beta-NF-, 3-MC-, TCDD- or alpha-NF-treated rats. Whereas co-incubation with the unlabelled beta-NF eliminated both peaks, co-incubation with 2,3, 7,8-tetrachlorodibenzofuran (TCDF) eliminated only the 8 S peak. The sucrose density gradient from [(3)H]TCDD binding to cytosol of beta-NF- or TCDD-treated rats yielded a small 4 S and a larger 8 S peak; only the latter was abolished by co-incubation with TCDF. Thus, the patterns of sedimentation, distribution and elimination of radioactivity from the 8 S fraction of the liver cytosols from beta-NF-, 3-MC-, TCDD- or alpha-NF-treated rats were characteristic for the AhR, whereas those from the 4 S fraction appeared specific for [(3)H]beta-NF binding. The data indicate that potent AhR agonists, TCDD, 3-MC and beta-NF, and to a lesser extent alpha-NF, a weak AhR agonist, induce a 4 S [(3)H]beta-NF-binding protein in liver cytosol of female rats. alpha-NF, beta-NF and 3-MC were effective competitors (80-85% inhibition) of the [(3)H]beta-NF-specific binding to the beta-NF-, 3 MC- or TCDD

  19. Effects of gonadotropin-releasing hormone agonist and antagonist on ovarian activity in a mouse model for polycystic ovary.

    PubMed

    Singh, Padmasana; Srivastava, Raj Kamal; Krishna, Amitabh

    2016-10-01

    PCOS is a major cause of anovulatory infertility in women in their reproductive age. However, its etiology and pathophysiology remain uncertain. The immature mice chronically injected with DHEA, termed as PCO-mice, develop numerous large cystic follicles, high circulating androgen and anovulation similar to PCOS in women. Although PCO-mice show decreased ovarian GnRH I-receptor in immunoblot but show increased immunostaining for GnRH I-receptor in oocytes of cystic follicles. PCO-mice show reduced ovarian LH receptor expression, circulating estradiol and progesterone level compared to normal mice injected with vehicle only. The treatment with low dose of GnRH-Agonist in PCO-mice restores ovarian LH receptor expression to the level of normal mice and promote ovulation and formation of functional corpus luteum. GnRH-Antagonist although cause ovulation in PCO-mice but does not restore LH receptor expression to the level of normal mice, and they show low circulating progesterone and hypertrophied vacuolated corpus luteum. Our study suggests that GnRH-agonist restores ovulation in PCO-mice and produces biphasic and beneficial effect over the use of GnRH-Antagonist.

  20. Neuroprotective Potential of Peroxisome Proliferator Activated Receptor- α Agonist in Cognitive Impairment in Parkinson's Disease: Behavioral, Biochemical, and PBPK Profile.

    PubMed

    Uppalapati, Dedeepya; Das, Nihar R; Gangwal, Rahul P; Damre, Mangesh V; Sangamwar, Abhay T; Sharma, Shyam S

    2014-01-01

    Parkinson's disease (PD) is a common neurodegenerative disorder affecting 1% of the population by the age of 65 years and 4-5% of the population by the age of 85 years. PD affects functional capabilities of the patient by producing motor symptoms and nonmotor symptoms. Apart from this, it is also associated with a higher risk of cognitive impairment that may lead to memory loss, confusion, and decreased attention span. In this study, we have investigated the effect of fenofibrate, a PPAR- α agonist in cognitive impairment model in PD. Bilateral intranigral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (100 µg/1 µL/side) produced significant cognitive dysfunctions. Fenofibrate treatment at 10, 30, and 100 mg/kg for twenty-five days was found to be neuroprotective and improved cognitive impairment in MPTP-induced PD model as evident from behavioral, biochemical (MDA, GSH, TNF- α , and IL-6), immunohistochemistry (TH), and DNA fragmentation (TUNEL positive cells) studies. Further, physiologically based pharmacokinetic (PBPK) modeling study was performed using GastroPlus to characterize the kinetics of fenofibric acid in the brain. A good agreement was found between pharmacokinetic parameters obtained from the actual and simulated plasma concentration-time profiles of fenofibric acid. Results of this study suggest that PPAR- α agonist (fenofibrate) is neuroprotective in PD-induced cognitive impairment. PMID:24693279

  1. Neuroprotective Potential of Peroxisome Proliferator Activated Receptor- α Agonist in Cognitive Impairment in Parkinson's Disease: Behavioral, Biochemical, and PBPK Profile.

    PubMed

    Uppalapati, Dedeepya; Das, Nihar R; Gangwal, Rahul P; Damre, Mangesh V; Sangamwar, Abhay T; Sharma, Shyam S

    2014-01-01

    Parkinson's disease (PD) is a common neurodegenerative disorder affecting 1% of the population by the age of 65 years and 4-5% of the population by the age of 85 years. PD affects functional capabilities of the patient by producing motor symptoms and nonmotor symptoms. Apart from this, it is also associated with a higher risk of cognitive impairment that may lead to memory loss, confusion, and decreased attention span. In this study, we have investigated the effect of fenofibrate, a PPAR- α agonist in cognitive impairment model in PD. Bilateral intranigral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (100 µg/1 µL/side) produced significant cognitive dysfunctions. Fenofibrate treatment at 10, 30, and 100 mg/kg for twenty-five days was found to be neuroprotective and improved cognitive impairment in MPTP-induced PD model as evident from behavioral, biochemical (MDA, GSH, TNF- α , and IL-6), immunohistochemistry (TH), and DNA fragmentation (TUNEL positive cells) studies. Further, physiologically based pharmacokinetic (PBPK) modeling study was performed using GastroPlus to characterize the kinetics of fenofibric acid in the brain. A good agreement was found between pharmacokinetic parameters obtained from the actual and simulated plasma concentration-time profiles of fenofibric acid. Results of this study suggest that PPAR- α agonist (fenofibrate) is neuroprotective in PD-induced cognitive impairment.

  2. Effects of gonadotropin-releasing hormone agonist and antagonist on ovarian activity in a mouse model for polycystic ovary.

    PubMed

    Singh, Padmasana; Srivastava, Raj Kamal; Krishna, Amitabh

    2016-10-01

    PCOS is a major cause of anovulatory infertility in women in their reproductive age. However, its etiology and pathophysiology remain uncertain. The immature mice chronically injected with DHEA, termed as PCO-mice, develop numerous large cystic follicles, high circulating androgen and anovulation similar to PCOS in women. Although PCO-mice show decreased ovarian GnRH I-receptor in immunoblot but show increased immunostaining for GnRH I-receptor in oocytes of cystic follicles. PCO-mice show reduced ovarian LH receptor expression, circulating estradiol and progesterone level compared to normal mice injected with vehicle only. The treatment with low dose of GnRH-Agonist in PCO-mice restores ovarian LH receptor expression to the level of normal mice and promote ovulation and formation of functional corpus luteum. GnRH-Antagonist although cause ovulation in PCO-mice but does not restore LH receptor expression to the level of normal mice, and they show low circulating progesterone and hypertrophied vacuolated corpus luteum. Our study suggests that GnRH-agonist restores ovulation in PCO-mice and produces biphasic and beneficial effect over the use of GnRH-Antagonist. PMID:27036999

  3. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  4. Leukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation.

    PubMed

    Zou, Siying; Teixeira, Alexandra M; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferruccio, Juliana; Zhang, Ping-Xia; Hwa, John; Min, Wang; Krause, Diane S

    2016-08-30

    Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal haemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout (KO), shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using two different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice. PMID:27345948

  5. Adsorption of Toll-Like Receptor 4 Agonist to Alum-Based Tetanus Toxoid Vaccine Dampens Pro-T Helper 2 Activities and Enhances Antibody Responses.

    PubMed

    Bortolatto, Juliana; Mirotti, Luciana; Rodriguez, Dunia; Gomes, Eliane; Russo, Momtchilo

    2015-01-01

    Aluminum salts gels (alum) are TLR-independent adjuvants and have been used to boost antibody responses in alum-based vaccines such as diphtheria, pertussis, and tetanus toxoid (DPT) triple vaccine. However, the pro-Th2 activity of alum-based vaccine formulations has not been fully appreciated. Here we found that alum-based tetanus toxoid (TT) vaccine was biased toward a Th-2 profile as shown by TT-induced airway eosinophilic inflammation, type 2 cytokine production, and high levels of IgE anaphylactic antibodies. The adsorption into alum of prototypic TLR4 agonists such as lipopolysaccharides (LPS) derived from Escherichia coli consistently dampened TT-induced Th2 activities without inducing IFNγ or Th1-like responses in the lung. Conversely, adsorption of monophosphoryl lipid A (MPLA) extracted from Salmonella minnesota, which is a TIR-domain-containing adapter-inducing interferon-β- (TRIF-) biased TLR4 agonist, was less effective in decreasing Th-2 responses. Importantly, in a situation with antigenic competition (OVA plus TT), TT-specific IgG1 or IgG2a was decreased compared with TT sensitization. Notably, LPS increased the production of IgG1 and IgG2a TT-specific antibodies. In conclusion, the addition of LPS induces a more robust IgG1 and IgG2a TT-specific antibody production and concomitantly decreases Th2-cellular and humoral responses, indicating a potential use of alum/TLR-based vaccines.

  6. Comparative analyses of downstream signal transduction targets modulated after activation of the AT1 receptor by two β-arrestin-biased agonists.

    PubMed

    Santos, Geisa A; Duarte, Diego A; Parreiras-E-Silva, Lucas T; Teixeira, Felipe R; Silva-Rocha, Rafael; Oliveira, Eduardo B; Bouvier, Michel; Costa-Neto, Claudio M

    2015-01-01

    G protein-coupled receptors (GPCRs) are involved in essentially all physiological processes in mammals. The classical GPCR signal transduction mechanism occurs by coupling to G protein, but it has recently been demonstrated that interaction with β-arrestins leads to activation of pathways that are independent of the G protein pathway. Also, it has been reported that some ligands can preferentially activate one of these signaling pathways; being therefore called biased agonists for G protein or β-arrestin pathways. The angiotensin II (AngII) AT1 receptor is a prototype GPCR in the study of biased agonism due to the existence of well-known β-arrestin-biased agonists, such as [Sar(1), Ile(4), Ile(8)]-AngII (SII), and [Sar(1), D-Ala(8)]-AngII (TRV027). The aim of this study was to comparatively analyze the two above mentioned β-arrestin-biased agonists on downstream phosphorylation events and gene expression profiles. Our data reveal that activation of AT1 receptor by each ligand led to a diversity of activation profiles that is far broader than that expected from a simple dichotomy between "G protein-dependent" and "β-arrestin-dependent" signaling. We observed clusters of activation profiles common to AngII, SII, and TRV027, as well as downstream effector activation that are unique to AngII, SII, or TRV027. Analyses of β-arrestin conformational changes after AT1 receptor stimulation with SII or TRV027 suggests that the observed differences could account, at least partially, for the diversity of modulated targets observed. Our data reveal that, although the categorization "G protein-dependent" vs. "β-arrestin-dependent" signaling can be of pharmacological relevance, broader analyses of signaling pathways and downstream targets are necessary to generate an accurate activation profile for a given ligand. This may bring relevant information for drug development, as it may allow more refined comparison of drugs with similar mechanism of action and effects, but with

  7. Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor γ agonist improve vascular function and decrease renal injury in hypertensive obese rats.

    PubMed

    Imig, John D; Walsh, Katie A; Hye Khan, Md Abdul; Nagasawa, Tasuku; Cherian-Shaw, Mary; Shaw, Sean M; Hammock, Bruce D

    2012-12-01

    Cardiometabolic syndrome occurs with obesity and consists of pathophysiological factors that increase the risk for cardiovascular events. Soluble epoxide hydrolase inhibition (sEHi) is a novel therapeutic approach that exerts renal and cardiovascular protection. Although sEHi as a therapeutic approach is promising, it could be more effective for the treatment of cardiometabolic syndrome when combined with peroxisome proliferator activated receptor γ (PPARγ) agonists. We hypothesized that the PPARγ agonist, rosiglitazone in combination with a sEHi (tAUCB) will provide synergistic actions to decrease blood pressure, improve vascular function, decrease inflammation, and prevent renal damage in spontaneously hypertensive obese rats (SHROB). SHROB were treated with rosiglitazone, tAUCB or the combination of tAUCB and rosiglitazone for four-weeks and compared with spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Blood pressure increased in SHROB (164 ± 7 mmHg) and decreased 10 mmHg when treated with rosiglitazone, tAUCB, or tAUCB and rosiglitazone. Mesenteric artery dilation to the K(ATP) channel opener pinacidil was attenuated in SHROB (E(Max) = 77 ± 7%), compared with WKY (E(Max) = 115 ± 19) and SHR (E(Max) = 93 ± 12%). Vasodilation to pinacidil was improved by rosiglitazone (E(Max) = 92 ± 14%) but not tAUCB. Renal macrophage infiltration increased in SHROB and significantly decreased with rosiglitazone or tAUCB and rosiglitazone treatment. Albuminuria was increased in SHROB (90 ± 20 mg/d) and was significantly decreased by the combination of tAUCB and rosiglitazone (37 ± 9 mg/d). Glomerular injury in SHROB was also significantly decreased by tAUCB and rosiglitazone. These results indicate that even though sEHi or PPARγ agonist have benefits when used individually, the combination is more beneficial for the multidisease features in cardiometabolic syndrome.

  8. Indole and Tryptophan Metabolis